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ABSTRACT

Indexing, Querying, Prediction, and Integration for Network-constrained Moving

Object Databases

Mohammadhani Fouladgar

The University of Texas at Arlington, 2018

Supervising Professor: Ramez Elmasri

The emergence and presence of satellites and GPS devices have led to the

creation of a huge amounts of spatial and spatio-temporal data, which had significant

effects on creating new applications to analyze and mine these data. In this regard,

a lot of research has been done on moving objects databases as a part of spatial and

spatio-temporal databases. In this dissertation, we focus on those moving objects

that are not allowed to move in all directions freely, but they (almost) always are

restricted to travel on a specific network. One of the most popular example of these

moving objects are vehicles that are supposed to travel on a Road Network. This

kind of databases are called Network-constrained (or Fixed-network) Moving Object

databases. First, we formalize Network-constrained Moving Object databases, and we

come up with a Data Model, Data Schema, and Query Schema. Then, we introduce a

data structure to index these kinds of databases. We also present a Traffic Congestion

Prediction tool by using Deep Artificial Neural Network. Map Integration, Map

v



Tracking, Map Integrity are other applications in this area that we consider in this

dissertation.
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CHAPTER 1

INTRODUCTION

In this chapter, we first introduce the area of this dissertation research, known as

Moving Object Databases (MOD), and our research contributions to MOD in Section

1.1. Then, in Section 1.2, we discuss our research contribution to the area of Traffic

Congestion Prediction. Then, in Section 1.3, we give an outline of the remaining

chapters of the dissertation in Section 1.3.

1.1 Moving Object Databases (Modeling, Queries, Indexing)

The main purpose of Spatio-Temporal database systems is combining the spatial

and temporal features of data. Almost all spatio-temporal applications - such as

mobile communication systems, traffic control systems, and GIS with moving objects

- have a common basis, which is the requirement to handle both space and time

characteristics of the data [9].

With the advent of GPS and wireless devices, as well as portable computing

platforms, managing and analysis of the moving objects data are becoming a promi-

nent research area. Moving Objects Database (MOD) are a type of spatio-temporal

database that contains information about moving objects and their locations over-

time. The key difference that makes this kind of data distinguished from other kinds

is the essence of the spatio-temporal nature of this kind of data. In the other words,

the locations of moving objects, such as persons (with GPS cell phones), vehicles,

ships, and aircrafts, are intensely time-dependent. Therefore, storing and tracking

1



2
of the dynamic locations of moving objects needs a special consideration. Hence,

recently, significant research focused on the modeling of moving objects.

The moving objects are not limited to vehicles, ships, and aircrafts, rather,

hurricanes or oil spills are other instances of moving objects. However, in this work,

we consider those moving objects that move in a specific network, such road (traffic)

network in terms of vehicles. Thus, throughout this work, the phrase “moving objects”

refers to “network-constrained moving objects”.

The first step for storing, managing, tracking, and analyzing of moving objects

is modeling these data. A comprehensive data model contributes to store these data

in Moving Object Databases (MODs) such that processing on them is straightforward.

In addition, querying on moving objects data is another substantial issue that comes

in the play. For example, in a Police station database, a typical query would be to

locate a police car that is currently less than half mile from Adam’s Market Complex,

Dallas, TX (where assistance is needed). These types of queries can be requested by

a user associated with a moving object, or by a stationary user. Applications with

these characteristics are referred to as MOD applications, and the queries are known

as MOD queries [10].

Furthermore, For queries on large numbers of moving objects, a key issue would

be to have efficient indexing structures. These indexing structures, which usually use

variations of R-tree [11], assume moving objects can move freely in all directions.

However, there are many applications where the moving objects are supposed to move

in a specific fixed networks. For instance, vehicles should move in fixed road network.

These kinds of moving objects data can be indexed by a Network-Constrained index-

ing method (also called Fixed-Network indexing method). These indexing structure

typically have two layers. The upper layer R-tree indexes the Network (static spatial

data). Thus the leaf nodes in upper layer R-tree are line segments (highways, roads,
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paths, etc.). For each leaf node in the upper tree, there is an R-tree that stores and

indexes time intervals for objects moving along the line segment corresponding to

the leaf node [8, 7, 6]. Although Network-Constrained indexing methods are efficient

in responding to Spatio-Temporal queries, they usually are not efficient in answering

pure Temporal queries, which is an important type of query on Spatio-Temporal data,

or when a specific moving object id is also part of the query conditions. For example,

find the location of moving object with id of mid during a particular time period of

[ts, te]. In such cases, Network-constrained indexing methods have to scan the entire

database to retrieve the result.

In addition, The Network-constrained indexing methods are not able to answer

the Strict-path queries efficiently. This query type supports path-based analysis,

where trajectories must follow all edges in the path. In the following, we discuss our

contributions regarding Network-constrained MOD.

1.1.1 Dissertation contributions to Formalization of Network-constrained

Moving Object databases

In this contribution, we first categorize the various types of Network-constrained

moving object queries.We then propose benchmarks that can be used to compare the

performance of systems and indexing schemes that are proposed for handling these

types of queries. Network-constrained moving objects are objects that move in a

specific network, such as vehicles that are constrained to move in a road (traffic)

network.

Our query categories are based on the Network-constrained moving object

model presented by [12, 13, 8]. We formally define comprehensive categories of typi-

cal queries, based on whether the conditions involve space (point versus region), time

(point versus interval), and object id. The categories are based on the various com-



4
binations of these features. We describe the types of queries as Relational Calculus

expressions, based on the query constraints. We focus on three main constraints:

Spatial constraints, Temporal constraints, or/and moving object ID constraints. For

each types of query, we identify the types of results, and give examples to clarify the

query types. This work can define a benchmark for the performance of different types

of systems and indexes that are designed to answer queries on Network-constrained

moving objects data. Certain indexes/systems may work well for some query cate-

gories but perform poorly for other types of queries.

1.1.2 Dissertation contributions to Moving Object Databases querying

and indexing

This work describes a new Network-constrained Moving objects indexing struc-

ture, which extends the state-of-the-art for this kind of data.The indexing structure

we propose is called Temporally Enhanced Network-Constrained R-tree (TENC R-

tree), which solves the shortcomings in other Network-Constrained access methods

like the FNR-tree [7], MON-tree [6] and UTR-tree. These existing indexing meth-

ods are designed to store and retrieve the moving objects based on spatial features,

followed by their temporal ones. They are generally not efficient when a query has

only temporal constraints, or when a specific moving object id is also part of the

query conditions. In such cases, existing methods have to scan the entire database

to retrieve the result. Furthermore, the aforementioned methods are not efficient in

processing Strict-path query, which is a query type that retrieves trajectories that

follow all the edges in the queried path [14].

Our proposed TENC R-tree index allows good performance for almost all types

of queries on moving objects in a constrained network, whether the constraints are

spatial, temporal, or based on object id. Also, the TENC R-tree outperforms other
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access methods on the case of Path queries. Our experiments show the performance

has been improved by 10 to 100 times for such queries.

1.2 Traffic Congestion Prediction

Traffic congestion leads to extra gas emissions and low transportation efficiency,

and it wastes a lot of individuals’ time and a hunge amount of fuel. Diagnosing con-

gestion and building a pattern for predicting traffic congestion has been regarded

as one the most important issues as it can lead to informal decisions on the routes

that motorists take, and on expanding road networks and public transport. Re-

search to predict traffic congested spots, especially in urban areas is thus very impor-

tant.Typcally, congestion prediction can be used in Advanced Traffic Management

Systems (ATMSs) and Advanced Traveller Information Systems in order to develope

proactive traffic control strategies and real-time route guidance.[15]

In the last decades, concepts of traffic bottleneck and congestion propagation

have been considered in many studies. Although most of these originate from Civil

Engineering and Urban Transportation studies, the advent of super powerful comput-

ers and complex algorithms, traffic management and traffic flow prediction to become

an interdisciplinary study.

In this regard, there have been various efforts to predict short-term traffic flow

prediction, including mathematical equations [16, 17], simulation techniques [18], or

statistical and regression approaches. However, traffic flow is based on individuals’

decisions, which more likely can be modeled by Artificial Neural Network the best. In

other words, traffic flows are made by individuals’ decisions based on their knowledge

about currenct traffic and their experiences about past traffic flows, which can be

modeled by Artificial Neural Network. Using Neural Network for modeling traffic

flow and congestion prediction came to the picture in 1993 in [19]. This work propose



6
a network consisting of one input layer, one hidden, and one output layer. Although

this structure was proven to perform well in many applications for predicting traffic

flow and travel time and estimation, it was not efficient in lots of other, because of the

simple structure. Therefore, some research uses a Neural Network, initially, to extract

traffic flow patters (clustering), and then based on each pattern, they come up with a

proper model to predict traffic flow [20, 21, 22]. In this trend, [15] different predictors

have different performance for various particular time periods. In other words, each

predictor can have a super performance only in a particular time period. Therefore,

they combined several predictors together as module to have a better performance

for longer time periods.

The data regarding Traffic Flow and Traffic Congestion are two instances of

Spatio-temporal data. They embady a location (Spatial Feature) and a time (Tem-

poral feature). Besides, as we already mentioned, traffic flow and traffic congestion

are based on human actions [23]. In [24], the authors propose a fully automatic deep

model for human-action-based spatio-temporal data. This model first utilizes Convo-

lutional Neural Network model (CNN) to learn the spatio-temporal features. Then,

in the second part of this model, they use the output of the first step to train a recur-

rent neural network model (RNN) in order to classify the entire sequence. [24] does

not mention traffic issues as one of the possible applications of their work, however

it seems promising to make some model, which is inspired by their model, to predict

traffic flow and congestion.

Dissertation contributions to Urban Traffic Congestion Prediction

In this contribution, we try to predict the traffic flow of Traffic Network points,

where we do not have any historical data about them, based on the traffic patterns

of Traffic Network points. Therefore, our contributions are as follows:
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1. We formally define the traffic flows prediction concepts.

2. We introduce a normalized data representation, which can be used in Neural

Network algorithms, or other methods.

3. We present a Deep Convolutional Network, which can be able to learn traffic

flow of different traffic points.

4. Then, we present a Recurrent Neural Network, which, apart from its structure,

can do the same as Convolutional Network.

5. Both of these models are able to predict n-level traffic prediction for different

points of the traffic (e.g. Quiet, light traffic, heavy traffic, congested, etc.)

6. They also put up the predicted average speeds on different points of the traffic

network based on the speed limits in that point (e.g. 0.65 of speed limit).

7. Then, we present a Recurrent Neural Network

We propose a decentralized deep learning-based method where each node accu-

rately predicts its own congestion state in real-time based on the congestion state of

the neighboring stations. Moreover, historical data from the deployment site is not

required, which makes the proposed method more suitable for newly installed sta-

tions. In order to achieve higher performance, we introduce a regularized euclidean

loss function that favors high congestion samples over low congestion samples to avoid

the impact of the unbalanced training dataset. A novel dataset for this purpose is

designed based on the traffic data obtained from traffic control stations in northern

California. Extensive experiments conducted on the designed benchmark reflect a

successful congestion prediction.

1.3 Dissertation Organization

In Chapter 2, We introduce a data model for moving objects data. Then,

we cover the Location Update Policies. Besides, we define comprehensive categories
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for typical queries on moving objects data, based on query constraints. This sub-

section also describes each of query categories by Relational Calculus expressions.

Furthermore, we briefly compare some of the leading moving object indexing meth-

ods considering aforementioned query categories. Finally, we conclude and review

future work.

In Chapter 3, we propose an indexing structure, called Temporally Enhanced

Network-Constrained R-tree (TENC R-tree), which solves the shortcomings in other

Network-Constrained access methods like FNR-tree [7], MON-tree [6] and NDTR-

tree. We provides the background to our study and reviews previous work for in-

dexing Spatio-Temporal data. Then, we introduce the Structure Model we used for

generating our indexing method. In this subsection we go over NDTR-tree [25, 26, 8]

as the base structure for our idea. Besides, we introduce our indexing method, TENC

R-tree, and we propose algorithms for inserting and searching by using this indexing

method. In the following, we experimentally evaluate our proposed index structure

and compare it to NDTR-tree. Finally, we conclude and review our future work.

In chapter 4, we propose a decentralized deep learning-based method. we start

our work by some preliminaries in section. Then, we define all the main traffic flow

concepts and then bring up the problem we are going to solve. We also, introduce two

deep network model, and describe their structures broadly. In section the following,

we explain our models and methods in more details. Then, we experimentally evaluate

our proposed prediction models and compare them with more simple models.

In Chapter 5, we talk about polylines similarity. Polylines similarity is a very

fundamental concept when dealing with Spatial, Spatio-temporal, and Moving object

databases. One of Polylines similarity’s applications is Map integration and verifica-

tion. Map Integration and Verification is the process of matching two distinct topo-

logical datasets that present the same road network. Another application of polylines
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similarity can be called Map integrity, where we have the topological information for

a road network as well as the supper accurate GPS data generated by Moving Objects

traveling on the road network, and we need to evaluate the accuracy of topological

data by calculating the error between the road coordinates and the GPS data from

the moving vehicles. Also, another application can be called Map Matching, where

we correspond the location points generated by GPS devices associated with moving

objects to the road network to determine which road they are traveling (or traveled)

on. In this chapter, we concentrate on a very intuitive measure called Frechet distance

with superior quality in theory and practice to solve Map Matching. The Frechet dis-

tance is defined as the minimal length of a leash connecting to a dog on one trajectory

with its owner on a second trajectory, both never moving backwards.

Finally, Chapter 6 summarizes the contributions made in this dissertation.



CHAPTER 2

Formalization of Network-constrained moving object queries Format

In this chapter, after having an introduction about Network-constrained Moving

Object Databases in Section 3.1, we introduce the data model for moving objects

data in Section 2.2. In Section 2.3, we describe a (relational) database schema for

Network-constrained Moving Object Data based on the definitions we proposed in

Section 2.2. In Section 2.4, we cover the Location Update Policies. Section 2.5,

defines comprehensive categories for typical queries on moving objects data, based

on query constraints. This section also formalizes each of the query categories by

Relational Calculus expressions. In Section 2.6, we describe a relational SQL query

schema for the Network-constrained moving object databases based on the database

schema we introduce in Section 2.3. In Section 2.7, we briefly explain how query types

can play a benchmarking role in moving object systems and indexes. In Section 2.8,

we summarize and conclude the research contribution presented in this chapter.

2.1 Introduction

With the advent of GPS and wireless devices, as well as portable comput-

ing platforms, managing and analysis of the moving objects data are becoming a

prominent research area [27, 28]. The key difference that makes this kind of data

distinguished from other kinds is the spatio-temporal essence of this kind of data. In

other words, the locations of moving objects, such as vehicles, ships, and aircrafts, as

well as people with cell phones, are intensely time-dependent. Therefore, storing and

tracking the dynamic locations of moving objects needs special consideration. Hence,

10
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recently significant research focused on the modeling of moving objects [12, 13, 29, 8].

