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Abstract 

 
REMAINING USEFUL LIFE PREDICTION OF WATER PIPES USING ARTIFICIAL 

NEURAL NETWORK AND ADAPTIVE NEURO 

 FUZZY INFERENCE SYSTEM MODELS 

Razieh Tavakoli, PhD 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Mohammad Najafi 

The U.S. water distribution system contains thousands of miles of pipes with 

differing materials, sizes, and ages. These pipes experience physical, environmental, 

structural and operational parameters that cause corrosion and eventually lead to their 

failures. The Remaining Useful Life (RUL) is the estimated time before a pipe will 

experience a failure mode specifically a pipe break. Pipe failure means collapse and 

deterioration of water pipes overtime. Pipe deterioration results in increased break rates, 

reduced hydraulic capacity, and detrimental impacts on water quality. Therefore, it is crucial 

to perform accurate models that can forecast deterioration rates along with estimates of 

remaining useful life of pipelines to implement essential interference plans that can reduce 

catastrophic failures. This dissertation discusses a computational model that forecasts the 

RUL of water pipelines using Artificial Neural Network (ANN) and Adaptive Neural Fuzzy 

Inference System (ANFIS).  Artificial Neural Network and ANFIS are developed using 

Levenberg-Marquardt backpropagation algorithm and mixture of backpropagation and 

least squares (hybrid method). Those models are trained and tested with acquired field 

data. The developed models identify the significant parameters that influence prediction of 

RUL. It is concluded that, on the average, with approximately 10% of wall thickness loss in 
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existing cast iron, ductile iron, asbestos-cement and steel water pipes analyzed in this 

dissertation, the reduction of their remaining useful life will be approximately 50%.   
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Chapter 1 Introduction and Background 

1.1 History of Water Distribution System 

The most extensive part of water supply system is water distribution system (Fares 

and Zayed, 2010). Water distribution systems contain different types of buried pipes (i.e., 

cast iron, ductile iron, asbestos cement, polyethylene, and polyvinyl chloride). As water 

distribution system becomes older, its structural condition, hydraulic capacity and 

performance deteriorates. Several factors impact on the structural deterioration of water 

mains and their failures, including pipe material, pipe size, pipe age, soil type, climate, and  

cyclic pressures. However, the physical processes that cause pipe breakage are very 

complicated. Most water pipes are buried, so there is little data available about how they 

deteriorate and fail (WRF, 2013). Deterioration of water mains is neither identical nor 

uniform (Al-Barqawi, 2006). This is because water mains are operated under pressure, and 

usually unreachable (Al-Barqawi, 2006). Therefore, it is essential to inspect and assess 

water system condition to efficiently maintain and improve its elements to prevent 

catastrophic failures and emergency repairs.  

Although on-site inspection of a pipeline is the perfect method to analyze and 

understand its condition; this method can be expensive and usually cannot be cost 

efficiently applied to smaller diameter distribution lines, which make up most of water 

systems. Risk of water main failure factors can be divided into likelihood and consequence 

of failures. Likelihood of failures included, environmental, physical, and operational factors 

that represent the deterioration factors. Consequence or post failure factors represent the 

cost of failure in which they should be considered when assessing the risk of water main 

failure.   
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1.2 Water Main Classification 

Water main can be categorized depending on its features by following several 

approaches such as material, diameter, and function. There are three main types of 

pipeline materials that are used in the construction of pressurized pipelines. They are 

cement-based pipes, plastic pipes, and metallic pipes. Cement–based pipes include 

concrete pipe as well as asbestos-cement pipe. Both types incorporate Portland cement 

as the base material. Each of this group of pipeline material contains a variety of materials 

(Al-Barqawi, 2006). Table 1-1 presents the classification of different types of pipe.  

Table 1-1 Types of Pipe Based on Material  

Adapted from Al-Barqawi and Zayed, 2008 

Metallic Pipe Concrete Pipes Plastic Pipes 

 

Cast Iron Pipe (CIP) 

Prestressed Concrete Cylinder 

Pipe (PCCP) 

Polyvinyl Chloride Pipe 

(PVC) 

Ductile Iron Pipe (DIP) Reinforced Concrete Pipe (RCP) Polyethylene Pipe (PE) 

 

Steel Pipe (SP) 

Bar-wrapped Steel-cylinder 

Concrete Pipe (BWP) 

Glass Reinforced 

Polyester Pipe (GRP) 

N/A Asbestos-Cement Pipe (AC) N/A 

 

1.2.1 Classification by Diameter 

Water main can be categorized according to its diameter into three groups: small 

diameter (2 in. to 8 in.), medium diameter (10 in. to 30 in.), and large diameter (36 in. to 72 

in.). Large diameter pipes have more beam strength than small diameter pipes (Al-Barqawi, 

2006). Steel, cast iron (CI), ductile iron (DI), reinforced concrete (RC), pre-stressed 

concrete cylinder pipe (PCCP), and asbestos cement (AC) are used in the construction of 

large-diameter water mains, while more recently, polyvinyl chloride (PVC) and 
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polyethylene (PE) pipes have been broadly used, particularly in the lower diameter range 

(Kleiner and Rajani, 2001). 

1.2.2 Classification by Function 

Water main can be categorized according to its function into two main classes: 

transmission and distribution lines. The purpose of transmission pipelines is to transfer 

water from a main source to a storage system (i.e., water tanks). They are considered the 

most expensive part of the system because of their greater construction costs (i.e., 

material, installation, equipment). The purpose of distribution lines is to transport water 

from the storage system to users (i.e., residential buildings or industrial factories). The 

minimum diameter for a distribution pipe is 2 in., and the minimum diameter required for 

serving fire hydrants is 6 in. (Al-Barqawi, 2006). 

1.3 Factors Influencing Deterioration of Water Mains 

Leaks and breaks due to corrosion of water mains can cause the loss of potable 

water, water contamination, flooding, real estate damage, and service disruptions to end 

users. They can be a potential danger if they temporarily disable firefighting abilities (Wang, 

2009). In many municipalities, there may be pipes more than 100 years old that are still in 

operation. However, metallic pipes that are in their early ages may require urgent 

replacement due to various reasons, for example, very corrosive soil. Kleiner and Rajani 

(2001) have categorized the deterioration of water mains into two classes: structural 

corrosion that reduces the capability of pipes to bear various stresses, and deterioration of 

inner surfaces that decreases their hydraulic capacity and destroys water quality. In cases 

of severe internal corrosion, the corrosion of inner surfaces can cause structural corrosion 

as well. 

According to Wang (2009), researchers have studied many aspects that lead to 

the deterioration of water pipes, with the purpose of improving predictive planning models. 
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As there are many reasons that impact on pipe failures and affect maintenance decisions, 

it is a complicated process to develop such models to evaluate all these factors. The factors 

impacting on pipe corrosion can be either time-dependent or static. Those aspects that will 

not change over time are static parameters, such as pipe diameter or pipe material. On the 

other hand, pipe age, water pressure and temperature, soil corrosivity, weather and water 

contents of soil, and previous pipe breaks are samples of random and time dependent 

factors. These parameters can also be classified as follows (Wang, 2009). 

1. The quality and age of the pipe, including pipe material, diameter, length of pipe, 

and type and number of joints. 

2. The environment and temperatures where the pipe is laid, such as the soil 

corrosivity, frost depth, soil temperature, soil moisture content, traffic and other 

loadings. 

3. The quality of workmanship when a pipe is installed, repaired, or rehabilitated, 

such as construction method (e.g., embedment type). 

4. The operating and maintenance aspects of the pipe network, such as pressure 

and water hammer, pipe breaks and repair records and details, preventative 

maintenance (inspection, lining, cleaning, and cathodic protection for metallic 

pipes). 

1.3.1 Failure of Water Mains 

Pipes will deteriorate and collapse overtime, but the rate of failure in pipes differs 

according to pipe’s material and exposure to various environmental and operational 

conditions. Corrosion of pipes will impact on the structural condition and hydraulic capacity 

of a water main, which reduces the system function (Rajani and Kleiner, 2004). Metallic 

pipes may deteriorate faster than plastic pipes if they are buried in aggressive soil without 

proper protection. For example, if metallic pipes are buried in aggressive soil, they should 
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be covered in plastic sheets (polyethylene encasement) to separate the metal from soil, 

and therefore, prevent pipe corrosion. However, the useful life of the polyethylene sheet is 

30 years (Al-Barqawi and Zayed, 2008). Similarly, corrosion is the main cause of failure in 

Pre-Stressed Concrete Cylinder Pipes (PCCP). When sufficient number of the pre-stressed 

bars or wires are corroded and destroyed in a section of the PCCP, concrete in that section 

will not hold pressure. Consequently, the pipe will break due to internal pressure (Al-

Barqawi and Zayed, 2008). The failure modes of different types of pipe will explain in 

following sections. 

Water main breaks, because of enforced operational and environmental stresses 

on a structurally deteriorated pipe due to corrosion, degradation, insufficient installation, 

and/or manufacturer faults. Pipe break types are categorized into four groups: (1) 

circumferential breaks, caused by bending stresses; (2) longitudinal breaks, affected by 

transverse stresses (hoop stress); (3) split bell, affected by transverse stresses on the pipe 

joint; (4) holes due to corrosion (Nemeth, 2016). Table 1-2 categorizes water main 

corrosion into three groups. Figure 1-1 graphically represents pipe failures that happen due 

to straight tension (top), bending or flexure (middle), and hoop stress (bottom). 
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Table 1-2 Factors that Cause Water System Corrosion  

Adapted from Al-Barqawi, 2006 

P
h
y
s
ic

a
l 

Factor Explanation 

Pipe material Pipes made from various materials fail in various modes. 

Wall thickness Thinner walled pipe will be corroded more rapidly. 

Pipe age Results of pipe degradation become more obvious over time. 

Pipe diameter Small diameter pipes are more vulnerable to beam failure. 

Type of joints 
Some sorts of joints have experienced immature failure (e.g., 

leadite joints). 

Pipe lining and 

coating 
Lined and coated pipes are less vulnerable to deterioration. 

Pipe installation 
Pipes can damage due to poor installation practices, making 

them susceptible to failure. 

Pipe manufacture 
Imperfections in pipe walls created by manufacturing faults 

can make pipes susceptible to failure.  

E
n
v
ir
o

n
m

e
n
ta

l 

Soil type 
Pipe loading changes due to corrosive soils that experience 

important volume changes in reaction to moisture changes,  

Groundwater 
Some groundwater is destructive toward specified pipe 

materials. 

Pipe location 
Rate of corrosion can increase due to movement of road salt 

into the soil. 

Pipe bedding Inappropriate bedding may result in early pipe failure 

O
p
e
ra

ti
o
n
a

l 

Transient pressure 
Changes to internal water pressure will change stresses 

acting on the pipe. 

Leakage 
Leakage corrodes pipe bedding and increases soil moisture 

in the pipe zone. 

Water quality Some water is aggressive, encouraging deterioration 

Flow velocity 
Unlined dead-ended mains have greater rate of internal 

corrosion.  

Operations and 

maintenance 

practices 

Poor practices can cooperate structural integrity and water 

quality. 
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Figure 1-1 Pipe Characteristics and Failure Modes 

Rajani and Kleiner, 2004 

Different materials have different features and show different behaviors because 

of certain aspects such as corrosion. In the deterioration analysis of water mains, pipe 

material is often used as the most significant grouping criteria (Rajani and Kleiner, 2004). 

1.3.1.1 Cast Iron Pipes (CIP) 

Cast iron pipe is the most common pipe material in the United States, including 

over 50% of the total US water main network. Some of the earliest cast iron pipe in the 

U.S. was installed in the 19th century and continued prevalent until the 1970s, when the 
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popularity of ductile iron pipe grew. Cast iron is also mentioned as gray cast iron and is a 

very strong but fragile material (Najafi and Gokhale, 2005). Pit cast gray iron and centrifugal 

cast gray iron are two types of cast iron pipe (CIP). One of common failure mode for small 

diameter cast iron pipes is bell splitting. The failures occur due to the difference between 

the coefficient of thermal expansion in the joint-sealing compound and the metal in the 

pipes. In cold temperatures, the leadite expands differently than the cast iron pipe, causing 

splitting at the bell (Makar, 2001). 

1.3.1.2 Ductile Iron Pipes (DIP) 

The graphite composition in the CIP was changed from flake form to spherical form 

by adding inoculants such as magnesium to the molten iron to have an improved pipe 

material. This process leads to the development of ductile iron pipe (DIP) which has an 

improved strength, affects resistance and some other properties compared to CIP (Najafi 

and Gokhale, 2005). The source cause of failure in ductile pipes is extreme forces acting 

upon the pipe in the forms of internal pressure, bending, soil movement, and thermal 

expansion due to differences between the temperature of the water pipes and the 

surrounding soil or the pipes and joint mechanisms (Jenkins, 2014). The failure modes 

observed among ductile pipes are blowout holes, circumferential cracking, bell splitting, 

longitudinal cracking, bell shearing, and spiral cracking. Blowout holes are beginning by 

corrosion pitting which causes wall thinning. Finally, the pressurized water surpasses the 

strength of the thin pipe wall and a hole is formed. Circumferential cracking, the most 

common failure mode for pipes less than 14 in., is caused by bending forces or tensile 

forces due to soil movement (Jenkins, 2014).  

1.3.1.3 Polyvinyl Chloride Pipe (PVC) 

The 1970s saw a change to the use of Polyvinyl chloride (PVC) pipe because it 

was cheaper to buy, transport, and install than ductile pipes. Another benefit of PVC is that 
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it does not rust like ferrous pipe. The material composition of PVC makes it more brittle 

than ductile pipes under certain conditions, but also more disposed to bending and flexure. 

A study of PVC pipe used for gas distribution showed that manufacturing flaws and 

installation practices donated the most of PVC pipe failures. With respect to installation 

practices, pipes left out in the sun too long prior to bedding are subjected to chemical 

breakdown, degrading the structural integrity of the pipe. An additional cause of pipe failure 

due to installation of PVC pipe is over insertion at the pipe joint, where the spigot joint is 

inserted too far into the bell, causing fracture (Jenkins, 2014). There are many different 

mechanisms for similar failure modes.  

Polyvinyl Chloride (PVC/un-plasticized Polyvinyl Chloride (UPVC) pipes have high 

resistance to deterioration and corrosion, and can be used in very corrosive environments, 

but they likely to be affected by deterioration if they are exposed to weather, chemical 

attack, or mechanical degradation from improper installation methods (Al-Barqawi, 2006). 

The chemical attack resistance for PVC pipes usually reduces with the rise in concentration 

of a precise chemical. For example, organic chemicals such as solvents and gasoline will 

weaken PVC/UPVC pipes, resulting in failure of pipe by expansion and rupture.  

1.3.1.4 Steel Pipe (SP) 

Steel pipes are manufactured in different ways to give them their respective 

characteristics. Steel pipes can be manufactured using seamless welds, butt-welds or 

spiral welds. Seamless pipe is formed when a molten steel rod is combined with a clamp. 

Butt welded steel pipe is formed when hot steel is rolled into a hollow cylinder-like shape 

giving the pipe a joint. Finally, a spiral welded steel pipe is formed when strips of steel 

metal are twisted and welded where the edges join each other. Steel pipes are known for 

their strength and ability to transport water at high pressures (Parisher and Rhea, 2012).  
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Carbon steel pipes are most commonly used in industry today. The carbon steel 

material's drawback is the ability to corrode easily via ferrous oxide formation on the inside 

of the walls, which can sometimes slow down the water flow (Parisher and Rhea, 2012). 

Use of steel pipe in the U.S. was observed as early as 1863 in San Francisco. Several 

developments in the technology over the years have made steel more versatile for piping 

applications (Najafi and Gokhale, 2005). 

1.3.1.5 Asbestos Cement (AC) Pipes 

Asbestos Cements (AC) pipes can also be weakened and degraded when it is 

used to transfer aggressive water such as low acidity and low alkalinity waters (Al-Barqawi, 

2006). The degradation of pipe will release asbestos fibers, which are harmful to health, 

and mix it with the carried water through the water distribution system. To prevent this type 

of damage, the pipe should be lined with epoxy resin or cement mortar (Al-Barqawi, 2006). 

Due to the harmful effects of asbestos fibers to the human health, its use was discontinued 

in the early 1980s in North America (Najafi, 2010). However, utilities in U.S. have a small 

percentage of AC pipe in their distribution network, which are still in service.  

1.3.1.6 Reinforced Concrete Pipe (RCP) 

These concrete pipes can be reinforced with welded wire fabric, hot-rolled rod 

made of Grade 40 steel or cold-drawn steel wire made from hot-rolled rods. It can be used 

for pressure applications up to 55 psi (Najafi and Gokhale, 2005). 

1.3.1.7 Prestressed Concrete Cylinder Pipe (PCCP) 

This is a composite pipe manufactured using concrete and steel. It is used for high-

pressure applications and can handle up to 500 psi. Lined cylinder pipe and embedded 

cylinder pipe are the two types of PCCP (Najafi and Gokhale, 2005). 
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1.3.1.8 Polyethylene Pipe (PE) 

Polyethylene was discovered in 1933 and its use in pipe applications started in 

1950. PE or HDPE pipes have been an alternative for tuberculation and corrosion issues 

of traditional iron, steel and concrete pipes (Storm and Rasmussen, 2011). HDPE pipes 

have been used for municipal water applications for almost fifty years, they are still 

minimally used for potable water transmissions/distributions and wastewater services 

when compared to other types of pipe (Al-Barqawi, 2006). Similarly, the polyethylene pipes 

(PE) deteriorate and fail due to joint imperfections, material degradation, and improper pipe 

installation. In addition, organic chemicals can pass through the walls of the PE pipes (Al -

Barqawi, 2006). Table 1-3 shows failure modes and mechanisms for different pipes. 

1.3.2 Definition of Remaining Useful Life (RUL) 

The RUL is the estimated time before a pipe will experience a catastrophic 

failure mode (section 1.3.1), specifically a pipe break (Nemeth, 2016). This failure mode 

may include rupture, breakage, joint separation, longitudinal cracking, circumferential 

cracking, holes, and other events that make the use of the pipe impossible or 

impractical.  Failure also may include low water pressures, clogging, corrosion, leakage, 

tuberculation, low flow, water quality issues and similar.  
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Table 1-3 Failure Modes and Mechanisms  

Modified from Jenkins, 2014 

Failure Mode Failure Mechanism Material 

C
ra

c
k
in

g
 

Circumferential 
Bending moments applied to the pipe and 
soil movement which, produce tensile 
forces on pipe. 

All 

Longitudinal Internal water pressure, crushing and 
compressive forces acting on pipe. 

All 

Spiral Pressure surges and/or combination of 
bending forces and internal pressure. 

All 

Mixed Combination of stresses. All 

Ring 
Axial tension, bending, traffic load, 
settlement, uplift, production, fatigue, 
residual stresses, temperature, and frost. 

PVC 

Axial Internal pressure, bending, traffic load, 
production, residual stresses, and frost 

PVC 

Irregular Environmental such as chemical, UV, and 
stress cracking. 

PVC 

F
ra

c
tu

re
 

Circumferential 
Bending moments applied to the pipe and 
soil movement which produce tensile forces 
on pipe. 

All 

Longitudinal Internal water pressure, crushing and 
compressive forces acting on pipe. 

All 

Spiral Pressure surges and/or combination of 
bending forces and internal pressure. 

All 

Mixed Combination of stresses. PVC 

B
u
c
k
lin

g
 

Axial External pressure, axial compression, 
temperatures, fire, and interventions. 

PVC 

Transverse/ring 
External pressure, axial compression, 
production, residual stresses, 
temperatures, fire, and interventions. 

PVC 

Non-symmetric 
Longitudinal bending and brazier effect. 

PVC 

Longitudinal 
Axial compression and thermal effects. 

PVC 

 

1.4 Research Needs 

Much research has been conducted on pipe failure assessment and remaining 

useful life, but no evaluation of significant parameters has been developed that impact on 

remaining useful life. More condition assessment has been done on wastewater systems 
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than on water systems, therefore there are more uncertainties and unknowns in predicting 

the possibility of failure (or the remaining useful life) of a water pipeline than a similar 

wastewater pipeline (WRF, 2013). Furthermore, very few technologies like, Closed Circuit 

Television (CCTV); ultrasonic inspection, 3D optical scanning, videoscope and etc., have 

been successful in usefulness of determination of remaining useful life (Agrawal, 2015). 

