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ABSTRACT

Robot Motion Tracking Using Time-of-flight And Structured Light

Sensors For Indoor Navigation

KARAN VISHNU RAO, M.S

The University of Texas at Arlington, 2018

Supervising Professor: Kamesh Subbarao

Simultaneous localization and mapping for mobile robots has been an active

research field for several years with focus on the problems of accuracy and depend-

ability of the data from the robot’s peripherals. The position estimates for mobile

and industrial robots is usually achieved by using the information from the global po-

sitioning system in an outdoor environment and for indoor environment, technologies

such as LiDAR sensors and Infrared (IR) camera based motion capture systems such

as VICONTM are used. The main issue with these approach for indoor navigation is

the monetary cost to associated with these technologies.

The purpose of this thesis is to provide a different approach for position and

motion estimation of a robot for indoor localization and navigation. The presented

position estimation technique is developed as a cost effective and viable replacement

for the above mentioned indoor navigation systems and other GPS denied areas. The

problem of tracking the robot is handled by using a triangulation technique which

uses depth measurement sensors. The experimental setup is based on multiple sensors

running on individual computers, connected via a wireless network. The sensors used
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in this setup are characterized with regards to their localization capability. The po-

sition and motion estimation technique is experimentally verified by using the sensor

work-space environment setup under different working conditions.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Robots have been used in the manufacturing sector for a long time. With the

shift in warehouse technology to make way for autonomous aerial and ground vehicles

for handling and delivering packages to consumers, path planning has come to the

forefront as a major research problem. The concept of autonomous path planning

has been handled with several different solutions. For an accurate path planning it is

key for the vehicle to locate itself in the working environment. This is referred to as

the localization problem in the unmanned vehicle systems community.

The localization problem is usually dealt with the use of global positioning sys-

tem (GPS). This is a viable option when the autonomous vehicle is in an outdoor

environment, since the GPS provides accurate feedback. In an indoor environment,

for example a warehouse, the GPS data is significantly erroneous.

This has sparked interest in the minds of the researcher to find a viable so-

lution to this indoor localization problem, especially in a GPS denied environment.

Researcher have turned their attention to computer vision algorithms and range mea-

surement sensors to solve the simultaneous localization and mapping problem.

There has been innovative work done in this field using Kinect sensor for the

computer vision ethos for the main reason being a cost effective sensor. This was

the driving factor to tackle the problem presented in this thesis with the use of the

Kinect sensors.

In this work, two different technologies of range measurement sensors are in-
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corporated. The primary goal here is to show how the fusion of these sensors can

affect the position estimates and also to demonstrate the robustness of the position

estimation algorithm with different range measurement sensors.

In the past, the RGB camera output along with computer vision algorithm was

the cornerstone for detecting and tracking the objects in the field of view. In this

thesis, focus is placed on the IR depth sensor along with camera integrated in the

Kinect, to provide the range measurement to unique tags generated by a Robot Oper-

ating System (ROS) package. By using this data, an Extended Kalman Filter(EKF)

is implemented to estimate the position of the unique tag in real-time.

1.2 Related Work

Researchers have come up with numerous solutions to tackle the position es-

timation problem. Immense work is going on in finding the solutions for motion

tracking in autonomous robots in GPS denied environments. In [1], the authors use

vision data to navigate an unknown indoor GPS-denied environment. They showed

that their algorithms for the guidance and control of an aerial vehicle is a viable op-

tion in the real environment. In [2], a quadrotor helicopter was equipped with a laser

rangefinder and successfully implemented an EKF for data fusion. The authors of

the paper [3], use a passive radio frequency identification RFID-assisted mobile robot

system for mapping and surveillance of indoor environments.

The feasibility of using a structured-light range sensor for mobile outdoor and

indoor robots is discussed in [4]. An in-depth analysis and comparison of the struc-

tured light sensor and time-of-flight sensor is very well documented in [5].

When cost effective range measurement devices such as Kinect v1 was intro-

duced to the world in 2010, there was a sudden exploration expedition to utilize

this tool which was primarily developed for the gaming community. The scientific
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community realized that this tool enabled to solve critical problems related to the

unmanned vehicle systems. Up until the introduction of this device, the solutions

were expensive range measurement sensors or complex computer vision algorithms

used in stereo vision camera systems, which were computationally expensive.

There has been significant work done in characterizing the Kinect v1 and Kinect

v2 sensors [6], [7]. The calibration of a structured light sensor is explained and de-

mostrated in [8]. A detailed analysis of the depth measurement attribute of the

Kinect is discussed in [9]. The applications and roadblocks for the Kinect and its

RGBD image output is detailed in [10]. The authors show how to install the drivers

for operating systems like Ubuntu and also provide an insight to various open source

libraries that is available for developers to work on the Kinect sensor. The authors

in [11], show how to integrate the Kinect sensor with Simulink for real-time object

tracking. Here they make use of a custom “VU-Kinect” block in order to access the

sensor data.

People have done incredible work in the past and found new ways to use this

tool in research problems across the world. Although the primary application for the

Kinect sensor was to capture the motion of human skeleton for gaming purposes, re-

searcher have recognized this in-expensive, powerful tool to achieve successful results

for numerous real world problems. With Kinect sensors, people have developed depth

map to control the altitude of a quadrotor helicopter [12]. Kinect sensors have been

incorporated to provide a natural user interface for controlling 3-D virtual globes

as described in [13]. Kinect is shown to be a promising virtual reality (VR) neu-

rological rehabilitation tool for use in the clinic and home environment in [14]. The

authors of this paper demonstrate the comparison of the motion tracking between the

low-cost Microsoft Kinect and a high-cost multi-camera lab-based system OptiTrack.

Kinect has been used for computer vision applications in autonomous vehicles [15]
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as a low cost range sensor in place of stereovision, LiDAR and RADAR which have

their limitations and higher price. The authors of [16], demonstrate their algorithm

which detects objects using color and depth segmentation with Kinect sensor. They

also discuss how Kinect is a less expensive option compared to other technologies

like LADAR sensors and more robust than stereo vision system. In [17], the author

compares the Kinect sensor and VICONTM. A more fundamental issue of computer

vision and object recognition is addressed by the authors in [18], who propose a depth

kernel descriptors based on the Kinect sensor output. Motion tracking using multiple

depth sensors for real-time application can be seen in [19].

The paper [20] shows how kinects can work as a perception sensor network to

track a human. Most of the work seen here have focused on fusing data from the depth

sensor and the RGB camera output of the Kinect, this involves complex computer

vision algorithms. The rich information provided by the Kinect sensor is incorpo-

rated by a particle filtering framework as shown in [21], for a visual tracking problem.

Also the authors of the paper [22] use the Kinect sensor output into a particle filter

frame-work to estimate the scene as a collection of object poses.

There has been lot of work done previously in the field of obstacle detection

and avoidance using kinects, in [23], the author has shown how Kinect sensor along

with obstacle avoidance algorithm, developed by them can detect and perform evasive

maneuver within one meter distance. [24] is an other example of the use of Kinect

for obstacle avoidance instead of expensive LiDARs. LiDAR can normally only detect

obstacles on a plane level so the authors of [25] made use of Kinect to detect negative

obstacles in an indoor environment. In this paper [26], it has been demontrated how

Kinect v2 performs 2D SLAM in an indoor environment with respect to a 2D laser

scanner. In [27], it can be seen how cognitive service robots mounted with Kinect

sensors have been used in perceiving,learning and recognizing 3D objects. This paper
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successfully demonstrates, open-ended learning capabilities of the robot using Kinect

sensor.

It is key to have a framework for real-time communication between sensor data

for the solution proposed in this thesis. Robot Operating System (ROS) provides

the answer. There has been significant work done in characterizing ROS as a useful

framework for communication. In [28], the authors have demonstrated this capability

of ROS for the application of obstacle avoidance for a mobile robot.