In [29], the authors introduce a data model for trajectories, and discuss the moving

object databases and queries. This paper [29] proposes two types of data models

for trajectories, namely, trajectories and trajectory samples. The former trajectory

data are time-parameterized curves in plane R2, where R is the set of real numbers.

One the other hand, trajectory samples are finite sequences of time-space points.

Then, it describes an efficient way of modeling uncertainty via beads for trajectory

samples. A bead is all the possible trajectories between two consecutive time-space

points, considering given speed bounds. The most significant distinction between the

work proposed in [29] and what we will discuss is that we introduce a data model for

the Network-constrained moving object databases rather than freely-moving objects.

Network-constrained moving objects are the ones that move in a specific network,

such as road (traffic) networks in terms of vehicles or railways in terms of trains.

Conversly, the work presented in [29] models moving objects that can move freely

in all directions without any constraint, such as hurricanes, oil spills, and animals.

However, throughout this work, the phrase “moving objects” refers to the “network-

constrained moving objects”.

The first step for storing, managing, tracking, and analyzing of moving objects

is modeling these data objects and the constrained network. A comprehensive data

model contributes to store these data in Moving Object Databases (MODs) such

that processing on them is more straightforward. Querying, storing, and indexing

of moving objects data are other substantial issues that come into play in these

databases.

To explore these research issues, we introduce a moving object database model.

Then, based on that model, we formally define comprehensive categories of typical

queries on moving object data. In order to do this, we describe all types of queries
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by Relational Calculus expressions, based on the query constrains, such as Spatial

constraints, Temporal constraints, or/and moving object ID constraints. For each

type of query, we come up with the possible results, as well as an example to clarify

the query type. Consequently, this work can be used as a benchmark for future re-

search on different aspects of querying moving objects data, specially, in performance

comparison of indexing and access methods.

2.2 Data Model

In this section we define Network and Network-constrained moving object for-

mally. This model closely follows the work in [12, 13, 8], with a few additional concepts

and definitions, to formalize all the concepts.

Definition 0 (Moving Object). A moving object is a moving entity that

is represented by a time-dependent position point in space, such as people, cars,

trucks, airplanes, and ships. Typically a moving object is associated with a GPS or

other positional monitoring device. Each moving object is associated with a unique

identifier, mid. The set of all moving objects in a dataset is MO ={ mids}, where

mid is the object identifier of a moving object.

Definition 1 (Traffic Network). A traffic network, N, comprises a set of

routes, R, as well as a set of junctions, J, and is defined as N = (R, J ).

Definition 2 (Route). A route of network N, denoted by r, is defined as:

r = (rid, geo, len, ((jidh, posh))mh=1)

Where rid and len are r ’s identifier and length, respectively. geo is a polyline that

describes r. (jidh, posh) is the hth junction (see Definition 3) in route r, where jidh is

the junction identifier, and posh is its position in r (see Definition 2.a). Each route

has a direction, so a two-way road r is represented as two routes: r+ and r- (two
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Figure 2.1: a) A junction (road intersection) and the traffic flows inside it. b) Con-
nectivity matrix.

different identifiers). In this case the starting point of r+ is typically the ending point

of r-, and vice versa.

Definition 2.a (Route position). A position pos in a route is a point,

which is specified by a fraction value in the normalized range [0, 1]. The

beginning point of a route, say r, is assigned to 0, and the end point is

assigned to 1. Therefore, a fraction value between 0 and 1 shows positions

on r. The distance from the beginning of a route to a point whose position

is pos will be pos × len.

Definition 3 (Junction). A junction of the traffic network N, denoted by j,

is defined as follows:

j = (jid, x, y, ((ridi, posi))ni=1,m)

Where jid is the junction identifier, x and y are the coordinates that show the location

of j, (ridi, posi) is the ith route connected by j, which contains the route identifier and

position of j on the route (see Definition 2.a), and m is connectivity matrix of j. The

connectivity matrix describes traffic flow in the routes connected by a junction. The

rows in this matrix denote the flow of the route into the junction, and the columns

denote the flow away from the junction to the route (see Figure 2.1). Figure 2.1.a

shows an intersection (an instance of junction) with two roads, r1 and r2. Since r1 is
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Figure 2.2: Entrance and Exit in highways as an instance of junction

Figure 2.3: Roundabout as an instance of junction

a two-way road, there are two identifier assigned to this road, r1+ and r1-. However,

r2 is one-way, and r2- identifies this road. Figure 2.1.b indicates the corresponding

connectivity matrix for this intersection. As we observe, a moving object entering to

the intersection from r1+ can continue its path to all directions since there is not any

restriction to do U-turn or left-turn. However, an object in r1- can either go straight

or turn right to r2-, but it cannot do a U-turn to go to r1+.

It is worth mentioning that junctions can be intersections of streets (see Figure

2.1.a), exit-entrance of highways (see Figure 2.2), roundabouts (see Figure 2.3) and

beginning-end point of a route.

Definition 4 (Network Position). A position inside the network N, denoted

by npos, is defined as follows:
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npos =


jid, if npos is a junction of N

(rid,pos), if npos is a point on a route of N

Definition 5 (Motion Vector). A motion vector mv indicates a description

of a moving object’s movement at a certain time instant. It is defined as follows:

mv = (t, v, npos)

Where v and npos describe the speed and a position (on a route of N ) of the moving

object in a certain time instant t. In this context, a motion vector does not need a

direction because the route direction is known.

Definition 6 (Moving Objects Trajectory). Through location updates, a

moving object sends a motion vector to indicate its status in a trip. A sequence of

motion vectors sent by the moving object is called a trajectory, traj, and is defined as

follows:

traj = (mvi)ni=1 = ((ti, vi, nposi))ni=1

Where vi and nposi describe the speed and position of the moving object in ith motion

vector of traj sent at time instant ti. As it is a sequence, ti+1 ¿ ti.

Definition 7 (Trajectory units). Two consecutive motion vectors of a tra-

jectory mvi and mvi+1 (1 ≤ i ≤ n-1) form a trajectory unit, denoted as µ(mvi,mvi+1).

We will use an open time interval [ti, ti+1) to refer to the starting time, ti, and ending

time, ti+1 , and nposi and nposi+1 to show the starting location and ending location

of µ(mvi, mvi+1), respectively. It is worth mentioning that ti+1 and nposi+1 are not

included in µ(mvi,mvi+1) because we assume open intervals.

Each mid usually has an active trajectory unit, plus many non-active (histor-

ical) trajectory units. For a non-active trajectory unit, it potentially presents an
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infinite number of points (nposk, tk) between two motion vectors that are defined as

in equation (2.1).

tk ∈ [ti, ti+1)

vavg = nposi+1.pos− nposi.pos
ti+1 − tinposk.pos = nposi.pos+ (tk − ti)× vavg

nposk.rid = nposi.rid

 (2.1)

As a side note, for calculation of nposk, we assume that the moving object

traveled the trajectory unit µ(mvi,mvi+1) at a steady average speed. This assumption

is not unrealistic because when a speed change more than a given threshold occurs, we

assume that an update message will be received. Because there cannot be any update

message within a trajectory unit, we can say the moving object’s speed is (almost)

unchanged (i.e. nposi+1.pos− nposi.pos
ti+1 − ti

). Therefore, the location of a moving object

at time t can be defined as follows:

mid.NetLoc(t) ={npos〈rid, pos〉|(∃traj ∈ mid.trajectories)

∧ (∃µ(mvi,mvi+1) ∈ traj)

∧ (∃(npos, t) ∈ µ(mvi,mvi+1))

∧ (ti ≤ t) ∧ (ti+1 > t)

∧ (rid = nposi.rid)

∧ (pos = nposi.pos+ (t− ti)×
nposi+1.pos− nposi.pos

ti+1 − ti
)}

(2.2)
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mid.EucLoc(t) ={〈x, y〉|(∃traj ∈ mid.trajectories)

∧ (∃µ(mvi,mvi+1) ∈ traj)

∧ (∃(npos, t) ∈ µ(mvi,mvi+1))

∧ (ti ≤ t) ∧ (ti+1 > t)∧

(∃pos = nposi.pos+ (t− ti)×
nposi+1.pos− nposi.pos

ti+1 − ti
)

∧ (x = xPosition(nposi.rid, pos)

∧ (y = yPosition(nposi.rid, pos)}

(2.3)

mid.NetLoc(t) returns the location of moving object mid according to network posi-

tion, (rid, pos), and mid.EucLoc(t) returns the location according the Euclidian space.

xPosition(rid, pos) and yPosition(rid, pos) return x and y coordinates of route rid at

position pos. So, for calculation of nposk, we assume that the moving object traveled

the trajectory unit µ(mvi,mvi+1) at a steady speed.

Further, for the active trajectory unit, a moving object must contain the (pre-

dicted) current and future position of the moving object. To support this, we have

to define the (predicted) future motion vector for the active trajectory unit. Assume

mvn (tn, vn, nposn(ridn, posn)) is the last sent update by a moving object. Since we

have not received any update message after mvn , we can say the moving object’s

speed (vn) is still (almost) unchanged. Also, we know the moving object has not

reached the end of road ridn, otherwise, we would have received an update message

(see section 2.4). Therefore, mvactive has the same vn and ridn. However we need to

calculate future update time (tactive) and posactive for mvactive as follows:

tactive = tn + (1− posn)× r.len
|vn|

posactive = posn + (tactive − tn)× |vn|
r.len

(2.4)
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Definition 8 (Known movement of a moving object). The known move-

ment of a moving object is all trajectories of the moving object defined as follows:

mpm = ((mid, µ(mvi,j,mvi+1,j)ni=1)mj=1) (2.5)

Where mid is the moving object identifier, and µ(mvi,j,mvi+1,j) is the ith trajectory

unit of the jth trajectory of moving object mid.

Definition 9 (Path). A path in a traffic network, denoted by π, is two network

positions nposs and npose, as well as a sequence of consecutive junctions on the

network, (jidi)ni=1, between nposs and npose such that a moving object can travel

from nposs to npose on the network without the need to pass any other junctions

from the network. A path can be defined as follows:

π = nposs + (jidi)ni=1 + npose (2.6)

In this definition, a path is basically a sequence of consecutive network positions.

In general, it is possible to have multiple paths between two consecutive network

positions, but we assume the shortest path. Potentially, two consecutive network

positions of path π, nposi and nposi+1 (1 ≤ i ≤ n-1), represent an infinite number

of points nposk that coincide with the shortest path between those two network

positions, defined as σ(nposi, nposi+1).

2.3 Network-constrained Moving Object Database schema

In this section, we describe a (relational) database schema for Network-constrained

Moving Object Data based on the definitions we proposed in section 2.2. There are

four main entity types, namely, Moving Objects (MO), Routes, Junctions, and Trajec-
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Figure 2.4: Schema of tables for the main entities

tories. Figure 2.4, illustrates the tables for these entities and some of their attributes.

As seen, in the Routes entity, besides the route identifier (Rid), we have other at-

tributes, such as geo. geo is a spatial attribute with euclidean coordinates of a polyline

which represents the route for Rid. Recall that from Definition 2, a road can have

more than one Rid, fox example one Rid in each direction. Similarly, in Junctions

we have the x and the y attributes as the coordination of the junctions. However,

the Trajectories entity does not include euclidean coordinates. Instead, it comprises

the route identifier that the moving object went through, as well as the normalized

staring position (poss) and the ending position (pose). Each record in the Trajectories

table describes a trajectory unit (see Definition 7). The combination of Trajid and

TrajUnit forms the key for trajectories. Put differently, each trajectory has a (unique)

Trajid. And, for each trajectory, there exists a sequence of n trajectory units, and,

consequently, TrajUnit values of 1 to n.

Although MO, Routes, Junctions, and Trajectories are the main entities in

Moving object databases, we need more tables to relate Routes to Junctions, and

MO to Trajectories. In addition, a table is needed to implement the Connectivity

matrix (see Definition 3). In Figure 2.5, these complementary tables are illustrated.

Route-Junctions relates Routes and Junctions entities. It also indicates the position
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Figure 2.5: Complementary tables

of a junction in a route (pos). As mentioned before, pos is a real number in [0, 1].

Moreover, Traj-MO relates trajectories to MO entities. As we know, each trajectory

is related to just one moving object. Therefore, Trajid is the key in this table.

Furthermore, the Connectivity matrix is implemented by the Connectivity table.

Each row in this table represents the connection of routes Rid1 to Rid2 in the junction

Jid. If Rid1 and Rid2 are connected (i.e. if a moving object is able to proceed from

Rid1 to Rid2) the connected attribute will be 1, otherwise it will be 0.

2.4 Location update policy

As stated in the previous section, we assume a moving object is associated with

a GPS device. A GPS device can generate all the information the moving object needs

for putting up a Location Update Message (LUM). In other words, a GPS device can

transmit Euclidean coordinates (x, y). By deploying (x, y) and a simple function,

(rid, pos) and v (speed) of the moving object can be calculated. This way we can

extract a LUM out of GPS values.

Definition 10 (Location Update Message). A Location Update Message,

LUM, is defined as follows:

LUM = (mid, t, npos, v) (2.7)
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Figure 2.6: Structure of LUM system

Where mid is the moving object identifier that sent the message. npos = (rid, pos)

is the network position (see Definition 4) of mid at time t, and v is the speed.

When a LUM is sent by a moving object, the server will save the informa-

tion in the database (see Figure 2.6). For instance, suppose that object mid sends

LUM = (midLUM , tLUM , nposLUM , vLUM) to the server, and, also, assume that the

active trajectory unit for midLUM is µ(mvn,mvactive). At this moment, the server up-

dates the active trajectory unit into µ(mvn,mvLUM), wheremvLUM = (tLUM , vLUM , nposLUM).

Also, the server inserts a new trajectory unit µ(mvLUM ,mvactive′) to the database as

the new active trajectory unit. mvactive′ can be generated as we discussed in Defini-

tion 7. It should be noted that, sometimes, in a LUM several changes are done on a

trajectory. We will discuss this in the following sections.

A related point to consider is that LUM s are supposed to be sent frequently

enough to show the trajectory of a moving object. Therefore, there need to be certain

conditions that when met the moving object is required to send an LUM to the server.

According to [30, 31], there are 3 kinds of location updates: the ID-Triggered Location

Update (ITLU), the Speed-Threshold-Triggered Location Update (STTLU), and the

Distance-Threshold-Triggered Location Update (DTTLU).
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Table 2.1: Comprehensive common Spatio-temporal queries

Query type Query sub-type Condition Result

Coordinate-based
query

Window query Spatial region and
Temporal Interval

1) mids + sub-trajectories
2) mids

Temporal point query Spatial point and
Temporal Interval

1) mids
2) mids + Temporal point

Time-slice query Spatial region and
Temporal point

1) mids
2) mids + Spatial point

Point query Spatial point and
Temporal point mid

Pure Spacial query Spatial point 1) mids
2) mids + Temporal point

Spatial region 1) mids + sub-trajectories
2) mids

Pure Temporal query Temporal point mids + Spatial point
Temporal interval mids + sub-trajectories

k Nearest-neighbor qery Spatial point and
Temporal point k mids

ID-based Query -

ID and/or
(Spatial region or point)
and/or
(Temporal interval or
point)

1) sub-trajectories
2) Spatial point
3) Temporal point

Path-based Query Plain Path mids + sub-trajectoriesStrict

Trajectory-based
Query (Navigational) -

ID
Spatial region or point
Temporal interval or point

1) Maximum speed
2) Average speed
3) Heading

Combined query What were the trajectories of objects after they left Tucson between 7:00 am to
8:00 am today in the next hours?

