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Abstract 

 
DYNAMICS AND CONTROL OF JUMPING LEGGED ROBOT 

GURASHISH SINGH MS 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Alan Bowling 

This research aims at studying the agility of legged robots particularly their 

interactions with the ground and achieve a jumping motion by using an operational space 

controller.  

Methods were developed to first formulate the equations of motions of the full 

system. Then we used the published impact and contact analytical framework to detect 

simultaneous, indeterminate impact and transition to contact with friction and addressed 

the well-known issues with energy consistency when using rigid body models for dynamic 

systems (i.e. there are no unusual gains in the energy after impact has ended). Non-

penetration of the ground was achieved through online constraint embedding where 

degrees of freedom were reduced as any point came in to contact with the ground. 

Finally, operational space control was used to control the motor torques of the legged 

robot that would lift the foot off of the ground and simulate a jumping motion. 
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Chapter 1  

Introduction 

 

1.1 Overview 

 
The goal of this research is aimed at studying the agility of legged robots 

especially interactions with the ground by considering factors such as impact and contact 

with the ground, friction and restitution. Robots must be able to rapidly adapt to the 

various changes in the environment without human interference. Agility of a robot, for 

instance, may refer to it jumping over an obstacle in its path in a controlled manner by 

adjusting its acceleration while maintaining static (the ability to retain the centre of mass 

above the base of support in a stationary position) and dynamic (the ability to maintain 

balance with body movement) balance. 

A 2-dimensional 4-link robot is modelled in this research with the first three links 

being the Foot, Tibia and Femur while the fourth link is signified as the rest of the body 

(Figure 1-1). 

 Figure 1-1: Planar model of a leg 
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All the links are considered as rigid bodies and any local deformation due to 

impact is considered negligible. Here, impact is decided as an abrupt reaction between 

colliding bodies and contact is established as a succession of impacts. The mechanics of 

collisions deal with stress, displacement (i.e. local indentation) and wave propagation of 

forces, which are not considered in this research. 

This research is focused on dynamic simulation of the ground interactions of the 

legged robot and to see whether it can lift off the ground by applying appropriate torque 

to the links in a controlled manner, while taking into consideration the forces, impulses, 

velocities and frictions related to the impact or contact points. This research uses a 

recently published framework to use an energetically consistent model of impact and 

contact which will address sticking and slipping for various contact points with friction. 

Arbitrary energy gains upon impact with the ground and feasibility of post-impact 

velocities, if any, will also be assessed. The indeterminate nature of the system equations 

of motion is one of the key issues in this research. The indeterminacy is due to the 

multiple points experiencing impact or contact simultaneously. 

The system’s equations of motion are determined using Kane’s method with the 

help of a software called Autolev. Impact/contact detection takes place using the 

velocities and accelerations of the points in impact/contact. Impulse-Domain analysis is 

used to calculate post-impact velocities or the rebound velocities. Stick-slip analysis is 

done during the impulse-domain analysis to check for any slip-reversals (Chapter 3). 

Non-penetration of the ground is achieved by reduction in the equations of motion by 

restricting the normal component of the velocities of the points in contact and hence 

reduction in the degrees of freedom. Frictional constraints are also enforced at this stage. 

New generalized speeds and accelerations are found out using the reduced equations of 

motion. To make the foot lift off the ground, we use operational space control to find out 
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the motor torques at each joint. Using the gear torque ratios, we choose the appropriate 

motor torques. In this research, we provide the desired positions of the system’s centre of 

mass while keeping desired velocities and accelerations as zero.  

 

1.2 Motivation 

 
The motivation for our research is to implement the established impact and 

contact analytical framework and use the operational space torque to get a realistic lift off  

of the foot in our dynamic model. 

 
1.3 Research Contributions 

 
In Chapter 2, we’ll talk briefly about what constitutes an impact and contact. Also, 

we’ll look at Coulomb friction and the complementarity conditions. 

In Chapter 3, we’ll analyse the impulse-domain and time-domain calculations, the 

switching of models between freefall, multi-point impact and contact analysis, and also 

the energetic termination of impacts. 

In Chapter 4, we look at the operational space control equation formulation and 

the problems faced when the Jacobian matrix is not square. 

In Chapter 5, we show our simulation results and go into more detail about how 

we arrived at the said results. 
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Chapter 2  

Dynamic Simulation 

 
2.1 Rigid Body Simulation 

 
To gain a better understanding about the robot and ground interactions, impact 

and contact modelling needs to be understood. This chapter introduces rigid body impact 

dynamics simulation where event-based, adaptive integration is used to determine the 

dynamics of the system, especially near times where contact states change and the 

online embedding constraint technique used to model contacts. Rigid body impacts are 

characterized by quick changes in the system velocities and presence of large forces on 

the bodies. 

 
 

Figure 2-1: Pre- and Post-impact regions for impact modeling 

Contact is referred to as a body touching the surface of the ground. A force is present at 

the point where the body and ground coincide. Impact is defined as contact with abrupt 

velocity changes. 