Work has been done previously where Kinect v2 was used to perform a 3D re-

construction of indoor scenes in [29]. Kinect sensor was directly mounted on an UGV

for its navigation and mapping in [30]. This paper demonstrates the use of ROS and

Kinect along with the issues with the interaction between them.

1.3 Problem Description

This thesis addresses the problem of position estimation and motion tracking in

a GPS denied environment by using a triangulation technique as seen in Fig. 1.1 to

obtain a closed-form analytic solution and an Extended Kalman Filter is used when

one of the sensor data is not obtained. This thesis also validates position estimation

and motion tracking for multiple robots in the work space.
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Figure 1.1: Frames for triangulation and work space

Solution Methodology

There are two sensors used in this work, Kinect v1 and Kinect v2, which are intro-

duced in chapter 2. These sensors are characterized and the results are presented in

chapter 6. The data from the two sensors are obtained via the ROS network set up,

which is described in chapter 3. The depth measurements given as,

d1 =
√

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 (1.1)

d2 =
√

(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 (1.2)

The depth measurements as shown in Eq. 1.1 and Eq. 1.2, are used to compute the

position of the robot. The analytic solution is obtained and the motion tracking of the

robot is tested. Next, the position estimation and the motion tracking is performed

using the EKF for a single robot, which is then extended to multiple robots.
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1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2, Kinect sensors are described

in detain. Chapter 3 introduces the augmented reality ROS package and AR marker

tags. Chapter 4, introduces the triangulation technique used to find the position of

the markers. In Chapter 5, the experimental setup for testing the analytic solution

and the EKF algorithm is presented. Chapter 6 presents the sensor and algorithm

analysis and the experimental results. Finally, in Chapter 7, concluding remarks are

stated.
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CHAPTER 2

SENSORS

2.1 Sensor Technologies

Robots require a method to perceive the world in order for the autonomous

behavior to take effect. Sensors make this possible. A sensor is a device, module, or

subsystem whose purpose is to detect events or changes in its environment and send

the information to other electronics, frequently a computer processor. A sensor is

always used with other electronics, whether as simple as a light or as complex as a

computer [31].

There are numerous categories of sensors that are used for capturing various

real-world phenomena. The main category of sensors that this thesis focuses on are

proximity sensors. A proximity sensor often emits an electromagnetic field or a beam

of electromagnetic radiation (infrared, for instance), and looks for changes in the field

or return signal. The object being sensed is often referred to as the proximity sensor’s

target. Proximity sensors can have a high reliability and long functional life because

of the absence of mechanical parts and lack of physical contact between sensor and

the sensed object. Some of the different types of proximity sensors are Capacitive,

Doppler effect, Eddy-current, Inductive, Magnetic, Optical, Photoelectric, Photocell,

Laser rangefinder, Passive thermal infrared, Radar, Reflection of ionizing radiation,

Sonar (typically active or passive), Ultrasonic sensor, Fiber optics sensor and Hall

effect sensor.

In this work, two categories of proximity sensors are used, namely structured-
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light sensor and time-of-flight sensors. These are studied in-depth in the following

sections of this chapter.

2.2 Structured Light Sensors

Structured light is the process of projecting a known pattern on to a work

space. The way these patterns deform when striking surfaces allow vision systems to

calculate the depth and surface information of the objects in the work space.

Principle

Projecting a unique pattern of light on a 3D object will distort the pattern and

this can be used for geometric reconstruction of the 3D object. There are many

other variants of structured light projection that are possible like patterns of parallel

stripes, which is widely used. The structured light sensor uses a plane of laser light.

The laser plane is generated by a cylindrical lens and illuminates a profile of range

data in each camera image. The sensor has no moving optical components.

Figure 2.1: Principle behind Structured-Light technology
Source : https://www.sciencedirect.com/science/article/pii/S0143816616000166
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Applications

There have been numerous applications of structured-light. One of the main areas

is in perception sensors. Many companies have adopted this technology for their

depth perception like Microsoft Kinect uses a pattern of projected infrared points to

generate a 3D image of the work space [32]. Google project Tango SLAM utilizes

structured light as one of the depth technologies [33]. Recently, Apple came out with

Face ID system which works by projecting more than 30,000 infrared dots onto a

face and produces a 3D facial map [34]. This is being used capture road pavement

structure and roughness [35].

Kinect v1

Kinect is a motion sensing input device designed for Xbox 360 by Microsoft for con-

sole gaming purposes. The name Kinect is inspired by the words “kinetic”, meaning

to be in motion, and “connect” meaning it “connects you to the entertainment and

friends you love” [36]. It was first introduced in November 2010. Microsoft released

a software development kit for windows in the year 2011, which opened up oppor-

tunities for people to use this device as a tool to solve problems beyond the gaming

environment. The sensor contains a range chipset technology which was developed

by Israeli developer PrimeSense. PrimeSense, used an infrared projector, camera and

a special microchip to develop a system that generates a grid from which the range

to a certain 3D object can be found. This is a form of structured-light sensor and

they call it light coding, which employs a type of image-based 3D reconstruction. The

light coding, process codes the scene with near-IR light i.e. scatters the IR light par-

ticles onto the scene, light that returns distorted depending upon where things are.

The solution then uses a Complementary Metal-Oxide Semiconductor (CMOS) image

sensor to read the coded light back from the scene using triangulation algorithms and

extracts the 3D data.
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Figure 2.2: Kinect v1 components
Source: https://msdn.microsoft.com/en-us/library/jj131033.aspx

From Fig. 2.2, the parts of the Kinect v1 can been see in detail, which are

responsible for the motion capturing.

The main part of the Kinect v1 are a pair of cameras, both of which incorporate

CMOS image sensors from Aptina Imaging. The infrared camera uses the MT9M001

sensor with 5.2-micron pixels; larger pixels do well in low light and, with correct

filtering, lend themselves nicely to infrared applications. MT9M112 sensor from the

color camera provides the RGB input. Both sensors have 1.3-megapixel resolution.

PrimeSense PS1080 is the system-on-chip which controls the infrared projector, pro-

cesses inputs from the cameras and collects audio input. And the communication is

via USB 2.0 with the application processor, a Marvell product whose Aspen die mark

indecates that the PXA168a is low-power and low-cost component. Kinect v1 is also

equiped with a pair of Wolfson Microelectronics WM8737L stereo A/D converters,

with built-in microphone preamplifiers to accommodate the array of microphones.

The Kinect v1 also houses a MEMS accelerometer, the Kionix KXSD9, this is a part

of the tilt-control loop, which also includes the A3906 stepper and dc motor driver
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from Allegro Microsystems. Other noteworthy components include the uPD720114

USB hub controller from NEC and a pair from Texas Instruments: the TAS1020B

USB audio streaming controller and ADS7830 8-bit, eight-channel A/D converter.[37]

Kinect v1 Technical Specifications
Viewing angle 43 vertical by 57 horizontal field of view
Vertical tilt range 27
Frame rate (depth and color stream) 30 frames per second (FPS)
Audio format 16-kHz, 24-bit mono pulse code modulation (PCM)
Depth Sensor IR structured light depth sensor

Accelerometer characteristics
A 2G/4G/8G accelerometer configured for the 2G range, with a
1 accuracy upper limit.

Table 2.1: Kinect v1 specifications
Source : https://msdn.microsoft.com/en-us/library/jj131033.aspx

2.3 Time-of-Flight Sensors

Time-of-Flight refers to the time that an object, particle or acoustic, electro-

magnetic or other wave needs to travel a distance through a medium. The time

measured as mentioned can be used for a time standard as a way to measure velocity

or path length through a given medium. A time-of-flight camera is a range imaging

camera system that resolves distance based on the known speed of light, measuring

the time-of-flight of a light signal between the camera and the subject for each point

of the image. The time-of-flight camera is a type of LiDAR, in which the work space

is captured with each laser or light pulse.