We suppose the moving object continues its trip in the same route with a

steady speed until a new LUM is received. Whenever a moving object drives from

one route to another, an LUM needs to be sent to relate the changes to the current

(active) trajectory. The LUM s that are sent due to a route change are called ID-

Triggered Location Update (ITLU). In a similar way, whenever a speed change of

a moving object is more than a threshold ψ, a Speed-Threshold-Triggered Location

Update (STTLU) must be sent. Distance change is another factor for a location

update. According to Definition 7, the current location of a moving object can be

approximately calculated, giving the last location update. If the difference between

the actual current location and the calculated current location becomes more that a

threshold ξ, a Distance-Threshold-Triggered Location Update (DTTLU) will be sent

to the server.
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2.5 Category of queries

In this section, we study the various types of Network-constrained moving object

queries. In order to do this, we first categorize different possible types of Network-

constrained moving object queries. Table 2.1 shows a comprehensive categories of

typical queries, based on whether the conditions involve space (point versus region),

time (point versus interval), and object id. The categories are based on the various

combinations of these features. Also, for each type of query, Table 2.1 identifies the

type of result.

In the following subsections, we describe the types of queries as Relational

Calculus expressions, and give examples to clarify the query types. Subsection 2.5.1

proposes all Query components that can be part of the query condition in Network-

constrained moving object queries. Subsections 2.5.2, 2.5.3, 2.5.4, and 2.5.5 formalize

the query types by presenting Relational Calculus expressions, and give examples to

clarify the query types mentioned in Table 2.1.

2.5.1 Query Components (Q)

In this section we define the comprehensive typical Query components related

to Network-constrained moving object data. These components, which are the query

conditions, can refer to spatial points (SP), spatial regions (SR), temporal points

(TP), and temporal intervals (TI), as well as moving object ID (mid). In the case of

Path Queries (see 2.5.4) the query component includes a path, π (see Definition 9).

We first formally define each of these concepts.

• Spatial Point (SP): This component is a point on the Traffic Network defined

by SP = (x, y) that corresponds to a valid npos (Definition 4).

• Spatial Region (SR): This component is a MBR defined by SR = (xmin, ymin, xmax, ymax).

• Temporal Point (TP): This component is defined as a time point, TP.
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• Temporal Interval (TI): This component is a period of time, TI = (sTP, eTP),

eTP > sTP.

• Moving Object identifier mid: This component is a Moving Object identifier as

defined in Definition 0.

• Path π: This component is a path as defined in Definition 9.

Now we define the query types in Table 2.1 mathematically using the notation of

Relational Calculus. The proposed Relational Calculus expressions are based on the

Network-constrained moving object model presented in section 2.2.

2.5.2 Coordinate-based Query

In this section, we define all coordinate-based queries by the use of Relational

Calculus. Coordinate-based queries [32] are the queries that have spatial features,

temporal features, or combination of spatial and temporal features as their query

conditions. In the following, we go over various types of this category of queries.

2.5.2.1 Window Query

This type of query is the most common type of moving object query. The

query conditions in this type are Spatial Region (SR), within Temporal Interval (TI).

Window refers to a cuboid in the 3D space (X, Y, T) representing (SR, TI). A possible

example of these queries would be “Retrieve all moving object identifiers which were

in or passed through Tarrant county, Texas, on June 27, 2016 from 4:00am to 5:00pm”.

Assume we have query Q(SR, TI). The result for this query is a set of moving object
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identifiers mid which satisfy the condition (SR, TI). The formal definition for this

query is as follows:

Q(SR, TI) = {mid|(mid ∈MO)

∧(∃tk ∈ Q.TI)

∧(mid.EucLoc(tk) in Q.SR)}

Another possible result type for Window query is a set of moving object identi-

fiers, along with their sub-trajectories with the query condition (SR, TI). For example

“Retrieve all moving object identifier which were in or passed through downtown Dal-

las yesterday, from 8:00am to noon”. The formal definition for this query is as follows:

Q(SR, TI) = {〈mid, {µ(mvi,mvi+1)ni=1}〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk ∈ Q.TI)

∧(mid.EucLoc(tk) in Q.SR)}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

2.5.2.2 Space-slice Query

This type of query retrieves moving object identifiers which have been in a spa-

tial point during a time interval. Therefore the query conditions for this type of query

are a Spatial point (SP), along with a Temporal Interval (TI). Space-slice refers to a

spatial point SP. A possible example of these queries would be “Retrieve all moving
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object identifiers which were or passed Cooper st. and Mitchell st. intersection, today

from 3:30pm to 4:00pm”. Assume we have query Q(SP, TI). The result for this query

is a set of moving object identifiers mid which satisfy the condition (SP, TI). The

formal definition for this query is as follows:

Q(SP, TI) = {mid|(mid ∈MO)

∧(∃tk ∈ Q.TI)

∧(traj ∈ mid.EucLoc(tk) = Q.SP )}

Another possible result for Space-slice query (SP, TI) is a set of moving object

identifiers, along with the time tk such that the moving object was on SP at tk (tk ∈

TI) . For example “Retrieve all moving object identifiers which left highway I-20 from

Eixt 23A, from 3:00am to 3:15am, as well as the exact time”. The formal definition

for this query is as follows:

Q(SP, TI) = {〈mid, tk〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk ∈ Q.TI)

∧(mid.EucLoc(tk) = Q.SP )}

2.5.2.3 Time-slice Query

This type of query seeks those moving objects which were in or passed through

a specific spatial range at a specific temporal point. Thus, the query conditions for

this type of query are a Spatial range (SR), associated with a Temporal point (TP).
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A query such as “Retrieve all moving object identifiers which were at JF Kennedy

airport area at 1:00pm” is a Time-slice query. The formal definition for query Q(SR,

TP) is as follows:

Q(SR, TP ) = {mid|(mid ∈MO)

∧(mid.EucLoc(TP ) in Q.SR)}

However, Time-slice query can return the location of the moving objects in

addition to moving object identifier mid. For instance, “ Retrieve all moving object

identifiers which were in or passed through UTA area at 8:00am this morning, and

their exact location.” The formal definition for this query is as follows:

Q(SR, TP ) =

{〈mid, nposk〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk = Q.TP )

∧(mid.EucLoc(tk) in Q.SR)}

2.5.2.4 Point Query

Point query is a very specific type of moving objects query which asks about

moving object(s) in a specific spatial point and at specific temporal point. The query

condition for this type of query is in the form of (SP, TP).Assume we have query



28

Q(SP, TP); the formal definition for this query is as follows:

Q(SP, TP ) = {mid|(mid ∈MO)

∧(mid.EucLoc(TP ) = Q.SP )}

2.5.2.5 Pure Spatial Query

In all query types that we discussed so far, the Spatial features are associated

with Temporal features. However, in Coordinate-based queries, there can exist queries

which are pure Spatial (e.g. “retrieve all cabs which had at least one journey in New

York city”). It may be observed that Pure Spatial Query has two sub-categories:

Pure Spatial query with Spatial Point (SP) as its query condition, and Pure Spatial

query with Spatial Range (SR) as its query condition. In the following, we define

both of these sub-categories formally.

1. Pure Spatial Point Query: Assume we have a Pure Spatial query Q(SP).

The result of this query can be a set of moving object identifiers. These moving

objects have been in Spatial point SP at least once. The formal definition for

this query is as follows:

Q(SP ) = {mid|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(mid.EucLoc(tk) = Q.SP )}
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However, given a Pure Spatial query Q(SP), sometimes, we look for not only

the moving objects, but also the time they were in that location. The formal

definition for this query is as follows:

Q(SP ) = {〈mid, tk〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(mid.EucLoc(tk) = Q.SP )}

2. Pure Spatial Region Query: Pure Spatial query can ask about a Spatial

region (e.g. “retrieve all cabs which had at least once one journey in New York

city”). The formal definition for this query is as follows:

Q(SR) = {mid|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(mid.EucLoc(tk) in Q.SR)}
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A variation of Pure Spatial Region queries, returns the moving object identifiers

as well as their sub-trajectories that the moving object passed in SR. The formal

definition for this query is as follows:

Q(SR) = {〈mid, µ(mvi,mvi+1)ni=1〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+ 1))

∧(mid.EucLoc(tk) in Q.SR)}

Where Îĳ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

2.5.2.6 Pure Temporal Query

A very common types of moving object queries are Pure Temporal queries.

Unlike Pure Spatial queries, Pure Temporal query conditions are based on time con-

ditions only. These types of queries are sub-categorized into Pure Temporal Point

and Pure Temporal Interval.

1. Pure Temporal Point Query: This type of query retrieves all moving ob-

jects’ locations at a specific time. Therefore, the query condition is a Temporal

point, and the result will be all moving object identifiers and corresponding

locations. For example, “Retrieve all police cars’ locations today at 3:00pm”.
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The formal definition for this query is as follows:

Q(TP ) = {〈mid, nposk〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk = Q.TP )}

2. Pure Temporal Interval Query: This type of query retrieves all moving ob-

jects’ sub-trajectories during a specific Temporal Interval. Therefore, the query

condition is a Temporal Interval, and the result will be all moving object identi-

fiers and corresponding sub-trajectories. For example, “Retrieve all police cars’

sub-trajectories yesterday at from 8:00pm to midnight”. The formal definition

for this query is as follows:

Q(TI) = {〈mid, µ(mvi,mvi+1)ni=1〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk ∈ Q.TI)}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

2.5.2.7 K Nearest-Neighbor Query

The query condition in this type are Spatial Point (SP), along with Temporal

Interval (TI), as well as an integer value k. The result will be k nearest moving
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objects to SP in Temporal Interval TI. A possible example of these queries would

be “Retrieve 5 nearest ambulances to city hall from 3:00pm to 3:15pm”. Assume we

have query Q(SR, TI). The result for this query is a set of moving object identifiers

mid which satisfy the condition (SR, TI). The formal definition for this query is as

follows:

Q(k, SP, TP ) =

{midj|(midj ∈MO)

∧D = {di|(midi ∈MO)

∧(di = dist(midi.EucLoc(TP ), SP ))}

∧(dj = dist(midj.EucLoc(TP ), SP ))

∧(dj ∈MIN(k,D))}

Where MIN (k, D) returns the smallest k values in a set D of numbers, and

dist(SP1, SP2) returns the distance between two spatial points SP1 and SP2.

2.5.3 ID-based Queries

All queries that we covered so far are Coordinate-based queries, which have

only Spatial and/or Temporal features. Therefore, they retrieve all moving objects

that satisfy the query condition. However, we sometimes want to limit the result to

some specific moving objects by adding moving object identifier, mid, as part of the

query condition. The query types, which have moving object identifier as their query

condition, are called ID query.

These types of queries are similar to Coordinate-based queries, however they

have ID as an additional query condition. In the following we define various types of

ID query formally. ID queries can include all the coordinate-based query types aug-
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mented with a particular moving object identifier, mid. We only give some examples

here.

Assume we have query Q(mid, SR, TI) which means return all sub-trajectories

(as the result) of moving object mid in Spatial Region SR in during Temporal Interval

TI. As an example, “return all sub-trajectory of Ambulance 286 during last week in

the DFW metroplex”. This type of query is defined as follows:

Q(mid, SR, TI) = {〈µ(mvi,mvi+1)ni=1〉|(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk ∈ Q.TI)

∧(mid.EucLoc(tk) in Q.SR)}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

The query Q(mid, SP, TI) means return all Temporal Points (as the result)

when moving object mid was in or passed through a Spatial Point SP during Temporal

Interval TI. For example “Retrieve the times that car licence number ‘BD51’ passed

Collins and Pioneer Pkwy intersection during last week”. The formal definition for

this query is as follows:

Q(mid, SP, TI) = {tk|(tk ∈ Q.TI)

∧(mid.EucLoc(tk) = Q.SP )}

Assume we have query Q(mid, SR) which returns all Temporal Intervals (as the

result) when moving object mid was in or passed through a Spatial Region SR. For

example “Retrieve the times that car licence number ‘BD51’ was in or passed through
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Houston”. The formal definition for this query is as follows:

Q(mid, SR) = {TI|(∀tk ∈ TI)

∧(mid.EucLoc(tk) = Q.SP )}

Also, the result for Q(mid, SR) can mean return all sub-trajectories of mid (as

the result) when moving object mid was in or passed through a Spatial Region SR.

The formal definition for this query is as follows:

Q(mid, SR) =

{〈µ(mvi,mvi+1)ni=1〉|(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(mid.EucLoc(tk) in Q.SR)}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

The query Q(mid, SP) returns all Temporal Points (as the result) when moving

object mid was in or passed a Spatial Point SP. For example “Retrieve the times that

car licence number ‘BD51’ was in or passed Collins and Pioneer Pkwy intersection”.

The formal definition for this query is as follows:

Q(mid, SP ) = {tk|(mid.EucLoc(tk) = Q.SP )}
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The result for Q(mid, TP) returns the location that mid was (as the result) at

Temporal Point TI. The formal definition for this query is as follows:

Q(mid, TP ) = {〈nposk〉|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk = Q.TP )}

As a final example, assume we have query Q(mid, TI) which returns all tra-

jectories of mid (as the result) in Temporal Interval TI. For example “Retrieve all

sub-trajectories of car license number ‘BD51’ on Monday, May 30, 2016 ”. The formal

definition for this query is as follows:

Q(mid, TI) = {µ(mvi,mvi+1)ni=1〉|(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1) ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk ∈ Q.TI)}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

2.5.4 Path-based Queries

Another type of query has a path, along with a Temporal Interval as its query

condition. This type of query is called Path-based Query. We discuss two types of

path queries in the following:
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2.5.4.1 Plain (Partial) Path Queries

In this type of query, the input is a path, π, (see Definition 9) and a Temporal

Interval [33]. This query returns the set of sub-trajectories which visit at least one

edge in the query path, π within the specific time period.The formal definition for

this query is as follows:

Q(π, TI) = {〈mid, µ(mvi,mvi+1)ni=1〉|(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1∃traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1)

∧(tk ∈ Q.TI)

∧(nposkinπ)}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units.

