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ABSTRACT

Simulation, Control and Testing of a Custom 5-DOF Robotic Manipulator System

ROOPAK M. KARULKAR, M.S

The University of Texas at Arlington, 2018

Supervising Professor: Kamesh Subbarao

Open chain manipulators are a well posed problem, however it was necessary

to build a system customized to meet the needs of the Unmanned Ground Vehicle

developed in the Aerospace Systems Laboratory. Considering that there are multiple

such small ground vehicles, the main design constraint on the system was to be mod-

ular and lightwieght to enable quick swapping from both, a hardware and a software

point of view.

The purpose of this thesis is design, simulation and control a modular 5-Degree-

of-Freedom manipulator with versatility in end effector configuration. This was

achieved through the Robot Operating System which brings a high degree of cross

platform flexibility with minimal code modification. The manipulator was simulated

and tested to execute a cartesian-space trajectory using a singularity robust inverse

kinematics algorithm. The experimental setup has a cyber-physical architecture to

allow for the necessary intensive computations to be offloaded to a more powerful

ground station.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Manipulators add extended functionality to any robot. Manipulator designs

may be varied to suit the desired application. Consequently, the Unmanned Ground

Vehicle, ASL Gremlin, developed in the Aerospace Systems Laboratory was to be

augmented with a manipulator to extend its capabilities. The manipulator is meant

to be customizable, low-cost, easy to manufacture and custom fit to the rover. A

varying degree of dexterity can be added to a manipulator depending on the desired

application by adding more degrees of freedom. Manipulators with 6 to 8 degrees of

freedom (DOF) are common in the industrial robotics. However, addition of degrees of

freedom increases the complexity of the control system. The position and orientation

of the end-effector, the attachment at the end of the manipulator, is described by a

pose vector. A pose vector is a six-element vector containing the Cartesian coordinates

(X-Y-Z) and the Euler angles (Φ, Θ, Ψ) of the end effector. Since the pose vector has

6 elements, any manipulator with more or less degrees of freedom presents a problem

while being controlled.

Manipulator trajectories can be specified in the joint-space or cartesian space,

ultimately the joint angles need to be calculated to control the robot. Cartesian

space trajectories are specifed in terms of the pose variables of the end-effector and

joint-space trajectories are specified in terms of the joint angles of the manipulator.

Trajectories specified in the cartesian space need to be converted to the joint-space, i.e

the necessary joint angles need to be computed. This gets computationally intensive,
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but is a more intuitive way to specify trajectories. Since trajectories generated in the

cartesian space have little to no information of the joint-space constraints like joint

limits, special algorithms need to be implemented while solving for the joint angles

to avoid joint singularities.

1.2 Previous Work

The manipulator end effector pose is described with 6 variables, while the ma-

nipulator has 5 joints. This results in a non-invertible Jacobian matrix. A Damped

Least Squares pseudo-inverse was used as shown by Wampler [1] and Nakamura [2].

This addressed the problem of inverting a non-singular matrix as well as adding sin-

gularity robustness to the system. These methods do not address the effects of joint

limits on inverse kinematics which is addressed in a modified and improved version

of the Damped Least Squares algorithm by Na [3]. Another approach of selectively

damping joints using the Damped Least Squares Method was suggested by Buss

[4] which recommends clamping the length of the error vector between the current

position and the target to a maximum distance. Siciliano provides another inverse

kinematics approach where the error dynamics are taken into consideration so the

joint velocity error is also taken into account [5]. Inverse kinematic solutions can

be obtained analytically as well. One such analytical solution for a KUKA youBot

oufitted with a manipulator is presented by Sharma [6]. Minimum jerk trajectory

algorithms for manipulators have been previously used using trigonometric splines [7]

and cubic splines [8]. However, the algorithm developed by Godbole [9] which uses

a quintic polynomial and minimizes jerk was used for this application. This is the

same algorithm used for the trajectory generated for the rover. This was done with a

view towards integrating these two systems and make shareable code. Wang outlines

2



a cyber-physical system network of interacting agents [10] performing colaborative

work.

1.3 Problem Description

This thesis presents a solution to add additional functionality to the ASL Grem-

lin Unmanned Ground Vehicle platform. This thesis addresses singularity robust tra-

jectory following for the custom manipulator with a non-invertible Jacobian matrix.

This thesis builds on the use of a cyber-physical system architecture for Unmanned

Vehicle research.

1.4 Thesis outline

The thesis outline is as follows: The kinematic and dynamic modeling of the

manipulator is performed in Chapter 2. Chapter 3 details the simulation of the

manipulator in MATLAB and ROS for multiple cases for 2D and 3D trajectories.

Chapter 4 contains the details of the hardware and experimental setup. Chapter 5

contains the experimental results. Finally, chapter 6 states some concluding remarks.
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CHAPTER 2

MODELING OF THE MANIPULATOR

2.1 Kinematics

Kinematics of the system study the motion of the bodies in the system with

out taking into account the forces and the torques acting on it. The two types of

kinematics involved in motion control are forward and inverse kinematics. Forward

kinematics is the calculation of the end-effector position and orientation when the joint

angles are known. This is a fairly simple and intuitive process due to the manner in

which the kinematic equations are set up. Inverse kinematics are used to calculate the

joint angles necessary to achieve a desired end-effector pose. This is a more complex

problem, because depending on the manipulator configuration, there may be multiple

solutions that achieve the same end effector position. The manipulator was designed

as a 5-DOF system as rotating the wrist joint was not a design requirement. All

joints are revolute so it is a 5R manipulator.

2.1.1 Reference Frames

As the manipulator is a multi-body system, each body, each link, is assigned

a reference frame. This is because the way a vector is expressed may differ from

the way it’s defined in the frame of interest. The kinematics are modeled under the

assumption of a static inertial reference frame that is common to the observer and

the robot. All end-effector vector quantities are related back to this inertial reference

frame. This is done via a 3 × 3 rotation matrix A
BR which gives the orientation of

Frame B with respect to Frame A.
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Figure 2.1: Kinematic model of the manipulator

2.1.2 Frame Assignment and Forward Kinematics

For each frame i, the z-axis, Ẑi is coincident with the joint axis. The axis X̂i

is the common normal to Ẑi and Ẑi+1 and points from joint ji to ji+1. The right

hand rule is used to find Ŷi and complete the frame. The frame assignment for the

manipulator is seen in Figure 2.2 where X̂i is shown in red, Ŷi is shown in green and

Ẑi is shown in blue.

The kinematics were modeled using Modified Denavit-Hartenberg (DH) Conven-

tion [11]. The relationship between two links can be described by four DH Parameters

as illustrated in Fig 2.3 [12]. The parameters for the fabricated manipulator are listed

in Table 2.1.

The parameters are defined as follows

αi = Angle from Ẑi to Ẑi+1 about X̂i

ai = Distance from Ẑi to Ẑi+1 along X̂i

di = Distance from X̂i−1 to X̂i along Ẑi

θi = Angle from X̂i−1 to X̂i along Ẑi

5



Figure 2.2: Body-attached frames as visualized in RViz

Figure 2.3: D-H Parameters
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θi are the joint angles of the manipulator.