Principle

The time-of-flight generally works by actively illuminating the work area using near

infrared intensity-modulated, periodic light. Due to the distance between the camera

and the object and known speed of light, a time shift is caused in the optical signal

which is equivalent to a phase shift in the periodic signal. This shift is detected in
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each sensor pixel. This time shift is transformed into the sensor-object distance as

the light has to travel the distance twice.

Figure 2.3: Principle behind Time-of-Flight technology
Source: https://www.stemmer-imaging.co.uk/en/knowledge-base/cameras-3d-time-

of-flight-cameras/

Applications

Time-of-Flight sensors are very popular class sensors which have numerous applica-

tions in the current time-line. These sensors find an important place in the field of

robotics. They are used in the mobile robots for obstacle avoidance problems. They

have been used to study the Earth’s surface topography. Gaming is another major

industry that uses this technology for motion capture and augmented reality gaming.

These time-of-flight cameras are installed in vehicles to avoid collisions with pedes-

trians. These sensors play a key role in the advancement of machine vision.

Kinect v2

After the success of Kinect v1, Microsoft came out with an improved motion cap-
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ture system for its Xbox One line of consoles for gaming. Kinect 2.0 or also referred

to as Kinect v2 was released in 2013. Microsoft changed the core technology from

structured light sensor by PrimeSense to a time-of-flight sensor. The new Kinect is

found to be more accurate and has better depth measurements. It has a wider field

of vision. This system can track without visible light instead uses an active IR sensor.

Figure 2.4: Kinect v2 components
Source: https://www.physio-

pedia.com/The emerging role of Microsoft Kinect in physiotherapy
rehabilitation for stroke patients

From Fig. 2.4, It can be observed that there is a distinct difference in the design

and hardware construction of Kinect v2 from Kinect v1. The new Kinect v2 does not

have a motor driven base instead, the angle of tilt must be adjusted manually. This

is because the Kinect v2 has a wider field of view hence does not require to shift itself

to focus the objects in the work space. Kinect v2 has an full HD, RGB camera along

with IR emitters and a depth sensor. It is equipped with an array of microphone for

audio inputs.
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Kinect v2 Technical Specifications
Viewing angle 70 horizontal & 60 vertical field of view wide-angle lens
Vertical tilt range 27
Frame rate (depth and color stream) 19201080 (AKA 1080p) 30 fps 16:9 camera
Audio format 4 microphone array operating at 48 kHz
Depth Sensor IR (infrared) TOF (Time-Of-Flight) depth sensor for 3D tracking
Accelerometer characteristics Non-motorised manually hand-adjustable-only tilt

Table 2.2: Kinect v2 specifications
Source : http://123Kinect.com/everything-Kinect-2-one-place/43136/

By comparing the technical specifications of Kinect v1 and Kinect v2, it is

clear that Kinect v2 is far more accurate in range measurements and motion capture.

People have proved by various experiments the advantages of Kinect v2 as seen in [38].

This thesis uses both the generation of sensors since they represent two different and

unique category of sensor technologies, namely structured light and time-of-flight.
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CHAPTER 3

Data Acquisition

3.1 ROS

Robot Operating System (ROS) is not an operating system but rather a set

of robotics software frameworks which provides services designed for heterogeneous

computer cluster such as hardware abstraction, low-level device control, implementa-

tion of commonly used functionality, message-passing between processes, and package

management. ROS is a low latency framework but real-time code can be integrated.

In [39] it can be seen how ROS is incorporated for visual SLAM in an indoor

environment. ROS plays an important role in this thesis work. The range mea-

surements from the sensors via low latency framework is obtained using ROS. ROS

heterogeneous computer cluster capability is key for this research work. Each of the

sensors is considered as a separate node which is connected to a single unique master

node. All the nodes and the master node in ROS are connected via a single common

Wifi connection. The Kinect sensors being used can interact with windows by us-

ing the Kinect SDK provided by Microsoft for developers but since ROS is not fully

supported in Windows, Windows operating system was not used for this work. ROS

is fully supported in Linux, hence the Ubuntu 16.04 LTS which is a distribution of

Linux is used. But there is no SDK by Microsoft for Ubuntu. There are alternative,

open-source software packages which are available on Ubuntu for interacting with the

Kinect sensors. Openni Kinect, wraps the OpenNI “natural interaction” drivers, as

well as higher level libraries like skeleton and gesture tracking. This driver is officially

supported by PrimeSense, has great performance, and provides the full capabilities
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of the sensor, including in-sensor registration for RGB and depth (no calibration re-

quired), support for different depth and RGB resolutions, and full audio support [40].

To access Kinect v1, openni launch file must be launched in ROS and for this

to work, two packages must be installed. First is OpenNI 1.5.4 and then secondly

a sensor module to access the Kinect sensor, SensorKinect. The launch file creates

nodelet grph to transform raw data from the device driver into suitable products for

processing and visualization [41].

In order for Kinect v2 to interface with ROS, a ROS package must be installed

and setup called iai kinect2. It contains a collection of tools and libraries required

to receive data from the Kinect v2 sensor for robotics application. It comes with a

calibration tool for calibrating the IR sensor of the Kinect One to the RGB sensor

and the depth measurements, along with a library for depth registration and a soft-

ware bridge between libfreenect2 [42] and ROS. libfreenect2 is the driver for Kinect

for windows v2 devices. The driver supports RGB, IR and depth image transfer

and registration of RGB and depth images. Since image processing is tedious for

the computer’s processor, some of this load can be allocated to the GPU via GPU

acceleration by installing OpenCL and CUDA for a Nvidia GPU.

For visualization purposes, a ROS package, rviz is used in this work. It pro-

vides camera output, point cloud output and depth points in a intuitive graphic user

interface. This is important since it displays to the users what the Kinect cameras

can see and what is their field of view.
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Figure 3.1: Rviz used for visualization

3.2 Augmented Reality Package

There are numerous methods to achieve object detection and tracking. Most

of these methods are based on complex algorithm for stereo vision camera setup. It

makes sense to go this route when the focus is on characterizing the object since it

is important in an obstacle avoidance scenario where determining what the object is,

helps the robot maneuvering. In this thesis work, focus is on the position estimation

and not on obstacle avoidance algorithm. For position estimation, it is important to

continuously have a good detection rate of the object being tracked. This is achieved

by using unique augmented reality marker tags.

Augmented Reality (AR) is a technique of superimposing virtual objects in

the user’s view of the real world. ALVAR is a set of SDKs and products that help

create augmented reality applications. The ALVAR SDK is capable of creating AR

applications with the most accurate, efficient and robust implementation for markers,

multi marker based tracking. ALVAR core contains a low-level AR toolkit and fast

marker detector which is key for this research work.
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ar track alvar is a ROS package which is essentially a ROS wrapper for ALVAR.

The main functions of this package are:

• It generates the AR tags of varying size, resolution, and data/ID encoding.

• Identifying and tracking the pose of individual AR tags, optionally integrating

Kinect depth data (when a Kinect is available) for better pose estimates.

• Identifying and tracking the pose of “bundles” consisting of multiple tags. This

allows for more stable pose estimates, robustness to occlusions, and tracking of

multi-sided objects.

ALVAR is adept at handling a variety of lighting conditions, optical flow based

tracking for more stable pose estimation. This tag identification method does not

effect the identification time also when the number of tags increases.

This package is capable of handle both individual tags as well as multiple tags

bundled together. There are 18 predefined unique markers which are 4.5 cm squares.