Moreover, lack of awareness about the performance and economic parameters of all the 

commercially available technologies acts as a major drawback in the use of these 

technologies (Agrawal, 2015). 

Additionally, there is also a lack of knowledge about the evaluation parameters for 

prediction of remaining useful life. There are two approaches used to determine the 

probability of failure and remaining useful life of underground water pipelines: (1) Statistical 

approaches based on analysis of available failure records. (2) Physical probabilistic 

approaches: derived from physical principles of pipeline failure combined with a stochastic 

representation of input variables. In both of above approaches, various asset parameters 

are considered in the analysis, such as pipeline diameter, material type, installation year, 

break history, etc., along with other risk factors such as operating pressure, soil type and 

soil acidity. Nevertheless, there is no standard procedure for recording data on leaks, 

breaks, and condition indicators. Therefore, there is a lack of considering wall thickness 

loss to forecast the remaining useful life. According to previous researches about the water 

pipes failure and remaining useful life prediction (Manda, 2012; Joshi, 2012; Paradkar, 

2012 and Deshmukhi, 2012) there is a lack of a model to evaluate the risk of water pipes 

failure and determine the remaining useful life for different types of water pipe and there 

are no researches using combination of Artificial Neural Network (ANN) and Adaptive 

Neural Fuzzy Inference System (ANFIS) models to predict the remaining useful life of water 

pipes.  
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1.5 Research Objectives 

The main objective of this dissertation is to develop a model to determine the 

remaining useful life (RUL) of various types of water pipes based on physical, operational 

data and inspection datasets. Secondary objectives of this dissertation are: 

 To determine the most significant parameters influencing RUL of water pipes 

using three different methods (statistical analysis, neural network and adaptive 

neural fuzzy system). 

 To evaluate and categorize different condition assessment of water pipes for 

determination of RUL and to determine the relationship between important 

parameters and remaining useful life.  

For this research soil type, groundwater-table location, operational factors, PVC, 

and HDPE are not considered. The pipes materials include cast iron, ductile iron, asbestos 

cement and steel pipes and pipe diameter ranges vary from 4 in. to 24 in. 

1.6 Research Methodology 

The research methodology employed in this dissertation is based on literature 

review of the deterioration and condition rating of water mains and the analysis of actual 

data collected for asbestos-cement pipes, ductile iron pipes, cast iron and steel pipes by 

following steps:  

 Review literature focusing on factors affecting water main deterioration. 

 Review collected water main data to analyze condition of the pipes and 

determining input and output parameters and relationship between them. 

 Develop a model to estimate remaining useful life if water pipes using Artificial 

Neural Network (ANN) and Adaptive Neural Fuzzy Inference System (ANFIS).                                  

Figure 1-2 illustrates the research methodology. 
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Figure 1-2 Research Methodology 

1.7 Hypothesis 

With sufficient data, it is expected that ANN and ANFIS models can be utilized to 

predict remaining useful life (RUL) of water pipes. Condition assessment of water pipes 

indicates reliability of the ANN model in prediction of remaining useful life. It is expected 
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that pipe age and wall thickness loss are most significant parameters to evaluate RUL. 

Ductile iron and steel pipes have more remaining useful life compared to cast iron and 

asbestos cement pipes. It is expected that, on the average, with approximately 10% of wall 

thickness loss in existing cast iron, ductile iron, asbestos-cement and steel water pipes, 

the reduction of their remaining useful life will be approximately 50%. 

 
1.8 Contribution to the Body of Knowledge 

The major contributions of this dissertation are: 

 This dissertation predicts remaining useful life of water pipes using combination of 

Artificial Neural Network (ANN) and ANFIS. 

 Above models have not been used in pervious literature for determination of 

remaining useful life of water pipes. 

1.9 Dissertation Organization 

This dissertation consists of six chapters. Chapter 1 presents history of water 

distribution system, water main classification, factors influencing deterioration of water 

mains, research needs and objectives, methodology and expected outcome of this 

dissertation. Chapter 2 provides a literature review on remaining useful life of water pipes 

and previous studies about deterioration of models of water pipes. Chapter 3 describes the 

methodology used for this dissertation by outlining a systematic description of the research 

performed and presents the development and the application of ANN and ANFIS models 

to water distribution network. Chapter 4 outlines statistical analysis of the research. 

Chapter 5 analyzes the results achieved in this dissertation. Details of the methodology 

and results are presented in detail and discussed to demonstrate the practicality and 

predictive capability of the ANN and ANFIS. Chapter 6 draws conclusions, summarizes the 
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research results, and presents recommendations for further study. Appendices and 

references are provided at the end of this dissertation. 

1.10 Chapter Summary 

This chapter discussed the history of water distribution system, types of pipe 

materials followed by an introduction to cast iron, ductile iron, PVC pipes and asbestos 

cement pipes, water main classification, factors influencing deterioration of water mains, 

condition rating of water mains, water system risk assessment, pipe characteristics and 

failure modes were presented. Additionally, this chapter reviewed the research needs and 

objectives, methodology and expected outcome of this dissertation. 
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 Literature Review 

2.1 Introduction 

The previous chapter illustrated the water pipe failure and characteristic of different 

types of water pipes. This chapter provides an overview of the researches and various 

efforts related to remaining useful life prediction of water pipe, structural and risk 

assessment models of water pipes failures. Researchers have used a broad variety of 

techniques to predict water pipes deterioration and remaining useful life of water pipes. 

Although pipelines are designed for a lifespan under standard operating conditions, their 

deterioration never follows a set pattern. The process of deterioration of pipelines is rather 

complex because there are many factors which interactively contribute to such 

deterioration. Environmental, operational and physical interactions ensure that pipeline 

deterioration is never uniform (Kulandaivel, 2004).  Pervious researches about pipeline 

deterioration techniques are summarized in the following sections. 

2.1.1 Multiple Linear Regressions 

Multiple linear regression can be used to study the relationship between a single 

dependent variable and one or more independent variables (Allison, 1999). The general 

form of a multiple linear regression equation presents in Eq.2.1:  

𝑌 =  𝛼 + 𝛽₁𝑋₁ + 𝛽₂𝑋₂ + ⋯ 𝛽𝑛𝑋𝑛 + 휀      Eq. 2.1 

 

Where Y = dependent variable; α = intercept; β1… βn = regression coefficients; X1… 

Xn = independent variables; and ε = error term. α, and β1… βn values are determined by 

using ordinary least squares method. Multiple linear regressions are one of the most 

commonly used statistical methods to determine relationships between independent 

variables and dependent variables.  
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2.1.2. Logistic Regression 

Logistic regression is a statistical method for analyzing a dataset in which there 

are one or more independent variables that determine an outcome. The outcome is 

measured with a dichotomous variable (in which there are only two possible outcomes). 

Logistic regression can be considered as a linear regression in which the dependent 

variable is transformed into the logit of dichotomous output variable Y. The goal of logistic 

regression is to find the best fitting (yet biologically reasonable) model to describe the 

relationship between the dichotomous characteristic of interest (dependent variable = 

response or outcome variable) and a set of independent (predictor or explanatory) 

variables (Eq.2.2). Logistic regression generates the coefficients (and its standard errors 

and significance levels) of a formula to predict a logit transformation of the probability of 

presence of the characteristic of interest (Wilson, 2014). 

𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝑙𝑛р(𝑌 = 1)/1 − 𝑃(𝑌 = 1)  =  𝛼 + 𝛽₁𝑋₁ + 𝛽₂𝑋₂ + ⋯ 𝛽𝑛𝑋𝑛 + 휀   Eq. 2.2 

Where Y = dichotomous dependent variable; α = intercept; β1… βn = regression 

coefficients; X1…Xn = independent variables; and ε = error term.  

 2.1.3 Logistic Function 

Cooper et al., (2000) developed a probabilistic, statistical model to predict the 

probability of failure of large-diameter mains. The model calculates a score for each pipe 

relative to other pipes in the system based on their calculated probability of failure. The 

failure model uses a logistics function model to calculate each probability score. The model 

was developed to be combined with a consequence of failure model to determine a risk 

score for each main. This consequence model was developed using geographic 

information system (GIS) data. The failure model discussed here takes the general form: 

Probe = 
1

1+𝑒−𝑧   Eq. 2.3 
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Where Z= b0 + X1b1 + X2b2 +……+Xibi are all independent variables, and the 'b' 

coefficients are determined using logistic regression. Generalized linear modelling 

techniques were used on 11 variables to define those that are most significant for use in 

the model (Wilson, 2014). 

2.1.4 Hierarchical Fuzzy Expert System Model  

Hierarchical fuzzy expert system model is developed to evaluate the risk of water 

main failure. The developed model considers four main risk factors, which have sixteen 

sub-factors that represent both corrosion of the water distribution network and the failure 

results. Based on literature review, a failure risk scale is planned to help decision makers 

in water resources management (i.e., companies, municipalities) make informed decisions 

and start their rehabilitation plans. The developed model is analyzed and verified, and the 

results show that the model is strong and reliable (Fares and Zayed, 2008). 

2.1.5 Delphi Method 

Uncertainty is the key concern in strategic decision making for designing 

sustainable infrastructure and it’s believed that the performance models gives reliable 

prediction mostly in short and medium term rather than long term since the technological 

and economic factors will change during the time. Therefore, the early step in water 

researches is to understand the input parameters for prediction model in long term. 

‘‘Ranking-type” Delphi is used to develop a group agreement on identifying the important 

factors that affect deterioration of water mains in distribution networks. In the process of 

the Delphi, the problem statement should be described at first. Then a panel of experts 

familiar with the subject is selected. Since Delphi is a group decision technique, it needs 

several experienced experts familiar with the issue who could deliver correct answers to 

the questions. Therefore, the process of selecting skilled panelist is of main importance 

(Zangenemadar and Moslehi, 2016b). 
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2.1.6 Artificial Neural Network Models 

Artificial Neural Networks (ANNs) are forms of mathematical models that simulate 

the structure and/or function of biological neural networks. It consists of interconnected 

neurons and processes. In most cases, ANN is adaptive during the learning phase by 

changing the structure based on the information flow. Modern neural networks are non-

linear statistical tools for data modeling. They are usually used to identify patterns in the 

data, train the network for adjustment, and predict future conditions. Neural Networks can 

identify complex non-linear relationships between contributing factors, output can adapt 

and trained to fuzzy or roughly defined problems (Syachrani, 2010). An artificial neural 

network (ANN) is composed of artificial neurons that are connected to each other and 

arranged in different layers (input, hidden, and output) (Al-Barqawi and Zayed, 2008). Each 

connection between neurons has a connected weight, and once the weighted sum of inputs 

reaches a certain level; each neuron sends a signal that is a resultant value of a start 

function (Zou et al., 2008). ANNs are trained by using datasets, which include observed 

input and output patterns.  

Advantages of ANNs include the ability to model any complicated nonlinear 

relationship between input and output variables in cases where the precise form of 

relationship is not known by using a proper network structure, and to exhibit high error 

tolerance (Zou et al., 2008). Once trained, a neural network can perform classification, 

clustering and forecasting tasks. Thus, the pipeline industry can employ this technology to 

model dynamic deterioration of pipes using the historically available data (Najafi and 

Kulandaivel, 2005). Once the pipeline deterioration pattern is modeled, it is then possible 

to predict future condition and deficits of the pipelines (Najafi and Kulandaivel, 2005). 

However, dependency on a widespread amount of data points is a drawback of this 

method. 
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2.1.7 Machine Learning Models 

Machine learning based models that are not constrained to a pre-determined 

model form could be a feasible alternative for developing effective predictive condition 

assessment models. The machine learning based models developed for water pipes can 

be classified as neural network based fuzzy logic, polynomial regression, and Bayesian 

theory (Jenkins, 2014).  

2.1.8 Adaptive Neuro-Fuzzy Interference System 

Modify network-based fuzzy inference (ANFIS) is a combination of two soft-

computing methods of ANN and fuzzy logic (Jang, 1993). Fuzzy logic can change the 

qualitative aspects of human knowledge and insights into the process of precise 

quantitative analysis. However, it does not have a defined method that can be used as a 

guide in the process of transformation and human thought into rule base fuzzy inference 

system (FIS), and it also takes quite a long time to adjust the membership functions (MFs) 

(Jang,1993). Unlike ANN, it has a higher capability in the learning process to adapt to its 

environment. Therefore, the ANN can be used to automatically adjust the MFs and reduce 

the rate of errors in the determination of rules in fuzzy logic (Suparta and Alhasa, 2016). 

Table 2-1 presents the advantages and limitations of water pipes deterioration models. 
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Table 2-1 Deterioration Models of Water Pipes 

Adapted from Salman, 2010 

 
Methods 

 
Advantages Limitations 

Multiple Linear 
Regression 

Linear regression is a simple 
method and can be generated 
by using common spreadsheet 
applications. 

Validity of the model depends 
on satisfying several 
assumptions. The functional 
relationship between dependent 
and independent variables is 
assumed linear. 

Logistic 
Regression 

Probability of a pipe segment 
to be in a deficient state can 
be obtained by logistic 
regression. 

This method is applicable for 
identifying the odds ratio 
associated with dichotomous 
(such as fail-not fail) variables. 
 

 
 

Artificial Neural 
Networks (ANN)  

 

In ANN models exact 
functional form does not have 
to be identified beforehand. 
Complex nonlinear 
relationships can be modeled. 

An extensive dataset is 
required for the model to learn 
all possible combinations. 

Delphi Method 

 
Useful method for decision 
making based on opinions of 
experts. 

It needs several experienced 
experts familiar with the issue 
who could deliver correct 
answers to the questions 
(Zangenemadar and Moslehi, 
2016b). 

Hierarchical Fuzzy 
Expert System 
Model 

 
 
Useful for evaluation of water 
pipes risk failure. 

The method require certain 
factors or levels of belief as 
means of accounting for 
uncertainty. All data must be 
complete and correct to be 
analyzed (Fares and Zayed, 
2008). 

Machine Learning 
Models 

Feasible alternative for 
developing effective predictive 
condition assessment models. 

There is a lack of theory around 
model creation (Jenkins, 2014).  

Adaptive Neuro-
Fuzzy Interference 

System 

 
 
The system might be initialized 
with or without prior knowledge 
in terms of fuzzy rules. 

It does not have a defined 
method that can be used as a 
guide in the process of 
transformation into rule base 
fuzzy inference system (FIS), 
and it also takes quite a long 
time to adjust the membership 
functions (Kruse, 2008).  
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2.2 Estimating of Remaining Useful Life of Water Mains 

There are several groups of factors that affect pipe corrosion, and therefore, the 

remaining useful life. These factors are wall thickness measurement, water pipe structural 

failure, pipe condition assessment, risk assessment model, physical, condition, and 

environmental and operational factors (Figure 2-1). Because of the lack of historical data 

and availability of physical data in most cases, most studies consider only the physical 

factors in their research. In this research, the factors of pipe length, diameter, and material, 

number of break, installation year, condition, and age are used as inputs and the target 

value to predict the remaining useful life of pipelines. 

 

 

 

 

 

 

 

 

 

 
Figure 2-1 Four Groups of Factors Impacting Pipe Deterioration 

2.2.1 Pipe Diameter 

It has been found that the corrosion of larger diameter pipes is slower compared 

to that of smaller diameter pipes in general. Kettler and Goutler (1985) have found a strong 

connection between the pipe break rate and pipe diameter for cast iron pipes but not for 

asbestos cement pipes. Though the reasons for the reducing tendency for breakage with 

increasing pipe diameter have not been completely understood, significant evidence 
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implies that the reverse relationship may result from the greater pipe wall thickness of 

larger diameter pipes. On the other hand, larger diameter pipes can have a larger surface 

area in contact with surrounding soil, thereby resulting in an increased corrosion of the pipe 

(Wang, 2009). 

2.2.2 Pipe Section Length 

In general, the longer a pipe section is the more breaks may happen. This may be 

because the longer the pipe, the more conditions that it is exposed to. The increased 

number of conditions may cause breakage (Skipworth et al., 2002). This may because 

longer pipe runs mean fewer or less sever bends in the pipe to accumulate debris, creating 

blockages or damage to the pipe from standing sewage (Najafi and Gokhale, 2005). 

2.2.3 Pipe Material 

As stated in chapter 1, there are varieties of materials, e.g., cast iron, ductile iron, 

steel, asbestos cement, reinforced concrete, Prestressed Concrete Cylinder Pipe (PCCP), 

polyethylene, and PVC, for pipeline. Each material has its own benefits and limitations. 

Pipe material is a significant factor in the corrosion process; pipes made from different 

materials fail in different ways (Zangenemadar and Moslehi, 2016a).  

2.2.4 Pipe Breakage Rate 

Breakage rate is the number of breaks per year per unit length of pipeline. When 

the breakage rate is higher, there are more breaks in one segment, which consequences 

in a higher corrosion rate. This decreases the durability of the pipeline and increases the 

possibility of failure (Zangenemadar and Moslehi, 2016a). 

2.2.5 Pipe Age 

As a pipe gets older, it may require more maintenance and repairs. Many 

rehabilitation plans have been based only on the age of the pipes. Pipe age is an important 

factor that indicates the period that the pipes withstand the effect of the surrounded 
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environment, operational condition, and external loads (Fahmy and Moslehi, 2009). Figure 

2-2 presents the factors impact on remaining useful life. 

Pipe age is determined by calculating the number of years from a pipe’s installation 

year to the present day. It is assumed that the pipe has been frequently in service 

throughout its whole life span (Nemeth, 2016). Pipe age was calculated by Eq. 2.7: 

Age = (present Year – installation Year)   Eq. 2.7 

Where:         Age = age of pipe (years) 

                           Present Year = current year (years) 

              Installation Year = year of installation (years) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2 Categories for Estimating RUL 

Adapted from Nemeth, 2016 
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2.3 Remaining Useful Life (RUL)  

The primary focus of this section is the computation of the remaining useful life of 

each water main. There are various methods to calculate RUL. According to Devera 

(2013), RUL is the difference between the pipe’s age and Anticipated Service Life. Slightly 

modified from the equation presented by Devera (2013). Eq. 2.8 presents calculation of 

RUL. 

RUL = (ASL – Age)   Eq. 2.8 
 

Where:  RUL = remaining useful life of pipe (years) 

ASL = anticipated service life (years) 

Age = pipe age from year of installation to present (years) 

Then, RUL for each water main in the water distribution system is calculated using the 

Eq. 2.4: 

RUL = (ASL – Age) x Padj  Eq. 2.4 
 
Where:   RUL = remaining useful life of pipe (years) 

ASL = anticipated service life (years) 

Age = pipe age from year of installation to present (years) 

Padj = break history percent adjustment 

Clark et al. (1982) provides a linear model that predicts the number of years from 

installation until the first break. Cortez (2015) concluded that based on available data the 

Clark et al. (1982) linear model offered the best results. According to Cortez (2015), the 

data required to use this model includes time of installation, pipe age, expected service 

life, pipe diameter, pipe material, pipe length, internal pressure, breakage history and pipe 

wall thickness loss . Incorporating additional factors efforts to decrease the uncertainty and 

variation in a pipe’s service life based on additional operating conditions.  

The Clark et al. (1982) linear model is based on Eq. 2.5: 
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NY = x1 + x2 D + x3 P + x4 I + x5 W + x6 L + x7 T  Eq. 2.5 
Where: 

NY = number of years from installation to first repair 

Xi = regression Parameters 

D = diameter of pipe (in) 

P = absolute pressure within pipe (psi) 

L = length of pipe 

W = wall thickness loss 

T = pipe type  

Remaining useful life is the difference between the pipe’s age and NY (Cortz, 

2015). RUL was calculated based on Eq. 2.6: 

RUL = (NY – Age)  Eq. 2.6 

Where:   RUL = remaining useful life of pipe (years) 

NY = number of years from installation to first failure (years) 

Age = pipe age from year of installation to present (years) 

Cortez (2015) adjusted the RUL for breakage history by decreasing the RUL by 

10% for each previous break. Using the adjusted RUL, the probability of failure score is 

determined (Nemeth, 2016). Decreasing the amount of money spent on incorrect or 

unsuitable amounts of utility data. 