Table 2.1: DH Parameters of the Manipulator

αi−1 ai−1 (mm) di (mm) θi
1 0 0 218 q1

2 90 0 0 q2

3 0 393.7 0 q3

4 -90 225.35 58.53 q4

5 90 27.5 0 q5

The DH Parameters were used to create a transformation matrix for every body-

attached frame [11] T such that

i−1
i T =

R p

0 1

 (2.1)

where R is the rotation matrix between two frames and p is the position vector to

the frame i from frame i− 1.

i−1
i T =



c(θ)i −s(θ)i 0 ai−1

s(θ)ic(α)i−1 c(θ)ic(α)i−1 −s(α)i−1 −s(α)i−1di

s(θ)is(α)i−1 c(θ)is(α)i−1 c(α)i−1 c(α)i−1di

0 0 0 1


(2.2)

The generalized formula for the transformation matrix is given in Eq. 2.2 where

c(·) = cos(·), s(·) = sin(·) The end-effector frame or the tool frame can be related to

the inertial reference frame by multiplying all of the relevant transformation matrices.

0
5T =0

1 T
1
2T

2
3T

3
4T

4
5T (2.3)
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The pose vector, x, of the end effector is used to describe its position and

orientation x = [x y z Φ Θ Ψ]T where x, y, z are the cartesian coordinates of the

end-effector and Φ, Θ, Ψ are the Z-Y-X Euler angles as shown in Fig 2.4 [11].

x = T [1, 4] (2.4)

y = T [2, 4] (2.5)

z = T [3, 4] (2.6)

Φ = atan2 (T (2, 1), T (1, 1)) (2.7)

Θ = atan2
(
−T (3, 1),

√
T (1, 1)2 + T (2, 1)2

)
(2.8)

Ψ = atan2 (T (3, 2), T (3, 3)) (2.9)

Figure 2.4: Z-Y-X Euler Angle representation

The end effector tool for this manipulator is designed to be modular and can

be switched out. To relate the new tool frame to the inertial reference frame, post-

multiply Eq. 2.3 with a transformation matrix relatng Frame 5 to the new tool frame.

In its current configuration, the manipulator has 5 joints and no constraints so it is

a 5 degree-of-freedom system.

8



2.2 Dynamics

The equations of motion were derived using the iterative Newton-Euler Method

due to ease of computation. The manipulator was a fixed base case so the initial

conditions for the base are zero. The equations are generated in two stages. The first

stage involves computing the angular and linear velocities and accelerations, and the

forces and torques on all links starting from the first link to the last link. The second

stage computes the net force and torque acting on the links starting from the last link

to the first link [11]. The manipulator is a multi-body chain made of all the links so

the velocity of link [i] and the velocity of the joint [i+1] make up the velocity of link

[i+1]. The angular velocity and accelerations of the links are computed as follows

where i : 0→ l − 1 and l is the number of links.

i+1ωi+1 = i+1
i R iωi + q̇i+1

i+1Ẑi+1 (2.10)

i+1ω̇i+1 = i+1
i R iω̇i + i+1

i R iωi × q̇i+1
i+1Ẑi+1 + q̈i+1

i+1Ẑi+1 (2.11)

The translational accelerations of the links are then computed as,

i+1v̇i+1 = i+1
i R

(
iω̇i × ipi+1 + iωi ×

(
iωi × ipi+1

)
+ iv̇i

)
(2.12)

The translational accelerations of the centers of mass of the links are also nec-

essary to compute the inertial for and moment acting on the center of mass of each

link. These accelerations are calculated as,

i+1v̇Ci+1
= i+1ω̇i+1 × i+1pCi+1

+ i+1ωi+1 ×
(
i+1ωi+1 × i+1pCi+1

)
+ i+1v̇i+1 (2.13)

where i+1pCi+1
is the location of the center of mass of link [i+1] expressed in

frame {i+1}.

9



The inertial force and moment acting on the link [i+1] which cause the motion

are computed as,

i+1Fi+1 = mi+1
i+1v̇Ci+1

(2.14)

i+1Ni+1 = Ci+1Ii+1
i+1ω̇i+1 + i+1ωi+1 × Ci+1Ii+1

i+1ωi+1 (2.15)

CI is the inertia tensor such that Ci is located at the center of mass of the body

and is oriented like frame {i}.

The forces and moments are then calculated using inward iterations such that from i :

l − 1→ 0. These are the forces exerted on links by their neighboring links.

ifi = i
i+1R

i+1fi+1 + iFi (2.16)

ini = iNi + i
i+1R

i+1ni+1 + ipCi
× iFi + ipi+1 × i

i+1R
i+1fi+1 (2.17)

fi is the force exerted on link [i] by link [i+1]. ni is the torque exerted on link

[i] by link [i+1].

The required joint torque τi is the Z component of the torque ini. The torque

on the end effector τl−1 would be zero if the end effector is free to move in space

but non-zero if there are interactions with objects because the force fl−1 would be

non-zero.

τi = inT
i

iẐi (2.18)

The intertia tensors CI were obtained from a high fidelity CAD model. The

acceleration due to gravity is applied to 0v̇0 upward. The equations of motion are as

follows

τττ = M(q)q̈ + B(q, q̇) + G(q)g (2.19)

10



The mass, gravity and coriolis matrices can be obtained from symbolically solv-

ing Eq. 2.18 such that

M(q) =
∂τττ

∂q̈
(2.20)

G(q) =
∂τττ

∂g
(2.21)

B(q) = τττ −M(q)q̈−G(q)g (2.22)

where M(q) ∈ R6×5, G(q) ∈ R6×1, B(q, q̇) ∈ R6×1

In order to be valid, the mass matrix, M(q), needs to be full rank, positive

definite and symmetric. The mass matrix for this manipulator met these conditions.
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CHAPTER 3

SIMULATION OF THE MANIPULATOR

3.1 Workspace Analysis

It is essential to know the manipulator workspace before planning end-effector

trajectories. The workspace consists of all the points reachable by the end effector

given the joint limits of each angle. The joint limits for the manipulator are listed in

Table 3.1

Table 3.1: Joint Angle limits (degrees)

Joint Lower limit Upper limit
1 0 360
2 -7 63
3 -90 90
4 -90 90
5 -90 90

These joint angle ranges result in over 1.4 × 1011 possible joint configurations.

Generating points for that would be computationally wasteful. To overcome this, the

joint angles for joints 4 and 5 were held at 0. This does not affect the workspace

representation much because these two joints are mainly used for orientation control.

The remaining 3 joints were incremented by 5 degrees and the end effector position

was calculated. This method reduced the number of points to 36,288 and made it

feasible to calculate the workspace.
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Figure 3.2: Manipulator Workspace - Quarter Section
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3.2 End-Effector Trajectory

There are two ways of generating trajectories, namely, joint-space trajectories

and operational-space trajectories.Operational-space trajectories are defined in terms

of operation-space variables like the position of the end effector in cartesian coordi-

nates and the orientation, which in this case is expressed using Euler angles however,

quaternions may be used as well. Joint-space trajectories are defined in terms of the

joint angles of the manipulator. Joint-space trajectories are the most convenient from

a control point of view because singularities are easily avoided and there is no Jaco-

bian inversion involved. Generating just a joint-space trajectories is effective if only

the initial and final pose are of consequence and the path traced by the end effector

to reach the final pose has no restrictions on it. A joint-space trajectory was gener-

ated by solving for the angles corresponding to specified waypoints using a Nonlinear

Least-Squares solving algorithm, such as Levenberg-Marquardt minimization [13], of

the end-effector pose error. The resulting angles were fed into the algorithm listed

below which resulted in a minimum-jerk trajectory in the joint-space.