The package provides options to generate other unique markers with different ID

numbers, border widths and size. It is possible to identify and track the poses of mul-

tiple AR tags that are each considered individually. A node called individualMarkers

is created. This individualMarkers node assumes that a Kinect is being used as the

input device, so that depth data can be integrated for better pose estimates.
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Figure 3.2: Individual markers visualized in rviz
Source : http://wiki.ros.org/ar track alvar

Sometimes it is advantageous to treat “bundles” of multiple tags as a single

unit. For example, this can allow for the estimation of the pose of a many-sided

object, even when some of the tags cannot be seen. It can also lead to more stable

pose estimates and provide robustness to occlusion. In order to bundle the tags, first

a master tag must be chosen. A tag bundle is defined by an XML file that lists a set

of tag IDs and their positions relative to a “master” tag. The coordinate system for

the rest of the tags is defined by the master tag.
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Figure 3.3: Multiple markers bundle visualized in rviz
Source : http://wiki.ros.org/ar track alvar

In Fig. 3.3 the bundled tags are visualized as green where as the other individual

markers are visualized as red. This helps in demarcating the positive tags for pose

estimation.
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CHAPTER 4

Motion Tracking

4.1 Triangulation

In trigonometry and geometry, triangulation is the process of determining the

location of a point by forming triangles to it from known points. Triangulation is a

very popular technique used in optical 3D measuring systems. Triangulation today

is used for many purposes, including surveying, navigation, metrology, astrometry,

binocular vision, model rocketry and gun direction of weapons. This technique has

been in use from a very long time. History has recorded the Greek philosopher Thales

using similar triangles to estimate the height of the pyramids of ancient Egypt in the

6th century BC.

To determine the position of the mobile robot in its environment, two different

coordinates systems (or) frames need to be defined.

• Inertial Coordinate System: This coordinate frame is fixed in the environment

or the plane in which the mobile robot traverses. It is denoted by {XI , YI , ZI}

• Body Coordinate System: This coordinate frame is fixed to the robot and it

moves along with the robot. This frame denoted by {Xb, Yb, Zb}.

For the derivation of the triangulation solution, the Inertial and body frame are

assigned as shown in Fig. 4.1,

• Inertial frame is attached with XI pointing towards local East, YI pointing

towards local North, ZI going up.

• Body frame is attached with Xb pointing robots right side, Yb pointing towards

robots forward direction, Zb going up.
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Figure 4.1: Frames for triangulation

The concept of triangulation to estimate the position of the marker can be

visualized from Fig. 4.1. Here d1 and d2 are the two range measurements from

the two distinct sensors. Since the distance between the sensors is constant and is

known before hand, the triangle relationship is setup. The measurement d1 is from

Kinect v1 and measurement d2 is from Kinect v2. These outputs are in the inertial

coordinate frame described above since the frame transformations are taken care of

by the ar track alvar package so the angles are not computed explicitly. d1 and d2

are range measurements, which mathematically implies,

d1 =
√

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 (4.1)

d2 =
√

(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 (4.2)

The terms x, y and z represented in the Eq. 4.1 & Eq. 4.2 is the estimated

position of the robot with respect to the origin in the inertial coordinate frame. The
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{X1, Y1, Z1} and {X2, Y2, Z2} are the position of the sensors in the inertial coordinate

frame.

4.2 Analytic Method

In the previous section, it is established that triangulation solution will yield

the position estimate of the robot when in motion which is required. The problem is

setup as 3 unknowns namely x, y, z but there are only two equations, Eq. 4.1 & Eq.

4.2. This is not solvable analytically using only range measurement from two sensors,

hence an assumption is made that z = 0. This indicates that the solution obtained

from the analytic method always considers the markers to be on the same plane as

the inertial coordinate system defined. By considering the following assumption, the

Eq. 4.1 & Eq. 4.2 simplify to become,

d1 =
√

(X1 − x)2 + (Y1 − y)2 + Z2
1 (4.3)

d2 =
√

(X2 − x)2 + (Y2 − y)2 + Z2
2 (4.4)

By squaring the equations on both the RHS and LHS,

d2
1 = (X1 − x)2 + (Y1 − y)2 + Z2

1 (4.5)

d2
2 = (X2 − x)2 + (Y2 − y)2 + Z2

2 (4.6)

The Eq. 4.5 & Eq. 4.6 are solved for x and y using symbolic toolbox in MAT-

LAB, which yields the following result that is present the appendix A, the result is

used in a simulink file to estimate the x and y position of the marker in the inertial

coordinate frame with respect to the origin.
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The analytic approach is very accurate but always requires two measurement

data to compute the solution. This creates a problem when the marker is not detected

by one of the sensors and when one of the sensor is not accessible for a brief period

of time. A sequential state estimator can solve these issues.

4.3 Extended Kalman Filter

Kalman filtering, a type of sequential state estimator, is an algorithm that

uses a series of measurements observed over time, containing statistical noise and

other inaccuracies, and produces estimates of unknown variables that tend to be

more accurate than those based on a single measurement alone, by estimating a joint

probability distribution over the variables for each time-frame. The Kalman filter

has numerous applications in technology. A common application is for guidance,

navigation, and control of vehicles, particularly aircraft and spacecraft. The algorithm

is a two-step process. In the prediction step, the Kalman filter produces estimates of

the current state variables, along with their uncertainties. Once the next measurement

is obtained, these estimates are updated using a weighted average, with more weight

being given to estimates with higher certainty and a optimal gain called kalman gain

is computed and added to the estimate to reduce the error. The algorithm is recursive.

It can run in real time, using only the present input measurements and the previously

calculated state and its uncertainty matrix.
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Model
ẋ(t) = F (t)x(t) + B(t)u(t) + G(t)w(t),w(t) ∼ N(0, Q(t))

ỹ(t) = H(t)x(t) + v(t),v(t) ∼ N(0,R(t))

Initialize
x̂(t0) = x̂0

P0 = E{x̃(t0)x̃T (t0)}
Gain K(t) = P (t)HT (t)R−1(t)

Covariance
Ṗ (t) = F (t)P (t) + P (t)F T (t)

−P (t)HT (t)R−1(t)H(t)P (t) + G(t)Q(t)GT (t)

Estimate
˙̂x(t) = F (t)x̂(t) + B(t)u(t)

+K(t)[ỹ(t)−H(t)x̂(t)]

Table 4.1: Summary of Continuous-Time Linear Kalman Filter

The continuous time model linear kalman filter is summarized in the Table

4.1. First, initial conditions for the state and error covariances are given. Then, the

gain K(t) is computed with the initial covariance value. Next, the covariance and

state estimate are numerically integrated forward in time using the continuous-time

measurement ỹ(t) and known input u(t). The integration of the state estimate and

covariance continues until the final measurement time is reached. The detailed deriva-

tion for each of the equations is present in [43].

Most physical dynamic systems involve continuous-time models and discrete-

time measurements obtained from sensors. Therefore, the system model and mea-

surement model are given by

ẋ(t) = F (t)x(t) + B(t)u(t) + G(t)w(t) (4.7)

ỹk = Hkxk + vk (4.8)

In this work, the measurement is non-linear in nature hence a non-linear dy-

namic model must be incorporated. For these non-linear model problems, a filter

called Extended Kalman Filter is the most popular solution. The EKF, though not

precisely “optimum”, has been successfully applied to many nonlinear systems over

the past many years. The fundamental concept of this filter involves the notion that
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the true state is sufficiently close to the estimated state. Therefore, the error dy-

namics can be represented fairly accurately by a linearized first-order Taylor series

expansion. Consider the first-order expansion of h(x(t), t) about some nominal state

x̄(t):

h(x(t), t) ≈ h(x̄(t), t) +
∂h

∂x

∣∣∣∣
x̄(t)=0

[x(t)− x̄(t)] (4.9)

In the EKF, the current estimate is used for the nominal state estimate, so that

x̄(t) = x̂(t).