Zangenemadar and Moslehi (2016a) proposed a model that considers several 

factors in prediction of pipelines’ remaining life for different pipe materials in water 

distribution networks. The main objective of this research was to forecast the remaining 

useful life of pipelines based on its characteristics, to develop value-driven enhanced 

intervention plans. 

Above study employed Artificial Neural Networks (ANN) to relate the pipe 

characteristics to the output values, which in this case was the remaining useful life. The 
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model was implemented, validated, and tested using data obtained from the municipality 

of Canada.  

The result showed as pipelines deteriorate, they were more exposed to failure 

internally and/or externally; the ANN model showed robustness in the prediction of 

remaining useful life. Modeling the remaining useful life of pipelines through ANN was 

valuable, as it reduced the time and effort and therefore the costs of analysis.  

Fahmy and Moslehi (2009) presented a model designed to forecast the remaining 

useful life of cast iron water mains. The model considers factors related to pipe properties, 

its operating conditions and the external environment that surrounds the pipe.  

Three different data-driven techniques are considered in the model development; 

each is used to study the relationship between remaining useful life and a set of 

deterioration factors, and to forecast remaining useful life of cast iron water mains. These 

techniques are multiple regression and two types of artificial neural networks: multilayer 

perceptron and general regression neural network. The data used in model development 

were acquired from 16 municipalities in Canada and the United States.  

The results showed the outcome produced by the developed models correlate well 

with the actual conditions. The study presented in this paper revealed that data-driven 

modeling methods are effective in forecasting the remaining useful life of cast iron water 

mains and it overcomes limitations associated with existing models (Fahmy and Moslehi, 

2009). 

2.4 Water System Risk Assessment 

Risk is determined by considering the Consequence of Failure (COF) and 

Likelihood of Failure (LOF) of an asset and translating both of those factors into a 

standardized numerical risk score. The COF focuses on the impact a failure may have on 

an asset’s ability to maintain a target level of service. The LOF is the probability that an 
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asset will fail at any given time and is based on condition and capacity. A COF and LOF 

score was allocated for each waterline asset (Providence Infrastructure Consultant, 2016). 

On the other hand, the numerical score of LOF is related to the asset’s condition, 

capacity, and increases over time as the asset ages and deteriorates or is relied upon to 

express increasing amounts of flow. Using a risk-ranking concept is an applicable tool for 

managing infrastructure assets and has been applied as a practical way to identify and 

rank Capital Improvement Projects (CIP). This approach also reduces the amount of CIP 

spending overtime. To understand the Likelihood of Failure (LOF) means the utility must 

know where its pipeline limitations are based on history of breaks, knowledge of age and 

system, environmental considerations, pipe materials, construction of pipeline, and 

operational data.  

To understand the Consequence of Failure (COF) means the utility must 

understand the consequences of failure for each linear asset based on their servicing 

requirements, system redundancies, and impact on stakeholders and surroundings (Wurst, 

2016). The more severe the outcome of failure of a pipeline for a utility, the more important 

it is for the utility to know and understand the condition of the asset. Five categories were 

developed to characterize the Likelihood of Failure (Wurst, 2016). The categories were: 

 Physical Characteristics 

 Exposure Factors 

 Pipe Condition & Performance 

 Design pressure & Load Carrying Capability 

 Maintenance Effectiveness 
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2.5 Water System Asset Management 

Asset Management is a systematic process of operating, maintaining and upgrading 

physical assets cost-effectively. It combines engineering and mathematical analysis 

with sound business practice and economic theory (Najafi, 2016). Two main aspects 

of information on pipeline performance that can be used in asset management 

decision-making processes are (1) information on current condition, which is obtained 

through field inspection, and (2) information on future performance, obtained using 

deterioration models and forecasting tools (Najafi, 2016). 

 2.6 Risk Assessment Model 

A risk management framework provides a structured approach to classifying, 

assessing and managing risks. Because some risk factors were more important or are 

better predictors of condition than other factors, the individual risk factors were assigned a 

weighting based on a percentage from 1 to 5, baseline conditions of this study were 

established in the risk analysis using available information and engineering judgment. The 

overall values of LOF and COF were assigned scores in five categories to help define the 

arranging of pipelines for condition assessment activities. The five risk categories are 

shown in Figure 2-3. 

 

 

Figure 2-3 Risk Rating Categories  

Wurst, 2016 

Using the overall LOF and COF scores from the Risk Model, the pipelines were 

plotted in a risk matrix as shown in Figure 2. LOF is plotted on the X-axis, while COF is 

plotted on the Y-axis (Figure 2-4). 
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Figure 2-4 Risk Scoring Matrix 

Wurst, 2016 

2.7 Risk Evaluation of Pipelines 

Salman (2010) developed a risk assessment tool at an individual pipe level by 

combining the probability of failure values determined by statistical corrosion modeling of 

sewer pipes and consequences of failure values determined by examining the 

geographical, physical, and functional characteristics of sewer pipes using expert opinions 

that reflect the relative importance of these features. 

To determine probability of failure values, three statistical methods, namely ordinal 

regression (proportional odds model), multinomial logistic regression, and binary logistic 

regression, were employed in consecutive steps. Expert opinion was obtained from a local 

sewer agency to assess geographical, physical, and functional characteristics of pipes in 

terms of consequences of failure. Three methods were employed to evaluate risk of failure: 

multiplication, risk matrices, and fuzzy inference systems (Salman, 2010). 

The results showed use of risk matrices overcame the limitation of the 

development method by allowing different levels of risk values to be allocated to different 

combinations of probability and consequence of failure values (Salman, 2010). Finally, 

fuzzy inference systems were used to represent the fuzziness in probability, consequence 
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and risk of failure variables; and to allocate risk values based on fuzzy rules. Based on the 

outcomes, the use of fuzzy inferences led to a better representation of failure risk of sewer 

pipes. 

Fares and Zayed (2008) developed a risk model for water main failure, which 

evaluated the risk associated with each pipeline in the network. This model considered four 

main factors: environmental, physical, operational, and post-failure factors (consequences 

of failure) and sixteen sub-factors, which represented the main factors.  

The required data were collected from literature review and through a 

questionnaire sent to the experts in the field of water distribution network management. To 

develop the risk of failure model, hierarchical fuzzy expert system (HFES) technique was 

used to process the input data, which was the effect of risk factors, and generated the risk 

of failure index of each water main. To validate the developed model, a validated AHP 

corrosion model and two real water distribution network data sets were used to check the 

results of the developed model (Fares and Zayed, 2008).  

The results presented that pipe age was found to have the most significant factor 

of water main failure risk, followed by pipe material and breakage rate. Average Validity 

Percent is 74.8 %, which was reasonable considering the uncertainty involved in the 

collected data.  

Wade (2016) presented a summary of a tiered (or step-wise) approach that has 

been used by several cities and wastewater utilities to raise their sewer renewal and 

improvement programs using a risk-based methodology to select the best trenchless 

solution(s). The methodology was gathering existing information including GIS-based 

maps, supplemental GPS, work orders, existing inspection data, record drawings, and 

other asset data to begin the process (Wade, 2016).  
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The result showed access to a large and well-equipped toolbox that represented 

multiple inspection and assessment technologies has opened the door for better condition 

information. This included average and maximum wall loss for concrete pipe, discovery of 

exterior voids, ovality, condition and location of remaining reinforcement, exact pipeline 

orientation, and flow characteristics.   

2.7.1 Risk Assessment Models 

Nemeth (2016) compared two risk assessment models, a statistically complex 

model and a simplified model. Based on the physical, environmental, and operational 

conditions of each pipe, these models estimated the probability of failure, quantify the 

consequences of a failure, and ultimately determine the risk of failure of a pipe.  

The risk analysis required the application of Bentley’s WaterCAD, Microsoft’s Excel 

and Visual Basic for applications, and ESRI’s ArcGIS. WaterCAD provides the hydraulic 

properties of each pipe within the system. This study verified that a risk assessment model 

was applicable in identifying critical components and developing a pipe maintenance 

schedule. Utilization of a risk evaluation model would allow municipalities to efficiently 

assign funds and enhance their water distribution system. Application of computer 

modeling and data analysis programs was suggested for future research (Nemeth, 2016). 

Tuhovcak and Mika (2013) summarized a basic theory of indirect condition 

assessment including several definitions of condition assessment, factors contributing to 

deterioration and possible outputs of the condition assessment. Furthermore, the legal 

requirements concerning this issue specifically in the Czech Republic and the Slovak 

Republic were listed.  

The methodology was based on condition indicators (CI) formulated using a multi-

objective optimization. The results showed that proposed methodology achieved good 
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results and it showed certain significant benefits e.g., satisfactory level of detail, optional 

user modification (Tuhovcak and Mika, 2013). 

Kulandaivel (2004), developed a pipeline condition prediction model based on 

neural network algorithm, which can recognize pipelines at risk of degradation. 

Furthermore, he identified useful pipeline performance data sources for deterioration 

model development and evaluated the performance of the neural network model with test 

data. The result showed this model assisted the municipal agencies in prevention of the 

risks involved with pipeline failures by prioritizing the parts of the network that needs 

immediate action and enhance their limited inspection and maintenance budget by 

applying resources where they are most effective (Kulandaivel, 2004). 

2.8 Condition Rating of Water Mains 

As most of the municipalities are in short of capital funds in planning the repair, 

rehabilitation, and replacement of their deteriorated water mains, condition rating practices 

are very important in helping them to classify their water main assets and assign their 

limited budgets. Unfortunately, there is no standard condition rating practice so far. In 

practice, many municipalities have developed or are using modified weighting systems for 

rating their water mains. However, some municipalities may not even have such a system 

in place to help them do the decision-making, and they rely on the spot valuation of a pipe 

break to decide a follow-up solution. Pipe needed to be replaced when there were three or 

more pipe breaks per 300 meters of the pipe. However, the manual did not give details 

how this was decided, and it did not remark the time interval between these three or more 

breaks. Walski and Pellicia (1982) have questioned this rule that, wondering, for example, 

whether, in a pipe of less than 327.75 feet, if one break has occurred, does the pipe need 

to be replaced according to this rule (Wang, 2009).  
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2.9 Condition Assessment of Water pipes 

Condition assessment is a continuing process to evaluate the condition of a water 

system, data and information are gathered through observation, direct inspection, 

investigation, and indirect monitoring and reporting as a result, better determine the 

likelihood of failure of those assets. An analysis of the data and information helps determine 

structural and operational issues, and performance of the system. Condition assessment 

also includes failure analysis to determine the causes of infrastructure failures and to 

develop ways to avoid future breakdowns. Condition assessment improves the ability of 

utilities to make technically sound judgments regarding asset management (EPA, 2013).  

2.9.1 Condition Assessment Technologies 

Condition assessment technologies can be roughly divided into two categories: 

indirect methods, and direct methods. Indirect methods contain analysis of break history 

data, performing potential corrosion surveys, and soil sampling and testing. These methods 

are quite inexpensive and provide understanding into potential condition of the pipeline, 

but do not provide direct indication of the condition of the pipeline (Agarwal, 2010). On the 

other hand, direct methods, while usually more expensive, provides data that is obtained 

by direct observation and examination of pipe condition. Direct methods cover three broad 

areas of visual inspection, leak detection, and pipe wall thickness evaluation. Selection of 

suitable technology for a specific application is related to two factors (Agarwal, 2010). 

Figure 2-5 presents classifications of condition assessment technologies. 

The first factor is to match the technology with the level of risk. For low risk assets, 

the utility may limit the scope of assessment to only indirect methods. Moreover, for very 

high-risk assets, the utility may consider not only the indirect methods, but also the more 

expensive direct methods. The second factor to consider is to match the cost with efficiency 

and level of coverage (Habibian, 2016). Most technologies for condition assessment of 
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large numbers of a current buried pipeline include placing some type of device within the 

pipe. Given the two considerations of pressurized flow and typically smaller size, access 

to the interior of water pipes for condition assessment is usually much more difficult than 

access to the interior of wastewater pipes. Further, for wastewater pipelines the application 

of closed circuit television (CCTV) evaluation of the pipe has been found to be very valuable 

in pipe condition assessment of wastewater systems (Habibian, 2016).  

On the other hand, CCTV assessment of water pipelines has had only limited 

application. The results of these differences in condition assessment of water and 

wastewater systems is that the capacity to exactly and reliably predict the probability of 

failure is greater in wastewater systems than in water systems. Thus, more condition 

assessment has been done on wastewater systems, than on water systems, so there are 

more uncertainties and unknowns in predicting the possibility of failure (or the remaining 

expected lifespan) of a water pipeline than a similar wastewater pipeline (WRF, 2013).  
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Figure 2-5 Condition Assessment Technology for Water Mains 

Habibian, 2016 

 
2.9.2 Direct Methods for Inspection of Water Mains 

These are portable microprocessor-based devices that pinpoint leaks 

automatically based on a cross-correlation method. In this method, acoustic leak signals 

are measured with vibration sensors or hydrophones at two pipe contact points (usually 

fire hydrants or valves) that bracket the location of a suspected leak. The leak signals are 

transmitted from the sensors to the correlator wirelessly. In most cases, the leak is located 

asymmetrically between measurement points (Fahmy, 2009). Consequently, there is a 

time lag between the measured leak signals. The time lag is found from the cross-

correlation function of the leak signals. In the presence of a leak, the cross-correlation 

function has a distinct peak at the time shift between leak signals. The location of the leak 
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is calculated based on an algebraic relationship between the time lag, the sensor-to-sensor 

distance and the propagation velocity of sound waves in the pipe (Makar, 2001). 

2.9.2.1 ePulse® Inspection Technology and Procedure 

The ePulse® technology uses acoustic field data along with a pipeline’s 

characteristics to estimate remaining structural wall thickness. For field-testing, sensors 

were magnetically attached to the operating nut of two valves and the section of pipe 

between these valves was “in bracket”. After installation of the sensors, a baseline 

recording was taken for the bracketed pipe segment. If during the recording a leak was 

suspected, the EchoWave® leak detection technology was employed to determine the 

location of the leak (Providence Infrastructure Consultants, 2016). 

Following the baseline recording, a sound wave, or noise, was created by tapping 

on a nearby hydrant that was outside of the bracketed pipe segment. The sensors 

measured the time it took for the sound wave to travel between the sensors and the speed 

of the sound wave was used to estimate the pipeline’s structural wall thickness. This data 

was transmitted to a receiver and base unit where the data was stored for processing later 

offsite. A graphical depiction of the field-testing procedure is presented in Figure 2-6. 

 

 

 

 

 

 

Figure 2-6 Acoustic Testing Procedure  

Providence Infrastructure Consultants, 2016 
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2.9.2.2 EchoWave® Leak Detection Technology and Procedure 

EchoWave® is a proprietary technology employed by Echologics for leak detection. 

Leak detection was performed simultaneously with the ePulse® acoustic testing on 

selected pipes. A correlator listened for leak noise, and if a leak was identified, the time 

delay between the sensors was used to locate the leak. The two (2) sensors record the 

sound and the correlator uses the distance between the sensors to measure the time it 

takes for the leak noise to arrive at each sensor. Ground sounding microphones were also 

used to confirm the location of leaks (Providence Infrastructure Consultants, 2016). A 

graphical depiction of the leak detection procedure is provided in Figure 2-7, however, in 

this figure, the sensors are attached to hydrants instead of valves. 

Figure 2-7 Acoustic Testing Procedure  

Providence Infrastructure Consultants, 2016 

2.9.3 Indirect Methods for Condition Assessment of Water Mains 

A general diagnosis of the actual structural state of municipal water infrastructure 

systems is needed. To make a diagnosis, one must collect and analyze data on the 

characteristics of water pipes and on their breakage histories (Fahmy, 2009). 

Unfortunately, many municipalities have been carefully recording breakage histories only 

for a decade, while their pipes have been in the ground for much longer. Rajani and Kleiner 
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(2004) noted that the most important information that should be collected for the condition 

assessment of water mains includes the following:  

 Pipe information (i.e., pipe diameter, wall thickness, date of installation, depth of 

burial, and manufacturing spun/ cast). 

 Soil condition, (i.e., soil type, soil· pH, soil density, soil resistivity, and aeration 

quality). 

 Installation information (laying condition, load factor). 

 Operational conditions (water pressure, surge pressures, summer and winter air 

and water temperatures, wheel loads, vehicle impact factor, frost load factor). 

The location and timing of the samples collected each year should be based either 

on a set number of pipe breaks or on a set of specific locations within the water system 

(Fahmy, 2009). Furthermore, tests on soil samples collected near the excavated pipe 

samples provide additional information to forecast deterioration pit growth. It should be 

noted that indirect methods have been used to get corrosion pit features by using empirical 

methods for pipes of the same age that were buried in the same soil type.  

2.10 Structural Inspection and Monitoring Techniques for Water Pipes 

2.10.1 CCTV with Laser Profile Adapters 

CCTV is one of the most common visual inspection techniques used in water 

pipelines. However, this technique only provides unprocessed data, and assessment of 

change in pipe shape and size is difficult and inaccurate. Profiling adapter is a special 

attachment that can be added to the front of the CCTV camera. These cameras are 

mounted on remote-controlled platforms and video recording is controlled remotely 

(Covilakam, 2011).  
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2.10.2 Magnetic Flux Leakage (MFL) 

This method works on the principle that when a magnet is placed next to a pipe 

wall, most of the magnetic flux lines would pass through the pipe wall. That is, pipe wall is 

a preferred path for the flux. This method can be used to measure leakages and the 

remaining metal loss of water pipes (Covilakam, 2011).  

2.10.3 Remote Field Eddy Current (RFEC) 

RFEC method is based on the principle that when an energized coil is brought 

near the surface of a metal component, eddy currents are induced in the system. A typical 

set up consists of an exciter coil that generates a direct electromagnetic field that travels 

inside the pipe. A small magnetic field sensor is positioned some distance away 

(Covilakam, 2011). Concurrently, the exciter generates another indirect field that travels 

through the pipe wall with minor attenuation. Changes in field strength and attenuation are 

dependent on pipe wall thickness and thus the signature of these changes enables the 

determination of pipe wall thickness (Covilakam, 2011). 

2.10.4 Ultrasonic Technologies (US) 

Ultrasonic measurements are among some of the best-established methods for 

simple external testing of points along a steel pipeline wall. Ultrasonic monitoring measures 

the propagation time for high frequency, short wavelength mechanical waves through 

metallic pipe wall, and this data is correlated with the pipe wall thickness (Covilakam, 

2011). 

 2.10.5 Fiber Optic Sensors 

Optical fiber is a thin, flexible, transparent fiber that can be used widely for remote 

sensing. Fiber-optic sensors (also called optical fiber sensors) are fiber-based devices for 

sensing some quantity, typically temperature or mechanical strain, but sometimes also 

displacements, vibrations, pressure, acceleration, rotations, or concentrations of chemical 
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species. The general principle of fiber optic sensor is that light from a laser or any other 

super luminescent source is sent through an optical fiber and when these optical fiber 

experiences subtle changes in parameters there will be a change in the measurement of 

light reaching the detector (Covilakam, 2011). 

2.11 Structural Failure of Water Mains 

The structural deterioration of water mains and their following failure are compound 

processes. Many factors can affect the rate of the deterioration of water distribution 

systems and lead to their failure. These factors can be physical, external environmental, 

or operational. Kleiner and Rajani (2001), Kroon (2001) have studied the degradation of 

metallic and PCCP water mains, which represent over 70% of the total network of water 

mains in North America.  Their studies revealed that corrosion is largely responsible for 

both metallic pipes and PCCP failure.  

Kroon (2001) described pitting corrosion, which is initiated by a localized anodic 

point on the metal surface. Their studies disclosed that corrosion is largely responsible for 

both metallic pipes and PCCP failure. Kroon (2001) described pitting corrosion, which is 

initiated by a localized anodic point on the metal surface. The penetration of the metal 

continues at this same point because a large area around the pit is cathodic to the pit itself. 

Pitting corrosion is commonly encountered at pinholes or flaws in dielectric coating 

systems. For steel and stainless steel, chloride ions are well known as a cause of pitting 

attacks.  