As illustrated in Fig 3.3, the end effector reaches the required pose with a

joint -space trajectory, but the path taken deviates significantly from the desired

path. However, in most cases, the path traced by the end-effector is just as impor-

tant as reaching the final pose so an operational-space trajectory was chosen. The

operational-space trajectory was first generated and then a joint-space trajectory was

calculated using inverse kinematics such that the end-effector will trace the path

outlined by the operational-space trajectory.
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3.2.1 Trajectory Generation

Trajectory generation was done similar to the method described by Godbole et

al [9]. A trajectory was generated using a fifth order polynomial using s as a general

coordinate.

s(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.1)

ṡ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (3.2)

s̈(t) = a2 + 6a3t+ 12a4t
2 + 20a5t

3 (3.3)
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The desired ṡf and s̈f are zero so the coefficients and final time are as follow

a0 = s(0) (3.4)

a1 = 0 (3.5)

a2 = 0 (3.6)

a3 = 10

√
∆s

t3f
(3.7)

a4 = −15

√
∆s

t4f
(3.8)

a5 = 6

√
∆s

t5f
(3.9)

tf ≥

√
10√

3

∆s

amax

(3.10)

where ∆s = sf − s0. Also, tf denotes the time necessary for completion of the

trajectory and t denotes the time elapsed the during motion of the particular segment

of the trajectory. It is not reflective of the total simulation time, nor the global ”wall”

or system time. The coefficients generated in Eq. 3.5 to Eq. 3.9 ensure that jerk

is minimized over the time tf . Since the pose vector elements have two units, i.e.

mm/s2 and rad/s2, the algorithm was supplied acceleration bounds for both position

and orientation. The algorithm then calculcated a final time for both of those values

and the lower of the two values was chosen to generate the trajectory. All the tests

have been performed with an acceleration bound of 25 mm/s2 for the position and 2

rad/s2 for the orientation.

3.3 Inverse Kinematics

As mentioned earlier, inverse kinematics involves solving for the joint angles

based on the position and orientation of the end-effector. As the generated trajectory
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is defined in the operational-space, inverse kinematics allows us to calculate the joint

angles necessary to follow that trajectory. This problem is complex and computation-

ally intensive. There are two ways of solving the inverse kinematics problem, namely

first order and second order inverse kinematics. First order kinematics allows the cal-

culation of the joint velocity and position, whereas second order inverse kinematics

allows for the calculation of joint accelerations as well. Both of these methods have

been implemented in this thesis for various cases.

3.3.1 First Order Inverse Kinematics

Let x = f(q) be the nonlinear forward kinematics function. The end effector

velocity can be mapped to the joint velocities as follows

ẋ = J(q)q̇ (3.11)

J(q) =
∂f(q)

∂q
(3.12)

q̇ = J(q)−1ẋ (3.13)

Numerical integration becomes necessary to solve for the joint angles. If allowed

to run for a sufficient time, numerical integration suffers from drift and introduces

errors into the system. Therefore, inverse kinematics solutions can be calculated using

the operational-space error [5].

e = xd − x (3.14)

ė = ẋd − ẋ

= ẋd − J(q)q̇ (3.15)
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If the error dynamics are taken as an asymptotically stable system ė +Ke = 0

gives us the following inverse kinematics algorithm.

q̇ = J(q)−1 (ẋd + Ke) (3.16)

where K is a positive definite gain matrix.

3.3.2 Second Order Inverse Kinematics

Second order inverse kinematics allows the calculation of the joint acceleration

as well. This may be necessary for control schemes like inverse dynamics. By differ-

entiating Eq. 3.15

ë = ẍd − ẍ

= ẍd −
d

dt
J(q)q̇

= ẍd − J̇(q)q̇− J(q)q̈ (3.17)

If the error dynamics are proposed to be a second order asymptotically stable

system ë + Kdė + Kpe = 0

The inverse kinematics solution can then be calculated as follows.

q̈d = J−1(q)
(
ẍd + Kdė + Kpe− J̇(q)q̇

)
(3.18)

3.3.3 Damped Least Squares Inversion

The manipulator has 5 degrees of freedom and there are 6 variables in the pose

vector so the Jacobian is a 6×5 matrix and is not easily invertible, therefore a pseudo-

inverse was used. There may be some joint angle values which may result in Jacobian

values that would cause a singularity when inverted. Therefore, the Jacobian was
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inverted using the Damped Least Squares pseudo-inversion [14] method to make it

singularity-robust.

J† =
(
JTJ + λ2I

)−1
JT (3.19)

where λ is a damping factor such that 0 < λ ≤ 1. So Eq. 3.16 then becomes

q̇d = J†(q) (ẋd + Ke) (3.20)

Using Eq. 3.18 and 3.19

q̈d = J†(q)
(
ẍd + Kdė + Kpe− J̇(q)q̇

)
(3.21)

This method however does not respect nor recognize joint limits. Therefore a

dynamic damping factor based on the joint limits was used [3].

J† =
(
JTJ + λ2

)−1
JT (3.22)

λ =


λ1 . . . 0

0
. . . 0

0 . . . λn

 (3.23)

λn = c

(
2qn − qnmax − qnmin

qnmax − qnmin

)p

(3.24)

where c and p are positive, even numbers, qmin and qmax are the lower and upper

joint limits respectively. The values of c and p are tuned by the user based on how

close to the joint limits the manipulator is allowed to get. The value of p changes

how ”cautious” the algorithm is in approaching joint limits as shown in Fig 3.4 which

was adopted from [3]. A high value of p places more trust in the joint position and

allows it to go closer to the joint limit, whereas a low value of p is a more cautious
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approach and starts increasing the damping factor λn while the joint is still away

from the limit.

Figure 3.4: Behavior of λn as joint limits are approached

3.3.4 Computing the Jacobian and Jacobian Time Derivative

As seen in Eq. 3.16 and Eq. 3.21 both, the Jacobian and its time derivative are

necessary. The forward kinematics function is nonlinear so solving for an analytical

equation for the Jacobian is impractical. As a result, the Jacobian and its time

derivative need to be computed numerically using the forward difference method.

Every joint angle is perturbed by a small number h and the Jacobian was calculated

according to Eq. 3.26.

J(q) =
∂f(q)

∂q
(3.25)
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∂f(q1, · · · , qi, · · · , qn)

∂qi
≈ f(q1, · · · , qi + h, · · · , qn)− f(q1, · · · , qi, · · · , qn)

h
(3.26)

Calculating the time-derivative is more computationally intensive.

J̇(q) =
d

dt
J(q)

=
∂J(q)

∂q

∂q

∂t

=
∂J(q)

∂q
q̇ (3.27)

∂J(q1, · · · , qi, · · · , qn)

∂qi
≈ J(q1, · · · , qi + h, · · · , qn)− J(q1, · · · , qi, · · · , qn)

h
(3.28)

where ∂J(q)
∂q
∈ R6×l×l, q̇ ∈ Rl×1, J̇(q) ∈ R6×l where l is the number of joints.