Model
ẋ(t) = f(x(t),u(t), t) + G(t)w(t),w(t) ∼ N(0, Q(t))

ỹk = h(xk) + vk,vk ∼ N(0,R(t))

Initialize
x̂(t0) = x̂0

P0 = E{x̃(t0)x̃T (t0)}

Gain

Kk = P−
k HT

k (x̂−
k )
[
Hk(x−

k )P−
k HT

k (x̂−
k ) + Rk

]−1

Hk(x̂−
k ) ≡ ∂h

∂x

∣∣∣∣
x̂−
k

Update
x̂+
k = x̂−

k + Kk

[
ỹk − h(x̂−

k )
]

P+
k =

[
I −KkHk(x̂−

k )
]
)P−

k

Propagation

˙̂x(t) = f(x̂(t),u(t), t)

Ṗ (t) = F (t)P (t) + P (t)F T (t) + G(t)Q(t)GT (t)

F (t) ≡ ∂f
∂x

∣∣∣∣
x̂(t),u(t)

Table 4.2: Summary of Continuous-Discrete Extended Kalman Filter

The detailed derivation for each of the equations in the Table 4.2 is present in

[43]. There are two system dynamics models which this work focuses on, the constant

velocity model and the constant acceleration model.

4.3.1 Constant Velocity

The constant velocity model for the motion of the marker is described as

ẋ = Fx + Gw (4.10)
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where,

F =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


G =



0 0

0 0

1 0

0 1


and the states of the model is proposed as

x =

[
x y ẋ ẏ

]T
(4.11)

The measurement model is a non-linear range measurement model proposed as

y =

√(x1 − x)2 + (y1 − y)2 + z2
1 + v1√

(x2 − x)2 + (y2 − y)2 + z2
2 + v2

 (4.12)

The Jacobian necessary for the EKF is computed by taking the partial derivative of

the measurement equation Eq. 4.12 with respect to each of the states mentioned in

Eq. 4.11. This yields the following H matrix

H =

 −(x1−x)√
(x1−x)2+(y1−y)2+z21)

−(y1−y)√
(x1−x)2+(y1−y)2+z21

0 0

−(x2−x)√
(x2−x)2+(y2−y)2+z22

−(y2−y)√
(x2−x)2+(y2−y)2+z22

0 0

 (4.13)

The states of the dynamic model given in Eq. 4.11 is propagated in time along

with the Jacobian in Eq. 4.13 is coded in a MATLAB function block in simulink as

explained in the next chapter.

4.3.2 Constant Acceleration

The constant acceleration model for the motion of the marker is described as

ẋ = Fx + Gw (4.14)
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where,

F =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


G =



0 0

0 0

0 0

0 0

1 0

0 1


and the states of the model is proposed as

x =

[
x y ẋ ẏ ẍ ÿ

]T
(4.15)

The measurement model is a non-linear range measurement model proposed as

y =

√(x1 − x)2 + (y1 − y)2 + z2
1 + v1√

(x2 − x)2 + (y2 − y)2 + z2
2 + v2

 (4.16)

The Jacobian necessary for the EKF is computed by taking the partial derivative of

the measurement equation Eq. 4.16 with respect to each of the states mentioned in

Eq. 4.15. This yields the following H matrix

H =

 −(x1−x)√
(x1−x)2+(y1−y)2+z21)

−(y1−y)√
(x1−x)2+(y1−y)2+z21

0 0 0 0

−(x2−x)√
(x2−x)2+(y2−y)2+z22

−(y2−y)√
(x2−x)2+(y2−y)2+z22

0 0 0 0

 (4.17)

The states of the dynamic model given in Eq. 4.15 is propagated in time along

with the Jacobian in Eq. 4.17 is coded in a MATLAB function block in simulink as

explained in the next chapter.

29



CHAPTER 5

Experimental Setup

5.1 Components

For this work there is a set of hardware in combination with a specific config-

uration of software to support and run the thesis objectives. The overall hardware

setup can be visualized from Fig. 5.1.

Figure 5.1: Hardware setup

The setup seen in Fig. 5.1 is one of the possible configurations, where the two

sensors are at 90◦ to each other. The white cross on the right side is the origin in the

inertial coordinate frame. The blue box represents the active work-space of the two

30



sensors in this current configuration. This work-space will change with a different

configuration of the sensors.

5.1.1 Workstation

Workstation is the primary computer which is used in this research work to

compile and execute the core algorithms pertaining to the position estimation of the

robot. This runs an Intel i5 processor coupled with a 4 Gb Nvidia graphics card along

with 16 Gb of RAM and a 1 Tb hard-disk. The operating system used here is a Linux

distribution, Ubuntu 16.04 LTS.

Figure 5.2: Microsoft Kinect One or Kinect v2
Source : https://en.wikipedia.org/wiki/Kinect

The time-of-flight principle based sensor used for this work is the Microsoft

Kinect One, seen in Fig. 5.2. This is connected to the workstation via a USB 3.0

port. Kinect v2 is always required to be connected to a USB 3.0 controller since
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USB 2 is not supported by the libfreenect2 driver. The USB connector required to

connect the Kinect v2 and computer is a special device manufactured by Microsoft,

seen in Fig. 5.3. The sensor is powered by a standard AC power outlet. The USB is

dedicated only for the transfer of data.

Figure 5.3: Microsoft Kinect One or Kinect v2
Source :

https://www.xbox.com/en-US/xbox-one/accessories/Kinect/Kinect-adapter

5.1.2 Laptop

Laptop is used in this research for the mobility that it provides to test the

algorithm in various scenarios and to prevent the overburden on a single computing

device. This modular approach is used to demonstrate that any number of sensors

can be used to obtain the range measurement data in conjunction to provide more

data for a more precise position estimate. Laptop acts as a node in the ROS network,

which is explained in detail in the next section of this chapter. This runs an Intel i7

processor coupled with a 4 Gb Nvidia graphics card along with 12 Gb of RAM and

a 1 Tb hard-disk. The operating system used here is a Linux distribution, Ubuntu

32



16.04 LTS.

The structured light principle based sensor used for this work is the Microsoft

Kinect 360, seen in Fig. 5.4. This is connected to the laptop via a USB port. The

sensor is powered by a standard AC power outlet. The USB is dedicated only for the

transfer of data.

Figure 5.4: Microsoft Kinect 360 or Kinect v1
Source : https://msdn.microsoft.com/en-us/library/hh438998.aspx

5.2 Software and Network Setup

There are certain software and drivers which must be installed on each of the

computing device interfacing with the sensors. All the computing devices must be

running the Ubuntu 16.04 LTS operating system. Next, the robot operating system

ROS must be installed. Here all systems are equipped with Kinetic Kame distribution

of ROS. Using other versions of Linux and ROS might cause compatibility issues with

the drivers installed for the sensors.

Once the ROS is installed, drivers must be installed to interface with the sen-

sors. For the Kinect v1, openni launch and openni camera packages for ROS must

be installed. This is the primary driver to interface with the sensor. Rviz, which

is a visualization software must be installed as well. Next AR Track Alvar must be

installed. This is the key package which is responsible for the marker detection and
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pose measurement frame transformations.

For Kinect v2, libfreenect2 package must be installed along with OpenCL,

CUDA for Nvidia graphic cards, VAAPI and OpenNI2. These are the libraries upon

which the Kinect v2 driver is built. Next, iai kinect2 must be installed, this is the

Kinect v2 driver. MATLAB and Simulink 2017a is installed. All the above mentioned

drivers and supporting software must be installed correctly in each of the computing

systems.

Once all the relevant drivers and sofware are installed, kinects should be tested.