2.5.4.2 Strict Path Queries

In this type of query, the input is a path, π, (see Definition 9) and a Temporal

Interval [14]. This query returns all sub-trajectories that strictly follow the path,π,

within a Temporal Interval defined by ts and te. The result of this query is a set of

sub-trajectories that has π as its sub-path, enters π at a time point equal to or later
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than ts, and leaves π at a time point equal to or before te [14]. The formal definition

for this query is as follows:

Q(π, TI) = {〈mid, µ(mvi,mvi+1)qi=p〉|(∃traj ∈ mid.trajectories)

∧(µ(mvl,mvl+1)nl=1 = traj)

∧(µ(mvi,mvi+1)qi=p in µ(mvl,mvl+1)nl=1)

∧(∃(nposp, tp) = mvp)

∧(∃(nposq, tq) = mvq)

∧(π = mid.path(tp, tq))

∧(
[
tp, tq

]
in Q.TI)}

Where mid.path(ts, te) returns the path moving object mid travel from ts to te, and

it can be defined as follows:

mid.path(ts, te) = {(nposk)nk=1|(mid ∈MO)

∧(∃traj ∈ mid.trajectories)

∧(∃µ(mvi,mvi+1)mi=1 ∈ traj)

∧(∃(nposk, tk)nk=1 ∈ µ(mvi,mvi+1)mi=1)

∧([t1, tn] in [ts, te])}

Where µ(mvi,mvi+1)ni=1 is a sequence of sub-trajectory units, and (nposk)nk=1 is a

sequence of network positions.

2.5.5 Trajectory-based Query (Navigational)

This type of query derives information from a trajectory [28]. Typically, dy-

namic information is not explicitly stored. Therefore, this type of query returns the
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dynamic information about a trajectory, e.g. the average or top speed of a moving

object in a Spatial Region and Temporal Interval. Thus, the query condition for this

type of query includes mid, SR, and TI. And the result will be dynamic information

about that moving object in the given spatio-temporal range. The formal definition

for this query is as follows:

{〈f(
[
µ(mvi,mvi+1)ni=1

]
)〉|(∃traj ∈ mid.trajectories)

∧(µ(mvi,mvi+1)ni=1 ∈ traj)

∧(∃(nposk, tk) ∈ µ(mvi,mvi+1))

∧(tk ∈ Q.TI)

∧(mid.EucLoc(tk) in Q.SR)}

2.6 Network-constrained moving object query schema

The formal definition of query types in relational calculus can be formulated

as SQL queries. Because of space limitations, we give only one example here. We

describe a relational SQL query schema for the Network-constrained moving object

databases on the tables we introduced in section 2.3. Having those tables, assume we

need to have all the street names that moving object ‘χ’ traveled on 09-20-2016 from

8:00 am to 9:00 am. Consider the following query:

select distinct Routes.Name

from Routes, Trajectories, Traj-MO

where Routes.Rid = Trajectories.Rid and

Trajectories.Trajid = Traj-MO.Trajid and

Trajectories.Ts ¿ ’09-20-2016 8:00’ and

Trajectories.Te ¡ ’09-20-2016 9:00’ and

Traj-MO.Moid = ‘χ’
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This example belongs to the ID-based query category combined with temporal

aspects, and is one of the multitude of queries that can be generated on this type of

data. Because of lack of space, we do not show other instances for other query types.

2.7 Using query types for benchmarking moving object systems and in-

dexes

An important contribution of our work is the comprehensive categorization

of the types of queries that can be commonly used in Network-constrained moving

objects systems, and the precise definition of each type of query in a formal manner.

The data model proposed in [12, 13, 8] was fully formalized in our work and expanded

with a few additional concepts, such as paths in the Network-constrained model.

A very important application of our work is to compare the performance of

Network-constrained moving objects systems, indexing methods [34], and approaches

to implementation. A previous benchmark has been proposed in [35, 36], but it

does not include the comprehensive list of query types that we categorized in this

work. This benchmark, which is called BerlinMod, is a benchmark for spatio-temporal

database management systems (STDBMS) by the University of Hagen. By consider-

ing the query types presented in this work, the queries presented in BerlinMod do not

include k Nearest-neighbor queries, Path queries, and Navigational Trajectory-based

queries. In particular, categorizing the query conditions for query types based on the

three orthogonal features of spatial, temporal, and moving object id is an important

contribution of this work.

The reason that benchmarking is very important is that certain proposed in-

dexing methods may work well for certain types of queries, for example most recently

developed Network-Constrained access methods (FNR-tree [7], MON-tree [6], UTR-

tree [25]) can store and retrieve the state of moving objects according to spatial aspects
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of data then on temporal aspects restricted to a specific road segment. Therefore,

for pure temporal queries, queries based on moving object identifier, (pure) ID query,

path queries, or k Nearest-neighbor queries, the system needs to search all records to

retrieve the result.

Our comprehensive formalization and categorization of the common types of

queries in Network-constrained moving object systems makes it possible to compare

the proposed systems and indexing methods in a more complete manner. Each pro-

posed indexing method can clearly identify the types of queries it performs well, and

the types of queries it does not work well. This makes it possible for future users to

choose the type of index or system that is needed for the types of queries that the

user intends to submit.

2.8 Conclusion

In this chapter, we categorized the various types of Network-constrained mov-

ing objects queries, which are objects that move in a specific network, based on the

model presented by [12, 13, 8]. Then, we formally defined comprehensive categories of

typical queries, based on whether the conditions involve space (point versus region),

time (point versus interval), and object id as well as the various combinations of

these three features. In order to do this, we formalized the query types by presenting

Relational Calculus expressions, based on the query constraints: Spatial constraints,

Temporal constraints, or/and moving object ID constraints. For each types of query,

we identified the types of results, and gave examples to clarify the query types. Cer-

tain indexes/systems may work well for some query categories but perform poorly for

other types of queries. Therefore, these formal query definitions can be considered as

benchmarks that can be used to compare the performance of systems and indexing

schemes that are proposed for handling these types of queries.



CHAPTER 3

Temporally Enhanced Network-Constrained (TENC) R-tree

In this chapter, after having an introduction in Section 3.1 and considering

previous work in 3.2, we introduce a Structure Model in Section 3.3, we used for

generating our indexing method. In this section we consider the UTR-tree [25, 26, 8]

as the base structure for our idea. In section 3.4, we introduce our indexing method,

the TENC R-tree, and we propose algorithms for inserting and searching for this

indexing method. In section 3.5, we experimentally evaluate our proposed index

structure and compare it to the UTR-tree.

3.1 Introduction

The main purpose of Spatio-Temporal database systems is combining the spatial

and temporal features of data. Almost all spatio-temporal applications - such as

mobile communication systems, traffic control systems, and GIS with moving objects

- have a common basis, which is the requirement to handle both space and time

characteristics of the data [9].

Similar to other data types, spatio-temporal data are required to be queried

efficiently. In this regard, Spatio-temporal access methods (STAMs) provide the

necessary tools to query spatio-temporal data [37]. These access methods basically

are enhanced variations of the well-known R-tree [11, 38].

Generally there are two broad access method categories for spatio-temporal

data:

41
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• Access methods and query processing techniques that involve past (historical)

object locations, shape changes, or status values [1, 2, 3]. The data is static and

no update to the data is expected.

• Access methods and query processing techniques that involve, in addition to

object history, the present and future locations, shapes, or status of objects.

The future status of an object can be estimated according to its present status

and a time function that predicts how the object changes over time. New object

positions are continually updated in this case [25, 26, 8].

Consider a spatio-temporal database that contains information about moving

objects and their locations. For example, in a Police station database, a typical query

would be to locate a police car that is currently less than half a mile from Adam’s

Market Complex, Dallas, TX (where assistance is needed). These types of queries

can be requested by a user associated with a moving object, or by a stationary user.

Applications with these characteristics are referred to as Moving Objects Database

(MOD) applications, and the queries are known as MOD queries [10].

For queries on large numbers of moving objects, a key issue would be to have

efficient indexing structures. These indexing structures, which usually use R-tree

[11], assume moving objects can move freely in all directions. However, there are

many applications where the moving objects are supposed to move in a specific fixed

network. For instance, vehicles should move in a fixed road network. These kinds of

moving objects data can be indexed by a Network-Constrained indexing method (also

called Fixed-Network indexing method). These indexing structures typically have two

layers. The upper layer R-tree indexes the Network (static spatial data). Thus, the

leaf nodes in upper layer R-tree are line segments (highways, roads, paths, etc.). For

each leaf node in the upper tree, there is an R-tree that stores and indexes time

intervals for objects moving along the line segment corresponding to the leaf node
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[8, 7, 6]. Although Network-Constrained indexing methods are efficient in responding

to Spatio-Temporal queries, they usually are not efficient in answering pure Temporal

queries, which is an important type of query on Spatio-Temporal data, or when a

specific moving object id is also part of the query conditions; for example, find the

location of moving object mid during a particular time period of [ts, te]. In such cases,

Network-constrained indexing methods have to scan the entire database to retrieve

the results.

Besides, the Network-constrained indexing methods are not able to answer the

Strict-path queries efficiently. This query type supports path-based analysis, where

trajectories must follow all the edges in the path. Our indexing structure, the TENC

Rtree, makes retrieval of trajectories that follow a specific path, i.e. Strict-path

queries, efficient.

3.2 Previous work

In this section we consider several prominent STAMs chronologically. All these

access methods are based on the well-known R-tree [37, 38]. As a side note, there

are a large number of spatio-temporal indexing structures to support spatio-temporal

data. However, in this section, we cover the ones that are the ancestors of our indexing

structure (based on the presented hierarchy in [38]).

3.2.1 The RT-tree [1]

The RT-tree, which was introduced in 1990, is the first effort for using R-tree

for indexing spatio-temporal data. It is actually a regular R-tree to which temporal

information is added to the nodes. Therefore, the processing of temporal queries

requires considerable computational effort.
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The RT-trees couple time intervals with spatial ranges in each node of the tree

structure. In other words, an object that is inserted at time tx has its temporal

extent initialized to [tx, tx). In every time instance, this temporal extent is increased

as long as the spatial status of the object remains unchanged. When a spatial change

happens at ty, the current extent is closed as [tx, ty) and a new entry is created and

its temporal extent is initialized to [ty, ty).

3.2.2 The 3D R-tree [2]

The 3D R-tree was introduced in 1996. This access method considers time

as an additional dimension. Therefore in 3D R-tree, data are represented as three-

dimensional boxes instead of regular two-dimensional rectangles The index entry con-

tains X×Y ×T ([xmin, xmax], [ymin, ymax], [tstart, tend]). The shortcoming for this index

structure is that both ends of [tstart, tend] need to be known. Thus, for current status

(now) of moving objects whose end time is not known this approach does not work

well.

A possible solution for this problem can be to show now by a time instant so

far in the future. Although this approach seems to be effective, it leads to extensive

boxes and causes poor performance.

3.2.3 The 2+3 R-Tree [3]

As mentioned before, the shortcoming for 3D R-tree is the open ended time

intervals, which show the current spatial status (now) of objects. One approach,

which is proposed to overcome this problem is to maintain a pair of two R-trees:

• A 2D R-tree for representing the current spatial information about objects.

• A 3D R-tree for representing the past information about objects.
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Figure 3.1: HR-tree

3.2.4 The Historical R-tree (HR-tree) [4, 5]

This access method is based on creating a new R-tree for each update. However

creating and keeping the whole R-tree for each update is neither practical nor efficient.

To overcome this problem, instead of creating a new R-tree physically, for each update

a new R-tree is created logically. In other words, HR-tree is based on the overlapping

technique. To implement HR-tree, an array is used which is pointing the roots of R-

trees. For each update, updated nodes are created. The new tree contains new

nodes, but points to unchanged old nodes. This Rtree is now actually a collection

of independent trees, but it is an acyclic graph. Figure 3.1 clarifies the structure of

HR-tree.

Although HR-Tree is efficient for time slice queries, it is not as efficient as 3D

R-tree and 2+3 R-tree for time interval queries [4]. Furthermore, when the number of

objects that have location change is not small for each time instance, a large number

of nodes need to be regenerated. Therefore the common nodes between the new tree

and the previous one would be low, and consequently it leads to a large structure.

3.2.5 Network-Constrained R-tree Category [6, 7, 8]

Network-Constrained R-trees assume that, in most applications, objects cannot

move freely in all directions, but they are supposed to move in a specific constrained

network. For example, vehicles as instances of moving objects have a restriction to

move in Road Networks. Aircrafts, despite general belief, must fly in specific air
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corridors. The idea of Network-Constrained moving object indexing was proposed

in 2003 by the FNR-tree (Fix-Network R-tree) [7] as an access method for fleet

management applications, and improved upon in the MON-tree in 2005 [6]. In 2008,

several prominent Network-Constrained moving object indexing, namely, GStree

[39], PPFI [40], and UTR-tree [25] were proposed. GStree is based on constant

update interval. PPFI and UTR-tree can deal with not only the historical location

of moving objects, but also their current and near future location information.

All Network-Constrained R-tree variations are two-stage access methods. The

upper layer R-tree indexes the Network (static spatial data). Thus the leaf nodes

in upper layer R-tree are line segments (highways, roads, paths, etc.). For each leaf

node in the upper tree, there is an R-tree that stores and indexes time intervals for

objects moving along the line segment corresponding to the leaf node [6, 7, 8].

At the beginning, there are no lower layer R-trees in the system. After con-

struction of the upper layer R-tree, whenever a new Location Update Message (LUM)

is received from a moving object (for example from a GPS associated with a vehi-

cle), the lower R-tree is created or updated for the leaf node of the upper R-tree

corresponding to the location of the update. Suppose we have a dataset containing

information about Dallas-Fort Worth Road Network, to track movement of vehicles

in this metroplex. By considering the aforementioned access structure, the upper

layer R-tree indexes the Dallas-Fort Worth road network, and the lower layer R-trees

store vehicles’ movements. Given a query such as “Retrieve all vehicles that moved

into Summit Avenue from 9:00am to 9:10am”, according to the upper level R-tree,

we find the leaf node corresponding to Summit Avenue, and with the aid of lower

R-tree, we can locate the vehicles that passed into this avenue in that specific time

interval ([9:00, 9:10]). The performance of the FNR-tree (as the earliest effort in

Network-Constrained R-tree) was studied in [12]. It compared this access method
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Figure 3.2: Structure of UTR-tree. (a) Traffic Network. (b) T-Units submitted in
route r1. (c) The corresponding UTR-Tree

with the 3D R-tree under various datasets [7] and queries. Almost in all cases the

FNR-tree significantly outperforms the 3D R-tree. The FNR-tree had better space

utilization and smaller data size per moving object. Also, it supports range queries

much more efficiently.

Although Network-Constrained R-trees are really efficient and they seem to be

ideal for fleet management applications, they have a drawback when answering some

kinds of queries. Since in Network-Constrained indexing methods the upper-layer R-

tree represents Network data, queries that are not including spatial restriction (purely

temporal queries, id queries, and path queries) may not be answered efficiently. In

other words, in queries that are not spatial restricted, all records are read, and the

existing index does not help. For instance, given the aforesaid indexing structure

for Dallas-Fort worth including road network and moving objects’ status, a possible

query would be: ”Return the location of moving object mid at time tj”. This “simple

query” system requires a search of all records to find the result.

