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Abstract  

  

SEMI-EMPERICAL (WOODS) TIRE MODEL 

 

Priyank Vasant Nandu, MS 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Robert L.  Woods 

The performance of a racecar in a maneuver is almost totally determined by the characteristics of 

the tires and the suspension setup.  If the suspension is properly tuned for the maneuver, then 

the limiting factor is the tire.  Therefore, any racecar design and performance analysis must start 

with a full description of the performance of the tire [1]. 

Mathematical models for tire performance such as the Pacejka model have been in use for a long 

time and have become the standard for expressing how a tire will perform dynamically. It 

comprises of curve fit to experimental data and requires about 17 coefficients to describe the 

sensitivity of tire adhesion as a function of several variables. These coefficients are not easy to 

interpret or to estimate. Presented in this paper is the Woods model for tire performance that will 

provide a physical interpretation to each coefficient and allows an estimate of the coefficient of a 
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new tire based on knowledge of tested tires. Using Woods tire model, based on Pacejka model 

with different mathematic curve fits we were able represent the data with same accuracy. 

The main objective of this project is to verify the assumptions and mathematical curve fits used in 

Woods tire model for tires with different compound, sizes and manufacturers and also to express 

degradation in the coefficient of friction and the value of slip that results in peak force as a 

function of normal load and camber. 
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Chapter 1: Introduction 

The objective in motor racing is to win races, whether one views racing as a sport, promotional 

entertainment, or corporate R& D activity. It is the dynamic behavior of the combination of high 

tech machines and infinitely complex human beings that makes the sport so intriguing for 

participants and spectators alike. 

Vehicle performance is the function of how well the vehicle interacts with the road surface. Tires 

are the primary source of forces and torques which provide control and stability (handling) to the 

vehicle. The forces and torques developed by the pneumatic tire affect the vehicle in a variety of 

ways. Obviously, the tires support the vehicle weight and any other vertical loads but also take 

lateral forces and torques. The interactions between the tire and road surfaces generates tractive, 

braking and cornering forces for maneuvering the vehicle [1]. 

Motivation 

As mentioned previously, it is critical to understand the interactions between the tire and road 

surfaces, the forces and moments generated by the tire and how to take advantage of these 

effects on vehicle stability, control and performance. This creates two specific needs. First, there 

is a need for data on the force and moment characteristics of tire. Second, a direct expression on 

the maximum adhesion and maximizing slip which allows an engineer to determine car setup 

parameters and quantify adjustments[2]. 
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Chapter 2: Tire forces and moments 

The tire is the principal means for creating tire forces and moments to produce vehicle motion. In 

this section, definitions of the various forces and moments, along with associated operating 

variables, are introduced. The fundamental tire force and moment axis system is shown in Figure 

1. This appears in two Society of Automotive (SAE) standards documents, Surface Vehicle 

Recommended Practice [SAE J670E, 1976] and Tire Performance Technology [SAE J2047, 

1998]. The definitions that follow are also based on these two sources. 

 

Figure 1: SAE Standard tire axis system. 
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2.1 Definition 

There are four tire forces and moments of interest. They are described in a tire-relative axis 

system with origin located in the wheel plane below the wheel center on the ground. The x-axis 

points in the direction of the wheel plane in the ground plane. The y-axis points perpendicular to 

the wheel plane in the ground plane. The z-axis is normal to the ground plane and is positive 

downward [1]. The forces and moment produced by the tire are: 

 

• Longitudinal force, Fx: Tire force produced in the X-axis direction principally as a function 

of slip ratio. Informally, this is the tractive/braking force.  

• Lateral force, Fy: Tire force produced in the Y-axis direction principally as a function of 

slip angle, but also a weak but notable function of inclination angle. Informally, this is the 

cornering force.  

• Aligning Torque, Mz: Tire moment about the Z-axis which usually acts as a restoring 

torque. Tires generally resist the introduction of slip angle through this mechanism. This is one 

source of the self-centering exhibited by automobile steering wheels. 

• Overturning Moment, Mx: Tire moment about the X-axis resulting from the fact that the 

resultant normal load vector can experience a lateral offset from the origin of the SAE tire axis 

system. It is important for load transfer and suspension compliance calculations. 