Here, rigid body impacts are modelled as discrete events using a discontinuous 

approach as shown in figure 2-1 [1]. It is assumed that the impact event occurs over a 

very short time in which the position and orientation of the system remains constant, 
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which establish the Darboux-Keller impact dynamics [2]. Here, contact is treated as a 

succession of discrete impact events. This approach, also referred to as piecewise [3] or 

non-smooth [5-7], treats the impact event as an instantaneous change in velocities of the 

impacting bodies. The post-impact velocities are resolved based on impulse-momentum 

theory with the help of constraints as shown in [8]. The hybrid or impact and continuous 

[4], approaches treat the impact event as discontinuous in time-domain but continuous in 

impulse-domain [9–11]. The hybrid approach is used in this work. 

This research makes use of an already developed analytical framework for the 

treatment of simultaneous, multi-point impact problems in the presence of friction. 

Coulomb friction is used in the framework developed to relate the tangential impulse to 

the normal impulse by a coefficient of friction (COF) [12]. This relationship can be 

visualized using the friction cone for Coulomb friction, depicted in Fig. 2-2. The friction 

force may be discontinuous because changes in the friction direction during an impact 

event can occur due to sliding or sticking – a dynamic, µd or static, µs, COF may be 

used, respectively. The inner region of the friction cone represents sticking, whereas the 

outer region is sliding. The boundary of the friction cone between these two regions is the 

stick-slip transition where an impact point with initial sliding comes to rest and then 

resumes slip, slip-reverses or remains in the stick region [13,14]. The lower bound on 

COF which induces sticking is represented by the critical COF, �̅�. 
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Figure 2-2: Friction cone based on theory of Coulomb friction 

 

2.2 Complementarity Conditions 

 
The complementarity conditions define a relationship between friction, contact 

forces, velocities and accelerations [15]. The complementarity conditions are dependent 

on the value of the pre-impact normal velocities and accelerations, 𝑣𝑛𝑖(t) and �̇�𝑛𝑖(t), 

assuming the distance between the impacting points equals zero. 

{

𝑖𝑓 𝒗𝒏𝒊(𝑡) < −𝜖𝑣 𝑎𝑛𝑑 �̇�𝒏𝒊(𝑡) < 0 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖𝑚𝑝𝑢𝑙𝑠𝑒 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

𝑖𝑓 |𝒗𝒏𝒊(𝑡)| < 𝜖𝑣 𝑎𝑛𝑑 �̇�𝒏𝒊(𝑡) < 0 𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔)          

𝑖𝑓 𝒗𝒏𝒊(𝑡) > 𝜖𝑣 𝑜𝑟 �̇�𝒏𝒊(𝑡) > 0 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 − 𝑏𝑎𝑠𝑒 𝐸𝑂𝑀)   

(2.1) 

A transition between impact and contact occurs when the pre-impact normal velocity 

equals zero. Further, the pre-impact acceleration must be checked to determine whether 

impact forces exist or not. According to classical Coulomb friction, the post-impact 

tangential velocities satisfy,  
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{

𝒗𝒕𝒊 = 0 𝑎𝑛𝑑  𝒗𝒕𝒊̇ = 0 𝑡ℎ𝑒𝑛 |𝒇𝒕𝒊| ≤ 𝜇𝑠|𝒇𝒏𝒊| 𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔                             
𝒗𝒕𝒊 = 0 𝑎𝑛𝑑 𝒗𝒕𝒊̇ ≠ 0 𝑡ℎ𝑒𝑛 |𝒇𝒕𝒊| = 𝜇𝑠|𝒇𝒏𝒊| 𝑠𝑡𝑖𝑐𝑘 − 𝑠𝑙𝑖𝑝 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝒗𝒕𝒊 ≠ 0 𝑎𝑛𝑑 𝒗𝒕𝒊 ≠ 0 𝑡ℎ𝑒𝑛 |𝒇𝒕𝒊| = 𝜇𝑑|𝒇𝒏𝒊| 𝑠𝑙𝑖𝑝𝑝𝑖𝑛𝑔                            
 (2.2) 

where, 𝜇𝑠 𝑎𝑛𝑑 𝜇𝑑 are the static and dynamic coefficients of friction [15].  

The no-slip condition is defined by the first relation in (2.2), the stick-slip 

transition is defined by the second, and slipping, or sliding is defined by the third.  In (2.2) 

there is a discontinuous change in the coefficient of friction, assuming µs = µd, and thus a 

discontinuous change in the friction forces. This discontinuity defines an abrupt transition 

from sticking to slipping  

The relationships in Eqns. (2.1) and (2.2) are the basis for what is referred to as 

a complementarity problem [16]. The complementarity conditions apply to both contact 

and impact forces independently. In this work, the impulsive forces are used to check the 

no-slip condition. The complementarity conditions in terms of impulses are presented in 