The Jacobian was first kept constant for the entire period of integration, how-

ever, this resulted in oscillations in the trajectory when the joint reached its limits.

Updating the Jacobian during integration significantly damped the oscillations.

3.4 MATLAB Simulation

The system was simulated in MATLAB to verify the equations of motion as

well as check system performance for motor sizing for the experimental set up. The

manipulator was fixed to a surface and there was no force acting on the end effector.

All initial conditions were zero. An end-effector trajectory in the operational-space

was specified and the tracking performance was studied.

The reference signal was in the form of desired position, velocity and acceleration

of the end-effector. An Inverse Dynamics controller was used for this simulation.
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Table 3.2: Joint Velocity and Torque Limits

Joint Velocity limits (rad/s) Torque limits (Nm)
1 3.08 1.2
2 1.15 2.82
3 1.15 2.82
4 10.47 0.25
5 10.47 0.25

The equations of motion were given by

τττ = M(q)q̈ + B(q, q̇) + G(q)g (3.29)

The control input is proposed as

τiτiτi = M(q)τ ′iτ
′
iτ
′
i + B(q, q̇) + G(q)g (3.30)

∴ τ ′iτ
′
iτ
′
i = q̈d (3.31)

Therefore, the desired input torque was calculated using Eq. 3.21 and 3.30.

This simulation was performed with the assumption that both joint velocity and

joint position feedback was available. The velocity and torque limits for the motors

are given in 3.2
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3.4.1 2D Trajectory to a Single Point

The first simulation was done for motion to a single point xf from x0 where the

position is described in millimeters and the orientation is in radians.

x0 =



646.50

0

276.50

0

0

1.571


xf =



616.70

0

432.96

0

0

1.571


(3.32)

The results of the simulation in cartesian-space are seen in Fig. 3.5. There is

negligible deviation observed in the path.
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Figure 3.5: Simulated End-Effector Trajectory, Desired and Simulated,
2D Single Point MATLAB
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Fig 3.6 shows the joint-space trajectories for the manipulator joints. The end-

effector trajectory is defined in the X-Z plane but some movement,however negligible,

is seen in joints 1 and 4 which control movement in the X-Y plane, or about the

Z-axis, due to the inverse kinematics algorithm. However, it can be observed that the

motion due q1 is reciprocated by q4. The magnitudes of the joint angles are diffferent,

but the trend is similar. This is because joint 4 is further down the chain and has to

move further to compensate for the movement due joint 1.
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Figure 3.6: Simulated Joint Angle Trajectory, Desired and Simulated,
2D Single Point MATLAB

The end effector follows a minimum-jerk trajectory, so the velocity profile is

expected to be parabolic and finish at zero because the final condition is specified to

be zero. This is seen in Fig 3.7 where v1 through v6 are the velocities of the pose

variables. Significant movement is only seen in the x and z positions of the end
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Figure 3.7: End-Effector Cartesian Space Velocities,
2D Single Point MATLAB

effector, while the initial and final orientations are the same. Therefore, the velocity

profiles for the x and z coordinates are the most prominent; and a clear parabolic

velocity profile can be observed with the end-effector coming to rest at the end of the

simulation. Similar trends are observed in the joint velocities as observed in Fig 3.8.

Movement is observed in joint 5 to maintain the orientation of the end effector.

The joint torques required to complete the trajectory are shown in Fig. 3.9. All

of these torques are within the torque limits for their respective actuators.
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Figure 3.8: Simulated Joint Velocity History, Desired and Simulated,
2D Single Point MATLAB
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3.4.2 3D Trajectory to a Single Point

The simulation was done for motion to a single point xf to x0 such that

x0 =



646.50

0

276.50

0

0

1.571


xf =



534.07

308.35

432.96

0.5236

0

1.571


(3.33)

The results of the simulation are seen in the end-effector trajectory in cartesian

space as shown in Fig. 3.10 and negligible deviation is seen in the path.
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Figure 3.10: Simulated End-Effector Trajectory, Desired and Simulated,
3D Single Point MATLAB
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The behavior of the joint angles is seen in Fig 3.11. The joint angles follow the

commanded trajectory with little error. The joint velocity profiles are similar to the

pose velocity profile in that they have the parabolic shape necessary to be minimum

jerk. They both return to zero, which is the specified boundary condition so it can

be concluded that the algorithm is working as intended. Significant movement is

intended in all joints for this trajectory, therefore the small fluctations seen during

the 2D motion in the X-Z plane are not apparent anymore.

The final and initial value for Ψ are the same but there is no constraint on that

orientation during the path. It can be seen in Fig. 3.12 that there is movement in

the orientation vector, but the final position is still achieved. This is because the

end-effector is following a cartesian-space trajectory and the manipulator joint angles

are adjusted to ensure that the straight line path is followed.
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Figure 3.12: End-Effector Cartesian Space Velocities,
3D Single Point MATLAB

The joint torques necessary to complete this motion are within hardware limits

as seen in 3.14
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Figure 3.13: Simulated Joint Velocity History, Desired and Simulated,
3D Single Point MATLAB
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Figure 3.14: Simulated Joint Torque History, Desired and Simulated,
3D Single Point MATLAB
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3.4.3 2D Multi-Point Trajectory

The simulation was then performed for a multi-point trajectory with the way-

points specified in Table 3.3. The trajectory is a loop and starts at the same x0 as

defined for the previous simulation, and passes through the waypoints in Table 3.3

which returns it to the starting position as shown in Fig. 3.15. The desired trajectory

is tracked with minimal deviation and the waypoints are traversed accurately.

Table 3.3: Waypoints for 2D Multi-point Trajectory

x y z Φ Θ Ψ
634.4582 0 366.6756 0 -0.0873 1.5708
616.6964 0 432.9637 0 -0.0873 1.5708
621.2470 0 374.2493 0 -0.2618 1.5708
646.5000 0 276.5000 0 0 1.5708
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Figure 3.15: Simulated End-Effector Trajectory, Desired and Simulated,
2D Multi-point MATLAB
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Similar to Fig 3.6, Fig. 3.16 shows that the motion of joint 1 is reciprocated by

joint 4. Figures 3.17 and 3.18 show that the total trajectory is comprised of multiple

parabolic trajectories. This is indicative that the motion of the end effector has been

minimum-jerk.
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Figure 3.16: Simulated Joint Angle Trajectory, Desired and Simulated,
2D Multi-point MATLAB

The torque trajectories are smooth for the joints responsible for rotation about

the global Y-axis, i.e joints 2,3,5, because these joints are holding up the weight of

the manipulator and they need a constant torque input. However, the remaining

two joints, 2 and 4, only need a torque input during the motion of the manipulator

because the load acts along the axis of rotation so the actuators do not have to put

in any effort to counteract it.
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Figure 3.17: End-Effector Cartesian Space Velocities,
2D Multipt MATLAB
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Figure 3.18: Simulated Joint Velocity History, Desired and Simulated,
2D Multi-point MATLAB
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Figure 3.19: Simulated Joint Torque History, Desired and Simulated,
2D Multi-point MATLAB

3.4.4 3D Multi-Point Trajectory

This simulation was performed with the waypoints shown in Table 3.4. The

starting pose, x0 is the same as for all previous simulations. The loop starts at x0,

passes through the points shown in Table 3.4 and returns to the starting position as

shown in Fig 3.20. The desired trajectory was completed with minimal deviation.

and all the waypoints were traversed accurately.