In different terminals, the following must be running,

• roscore

• roslaunch openni launch openni.launch

• roslaunch kinect2 bridge kinect2 bridge.launch

• rosrun rviz rviz

Within rviz:

Add a pointcloud2 display with the topic: /camera/depth/points or

/camera/depth registered/points

Set the fixed frame to /camera depth optical frame
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Figure 5.5: Kinect Test

From Fig. 5.5, it is confirmed that the Kinect is interfacing with ROS correctly.

Next the tracker package is launched. In separate terminals the following commands

are launched which creates two distinct ROS nodes.

• For Kinect v1

roslaunch ar track alvar pr2 indiv.launch marker size:=9 max new marker

error:=0.1 max track error:=0.3 cam info topic:=/camera/rgb/camera info

cam image topic:=/camera/depth registered/points output frame:=

camera rgb optical frame

• For Kinect v2

roslaunch ar track alvar pr2 indiv.launch marker size:=9 max new marker

error:=0.1 max track error:=0.3 cam info topic:=/kinect2/qhd/camera info

cam image topic:=/kinect2/qhd/points output frame:=/kinect2 rgb

optical frame
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The inputs given in the commands above define the ar tag width, calibration of the

camera and the transform frames.

Figure 5.6: Kinect Test with tracker package activated

Fig. 5.6, the tags can be distinctly visualized. Since there are multiple files

which must be launched simultaneously in-order to achieve all these functionality,

two shell scripts, one for each of the kinects, were created which encapsulates all the

launch files in one single executable file. They are,

• launch k1.sh

• launch k2.sh

The ROS network is setup at this stage. The roscore command is initiated on the

workstation, making it the ROS master node. The IP addresses of the master node is

exported along with the port number. On the latop, which must be on the same Wifi

network, exports its IP address as well. This creates the communication between the

workstation, the ROS master node and laptop, a ROS node. This grands access to all

the topics being published in the ROS network to the workstation, which means that

it can access the range measurement from Kinect v1 which is connected to the laptop.

One of the hassles is that this exporting of IP address must be done for each new

terminal opened to continue communications. To avoid this issue, a generic code[44]

for exporting IP address is embedded in the two shell scripts. This automatically
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creates the network and sets up the communication.

This data from ROS must be accessed in MATLAB and Simulink. MATLAB

and Simulink have in-built support for ROS messages via the ROS Toolbox. But the

messages published from the AR Track Alvar is not supported in MATLAB, hence

the message is converted to a custom message which is supported in MATLAB. This

is achieved via a python script which runs in the background, converting all the mes-

sages to a suitable format. This republisher.py file is also included in the launch k2.sh

shell script which is executed on the workstation.

Figure 5.7: Simulink Block diagram for the analytic approach
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Figure 5.8: Simulink Block diagram for the EKF approach

Fig. 5.7 & Fig. 5.8, shows the simulink block diagram, which is developed to

compute the position estimate and motion tracking of the marker which the focus of

this research. The ROS Subscriber blocks are used to receive the data, then using the

selector block, only the depth measurement is extracted. This depth measurement is

checked to make sure that the data it contains is reliable i.e. the data is not NaN,

which can affect the robustness of the estimation code. The reliable data is sent

to the MATLAB function block. The analytical MATLAB function block contains

the analytical solution equations mentioned in the previous chapter along with the

sensor positions which must be defined by the user. The analytical MATLAB function

block contains the analytical solution equations mentioned in chapter 4 along with

the sensor positions which must be defined by the user. The EKF MATLAB function

block contains the extented kalman filtering algorithm equations mentioned in chapter

4 along with the sensor positions which must be defined by the user. The output

from these MATLAB function blocks are segregated using a demux and the x and y

coordinated of the markers are displayed in real-time and also stored in the MATLAB

work-space for analysis of the output. For multiple object tracking, one more layer of
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check is created as shown in Fig.5.9 and the rest of the algorithm is consistent with

the EKF MATLAB function block. Here the outer layer check, separates the range

measurement data with respect to the unique marker ID. Then the following streams

of data are fed to the marker tracking subsystems. Each of the subsystem contains

the EKF MATLAB function block, which estimates the position of that marker ID.

Figure 5.9: Simulink Block diagram for Multiple marker tracking

There are two models proposed for the Extended Kalman Filter and the flow of

data from the sensor to the EKF algorithm to the output is clearly seen in Fig. 5.10,

for the velocity model and Fig.5.11, for the acceleration model.
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Figure 5.10: Data flow for Velocity model in Extended Kalman Filter method

Figure 5.11: Data flow for Acceleration model in Extended Kalman Filter method
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5.3 Calibration

In most sensors, calibration is key to obtain accurate data. Since the Kinects

are a cluster of sensors, they must be calibrated. The openni camera driver provides

default camera models out-of-the-box with reasonably accurate focal lengths (relat-

ing 3D points to 2D image coordinates). They do not model lens distortion, but

fortunately the Kinect uses low-distortion lenses, so even the edges of the image are

not displaced by more than a few pixels. The openni launch file executed, then the

following command is executed in a terminal,

rosrun camera calibration cameracalibrator.py image:=/camera

/rgb/image raw camera:=/camera/rgb –size 5x4 –square 0.0245

The above command calibrates the RBG camera and the IR image of Kinect v1 using

the checkerboard. This data is saved in camera info, which is retrieved when the

ar track alvar node is operational. The similar procedure must be followed for cali-

bration of Kinect v2 but using the kinect2 calibration in the kinect2 Bridge driver.

Both use the same checkerboard as shown in Fig. 5.12.
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Figure 5.12: Checkerboard for sensor calibration
Source :

http://library.isr.ist.utl.pt/docs/roswiki/camera calibration(2f)Tutorials(2f)
StereoCalibration.html

This calibration process is not entirely necessary since OpenNI is fairly accurate

out-of-the-box for most applications. This calibration is performed only for very high

accuracy of the sensors.

5.4 Marker

The markers are created by running the built-in artrack package using the fol-

lowing command

rosrun ar track alvar createMarker

Then by following the prompt, the new marker can be generated as per the user

specifications. The user can set the marker id number and other options if needed.
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The 9x9 cm tags track nicely, any smaller dimension marker only work with close

proximity to the Kinect (i.e. less than 1 meter). The pr2 indiv.launch package can

track multiple tags at once. The pr2 bundle.launch package is used to define a rigid

body. The markers are all on the same page with a master tag defined and the others

have a fixed (x,y) position from the master tag. This allows for orientation to be

tracked as well.

Figure 5.13: Augmented Reality package marker ID 0
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CHAPTER 6

Experimental Results

6.1 Sensor Characterization

The first step is characterize the sensors being used for this research. There are

two sensors used: Kinect v1 and Kinect v2. Both sensors operate on two distinct

technologies hence they are characterized separately.

6.1.1 Horizontal field of view

The purpose of this experiment is to determine the horizontal field of view of each of

the sensors and to obtain the maximum range of the sensor.

Figure 6.1: Horizontal field of view experimental setup

The two sensors are setup as shown in Fig. 6.1. The sensors are on a parallel plane

to the base. This experiment was conducted by fixing the position of the sensor and

mounting the marker on the back rest of the chair. The chair was moved from close
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to the sensor, slowly moving away from the sensor in a straight line.
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Figure 6.2: Plot of Horizontal field of view

From Fig. 6.2, It can be seen that both the sensors have a range of 2.5m. But

the accuracy starts reducing after about 1.7m for both the sensors. The disturbance

see after 40sec is because after 1.7m the kinects can no longer effectively detect the

marker. The maximum detectable range of the marker was found to be 2.5m and the

minimum detectable range is

6.1.2 Work-space

The purpose of this experiment is to determine the effective work space of each of the

sensors.
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Figure 6.3: Effective work space of sensor

For this experiment, the sensor was places as height of 30” from the ground. The

marker was physically moved along the floor until the kinects could no longer detect

the marker ID. Fig. 6.3 was obtained when the boundary was earmarked.