These four forces and moments are considered tire outputs. There is a fifth component, the 

rolling resistance moment, but this is often treated separately by vehicle dynamicists. There are 

five principal operating variables the tire experiences: 

• Normal Load, Fz: Tire force in the Z-axis direction indicating the amount of weight being 

carried by a tire at a given instant in time. In the SAE system, tire loads are described as being 
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applied by the road to the vehicle. This is an upward direction so, strictly speaking, tire loads have 

a negative sign. It is commonplace however, to omit the negative sign whenever it doesn’t affect 

the mathematics, such as during discussions or in written material. 

• Slip angle, α: The difference between the tire’s velocity and heading vectors as projected 

onto the ground plane. This angle is produced not only by steering the front wheels, but also by 

vehicle motions including yaw rate, sideslip and suspension kinematics/compliances. Positive slip 

angles produce negative lateral forces for turning left. 

• Inclination angle, γ: The angle at which the top of the tire is tilted left or right from the 

vertical. Inclination angle results from suspension design and body roll during cornering. It has 

important, but not primary, effects on all four force and moment outputs. Inclination angle is 

sometimes incorrectly referred to as “camber angle”. Both describe the tilt of the tire, but camber 

angle is relative to the vehicle such that when the top of the tire tilts toward the vehicle centerline 

it is referred to as “negative camber”. Inclination angle is negative when the top of the tire tilts to 

the left of its velocity vector. 

• Slip ratio, σ: While not shown in Figure, slip ratio is a measure of how fast the tire is 

rotating relative to how fast the roadway is passing by. There are a variety of expressions in use 

as summarized by [Milliken, 1995]. For the SAE definition used a slip ratio of zero means the tire 

is “free rolling” and not trying to develop any drive or brake forces. Positive slip ratios represent a 

faster rotation than needed for the free rolling condition, leading to tractive forces. Negative ratios 

indicate a slower rotation than needed for free rolling, which produces braking forces.  

• Roadway Friction Coefficient, µ: Also, not shown the roadway friction coefficient is a 

metric to indicate the interaction between the roadway and the tire. Common asphalt or concrete 

has a value near 1.0, while packed snow is around 0.3-0.4 and wet ice can be as low as 0.1 or 

less [Wallingford, 1990].  
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It should be noted that the system presented above is the SAE standard and is in use across 

North America and, to a lesser extent, across the rest of the world. 

2.2 Fundamental Tire force and moment characteristics. 

One of the earliest publications on tire behavior was by Broulhiet [Broulheit, 1925] in which he 

established the concept of the slip angle. Until that time, the tire was largely seen as a 

suspension component (vertical response was studied) and as a source of power loss (rolling 

resistance). These were the major benefit and concern associated with the introduction of the 

pneumatic tire to bicycles in the 1880s. While tires had become more reliable, more complex and 

more effective in the decades since then, the overriding perception of the tire’s role had changed 

little. The tire force & moment characteristics of significant interest to modern vehicle dynamicists 

were only beginning to be explored in the 1920s [3]. 

In 1931 Becker, Fromm and Maruhn [Becker, 1931] produced lateral force data on a rotating 

drum, a side-effect of their investigation into the problem of tire shimmy. Drum testing of tire 

forces and moments grew throughout the 1930s, with significant contributions being made by 

Olley and Evans [Evans, 1935]. By the end of the decade Bull was able to envision a full six 

component drum-type test machine [Bull, 1939]. The information obtained from these early 

testing machines, while crude by today’s standards, was sufficient to establish fundamental 

relationships between operating variables and tire outputs. Figure 2.3 [Milliken, 1995] shows the 

generic shape of a lateral force versus slip angle curve. The same shape is also representative of 

longitudinal force vs. slip ratio curves. For small slip angle values the tire behaves linearly, 

producing a lateral force proportional slip angle in an amount defined as the “cornering stiffness”. 

Nearly all normal passenger car driving occurs in this “linear range” of the tire performance curve 

[4].   
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Figure 2: Fundamental lateral force versus slip angle curve[1]. 

There exists a certain slip angle value at which the lateral force is maximized. This is referred to 

as the peak of the curve. It is the area near the peak of the curve that race cars attempt to 

operate. Both the initial slope and the peak of the curve play a critical role throughout this 

dissertation. The curve in Figure 2.3 is drawn for a single normal load. As normal load is 

increased the height of the peak, location of the peak and initial slope of the curve all change, as 

shown in Figure 2.4 [Milliken, 1995]. Awareness of these trends is also essential to the work 

presented in later chapters [1]. 
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Figure 3: Typical lateral force behavior across three different normal loads. [1] 
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Chapter 3: Tire modeling 

A tire model is a way to describe real world phenomena as a series of mathematical equations. 