Table 3.4: Waypoints for 3D Multi-point Trajectory

x y z Φ Θ Ψ
634.46 0 366.68 0 -0.087266 1.5708
494.29 179.91 559.96 0.34907 -0.69813 1.5708
414.38 493.83 322.61 0.87266 0.087266 1.5708
646.5 0 276.5 0 0 1.5708
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Figures 3.22 and 3.23 show us that the full trajectory is formed from multiple

parabolic trajectories.
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Figure 3.20: Simulated End-Effector Trajectory, Desired and Simulated,
3D Multi-point MATLAB

The torque trajectories in Fig 3.24 are smooth and the torques for joints 1 are

observed to drop to zero once the trajectory segment is completed. This is because

the weight of the manipulator is acting along the axis of the joint, so the actuator

doesn’t have to put in any effort to maintain the position.
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Figure 3.21: Simulated Joint Angle Trajectory, Desired and Simulated,
3D Multi-point MATLAB
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3D Multi-point MATLAB
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Figure 3.23: Simulated Joint Velocity History, Desired and Simulated,
3D Multi-point MATLAB

0 10 20 30

Time(s)

-0.01

0

0.01

1
 (

N
m

)

0 10 20 30

Time(s)

0.6

0.7

0.8

2
 (

N
m

)

0 10 20 30

Time(s)

0.1

0.15

0.2

3
 (

N
m

)

0 10 20 30

Time(s)

-5

0

5

4
 (

N
m

)

10 -4

0 10 20 30

Time(s)

-1

0

1

5
 (

N
m

)

10 -3

Actual

Desired

Figure 3.24: Simulated Joint Torque History, Desired and Simulated,
3D Multi-point MATLAB
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3.5 ROS - Gazebo Simulation

3.5.1 Introduction to ROS and Gazebo

The Robot Operating System (ROS) is an open-source framework for writing

software for robots [15]. It is a collection of libraries and tools that handle the low

level communication required for robot operation thereby providing a high level of

modularity to the system. It brings a level of standardization to the system which

leads to general robustness making colaboration and switching code easy.

Gazebo is the ROS-compatible physics simulator. The user has the ability to

import a CAD model, attach actuators, and simulate the system very closely to

its behavior in real life. This allows the user to implement and test a variety of

controllers, designs and hardware options without disturbing the system hardware,

only implementing new software once the simulation results are satisfactory. There

are several plugins available for interfacing ROS and Gazebo, allowing the user more

time to focus on the robot software. Further details are provided in Appendix A.

3.5.2 Simulation Setup

A CAD model was imported into the ROS-Gazebo environment as a Unified

Robot Description File (URDF) using the SolidWorks URDF Exporter. All the mass

properties, kinematic data such as joint angle limits, link lengths, joint velocity limits

were encoded into this file along with refrence frame information. ROS interfaces with

Gazebo models using a package called ”ros control” that provides turn-key actuator

and control interfaces for the joints defined in the URDF file [16]. Using this, each

joint was attached a motor with a position controller running at 50 Hz and the main

inverse kinematics node was run at 10 Hz. The ros control package provided a topic

for a PID controller for each joint. The trajectory was generated at with a time step

corresponding to the frequency of the inverse kinematics node, stored and published
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to the corresponding joint controllers.

Due to the hardware requirements, torque-control could not be used on some

of the motors. As a result position control was used for all motors. Therefore, using

the Inverse Dynamics method used for MATLAB simulations was not possible. The

control scheme used for the ROS simulation and then extended to the model was to

generate the trajectory in operational-space, use first-order inverse kinematics using a

Fourth Order Runge-Kutta integrator (RK4) to map it to the joint-space and then use

PID controllers for position control. This method was much faster than the MATLAB

simulation and could work with the controller frequencies stated previously.

3.5.3 2D Trajectory to a Single Point

This ROS simulation was performed with the same initial and final points as

the MATLAB simulation shown in Eq. 3.32. The joint-space trajectory was pre-

generated and the desired joint angles were passed to the controller when the error

reached below a threshold of 0.02 radians or 1.5 degrees. This threshold was decided

based on the performance of the second order filter used to filter the potentiometer

values for angle feedback in the manipulator hardware discussed in Chapter 4. The

resulting end-effector trajectory is seen in Fig. 3.25. The errors in the final position

is -1.47, -0.01 and 4.38 mm in the X,Y and Z directions respectively.

The trajectory tracking of each individual joint angle is seen in Fig 3.26. Accu-

rate tracking is observed in joints with significant movement and the tracking errors

in the remaining two joints are in the order of 10−4 radians so they are negligible.

The correlation between end-effector position and joint angle errors can be observed

in Fig 3.26 and Fig 3.27. Joint 1 rotates about the Z-axis in the inertial reference

frame so it is responsible for the movement of the end-effector in the global Y-axis,

therefore there is movement in the end effector in the Y direction corresponding to
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Figure 3.25: Simulated End-Effector Trajectory, Desired and Simulated,
2D Single Point ROS
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Figure 3.26: Manipulator Joint Angles, Desired and Simulated,
2D Single Point ROS
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the error in Joint 1. This error and the error in the orientation in x5 are responsible

for the error in the end-effector position.
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Figure 3.27: Manipulator Pose Variables, Desired and Simulated,
2D Single Point ROS

3.5.4 3D Trajectory to a Single Point

The initial and final points for this simulation are given in Eq. 3.33. The position

errors were -1.7000 mm, -1.0000 mm, and 5.5000 mm in the X,Y and Z directions

respectively. Therefore, it can be said that the trajectory tracking performance was

acceptable as seen in Fig. 3.28. The performance of each individual joint can be seen

in Fig. 3.11. The angles follow a different trajectory than that for the simulation in

MATLAB. This can be attributed to the inverse kinematics solution as well as the

dynamic damping factor used for the Damped Least-Squares inverse.
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Figure 3.28: Simulated End-Effector Trajectory, Desired and Simulated,
3D Single Point ROS
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Figure 3.29: Manipulator Joint Angles, Desired and Simulated,
3D Single Point ROS
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Figure 3.30: Manipulator Pose Variables, Desired and Simulated,
3D Single Point ROS

3.5.5 2D Multi-Point Trajectory

3.5.5.1 Small Loop

The previous simulation was extended to a trajectory with multiple points listed

in Table 3.3. The trajectory tracking performance is shown in Fig 3.31. There is a

minor trajectory tracking error in the second segment of the loop, however it is a minor

deviation and the end effector reaches the waypoint. The errors in each indvidual

joints can be observed in Fig 3.32 and their impact on the end-effector pose can be

observed in Fig 3.33. There is minor movement in Joint 1 which is compensated by

movement in Joint 4 as shown in Fig 3.32 however, as seen previously the trend of the

motion is similar, but the magnitude of the movement is larger due to the location

of the robot in the joint chain. The trajectory for each segment was pre-generated so

the end-effector reached each waypoint, a cartesian space trajectory to the next point
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was calculated, which was then mapped to the joint-space with inverse kinematics

and then executed.
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Figure 3.31: Simulated End-Effector Trajectory, Desired and Simulated,
2D Multi-Point ROS
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Figure 3.32: Manipulator Joint Angles, Desired and Simulated,
2D Multi-Point ROS
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Figure 3.33: Manipulator Pose Variables, Desired and Simulated,
2D Multi-Point ROS
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3.5.5.2 Large Loop

A trajectory around a loop with longer segments was also executed to test

whether the errors increased over time. The initial position, x0, was the same as for

all previous simulations and the remaining waypoints are listed in Table 3.5. The

trajectory tracking was very accurate despite the longer trajectories.