In such cases, either a corrosion pit in the pipe wall grows from the inside or the 

outside surface until the pipe has been completely penetrated, allowing water leakage from 

the pipe. Water mains typically break when the amount of corrosion (or degradation) is 

such that the main is no longer able to withstand the forces acting on it (Fahmy, 2009).  
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The potential consequences of failure in a given pipeline segment is the most 

significant factor in determining the level and type of effort that should be invested in 

collecting the various types of data about the water mains. The structural failure modes for 

each of the common water main materials show in Table 2-2. 

2.12 Bathtub Curve 

The life cycle of a water main pipe may be represented by a bathtub curve (Rajani 

and Kleiner, 2004). A bathtub curve defines the rate of failure in respect to the service life 

of the pipe (Figure 2-8). The early part of the curve shows “infantile failure” which for pipes 

is demonstrative of failure due to human factors in the actual laying of the pipe 

(manufacturing faults, tend to appear during that part). A period follows in which failure rate 

is generally low (Najafi and Gokhale, 2005). When failure does happen, it may depend on 

many factors, such as excessive loads not designed for, or settlement. As the pipes tend 

towards the end of their useful life the failure rate increases exponentially. The “Bath Tub” 

curve can be applied to an individual pipe, a group of pipes with similar characteristics or 

the whole population of a pipe network (Najafi and Gokhale, 2005). 
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Table 2-2 Structural Failure Modes for Common Water Main Materials  

Adapted from Fahmy, 2009 

Water Main Material Structural Failure Modes 

Cast Iron (CI) 

Small diam (<15 in.) 

Large diam (>20 in.) 

Medium diam  

(15-20 in.) 

 Circumferential Breaks, split bell, corrosion through 
holes 

 Longitudinal breaks, bell shear, corrosion through 
holes 

 Same as small, plus longitudinal breaks and spiral 
cracking, blown section 

Ductile Iron (DI)  Corrosion through holes 

Steel  Corrosion through holes, large diameter is susceptible 
to collapse 

Polyvinyl Chloride 

(PVC) 

 Longitudinal breaks due to excessive mechanical 
stress 

 Susceptible to impact failure in extreme cold condition   

High Density 

Polyethylene (HDPE)  

 Joint imperfections, mechanical degradation from 

 improper installation methods, susceptible to vacuum 

collapse for lower pressure ratings 

Asbestos Cement 

(AC) 

 Circumferential breaks, pipe degradation in 
aggressive water 

 Longitudinal splits 

Concrete Pressure 

Pipe (CPP) and 

Prestressed Concrete 

Cylinder Pipe (PCCP) 

 Ruptures due to loss of pre-stressing upon multiple 
wire failure.  Pipe degradation in particularly 
aggressive soils, corrosion of pipe canister, concrete 
damage due to improper installation methods 
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Figure 2-8 Bathtub Curve of Pipe Performance with Age 

Najafi and Gokhale, 2005 
 

2.13 Chapter Summary 

This chapter reviewed the existing literature on the several deterioration models 

that used for risk assessment and calculation remaining useful life of water pipes. The 

deterioration models discussed in this chapter included fuzzy logic, Analytical Hierarchy 

Process (AHP), Artificial Neural Network (ANN), hierarchical fuzzy expert system and 

logistic regression. Water condition assessment, structural failure and asset management 

of water pipes were discussed. The literature review implies that there is a good possibility 

to develop a successful neural network-based model if the critical parameters that provide 

the deterioration of pipelines are achieved. A neural network model for predicting pipeline 

performance trends based on historical condition assessment data will be developed in this 

dissertation. 
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Chapter 3 Neural Network and Neuro Fuzzy Application 

3.1 Introduction 

This chapter presents the methodology used in this dissertation for the 

development of a water pipeline remaining useful life model. The remaining useful life 

model is based on neural network modeling technique. A detailed description of neural 

networks is presented in this chapter, along with the ANFIS method appropriate for 

remaining useful life prediction. 

3.2 Artificial Intelligence and Neural Networks 

The term artificial intelligence usually used to refer to the field of computer science 

devoted to producing programs that try to be as smart as humans are. Expert systems and 

neural networks are two forms of artificial intelligence, each with separate strengths and 

weaknesses. Most applications of artificial intelligence are programs that simulate either 

the deductive or the inductive intelligence of human being (Kulandaivel, 2004). Deductive 

systems, which can be simulated by expert systems, require rules or instructions performed 

one at a time to arrive at the answer. By contrast, induction takes in a large amount of 

information all at once and then draws a conclusion. Neural networks can be used to 

simulate the inductive behavior of humans (Kulandaivel, 2004). Once trained, the neural 

network can look at input data and produce an appreciate answer. In a comparison to 

expert system, Garrett (1992) presents the following advantages to the use of neural 

networks: 

 Neural networks have the capability to present a model for a situation where only 

examples are presented. 

 Expert systems require “certain factors” or “levels of certainty’, whereas neural 

networks are trained to deal with uncertainty since training data is gained from 

situations very close to the situations in which the network will operate. 
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 Expert systems are very brittle in that all data must be complete and correct for a 

system to be analyzed. On the other hand, neural networks can allow for minor 

errors in the input data and for minor deviations from existing training cases. 

Neural Networks can be used to: 

 Identify patterns and images 

 Construct a decision tree to solve a problem 

 Classify data 

 Predict outcomes 

 Study thematic evolution of a process and construct cost effective models 

(Kulandaivel, 2004). 

3.2.1 The Neural Network Algorithm 

There are many types of neural networks, but all have three things in common. A 

neural network can be expressed in terms of its individual neurons, the connections 

between them (topology), and its learning rule. Both biological and artificial neural networks 

contain neurons, real or simulated. These neurons have many connections to each other, 

which transfer information. The knowledge of a network is allocated across the 

interconnections between the neurons. A typical neuron receives input, from many other 

neurons (Kulandaivel, 2004).  

A neuron calculates its own output by finding the weighted sum of its inputs, 

generating an activation level and passing that through an output on transfer function. The 

point where two neurons communicate is called a connection. The strength of the 

connection between two neurons is called a weight.  

The collection of weights arranged in rows and columns is called the weight matrix. 

A neural network learns by changing its response as the inputs change. Because the 
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weights in the network can change, the relationship of the network’s output to its inputs can 

be changed as well. In this sense, the learning rule determines the behavior of the network 

and how that behavior can change over time (Kulandaivel, 2004). 

Single neuron artificial neurons as information processing devices were first 

proposed more than fifty years ago. As shown in Figure 3-1, a neuron calculates a weighted 

summation of its n inputs, the result of which is then threshold to give a dual output y, which 

is either +1 or -1. The bias weight, 0, is presented whose input is fixed at +1. This bias 

weight is adaptive like the others and its use allows better flexibility of the learning process. 

 

Figure 3-1 

Schematic Diagram of an Artificial Neuron  

Kulandaivel, 2004 

For a classification problem, the neuron allocates input patterns, signified by the 

vector of numbers X = (X1, X2…., Xn), either to class A (for which y would be +1) or class B 

(for which y would be -1). The function is presented in Eq. 3.1: 

 

Y= 𝑓(∑ 𝑤𝑖𝑥𝑖𝑛
𝑖=1 )=     

 

 

In the above equation (3.1), y is the neuron output and f is a hard-limiting of 

threshold function, sometimes known as the neuron’s transfer function, which gives an 

output of +1 whenever ∑ 𝑤𝑖𝑥𝑖 is greater than zero (the threshold value) or -1 whenever 

∑ 𝑤𝑖𝑥𝑖 is less than (or equal to) zero. 

1 when  ∑ 𝑤𝑖𝑥𝑖𝑛
𝑖=1 > 0 

 
-1 when  ∑ 𝑤𝑖𝑥𝑖𝑛

𝑖=1 ≥ 0 

Eq. 3.1 
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The learning process is to correct all the weights and let the output y method the desired 

output so that the neuron performs the classification task properly. Multi-class problems 

can also be solved by having several neurons operating similar (Kulandaivel, 2004). 

3.2.2 Backpropagation Neural Network (BPNN) 

Back propagation Neural Network was created by generalizing the Widrow-Hoff 

learning rule to multiple layer networks and non-linear differentiable transfer function. Input 

vectors and corresponding target vectors are used to train a network until it can estimate 

a function, associate input vectors with specific output vectors, or classify input vectors in 

a correct way. Networks with biases, a sigmoid layer and a linear output layer are able of 

like any function with a finite number of breaks. The back-propagation algorithm contains 

of two paths, forward path and backward path (Fahmy, 2009). Forward path contains 

creating a feed forward network, adjusting weight, simulation and training the network. The 

network weights and biases are updated in the backward path. Feed forward networks 

often have one or more hidden layers of sigmoid neurons followed by output layer of linear 

neurons. Multiple layers of neurons with nonlinear transfer functions allow the network to 

learn nonlinear and linear relationships between input and output paths (Fahmy, 2009).  

The linear output layer allows the network produce values outside the range -1 to 

+1 (Figure 3-2). On the other hand, if we want to confine the outputs of the network between 

0 and 1, then the output layer should use a log-sigmoid transfer function. Before training a 

feed forward network, the weight and biases must be adjusted. Once the network weights 

and biases have been set, the network is ready for training. Random numbers are used 

around zero to prepare weights and biases in the network. The training process requires a 

set of appropriate inputs and targets as outputs. During training, the weights and biases of 

the network are adjusted to reduce the network performance function. The default 
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performance function for feed forward networks is mean square errors, i.e., the average 

squared errors between the network outputs and the target output (Fahmy, 2009). 

 

 

 

 

 

 

 

Figure 3-2 Sigmoid Transfer Function  

Fahmy, 2009 

By far, the BPNN is the most common one used for mathematical modeling 

backpropagation learning scheme by which a layered neural network with constantly 

valued neurons is trained to become a pattern-matching machine. It offers a way of using 

examples of a target function to find the weights that make a certain mapping function 

hidden in the neural network estimated the target function as carefully possible. As shown 

in Figure 3-3, the neurons of the networks are structured in multiple layers: input, hidden, 

and output. Each hidden-layer neuron obtains input from all neurons in the input layer 

through weighted connections (w). In addition, each neuron is related with a bias term, 

called the threshold, 0. This bias term works as a horizontal shift for the source of the 

transfer function to adjust the level of incoming signals to the neuron. Values of both w and 

0 for a given neural network are determined during the training phase. 

Back Propagation (BP) algorithm, which is used in this study, introduced in 1986, 

BP has developed as the most prevalent learning algorithm for the training of MLP model 

(Haykin, 1999).  
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Figure 3-3 Regression Plot 

Haykin, 1999 
3.2.3 BPNN Modeling 

The BPNN network operates in two modes: mapping and training mode. In 

mapping mode, information flows forward through the network from inputs to outputs. In 

the training mode, the information flow substitutes between forward and backward. In the 

mapping mode, the network processes one example at a time, producing an estimate of 

values of the dependent variables based on the values of the independent variables for the 

given example. First, a set of values for the independent variables is loaded onto the input 

layer of the network. The input-layer neurons do no calculation - each neuron merely sends 

a copy of its value to all the hidden-layer neurons. Each hidden neuron computes the 

weighted sum of the inputs using its single connection strengths as weights. Next, each 

hidden neuron calculates a transfer function of its input sum and sends the result to all the 

output-layer neurons. Then, each output-layer neuron completes a similar calculation and 

outputs the resulting value as an estimate of the dependent variable it represents. 

The training mode refers to the procedure in which the network is showing 

examples with correct output values known. The training algorithm contains of three steps. 

In the first step, the training patterns attained from the database are fed into the input layer 

of the network. These inputs are propagated through the network until reaching the output 
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layer. The output of each neuron is calculated by transfer functions Eq. 3.2 and Eq. 3.3 

(Lou et al., 1999): 

a = ∑ 𝑤𝑖𝑥𝑖𝑛
𝑖=1      Eq. 3.2 

O = f (a) = 
1

1+𝑒−𝑔𝑎   Eq. 3.3 

Where; 

O = neuron output, 

a = input to the transfer function 

Xi = ith input, 

Wi = weight of connection i, 

g = gain of sigmoid function, and 

n = number of inputs to one neuron 

In the second step, the neural network outputs are subtracted from the desired values to 

achieve an error signal. This error signal is the source for the coming backpropagation 

step. The Eq. 3.4 expresses the error signal (Lou et al, 1999): 

 

ERMS = √
∑ ∑ (𝑇ᴊᴋ−𝑂ᴊᴋ)²𝑁

𝑗=1
𝑁
𝑗=1

𝑁₀𝑁ₑ
     Eq. 3.4 

Where: 

ERMS = root mean square error 

No = number of neurons in the output layer 

Ne = total number of patterns in an epoch, 

Tjk = target (desired) value of the jth neuron, and the kth pattern, and 

Ojk = output of the jth neuron, and the kth pattern 

In the third step, error is reduced by the backpropagation of the error signal through 

the neural network. In this process, the involvement of each hidden neuron is calculated, 
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and matching weight corrections needed to reduce the error are derived. For each output 

neuron k, compute the 5 values, Eq. 3.5 defines as follows: 

𝛅j = f (xj) ∑ 𝛿ᴋ𝑘 𝑊ᴊᴋ   Eq. 3.5 

Where: 

𝛅j = adjusted error of hidden neuron j; 

Xj = input to the hidden neuron j; 

𝛅k = adjusted error of output neuron k connected with hidden neuron j; and 

Wjk = connection weight between neuron j and k. 

The weight connecting any two neurons is updated by Eq. 3.6: 

 
P            q 
 

Vwqb = α 𝛅q Op     Eq.3.6 
 
Vwqb = adjustment of weight between preceding layer neuron p and proceeding layer 

neuron q; 

 

𝛅q = adjusted error of proceeding layer neuron q; 
 
Op = output of preceding layer neuron p; and 
 
α = learning coefficient (a positive constant). 
 

The training process repeats steps 1 through 3 for all patterns in the training set 

until the overall error is adequately low based on a given standard. If the network has not 

met then go back to the step 1, otherwise stop training. Once trained, the neural network 

has the ability of adjusting to changing input. If the trained network results in good accuracy 

on the testing and validation data set, the development process is done (Lou et al., 1999). 

To determine whether or not the database covers enough samples, two factors will 

be measured important: (1) the form of the target function: to maintain a given accuracy, 

sample size needs to increase as the target function becomes more compound, and (2) 
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the noise in the data: to continue a given correctness, sample size needs to increase as 

noise increases. Given a target function of a certain difficulty, and a certain amount of noise 

in the data, there will be a complete limit to the precision the model can succeed. An infinite 

sample size would be needed to attain the limit of exactness (Kulandaivel, 2004). 

For neural network modeling, if the sample is large enough, the difficulty of the 

network’s mapping function could be improved to match the difficulty of the target function. 

Therefore, as sample size rises, neural network model’s exactness will be restricted only 

by the noise in the data. Generally, neural network can take advantage more from large 

samples than regression can. Because larger samples let us to use more hidden neurons 

or to remain training longer, the precision can be enhanced by increasing sample size.  

On the other hand, neural network model does not entail a larger sample than a 

regression model. As the sample size gets smaller, we can use fewer hidden neurons or 

stop training earlier to avoid overfitting. The basic rule, therefore, is to use the largest 

sample available.     

3.2.4 Neural Network Training and Testing 

  Training a neural network includes continually giving a set of examples (facts) to 

the network. The network takes each input, makes an estimate as to the output, checks 

this estimate contrary to the output (correct answer), and adjusts the original connections 

(weights) if its estimate is incorrect. This process is repeated for each fact until the network 

learns the facts sufficient to be useful (Najafi and Kulandaivel, 2005). The training file 

generated using Net Maker is accessed through Brain Maker for modeling analysis. 

Histograms and the Network Progress Display, two useful tools provided by Brain Maker, 

can help define whether the network is making advancement in training and still has ability 

to learn (Najafi and Kulandaivel, 2005).  
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The processes for importing, training, testing, and saving results are explained 

here. First, the data is imported from a file and must be formatted correctly. Second, the 

ANN tool in MATLAB is used to select the data used for training, testing and validation, 

along with the number of hidden layers before training. Third, the training is started to build 

the neural network in an iterative manner. Several algorithms are available within MATLAB 

to train the neural network and all of them are gradient-descent methods (also known as 

back-propagation method). 

Fourth, once the neural network is constructed, statistical measures are assessed 

to evaluate the performance of the ANN model. Multiple training simulations were run to 

confirm the created neural network was precise (Nishiyama, 2013). 

Testing the network is the same as training it, but the network is shown with the 

examples it has never seen before, and no weight changes are made during testing. The 

testing process simply employs the constructed model from training and validation to 

assess performance. Validation happens after the neural network has been developed. 

Validating a network consists of presenting it with new input data and collecting the network 

outputs. Unlike testing, there is no identified output, only identified inputs in the validation. 

Validation and testing are both a process of certifying overfitting does not happen. 

Overfitting is the case of an over-trained model that identically imitators the input data 

pattern and does not model the relations between variables. If validation and testing are 

significantly under-performing compared to the training process it shows possible 

overfitting. To guarantee this is not the case the validation and testing process is detected 

during the construction process, and if their performances show signs of diminishing then 

training should be stopped and re-evaluated (Nishiyama, 2013). While the model is being 

trained, validation and testing happen concurrently. Figure 3-4 illustrates the overall 

flowchart of the model development. 
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Figure 3-4 Model Development Framework 
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3.2.5 Neural Networks and Statistical Modeling: A Comparison 

The statistical modeling aimed to find an equation that detention the general shape 

of a relationship, which is usually derived from observed examples. Therefore, the fields of 

statistical modeling and neural networks are closely connected in the context of input-

output mapping.  

The main difference between these two fields is that traditional statistical models 

usually need an equation to be quantified, which could be difficult in complex nonlinear 

cases, while neural networks have been mostly used to deal with nonlinear problems 

without needing a pre-specified function form. However, with the advent of the 

backpropagation neural network (BPNN), trace carefully in solving mathematical modeling 

problems. This technique resolves one of the central problems in neural networks, and it 

is a useful modeling tool as well (Kulandaivel, 2004). 

The training of the network is repetitive for many examples in the set until the 

network reaches a stable state, where there are no more important changes in the weights. 

Thus, the network learns from the samples by building an input-output mapping for the 

problem at hand. Statistical modeling techniques are used to derive correlations between 

variables from examples as well.  

3.2.6 Selection of Optimal Number of Hidden Neurons 

Selection of ideal number of hidden neurons is a significant subject in the neural 

network training process. The aim of training is to gain a neural network with best 

simplification ability. Simplification is defined as the ability of a neural network to store in 

its weights overall features, which are common to a group of samples. Usually, a neural 

network with too few hidden neurons will not be capable to learn adequately from the 

training data set, whereas a neural network with too many hidden neurons will let the 

network to remember the training set instead of simplifying the learned knowledge for future 
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hidden instances. Unfortunately, there is no accurate formula for defining the ideal number 

of hidden neurons for a given application. There are numerous ways to define a good 

number of hidden neurons. One solution is to train the neural networks with the number of 

hidden neurons calculated using Eq. 3.7 (Kulandaivel, 2004): 

Number of Hidden Neurons = 
of Data sets − Outputs

c (# input+#output+1)
     Eq. 3.7 

Where, C = 2 - 5. 

Therefore the # of Neurons = (269 - 1) / 3 × (18 + 1 + 1) ~ 4 Neurons 

The second equation suggested in Brain Maker manual is: 

Number of Hidden Neurons = (# Inputs + # Outputs)/2  

= (18 + l)/2 ~ 9 Neurons 

The third solution is to start with a small number of hidden neurons and add more 

while training if the network is not learning. In this research, the first method (4 Hidden 

Neurons) was used to train firstly and regularly more neurons are added to train several 

neural networks with varying number of hidden neurons. The neural network that resulted 

in the least testing error was selected, resulting in the best simplification ability. The “testing 

while training” method was used to trace the testing errors (simplification ability) of the 

neural network during training process. After training, it was suitable to find the best 

network with the least testing errors. 