Engineers use numerous models to describe the world in a minimalist form, draw insights into 

how various properties interact and predict the outcome of future events. To make a model 

simple and easy to understand, we have to make certain assumptions. The key is to develop a 

model that supplies the desired accuracy and detail for a specific problem, while remaining 

solvable given the time and resources available. Hence, there is no surprise that there are 

several ways to develop a tire model. 

The focus of this thesis is the WOODS tire model based on the normalization of Pajecka model. 

This model has been developed to accurately predict and corelate physical(tunable) parameters 

as a function of peak slip angle and adhesion. 

Tire model can be divided into several categories based upon the purpose the model serves. For 

example, Ride model focuses on the tire vertical behavior like spring rate and damping treating 

the tire as a suspension component while the handling model focuses on the forces and moments 

that produce the vehicle motion. WOODS tire model comes under the handling model. 

3.1 The Pacejka Tire Model 

Of the many different tire models that are available today, the magic formula tire model proposed 

in 1, 2 and 3 is one of the most advanced and has proven to be very accurate when compared to 

experimental data. The approach of the model is semi empirical, meaning that the formulas aren’t 

derived from a physical background that models the tire structure but rather are Mathematical 

approximations of curves that were recorded and experiments. For this purpose, scaling factors 

must be obtained from measurements. 

The general form of the Magic Formula is [3]: 
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𝑦 = 𝐷 sin [𝐶 arctan {𝐵𝑥 − (𝐵𝑥 − arctan (𝑏𝑥) )} ] 

Where y represents a tire force or torque and x is the slip quantity this force or torque depends on 

(i.e. longitudinal or lateral slip). B, C, D, E are factors to define the curve’s shape in order to get 

an appearance similar to the recorded. Specifically,  

 B  is a stiffness factor 

 C  is a shape factor 

 D  is the peak value 

 E   is a curvature factor 

 BCD is the slope of curve at origin. 

Each of these factors must be approximated from measured data from experiments for the 

respective tire and environment. It is also possible to apply an offset in x and y direction with 

respect to origin to this general formula. An offset can arise due to ply sheer and conicity effects 

as well as wheel camber [3]. The shift in x and y can be performed by using the modified 

coordinates 

𝑌(𝑋) = 𝑦(𝑥) + 𝑆𝑉 with 𝑆𝑉 being the vertical shift and 

𝑥 = 𝑋 + 𝑆𝐻   with 𝑆𝐻 being the horizontal shift. 

 

As input variable X we can use tan α (lateral slip angle) or σ (Longitudinal slip) – which depend 

on vertical load 𝐹𝑍 and camber angle γ. The output variable Y described by the formula might be 

𝐹𝑋 (longitudinal force), 𝐹𝑌 (lateral force) or 𝑀𝑍 (self-aligning torque), depending on the problem. 

As an example, the lateral force 𝐹𝑌0 can be described as [3]: 
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𝐹𝑌0 =  𝐷𝑌 sin[𝐶𝑌 arctan{𝐵𝑌𝛼𝑌 − 𝐸𝑦(𝐵𝑦𝛼𝑦 − arctan(𝐵𝑦𝛼𝑦))}] + 𝑆𝑉𝑦  

Where α𝑦 is the slip angle.   

To display the agreement of the Magic Formula approach and experimental data figure 7 shows 

curves obtained from measurements compared to magic formula computed results. 

 

Figure 4: Comparison of Magic Formula computed results with measured data [3]. 
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Chapter 4: Tire test data 

4.1 Tire testing 

Formula SAE (FSAE) is a highly competitive series organized annually at 5 different continents. 

University teams from around the world contest in this unique competition where students 

virtually have complete freedom to design, develop and manufacture a racecar. UTA racing has a 

great legacy starting back in 1982, where the team has won various championships and 

accolades. UTA racing has been one of the top most competitive teams in the world. 

The need for greater access to tire data and engineers familiar with tire data is addressed through 

the establishment of the Formula SAE Tire Test Consortium. This organization collects a modest 

fee from registered members, all of whom are colleges and universities participating in the 

international Formula SAE competitions. The consortium organizes tire force and moment tests 

and then distributes the raw data to all registered members. It is the first time that low-cost, high 

quality tire force and moment data has been available to academia. Cornering tests begin with a 

“cold to hot” series of twelve slip angle sweeps at one load [5]. 
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Figure 5: Main testing machine Calspan, TIRF. 