To overcome this shortcoming, we propose a new indexing method, Tempo-

ral Enhanced Network-Constrained R-tree (TENC R-tree), that improves the exist-
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Figure 3.3: Structure of TENC-Rtree

ing Network-Constrained access methods to support spatial, temporal, and spatio-

temporal queries, as well as id queries and path queries.

3.3 Structure model

Our idea can be exploited to enhance all

Network-Constrained moving object indexing methods, but we describe it within the

framework of UTR-tree [25, 26, 8] as the base structure for our idea. The UTR-tree

is a hybrid structure (similar to other Network-Constrained data structures). The

upper R-tree is edge-based by focusing on road segments (edges) between road in-

tersection points, resulting in smaller granularity (than route-based). Therefore the

intersections between different MBRs are significantly reduced. The lower layer is a
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forest of route-based R-trees (greater granularity) with time interval and location, so

the location update and index maintenance can be reduced.

The upper R-tree leaf nodes contain entries of the form 〈MBRxy, rid.eid, ptroute, pttree〉

where MBRxy is the Minimum Bounding Rectangle (in the X × Y plane) of edges,

rid.eid is a combination of the route and edge identifier, ptroute is a pointer to the de-

tailed route record, pttree is a pointer to the lower R-tree corresponding to the route

rid. The root or interval nodes contain entries of the form 〈MBRxy, ptnode〉 when

MBRxy is the MBR containing all MBRs of its child records, and ptnode is a pointer

to the child node.

The lower part of the UTR-tree contains a forest of R-trees such that each R-tree

indexes the trajectories that were received from moving objects in a certain route (e.g.

Summit Ave.). The leaf nodes contain entries of the form 〈MBRpt,mid,mvs,mve〉

where MBRpt is the Minimum Bounding Rectangle of the associated trajectory units

in POS × T plane (POS is a value in [0, 1], which shows the position of a moving

object in a route, normalized to a value between 0 and 1), mid is the identifier of the

moving object, and mvs and mve are two consecutive motion vectors that form the

trajectory units. A motion vector is a snapshot of a moving object at a certain time

instant and it is defined as follows:

mv = (t, rid, pos, v) (3.1)

UTR-tree supports queries on current and future positions of moving objects.

Allocating a value to mve and an MBR for current status needs more computational

effort and it is calculated then stored. We do not consider the calculations in this

work since we just intend to study the basics of this structure for proposing our idea,

see [8] for calculation details.
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Figure 3.2 sheds light to the structure for UTR-tree [6, 7, 8]. Figure 3.2(a)

shows the Traffic Network. Some part of this Network is indexed in the upper R-tree

in Figure 3.2(c). Some submitted update trajectory units for route r1 are shown

Figure 3.2(b). The corresponding R-trees for these trajectory units are indexed in

the Lower R-trees in Figure 3.2(c).

3.4 THE TENC R-TREE

In this section, we propose a new index structure to answer spatial, temporal,

and spatio-temporal queries, as well as path queries (Strict-path query and Plain-

Path query) efficiently. This structure is called Temporally Enhanced Network-

Constrained R-tree (TENC R-tree), and solves the shortcomings in the other

Network-Constrained access methods. Most recently developed Network-Constrained

access methods can store and retrieve the state of moving objects according to spa-

tial aspects of data then on temporal aspects restricted to a specific road segment.

Therefore for (purely) temporal queries (e.g. retrieve locations of all cabs at time

tj) or query based on moving object identifier, ID-based query (e.g. retrieve the tra-

jectories of moving object mid from ts to te), the system needs to search all records

to retrieve the result. Moreover, these indexing methods cannot help in the case of

Strict-Path queries. This query returns all the trajectories that strictly follow a given

path,π, within a temporal period defined by ts and te. In the following, subsection

3.4.1 presents the TENC R-tree index structure, and 3.4.2 and 3.4.3 present insertion

and search algorithms, respectively.

3.4.1 Index Structure

The index proposed in this work is based on the UTR-tree [6, 7, 8] structure that

is associated to edges for the Network model. Our idea can be exploited to enhance
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all Network-Constrained moving object indexing methods, but we describe it within

the framework of UTR-tree. In the UTR-tree, the lower part is a forest of R-trees

that indexes the trajectory units. Since this structure is based on the spatial aspect

of data, it cannot answer (purely) temporal queries and ID-based queries efficiently.

Also, it is not be able to put up results for Strict-path queries efficiently. To overcome

these shortcomings, we add another R-tree that indexes leaf nodes of the lower level

R-tree according to ts and te corresponding to time instants in mvs and mve (in the

lower R-tree), and the moving object identifier mid. This R-tree, which we call the

Temporal layer, is shown in Figure 3.3. Moreover, in order to be able to support

path query types (Strict and Plain), we added pointers to the leaf entries of lower

R-tree. These pointers link each entry to the previous and next entries of the same

trajectory. Through these links, we can move on the trajectory of a moving object.

These pointers are called trajectory pointers. In Figure 3.3, the structure in the box is

a modified UTR-tree (UTR-tree with trajectory pointers). It is worth mentioning that

our Temporal Layer and trajectory pointers are independent of this specific structure

(UTR-tree) and can be applied on other Network-Constrained access methods such

as FNR-tree, MON-tree.

The temporal layer is an R-tree with some modifications. It is built on time

period and moving object identifier in order to process the (purely) temporal and ID-

based queries. Therefore, the leaf nodes are in the form of

(〈MBRmid,t,mid,mvs,mve, prev, next〉), where MBRmid,t is the Minimum Bound-

ing Rectangle of the associated trajectory units in MOID × T plane, mid is the

identifier of the moving object, and mvs and mve are two consecutive motion vectors

that form the trajectory units (see Equation 3.1). prev and next are pointers to the

previous and next entry of the trajectory. The root and internal nodes contain entries

of the form 〈MBRmid,t, ptnode〉. For immediate parents of leaf nodes, MBRmid,t is the
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MBR containing all time points of moving object mid’s motion vectors in (ts and te),

and for other internal nodes and root, MBRmid,t is the MBR containing all MBRs of

its child records. ptnode is a pointer to the child node.

3.4.2 Insertion

In this section, we consider movement insertion in TENC R-tree. Movement

insertion happens whenever a Location Update Message (LUM) is received (i.e. a

moving object changes its speed, direction, or the route) [12]. The movement in-

sertion takes LUM that contains either one motion vector (speed-change), or three

motion vectors (〈mva1,mva2,mva3〉, where mva1 and mva2 correspond to the junction

location and mva3 corresponds to the location when a route-change location update

is triggered) as an argument. The movement insertion algorithm for TENC R-tree

is given in Algorithm 1. This algorithm is an extension to the Insertion Algorithm

for UTR-tree [6, 7, 8]. We focus on insertion over the extended part and skip the

Insertion Algorithm for UTR-tree.

When an LUM is received, the system checks the size of LUM. In the cases

that the LUM has one motion vector, mva, the algorithm retrieves the last motion

vector for mid that has sent the LUM (mvn). If there does not exist any record in

the database for mid, a new RTreeTemporal entry is built and intialized by µ(mva),

and two NULL values, ∅, for prev and next pointers (procedure Create-Index-Entry).

Then, this new entry is inserted into RTreeTemporal. However, if mvn exists for mid,

after building a new RTreeTemporal entry, the algorithm updates the motion vector

unit related to mvn as well as prev and next pointers.

In the cases that the LUM has three motion vectors, mva1, mva2, and mva3, the

flow of building and inserting of the RTreeTemporal entries is similar to one motion

vector LUM, however we are involved with three motion vectors.
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Algorithm 1 Movement INSERTION
1: procedure Insert(LUM) . The input is a Location Update Message
2: while MOD is running do . Moving Object Database
3: Receive LUM from moving object mid;
4: if LUM contains 1 motion vector mva = (ta, rida, posa, va) then
5: Let mvn be the current active motion vector for moving object mid;
6: if mvn is null then . There is not any record for mid in the database
7: Insert trajectory µ(mva) for mid to the Lower R-tree according to the UTR-tree;
8: Create-Index-Entry(RTreeT emporal,mid, µ(mva), ∅, ∅);
9: Propagate(RTreeT emporal,mid, µ(mva));
10: else . STTLU or DTTLU
11: Update µ(mvn,mva) for mid in the Lower R-tree according to the UTR-tree;
12: Create-Index-Entry(RTreeT emporal,mid, µ(mva), ∅, ∅);
13: Let A1 be the address of last entry for mid in RTreeT emporal;
14: Let A2 be the address new built entry for mid in RTreeT emporal; . in line 12
15: A1.next = A2
16: A2.prev = A1
17: Propagate(RTreeT emporal,mid, µ(mvn,mva));
18: Propagate(RTreeT emporal,mid, µ(mva));
19: else . ITLU
20: if LUM contains 3 motion vectors mva1,mva2,mva3 then
21: Let mvn be the current active motion vector for moving object mid;
22: Update µ(mvn,mva1) and µ(mva2,mva3) for mid in the Lower R-tree according to the UTR-tree;
23: Let A1 be the address of last entry for mid in RTreeT emporal;
24: Propagate(RTreeT emporal,mid, µ(mvn,mva1), );
25: Create-Index-Entry(RTreeT emporal,mid, µ(mva2,mva3), ∅, ∅);
26: Propagate(RTreeT emporal,mid, µ(mva2,mva3));
27: Let A2 be the address of last entry for mid in RTreeT emporal; . A2 differs from A1
28: Create-Index-Entry(RTreeT emporal,mid, µ(mva3), ∅, ∅);
29: Let A3 be the address new built entry for mid in RTreeT emporal; . in line 25
30: A1.next = A2
31: A2.prev = A1
32: A2.next = A3
33: A3.prev = A2
34: Propagate(RTreeT emporal,mid, µ(mva3));

3.4.3 Search

As we mentioned before, TENC R-tree is able to answer spatial (Ix × Iy),

temporal (It), spatio-temporal (Ix × Iy × It) and ID queries effienctly (Ix, Iy, and It

are intervals in X, Y, and T domains). Furthuremore, TENC R-tree supports path

queries.

In the case of spatial, temporal, and spatio-temporal

queries, the input of the query is a range in X × Y × T. When processing a spatial

or spatio-temporal query, the system queries the upper R-tree, and receives a set of

(rid, pos), then for each (rid, pos) the corresponding lower R-tree is searched to find

the trajectory units intersecting with the query, as in the UTR-tree.
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However, when processing a ID query and/or a pure temporal query (It), the

system queries the Temporal layer, and receives a set of tuples containing (rid, pos,

mid). Thus, with the help of rid and pos, we will be able to return the locations

corresponding to moving object(s) based on the rid (the route) and pos (exact location

in the route rid). The search algorithm for TENC R-tree is given in Algorithm 2.

Algorithm 2 SEARCH
1: function Search(Ix, Iy , It,mid,R) . the query Range(Ix, Iy , and It), moving object ID, and other Conditions R
2: Result= {}; . Empty set
3: if query does not contain Ix× Iy then . Pure temporal query or ID query, Use Temporal Layer search
4: Search the Temporal layer R-Tree according to It ×mid, and receive a set of n tuples {T1, T2, ..., Tn} ;
5: for i =1 to n do
6: if (Ti) satisfies R then
7: Result= Result ∪(Ti);
8: else . Use Upper and Lower R-tree search
9: Search the upper R-Tree according to Ix × Iy , and receive a set of n pairs (ridi, posi);
10: for i =1 to n do
11: for ρ ∈ posi × It do
12: µ←− the set of Tuples whose trajectory units are in RTreelow(ridi) which intersect ρ;
13: for T in µ do
14: if T.mid = mid and T satisfies R then
15: Result= Result ∪ T

return Result

In the case of Stict-path query, the input of the query is a path, π, and a

time period [14]. This query returns all moving objects, mids, along with their

(sub)trajectories that strictly follow the path,π, within a temporal period defined by

ts and te. In other words, the result of this query is set of mids plus (sub)trajectories

that have π as their subtrajectory, enters π at a time point equal to or later than

ts, and leaves π at a time point equal to or before te [14]. There is another path

query called Plain-path query [33]. This query returns the set of moving objects and

trajectories which visit at least one edge in the query path, π within the specific time

period. Since Strict-path query is more strict in the evaluation of both the spatial

and temporal components, in this work, we come up with a search algorithm for

Strict-path query.
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Algorithm 3 Strict-path query SEARCH
1: function SPQSearch(π, ts, te) . path π, start time ts, end time te
2: Result= {}; . Empty set
3: Let SP = start(π);
4: T = SEARCH(SP, ts, te); . An overloaded function SEARCH (Algorithm 2)
5: for t in T do
6: while t.pos ==SP and t.time ¡te do
7: t = t.next;
8: SP = Next(π, SP)
9: if t reached end(π) then Result = Result ∪ t;

return Result . Set of moving object identifiers associated with trajectories

Table 3.1: Comprehensive Spatio-temporal queriesn

Query type Query sub-type Condition Result

Coordinate-based
query

Window query Spatial region and
Temporal Interval

1) mids + sub-trajectories
2) mids

Temporal point query Spatial point and
Temporal Interval

1) mids
2) mids + Temporal point

Time-slice query Spatial region and
Temporal point

1) mids
2) mids + Spatial point

Point query Spatial point and
Temporal point mid

Pure Spacial query Spatial point 1) mids
2) mids + Temporal point

Spatial region 1) mids + sub-trajectories
2) mids

Pure Temporal query Temporal point mids + Spatial point
Temporal interval mids + sub-trajectories

k Nearest-neighbor qery Spatial point and
Temporal point k mids

ID-based Query -

ID and/or
(Spatial region or point)
and/or
(Temporal interval or
point)

1) sub-trajectories
2) Spatial point
3) Temporal point

Path-based Query Plain Path mids + sub-trajectoriesStrict

Algorithm 3 shows the Strict-path query search in TENC R-tree. The input is

the path, π as well as ts and te as the starting and ending time, respectively. The

output of this query is set of (sub)trajectories that has π as its sub-trajectory, enters

π at a time point equal to or later than ts, and leaves π at a time point equal to or

before te. It may be observed that path π is a sequence of spatial points that can

be traveled on the fixed traffic network. In Algorithm 3, start(π) and end(π) return

the first and the end spatial point of path, π. Next(π, SP) returns the immediate

adjacent spatial point next to SP. In the first step, the algorithm retrieves all records

that intersect start(π). Then, for each record t, it checks if the next point in the
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Table 3.2: BerlinMod datasets characteristics

Category Days Vehicles Trip Moving points
1 2 141 1,797 346,657
2 6 447 15,045 2,998,674
3 13 894 62,510 12,091,785
4 28 2000 292,940 56,129,943

t’s trajectory coincides with next point in π, and corresponds to time period [ts, te].