3.2.7 Application of Artificial Neural Networks in Pipeline Prediction Modeling 

Software ANN was chosen for this modeling because of its ability to cover 

nonlinear and compound behavior of water networks. Furthermore, it covers many 

variables that increase the system’s performance reliability (Lawrence, 1994). In this 

research the ANN models were developed, trained, validated, and tested in MATLAB. Eight 

ANN models were developed with one hidden layer that is different in two aspects: the 

number of neurons in the hidden layer and the random groups of data sets. The ANN1, 
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ANN2 … and ANN10 models have 3, 4,5,6,7 … and 10 neurons in their hidden layers, 

respectively. There is a close relationship between age, length, material, wall thickness 

loss and remaining useful life. Thus, pipe material, wall thickness loss, length, diameter, 

and age are selected from the database as the input values for ANN models. Figure 3-5 

depicts the typical structure of the neural network with the given set of input parameters. 

The number of hidden layers was determined through trial runs of the model. The dataset 

is split randomly into training (75%), validation (10%) and testing (15%). The performance 

charts are presented in Figure C-1 through Figure C-8 (Appendix C).  

For each ANN model, trials were performed to reach the lowest error. The 

performance of the models was assessed based on R2, mean absolute error (MAE), 

relative absolute error (RAE), root relative square error (RRSE), and mean absolute 

percentage error (MAPE) according to the Eq. 3.8 – Eq. 3.12: 

R² = 1 −
∑ i (ti−oi)²

∑ i(ti−
1

n
∑ ti)²

         Eq. 3.8                              MAE =
1

n
∑ i |ti − oi|          Eq. 3.9       

                              

RAE =  
∑ i |ti−oi|

∑ i |ti−1/n ∑ ∑ ti|i
       Eq. 3.10 

Where: 

 

                                                                                                                       

oi = output parameter; 

R2 = coefficient of determination; 

ti = target parameter; 

 RRSE =  √
∑ i (ti−oi)²

∑ i (ti−
1

n
∑ ti)²i

     Eq. 3.11 

                 

MAPE = 
100

n
∑

|ti−0i|

tii         Eq. 3.12 
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Figure 3-5 Structure of the ANN Models  

The coefficient of determination (R2) is used in statistical analysis repeatedly, as it 

is easy to calculate and understand. It fluctuates between [0, 1] and assesses the 

percentage of total differences between estimated and target values with respect to the 

average. MAE is an absolute measure and ranges from 0 to +∞. One advantage of MAE 

is that it is not affected by outliers and can be calculated as an alternative for mean square 

error (MSE). RAE is less influenced by outliers, same as MAE; however, it is contaminated 

by extremely large or small values. The relative absolute error (RAE) and root relative 

square error (RRSE) assess the performance of a forecasting model in the same way. In 

fact, lower RAE and RRSE result in better performance of the forecasting model. In this 

research, MAPE is used mostly to evaluate the accuracy of a model, because of its 

simplicity.  
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It identifies error as the proportion of actual data, and higher precision comes with a lower 

MAPE (Zangenemadar and Moslehi, 2016a). The training is stopped when the neural 

network settles at the lowest possible training and testing errors and there is no visible 

convergence in the training statistics. Mean Squared Error is the average squared 

difference between outputs and targets. Lower values are better. Regression R values 

measure the correlation between outputs and targets. An R-value of 1 means a close 

relationship. 

3.2.8 Calculation of Neuron Output  

The basic unit of computation in a neural network is the neuron, often called a node 

or unit. It receives input from some other nodes or from an external source and computes 

an output. Each input has an associated weight (w), which is assigned based on its relative 

importance to other inputs (Karn, 2016). The node applies a function f (defined below) to 

the weighted sum of its inputs as shown in Figure 3-6. 

 

 

 

 

 

 

 

 

 

Figure 3-6 Output of Neuron  

Karn, 2016 
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The above network takes numerical inputs x1 and x2 and xn has weights w1 and w2 

and wn associated with those inputs. Additionally, there is another input 1 with weight b 

(called the Bias) associated with it. The output of neuron for each input parameters 

calculated using Eq. 3.13. The purpose of the activation function is to introduce non-

linearity into the output of a neuron. Every activation function (or non-linearity) takes a 

single number and performs a certain fixed mathematical operation on it (Karn, 2016). 

Activation function in Backpropagation algorithm is sigmoid logistic function and it varies 

between -1 and +1 (Eq. 3.14): 

Output for each input parameter: ∑ 𝑊𝑖𝑋𝑖 + 𝑏𝑖𝑛
𝑖=1  Eq. 3.13 

Ƒ (∑ 𝑊𝑖𝑋𝑖 + 𝑏𝑛
𝑖=1 ) = 

1

1+𝑒−(∑𝑤𝑥+𝑏)    Eq. 3.14 

Where: 

 Xi = ith input, 

Wi = weight of connection i, 

Bi = bias of connection i, 

n = number of inputs to one neuron 

3.3 Adaptive Neural Fuzzy Inference System 

Adaptive Neural Fuzzy Inference System (ANFIS) Using a given input/output data 

set, the toolbox function ANFIS creates a fuzzy inference system (FIS) whose membership 

function parameters are (adjusted) using either a backpropagation algorithm alone, or in 

combination with a least squares type of method. This allows your fuzzy systems to learn 

from the data they are modeling. ANFIS was built on the three main components, namely 

basic rules, where it covers the selection of fuzzy logic rules “If-Then;” as a function of the 

fuzzy set membership; and reasoning fuzzy inference techniques from basic rules to get 

the output. Figure 3-7 shows the detailed structure of the ANFIS.  
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ANFIS will work when the input that comprises the actual value is transformed into 

fuzzy values using the fuzzification process through its membership function, where the 

fuzzy value has a range between 0 and 1. The basic rules and databases are referred to 

as the knowledge base, where both are key elements in decision-making. Usually, the 

database contains descriptions such as information on fuzzy sets parameter with a function 

that has been defined for every existing linguistic variable (Suparta and Alhasa, 2016). 

There are several types of ANFIS, namely Takagi–Sugeno, Mamdani, and 

Tsukamoto (Cheng et al., 2005). An ANFIS of Takagi–Sugeno model was found to be 

widely used in the application of ANFIS method. 

 

 

 

 

 

 
 
 

Figure 3-7 Fuzzy Inference System 

Suparta and Alhasa, 2016 
3.3.1 ANFIS characteristics 

Compared to a common neural network, connection weights and propagation and 

activation functions of fuzzy neural networks vary a lot. Although there are many different 

methods to model a fuzzy neural network, most of them agree on certain characteristics 

such as the following:  

 A neuro-fuzzy system based on an underlying fuzzy system is trained by means 

of a data-driven learning method derived from neural network theory. This only 
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considers local information to cause local changes in the fundamental fuzzy 

system (Kruse, 2008).  

 It can be represented as a set of fuzzy rules at any time of the learning process, 

i.e., before, during and after. Thus, the system might be initialized with or without 

prior knowledge in terms of fuzzy rules.  

 The learning process is constrained to assurance the semantic properties of the 

underlying fuzzy system.  

 A neuro-fuzzy system estimates an n-dimensional unknown function, which is 

partly represented by training examples. Fuzzy rules can therefore be interpreted 

as unclear examples of the training data (Kruse, 2008).  

3.3.2 Adaptive Neural Fuzzy Inference System (ANFIS) Application 

ANFIS techniques provide a method for the fuzzy modeling procedure to learn 

information about a data set, to calculate the membership function parameters that best 

allow the related fuzzy inference system to track the given input/output data (Gershteyn 

and Perman, 2003).  

This learning method works similarly to that of neural networks. Algorithm defined 

by Jang (1993) and creates a fuzzy decision tree to categorize the data into linear 

regression models to diminish the sum of squared errors (SSE) base on Eq. 3.14: 

SSE = ∑ej
2          Eq. 3.14 

Where:  

ej: the error between the desired and the actual output 

These techniques provide a method for the fuzzy modeling procedure to learn 

information about a data set, to calculate the membership function parameters that best 
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allow the related fuzzy inference system to track the given input/output data (Gershteyn 

and Perman, 2003). 

3.3.3 ANFIS Approach 

ANFIS is employed to model the relationship between the input parameters 

(material, age, diameter, length, installation year, number of break and wall thickness 

change). To apply the ANFIS, seven inputs (material, age, length, diameter, number of 

break, year, and wall thickness loss) and a single output (RUL) are considered in the fuzzy 

inference system. The Sugeno fuzzy model is employed in fuzzification and defuzzification 

of the system (Lin and Huang, 2013). 

The complete ANFIS consists of five layers, the fuzzy layer, production layer, 

normalization layer, de-fuzzy layer, and total output layer. Each layer includes several 

nodes, which are defined by the node function (Figure 3-8). The node function in each 

layer, which performs the same operation, is detailed below:  

Layer 1 is the fuzzy layer, in which every node is an adaptive node with node 

function. The output is the product of all the incoming signals. Each node represents the 

fire strength of the rule. The Gaussian function was adopted in this research. Where we 

have seven inputs of nodes and μAi, μBj, μCk, μDk, μEk, μFk and μGk denote the membership 

functions of the fuzzy set. 

O1
Ai = μAi (Material),                           i = 1, 2, 3, 4, 5, 6, 7 

O1
Bj = μBj (Age),                                 j = 1, 2, 3, 4, 5, 6, 7 

O1
Ck = μCk (Length),                           k = 1, 2, 3, 4, 5, 6, 7 

O1
Dk = μDk (Diameter),                        L = 1, 2, 3, 4, 5, 6, 7 

O1
Ek = μEk (Break),                             M = 1, 2, 3, 4, 5, 6, 7 

O1
Fk = μFk (Year),                                N = 1, 2, 3, 4, 5, 6, 7 

O1
Gk = μGk (Wall Thickness Loss),      O = 1, 2, 3, 4, 5, 6, 7 
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Layer 2 is the production layer, in which every node is a fixed node with node 

function to multiply input signals to serve as output signal (Eq. 3.15).  

O2
ijklmno = μAi × μBj × μCk × μDk × μEk × μFk × μGk = wijklmno    i, j, k, l, m, n, o = 1,2,3,4,5,6,7 

Eq. 3.15 

Layer 3 is the normalization layer, in which every node is a fixed node with node 

function to normalize firing strength by calculating the ratio of this node firing strength to 

the sum of the firing strength (Eq. 3.16):  

O3
ijklmno =�̅�ijklmno = 

Wijklmno

∑ 𝑖 ∑ 𝑗 ∑ 𝑘 ∑ 𝑙 ∑ 𝑚 ∑ 𝑛 ∑ 𝑜 (Wijklmno)
   i, j, k, l, m, n, o = 1,2,3,4,5,6,7 

Eq. 3.16 

Where �̅�ijklmno denotes the normalized firing strength (output).  

Layer 4 is the de-fuzzy layer, in which every node is an adaptive node with node 

function to calculate the consequence of each fuzzy rule using Eq. 3.17: 

O4
jklmno =�̅�ijklmno ƒijklmno = wijklmno (pijklmno (Material) + qijklmno (Age) + rijklmno (Length) + 

sijklmno (diameter) + tijklmno (Break) + uijklmno (Year) + vijklmno (Wall thickness) + wijklmno) 

i, j, k, l, m, n, o = 1,2,3,4,5,6,7      Eq. 3.17 

Layer 5 is the total output layer, in which the single node is a fixed node with node 

function to calculate the overall output (Lin and Huang, 2013) based on Eq. 3.18: 

RUL = O5
1= ∑ ∑ ∑ ∑ ∑ ∑ ∑  �̅�ijklmno 8 

𝑜
7
𝑛

7
𝑚

7
𝑙

7
𝑘

7
𝑗

7
𝑖 ƒiijklmno         i, j, k, l, m, n, o = 1,2,3,4,5,6,7 

Eq. 3.18 

Where RUL represents the inferred output (i.e., the predicted remaining useful life) of the  

ANFIS. 
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Figure 3-8 Frameworks of ANFIS 

MATLB R2017 
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3.3.4 Construction of the ANFIS System 

The ANFIS theory is used to create the model to predict the remaining useful life. 

MATLAB R2017 Fuzzy Logic Toolbox was used in our research. The input and output 

parameters are used as the training data for the prediction model. The training data has 

seven input parameters and one output (Figure 3-9). 

Figure 3-9 Fuzzy Rule Architecture of ANFIS Model 

MATLB R2017 

 
First, the training data are loaded into MATLAB Fuzzy Logic Toolbox, and a 

membership function is chosen. Different membership functions for each of the input 

parameters can also be chosen. The chosen membership functions are Gaussian 

membership function. After the model is trained using the hybrid- learning rule, the results 

output by different membership functions were tested against the verification data. The 

precision of each membership function is determined using the root-mean-square-error 

(RMSE). The prediction model with the smallest RMSE is the best (Lin and Huang, 2013). 

3.4 Chapter Summary 

The discussions in this chapter reinforced the suitability of using neural network 

methodology for predicting the condition of pipelines. A comprehensive list of parameters 

that affect the condition of the water pipes along with the modeling methodology was 
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presented. The study develops an Artificial Neural Network model (ANN) that can make 

individual and group prediction depending on data availability. The model includes the 

potential effect of related attributes (e.g., age, length, diameter, installation year…) in 

addition to condition and operational attributes. The proposed methodology uses a fitting 

model to group water pipes based on physical attributes and their operational conditions. 
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Chapter 4 Data Collection and Preprocessing 

Pervious chapter discussed various models of water pipe deterioration. This 

chapter provides the effectiveness of an ANN model that depends on the availability of 

reliable input data. Finding data that represents or corresponds to the possible factors 

reviewed was important for representing the physical cause-effect relationships. The 

reliability of data is measured by amount of “noise” inherent in the data (Sacluti, 1999). 

Noise is data patterns that contain inaccuracies and discrepancies, which does not allow 

the model to make proper associations between input and output patterns. Use of data with 

little apparent noise would result in a more accurate and precise model. 

Data collection involves evaluating all available data based on accessibility, 

relative ease of obtaining long-term relevant data, and the prospect of future availability of 

the same type of data for future models. This data must have characteristics that are 

significant for model convergence. If all the proposed model input parameters are used for 

the model, the run times for model training will be exceedingly long, and hence would result 

in insufficient use of time. Also, if insignificant (or inappropriate) data is not eliminated 

initially, the redundant input parameters will be treated as “noise” by the ANN model, and 

as such may decrease the likelihood of the model convergence (Kulandaivel, 2004). 
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4.1 Data Collection 

The dataset used for the development of the prediction model using artificial neural 

network for water pipes is described in this section. Four case studies were considered for 

this research. Following sections provide information on the background of case studies.  

4.1.1 Southgate Water District (Colorado, Denver) 

The first project is the Southgate Water District (SWD) located in Colorado, 

Denver. The project was selected based on information about water pipes failure and 

inspection dataset and included Ductile Iron (DI) and asbestos-cement (AC) pipes. Those 

pipes were aged and wall thickness losses have increased due to deterioration. The 

inspection was performed in 2016 to evaluate the condition of pipes. The Southgate Water 

District (SWD) is approximately 14.9 square miles and serves about 44,000 customers. 

The SWD owns and operates approximately 235 miles of water distribution mains, ranging 

in size from 4-in. to 36-in. The SWD is supplied treated water by Denver Water (Providence 

Infrastructure Consultants, 2016). The SWD is located south of Denver, Colorado, in 

Arapahoe and Douglas Counties, and is generally positioned on the west side of Interstate 

25 from Belleview Avenue to Ridgegate Parkway. The SWD has about 29 miles of 

transmission pipelines throughout the District that function as the backbone of the water 

system. The SWD water system contains approximately 40% AC pipe, 34% DI pipe, 25% 

PVC pipe and about 1% of CI and steel pipe combined that obtained from the SWD’s 

Geographic Information System (GIS) pipeline database. The distribution of pipe materials 

within the SWD (Providence Infrastructure Consultants, 2016) presents in Figure B-5 

(Appendix B). 

4.1.2 Laval, Moncton and Quebec cities (Canada) 

Second project is in Canada. Three cities of Canada (Laval, Moncton and Quebec) 

are considered for data acquisition (Figure B-1 and B-3). This project was selected 
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because they have large, typical water distribution networks and deteriorated over the 

years. The inspection was performed on 2006 to evaluate the condition of pipes. The total 

lengths of the water distribution network are 996 miles, 321 miles, 268.43 miles 

respectively. Iron pipes that were installed in 1954 have 95 breaks from 1987 to 2001 and 

11 breaks in 1999 all the breaks occurred when the pipes are of ages between 20 and 50 

years (Wang, 2006). 

4.1.3 Montreal, Canada 

The third project uses database related to city of Montréal and was selected for 

this research. The project was considered due to a large database and different types of 

water pipes. It was extracted from the comprehensive shape files of city of Montreal and 

imported to Excel worksheets. Based on the description of the data file, the database has 

been updated whenever a breakage happened, or a modification has been done to the 

network (Figure B-2). The water network of city, which consists of 125,829 data points, and 

covers all over the Island of Montreal with the length of 3318 miles are provided in Appendix 

B. The network includes cast iron pipes. Database was initially filtered, and insufficient data 

was removed (Zangenemadar and Moslehi, 2016). 

4.1.4 Denver Water’s Distribution System 

The Fourth project uses Denver water’s distribution system, which selected due to 

the mixture of old and new materials ranging from “pit” cast iron installed in the late 1800s 

to recently installed polyvinyl chloride (PVC). Pipe inventory and break record data were 

generated using the utility’s geographic information system (GIS). This allowed queried 

data to be imported directly into Microsoft Excel, simplifying the model initialization and 

data entry processes. The process of importing the pipe inventory information (diameter, 

material, installation date, etc. was streamlined by including only the 296 miles of pipe with 

break histories (Rogers, 2016). This simplification also speeded up the computational time 
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associated with linking the pipe installation information to the break records. The inspection 

was conducted on 2013 to evaluate the condition of pipes. There were total of 4,112 

different pipes constituting the 296 miles of water mains with a total of 5,610 break records 

(Figure B-4). The database for this research are provided in Appendix D. 

4.2 Input Parameters and Analyses 

The database after preliminary preprocessing comprises the variables that are 

considered to have an impact on pipe condition and for training the model. The variables 

are Pipe material (cast iron, ductile iron, asbestos cement and steel), pipe age, pipe size 

(diameter), section length, number of break, installation year and wall thickness change. It 

was found in this study that data preprocessing is necessary for BPNN model development. 

This preprocessed database was then used to train, test, and validate the BPNN model.  

4.2.1 Software Selection for Data Preprocessing 

The original data was stored in Microsoft Access database. Microsoft Excel was 

selected as a data processing and analysis tool because of its adaptability for spreadsheet 

analysis and was used to accomplish statistical tests on the collected data. The amount of 

data in this study required a combined statistics software package, which could provide 

complete control over data access, management, analysis and presentation. 

4.2.2 Data Analysis 

Seven variables that affect the water pipes deterioration during their lifetime were 

identified. The parameters are determined to have substantial impact on water pipe 

deterioration. Seven variables were used in modeling process as shown in Table 4-1. 
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Table 4-1 Variables Used for Neural Network Modeling 

Name of Variable Description of Variable 

Section Length Length of pipe segments in feet 

Size Diameter of pipe segments in in. 

Type of material Asbestos cement, Cast Iron, Ductile iron and Steel 

Age of pipe Age of pipe grouped on a five-year period 

Installation year The year of installation is a corrosion indicator 

Number of break The number of breaks for length of pipe 

Wall thickness change Loss of wall thickness due to corrosion of pipe 

 

Data analysis involved the analysis of all collected data as means of defining initial 

factor effects on the water pipe remaining useful life. Furthermore, the analysis was used 

as means of revealing data inconsistencies and errors. Minimum, maximum, mean, mode, 

standard deviation and correlation values were developed for all factors. The correlation of 

an input provides an indication of whether an input will correctly, or acceptably, train with 

a neural network.  

A histogram was also developed for each input factor. The purpose of the 

histogram is to provide an illustration of the range and constancy of the collected data. The 

following Figures 4-1 to 4-8, represent the various statistical analyses performed with the 

data. 

Figure 4-1 represents the histogram representing the different classes of Materials 

in the water pipe database in consideration. Most of the pipes were cast iron pipes 

constituting about 46% of the sample with asbestos cement pipes being the second highest 

number followed by ductile iron and steel pipes. 
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Figure 4-1 Water Material Distribution in Database 

Figure 4-2 represents the distribution of the water pipes age of the samples in 

database. The distribution is lognormal. It can be observed that the age of pipes in this 

study ranges between one and 130 years. Pipe age is the difference between installation 

year and date of performing inspection and evaluating the results. 