The work space was found to be a trapezoid. The length of the short side was found

to be 38” and the long side 70”. The height was found to be 40”. This result helps

in determining the number of sensors and nodes required to cover a certain space for

the position estimation of the marker.

6.1.3 Sensor Tilt

The purpose of this experiment is to determine the angled field of view of each of the

sensors since both the sensors are equipped with a adjustable base.
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Figure 6.4: Setup for angled field of view sensor

The base of the Kinect v1 was set at specific angles and the maximum and minimum

range measurement for the marker was found. The marker was place flat on the floor

as seen in the setup Fig. 6.4.

These were the maximum and minimum distances from the sensor at various fixed

angles,

At 18◦,

• Minimum Range = 0.96m

• Maximum Range = 1.65m

At 36◦,
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• Minimum Range = 1.03m

• Maximum Range = 2.06m

At 54◦,

• Minimum Range = 1.17m

• Maximum Range = 2.10m

At 72◦,

• Minimum Range = 1.33m

• Maximum Range = 2.17m

At 90◦,

• Minimum Range = 1.6m

• Maximum Range = 2.25m

This result helps to choose the angle of the sensor based on the required range for

any specific application.

6.1.4 Accuracy

The purpose of this experiment is to determine the accuracy of the range measurement

data obtained from each of the sensors.

The setup is same as the previous experiment. Here the marker was kept on the floor

and the x and y coordinates of the marker with respect the origin was found using a

measuring tape. The range data was collected in MATLAB and analyzed.
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Figure 6.5: Accuracy of the range measurement

As it can be seen from the Fig. 6.5a, range data varies at from 1.212m to 1.217m

and from Fig. 6.5b, range data varies from 1.214m to 1.216m which is a very small

error. The correct mean value was 1.215m and the plot also verifies that the mean

range measurement from the sensor was 1.2149m. The data points from Kinect v2

are observed to be more repeatable. The mean, variance and standard deviation of

the depth measurements can be seen in Table. 6.1.

Sensor Kinect v1 Kinect v2
Mean, m 1.2149 1.2150
Variance, m2 4.3545E − 07 4.5833E − 08
Standard Deviation, m 6.5988E − 04 2.1409E − 04

Table 6.1: Statistical Data for the two range measuring devices

6.2 Frequency of messages

The sensors output at a certain frequency. It is important to determine this

frequency to properly handle the messages which are published and subscribed by the

ROS node. Synchronizing the publisher and subscriber is crucial for the robustness of

the position estimation algorithm. In order to find the frequency, the rosbag feature

49



of ROS was utilized. Rosbag stores the data from the topic specified i.e. it records all

the messages for a certain amount of time. This data can be played back to analyze

the data. After recording the data for a time period of 20secs and playing back the

data, the frequency of the messages received by the publisher was found to be 16Hz.

Figure 6.6: Use of rosbag feature of ROS

6.3 Results from Analytic Method

Once the sensors are characterized precisely, the position tracking problem is

tackled. The analytic solution obtained in the previous chapter is incorporated in a

MATLAB function block. The flow of data is described in Fig. 6.7. The time for

simulation is set to inf and a real time pacer block is used to synchronize the simulation

time and the system clock for a precise and close to real-time implementation.
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Figure 6.7: Data flow for analytic solution method

1. Position estimation when the robot is stationary.

The marker is placed inside the work-space and the tracking algorithm is ex-

ecuted. The analytic solution is computed in real time and outputs the position

coordinates. The following plot was observed as seen in Fig. 6.8
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Figure 6.8: Analytical Method Solution for static case

From the Fig. 6.8, it can be seen that the x position is computed to be 0.03m

and y position is 1.15m. This was verified with a tape measure. Hence it can be

concluded that the analytic solution provides accurate position estimate for stationary

conditions.

2. Position estimation when the robot is in motion.

The marker is moved within the work-space and the tracking algorithm was

executed. The marker was moved in a certain trajectory. The analytic solution is
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computed in real time and outputs the position coordinates. The following plot was

observed as seen in Fig. 6.9
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Figure 6.9: Analytic solution for motion of robot

From the Fig. 6.9, it can be seen that the positions are tracked really well. The

marker was moved in the y direction from 0.9732m to 0.9285m. This was verified

with a tape measure. Hence it can be concluded that the analytic solution provides

accurate position estimate for dynamic conditions.
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6.4 Results from the Extended Kalman Filter Approach

The Extended Kalman Filter is implemented to obtain the static and dynamic

position estimate for the robot. The EKF is coded in MATLAB and simulink using

the depth data obtained from the two sensors. The flow of the data and computation

is well understood from flowchart seen in Fig. 6.10. The check block evaluates whether

the data received is valid before using it for filter computation.

Depth 
data from
Kinect v1

Depth
data from
Kinect v2

X
Position

Y
Position

MATLAB function
Block with

Analytic Solution

Check
for

Quality
of data

Figure 6.10: Data flow for Extended Kalman Filter method
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1. Simulation

The first step in evaluation of the filter algorithms is to verify the robustness of

the filter using synthetic measurement data. Here the static robot depth measurement

data is used to run the filter. The following plots were obtained as seen in Fig. 6.11
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Figure 6.11: x and y position estimation using EKF

From the Fig. 6.11, it is observed that the X position and Y position errors are within

their 3-sigma bounds and the error magnitude is less than 0.03m. This is desirable

for a filter.

2. The experiment was conducted to estimate the position of the robot when stationary

and to compare between Analytic Method and EKF Method.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm and the analytic solution algo-

rithm were executed. The static position estimates were obtained and plotted hence,

as seen in Fig. 6.12 & Fig. 6.13.
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Figure 6.12: X position Comparison between Analytic Method and EKF Method
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Figure 6.13: Y position Comparison between Analytic Method and EKF Method
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From the plots seen in Fig. 6.12 & Fig. 6.13, it is clear that the filter does a com-

mendable job in estimating the position accurately in comparison with the analytic

solution. It is also observed that the filter corrects the initial guess error within 2secs,

which is highly desirable. This estimate from the filter and the analytic solution was

further compared to the truth, which was found with the help of a tape measure.

True x position was 0.1625m and true y position was 1.015m. The results were found

to be really good with a maximum error of 11mm.

3. The experiment was conducted to estimate the position of the robot when stationary

and to compare the results when the sensor is place at a different location.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm was executed. The data was

collected and the same experiment was repeated by changing the sensor position of

Kinect v2 to a new location and the sensor location data was updated in the algo-

rithm and executed. The following plots were observed as seen in Fig. 6.14

0 5 10 15 20 25 30

Time, sec

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

D
is

ta
n

ce
, m

X Position Estimates

Location 1
Location 2
True Position

(a) X position estimate

0 5 10 15 20 25 30

Time, sec

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

D
is

ta
n

ce
, m

Y Position Estimates

Location 1
Location 2
True Position

(b) Y position estimate

Figure 6.14: EKF position estimates for static robot at two sensor locations
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From the Fig. 6.14, it is clearly evident that the filter converges to the correct posi-

tion both in x and y directions, by the placing the sensor in two distinct locations.

The second sensor for the first location was placed at y = 1.608m and the second

location was y = 0.6957m. Both the locations yield the same position estimate of a

static location which is desired i.e. x = 0.405m and y = 0.9925m.