The trajectories that have π as its sub-trajectory, enter π at a time point equal to or

later than ts, and leave π at a time point equal to or before te will be returned. It is

worth mentioning that sub-trajectory checking is done by the help of prev and next

pointers, which are one of the contributions of this work (see section 3.4.1).

3.5 EXPERIMENTAL EVALUATION

In order to examine the performance of the TENC R-tree, we compared it

with UTR-tree as one of the most recent indexing method for network-constrained

moving object databases. In order to do this, we implemented TENC R-tree based

on UTR-tree by a C++ program. Our test environment was Win7 64-bit operating

system, Intel Core i5 CPU 860 @ 2.80GHz, 12GB RAM. The dataset to evaluate the

index structure comes from BerlinMod, a benchmark for spatio-temporal database

management systems (STDBMS) by the University of Hagen [35]. The moving object

data are sampled from simulated behavior of workers commuting between their homes

and work places, and additional trips in their leisure time on the street network of the

German capital Berlin with 3212 routes and 11449 edges [36]. This dataset consists of

4 different sizes of sub-datasets as well as their benchmark queries for them (see Table.

5.1). In the first step of our evaluation, we compare the index size between UTR-tree

and our new Indexing method, TENC R-tree. In Figure 3.4 , we demonstrate the
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Figure 3.4: Index Size (MB)

TENC R-tree size compared to UTR-tree. As we can see the size of our indexing

method is approximately twice as large as the UTR-tree, because of the additional

temporal index.

In next step of our experiment, we compare 3 groups of queries:

• Pure Spatial and Spatio-tempral queries.

In this group, the performance of UTR-tree and TENC R-tree is similar.

• Pure temporal and temporal ID queries.

In this group TENC R-tree outperforms UTR-tree up to 20 times.

• Path query.

In this group TENC R-tree outperforms UTR-tree up to 30 times.

To evaluate the UTR-tree and the TENC R-tree, we used queries, which are

developed by [35] for each aforementioned dataset categories in Table 5.1. The Point

and Region groups are pure Spatial queries containing 100 queries each. The Instance

and Period groups are pure Temporal queries containing 100 queries each. The Spatio-

temporal group, on the other hand, are obtained from a combination of the Region

and Period group; therefore it contains 100 × 100=10000 queries. Furthermore, [35]

supports 100 ID queries which can be combined with any other queries to build new
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Figure 3.5: Average response time for a Region Query (ms)

Figure 3.6: Average response time for a Window Query (ms)

complex queries. For instance, the ID queries are combined with temporal instance

queries or temporal period queries in section 3.5.2.

BerlinMod [35] does not contain Path queries. Therefore, to do the Path Query

evaluation, we built 100 different random paths. In order to do this, we chose 2

random points on the traffic network (of Berlin city) and found the shortest path

between those points. We repeated the process 100 times to have 100 different paths.

Then, we combined these 100 paths with the temporal queries of [35] to have 100

Path Queries. In subsection 3.5.3, we consider Path queries in more detail.
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3.5.1 Spatial and Spatio-temporal Queries

In the first step of our experiment, we consider Spatial and Spatio-temporal

queries. As we mentioned before, UTR-tree works efficiently for these types of queries.

The proposed indexing structure in this work, TENC R-tree, uses the same procedure

to deal with these kinds of queries. However, we compare UTR-tree and TENC R-

tree to show they perform similarly. Considering table 3.1 there are two types of pure

spatial query, Spatial region and Spatial point queries. Besides, there are 4 types of

Spatio-temporal queries, window query, exact-point interval query, and point query.

Out of these six different queries, we consider Spatial region query (Figure 3.5) and

Window query (Figure 3.6), and we show UTR-tree and TENC R-tree have the same

performance for these queries.

3.5.2 Pure Temporal and ID Queries

In this section, we present the first contribution of this work. As we discussed

before, UTR-tree performs inefficiently when the search query contains no spatial

features. In other words, in dealing with Pure temporal and ID queries, UTR-tree

needs to scan the entire database to retrieve the result. However, since TENC R-tree

has the additional layer, called Temporal layer (see section 3.4.1), it uses this layer

to retrieve the result (see Algorithm 2).

As we can see in Figure 3.7 and Figure 3.8, the average response time for a

pure temporal query can be up to 7 times faster in TENC R-tree than in UTR-tree.

Further, this trend is more significant if we have Pure temporal ID query. Considering

Figure 3.9 and Figure 3.10, we observe pure Temporal ID queries are up to 20 times

faster in TENC R-tree than UTR-tree.
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Figure 3.7: Average response time for a Time-slice Query (ms)

Figure 3.8: Average response time for a Temporal interval Query (ms)

Figure 3.9: Average response time for a Space-slice ID Query (ms)

In the case of pure ID query (queries without any spatial or temporal feature),

we can notice that TENC R-tree can outperform UTR-tree up to 8 times (see Figure

3.11).
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Figure 3.10: Average response time for a Temporal interval ID Query (ms)

Figure 3.11: Average response time for a pure ID Query (ms)

3.5.3 Path Query

The next contribution of our indexing structure comes into play in the case of

Path queries. In this section, we go over both plain (Figure 3.12) and strict (Figure

3.13) path queries. Thanks to prev and next pointers (see section Indexstructure),

TENC R-tree can outperform UTR-tree up to 30 times. It is worth mentioning that,

in the case of Strict path query, the performance of the SPQSearch() (Algorithm 3)

is almost independent of dataset size. The reason behind this is once the algorithm

finds the first leaf node in the tree, it just needs to follow the next pointers, and does

not required to search through the tree anymore. (i.e. one spatio-temporal search,

plus some pointer traversing).
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Figure 3.12: Average response time for a Plain Path Query (ms)

Figure 3.13: Average response time for a Strict Path Query ID Query (ms)

3.6 CONCLUSION

In this chapter, we proposed a new Spatio-Temporal indexing technique known

as Temporally Enhanced Network-Constrained Enhanced-tree, which enhances the

UTR-tree. We compared our indexing structure with UTR-tree for spatial queries,

which include point and region queries, and for pure temporal queries which include

instance and period queries. Our indexing structure, which was built to support pure

temporal queries, ID queries, and Path queries gave significantly better performance

(10 to 30x faster) when compared to the UTR-tree. We also considered spatio-

temporal queries (both spatial and temporal) for which both of the indexing structure

(UTR and TENC) showed similar performance



CHAPTER 4

Scalable Deep Traffic Flow Neural Networks for Urban Traffic

Congestion Prediction

In this chapter, we try to predict the traffic flow of Traffic Network points,

where we do not have any historical data about them, based on the traffic patterns

of Traffic Network points. In the rest of this chapter, after having an introduction

and covering the related work in Section 4.1, we start our work by some preliminaries

in Section 5.5. We define all the main traffic flow concepts and then bring up the

problem we are going to solve. We also, introduce two deep network model, and

describe their structures broadly. In Section 4.3, we explain our models and methods

in more details. Then, we experimentally evaluate our proposed prediction models

and compare them with more simple models in section 4.4.

4.1 Introduction and related work

Traffic congestion leads to extra gas emissions and low transportation efficiency,

and it wastes a lot of individuals’ time and a hunge amount of fuel. Diagnosing con-

gestion and building a pattern for predicting traffic congestion has been regarded

as one the most important issues as it can lead to informal decisions on the routes

that motorists take, and on expanding road networks and public transport. Re-

search to predict traffic congested spots, especially in urban areas is thus very impor-

tant.Typcally, congestion prediction can be used in Advanced Traffic Management

Systems (ATMSs) and Advanced Traveller Information Systems in order to develope

proactive traffic control strategies and real-time route guidance.[15]

63



64
In the last decades, concepts of traffic bottleneck and congestion propagation

have been considered in many studies. Although most of these originate from Civil

Engineering and Urban Transportation studies, the advent of super powerful comput-

ers and complex algorithms, traffic management and traffic flow prediction to become

an interdisciplinary study.

In this regard, there have been various efforts to predict short-term traffic flow

prediction, including mathematical equations [16, 17], simulation techniques [18], or

statistical and regression approaches. However, traffic flow is based on individuals’

decisions, which more likely can be modeled by Artificial Neural Network the best. In

other words, traffic flows are made by individuals’ decisions based on their knowledge

about currenct traffic and their experiences about past traffic flows, which can be

modeled by Artificial Neural Network. Using Neural Network for modeling traffic

flow and congestion prediction came to the picture in 1993 in [19]. This work propose

a network consisting of one input layer, one hidden, and one output layer. Although

this structure was proven to perform well in many applications for predicting traffic

flow and travel time and estimation, it was not efficient in lots of other, because of the

simple structure. Therefore, some research uses a Neural Network, initially, to extract

traffic flow patters (clustering), and then based on each pattern, they come up with a

proper model to predict traffic flow [20, 21, 22]. In this trend, [15] different predictors

have different performance for various particular time periods. In other words, each

predictor can have a super performance only in a particular time period. Therefore,

they combined several predictors together as module to have a better performance

for longer time periods.

The data regarding Traffic Flow and Traffic Congestion are two instances of

Spatio-temporal data. They embady a location (Spatial Feature) and a time (Tem-

poral feature). Besides, as we already mentioned, traffic flow and traffic congestion
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are based on human actions [23]. In [24], the authors propose a fully automatic deep

model for human-action-based spatio-temporal data. This model first utilizes Convo-

lutional Neural Network model (CNN) to learn the spatio-temporal features. Then,

in the second part of this model, they use the output of the first step to train a recur-

rent neural network model (RNN) in order to classify the entire sequence. [24] does

not mention traffic issues as one of the possible applications of their work, however

it seems promising to make some model, which is inspired by their model, to predict

traffic flow and congestion.

In 2015, [24] Deep Learning theory was put into practice for large-scale conges-

tion prediction. To this end, they utilized Restricted Boltzmann Machine [41] and

Recurrent Neural Network [42] to model and predict the traffic congestion. In order

to do this, they convert all the speed data of Taxis in Ningbo, China to binary values

(i.e. the speed more than a threshold is 1, otherwise it is 0), and then call these

values Congestion Conditions. Therefore, the network congestion condition data will

be a matrix as follows: 

C1
1 C2

1 C3
1 . . . CT

1

C1
2 C2

2 C3
2 . . . CT

2
... ... ... . . . ...

C1
N C2

N C3
N . . . CT

N


Each element in the matrix indicates congestion condition in a specific point at a

specific time slot. Therefore, Ct
n represents the congestion condition on the nth point

of the traffic network at tth time slot (The Network has N point). Give this matrix
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to the model presented in [24], the result will be the predicted traffic condition for

each point at T+1.



C1
1 C2

1 C3
1 . . . CT

1

C1
2 C2

2 C3
2 . . . CT

2
... ... ... . . . ...

C1
N C2

N C3
N . . . CT

N


=====⇒



CT+1
1

CT+1
2
...

CT+1
N



Although [24] presented a good performance for predicting traffic condition, it has

some drawbacks:

• The traffic condition is limited in either Congested or Not-Congested (1 or 0).

However, in real applications, we usually need a range of values (or colors in

case of Map) to show amount of traffic flow.

• The traffic condition is set based on a specific threshold (for example 20 km/h).

If the average speed is less than the threshold the traffic condition will be set

as congested, otherwise it will be Not-congested. Nevertheless, having a specific

threshold for the whole network is inappropriate. Rather, the traffic condition

is supposed to be set based on the ratio of average speed of vehicles to possible

max speed (Speed limit).

• In the model presented in [24], authors did not consider any order for Network

points as the input (the rows of the matrix). However, the spatial influence of

adjacent network points should be taken into consideration.

In this work, we try to predict the traffic flow of Traffic Network points, where

we do not have any historical data about them, based on the traffic patterns of Traffic

Network points. Therefore, our contributions are as follows:

1. We formally define the traffic flows prediction concepts.
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2. We introduce a normalized data representation, which can be used in Neural

Network algorithms, or other methods.

3. We present a Deep Convolutional Network, which can be able to learn traffic

flow of different traffic points.

4. Then, we present a Recurrent Neural Network, which, apart from its structure,

can do the same as Convolutional Network.

5. Both of these models are able to predict n-level traffic prediction for different

points of the traffic (e.g. Quiet, light traffic, heavy traffic, congested, etc.)

6. They also put up the predicted average speeds on different points of the traffic

network based on the speed limits in that point (e.g. 0.65 of speed limit).

4.2 Preliminaries

In this section, we give formal definitions of traffic flows prediction problem

in subsection 4.2.1. Then in subsection 4.2.2, we formally introduce the problem

presented in this work.

4.2.1 Formal Definitions

A traffic Network comprises a set of roads, as well as set of junctions. Junctions

can be intersections of streets, exit-entrance of highways, roundabouts, beginning-end

point of a road, U-turns, etc. In the subject of traffic flows, we can consider junctions

as the main points of the network, because these points can be major factors of

changing the traffic flows. By way of explanation, typically a traffic flow may not

change significantly between two junctions, but it may change because of traffic lights,

exit-entrance, and so on. Consequently, almost all of the traffic Network points and

traffic sensors are installed in junctions.
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Definition 1 (Network Points). In this study, we represent a road (streets,

highways, etc.) by N points based on the junctions on that road. Each of these

points may indicate the traffic condition (for example congested) on that point. Con-

sequently, the whole Traffic Network Condition can be presented by set of all junctions

on that Network, which are called Network Points and denoted by N . It is worth

mentioning that each Network point has spatial interaction with adjacent Network

points, and traffic flow conditions of a point may get/have influence from/on the

adjacent points.

Definition 2 (In-flow sequence). Assume S is a Network point and L1, L2,

..., and Ln are adjacent points on the traffic network, which have flow to S, such that

L1 is the closest point to S, and Ln is the farthest. The In-flow sequence of S is

denoted as In(S).

In(S) : Ln → Ln−1 → ... → L2 → L1 → S

Definition 3 (Out-flow sequence). Assume S is a Network point and R1,

R2, ..., and Rm are adjacent points on the traffic network, which S has flow to them,

such that R1 is the closest point to S, and Rm is the farthest. The Out-flow sequence

of S are denoted as Out(S).

Out(S) : S → R1 → R2 → ... → Rm−1 → Rm

Definition 4 (Point snapshot). Assume S is a Network point and L1, L2,

..., and Ln are In(S), and R1, R2, ..., and Rm are Out(S), such that:

Ln → ... → L2 → L1 → S → R1 → R2 → ... → Rm

Point snapshot at time t, denoted as Snapshot(S, t), is the Traffic Condition of

[ Ln, ... , L2, L2, S, R1, R2, ..., Rm ] at time series of [t-δ, ..., t-1, t]. This time series

indicates a sequence of the last δ time points with a specific time interval between



69

each two consecutive time points (for instance, 20 minutes) . Formally, Snapshot(S,t)

is defined as follows:



t−δ ... t−1 t

Ln cLn
t−δ . . . cLn

t−1 cLn
t

Ln−1 c
Ln−1
t−δ . . . c

Ln−1
t−1 c

Ln−1
t

... ... . . . ... ...