[17],  

{

𝒗𝒕𝒊 = 0 𝑎𝑛𝑑  �̇�𝒕𝒊 = 0 𝑡ℎ𝑒𝑛 |𝑝𝑡𝑖| ≤ 𝜇𝑠|𝑝𝑛𝑖| 𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔                             
𝒗𝒕𝒊 = 0 𝑎𝑛𝑑 �̇�𝒕𝒊 ≠ 0 𝑡ℎ𝑒𝑛 |𝑝𝑡𝑖| = 𝜇𝑠|𝑝𝑛𝑖| 𝑠𝑡𝑖𝑐𝑘 − 𝑠𝑙𝑖𝑝 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛
𝒗𝒕𝒊 ≠ 0 𝑎𝑛𝑑 �̇�𝒕𝒊 ≠ 0 𝑡ℎ𝑒𝑛 |𝑝𝑡𝑖| = 𝜇𝑑|𝑝𝑛𝑖| 𝑠𝑙𝑖𝑝𝑝𝑖𝑛𝑔                            

 (2.3) 

 

2.3 Collision Detection 

 
In this research, an event-driven scheme, similar to [18,19] in conjunction with 

MATLAB’s ode45 integrator stops the simulation when a collision is detected. This 

approach is used to treat the impact events and determine the post-impact velocities of 

the system. These velocities serve as the initial conditions when the simulation is 

restarted. This technique is followed herein each time a collision is detected in the 

simulations conducted.  
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The process flow chart presented in Figure 2-3 illustrates the operations 

performed during a typical simulation. We start the simulation with some initial conditions. 

As we are using an event-based simulation technique, if any point encounters the contact 

surface, the event function is called, and our simulation is stopped. Eq. (2.1) is used to 

check if the point experiences an impact or not. If the point experiences impact, we move 

onto impulse-domain analysis (further explained in chapter 3). In the hybrid dynamic 

simulation of rigid bodies, when a rigid body touches a contact surface but does not 

rebound, which leads to a successive series of impact events that, in effect, stop the time 

domain simulation. Such a no-rebound condition is referred to as contact. Online 

constraint-embedding techniques are used to enforce non-penetrability constraints and 

frictional constraints to ensure that the point does not penetrate the ground and that there 

is no slip. Coordinate reduction techniques such as QR decomposition method has been 

used in this research to reformulate the equations of motion based on a minimal set of 

independent generalized coordinates. Once contact has been achieved, operational 

space control is used to calculate the desired motor torques.  
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Figure 2-3: Flow process used for impact and contact simulations 
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Chapter 3  

Impact and Contact Analysis 

 
The previously published framework for simultaneous, multiple point impact with 

friction has been used in this research which yield equations of motion that are 

indeterminate with respect to the impact forces and a no-rebound contact represented by 

smooth dynamics where non-penetrability conditions along with frictional constraints are 

enforced in this work[21]. This chapter will provide a brief overview of impact and contact 

analysis. 

3.1 Impact Analysis 

 
Our dynamic model is a 4 link and 6 DOF system. A general form of the 

equations of motion for the system can be expressed as: 

𝐴�̈� + 𝑏(�̇�, 𝒒) + 𝑔(𝒒) = 𝚪 =  𝐽𝑇(𝒒)𝑭 + 𝐺𝑇𝜸   (3.1) 

where,    𝑭 = [𝑓𝑡1 𝑓𝑛1 𝑓𝑡2 𝑓𝑛2 𝑓𝑡3 𝑓𝑛3 𝑓𝑡4 𝑓𝑛4 𝑓𝑡5 𝑓𝑛5]
𝑇   (3.2) 

and A is the mass matrix for the system. b and g define the Coriolis and gravity terms 

respectively. The generalized active forces are represented by Γ and are related to the 

impact forces, F, through the impact Jacobian matrix, 𝐽. 𝐺𝑇 is the Gear Ratio matrix that 

picks out the corresponding motor torques from the vector 𝜸. The above equation can be 

integrated over an infinitesimally small time-period which will convert the equation from a 

force-based to an impulse-based one. The equation of motion of the system, in impulse-

domain then becomes: 

   �̇� = �̇�(0) + 𝐴−1𝐽𝑇𝒑    (3.3) 

where  �̇�(0) and �̇� refer to the pre- and post-impact generalized speeds of the system. 

. 
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 Considering a two point contact, pre-multiplying eq. (3.3) with the impact 

Jacobian we can obtain the operation-space velocities of the impact points. Hence, 

  𝒗 =  [𝑣𝑡1𝑣𝑛1𝑣𝑡2𝑣𝑛2]
𝑇 = 𝒗(0) + 𝐽𝐴−1𝐽𝑇𝒑   (3.4) 

where 𝒗(0) and 𝒗 stand for the pre- and post-impact velocities of the impact points. The 

tangential and normal velocities of the impact points are represented by 𝑣𝑡𝑖 and 

𝑣𝑛𝑖  respectively, where i = 1,2. In Eq. (3.4), p =[𝑝𝑡1 𝑝𝑛1 𝑝𝑡2 𝑝𝑛2 ]
𝑇 represents all the 

impulses at different contact points. The impulses in p can be resolved in terms of one 

arbitrarily chosen independent impulse parameter,  

   𝒑 = 𝑪𝑝𝑛2   𝑤ℎ𝑒𝑟𝑒 𝑝𝑛2 ≥ 0   (3.5) 