4. The experiment was conducted to estimate the position of the robot when stationary

and to compare the velocity model and the acceleration model.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm with both the velocity model

and the acceleration model were executed. The static position estimates and velocity

estimates were obtained and plotted hence, as seen in Fig. 6.15 and Fig. 6.16.
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Figure 6.15: EKF position estimates for static robot
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Figure 6.16: EKF velocity estimates for static robot

From the Fig. 6.15 and Fig. 6.16, it is clear that both, velocity and acceleration

model perform really well to estimate the x and y position of a static robot. Initially

there is an error due to the incorrect guess of the states but this is very well recti-

fied within 2secs as seen from the plots. This shows a good filter performance. The

position estimates were compared to the true position, which was found by a tape

measure. The estimated position and the true measurement have an error of 3mm.

5. The experiment was conducted to estimate the position of the robot when in motion

and to compare the velocity model and the acceleration model.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm with both the velocity model

and the acceleration model were executed. The marker was moved in different shapes.

The dynamic position estimates were obtained and plotted hence, as seen in Fig. 6.17

& Fig. 6.18.
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Figure 6.17: EKF X position estimates for robot in motion
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Figure 6.18: EKF Y position estimates for robot in motion
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From the Fig. 6.17 & Fig. 6.18, it is clear that both, velocity and acceleration model

perform really well to estimate the x and y position of a robot in motion. Initially

there is an error due to the incorrect guess of the states but this is very well recti-

fied within 2secs as seen from the plots. This shows a good filter performance. The

position estimates were compared to the true position, which was found by a tape

measure. The estimated position and the true measurement have an error of 12mm.

6. The experiment was conducted to estimate the velocity of the robot when in motion

and to compare the velocity model and the acceleration model.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm with both the velocity model and

the acceleration model were executed. The marker was moved in horizontal straight

line at 0.1m/s . The dynamic position estimates were obtained and plotted hence, as

seen in Fig. 6.19.
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Figure 6.19: EKF velocity estimates for robot in horizontal motion
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From the Fig. 6.19a and Fig. 6.19b, it is clear that the acceleration model perform

really well to estimate the velocity of a robot in motion in the x and y direction.

Initially there is an error due to the incorrect guess of the states but this is very well

rectified within 2secs as seen from the plots. This shows a good filter performance.

But the velocity model fails to estimate the velocity with any accuracy. The velocity

estimates were compared to the true position, which was found by a video time-line.

The estimated velocity and the true measurement have an error of 0.01m/s.
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Figure 6.20: Line tracking
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Figure 6.21: 1st shape tracking
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Figure 6.22: 2nd shape tracking
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From the above plots it is certain that the filter does a commendable work in tracking

the desired trajectory by estimating the robot position accurately.

6.5 Results from Multiple Object Tracking

Here two markers are simultaneously tracked and the performance of the esti-

mation algorithm is observed. There are two cases in which the filter performance is

evaluated, static state estimation and dynamic state estimation.

1. The experiment was conducted to estimate the position of two robots when station-

ary.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm was executed. The static posi-

tion estimates were obtained and plotted hence, as seen in Fig. 6.23 and Fig. 6.24.
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Figure 6.23: EKF position estimates for static robots
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Figure 6.24: EKF velocity estimates for static robots

From the Fig. 6.23 and Fig. 6.24, it is clear that EKF perform really well to estimate

the x and y position of two static robots in the same work-space. Initially there is

an error due to the incorrect guess of the states but this is very well rectified within

1sec as seen from the plots. This shows a good filter performance. The position

estimates were compared to the true position, which was found by a tape measure.

The estimated position and the true measurement have an error of 0.002m for marker

1 and 0.015m for marker 2.

2. The experiment was conducted to estimate the position of the two robots when both

of the robots are in motion.

The marker tag was placed in the work space environment. The two sensors

were placed at known locations. The EKF algorithm was executed. The marker

was moved in specified path i.e. horizontal line. The dynamic position estimates and

velocity estimates were obtained and plotted hence, as seen in Fig. 6.25 and Fig. 6.26
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Figure 6.25: EKF position estimates for multi robot motion
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Figure 6.26: EKF velocity estimates for multi robot motion

As it is observed from the Fig. 6.25 and Fig. 6.26, the algorithm does a commendable

work in estimating the position and velocity of both the robot individually in the work

space. The marker 1 was moved in a straight line in the Y direction and marker 2 was

moved in a straight line in the X direction. Both these motions are fairly accurately

tracked as seen in the Fig. 6.25 and Fig. 6.26. There is more noise in the tracking of

marker 1 but the error is small at 0.2m/s.
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Figure 6.27: Two robot motion tracked by the filter

The Fig. 6.27, shows the path traced by the two markers in real-time. These are

the estimated position obtained from the filter. This is very close to the actual path

traced.
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CHAPTER 7

Summary, Conclusions and Future Work

7.1 Summary and Conclusions

This thesis presents a position estimation technique for indoor navigation pur-

pose. The idea of using two unique range measurement sensors was proposed. Each

sensor was based on two fundamentally different working principles. This portraits

the universal and generalized requirement for the position estimation algorithm to

work with any two range measurement data streams.

The sensors were calibrated and characterized. The sensor capabilities and

bounds were determined. The time-of-flight based sensor was found to be more accu-

rate and have a further detecting range than the structured light sensor. The effective

work space for each sensor individually was found to be a trapezoid. It was found

that the position estimation is correct at any position of the two sensors as long as we

provide the algorithm the positions of the sensor and the robot is within the common

work space of both the sensors.

The analytic solution was computed for the x and y position of the robot when

two range measurements are available. This was tested by implementing the analytic

solution in a Simulink model which was capable of outputting the x and y positions in

real time. This robot tracking was tested and the results proved the accurate tracking

with a caveat that the range measurement must be always available.

In order to overcome this shortcoming, a sequential state estimator was pro-

posed. An Extended Kalman Filter was chose since the measurement model is non

linear in nature. For the system dynamic model, two models namely, constant ve-
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locity and constant acceleration model was evaluated to see which model is viable

based on the attributes being tracked and the application. It was observed that both

dynamic models estimate the position fairly accurately for a stationary robot and

when the robot is in motion. But for velocity tracking, the constant acceleration

model was found to give accurate results, which is reasonable since the velocity being

provided was not constant. Hence the constant velocity model failed but the higher

dimensional constant acceleration model was able to accurately capture this random

change in velocity.

This work was then extended to incorporate multiple robots in the same work

space and track each of them individually.It was shown that two robots can be tracked

well when both are stationary and when when one of the robot is in motion.

By inspecting all the facets, it is observed that the proposed tracking method is

effective in tracking single and multiple robots in the work space of the sensors. This

object tracking method is demonstrated to be a viable surrogate GPS for an indoor

environment. The ROS framework and the algorithm allows for additional sensors to

be incorporated in order to increase the work space for object tracking. It is shown

to be a cost effective replacement for other object tracking methods like Laser range

finders and RADARs.

7.2 Future Work

The work presented in this thesis can be used as a framework for future research

on indoor navigation problem for aerial vehicles. This work can further advance the

perception technology for unmanned vehicle systems. The position estimates obtained

from this work can be incorporated as feedback information for robots and assist in

accurate navigation. Some future progress in this work includes:
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• Addition of more sensors to encompass an entire room to be tracking capable

area.

• Use different perception sensors for better range measurement data.
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Appendix A

Analytic Solution

The sensors provide the depth measurements which are of the form Eq. A.1 &

Eq. A.2,

d2
1 = (X1 − x)2 + (Y1 − y)2 + Z2

1 (A.1)

d2
2 = (X2 − x)2 + (Y2 − y)2 + Z2

2 (A.2)

The Eq. A.1 & Eq. A.2 are solved for x and y using symbolic toolbox in
MATLAB, which yields the following result,
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In Eq. A.3 & Eq. A.4, {X1, Y 1, Z1} is the position of sensor 1 and {X2, Y 2, Z2}

is the position of sensor 2 with respect to the origin.
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