L1 cL1
t−δ . . . cL1

t−1 cL1
t

S cSt−δ . . . cSt−1 cSt

R1 cR1
t−δ . . . cR1

t−1 cR1
t

... ... ... . . . ...

Rm−1 c
Rm−1
t−δ . . . c

Rm−1
t−1 c

Rm−1
t

Rm cRm
t−δ . . . cRm

t−1 cRm
t



Where cστ indicates traffic condition of point σ at time τ . Traffic condition is

a value between 0 and 1 (0 ≤ cστ ≤ 1), and shows the ratio of the average speed of

vehicles to the speed limit in point σ at time τ . Although it is extremely rare that

the average speed exceeds speed limit, in cases which exceed, cστ is considered as 1.

It is worth mentioning that Snapshot(S,t) is the input unit for predicting the traffic

flow of S at time t+1 (for example in 20 minutes). In other words, for predicting the

traffic flow of S at time t+1, we need recent δ traffic condition of point S, as well as

recent δ traffic condition of In(S), and recent δ traffic condition of Out(S).
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0.5 0.6 . . . 0.3 0.9
0.4 0.7 . . . 0.5 0.4
... ... . . . ... ...

0.5 0.6 . . . 0.3 0.9
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... ... . . . ... ...

0.5 0.6 . . . 0.3 0.9
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... ... . . . ... ...

0.5 0.6 . . . 0.3 0.9
0.4 0.7 . . . 0.5 0.4

Figure 4.1: Schematic view of SNAPSHOT(N , t)

Definition 5 (Network snapshot). Assume N = {S1,S2,S3, ...,SN}. Snap-

shot of N at time t, denoted by SNAPSHOT(N , t), and defined as follows:

SNAPSHOT(N , t) =
N⋃
i=1

Snapshot(Si, t)

Where Snapshot(Si, t) is the Point snapshot of Si at time t, and ⋃ is the union

of snapshots of the Network points. Therefore, Snapshot(Si, t) is a set of all point

snapshots of Network points. Fig.4.1 schematically present SNAPSHOT(N , t).

In Fig.4.1, each box consists of the snapshot of one Network point at time t,

thus all boxes indicate snapshot of the whole traffic network. Assume, Fig. 4.1 is the

current snapshot of the traffic network (SNAPSHOT(N , now)). And, It may be the

input for prediction of the next time point (for example, in 20 minutes).

4.2.2 Problem Definition

Assume we have the historical Network snapshots of a region (e.g. North Cal-

ifornia), gained from traffic detectors located on Traffic points (Definition 1). Our
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system can learn traffic patterns from this historical data. Suppose, we have the cur-

rent and the recent Network snapshots of another region (e.g. Southern California),

because recently the latter region was equipped with traffic sensors. In this work, we

try to predict the traffic flows of the latter region based on the traffic patterns learned

from the former traffic network.

Problem. Given the historical traffic observations of NetworkN1 and Snapshot(S,

now), S 6∈ N1 , predict traffic condition of S at (now + 1), where (now + 1) is the

next time point (e.g. traffic condition in 20 minutes from now).

4.3 Deep traffic flow network

In this section, we try to use two deep learning model to solve the problem

defined in subsection 4.2.2. In order to do this, we utilize two prominent algorithms,

namely, Convolutional Neural Network [43] in subsection 4.3.1 and Long Short-Term

Memory [44] in 4.3.2.

4.3.1 Deep Traffic Flow convolutional Network

Now that we defined all the main concepts about Traffic Flow Prediction, we

need to introduce our Deep Traffic Flow convolutional Network. Fig.4.2 illustrates

the model while training. As seen, the inputs to this model are categorized in two

broad groups, namely, Traffic Condition and Incidents. Traffic Conditions are the

set of Network snapshots (See Definition 5). In other words, Traffic Conditions is as

follows:

Traffic Conditions =
Z⋃
i=1

SNAPSHOT(N , ti)

Where Z is the size of the dataset, chosen for training the model, and SNAPSHOT(N , ti)

is the Network snapshot in each training item. In Fig.4.2, we have N points in our
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Figure 4.2: Deep Traffic Flow Convolutional Network

Network N . For each Network point at a particular time point, we need to show the

snapshot (a 2D array with size ((δ + 1)× (n + m +1)).

On the other hand, Incidents are Weather inputs or information about Car

accidents, Holiday dates, Road construction, and Events, such as soccer match or

concerts. Also, sometimes Police may change the traffic flow. Intuitively, we know

these incidents may have huge influence on traffic flow. In the first step, past Traffic

Conditions are given to the first layer of Convolutional Neural Network as the training

set. Then, the result of first layer is given to the second Convolutional layer. This

trend continues until we have a set of one dimensional arrays. As we know, in each

layer of Convolutional, the size of input will decrease (because of the filter (ζ ∗ ζ)

applied on the input).

When the output of a Convolutional layer is a set of 1D values, it is time to

add the incident information to the output, and set the input for Fully-connected

Network. The outcome Fully-connected Network outcome is the predicting values
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Figure 4.3: Test stage of Deep Traffic Flow Convolutional Network

of Traffic Flow at t + 1. While training, this output should be compared to the

actual traffic flows, and loss value should be calculated. By getting help from loss

value, the weights and bias values may be updated. In this work, we try to solve

the problem introduced in subsection 4.2.2. In order to do this, we used the trained

aforementioned model. Fig. 4.3 shows the test model of Fig. 4.2. Having the the

traffic condition of point S (the point which we try to predict), and traffic condition

of In(S) and Out(S) in time interval [now−δ, now], the output is the traffic condition

of S at now + 1.

4.3.2 Long short-term memory Traffic Flow

In subsection 4.3.1, we introduce our Deep Traffic convolutional Network for

solve the problem defined in section 4.2.2. In this subsection, we bring up another

method, called Long short-term memory Traffic Flow. In this method, we use the

Long short-term memory (LSTM) network [44]. LSTM is a Recurrent Neural Network

[42] with more complex structure in the repeating modules. In other words, each

repeating modules contains 4 interacting layers, thus LSTM avoids the long-term

dependency problem. Fig. 4.4 shows an instance of an LSTM module.
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Figure 4.4: An instance of LSTM module

In this work, as we mentioned before, we try to predict the short-term future

traffic condition for a Network point, where we do not have the historical Traffic

condition about it, based on traffic patterns we learned from another road network.

Considering the structure of LSTM, our whole network is as in Fig. 4.5. In Fig.

4.5, the traffic condition of point S (the point which we try to predict), and traffic

condition of In(S) and Out(S) at time t − δ, are given to the first LSTM module.

Then, in the next step the traffic condition of point S, In(S), and Out(S) at time

t− (δ−1), are given to the second LSTM module. This trend continues until the last

module. In the last module the output is the traffic condition of S at now + 1.

4.4 Experimental Evaluation

In order to examine the performance of our model, we explain our models

in detail followed by introducing our dataset. In subsection 4.4.1, we describe our

dataset, and in subsection 4.4.2, we bring up our method more in detail.
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Figure 4.5: Long short-term memory Traffic Flow

4.4.1 Data set

In all experiments of this evaluation, we used real traffic data of California State.

In order to do this, we used the data presented by Caltrans Performance Measurement

System (PeMS)[45]. PeMS utilized over 39,000 detectors to collect real-time traffic

data. These sensors cover the freeway system across all major metropolitan areas of

the State of California. Therefore, PeMS prepared over 10 years of (historical) traffic

flow data. The available data in PeMS are not limited to traffic flow data, but it also

archived incidents data, such as, Car accidents, Weather information, Lane closures,

etc. In this work, we trained our model for 51 locations on duration of 48 days. Then,

we test the model for the same location for the next 12 days. The raw dataset and

cleaned dataset are available in [46]. These datasets can be used as the benchmark

for future Traffic Flow Prediction models.

The data in PeMS are raw data. In order to use them in our model, we did the

following pre-processing steps:
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4.4.1.1 Getting the data

The first step is getting the data from [45]. Thus, we download traffic flows

(average speeds) of 58 consecutive locations of US 101 highway for 60 days (each

detector on the freeway indicates one location). The aforementioned 60-days is from

“August 15, 2016” to “October 14, 2016”. The granularity for the data is 5 minutes.

By way of explanation, we have every-five-minute traffic flow of 58 Network points

for 60 days (from “August 15, 2016” to “October 14, 2016”).

4.4.1.2 Cleaning the data

The next step is the data cleaning. In order to do this, we checked the data and

we noticed for a few temporal points, there is not any traffic flow information. For

example, we have the traffic flow for Dayn at 13:45 and 13:55, but no data for 13:50.

In this case, we calculate the mean values of data at 13:45 and 13:55, and consider

them for 13:50.

4.4.1.3 Normalizing the data

The main part of our data gathering is the normalizing of the data. In our

experiment, we consider the number of In-flow and Out-flow for each network point

are 4 (see Definition 2 and Definition 3). The In-flow and Out-flow values can be

defined based on condition of case study, such as, the distance between two consecutive

Network Points, average speed, etc. Defining the size of In-flow and Out-flow can be

consider as the future work. Also, we assume that in each point snapshot we have

traffic conditions of time t, and 4 time steps before t (δ = 4, see Definition 4).

Therefore, point snapshots are 9 × 5 (( n + m + 1) × (δ + 1)). Although we 58

network position, we will not be able to make point snapshots for more than 50 of
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them, because for the first 4 points we do not have In-flow, and the last 4 of them,

we do not have Out-flow.

Besides, we batch the data in buckets of 30-minutes based on the day of the week

and time. Put differently, all the traffic flows of Mondays at 8:00 am are considered

in the same buckets. Thus, we assign values of “0 to 6” to the days of the week

(i.e. 0 is assigned to Sunday, 1 is assigned to Monday, and so on). At same time we

assign values “0 to 47” to the time of the day (i.e. 0 is assigned to [00:00, 00:30), 1 is

assigned [00:30, 01:00), and so on).

Now that we convert time to two values, it is the time to normalize and prepare

our data for training and the test. For normalizing the data, we need to convert all

the values (traffic flow information and time) to values in the range [0, 1]. In order

to do this, we divide all values by their possible maximum values. For this reason,

we divide days and time points by 6 and 47 respectively. Also, we find the ratio of

traffic flow of each point to the possible max speed (Speed limit). Hence, a sample of

point snapshot is as follows:
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0.5, 0.6



t−4 t−3 t−2 t−1 t

L4 0.5 0.6 0.4 0.5 0.3

L3 0.4 0.7 0.4 0.8 0.5

L2 0.2 0.9 0.3 0.3 0.4

L1 0.4 0.7 0.5 0.6 0.5

S 0.3 0.8 0.1 0.8 0.9

R1 0.5 0.6 0.5 0.4 0.3

R2 0.4 0.7 0.3 0.9 0.5

R3 0.5 0.6 0.5 0.4 0.3

R4 0.4 0.7 0.3 0.9 0.5



In this instance, Day value and Time value are equal to 0.5 and 0.6, respectively

(i.e. It is Wednesday at 14:00 to 14:30). In the matrix of traffic conditions, we have 9

rows, indicating the 4 In-flows, the 4 Out-flow, and the Source which is supposed to

be predicting. Also, there are 5 columns, 1 column for time t, and 4 columns for the

last 4 time points before t. The time interval between two consecutive time values is

5 minutes (the granularity we chose while getting the data).

4.4.2 Deep learning-based method

Now that we have the normalized cleaned data from the subsection 4.4.1, we

need to implement two aforementioned methods in section 4.3, namely, Deep Traffic

Flow convolutional Network and Long short-term memory Traffic Flow to learn the

traffic flow (traffic pattern) of one specific Road Network, N1). Then, the learned

models should be used to predict another road Network, N2 (see subsection 4.2.2).
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Figure 4.6: Daily RMSE Error for CNN

In this experiment, we use the first 20 Network points of normalized cleaned data

as the training set and the rest 30 Network points as the test set. As we know,

former Network points are southern part of dataset, and the latter ones belong to

the northern section. Therefore, the two sets are disjoint in order to evaluate the

generalization ability of the proposed methods (see subsection 4.2.2).

In order to evaluate the proposed methods, we employed a system as follows:

• Intel(R) Core(TM) i7 CPU 960 @ 3.20GHZ

• 8GB Ram

• Quadro 600 NVDIA GPU 1GB

We designed our Deep learning architectures using Lasagne Deep learning frame-

work [47] installed on Theano [48].

The specifications of the proposed Networks are presented in Tables 4.1 and 4.2,

where inputs and outputs size of each layer, as well as their filters size are tabulated.
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Table 4.1: Specification of the proposed Convolutional Neural Network

Layer Type Input Output
Conv1 9 × 5 7 × 3 × 64
Conv2 7 × 3 × 64 5 × 1 × 64
Fully-Connected 320 32
Fully-Connected 32 1

Table 4.2: Specification of the proposed LSTM network

Layer Type Input Output #Hidden Nodes
LSTM1 9 × 5 9 × 5 20
LSTM2 9 × 5 1 20

It is worth mentioning that, in this work, we used the Euclidean loss function

to train the networks since our proposed problem is intrinsically categorized as Re-

gression. Besides, intuitively, we know that traffic flow data are unbalanced. In other

words, traffic flows are typically heavy in few hours of a day. Therefore, our data

while traffic was heavy are significantly less than the light traffic data. In order to

avoid biased training, we used a regularization equation for our loss as follows:

Loss =

√∑N
i=1[(Xi − Yi)2 + ωiα]

N
(4.1)

where α is the absolute value of Xi − Yi, and ωi is as follows:

ωi =


0, if Yi > 0.5

1, otherwise

Each of the proposed networks are trained for 30 epochs over the trained dataset

containing the flow information for 20 Network points over of the course of 2 months.
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Figure 4.7: Daily RMSE Error for LSTM

The trained networks are then used to predict congestion conditions of the road

network.

Fig. 4.6 illustrates the Root Mean Square error (RMSE) error for 30 Network

points. The RMSE is computed for each day at a specific Network point and the

distribution of RMSE error for each Network point is plotted as a box plot in Fig. 4.6

for the CNN. On the other hand, Fig. 4.7 presents the same RMSE plot for LSTM

network. As these plots illustrate, the RMSE for CNN is lower than LSTM and thus

results in lower standard deviation.

In order to further evaluate the performance of the proposed methods on the

benchmark, we examine the prediction of each network over the course of a day. Fig.

4.8 presents the predicted normalized average speeds for CNN and LSTM networks

as well as the ground-truth data. The proposed methods successfully predict the

congestion condition with high accuracy in compared with the ground-truth data.

However, the error increases slightly during the rush hours and that is due to the un-
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Figure 4.8: Traffic Prediction over the course of a day for a single Network point

balanced nature of the dataset. However, The proposed regularization term effectively

decreased the gap during the rush hour.

Hereby, we take a deeper look into the prediction during the rush hours. Fig.