The coefficient C, which depends upon the slip-state of the various contact points, is 

derived using frictional and rigid-body constraints . Hence, using Eq. (3.3) and Eq. (3.5) 

the contact point velocities 𝑣 during an impact event may be expressed as, 

𝒗 = 𝒗(0) + 𝐽𝐴−1𝐽𝑇𝑪𝑝𝑛2 𝑤ℎ𝑒𝑟𝑒 𝑝𝑛2 ≥ 0    (3.6) 

Eq. (3.6) may be rewritten as, 

𝒗 =  𝒗𝒌 + 𝐽𝐴−1𝐽𝑇𝑪(𝑝𝑛2 − 𝑝𝑠𝑘)  𝑤ℎ𝑒𝑟𝑒  𝑝𝑛2 ≥ 0  (3.7) 

where, 𝑝𝑠𝑘 is the value of the independent impulse parameter, 𝑝𝑛2  at 𝑘𝑡ℎ stick-slip 

transition, 𝒗𝑘  is the velocities at the various stick-slip transitions where the subscript k = 

0,1,2,..,N refer to the stick-slip transitions, including the pre-impact velocities 𝒗𝟎 = 𝒗(0). 

Stick-slip analysis is done for the point(s) whose tangential velocities reach zero. Such 

point(s) may remain sticking (𝒗𝒕 = 0) or have a slip-reversal where the point(s) start 

sliding after coming reaching zero tangential velocity. 
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3.2 End of Impact Energy Analysis 

 
The energy loss for an impact can be attributed to the net work done during 

compression and restitution (relaxation) phases a body undergoes during impact. In this 

research the termination of impact events is based on Stronge’s Hypothesis on rigid 

impacts. Stronge’s hypothesis defines an energetic coefficient of restitution (ECOR) 

which incorporates work-energy theory and often leads to energetically consistent results 

in rigid body impact modelling. 

Stronge’s hypothesis places an energetic constraint on the evolution of the 

contact point velocities as a function of the independent impulse parameter as shown in 

Eq. (3.7). The work done during an impact event is given by the difference in kinetic 

energy between the pre- and post-impact states of the rigid body system, which is given 

by 

𝑊 = 
1

2
�̇�𝑇𝐴�̇� −

1

2
�̇�𝑇(0)𝐴�̇�(0)    (3.8) 

= 
1

2
𝒗𝑇(𝐽+)𝑇𝐴(𝐽+)𝒗 −

1

2
𝒗𝑇(0)(𝐽+)𝑇𝐴(𝐽+)𝒗(0)  (3.9) 

where 𝐽+ is the pseudo-inverse of the impact Jacobian matrix J. Since, the pre- and post-

impact generalized speeds or contact point velocities depend upon independent 

impulse 𝑝𝑛2, the work itself becomes a function of the independent impulse parameter. 

By using eq. (3.7) and substituting it in eq. (3.9), we can solve for the normal 

work as a function of the independent impulse 𝑝𝑛2 : 

      𝑊𝑛(𝑝𝑛2) = 𝑊𝑛𝑘 + 𝑎(𝑝𝑛2 − 𝑝𝑠𝑘)2 + 𝑏(𝑝𝑛2 − 𝑝𝑠𝑘)  (3.10) 

where 𝑎 and 𝑏 are the constant coefficients. These constant coefficients define the 

parabolic curve for normal work for a given phase following stick-slip transition k. a and b 

are dependent upon C but are independent of the initial velocities 𝑝𝑛2. 𝑊𝑛𝑘 are the normal 

work at stick-slip transitions k = 0,1,2,.., N, such that 𝑊𝑛0 = 0. 
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According to Stronge’s Hypothesis, the energy change during an impact takes 

place over two consecutive energetic phases: a compression phase followed by a 

restitution phase. The terminal normal work  𝑊𝑛𝑓  is related to the normal work at the end 

of the compression phase 𝑊𝑛𝑐  as,  

𝑊𝑛𝑓 = (1 − 𝑒∗
2)𝑊𝑛𝑐    (3.11) 

Where 𝑊𝑛𝑐 is the normal work at the end of compression phase and  𝑒∗ ∈ [−1,1] is defined 

as the Global Energetic Coefficient of Restitution which accounts for the energy 

dissipated during an impact event. The global ECOR 𝑒∗, describes an energetic 

relationship between compression and restitution for a single contact point. 

 

3.3 Contact Analysis 

 
One of the difficulties encountered with the event-based simulation approach is 

the accumulation of events due to high frequency chattering behaviour for low-speed 

contacts.  In the hybrid dynamic simulation of rigid bodies, chattering takes place when a 

rigid body touches a contact surface but does not rebound, which leads to a successive 

series of impact events that, in effect, stop the time domain simulation. 