The cornering test is run with a free-rolling (no slip ratio) tire, while the drive/brake tests hold 

constant slip angle while varying slip ratio. Five loads, five inclination angles and four inflation 

pressures are tested. The first slip angle sweep block is longer than the rest because it contains a 

few “conditioning sweeps”. A lot of care is taken to exercise the tire and stabilize its performance 

before taking the main block of force and moment data. 
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Chapter 5: Woods Tire Model 

 

5.1 Pajecka Tire models 

 

The Pacejka model has evolved slightly over the years and uses different signs for the 

coefficients in different coordinate systems used by various organizations, but the basic form is 

the sine of an inverse tangent function of the slip with various degradations and offsets as 

presented below [2].   

.  

Figure 6:Force and slip angle characteristics of a typical race tire. 
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Figure 9 illustrates the force versus slip angle of a typical race tire as a function of normal load.  

In this graph, we are interested in two parameters, the slip angle that results in the maximum 

lateral force, and that lateral force relative to the normal load [2]. 

 

5.1.1 Pacejka Lateral Model 

 

In lateral model ‘slip’ is the slip angle. The Pacejka formulation is given by the following 

equations. See the nomenclature in appendix A-1 for explanations of the variables and 

coefficients. 

 ( )
yvyyyy SCDF += sin        (1) 

( ) ( ) ( )( )  yhyyhyyyhyy SBSBESB +−+−+= −−  11 tantan  

 ( )
( )( )

( ) 


































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



+

+
−−+=

−

−

yhy

yhy

yyhy
SB

SB
ESB






1

1
tan

11tan    (2) 

The coefficients Dy , Cy , By , Ey , Syh , and Syv are curve fit parameters and are stated in terms of 

18 constants, ai, that are determined for each tire. 

 0aC y =          (3) 

 ( ) ( )  zzy FaaFaD 2

1521 1 −+=       (4) 
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( )

yy

z

y
DC

a
a

F
a

B

5

4

1

3 1tan2sin −























=

−

     (5) 

 ( ) ( ) ( ) yhzy SaaaFaE ++−+=  sign1 171676     (6) 

 1098 aaFaS zyh ++=        (7) 

 ( ) zzzyv FaFaaFaS 14131211 +++=      (8) 

The a coefficients and the constants are expained at the end in appendix A-1. 

 

5.1.2 Pacejka Longitudinal Model 

 

In the longitudinal model, the “slip” is the slip ratio.  The slip ratio is related to the normalized 

difference in the tangential speed of the tire, Rt  and the longitudinal speed of the vehicle, v, 

(measured at the wheel axle).  Various authors use differing conventions, but in this paper, the 

radius of the tire, Rt, is the loaded radius (considering speed) and  is the rotational speed of the 

tire [2]. 

For acceleration, the slip ratio is the speed difference relative to the rotational speed. 

 





tt

t

R

v

R

vR
−=

−
= 1       (9a) 

In acceleration, the tangential speed is greater than the vehicle speed, so the slip ratio is positive. 
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For deceleration, the slip ratio is the speed difference relative to the vehicle speed. 

 1−=
−

=
v

R

v

vR tt 
        (9b) 

In deceleration, the vehicle speed is greater than the tangential speed, so the slip ratio is 

negative. 

The longitudinal model is very similar to the lateral model, except camber effects are not 

considered. 

 ( ) xvxxxx SCDF += sin        (10) 

 ( ) ( ) ( )( )  xhxshxxxhxx SBSBESB +−+−+= −−  11 tantan  

 ( )
( )( )

( ) 















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
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
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




1

1 tan
11tan   (11) 

For calculation of the longitudinal force, the Bx, Cx, Dx, Ex, Sxh, and Sxv coefficients are given in 

terms of 14 constants, bi, derived from the measured data. 

 0bC x =          (12) 

 ( ) zzx FbFbD 21 +=         (13) 

 
( )

xx

Fb

zz
x

DC

eFbFb
B

z5

43

−
+

=        (14) 
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 ( ) ( ) yhzzx SbbFbFbE +−++= sign1 1387

2

6     (15) 

 109 bFbS zxh +=         (16) 

 1211 bFbS zxv +=         (17) 

The b coefficients and the constants are expained at the end in appendix. 