 

 

 

 

 

 

 

 

 

Figure 4-2 Water Pipe Age Distribution in Database 
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Figure 4-3 presents the water pipes diameter distribution in the database. Most of 

water pipes are in the 4 to 6-in. category and pipe diameter ranges are from 4 in. to 24 in. 

 

 

 

 

 

 

 

 

 

Figure 4-3 Water Pipe Size Distribution in Database 

Figure 4-4 shows the distribution of pipe installation year within the group in 

database. The pipe installed from 1887 to 2011. Most of the pipes installed from 1960 to 

1969. 

 

 

 

 

 

 

 

 

 

Figure 4-4 Water Pipe Installation Year Distribution in Database  
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Figure 4-5 shows the water pipes length distribution obtained in database 

indicating that majority of pipes are between 303 (feet) and 800 (feet). 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 Water Pipe Length Distribution in Database 

Figure 4-6 represents the water pipes number of breaks in database illustrating 

that most of the pipes breaks from 0 to 2 and 8 to 10 during to their lifetime. 

 

 

 

 

 

 

 

 

 

Figure 4-6 Water Pipe Number of Breaks Distribution in Database 
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Figure 4-7 shows pipes wall thickness losses in database illustrating that most of 

the water pipes have wall thickness loss around 30-40 percent.  

 

 

 

 

 

 

 

 

Figure 4-7 Water Pipe Wall Thickness Loss in Database 

 
Figure 4-8 presents the relationship between pipe material and pipe dimeter, in 

database illustrating that most of CI, DI, AC and steel pipes are 6 in.,12 in., 8 in., and 12 

in. respectively. 
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Figure 4-8 Pipe Material and Pipe Diameter in Database 

4.3 Prediction of Remaining Useful Life 

The remaining useful life is predicted based on the effects of each parameter (age, 

diameter, installation year, material, number of breaks, length and wall thickness loss). 

According to the literature review (section 2.3), above parameters have most impact on 

remaining useful life, all above parameters considered for the prediction of remaining useful 

life. The remaining useful life of water pipes for this dissertation is calculated based on 

number of years from installation to first repair and age of the pipe (Eq. 2.5 and Eq. 2.6) 

and categorized to different classes from below 20 years to more than fifty years. Figure 

4-9 illustrates remaining useful life of the water pipes based on actual data. The results 

show most of remaining useful life varies from 30 to 40 years and the distribution is 

lognormal. 
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Figure 4-9  Water Pipe Remaining Useful Life Distribution in Database 

4.4 Multiple Regressions and Testing of Significance 

Multiple regressions and one-way analysis of variance are generated to check the 

correlation between each parameter (input) with remaining useful life (target). The input 

with a good correlation (value close to either 1 or - 1) will usually be more significant than 

an input with a poor correlation (value close to 0).  

Figure 4-10 illustrates the relationship between wall thickness loss and remaining 

useful life in database. The X-axis presents the wall thickness loss (%) and the Y-axis 

presents the remaining useful life. The relationship between wall thickness loss and 

remaining useful life as observed in Figure 4-10 indicates a correlation between two. 

Remaining useful life has a lower value with the increase of wall thickness loss. The 

relationship is polynomial regression because it provides best fit for the trend with x degree 

of two due to higher value of R square the polynomial regression is considered.  
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Figure 4-10 Relationship between Remaining Useful Life and Wall Thickness Loss 

Figure 4-11 illustrates the relationship between the water ages and remaining 

useful life in database. The X-axis presents the pipe age (years) and the Y-axis presents 

the remaining useful life. The age of the pipes shows a pattern of increase with decreasing 

of remaining useful life and after age 100 has a higher value of remaining useful life.  

Moreover, the relationship between age and remaining useful life is polynomial regression 

because it provides best fit for the trend with x degree of two and high R2 of 82%.  

y = 0.001x2 - 1.3339x + 78.744
R² = 0.8816

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

R
em

ai
n

in
g 

U
se

fu
l L

if
e 

(Y
ea

rs
)

Wall Thickness Loss (%)



 

83 

 
 

Figure 4-11 Relationship between Remaining Useful Life and Age of Pipes 

The trend between age and remaining useful life presents the possibility of 

exponential relationship. The semi-log distribution is considered for log (RUL) to find the 

relationship between pipe age and log (RUL) and apply exponential equation (Eq. 4.2). 

Figure 4-12 illustrates the linear relationship between pipe ages and log (RUL). The X-axis 

presents the pipe age (years) and Y-axis presents the log (RUL). 

Y= b0 + b1A Y= -0.0101A + 2.0251 
 
RUL = Ceb

1
A   C= e2.0251 = 7.58 

 
 RUL = 7.58e-0.0101A Eq. 4.2 
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Figure 4-12 Relationship between Log (RUL) and Age of Pipes 

Figure 4-13 illustrates the relationship between age and wall thickness loss in 

database. The X-axis presents the pipe age (years) and the Y-axis presents the wall 

thickness loss. Wall thickness loss has a higher value with the increase of age of pipes. 

The relationship is considered the polynomial regression due to higher value of R2 the 

polynomial regression is considered because it provides best fit for the trend with x degree 

of two and high R2 of 78%. 
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Figure 4-13 Relationship between Wall Thickness Loss and Age of Pipes 

4.4.1 One-way ANOVA Analysis 

There is no substantial correlation seen with the remaining useful life and the other 

parameters. Analysis of variance and t test are generated to determine the statistical 

significance of the other input variables (Montgomery, 1994). The one-way analysis of 

variance (ANOVA) is used to determine whether there are any statistically significant 

differences between the means of Remaining Useful Life (RUL) for three or more 

independent (unrelated) groups. When the model passes both ANOVA and t test, it is 

statistically significant (P value <0.05), which means that the dependent variable 

(response) and the independent variables (predictors) have a significant relationship. 

Moreover, the null hypothesis is rejected, and it is concluded that population means of RUL 

are not the same. Furthermore, the f-value shows how far the results are from the 

hypothesis. The ANOVA test results are listed below: 
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 Pipe Material: The f-ratio value is 34.07805. The p-value is < .001. The result is 

significant at p < .05. 

 Pipe Length: The f-ratio value is 5.60639. The p-value is < .00024. The result is 

significant at p < .05. 

 Pipe Installation year: The f-ratio value is 3.9938. The p-value is 0.03656. The 

result is significant at p < .05. 

 Pipe Diameter: The f-ratio value is 3.9938. The p-value is 0.03656. The result is 

significant at p < .05. 

 Pipe Number of Breaks: The f-ratio value is 6.63956. The p-value is < 0.00042. 

The result is significant at p < .05. 

4.5 Statistical Analysis 

The primary basis of what is presented in this research lies in the fundamentals of 

statistics. The population mean, μ, provides the average of the group characteristic (i.e. 

average Remaining Useful Life) (Daly et al., 2016). The variance, S2, indicates how far 

data points are spread out from one another. A variance of zero specifies the values are 

all identical. Smaller variances indicate the data points are closer to the mean while larger 

variances indicate the data is more spread out. The sample standard of deviation, σ, is 

simply the square root of the variance and provides a statistic that is expressed in the same 

units as the mean. This statistic provides a normalized value for statistical tests.  

Confidence interval shows the range of values that are considered within the 

accuracy of the measurement. The confidence level, e.g. 95%, must be known to define 

this interval. A confidence level of 95% will involve that any sampling results will fall 

between the confidence interval bounds with 95% confidence. The statistical analysis of 

this data set is provided in this section, in which the pipe material (M), diameter (D), length 
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(L), number of break (B), installation year (Y), wall thickness change (W), and Age (A) 

represent the selected input parameters, and the remaining useful life (RUL) represents 

the output parameter that is estimated from pipe age (Table 4-2). These parameters were 

considered for the ANN models. The data set was randomly selected which were used for 

training, validation, and testing the results, respectively. Pipe material classified as four 

main groups of asbestos cement, cast iron, ductile iron, and steel pipes. 

4.5.1. Mean and Standard Deviation for Population 

For this study, the interval estimation is used to find amount of Mean (M) and 

Standard deviation (σ) for population using 95% level of confidence (Eq. 4.3). 

α = 0.05        x̅- Zα/2 
𝝈

 √𝑵
 ≤ 𝝁 ≤  x̅ + Zα/2 

𝝈

√𝑵
        Eq. 4.3 

# Example for age: 

 x̅ = 49.78 

N= 269, Zα/2, = 1.96 (Montgomery, 1994), σ = 30.31.  So, 46.15≤ 𝝁 ≤ 𝟓𝟑. 𝟒𝟎,  

Or 46  ≤ 𝝁 ≤ 𝟓𝟑  
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Table 4-2 Statistics of Water Pipe Database Used in this Dissertation 

        Population variance (σ2) can be computes using Eq. 4.4: 

                 
(𝒏−𝟏)𝑺𝟐

 𝛘²𝛂/𝟐
≪ 𝝈² ≪

(𝒏−𝟏)𝑺²

𝛘²𝟏− 𝛂/𝟐
      (Two-sided Interval)   Eq. 4.4      

Where: S= Sample Standard Deviation, χ²α/2 = value of a random variable having a chi-

square distribution. 

χ2 0.025, 268 =295.689, χ2 0.975, 268 = 208.098 (Montgomery, 1994) 

822.80≤ 𝝈² ≤ 1169.13    28.68 ≤ 𝛔 ≤ 34.19                𝟐𝟗 ≤ 𝛔 ≤ 𝟑𝟒       

It concluded that based on Table 4-7, if assumed that the average age of pipe is 

50 years, and standard deviation is approximately 30. Approximately 68% of the pipes 

have the age between 20 and 80 years because the amount of Z is between -1 and 1 and 

area of −1 ≤ Z≤ 1 is 68% (Montgomery, 1994). It is good to inspect before age 20 in 

conservative decisions. In addition, the latest time for inspection would be in age of 80. 

The same processes have been done for remaining useful life. The result for this database 

Variables Minimum Maximum 
Mean 

(x̅) 

Standard 

deviation 

 (α) 

Skewness Mode 

Age (Years) 1 131 49.78 30.31 1.45 43 

Diameter (in.) 4 24 10.66 5.13 0.94 6 

Length (ft) 20.5 36,161.4 2870.51 5008.58 3.55 5280 

Material 6.14 8.35 6.146 2.75 -0.89 8.35 

Number of Break 0 95 5.09 7.74 6.22 6 

Installation year 1887 2011 1961.15 28.78 -1.25 1969 

Wall Thick loss (%)  1 59 29.64 14.81 -0.11 33 

RUL (Years) 3 90 40.65 20.46 0.07 36 
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shows if average remaining useful life is 40 years and standard deviation is 20, 

approximately 68% of pipes have a remaining useful life between 60 and 20 years, 

because the area of -1≤ Z≤1 is around 68%. 

𝟑𝟖. 𝟐𝟎 ≤ 𝝁 ≤ 𝟒𝟑. 𝟎𝟗       38 ≤ 𝝁 ≤ 𝟒𝟑        

379.41 ≤ 𝝈² ≤ 539.11   19.47 ≤ 𝛔 ≤ 23.21          19 ≤ 𝛔 ≤ 𝟐𝟑       

 4.5.2 Goodness-of-fit Test 

The goodness-of-fit test applies to situations in which we want to determine 

whether a set of data may be looks upon as a random sample from a population having a 

given distribution (Montgomery, 1994). The degree of freedom, number of class interval 

and theoretical frequency are provided in Eq. 4.5, 4.6 and 4.7 respectively. Chi- square 

good ness of fit test is considered in this section with 95% level of confidence and lognormal 

distribution (Table 4-3). 

Degree of freedom = # class interval - # parameters -1: 9-2-1 =6  Eq. 4.5 

Number of class Intervals: 1+3.3 log10 𝑁 = 1+ 3.3 log10 269 = 9.01 ~ 9     Eq. 4.6 

ei (Theoretical Frequency) = N × (Prob. of the interval) = 269 ×  
1

9
= 29.88  Eq. 4.7  

Oi = Observed Frequency 

 

 

  



 

90 

Table 4-3 Data of Age for Chi-square Goodness-of-fit Test 

 

 

 

 

The data presents lognormal distribution, so the probability of failure is calculated 

based on Eq. 4.6 and Eq. 4.7 (Table 4-4): 

Probability of failure if age is ≤ 20 and ≤ 90, σx =30.31,    μx = 49.78 

σ²y = ln(1 + (
𝜎𝑥

μ𝑥
)² )  , σ²y =0.315      σy = 0.561           Eq. 4.6 

μy =ln μ𝑥 − 
1

2
 σ²y , μy = 3.75                                     Eq. 4.7 

 P (x≤ 20) = P (y≤ 2.995) , P (Z ≤
2.995−3.75

0.561
 ), P ~ 0.091, P ~ 9 % 

P (x≤ 90) = P (y≤ 4.499) = P (Z ≤
4.499−3.75

0.561
 ), P ~ 0.9082, P ~ 91% 

P (x≥ 90) = P (y≥ 4.499) = P (Z≥
4.499−3.75

0.561
 ), P ~ 0.092, P ~ 9% 

4.5.3 Conditional Probability 

The conditional probability of an event B is the probability that the event will occur 

given the knowledge that an event A has already occurred. This probability is written P 

Class Interval Oi ei 
(Oi − ei)²

𝑒𝑖
 

≤ 20 25 29.88 0.80 

20-30 26 29.88 0.50 

30-40 35 29.88 0.88 

40-50 98 29.88 155.30 

50-60 45 29.88 7.65 

60-70 2 29.88 26.01 

70-80 4 29.88 22.42 

80-90 2 29.88 26.01 

≥ 90 32 29.88 0.15 
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(B|A), notation for the probability of B given A. In the case where events A and B are 

independent (where event A has no effect on the probability of event B), the conditional 

probability of event B given event A is simply the probability of event B, that is P(B). 

Using Conditional probability considering age and remaining useful life, we have:  

P (RUL Age≤ 20) = 
𝑃(𝑅𝑈𝐿 𝑎𝑛𝑑 𝑎𝑔𝑒≤ 20 𝑦𝑒𝑎𝑟𝑠)

𝑃(x≤20)
 = 0.15 ~ 15% 

P (RUL Age≥ 90) = 
𝑃(𝑅𝑈𝐿 𝑎𝑛𝑑 𝑎𝑔𝑒≥ 90 𝑦𝑒𝑎𝑟𝑠)

𝑃(x≥90)
 = 0.003 ~ 0.3% 

Table 4-4 Data of Remaining Useful Life for Chi-square Goodness-of-fit Test 

 

 

 

 

 

 

 

 

The same process has been done for Probability of failure considering lognormal 

distribution and if remaining useful life is ≤ 10 and ≥ 80: 

σx = 20.46, μx = 40.65 

σ²y = ln(1 + (
𝜎𝑥

μ𝑥
)² )  , σ²y = 0.225 σy = 0.474 

μy = ln μ𝑥 − 
1

2
 σ²y ,  μy = 3.592 

Class Interval Oi ei 
(Oi − ei)²

𝑒𝑖
 

≤ 10 34 29.88 0.57 

10-20 6 29.88 19.08 

20-30 36 29.88 1.25 

30-40 64 29.88 38.96 

40-50 52 29.88 16.38 

50-60 15 29.88 7.41 

60-70 40 29.88 3.43 

70-80 13 29.88 9.54 

≥ 80 9 29.88 14.59 
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 P (x≤ 10) = P (y≤ 2.302) = P (Z ≤
2.302−3.592

0.474
 ) , P~ 0.958, P ~ 95% 

P (x≥ 80) = P (y≥ 4.382) = P (Z≥  
4.382−3.592

0.474
) , P ~,0.05, P ~ 5% 

The results show probabilities of water pipe failure for pipes having age ≤ 20 and 

≤ 90 and are approximately 9% and 91%. Moreover, the probabilities of pipes failure 

having remaining useful life ≤ 10 and ≥ 80 are 95% and 5% respectively. 

4.6 Chapter Summary 

This chapter presented a detailed discussion about the data preprocessing and 

analysis. The raw database was transformed into a standardized format is ready for neural 

network model development. The available parameters for the model development were 

identified and their relevance examined through statistical analysis. Although certain 

variables have a low amount of correlation to the condition of water pipes and deterioration, 

it is important to include such parameters as neural network can capture even subtle 

relationships. 
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Chapter 5 Model Development 

The previous chapter described the preprocessing and statistical analysis of the 

acquired data. This chapter deals with the detailed account of the model development 

process. The model development in this dissertation includes training and testing. The 

following sections provide a detailed discussion about the model development process. As 

described in Chapter 4, Training a neural network involves repeatedly presenting a set of 

examples (facts) to the network. The network takes each input, makes a guess as to the 

output, checks this guess against the output (correct answer), and makes corrections to 

the initial connections (weights) if its guess is incorrect. This process is repeated for each 

fact in turn until the network learns the facts well enough to be useful.  

5.1 Artificial Neural Network (ANN) Results and Analysis 

5.1.1. Histograms of Errors 

The ANN models were developed using MATLAB R2017. The histogram of the 

errors and performance graphs are presented in Appendix C. Histogram of errors gives a 

quick snapshot of the distribution of errors, making it easy to see how close the network to 

attaining the pre-specified tolerance level. The X-axis presents the errors that calculated 

based on difference between targets and outputs. The Y-axis presents the number of 

instances. Moreover, the blue bars represent training data, the green bars represent 

validation data, and the red bars represent testing data. The histogram provides an 

indication of outliers, which are data points where the fit is significantly worse than most of 

data. The outliers determine if the data is bad, or if those data points are different from the 

rest of the data set. If the outliers are valid data points, but are unlike the rest of the data, 

then the network is extrapolating for these points. The number of bins show the range of 

numerical value. 
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5.1.2. Performance Charts 

Performance chart presents the best validation performance compared to testing 

performance and the progress of the mean square error, during training. The training was 

stopped when the neural network settled at the lowest possible training and testing error 

and there was no observable exposure in the training statistics. The X-axis presents the 

number of epochs. An epoch is a measure of the number of times all the training vectors 

are used once to update the weights. The Y-axis presents the mean square error. The 

results are reasonable if the mean-square error is small, the test error and the validation 

error have similar characteristics and no significant overfitting has occurred. The 

performance charts of ANN models are provided in Appendix C. 

The summary of training, validation and testing statistics is given in Table 5-1 

through 5-3. Eight ANN models were developed for the training, validation and testing. The 

mean absolute error, relative absolute error, root relative square error and mean absolute 

percentage error are calculated based on Eq. 3.8 through Eq. 3.12 (section 3.2.7). Figures 

5-1 through 5-5 present the relationship between ANN models and mean absolute error 

(MAE), relative absolute error (RAE), root relative square error (RRSE), mean absolute 

percentage error (MAPE) and R2.  
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Table 5-1 Training Indices of Various ANN models Used to Predict the RUL 

Model 
Training 

R² (%) RAE RRSE MAPE MAE 

1 98.1 0.007 0.012 1.076 0.170 

2 97.8 0.031 0.053 3.724 0.700 

3 93.7 0.212 0.249 20.678 4.710 

4 96.2 0.119 0.147 10.665 2.650 

5 97.3 0.039 0.053 4.531 0.870 

6 89.5 0.294 0.325 29.998 6.500 

7 98.2 0.016 0.037 2.243 0.370 

8 97.2 0.020 0.041 3.171 0.450 

 
Table 5-2 Validation Indices of Various ANN models Used to Predict the RUL 

Model 
Validation 

R² RAE RRSE MAPE MAE 

1 98.3 0.000 0.001 8.047 1.304 

2 96.1 0.001 0.003 27.866 5.240 

3 94.7 0.011 0.015 154.706 35.230 

4 95.2 0.006 0.009 79.791 19.830 

5 96.3 0.002 0.003 33.902 6.520 

6 90.1 0.016 0.020 224.435 48.640 

7 97 0.002 0.002 16.780 2.790 

8 97.2 0.001 0.002 23.725 3.360 

 
Table 5-3 Testing Indices of Various ANN models Used to Predict the RUL 

Model 
Testing 

R² RAE RRSE MAPE MAE 

1 98 0.007 0.001 5.431 0.880 

2 97.3 0.002 0.005 18.810 3.540 

3 92.1 0.018 0.024 104.426 23.780 

4 94.8 0.010 0.014 53.859 13.390 

5 95.9 0.003 0.005 22.884 4.400 

6 91.8 0.025 0.031 151.493 32.830 

7 97.4 0.002 0.004 11.330 1.88 

8 96.8 0.001 0.004 16.014 2.270 
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Figure 5-1 presents the Relative Absolute Error (RAE) of eight ANN models. The 

X-axis presents the eight ANN models and the Y-axis presents the relative absolute error. 