A no-rebound contact represented by smooth dynamics where non-penetrability 

conditions along with frictional constraints are enforced in this work. During multiple point 

contact, rigid body constraints are used along with the frictional constraints. 

The criteria used for distinguishing between impact, contact and separation is: 

{

𝑖𝑓 𝒗𝒏𝒊(𝑡) < −𝜖𝑣 𝑎𝑛𝑑 �̇�𝒏𝒊(𝑡) < 0 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖𝑚𝑝𝑢𝑙𝑠𝑒 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

𝑖𝑓 |𝒗𝒏𝒊(𝑡)| < 𝜖𝑣 𝑎𝑛𝑑 �̇�𝒏𝒊(𝑡) < 0 𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔)         

𝑖𝑓 𝒗𝒏𝒊(𝑡) > 𝜖𝑣 𝑜𝑟 �̇�𝒏𝒊(𝑡) > 0 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 − 𝑏𝑎𝑠𝑒 𝐸𝑂𝑀)  

 (3.12) 

where 𝜖𝑣 is a small threshold value selected to determine if the contact points have near 

zero values. 
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We used online constraint embedding with coordinate reduction techniques to 

reformulate the equations of motion based on a minimal set of independent generalized 

coordinates. We first enforced non-penetrability and sticking friction constraints along 

with rigid body constraints (for multi-point contacts) to compute the reaction forces. The 

reaction forces were checked using the friction cone defined by Coulomb’s law to identify 

contact points that are slipping. Finally sliding frictional constraints were enforced for the 

relevant points. 

3.3.1 Reaction forces during contact  

During a no-rebound phase, all the points satisfying the contact criterion in Eq. 

(3.12) are assumed to stick. Therefore, both the tangential and the normal components 

are constrained to be equal to zero. 

Consider the velocities and accelerations of the contact points that satisfy the 

contact constraint in Eq. (3.12), 

0 = 𝒗𝒄 =

[
 
 
 
 
𝑣𝑡1
𝑣𝑛1

.

.

. ]
 
 
 
 

= 𝐽𝑐�̇�    (3.13) 

and 

0 =  �̇�𝒄 =

[
 
 
 
 
�̇�𝑡1

�̇�𝑛1

.

.

. ]
 
 
 
 

= 𝐽𝑐�̈� + 𝐽�̇��̇�   (3.14) 

 

where 𝐽𝑐 is the Jacobian matrix associated with 𝒗𝒄.Substituting the expression for �̈�  from 

Eq. (3.1), 

          0 =  �̇�𝑐 = 𝐽𝑐𝐴
−1𝐽𝑐

𝑇𝑭 + 𝐽𝒄𝐴
−1𝐺𝑇𝛄 − 𝐽𝑐𝐴

−1(𝒃(𝒒, �̇�) + 𝒈(𝒒)) + 𝐽�̇��̇� (3.15) 
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Similar to the impulse-domain analysis, the contact forces F are going to be constrained 

by the rigid-body constraints and frictional constraints. Hence the contact constraint 

forces may be resolved as  

𝑭 = 𝑪𝐹𝑟     (3.16) 

where 𝐹𝑟 is an independent force parameter. The vector C is computed similar to the 

impulse-domain analysis. 

Now substituting Eq. (4.5) into Eq. (4.4), we get  

�̅�𝐹𝑟 = 𝐽𝑐𝐴
−1𝐽𝑐

𝑇𝑪𝐹𝑟 = 𝐽𝑐𝐴
−1(𝒃(𝒒, �̇�) + 𝒈(𝒒)) − 𝐽�̇��̇� − 𝐽𝒄𝐴

−1𝐺𝑇𝛄 (3.17) 

Hence, the full set of reaction forces F would be given by 

                 𝑭 = 𝑪𝐹𝑟 = 𝑪
�̅�𝑻

�̅�𝑻�̅�
(𝐽𝑐𝐴

−1(𝒃(𝒒, �̇�) + 𝒈(𝒒)) − 𝐽�̇�𝒒 − 𝐽𝒄𝐴
−1𝐺𝑇𝛄̇  (3.18) 

The reaction forces in F in Eq. (3.18) are calculated assuming that all the points are 

sticking. Now Coulomb’s law is used to check whether the contact points stick or slip, 

|𝑓𝑡𝑖
| ≤ 𝜇𝑠𝑓𝑛𝑖

    (3.19) 

where 𝜇𝑠 is the coefficient of static (limiting) friction. A contact point sticks if equation Eq. 

(3.19) is satisfied, otherwise the point slips. When a contact point slips, the contact-plane 

tangential velocities have unknown non-zero values. Thus, the velocity and acceleration 

constraint in Eqs. (3.13) and (3.14) need to be restricted to only the normal components 

for the slipping points. 