Table 3.5: Waypoints for Extended Multi-point Trajectory

x y z Φ Θ Ψ
634.46 0 366.68 0 -0.087266 1.5708
426.59 0 712.51 0 -0.61087 1.5708
530.34 0 577.31 0 -0.61087 1.5708
646.5 0 276.5 0 0 1.5708
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Figure 3.34: Simulated End-Effector Trajectory, Desired and Simulated,
2D Multi-Point ROS

46



This is a slight high-frequency error in the x2 position, which corresponds to the

Y-position of the end-effector. The error can be attributed to the errors in q5.There

is an error in x5 due to q5 as well. The overall accuracy of the trajectory tracking

was acceptable over even longer distances, so it can be concluded that the controller

and system performs consistently.
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Figure 3.35: Manipulator Joint Angles, Desired and Simulated,
2D Multi-Point ROS
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Figure 3.36: Manipulator Pose Variables, Desired and Simulated,
2D Multi-Point ROS

3.5.6 3D Multi-Point Trajectory

The initial position and waypoints for this simulation were the same as shown

in Table 3.4. It is observed in Fig 3.37 that the manipulator follows the commanded

trajectory with minimal error throughout the loop. A comparison between Fig 3.37

and Fig 3.38 shows that the commanded joint angle trajectory is achieved for a

significant portion of the trajectory and the errors are minimal. Upon comparing

Fig 3.20 and Fig 3.37 it is evident that the there are minimal deviations between

the achieved end-effector trajectory. However, comparing the joint angle histories,

it is observed that the joint angle configurations to achieve the same trajectories

differ. This is because there isn’t a unique solution to the problem and multiple

configurations may yield the same end-effector pose.
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3.5.7 Comparison to MATLAB
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Comparison of the end effector trajectories is the most appropriate metric to

evaluate the validity and compatibility of the ROS ans MATLAB simulations as dif-

ferent joint angle trajectories still result in the desired end-effector trajectory. Figure

3.40 illustrates the comparison between the ROS simulation and MATLAB simula-

tion the difference in the trajectory is minimal. The largest error seen is 7 mm at

waypoint 3. Thus we can conclude that the ROS simulation and the MATLAB sim-

ulation are comparable with negligible errors. There is minor deviation between the

two trajectories throughout the loop.
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CHAPTER 4

EXPERIMENTAL SETUP

4.1 Construction

Figure 4.1: The 5 DOF Manipulator

The body of the manipulator is made of a combination of acrylic and ABS

plastic. Link 1, all motor housings and sensor housings were fabricated out of ABS

plastic using additive manufacturing processes. Links 2 and 3 were fabricated from

laser cut acrylic with cross members for torsional rigidity. Links 4 and 5 make up the

pan and tilt system to control the final two degrees of freedom. Details about the

fabrication are included in reference [17]
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Being a networked cyber-physical system the manipulator makes use of a myriad

of hardware to achieve continous and reliable performance. The hardware setup of

the manipulator is explained in the following sections.

4.2 Sensors and Motors

The manipulator has 5 degrees of freedom without any constraints so it has five

actuators. The pan and tilt system was an off the shelf product. The motor for joint 1

is a servo gearbox chosen because it provides good structural support to the assembly

as well as meets the space constraints. Joints 2 and 3 have high torque requirements

so they are actuated using 399:1 gear ratio DC motors driven by an H-bridge motor

driver based on the L298 chip. The entire system runs at 6VDC. The DC motors

caused a ripple in power line with introduced jitter to the servos. This jitter was

eliminated by placing bypass 680µF capacitors across the servo power terminals.

4.2.1 Sensing

The chosen DC motors came with an encoder, however, due to the high gear

ratio of 399:1 the encoder output was nearly 28000 ticks per revolution of the output

shaft. The Arduino is not fast enough to sense readings at that frequency as well as

handle rest of the processing. Encoders also do not provide absolute position, so 10kΩ

potentiometers were used as position feedback for the DC motors. The potentiometers

have a range of motion of 300 degrees so they are suitable for this application.

A second order low-pass filter was implemented to run at 50z with a cut-off

frequency of 10Hz. The transfer function of the filter is given by Eq 4.1 where ωc is
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the cutoff frequency and ζ is the damping. The filter can be expressed in the state

space format as shown in Eq. 4.2.

ω2
c

s2 + 2ζω + ω2
c

(4.1)

θ̂
˙̂
θ

 = A

θ̂
˙̂
θ

+ Bθ̃ (4.2)

A =

 0 1

−ω2
c −2ζωc

 , B =

 0

ω2
c

 (4.3)

The data acquisition is discrete so the equations shown in Eq. 4.2 were dis-

cretized as follows [18]

θ̂k+1

˙̂
θk+1

 = ΦΦΦ

θ̂k
˙̂
θk

+ ΓΓΓθ̃k (4.4)

ΦΦΦ = eA∆t, ΓΓΓ = A−1 (ΦΦΦ− I)B (4.5)

4.2.1.1 Filter Perfomance

A sample signal was with noise was filtered to test filter performance. The filter

was designed with ωc = 10 Hz and ζ = 0.5. The signal was y such that

y = sin(10t) + v, v ∼ N
(
0, 0.12

)
(4.6)

The term v represents the noise which is zero-mean Gaussian white noise with

a standard deviation of 0.1.

In a second order low-pass filter, the filtered signal lags behind the source signal.

The lag is affected by the values of ωc and ζ. The values of the cutoff frequency affect
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the lag the most, so it must be chosen carefully. The cutoff frequency and damping

were chosen to minimize lag and overshoot.

4.2.2 Arduino

The motors are controlled using Pulse Width Modulation (PWM) which controls

the the time for which the signal stays on and off. The PWM signal ranges from

1000µs to 2500µs and the percentage of the range for which the signal stays on is

known as the duty cycle. Motor speed is controlled by modulating this duty cycle.

The Arduino boards a very capable in this regard, so an Arduino Mega 2560 board

was connected to the Raspberry Pi. The Arduino can be used as a ROS node using

a package called ”rosserial” [19]. Rosserial provides firmware to bring out-of-the-

box ROS support to the Arduino ecosystem so all the sensor information is readily
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available through ROS. The motors and the position sensors are connected to the

Arduino which in turn passes the data on to the ROS network.