 

5.2 Woods Tire Models 

The Pacejka models do an acceptable job of representing tire data, they fall short on three 

aspects that are of interest to analysis and simulation.  First, the equations are not presented in a 

normalized form so it is not clear at what value of slip the tire force reaches a peak.  For racing 

applications, one would want to know the slip angle at peak adhesion, so a peak slip angle should 

be presented explicitly.  Second, one should be able to isolate this peak slip function as an 

independent equation so it can be shown how the slip varies with normal load and camber.  Third, 

the a and b coefficients do not have any physical interpretation to which one can relate.  In most 

cases, the coefficients are even presented without any units.  When units are presented, 

measurements of force are often not consistent (vertical load measured in kN and adhesion 

forces measured in N).[2] 

 

The normalization is both in the adhesion force relative to the normal load, and the slip relative to 

the peak slip (slip at which the adhesion force reaches a peak).  In this normalized form, the 

equation for the peak slip function is clear and can be written independently.[2] 
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First the Pacejka model is normalized with respect to the normal load, Fz, and second, the slip 

terms are normalized and scaled so that the maximizing slip can be observed directly.  This 

normalizing approach makes use of some recognizble physical parameters such as the 

coefficient of friction.  When the parameters are not obvious, they are expressed as the value that 

would cause a 10% change in performance.  This will give a physical feel for the coefficients and 

for their units.[2] 

 

5.2.1 Woods tire Model 

 

My normalization of the Pacejka model for lateral acceleration can be stated in the 

following form (similar to equation 1). 

 

 ( )
z

yoff

yyy

z

y

F

F
C

F

F
+=  sin        (18) 

 

where Cy  = droop factor that adjusts the slope after peak adhesion. 

 

The lateral coefficient of friction is y and can be expressed as follows (similar to equation 4). 
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where y0  =  the coefficient of friction that would occur with zero load and zero camber 

   Fy  =  the load that will result in a 10% degradation in  

   y   =  the camber that will result in a 10% degradation in  

 

The vertical offset of the forces is expressed as a function of normal load and camber (similar to 

equation 8). 
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where 0yoffF   =  the offset (or force intercept) that would occur with zero load 

Fyoffz    =  the load that will result in a 10% change in offset related to    camber 

  Syoff     =  the sensitivity of lateral force to normal force 

  yoff      =  a 10% normalizing factor for  

 

The variable y is a modified slip variable that is limited by an inverse tangent function (similar to 

equation 2). 
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The term Gy is introduced to make the sine function reach its maximum value when the slip is at 

its approximate peak value. 
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Notice that if  is at its peak value, then ( )
yy G1tan −  , and therefore 2 =yyC . 

Using the above equation, we can clearly observe the slip angle at which maximum lateral force 

occurs as an independent function [2] . 

The horizontal offset is an offset in slip angle, off (similar to equation 7). 
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where off0   =  the offset that would occur with zero load and zero camber 

   Foff   =  the load that will result in a 10% decrease in offset 

   off    =  the camber that will result in a 10% increase in offset 

The Ey is a variable that modifies the slip function  (similar to equation 6). 
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whereEy0  =  the slip modifier that would occur with zero load and zero camber 

  Fye  =  the load that will result in a 10% change in E 

  Ey  =  another slip modifier constant 

ye =  the camber that will result in a 10% change of the modifier constant. 

The original By coefficient in the Pacejka model can be used (with some algebra) to find the slip 

angle at which the maximum adhesion occurs, peak (derived from equation 5 and others).[1] 
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where peak0 =  the slip angle that would occur with zero load and zero camber 

   4 =  Pacejka coefficient 

   peak =  the camber that will result in a 10% change in peak 
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where Speak  =  a load sensitivity  = a3 
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In the form expressed above, it is clear that the peaking slip angle is directly proportional to the 

coefficient of friction.  In other words, as the  increases, the slip angle will increase. [2] 

The last term in the peak equation is mathematically equal to a parabolic function (which is much 

more simple than the trig functions).  The Pacejka models do not make this simplification, but it 

will be used in all of the following equations even though it is not strictly a Pacejka model, it 

produces identical results and is easier to visualize than the original.[2] 
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Therefore, the peak equation can be simplified as follows. 
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or 
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where 

 Fz =  the load that will result in a 10% increase in peak 
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For the conversions between the normalizing factors and the original Pacejka coefficients refer to 

appendix. 