Enforcing the slip and no-slip constraints is accomplished by partitioning the 

reaction forces as follows: 

𝑭 =  [
𝑭𝑠𝑙𝑖𝑝

𝑭𝑠𝑡𝑖𝑐𝑘
] = 𝑆𝑐 [

𝑭𝑠𝑙𝑖𝑝𝑛

𝑭𝑠𝑡𝑖𝑐𝑘
]   (3.20) 

where 𝑭𝑠𝑙𝑖𝑝 and 𝑭𝑠𝑡𝑖𝑐𝑘  are the forces at the contact points that are slipping and sticking, 

respectively and 𝑭𝑠𝑙𝑖𝑝𝑛
 are the normal forces at the points i that are slipping, 
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𝑭𝑠𝑙𝑖𝑝 =

[
 
 
 
 
𝑓𝑡1

𝑓𝑛1

.

.

. ]
 
 
 
 

,             𝑭𝑠𝑙𝑖𝑝𝑛
= [𝑓𝑛1...

]   (3.21) 

In Eq. (3.20) the matrix 𝑆𝑐 relates the normal forces of the slipping points to the tangential 

forces using the equality relation of Coulomb friction law, 

     𝑆𝑐 = [
−𝑥𝑖𝜇𝑖

1
0

0 𝐼
]    (3.22) 

where 𝑥𝑖 = 
𝑣𝑡𝑖

‖𝑣𝑡𝑖
‖⁄   gives the direction of the contact point, 𝜇𝑖 = 𝜇𝑑 is the dynamic 

coefficient of friction at point i, and I is an identity matrix. 

Using dual property of the Jacobian matrix, the generalized active forces, Γ in 

Eq. (3.1), are related to the constraint forces as 

                          𝚪 = 𝐽𝑐
𝑇𝑭 = 𝐽𝑐

𝑇𝑆𝑐 [
𝑭𝑠𝑙𝑖𝑝𝑛

𝑭𝑠𝑡𝑖𝑐𝑘
]   (3.23) 

Based on the dual property of the Jacobian matrix, the force constraint in Eq. (3.23) may 

be written as a velocity constraint, 

        0 = [
𝒗𝑠𝑡𝑖𝑐𝑘

𝒗𝑠𝑙𝑖𝑝𝑛
] = 𝑆𝑐

𝑇𝐽𝑐�̇� = 𝐽𝐼�̇�𝑰 + 𝐽𝐷�̇�𝑫   (3.24) 

where 𝒗𝑠𝑡𝑖𝑐𝑘  refers to both the normal and the tangential velocity components of the 

points that are sticking, 𝒗𝑠𝑙𝑖𝑝𝑛
 refers to only the normal velocity components of the points 

that are slipping, and �̇�𝑫 and �̇�𝑰 are the dependent and independent generalized speeds. 

Now  �̇� and �̈� can be expressed as 

            �̇� = [
�̇�𝑫

�̇�𝑰
] = [−𝐽𝐷

−1𝐽𝐼
𝐼

] �̇�𝑰 = 𝐾�̇�𝑰    (3.25) 

and 

�̈� = 𝐾�̈�𝑰 + �̇��̇�𝑰,             �̇��̇�𝑰 = [
−𝐽𝐷

−1 (�̇�𝑐
𝑇
𝐽𝑐 + 𝑆𝑐

𝑇𝐽�̇�) �̇�

0
]  (3.26 
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Substituting Eqs. (3.24) and (3.26) into Eq. (3.1) and pre-multiplying with 𝐾𝑇 yields 

𝐾𝑇𝐴𝐾�̈�𝑰 + 𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) = 𝐾𝑇𝐽𝑐
𝑇𝑆𝑐 [

𝑭𝑠𝑙𝑖𝑝𝑛

𝑭𝑠𝑡𝑖𝑐𝑘
] + 𝐾𝑇𝐺𝑇𝜸 (3.27) 

From Eqs. (3.24) and (3.25), it can be easily shown that 

𝐾𝑇𝐽𝑐
𝑇𝑆𝑐 = 0     (3.28) 

Hence, the reduced set of equations of motion are given by 

𝐾𝑇𝐴𝐾�̈�𝑰 + 𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) = 𝐾𝑇𝐺𝑇𝜸   (3.29) 

Thus, during contact Eqs. (3.29), (3.25) and (3.26) are used to integrate the states of the 

dynamic system. 
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Chapter 4  

Operational Space Control 

 
The idea behind operational space control is to abstract away from the 

generalized coordinates of the system and plan a trajectory in a coordinate system that is 

directly relevant to the task that we wish to perform. The robot can choose any joint 

space configuration it desires, independent of any operational space parameters. Once 

we task a robot to "move to point A (in operational space)," we have just built an implicit 

constraint on the robot's joint space such that it must use its kinematics to move to 

point[21]. 

The dynamic performance of a manipulator is strongly dependent on the inertial 

and acceleration characteristics that are perceived at its end effector. 