Figure 4.3: Arduino-Mega micro-controller used on the ASL-Gremlin-Rover
Source: https://store.arduino.cc/usa/arduino-mega-2560-rev3

4.2.3 Raspberry Pi

The manipulator is remotely controlled and a Raspberry Pi 3 installed with ROS

Kinetic Kame is used to enable network connectivity required for ROS usage. The

Raspberry Pi is a single board computer capable of running a full Linux installation.

For the particular use-case of the manipulator, Ubuntu 16.04 MATE has been installed

as it has full ROS support. The board has inbuilt WiFi capability which makes remote

operation with ROS possible. The addition of the Raspberry Pi offers the manipulator

the flexibility of being part of a network of robots or act as a standalone system when

necessary as the Rasperry Pi is capable of running its own ROS instance or connect

to an external instance.

56



Figure 4.4: Raspberry Pi 3
Source: https://www.adafruit.com/product/3055

4.3 Data Transfer

Figure 4.5: Data Flow Diagram

The data flow of the system used in the experiement is shown in Fig. 4.5. The

second Arduino was added to relieve the computation and data processing load on

the lone rosserial link used previously. This served to improve the reliability and
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performance of the system. The splitting and stitching of the signals is performed

using ROS and Python.

4.3.1 Communication Setup between Arduino and Raspberry Pi

A serial connection over USB is used to transfer data between the Arduino and

the Rasperry Pi. This allows the sensor data from the Arduino to be accessed by the

Raspberry Pi and relayed to the ROS network. There are two ways of achieving this

i.e. directly through Python or through existing ROS packages for communication.

The rosserial package provides libraries which extend the Arduino as a ROS node.

This package provides turnkey tools for data transfer and communication, over se-

rial ports, which are common to the ROS nodes running on the Raspberry Pi and

the ground station, it also provides the Arduino the ability to handle multiple ROS

topics at once. This method provides standardization which helps cuts down code

deployment time and simplifies troubleshooting. The messages are broadcast to the

ROS master node so they are accessible by all component nodes in the network.

4.3.2 Communication Setup between Arduino and Motors

There are two types of motors used on the manipulator. DC motors with

position feedback using potentiometers and servo motors. These motors are both

controlled via PWM but have different control interfaces; the servos are controlled

directly via the servo control library provided with the Arduino software. The DC

motors are controlled by sending a PWM signal to an H-Bridge motor controller

shown in Fig 4.6. The motor controller has two inputs, one for the PWM input and

another for motor direction. The direction can be controlled by setting the direction

pin to High or Low, i.e. powering it on or off. The PWM signal is a measured in

milliseconds and the duty cycle is varied. The total length of a PWM pulse is 1500µs,
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and the duty cycle is the portion of that pulse for which the signal is High. The duty

cycle is represented as a percentage. This modulation of the duty cycle varies the

voltage provided to the motors, thereby varying the motor speed.

The PWM timer on the Arduino is a 8-bit so the PWM commands range from

Figure 4.6: DC Motor Driver
Source: https://www.velleman.eu/products/view/?id=412174

0-255. This varies the output voltage from 0V-6V. The state of the direction pin

determines which motor terminal receives the positive voltage. The motor driver

gives a choice for all of the pins. The direction pins were 2 and 9 and the PWM

pins were 3 and 12. Setting the direction pins High results in positive rotation of the

motors and setting them low results in negative rotation in the manipulator reference

frames. The total current draw of the motors is more than the Arduino can provide,

so external power is provided.

The servo motors have 3 connections, power, ground and signal. The power and

ground are connected to the external power supply and the signal wire is connected
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directly to the Arduino. Bypass capacitors are attached across the power and ground

of the motors to smooth out any noise in the DC power line.

Figure 4.7: Servo layout

4.3.3 Communication Setup between the Arduino and Onboard Sensors

The two sensors being used for feedback are 10kΩ potentiometers. Their range

of motion is 300 degrees as tested in Fig 4.9. The Arduino has a 10-bit Analog-to-

Digital Converter (ADC) so the reading the analog input from the potentiometers

returns a value between 0-1023. This value was mapped from 0-300 to represent the

range of motion of the potentiometer and a suitable offset was added to accomodate

joint limits. Both of these sensors are powered from the Arduino’s onboard 5V supply

as their power-consumption is negligible and this setup allows the system to acquire

sensor readings even when the external power supply is off, aiding diagnostics.
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Figure 4.8: DC Motor Position Feedback

Figure 4.9: Potentiometer Calibration Setup

4.3.4 Communication Setup between the Raspberry Pi and Ground Station

The manipulator is a cyber-physical system (CPS) which means it has a de-

centralized control station that handles all of the processing and several nodes that

handle the execution of the code. One way to operate the manipulator would have

been to write all the code on the Raspberry Pi and make it system specific. However,

this would mean there would be two different pieces of code used for testing and
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deployment. This sort of fragmentation presents several difficulties and so a unifying

framework such as ROS was used. Code can be written in C++/Python and used

for testing and upon successful testing, the same code can be deployed on the robot

hardware. Being a CPS, manipulator signals are sent over a network connection. The

advantage is that the high processing power of the ground station can be harnessed

along with the mobility and power efficiency of low-power components such as the

Arduino. In addition, several such nodes can be run in parallel. The ROS networking

setup requires minimal changes to the system after which there the test environment

can be replaced with the robot hardware by simply changing the publisher blocks.

The PID was run on the ground station using a Python PID module [20] to conserve

processing on the Arduino due to its limited processing power and prevent delays [21].

The PID controller output was a value in the range of -255 to 255 which signifies the

direction and PWM the motor should follow. This value was then transmitted to the

Arduino.

62



CHAPTER 5

EXPERIMENTAL RESULTS

The same trajectories used for simulation were used to obtain the experimen-

tal results shown below. As expected, there were differences in the simulation and

experimental results due to unmodeled phenomena such as friction, slack in the belt

drive system, and friction forces.

5.1 2D Trajectory to a Single Point

The initial and final point for this trajectory are shown in Eq. 3.32 and the

tracking performance is shown in Fig.5.1. Joints 2 and 3 are observed to follow their

respective commanded trajectories with minor deviations. However, since joint 2 and

3 are in the very beginning of the chain and have the longest associated link lengths,

these small deviations have a large impact on the end effector position. The maximum

deviation seen in the path is around 1 cm as seen in Fig. 5.3. The performance of

joints 2 and 3 can be improved with more PID tuning as there is some overshoot

evident in the end-effector motion.
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Figure 5.1: Manipulator Joint Angles, Desired and Actual
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Figure 5.2: Manipulator Pose Variables, Desired and Actual
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5.2 3D Trajectory to a Single Point

The initial and final points for this test are listed in Eq. 3.33 As with the

previous test, the commanded trajectory is followed with minor deviations as seen

in Fig 5.4. There was an overshoot in joint 2 around the 5 second mark which is

responsible for the largest error in the end effector trajectory which can be observed

in Fig 5.5 and Fig 5.6.
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Figure 5.4: Manipulator Joint Angles, Desired and Actual
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Figure 5.5: Manipulator Pose Variables, Desired and Actual
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5.3 2D Multi-Point Trajectory

The waypoints for this test are given in Table 3.3. Similar to previous tests, joint

two shows the most deviation from the commanded trajectory in 5.7. This results in

deviations in the end-effector position, however these deviations are limited to 2cm

as seen from 5.9. The deviations are also reflected in the individual pose elements in

Fig 5.8. Despite the deviations in the trajectory, the end effector reaches the final

waypoints.
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5.4 3D Multi-Point Trajectory

The waypoints for this test are given in Table 3.4. Following the trend from

previous tests, all joints follow the command trajectory. There was some oscillation

in the second joint but it settled quickly and the manipulator tracked the trajectory

with little error ater that as shown in Fig 5.12. The errors stem mainly from the

second joint as seen in Fig 5.10 which reflect in the value of the Z-coordinate in the

end-effector pose vector as seen in 5.11.