5.2.2 Normalized Longitudinal Pacejka Model 

Normalization of the Pacejka model for acceleration and deceleration can be stated in the 

following form. 
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Again, the parameter Gx is introduced to make the longitudinal force curve saturate at peak. 
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The longitudinal coefficient of friction is x and can be expressed as follows. 
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where x0 =  the coefficient of friction that would occur with zero load 

   Fx =  the value of load that will result in a 10% degradation in  
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The vertical offset is xoffF . 
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where 0xoffF  =  the offset that would occur with zero load 

   Fxoffz =  the load that will result in a 10% change in offset 

The horizontal shift is given as follows. 
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where off0 =  the offset that would occur with zero load 

   Foff =  the value of load that will result in a 10% decrease in offset 

The Ex is a variable that modifies the slip function. 
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where Ex0 =  the slip modifier that would occur with zero load and zero camber 

 Fxe1 =  the value of load that will result in a 10% change in Ex 

 Fxe2 =  the value of load that will result in a 10% change in Ex 

 Ex =  another slip modifier constant 
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By noting that Bx = Gx / peak , we can solve for the slip ratio at which the maximum adhesion 

occurs, peak. 
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where peak0 =  the slip ratio that would occur with zero load 

 Fz =  the value of load that will result in about a 10% change in peak 

 Fe =  a normalizing load factor 
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where peak0 =  a normalizing friction factor 

we can also solve for µpeak at which maximum adhesion occurs 

𝜇𝑝𝑒𝑎𝑘 = 𝜇0𝑝𝑒𝑎𝑘 ∗ [1 − 0.1
𝐹𝑧

𝐹𝜇𝑝𝑒𝑎𝑘
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2

    (39) 

Where, µ0peak = the µ that would occur with zero load 

  Fµpeak = the value of load that will result in about a 10% change in µ0peak 

  γµpeak = normalising factor. 

For the conversions between the normalizing factors and the original Pacejka coefficients refer to 

appendix. 
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5.3 Performance Interpretation of Woods tire model 

 

Analytic tire models have several useful applications.  One is the interpretation of the tire 

performance as the normal load and camber change.  In driving applications of a vehicle of fixed 

weight, the normal load on a tire can change due to weight transfer in a driving maneuver.  In 

particular, we are interested in how the coefficient of friction changes, and how the slip angle that 

results in peak adhesion changes with load and camber.[2] 

 

This can be observed from the expressions for y and peak derived in a previous section and 

presented below.[2] 
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or by substitution of y: 
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By using the above equations we can determine how µ and maximizing slip vary with load and 

camber. 
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Chapter 6: Verification 

Using the equations in chapter 5, we can determine how µ and maximizing slip vary with load and 

camber. To verify our theory 4 different tire compounds from different manufacturers were 

selected: 

• Hoosier R13 R25B. 

• Hoosier R10 LCO. 

• Goodyear R13 D2509. 

• Avon R10 7*16. 

These compounds were chosen because of the availability of testing data through Tire test 

consortium (TTC). Every tire is different in construction, material and geometry; hence a wide 

variety of manufacturers and compounds were selected to validate our tire model. 

6.1 Data Parsing 

The TTC records data over 16 channels at the frequency of 10-100Hz. All this raw data is 

dumped into a data file and is distributed to all the registered members. Due to the large number 

of input variables it’s very important to understand the test procedure. The test accounts for tire 

break in and warm up to bring the tires up to temperature before every run. Hence it is important 

to parse the data and use the data that best simulates your purpose [5]. 
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Figure 7: Data channels at TTC. 
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Figure 8: Normalized Lateral Load vs Slip angle from TTC raw data. 

Once all the Data for a Tire has been parsed. We import the data into an excel spreadsheet 

where we procced to start with manually curve fitting our mathematical model over the TTC raw 

data for each variable. The nomenclature followed here was: 

X IA XXX FZ XX PSI  

Where numbers preceding  IA denote inclination angle, 

        FZ denote Normal Load, 

And    PSI denote inflation pressure. 

6.2 Curve fitting to TTC raw data. 

Figure 9 shows a curve fit template. On the left side of the template we paste the TTC raw data. 

The numbers in blue on the right-hand side of the template are scaling factors for our 

mathematical model. Changing various parameters modifies the cure fit seen in the figure 9. The 

following equations are used to generate the curve fit model. 
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Figure 9: Curve Fit Template.
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The above listed coefficients were varied by hand to get a good curve fit to match raw data. 