 

4.1 Operational Space Equation Formulation 

 
The joint space equation of motion is written as: 

𝐴�̈� + 𝒃(𝒒, �̇�) + 𝒈(𝒒) =  𝚪 + 𝐺𝑇𝜸     (4.1) 

where 𝐴 is the mass matrix, 𝒒,�̇� 𝑎𝑛𝑑 �̈� are the generalized coordinates, speeds and 

accelerations,  𝒃(𝒒, �̇�) is the vector of centrifugal and Coriolis Joint forces and  𝒈(𝒒) is 

the vector of gravity forces.  𝚪 is the vector of generalized active forces, 𝜸 is the vector of 

Motor torques and 𝐺𝑇 is the vector of Gear Ratios. 

We will look at three ways to find out the Motor torques 𝜸, depending on the nature of the 

Task Jacobian  𝐽𝑥 which is associated with the end-effector. 
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4.1.1 If the Task Jacobian 𝐽𝑥 is invertible 

Using Eq. (3.29) as our general equation of motion while implementing 

operational space control 

𝐾𝑇𝐴𝐾�̈�𝑰 + 𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) = 𝐾𝑇𝐺𝑇𝜸   (4.2) 

In operational-space control, we intend to execute trajectories or forces given in the 

coordinate system of the actual task.  

We can represent generalized speeds and accelerations in terms of operational space 

velocities and accelerations, i.e. 

                                   𝒗 = 𝐽𝑥�̇�,               �̇� =  𝐽�̇��̇� + 𝐽𝑥�̈�   (4.3) 

We can rewrite eq. (4.2) as: 

    �̈�𝑰 + (𝐾𝑇𝐴𝐾)−1𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) = (𝐾𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇𝜸  (4.4) 

Using eq. (4.3), we can write eq. (4.4) as: 

     𝐽𝑥
−𝟏(�̇� − 𝐽�̇��̇�) + (𝐾𝑇𝐴𝐾)−1𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) = (𝐾𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇𝜸   (4.5) 

or; 

    𝛾 =  ((𝐾𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇)−𝟏(𝐽𝑥
−𝟏

(�̇� − 𝐽�̇��̇�) + (𝐾𝑇𝐴𝐾)−1𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈)) (4.6) 

where, 

�̇� =  �̇�𝒅𝒆𝒔 + 𝑘𝑣(𝒗𝒅𝒆𝒔 −  𝒗) + 𝑘𝑝(𝒙𝒅𝒆𝒔 − 𝒙)   (4.7) 

Eq. (4.7) is a basic PD control signal where, �̇�𝒅𝒆𝒔, 𝒗𝒅𝒆𝒔 𝑎𝑛𝑑 𝒙𝒅𝒆𝒔 are the desired end-

effector acceleration, desired end-effector velocity and desired end-effector position. 𝑘𝑣 

and 𝑘𝑝 are the velocity and position gains where 𝑘𝑣 can be written as 𝑘𝑣 = √(𝑘𝑝). 

Eq. (4.6) is the basic operational space equation to calculate motor torques 𝜸. 

This form of the equation requires inverting the Jacobian the matrix which can often be 

non-square. Hence, we will see another approach to form the operational space equation 

if the Jacobian is not a square matrix. 
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4.1.2 If the Task Jacobian 𝐽𝑥 is not invertible 

Multiplying eq. (4.4) with the Task Jacobian 𝐽𝑥 

           𝐽𝑥�̈�𝑰 +  𝐽𝑥(𝐾
𝑇𝐴𝐾)−1𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) =  𝐽𝑥(𝐾

𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇𝜸 (4.8) 

Using eq. (4.3) to substitute for 𝐽𝑥�̈�𝑰 

           �̇� − 𝐽�̇��̇� + 𝐽𝑥(𝐾
𝑇𝐴𝐾)−1𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈) =  𝐽𝑥(𝐾

𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇𝜸   (4.9) 

where, 

�̇� =  �̇�𝒅𝒆𝒔 + 𝑘𝑣(𝒗𝒅𝒆𝒔 −  𝒗) + 𝑘𝑝(𝒙𝒅𝒆𝒔 − 𝒙)   (4.10) 

Equation (4.10) is a basic PD control signal. 

The equation then becomes, 

     𝜸 = (𝐽𝑥(𝐾
𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇)−1 (�̇� − 𝐽�̇��̇� + 𝐽𝑥(𝐾

𝑇𝐴𝐾)
−1

𝐾𝑇(𝐴�̇��̇�𝑰 + 𝒃 + 𝒈)) (4.12) 

With the second approach, the problem of inverting the non-square Jacobian matrix is 

solved provided that the term (𝐽𝑥(𝐾
𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇) is invertible. 

 

4.1.3 If (𝐽𝑥(𝐾
𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇)  is not a square matrix 

If the term (𝐽𝑥(𝐾
𝑇𝐴𝐾)−1𝐾𝑇𝐺𝑇) is not a square matrix, it cannot be inverted. To 

make this product a square matrix, an extra row to the Jacobian matrix is added to make 

the number of rows in the Jacobian equal to the number of columns in the Gear Ratio 

matrix. The extra row that is added to the Jacobian, performs a one to one mapping of 

the Cartesian velocities. 