69



0 20 40

Time(s)

0

0.5

1

q
1
 (

ra
d
)

0 20 40

Time(s)

-0.5

0

0.5

q
2
 (

ra
d
)

0 20 40

Time(s)

-2

0

2

q
3
 (

ra
d
)

0 20 40

Time(s)

-1

-0.5

0

q
4
 (

ra
d
)

0 20 40

Time(s)

-2

0

2

q
5
 (

ra
d
)

Actual

Commanded

Figure 5.10: Manipulator Joint Angles, Desired and Actual

0 20 40

Time(s)

400

600

800

x
1
 (

m
m

)

0 20 40

Time(s)

-500

0

500

x
2
 (

m
m

)

0 20 40

Time(s)

0

500

1000

x
3
 (

m
m

)

0 20 40

Time(s)

-1

0

1

x
4
 (

ra
d
)

0 20 40

Time(s)

-1

0

1

x
5
 (

ra
d
)

0 20 40

Time(s)

1

2

3

x
6
 (

ra
d
)

Actual Commanded

Figure 5.11: Manipulator Pose Variables, Desired and Actual
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CHAPTER 6

SUMMARY, CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusion

This thesis presents the simulation and control of a 5 DOF manipulator designed

to be mounted on a mobile robot. It is a networked cyber-physical system that

offloads the computational heavy-lifting to a more powerful ground station allowing

the system itself to remain lightweight. It features a high degree of modularity in

terms of hardware as well as software.

The trajectory algorithm for the manipulator was analyzed and the motors were

found to be adequate for a range of end-effector acceleration values despite the motors

being designed for high-torque and low-velocity. These motors were placed towards

the beginning of the kinematic chain, so low angular velocity of the motors resulted

in much greater translational velocity for the end-effector. It is possible to replace

these motors with motors with even higher gear ratios to increase load capacity as

the necessary velocities are well within operational bounds.

The inverse kinematics solver was created to take into account desired end-

effector velocity and used a damped least squares inversion with dynamic weights to

invert the non-square manipulator Jacobian. With the initial and final conditions

for velocity and acceleration being zero, the each subsequent trajectory segement

was calculated once the end effector reached the goal position. Oscilliations were

observed in the output trajectory when the joints approached their limits. These

oscillations were damped by increasing Jacobian computation with the trade-off being

additional computation time. This algorithm works as long as the goal position is
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within reachable space.

The experimental results were satisfactory. The largest error seen in tested

trajectories was close to 2 cm. This is within the expected values due to the precision

of the sensors and fabrication tolerances. Joint 2 was the most difficult to tune for

because that is the joint experiencing most torque as well as being responsible for the

largest contribution to the end-effector position. As such, a majority of the errors in

the end-effector pose were a result of position errors in joint 2.

6.2 Future Work

The work presented in this thesis creates a good testbed for future research on

manipulation, perception, and opens up interesting avenues of research for the rover.

Some future work includes:

• Revise trajectory planner so that the inverse kinematics for the next trajectory

segment is performed while the robot is performing its assigned trajectory.

• Create a global trajectory planner such that it can modify the trajectory to the

final point if a singularity cannot be removed.

• Design and implement a more robust controller for the most sensitive joints i.e

joints that contribute most to the end effector position.

• Add force sensors to the end effector and factor input force into the feedback.
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Appendix A

Software Configuration

The Robot Operating System (ROS) is software framework used for robot con-

trol. It is a collection of tools, protocols, libraries and packages that simplify the

creation of complex, networked, cyber-physical systems. ROS allows for standard-

ization across several robotic platforms and handles all the low level communication

between nodes. This leaves the user more time to focus on the robot software. Further

details are available in [22]

• ROS Filesystem

– Packages: ROS Packages are the most basic unit of the ROS system. It

contains the ROS runtime process, libraries, configuration files, etc. which

are organized as a single unit.

– Messages: ROS messages are a type of formatted information sent from

one ROS process to another using topics. Custom message types can be

defined within a package such as

package_name/msg/msg_name.msg

• ROS Computational-Graph level: This is the framework used for handling all

communication between processes.

– Master: ROS Master provides the registration and lookup for all nodes

and topics. Nodes must be able to connect to the master to communicate

with each other.

– Nodes: Processes that form the network and carry out the computations.
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– Parameter Server: The parameter server is a centralized data storage lo-

cation that stores model data.

– Topics: Topics are the buses for data exchange. A node is said to ”publish”

data when it writes to a topic and is said to ”subscribe” to a topic when

it reads data from the topic. Each node may subscribe and publish to

multiple topics.

– Bag: Bags are message storage containers that store all topic activity

while they are recording. This is useful for data logging and analysis after

simulations. Bag data can be analyzed in MATLAB using tools provided

in the Robotics System Toolbox [23].

• Robot Simulation and Visualization: ROS has two tools for simulation and

visualization.

– Gazebo: Gazebo is the integrated robot simulator which offers multiple

physics engines for simulating the robot. The user can create environments

with obstacles, objects to be detected, terrain to be navigated to simulate

various scenarios for the robot and test control algorithms.

– Rviz: Rviz is used to play back recorded data from the simulations and

visualize the robot’s movements. It can also be used to check how the

Gazebo environment reads the robot description file and verify all joints

and motors are working as intended.

A.1 Connecting the Arduino and the Raspberry Pi

The Arduino IDE and ROS package rosserial needs to be installed on the Rasp-

berry Pi [19]. The connection can be established by running the following command

rosrun rosserial_python serial_node.py /dev/ttyACMX

where /dev/ttyACMX is replaced by the port to which the Arduino is attached.
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A.2 Network setup

ROS nodes can connect to remote masters as long as the IP address and port of

the master node is exported as an environment variable in the shell. ROS handles all

the other communication details with the user handling minimum setup effort. The

two variables can be changed with the following commands

1 export ROS_IP = <IP address of current machine >

2 export ROS_MASTER_URI = http://<IP of the machine running the

ROS master node >:<The port on which the master is talking >

The default port is 11311 however the port can be specified while launching

ROS with

roscore -p <port number>

for example the commands for the test hardware were as follows (The router

was configured such that the IP addresses were static)

• Commands run on the ground station

1 export ROS_IP = 192.168.0.42

2 export ROS_MASTER_URI = http ://192.168.0.42:11311

• Commands run on the Raspberry Pi

1 export ROS_IP = 192.168.0.21

2 export ROS_MASTER_URI = http ://192.168.0.42:11311
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