Below is an example of a good curve fit over TTC raw data. 

 

Figure 10: Curve fitting over TTC raw data. 

6.3 Curve fitting of scaling factors. 

Trial and error method were used to achieve the best possible curve fit. For every inflation 

pressure 25 such curve fits were done per tire. Once you have achieved a satisfactory curve fit 

for all the parameters. The next step is to generate scaling coefficients for our mathematical 

model.  Paying attention to every detail in the first step is key to getting accurate and quick 

results. Figure 11 shows a template to curve fit the scaling factors. After fine tuning every curve 

individually you can generate the scaling factors for our mathematical model.
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Figure 11: Curve fit for obtaining scaling factors.
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Hoosier R10*18 
LCO 

Avon 
R10*16 

Hoosier R13*20 
R25B 

Goodyear R13*20 
D2509 

μy0 = 3.3 2.7 3.25 3.25 

Fμy = 160 160 170 160 

γμy = 40.0 40.0 60 40.0 

Tpeak = 205 190 195 190 

ΔTμy = 55 80 55 80 

αpeak0 = 8.5 9.5 7.8 8.7 

Fαpeak = 65 150 100 75 

γαpeak = 12 12 9 12 

gy0 = 2.5 2.1 1.7 0.27 

Fgy = 9 11 15.0 0.6 

γgy = 2 2 0.6 1.5 

αoff0 = 0.15 -0.2 -0.020 -0.2 

Sbias = -0.05 -0.05 0.180 -0.05 

Sγ = 0.15 0.18 0.155 0.18 

Fαoff = 60 55 45 55 

Fαmax = 300 350 330 350 

Tmax = 135 148 118 132 

Fzoff = 300 210 260 320 

Ft = 250 145 260 300 

µpeak0= 2.8 2.6 3 3.1 

Fµpeak= 160 160 160 160 

γµpeak= 4.5 3.6 5 6 
Figure 12: Woods coefficients for tested tires. 
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6.4 Woods model vs TTC raw data. 

Once the scaling factors are obtained, we can verify our mathematical model by superimposing it 

over TTC raw data. The mathematical model accurately represents tire behavior as seen in figure 

15.  

Figure 13: Woods model vs TTC raw data. 

As seen in figure 13 all our assumptions and mathematical fits for obtaining scaling factors were 

accurate. 
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Chapter 7: Results and conclusion 

The WOODS tire model for tire performance was verified in such a way that the value of slip that 

results in a maximum force can be clearly identified.  Having these equations for maximizing slip, 

we could also determine how  and the maximizing slip vary with load and camber.  These 

characteristics help the racecar engineer to set optimum toe settings and handling properties.  
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Figure 14: Maximizing slip for various loads vs camber. 
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Figure 14 shows us that we could successfully express maximizing slip as a function of normal 

loads and camber. As expected maximizing slip degrades with increase in normal load and 

inclination angle. 

𝜇𝑝𝑒𝑎𝑘 = 𝜇0𝑝𝑒𝑎𝑘 ∗ [1 − 0.1
𝐹𝑧

𝐹𝜇𝑝𝑒𝑎𝑘
] ∗ [1 − 0.1

𝛾

𝛾𝜇𝑝𝑒𝑎𝑘
]

2

 

 

Figure 15: µ for various loads vs Camber. 

Figure 15 shows us that we could successfully express µ as a function of normal loads and 

camber. As expected maximum adhesion degrades with increase in normal load. 

For data on more tires please refer to appendix A-2. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-6 -4 -2 0 2 4 6

M
u
 p

e
a
k

Camber (deg)

Run 3 Hoosier 18*7*10 

μpeak 50

μpeak 100

μpeak 150

μpeak 200

μpeak 250

upeak fit



 

38 
 

Appendix 

Appendix A-1 

 

Conversions: The conversions between the original Pacejka coefficients and the physically 

relateable coefficients are given below.  Note that in the SAE convention, some of the coefficients 

need to be divided by 1000 (to account for the conversion from kN to N) when they are used in the 

following conversion to normalized variables. 
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Notice that I have defined two new coefficients, Gy and peak0, that are dependent on the original 

coefficients and does not increase the required information. 

The normalizing factors can be related to the original Pacejka coefficients, b, as follows. 
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two more dependent variables are introduved Gx and peak0. 
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Appendix A-2- graphs 
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Parametric Graphs 
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