 

4.1.4 Using the Dynamically Consistent Generalized Inverse of Jacobian 

If the Task Jacobian 𝐽𝑥 is not invertible, we can calculate its Dynamically 

Consistent Generalized Inverse [22], 𝐽�̅� 

𝐽�̅� = (𝐾𝑇𝐴𝐾)−1𝐽𝑥
𝑇Λ    (4.13) 
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Where Λ is the operational space inertia matrix, given as: 

    Λ =  𝐽𝑥
−𝑇(𝐾𝑇𝐴𝐾)𝐽𝑥

−1    (4.14) 
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Chapter 5  

Results 

 
This section presents the results of our hybrid dynamic model along with 

simulation techniques. 

5.1 Simulation Technique 

 
The hybrid simulation technique implemented for this work uses Matlab’s ode45, 

which is an adaptive Runge–Kutta integrator based on the Dormand–Prince method. The 

results in this section were simulated in Matlab on an Intel(R) Core(TM) i7-4700MQ CPU 

with 2.4 GHz processor and 8 GB RAM. 

 

5.2 Simulation Example 

 
The planar model has 4 links and 6 Degrees of Freedom. Link 1 represents the 

foot, Link 2 represents the Tibia, Link 3 represents the Femur and Link 4 represents the 

rest of the body modelled as a circle with A, B, C and D denoting the centre of mass for 

each link and E, F, G, H and I (any point on the body) are the points being considered 

that will be in contact/impact. COM is the centre of mass for the whole system. The 

motors are placed at the heel(T1), knee(T2) and hip joints(T3).  
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Figure 5-1: Planar Model of a Leg 

 

The configuration of the model is given by a set of generalized coordinates 

𝑞 = [𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6]
𝑇    (5.1) 

where 𝑞1 and 𝑞2 are the translational coordinates. 𝑞3 , 𝑞4 , 𝑞5 and 𝑞6 are the revolute 

coordinates. 𝑞1 and 𝑞2  are the location of the point E in the x and y direction. 𝑞3  is the 

rotation of body A with respect to the ground. 𝑞4  is the rotation of body B with respect to 

body A . 𝑞5  is the rotation of body C with respect to body B. 𝑞6  is the rotation of body D 

with respect to body C . The dimensions of the bodies are denoted by L1, L2, L3 and L4. 

The initial impact with the contact surface will be assumed at points E and F.t  

Below are the initial conditions and the length and mass properties that were used in this 

simulation. 

𝑞 = [4  0.01  0  2.0944  − 0.4363  − 0.6981]𝑇 

𝐿1 = 0.5 𝑚, 𝐿2 = 1 𝑚, 𝐿3 = 1.05 𝑚, 𝐿4 =  0.4 𝑚 

𝑀𝐴 = 0.816 𝑘𝑔,𝑀𝐵 = 2.58 𝑘𝑔,𝑀𝐶 = 8.496 𝑘𝑔,𝑀𝐷 = 24 𝑘𝑔 
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5.3 Energy and Torque Plots 

 
The energy plots shown below validate the results we have obtained. The first 

plot shows the change in the energy after the first impact event has occurred. We 

observe that while the model is still in the air, energy remains constant and as soon as an 

impact occurs, energy decreases.  

 

Figure 5-2: Total energy after First Impact event 
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Figure 5-3: Torques leading up to the lift 

 

Figure 5-3 shows the torque values that lifts the foot off of the ground. We observe from 

the plot that the we start calculating torques when the whole foot is in contact with the 

ground. We use 2 values for the gain 𝐾𝑝 depending on if we have a one-point contact or 

two-point. This impulse-like behaviour of the torques is due to the fact that we are 

switching from a two-point contact to a one-point contact. We observe that as soon as the 

whole foot lifts off from the ground, the controller is switched off. Since we are not 

bounding the torques, we see these high values of the motor torques being applied. 
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Figure 5-4 shows the total energy during the simulation. We have work done by 

the actuators in orange, the total energy including the work done by the actuators in blue 

and the kinetic energy in yellow. We can see that the total energy remains constant 

throughout the simulation and hence validates the dynamic consistency of our model.  

 

Figure 5-4: Total Energy Plot 
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Figure 5-5: Motion Capture of the foot lifting off the ground 

 
Figure 5-5 shows us how the heel first comes out of contact and then the toe 

leaves the contact surface. 

Figure 5-6 shows us a motion capture of our simulated model. Our links are not 

bound by any angle constraints hence once they leave the contact surface, they move 

without any restraint.  
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Figure 5-6: Motion Capture of the whole model 
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Chapter 6  

Conclusion 

 
Using the impact and contact analytical framework, we were able to establish a 

sound impact and contact model. Using the operational space controller, we were able to 

achieve a proper lift off the foot from the ground. 

The next application using the operational space controller would be to keep the 

orientation of the model fixed to achieve not only a proper lift off from the ground, but also 

a proper landing of the dynamic model. We will also put in bounds for our actuator torque 

values. 
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