The minimum value of RAE in training, validation and testing are 0.007, 0 and 0.007 

respectively. The results show models one and seven have the lowest value of relative 

absolute error. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 5-1 Relative Absolute Error 

Figure 5-2 presents Root Relative Square Error (RRSE) of eight ANN models. 

The X-axis presents the eight ANN models and the Y-axis presents the root relative 

square error. The minimum value of RRSE in training, validation and testing are 0.012, 

0.001 and 0.001 respectively. The results show models one and seven have the lowest 

value of root relative square error. 
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Figure 5-2 Root Relative Square Error 

Figure 5-3 presents the Mean Absolute Percentage Error (MAPE) of eight ANN 

models. The X-axis presents the eight ANN models and the Y-axis presents the mean 

absolute percentage error. The minimum value of MAPE in training, validation and testing 

are 1.076, 8.047 and 5.431 respectively. The results show models one and seven have the 

lowest value of mean absolute percentage error. 

 

 

 

 

 

 

 

 

 

 

 Figure 5-3 Mean Absolute Percentage Error 
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Figure 5-4 illustrates the Mean Absolute Error (MAE) of eight ANN models. The X-

axis presents the eight ANN models and the Y-axis presents the mean absolute error. The 

minimum value of MAE in training, validation and testing are 0.17, 1.304 and 0.88 

respectively. The results show models one and seven have the lowest value of mean 

absolute error. 

 
 

 

 

 

 

 

 

 
 
 
 

Figure 5-4 Mean Absolute Error 

Figure 5-5 shows the calculated value of coefficients of determination (R2) for 

training, testing, and validating phases for all ANN models. The X-axis presents the eight 

ANN models and the Y-axis presents the R2. The coefficients of determination, in all cases, 

appear to be higher than 90%. Therefore, it is suggested that all the models can be used 

suitably for predicting the remaining useful life.  

It also demonstrates that ANN1 and ANN7 have the highest R2 in comparison to 

other models. They are 98.1, 98.3, and 98% for the training, validation, and testing phases 

for ANN1, respectively and for ANN7, they are 98.2%, 97%, and 97.4% for the training, 

validation, and testing phases, respectively. However, the differences between ANN1 and 
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ANN2, ANN5, ANN7, ANN8 are less than 2% and considered negligible. They could all be 

considered the highest performance model. 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 R2 Values of ANN Models 

5.1.1 Analysis of Results 

The minimum values of MAE, RRSE, MAPE, and RAE in the training phase are 

0.17, 0.012, 1.076, and 0.007, respectively, and are all associated with ANN1. The 

minimum values of MAE, RRSE, MAPE, and RAE in the validation phase are 1.304, 0.001, 

8.047, and 0, respectively, and are all associated with ANN1. Finally, the minimum values 

of MAE, RRSE, MAPE, and RAE in the testing phase are 0.88, 0.001, 5.431, and 0.007, 

respectively, and are all associated with ANN1. Comparing the results, all the proposed 

models can predict the remaining useful life values well. However, because the remaining 

useful life should be determined with the highest accuracy, it is recommended to assess 

the results of the ANN models in more detail and to identify the best model even though 

the differences in performance are negligible. In general, the highest R2 and lowest error 

are the indicators of best performance for an ANN model. However, the accuracy of testing 
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and validating phases decreases by increasing the R2 in the training phase of complex 

models. This phenomenon is called overfitting and must be avoided in ANN modeling. In 

this study, the R2 in training, testing, and validating phases are very close except in ANN6 

and ANN3, which have differences less than 4%. Consequently, overfitting was not used 

in any of the nine proposed models.  

The ANN6 model had the lowest R2 in the training, validation and testing phase. 

The trend performs to be the same for all the phases, and the differences are insignificant. 

The RRSE values are approximately equal in all ANN models in the three phases except 

in ANN6. The RRSE values are higher in the ANN6 model in training, validation and testing, 

which proves the previous assumption that this model is the least accurate one. The MAPE 

values are higher in validation rather than testing and training; however, the differences 

are more than 10%. Because R2 is the highest and MAE, RAE, RRSE, and MAPE are the 

least for the ANN1 and ANN7 model, it appears to be the most precise models. Moreover, 

the MAPE value is less than 10, which categorizes this forecasting as a high-accuracy 

prediction. Figure 5-6 present the R2 for the total samples of ANN models. The R2 are 

higher in ANN1 and ANN7.  
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Figure 5-6 R2 Values of ANN Models for Total Samples 

Figure 5-7 presents the error results for total samples of ANN models. The X-axis 

presents the eight ANN models and the Y-axis presents the all error results (RRSE, MAPE, 

RAE and MAE. The results show ANN1 and ANN7 have the least error compared to the 

other ANN models. 

 
 

 

 

 

 

 

 

 

 

 

Figure 5-7 Error Results for Total Samples 
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 The comparison of predicted results and estimated results are shown in Figure 5-

8 for the best ANN model.  The X-axis presents the estimated RUL and the Y-axis presents 

the predicted RUL. Estimated RUL is calculated based on actual data and predicted RUL 

is based on ANN results for best model. Most of the results fall in the near area of 

y=0.9112x+3.7663. The coefficient of determination is 89%, which indicates that the 

proposed models have predicted the remaining useful life of the pipeline exactly, and is 

reliable for further analysis of the network. The model’s precision can be increased, as 

more input parameters identified to affect the water condition are available for modeling. 

 

Figure 5-8 Predicted Results versus Estimated Results 

5.2 ANFIS Results 

Figure 5-9 shows the impacts of the installation year (input 6) and wall thickness 

loss (input 7) (a), Diameter (input 4) and installation year (b), material (input 1) and age 

(input 2) (c), length (input 3) and installation year (d), age and installation year, wall 

thickness loss and number of break (input 5) on the remaining useful life in database. As 
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shown in the figure, the smaller Input parameters can reduce output angle. The slopes of 

material, diameter and length are smaller than the other parameters Figures b, d and e). 

The slopes of wall thickness, age and installation year are higher than the other parameters 

(Figures a, c and f). Therefore, those parameters have the most impact on the remaining 

useful life.  

 

 

 

 

 

 

(c) (d) 

(a) (b) 
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Figure 5-9 Contour Surface for Relationship between Input Parameters and Output 

MATLAB R2017 

5.2.1. ANFIS Training Error 

The training error chart presents the number of errors versus the number of epochs 

in ANFIS. After loading the training data and generating the initial ANFIS structure, the 

ANFIS is trained using hybrid as an optimization method. The optimization methods train 

the membership function parameters to emulate the training data. 

Figure 5-10 illustrates the error decreasing with increasing the number of epochs. The 

result of MATLAB is presented on Appendix C (Figure C-9).  

Figure 5-10 Training Error 

(f) (e) 
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5.2.2. ANFIS Training Data 

The next step is to check if the training data matches with ANFIS output. The best 

match between training data and ANFIS output presents the high accuracy of the ANFIS 

model. Figure 5-11 presents training data matches (input data) with ANFIS output. The 

result of MATLAB is presented on Appendix C (Figure C-10). 

Figure 5-11 Training Data and ANFIS Output 

MATLAB R2017 
 

5.3 Discussion of Results 

The remaining useful life of wall thickness loss for ANN models are calculated 

based on Eq. 3.13 (section 3.2.8). The remaining useful life is predicted based on best 

ANN model. Figure 5-12 illustrates the relationship between remaining useful life of wall 

thickness loss and predicted remaining useful life of best ANN model using neural network. 

The X-axis presents the estimated RUL of wall thickness loss and the Y-axis presents the 

predicted RUL of best ANN model. The correlation is a polynomial regression with R2 of 

Training data:           ANFIS output: * 
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93%. The high correlation presents the significance of wall thickness parameter compared 

to other input parameters. 

 
 

Figure 5-12 Relationship between Wall Thickness Loss and RUL 

 
 The remaining useful life of pipe age for ANN model is calculated based on Eq. 

3.13 (section 3.2.8). The remaining useful life is predicted based on best ANN model. 

Figure 5-13 illustrates the relationship between pipe age reaming useful life and predicted 

remaining useful life of best ANN model using neural network. The X-axis presents the 

estimated RUL of pipe age and the Y-axis presents the predicted RUL of best ANN model. 

The correlation is a polynomial regression with R2 of 94%. The high correlation presents 

the significance of pipe age parameter compared to other input parameters.  
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Figure 5-13 Relationship between Pipe Age and RUL 

 
According to the results obtained from statistical analysis, neural network and 

adaptive fuzzy inference system, it was demonstrated that neural network and ANFIS were 

adept in capturing the relationships that give an indication of the prediction of remaining 

useful life. According to neural network results, age, and wall thickness loss were most 

significant parameters. Based on ANFIS, age, wall thickness loss, installation year; and 

from statistical analysis age and wall thickness loss were the most important parameters. 

It is concluded that age and wall thickness loss have most significant relationships with 

remaining useful life (output). Table 5-4 presents the factors that have most impact on 

remaining useful life. 
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Table 5-4 Most Significant Input Parameters in Database 

 
5.3.1. Condition Assessment of Entire Water System 

The remaining useful life of entire water system in database is categorized to five 

classes based on statistical analysis results (section 4.5).  The classification is from critical 

to very good condition described in chapter 2 (section 2.6). The total condition assessment 

of entire water system based on remaining useful life is presented in Table 5-5 and shown 

graphically in Figure 5-14. The results show 27% of total water system is in very good 

condition and 15% is in critical condition. 

Table 5-5 Condition Assessment of Entire Water System in Database 

 

 

 

 

 

Models Material Age Length Year Wall Loss 

ANN X X X X X 

ANFIS N/A X N/A X X 

Statistical N/A X N/A N/A X 

Color Description RUL 
% of the Entire 
Water System 

 Very Good > 50 years 27% 

 Good 41 – 50 years 20% 

 Fair 31 – 40 years 22% 

 Poor 21 – 30 years 16% 

 Critical < 20 years 15% 

Total 100% 
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Figure 5-14 Condition Assessment of Entire Water System in Database 

 
 
 

The remaining useful life of various types of pipe in database are provided in Table 

5-6 and show graphically in Figure 5-15. The results show the remaining useful life of most 

cast iron and asbestos cement pipes are between 21 to 30 years. Moreover, the remaining 

useful life of ductile iron and steel pipes are higher than 40 years. In addition, steel pipes 

and ductile iron pipes last longer than cast iron and asbestos cement pipes.  

 

Table 5-6 Percentage of Pipe Material and Remaining Useful Life in Database 

Remaining Useful Life Cast Iron Ductile Iron Asbestos Cement Steel 

> 40 years 25% 66% 1% 62% 

31 – 40 years 2% 30% 24% 4% 

21 – 30 years 45% 2% 52% 30% 

11 – 20 years 24% 2% 23% 0% 

0 – 10 years 4 % 0% 0% 4.0% 
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Figure 5-15 Pipe Material and Remaining Useful Life in Database 

 
Figure 5-16 illustrates the relationship between wall thickness loss and remaining 

useful life in database in different ages for cast iron pipes. The results show with increasing 

wall thickness loss remaining useful life decrease and pipes in old ages have a high renege 

of wall thickness loss compared to the pipes in young ages. The results show increasing 

8% of wall thickness loss for pipes greater than 60 years old, the remaining useful life 

decrease 70% approximately. Similarly, increasing 20% of wall thickness loss for pipes 

between 50 to 60 years old, the remaining useful life decrease 25% approximately. 
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Figure 5-16 Remaining Useful Life Prediction for Cast Iron Pipes in Database 

 
 

Figure 5-17 illustrates the relationship between wall thickness loss and remaining 

useful life in database in different ages for ductile iron pipes. The results show with 

increasing wall thickness loss remaining useful life decrease and pipes in old ages have a 

high renege of wall thickness loss compared to the pipes in young ages. The results show 

increasing 12% of wall thickness loss for pipes between 31 to 40 years old, the remaining 

useful life decrease 10% approximately.  Similarly, increasing 14% of wall thickness loss 

for pipes between 21-30 years, the remaining useful life decrease 20% approximately. 
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Figure 5-17 Remaining Useful Life Prediction for Ductile Iron Pipes in Database 

 
Figure 5-18 illustrates the relationship between wall thickness loss and remaining 

useful life in database in different ages for asbestos cement pipes. The results show higher 

value of wall thickness loss with decreasing of remaining useful life and pipes in old ages 

have a high renege of wall thickness loss compared to the pipes in young ages. The results 

show increasing 20% of wall thickness loss for pipes between 51 to 60 years old, the 

remaining useful life decrease 60% approximately. Similarly, increasing 30% of wall 

thickness loss for pipes between 41-50 years old, the remaining useful life decrease 40% 

approximately. 
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Figure 5-18 Remaining Useful Life Prediction for Asbestos Cement Pipes in Database 

 
Figure 5-19 illustrates the relationship between wall thickness loss and remaining 

useful life in database in different ages for steel pipes. The results show higher value of 

wall thickness loss with decreasing of remaining useful life and pipes in old ages have a 

high renege of wall thickness loss compared to the pipes in young ages. The results show 

increasing 8% of wall thickness loss for pipes between 1 to 20 years old, the remaining 

useful life decrease 23% approximately.  Similarly, increasing 8% of wall thickness loss for 

pipes between 41-50 years old, the remaining useful life decrease 20% approximately. 
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Figure 5-19 Remaining Useful Life Prediction for Steel Pipes in Database 

 
5.3.1 Wall Thickness Loss (Corrosion) Results of Water Pipes 

Table 5-7 presents the wall thickness loss (corrosion) of cast iron pipes in database 

based on remaining useful life and age of water pipes. The corrosion is divided to five 

categories based on the low to high wall thickness loss of water pipes. The result shows 

average remaining useful life of cast Iron pipes between 51-60 years and corrosion is 

greater than 40% is 14 years and for pipes greater than 60 years is 8 years.  

 
Table 5-7 Corrosion of Cast Iron Pipes in Database 

Corrosion 
(%)  

Average Remaining Useful Life 

21-30 
years 

31-40 
years 

41-50 
years 

51-60 
years 

> 60 
years 

10% -20% 46 30 N/A N/A N/A 

20 % -30% 44 N/A 27 15 N/A 

30%-40% N/A N/A 25 17 N/A 

> 40% N/A N/A 22 14 8 
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Table 5-8 presents the wall thickness loss (corrosion) of ductile iron pipes in 

database based on remaining useful life and age of water pipes. The corrosion is divided 

to five categories based on the low to high corrosion of water pipes. The result shows 

average remaining useful life of ductile iron pipes between 41-50 years and corrosion is 

from 20% to 30% is 17 years. 

 
Table 5-8 Corrosion of Ductile Iron Pipes in Database 

Corrosion 
(%) 

Average Remaining Useful Life 

1-20 years 21-30 years 31-40 years 41-50 years 

< 10% 52 46 N/A N/A 

10% -20% 49 41 37 N/A 

20% -30% N/A N/A 33 17 

 
 

Table 5-9 presents the wall thickness loss (corrosion) of asbestos cement pipes in 

database based on remaining useful life and age of water pipes. The corrosion is divided 

to five categories based on the low to high corrosion of water pipes. The result shows 

average remaining useful life of asbestos cement pipes between 51-60 years and corrosion 

greater than 40% is 12 years.  

Table 5-9 Corrosion of AC Pipes in Database 

Corrosion 
(%) 

Average Remaining Useful Life 

21-30 years 31-40 years 41-50 years 51-60 years 

10% -20% 44 37 25 N/A 

20 % -30% N/A 32 24 26 

30%-40% N/A 30 19 16 

> 40% N/A 27 16 12 

 
Table 5-10 presents the wall thickness loss (corrosion) of steel pipes in database 

based on remaining useful life and age of water pipes. The corrosion is divided to five 

categories based on the low to high corrosion of water pipes. The result shows average 

remaining useful life of steel pipes greater than 60 years and corrosion greater than 40% 

is 18 years. 
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Table 5-10 Corrosion of Steel Pipes in Database 

                                             
Corrosion (%) 

Average Remaining Useful Life 

1-20 
years 

31-40 years 41-50 years > 60 years 

< 10% 63 N/A N/A N/A 

10% -20% N/A 39 N/A N/A 

20 % -30% N/A N/A N/A N/A 

30%-40% N/A N/A 25 N/A 

> 40% N/A N/A N/A 18 

  

The deterioration models are determined with most significant variables (age and 

wall thickness loss). Variables are added into the non-linear multivariable regression (X1: 

age, X2: wall thickness loss and Y: remaining useful life). The non-linear multivariate 

regression is described in chapter 4 (section 4.4). The regression models are selected 

based on high correlation with variables started from degree 1 and repeated the process 

with degree two and three to find the best correlation and high value of coefficient of 

determination. Table 5-11 presents deterioration models for different types of water pipes. 

The coefficient of determination (R2) of these models (0.73 – 0.80) are considered good fit 

for non-linear regression models. 

Table 5-11 Deterioration Models for Different Pipes Material in Database 

Pipe Material Non-linear Regression Models R2 

Cast Iron Y= -0.342A2 + 0.0548W + 48.163 0.78 

Ductile Iron Y= 0.004A3 -0.025W2 + 0.11AW + 51 0.74 

Asbestos Cement Y= 0.0038A2 -0.49W + 195.92 0.80 

Steel Y= 0.005A3 -0.012W2 -0.989AW - 0.012 0.73 

A: Age of Pipes, W: Wall Thickness Loss, Y: Remaining Useful Life 
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5.3.2 Contribution to The Water Pipeline Industry 

The results of this dissertation can help water utilities to manage and optimize their 

water distribution system. Furthermore, required actions need to consider based on 

remaining useful life and corrosion rates. The AC pipe replacement with new main 

construction are recommended for the project due to the current high cost of rehabilitation 

(Providence Infrastructure Consultants, 2016). As future advancements are made with the 

technology, rehabilitation may become a more cost-effective alternative to new pipe 

construction. Moreover, Cat Iron (CI) pipes needs to be replaced within the next five (5) 

years since it is reaching the end of its useful life based on the installation year and a 

design service life CI pipes. 

     
5.4 Chapter Summary 

This chapter presented the detailed overview of the development of the neural 

network and neuro fuzzy inference system models. Numerous structures were tested and 

the best architecture among them was chosen for further explanation and development. It 

was observed that the model displayed a good learning trend towards the facts presented. 

Moreover, the research used the neuro fuzzy inference system and the training data to 

create the predicted model to forecast the remaining useful life. The model constructed 

using the neuro fuzzy inference system  theory can efficiently forecast the remaining useful 

life of water pipes. It is concluded that the applications of neural network and Adaptive 

Neural Fuzzy Inference System (ANFIS) to solve the problem of remaining useful life 

prediction of water pipes are feasible and the precision of the model depends on obtaining 

a larger and more comprehensive sample size. Moreover, Pipe age and wall thickness loss 

are most significant parameters to predict the remaining useful life of the water pipes. 

Additionally, ductile iron and steel pipes have more remaining useful life compared to cast 

iron and asbestos-cement pipes.
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Chapter 6 Conclusions and Recommendations for Future Research 

Due to their low visibility, rehabilitation of underground water system is often 

ignored until a terrible failure occurs. This, often, results in expensive and difficult 

rehabilitation due to the crucial nature of confirming that the water system is operational. 

Most of water pipe projects are not considered a “practical” method for the failure of water 

pipes. There are two main reasons for this: the first is the inaccessibility of acceptable 

information regarding the condition of the water system. The second is the uselessness of 

predicting water scarcity prior to failure or an adverse condition so that inspection and 

repairs could be performed prior to failure of the system that might lead to an expensive fix 

and other risks.  

The main contribution of this dissertation is the development of neural network 

model and neuro fuzzy inference system to evaluate the prediction of remaining useful life. 

This prediction model is developed to improve the objectivity of practical management of 

water systems. Since all the parameters that were recognized to affect the water 

deterioration, as recognized in the literature were not readily available to be combined in 

this model, it is recommended that the model be expanded to include those parameters 

and retrained. Through this process, the neural network will keep learning the updated 

information and adjust its hidden weights to ensure the predicting precision. 

To accurately quantify the effect of certain input parameters for water deterioration, 

it will be useful to develop a neural network model, as demonstrated in this dissertation as 

an initial starting base. However, the models with more descriptive parameters will improve 

the understanding of the effects of influencing input parameters on water systems. The 

specific conclusions of this dissertation are: 

 Increasing 30% of wall thickness loss for asbestos-cement pipes between 41-50 

years old, the remaining useful life decrease 40% approximately. 
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 Increasing 20% of wall thickness loss for cast iron pipes between 50 to 60 years 

old, the remaining useful life decrease 25% approximately. 

 Increasing 14% of wall thickness loss for ductile iron pipes between 21-30 years, 

the remaining useful life decrease 20% approximately. 

 Increasing 8% of wall thickness loss for steel pipes between 41-50 years old, the 

remaining useful life decrease 20% approximately. 

 On the average, with approximately 10% of wall thickness loss in existing cast iron, 

ductile iron, asbestos-cement and steel water pipes, the reduction of their 

remaining useful life will be approximately 50%. 

6.1 Limitations of this Research 

As indicated previously, this research demonstrated the possibility of using neural 

network and neuro fuzzy inference system models as a screening tool to predict the 

remaining useful life of water pipes. The availability of fewer numbers of deterioration 

parameters and limited data availability posed the primary disadvantage to effective neural 

network training and caused the main limitation to this dissertation. Environmental 

parameters affecting the pipe, such as overburden pressure, soil type and properties, 

underground water-table location and other factors identified in the literature were omitted 

due to lack of monitoring of the data. Review of literature showed these parameters to be 

suitable measures of prediction of remaining useful life. Hence, the largest limiting factor 

for modeling ease and precision was the unavailability of inclusive data. 

 
6.2 Recommendations for Future Research 

Since the developed model does not include several parameters thought to be 

important to water deterioration, the model developed in this exercise is not complete. 

While it determines the utility of using artificial neural networks and neuro fuzzy inference 



 

120 

system models for predicting water condition, further work for data collection and model 

development is required to confirm that the model is more precise and reliable for future 

applications. Having made the above conclusions, it is clear more work is required to 

simplify future use of the model. This dissertation determines the need for the following 

actions, to facilitate simplicity, and more comprehensive development of artificial neural 

network models and neuro fuzzy inference system models for water condition prediction: 

 Utilization of more data. 

 Examination of input parameter importance, and other factors affecting water 

deterioration. 

To further the development of neural network and neuro fuzzy inference system 

models that are precise and flexible, inclusion of more descriptive data is needed. The 

model developed in this research required making assumptions that were scope limiting 

since it required values from some factors that may affect the remaining useful life 

prediction. The availability of detailed soils parameters, water-table location, physical pipe 

characteristics, and pipe conditions would be resources to model the deterioration of water 

and precisely predict the remaining useful life. A list of possible parameters that impact on 

remaining useful life prediction and can be factored into the model is listed below: 

 Soil conditions 

 Groundwater location and fluctuation 

 Joint condition 

 Water Pressure 
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 Leakage History 

 Installation Depth 

 Temperature 

 Water Corrosive Conditions 

The neural network and Adaptive Neural Fuzzy Inference System (ANFIS) water 

remaining useful life prediction models, can then be combined with an inclusive 

infrastructure asset management system to aid the municipal agencies in better planning 

and spending of their limited available budget. 
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AC – Asbestos-cement Pipe 

ANOVA – Analysis of Variance 

ASCE – American Society of Civil Engineers 

ASL – Anticipated Service Life 

ANN - Artificial Neural Network 

ANFIS – Adaptive Neural Fuzzy Inference System 

AWWA – American Water Works Association 

AWWARF – American Water Works Association Research Foundation 

BPNN - Backpropagation Neural Network 

CCTV - Closed Circuit Television  

CIP – Cast Iron Pipe 

CIP – Capital Improvement Projects 

COF – Consequence of Failure 

CPP - Pressured Concrete Pipe 

CUIRE - Center for Underground Infrastructure Research and Education 

DIP – Ductile Iron Pipe 

DSL – Design Service Life 

HDPE - High Density Polyethylene  

HFES - Hierarchical Fuzzy Expert System  

LOF – Likelihood of Failure 

MAE – Mean Absolute Error 

MAPE – Mean Absolute Percentage Error 

MFL - Magnetic Flux Leakage  

NASTT - North American Society of Trenchless Technology 

PCCP – Prestressed Concrete Cylinder Pipe 
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RRSE – Root Relative Square Error 

PVC - Polyvinyl Chloride Pipe 

RAE – Relative Absolute Error 

RCP – Reinforced Concrete  

RFEC - Remote Field Eddy Current  

R2 – Coefficient of Determination 

RUL – Remaining Useful Life 

SP – Steel Pipe 

TxDOT - Texas Department of Transportation 

UTA - The University of Texas at Arlington 

WRF – Water Research Foundation 
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Figure B-1 City of Montreal and Laval, Canada 

 

 

 

 

 

 

 

 

Figure B-2 Quebec City, Canada 
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 Figure B-3 City of Moncton, Canada 

Figure B-4 Colorado Springs, Colorado 
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 Figure B-5 Southgate Water Distribution System, Denver, Colorado 

SOUTHGATE WATER DISTRICT 
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Appendix C 

Neural Network Results 
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Figure C-1 illustrates the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 4. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1 Performance Chart and Histogram of Errors of ANN Model 1 
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Figure C-2 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 16. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-2 Performance Chart and Histogram of Errors of ANN Model 2 
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Figure C-3 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 26. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-3 Performance Chart and Histogram of Errors of ANN Model 3 
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Figure C-4 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 14. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-4 Performance Chart and Histogram of Errors of ANN Model 4 
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Figure C-5 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 28. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-5 Performance Chart and Histogram of Errors of ANN Model 5 
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Figure C-6 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 18. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-6 Performance Chart and Histogram of Errors of ANN Model 6 
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Figure C-7 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 1. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-7 Performance Chart and Histogram of Errors of ANN Model 7 
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Figure C-8 shows the performance chart for the trend of validation, training and 

testing models are similar and best validation happens in epoch 18. The histogram of error 

presents the number of errors in training are more than validation and testing. The 

histogram of error and performance chart are described in section 5.1.1 and 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-8 Performance Chart and Histogram of Errors of ANN Model 8 
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Figure C-9 illustrates the training error using ANFIS. Input and output data have 

been entered to ANFIS using hybrid method. The training error has been described in 

section 5.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-9 Error Results of the Model Using ANFIS 

 MATLAB R2017 
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Figure C-10 illustrates the results of training data and ANFIS output. Input and 

output data have been entered to ANFIS using hybrid method. The results of training data 

and ANFIS output has been described in section 5.2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-10 Results of Training Data and ANFIS Output  

 MATLAB R2017 
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Data Samples Used for Modeling 
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*The material converted to numerical value for ANN Models development (Project one). 

Material* Age 
Length 
(ft) 

Diameter 
(in.) 

# of 
Break 

Installation 
year 

Wall 
Loss 
(%) RUL 

CI 93 20.5 6 0 1913 41 23 

CI 122 413.4 6 5 1896 9 52 

CI 122 374 6 1 1896 8 52 

CI 122 341.2 6 2 1896 13 52 

CI 122 240.4 6 1 1896 14 52 

CI 122 465.8 6 1 1896 13 52 

CI 122 94.4 6 1 1896 11 52 

CI 122 200.45 6 1 1896 10 52 

CI 122 231.95 6 1 1896 9 52 

CI 122 175.5 6 1 1896 7 52 

CI 122 216.2 6 1 1896 13 52 

CI 129 38.7 6 1 1889 8 59 

CI 129 439.6 6 1 1889 11 59 

CI 129 215.2 6 1 1889 9 59 

CI 130 465.8 6 4 1888 9 60 

CI 130 649.6 6 3 1888 7 60 

CI 124 175.1 6 1 1894 9 54 

CI 124 52.4 6 1 1894 11 54 

CI 124 278.5 6 2 1894 13 54 

CI 130 84.6 6 1 1888 8 60 

CI 130 158.4 6 1 1888 7 60 

CI 130 40.3 6 1 1888 9 60 

CI 130 308 6 4 1888 11 60 

CI 124 160 6 2 1894 16 54 

CI 131 205.3 6 1 1887 7 61 

CI 122 230.3 6 1 1896 17 52 

CI 123 363.9 6 1 1895 13 53 

CI 122 593.8 6 1 1896 11 52 

CI 122 234.5 6 2 1896 9 52 

CI 126 31.5 6 1 1892 15 56 

CI 52 1492.7 4 3 1954 47 18 

CI 51 255.9 4 4 1955 45 19 

CI 48 157.4 4 1 1958 39 22 

CI 47 324.8 7 0 1959 41 23 
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Material Age 
Length 

(ft) 
Diameter 

(in.) 
# of 

Break 
Installation 

year 
Wall 

Loss (%) RUL 

CI 46 849.7 4 0 1960 37 24 

CI 45 1,886.4 4 2 1961 33 25 

CI 43 613.5 4 2 1963 31 27 

CI 42 1,000.6 4 3 1964 39 28 

CI 41 4,242 4 8 1965 45 29 

CI 66 7,992 6 0 1940 47 4 

CI 55 2,335.9 6 2 1951 41 15 

CI 54 3,6161.4 6 10 1952 43 16 

CI 53 13,500.6 6 14 1953 39 17 

CI 52 36,161.4 6 3 1954 45 18 

CI 51 13,500.6 6 95 1955 49 19 

DI 10 326 8 0 2006 4 60 

DI 17 399 12 0 1999 6 53 

DI 18 299 12 0 1998 7 52 

DI 18 320 12 0 1998 3 52 

DI 17 230 12 0 1999 5 53 

DI 30 273 8 1 1986 11 40 

DI 36 375 12 1 1980 21 34 

DI 31 498 12 1 1985 17 39 

DI 28 384 12 1 1988 10 42 

DI 32 322 12 1 1984 13 38 

DI 18 321 8 0 1998 7 52 

DI 15 357 12 0 2001 4 55 

DI 35 287 8 2 1981 23 35 

DI 35 324 8 2 1981 21 35 

DI 32 287 8 1 1984 17 38 

DI 32 287 8 1 1984 14 38 

DI 28 373 8 1 1988 9 42 

DI 34 360 8 1 1982 19 36 

DI 34 226 8 0 1982 23 36 

DI 53 317 18 3 1963 25 17 

DI 32 351 12 2 1984 15 38 

DI 21 353 8 0 1995 13 49 

DI 19 352 12 0 1997 14 51 
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(Project 2) 

Material Age 
Length 

(ft) 
Diameter 

(in.) 
# of 

Break 
Installation 

year 
Wall 

Loss (%) RUL 

DI 32 452 12 3 1984 16 38 

DI 29 237 12 1 1987 19 41 

CI 52 95.1 12 1 1954 43 18 

CI 52 39.37 12 1 1954 47 18 

CI 52 72.1 12 1 1954 45 18 

CI 51 328 12 2 1955 47 19 

CI 51 328 12 3 1955 49 19 

CI 47 190.28 12 3 1959 39 23 

CI 47 190.28 12 2 1959 37 23 

CI 47 190.28 12 3 1959 31 23 

CI 46 485.5 12 4 1960 39 24 

CI 46 485.5 12 1 1960 33 24 

CI 46 485.5 12 1 1960 39 24 

CI 46 485.5 12 2 1960 31 24 

CI 43 324.8 12 1 1963 35 27 

CI 43 354.3 12 1 1963 39 27 

CI 42 88.5 16 1 1964 33 28 

CI 45 482.2 16 2 1961 35 25 

CI 45 482.2 16 2 1961 39 25 

CI 43 167.3 16 1 1963 36 27 

CI 42 295.2 16 1 1964 29 28 

CI 47 324.8 24 5 1959 33 23 

CI 47 324.8 24 4 1959 29 23 

CI 47 324.8 24 3 1959 27 23 

CI 47 324.8 24 4 1959 23 23 

CI 47 324.8 24 2 1959 23 23 

CI 79 5,280 12 10 1927 37 9 

CI 25 2,640 6 10 1981 21 45 

CI 26 5,280 10 10 1980 23 44 

CI 81 2,640 6 10 1925 29 11 

AC 27 21,120 6 10 1979 17 43 

AC 45 15,840 8 10 1961 21 25 

CI 40 5,280 6 10 1966 13 30 

CI 59 21,120 8 10 1947 35 11 
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Material Age 
Length 

(ft) 
Diameter 

(in.) 
# of 

Break 
Installation 

year 
Wall 

Loss (%) RUL 

CI 30 5,280 12 10 1976 11 40 

CI 39 5,280 6 10 1967 16 31 

CI 56 5,280 6 10 1950 29 14 

CI 48 5,280 12 10 1958 33 22 

DI 19 15,840 8 0 1987 9 51 

CI 55 5,280 12 0 1951 28 15 

CI 45 5,280 6 0 1961 27 25 

AC 39 21,120 8 0 1967 17 31 

CI 57 5,280 6 0 1949 33 13 

CI 42 5,280 16 0 1964 19 28 

CI 73 2,640 6 0 1933 49 3 

AC 44 5,280 12 0 1962 27 26 

CI 46 21,120 6 0 1960 25 24 

CI 102 5,280 6 0 1904 19 32 

CI 78 2,640 6 0 1928 45 8 

AC 53 5,280 20 0 1960 36 17 

AC 53 330 20 0 1960 30.7 17 

AC 53 400 20 0 1960 31.3 17 

AC 53 370 20 0 1960 35.3 17 

AC 53 350 20 0 1960 35.3 17 

AC 53 420 20 0 1960 23.3 17 

AC 53 520 20 10 1960 23.3 17 

AC 53 430 20 0 1960 23.3 17 

AC 53 320 20 10 1960 28.7 17 

AC 47 360 20 0 1966 14 23 

AC 47 410 20 0 1966 15.3 23 

AC 47 530 20 0 1966 26 23 

AC 47 340 20 0 1966 36.7 23 

AC 47 460 20 10 1966 32 23 

AC 47 320 20 0 1966 19.3 23 

AC 47 528 20 0 1966 28 23 

AC 47 450 20 10 1966 30.7 23 

AC 47 335 20 0 1966 16.7 23 

AC 47 550 20 10 1966 21.3 23 
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(Project 3) 

Material Age 
Length 

(ft) 
Diameter 

(in.) 
# of 

Break 
Installation 

year 
Wall 

Loss (%) RUL 

AC 36 330 8 0 1980 23 34 

AC 37 383 8 0 1979 21 33 

AC 38 319 12 10 1978 26 32 

AC 35 445 8 0 1981 27 35 

AC 37 547 12 10 1979 29 33 

AC 36 398 8 0 1980 16 34 

AC 35 389 8 0 1981 29 35 

AC 36 410 8 10 1980 33 34 

DI 21 7,920 20 10 1985 11 49 

DI 21 7,920 20 10 1985 9 49 

DI 20 5,280 6 10 1986 8 50 

DI 20 5,280 8 10 1986 9 50 

DI 22 5,280 12 10 1984 10 48 

DI 10 10,560 12 10 1996 6 60 

CI 44 15,840 8 10 1962 33 26 

CI 44 10,560 8 10 1962 35 26 

CI 44 5,280 6 10 1962 37 26 

CI 43 15,840 8 10 1963 34 27 

DI 24 10,560 12 10 1982 9 46 

DI 24 5,280 12 10 1982 8 46 

DI 28 5,280 16 10 1978 10 42 

DI 27 7,920 24 10 1979 11 43 

DI 28 2,640 6 10 1978 9 42 

DI 21 7,920 20 10 1985 5 49 

DI 27 7,920 24 10 1979 8 43 

DI 27 7,920 24 10 1979 9 43 

DI 27 7,920 24 10 1979 6 43 

DI 27 7,920 24 10 1979 9 43 

DI 27 5,280 12 10 1979 11 43 

DI 24 10,560 12 10 1982 7 46 

Steel 61 7,920 20 10 1945 47 9 

CI 52 5,280 4 10 1954 43 18 

CI 44 5,280 6 10 1962 33 26 

CI 51 2,640 6 10 1955 37 19 
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Material Age 
Length 

(ft) 
Diameter 

(in.) 
# of 

Break 
Installation 

year 
Wall 

Loss (%) RUL 

CI 46 5,280 6 10 1960 31 24 

CI 52 5,280 6 10 1954 35 18 

CI 41 7,920 6 10 1965 31 29 

CI 44 5,280 6 10 1962 32 26 

CI 46 2,640 6 10 1960 31 24 

CI 57 5,280 6 10 1949 41 13 

CI 57 5,280 6 10 1949 42 13 

CI 56 2,640 6 10 1950 39 14 

DI 34 21,120 8 20 1972 13 36 

CI 34 5,280 10 20 1972 11 36 

CI 44 5,280 10 20 1962 21 26 

CI 48 2,640 6 20 1958 27 22 

CI 48 5,280 6 20 1958 29 22 

CI 57 5,280 4 20 1949 35 13 

CI 57 2,640 6 20 1949 37 13 

CI 98 5,280 10 20 1908 31 28 

CI 79 5,280 16 20 1927 49 9 

CI 55 5,280 4 20 1951 39 15 

CI 50 2,640 6 20 1956 27 20 

CI 55 5,280 6 20 1951 38 15 

CI 86 2,640 6 20 1920 35 16 

DI 25 5,280 10 20 1981 8 45 

Steel 32 2,640 6 0 1974 13 38 

AC 43 1,998 14 6 1969 29 27 

AC 43 7,142.38 14 8 1969 27 27 

DI 43 1,948.82 14 3 1969 31 27 

AC 43 1,939 14 5 1969 32 27 

AC 43 2,877 12 6 1969 35 27 

AC 43 2,008 12 8 1969 33 27 

DI 43 1,000.66 12 4 1969 31 27 

DI 43 1,033.46 12 5 1969 37 27 

Steel 43 2,286.75 12 6 1969 29 27 

Steel 43 554.46 12 8 1969 27 27 

Steel 43 3687.6 12 10 1969 35 27 
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(Project 4) 

Material Age 
Length 

(ft) 
Diameter 

(in.) 
# of 

Break 
Installation 

year 
Wall 

Loss (%) RUL 

Steel 1 236 12 0 2011 1 69 

Steel 1 787.4 12 0 2011 4 69 

Steel 1 623 12 0 2011 3 69 

CI 43 1,424 12 8 1969 32 27 

AC 43 2,129 12 5 1969 34 27 

AC 43 1,434 12 10 1969 35 27 

CI 43 3,281 14 6 1969 28 27 

CI 43 1,384.5 14 5 1969 33 27 

CI 43 15,403.5 14 8 1969 33 27 

CI 43 4,537 14 8 1969 29 27 

Steel 43 1,509 15 2 1969 37 27 

CI 43 820 14 6 1969 28 27 

steel 43 919 15 1 1969 31 27 

CI 43 945 14 6 1969 33 27 

CI 43 1,503 14 8 1969 31 27 

steel 43 853 17 1 1969 37 27 

CI 43 656 14 5 1969 29 27 

steel 43 2,464 17 2 1969 39 27 

CI 43 2,543 14 10 1969 28 27 

Steel 13 1,330 12 0 1993 8 57 

Steel 12 1,260 12 0 1994 9 58 

Steel 11 1,420 12 1 1995 7 59 

Steel 10 1,250 12 0 1996 6 60 

Steel 9 1,220 12 1 1997 4 61 

Steel 8 1,200 12 0 1998 3 62 

Steel 7 1,320 12 1 1999 5 63 

Steel 6 1,340 12 1 2000 4 64 

Steel 5 1,410 12 1 2001 4 65 

Steel 4 1,360 12 0 2002 3 66 

Steel 3 1,310 12 1 2003 3 67 

Steel 2 1,380 12 0 2004 5 68 
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