4.9 illustrates the congestion prediction for a single Network point over 30 consecutive

days. For this experiment we utilized the information for Network point number 21

at 7:30 am. As shown in this figure, the error increases as the congestion increases

however, both networks successfully follow the trends.

On the contrary, Fig. 4.10 illustrates the predicted network flow using LSTM

and CNN for light-traffic conditions where we picked 12:00 pm as an example to plot

the predicted average speed for Network point number 21. As shown in this figure,

the predictions are more accurate in this case.
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Figure 4.9: Predicted traffic flow during rush hours in 30 consecutive days for a single
Network point

Figure 4.10: Predicted traffic flow during light-traffic hours in 30 consecutive days for
a single Network point

4.5 Conclusion

Concepts of traffic bottleneck and congestion propagation are critical compo-

nents of Intelligent transportation network management systems. There have been lot
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of effort to understand how the traffic flows and short-term prediction of congestion

occurrence because of rush hours or incidents, such as car crashes or Sport events,

can be beneficial to such systems to effectively manage and direct the traffic to the

most appropriate detours. Most of traffic flow prediction systems rely on utilizing a

central processing component where the prediction is carried out through aggregation

of the information gathered from all measuring stations. Nevertheless, such system

are typically scalable and unable to provide real-time feedback to the system whereas

in a decentralized scheme, each node is responsible to predict its own short-term

congestion based on the local current measurements in neighboring nodes.

In this work, we introduced a scalable decentralized traffic flow prediction by

utilizing deep learning-based method. Therefore each node accurately predicts its own

congestion state in real-time based on the congestion state of the neighboring Network

point. Besides, proposed method is significantly suitable in the cases, where we need

to predict the traffic flow of newly installed stations, using Deep Network trained by

historical data from another traffic network. we introduced a regularized euclidean

loss function that favors high congestion samples over low congestion samples to avoid

the impact of the unbalanced training dataset. A novel dataset for this purpose was

designed based on the traffic data obtained from traffic control stations in northern

California. Extensive experiments conducted on the designed benchmark reflected a

successful congestion prediction.



CHAPTER 5

Map Matching Using Frechet Distance Algorithm

In this chapter, after having an introduction in Section 5.1, in Section 5.2, we

cover a Classic Frechet Distance Problem and a Standard Frechet Distance Algorithm.

In the following, in Section 5.3, we come up with some GIS applications for Frechet

Distance. Out of these application, we talk about Map Matching and how we can

utilize Frechet Distance in this regard. In Section 5.4, we talk about some related

work. In Section 5.5, after some formal definitions about frequently used concepts and

the problem, we explain our algorithm. In Section 5.7, we talked about the dataset

we used to evaluate our work, and we evaluated our approach. Finally, we conclude

in Section 5.8.

5.1 Introduction

Concept of polylines similarity, also called curve similarity, is one of the popular

computational geometry problems, which appears in a variety of different domains,

such as machine learning (pattern recognition, speech recognition, signature verifi-

cation, computer vision, etc.) and GIS applications. One of the most well-known

polyline distance metrics is Frechet Distance that was introduced in 1906 [49]. In

1995, [50] came up with an algorithmic solution to compute the Frechet Distance

between two polylines.

Frechet Distance can be defined as the minimal length of a leash connecting a

dog on one trajectory (polyline) with its owner on a second trajectory, both never

85
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moving backward. Based on this intuitive definition, the GIS applications of Frechet

Distance seem more significant than others.

Some of the applications can be:

• Map Integration and Verification: Map Integration and Verification is the

process of matching two distinct topological datasets that present the same road

network.

• Map Integrity: Map Integrity is the process of evaluating the accuracy of

topological information of a road network by using the GPS data received from

GPS devices associated with moving objects who traveled on the aforementioned

road network.

• GPS Tracking or Map Matching: This process is to match GPS data

(location points) generated by a GPS device associated with a moving object

to the road network to determine which road the vehicle is on.

5.2 Frechet Distance Problem

Similarity of Polylines has been studied as one of the considerable issues in

computational geometry. Among all available metrics, the Hausdorff Distance [51]

and Frechet Distance [50] are the most well-known ones. In this research, we utilize

the Frechet Distance because the Hausdorff Distance is too static. In other words,

the Hausdorff Distance does not support directions. It also does not consider any

dynamics of motion along the polylines.

In this section, we briefly cover introduce Frechet Distance algorithm presented

in [50]. In order to do this, we define some of the concepts we frequently use in the

rest of this chapter. A schematic definition for the Frechet Distance can be as follows:

A man is walking his dog. Obviously, they have different trajectories with differ-

ent instantaneous speeds. However, both are moving forward (backward move-
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ment are not allowed). The Frechet Distance is defined as the minimal leash

length that makes this walk possible.

Line Segment: A straight line that is described by two coordinates, starting

point (xs, ys), and end point(xe, ye).

Polyline: A sequence of Line Segments, such that the starting point of the ith

line segment is the end point of the ( i-1)th line segment. In other words, a polyline

is a sequence of points, (x0, y0), (x1, y1), (x2, y2), ..., (xn, yn). Therefore, it is a

function P: [0, n] → R2, where n is the length of the polyline and P(i) represents the

coordinate of the starting point in the ith line segment. In the rest of this research

Pi shows the ith line segment in P.

Frechet Distance: Given two polylines, P and Q, with length of n and m

respectively, the Frechet Distance between P and Q is as follows [52]:

δF (P,Q) = inf
α,β

max
t∈[0,1]

d(P (α(t)), Q(β(t)))

Where d is Euclidean distance, and α and β are continuous non-decreasing functions

defined as follows:

α : [0, 1]→ [0, n], such that α(0) = 0 and α(1) = n,

β : [0, 1]→ [0, n], such that β(0) = 0 and β(1) = m.

Free-space Diagram: The free-space diagram between two polylines, P and

Q, for a given distance ε is the diagram that shows a relationship between all point

pairs of P and Q, p and q. If the distance between p and q is equal or less than ε,

the diagram will be white, otherwise it will be dark. Figure 5.1 demonstrates two

polylines, P and Q (a), the distance ε (b), and the Free-space between P and Q based

on distance ε. In Figure 5.1.a, there are two point pairs, represented by blue and red.

In Figure 5.1.c, we have the same blue and red points, which represent the same color

point pairs as Figure 5.1.a. The blue point is within the dark area which shows that

the distance between the blue point pairs is more than ε. On the other hand, the red
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Figure 5.1: a) Polyline P and Q. b) Distance ε. c) The Free-space

point is within the white area which shows the distance between the red point pairs

is less than (or equal to) ε.

The Frechet Distance between P and Q is less than or equal to ε if, and only

if, we can draw a path from the lower left corner to the upper right corner (in white

area), which is monotone both in the horizontal and in the vertical direction (consider

Figure 5.1.c).

5.3 GIS application of Frechet Distance

In this section, we introduce 3 GIS applications of Frechet Distance: Map Inte-

gration and Verification, Map Integrity, and Map Matching. It is worth mentioning

that GIS applications of Frechet Distance are more than what we can cover in this dis-

sertation. We are only mentioning the ones we plan to talk about in this dissertation.

The rest may be included in future studies and work.
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5.3.1 Map Integration and Verification

Map data is a type of spatial date that is usually collected and maintained for

different purposes for use in different applications [53]. For example, they can be

gathered and used for creating printed maps. In this case, they do not need to be

accurate, as they are usually simplified to make them more readable. On the other

hand, the map data used for navigation systems in GPS devices are supposed to be

precise and full of informative features, such as speed limits and connectivity flow

in routes connected by a junction (described in Chapter 2). This inconsistency in

map data needs to be recognized by using Map Integration and Verification. Map

Integration and Verification can be accomplished by considering different features of

data, such as name or topological information. These differences can be geometric or

semantic. For example, consider Figure 5.2. As we see, the map data illustrated by

the blue lines show some roads as single lines (one-way)and other roads as two lines

(one for each direction of the road), while also using inconsistent naming.

The complex nature of spatial data makes the process of integration and verifi-

cation more difficult than other types of data, such as texts or numbers. Furthermore,

map datasets are very large because they contain information about landmarks, roads,

buildings, etc. Therefore, the whole country could easily grow into millions of objects.

5.3.2 Map Integrity

As we discussed in Subsection 5.3.1, map data can be inaccurate and inconsis-

tent. In the cases where we have accurate topological information of road networks

(gathered by very precise GPS devices), and we need to evaluate the accuracy of

the latter dataset by calculating the error between these datasets, we use Frechet

Distance. Consider Figure 5.4. It illustrates a road network and a large amount of
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Figure 5.2: Map Integration and Verification

Figure 5.3: Map Integrity

GPS points on the road network. As we can see, the GPS information received from

the moving objects from point (A) to point (B)do not match with the road network

they are moving on.
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Figure 5.4: Map Matching

5.3.3 Map Matching

The popularity of GPS devices in recent years lead the production of a large

amount of raw coordinate data. This data typically has positioning errors. In other

words, the latitudes and the longitudes recieved by the GPS devices usually do not

completely match any routes along the road network where the moving object as-

sociated with the GPS device traveled. GPS satellites broadcast their signal with a

certain accuracy, but what a GPS device receives and sends depends on other factors

such as atmospheric condition and device quality. For example, GPS enabled smart

phones are typically accurate to within 5 meters [54]. However, their accuracy wors-

ens near buildings, bridges, and trees. The general purpose of Map Matching is to

match the raw GPS data to road segments, where the moving object associated the

GPS device traveled. Map Matching is not just based on the closeness of a point to

a road segment, but we need to determine the best match based on the previous and
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next location points on the trajectory. For example, Figure 5.4 shows the trajectory

of a moving object that is traveling on Highway 157. As we see, point (A) is close

to Greek Row Drive, although based on the rest of the trajectory points, it is obvi-

ous that point (A) is not representing a point on Greek Row Drive, but a point on

Highway 157.

5.4 Related Work

With the advent of smart phones and strong navigation systems, the issue of

matching the GPS points to the correct location on the road network has become more

significant. In this regard, different Map Matching algorithms have come into picture.

These algorithms can be categorized based on various criteria. One of these catego-

rizations classifies these algorithms based on batching the data. Local/Incremental

algorithms [55, 56, 57] use a small portion of the trajectory for map matching rather

than entire trajectory units and as a result, they are fast and perform well. Other

algorithms in this categorization are called global algorithms [58, 59, 60, 61, 62]. They

process all trajectory points in the map matching process. Therefore, they are more

accurate in the case of a low sampling rate. In our work, we use the advantages of

both approaches. Thus, our approach is fast and it is accurate for low sampling rates.

In another classification, map matching can be grouped into four categoriza-

tions. The first group is called geometric which solely uses the geometric information

of the road network without considering the connectivity between trajectory units.

The second group of algorithms, called topological map matching, considers the con-

nectivity between consecutive trajectory units. The third group of algorithms are

based on probability and called probabilistic. The last group uses advanced algo-

rithms for map matching, such as [63] uses Kalman filter, [64] utilizes fuzzy logic,

and [65] applys Hidden Markov Model. Our approach can be considered a combina-
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tion of geometric and topological because we find the nearest route(s) to a trajectory

unit (geometric) and then based on the relationship between trajectory units, we

determine which routes are selected for route(s) (topological).

5.5 Preliminaries

In this Section, we give a formal definition to a Map Matching problem in

Subsection 5.5.1. Then in section 5.5.2, we formally introduce the problem presented

in this work.

5.5.1 Formal Definition

A traffic network comprises a set of roads, as well as set of junctions. Junctions

can be intersections of streets, exit-entrance of highways, roundabouts, beginning-

end points of a road, U-turns, etc. In the subject of Map Matching, we can consider

junctions as the main points of a network because these points are used for moving

objects to change their directions. Therefore, it helps us make better decisions on our

Map Matching problem. In the following, we define these concepts briefly.

Definition 0 (Moving Object). A moving object is an entity that is repre-

sented by a time-dependent position point in space, such as cars, trucks, etc. (spatio-

temporal).

Definition 1 (Traffic Network). A traffic network (in our context) is a pla-

nar directed graph, comprised of a set of routes (Edges) and junctions (Vertices),

N (Route, Junction). Junctions can be intersections of streets, exit-entrances of high-

ways, or roundabouts.

Definition 2 (Moving Object Trajectory). Through location update, a

moving object sends a Location Message, which includes the location information
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and time. A sequence of this location information sent by the moving object makes

a trajectory. Therefore, a trajectory is lm1, lm2, ..., lmn, where lmi = (xi, yi, ti).

Definition 3 (Path). A path in a Traffic Network is defined by two locations

on the network, either on a route or on a junction such as s and d. It can also

be a sequence of consecutive junctions on the network between s and d, such that

a moving object can travel from s to d on the network without the need to pass

any other junctions from the network. Therefore, a path π is s, j1, j2, ..., jn, d, where

ji ∈ Junction (Consider Definition 0).

5.5.2 Problem Definition

Assume we have the trajectory of a moving object on a road network, and we

need to know the path that the moving object actually traveled on.

5.6 Map Matching with using Frechet Distance Algorithm

In this section, we introduce a new approach for Map Matching. We come up

with a new algorithm that takes the trajectory of a moving object as a polyline and a

road network N , and by using Frechet distance algorithm, explained in Section 5.2,

returns path π on road network N where the moving object was traveling on. This

algorithm is explained in Algorithm 4

Algorithm 4 MAP MATCHING by Using FRECHET DISTANCE
1: procedure MMDF(T, N ) . The input are Trajectory T as Polyline and Road Network N
2: for all pi(xi, yi) in polyline T (1 6 i < n do
3: li = list of all line segment < Rs, Re >, which are located less than ε to pi

4: for all pair < rs, re > of line segments in li and li+1 do
5: Find the shortest path and call it πtemp

6: if πtemp and Ti are satisfying ε Frechet distance then
7: add pitemp to resultGraph
8: for all pair < rs, re > of line segments in l1 and ln do
9: if There is a path π from rs to re in reslutGraph then
10: if π and T is satisfying ε Frechet distance then
11: put π in set of qualifiedResults
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In Algorithm 4, we have trajectory (polyline) T and road network N as the

input. In lines 1 and 2, for each point in T, we find list of all the routes within ε

distance from the point. Then in lines 3 - 7, for each pair of routes in two consecutive

lists, we find the shortest path between them and call it πtemp. If πtemp and the

corresponding trajectory unit Ti are within ε from each other according to the Frechet

Distance Algorithm, we add πtemp (all the edges of πtemp) into graphReslut. At the

end of these steps, we would have a new graph containing possible paths from source

to destination (starting point of T1 to end point Tn). In lines 8 - 11, for each path π

from the source to the destination, we verify that π and T satisfy ε Frechet distance,

and we return π as (one of) the result(s).

5.7 Experimental Evaluation

In this section, we talk about the dataset we use for the experimental results

in Subsection 5.7.1. We also describe our algorithm and how we generate synthetic

GPS data. Then in section 5.7.2, we evaluate our Map Matching algorithm presented

in Section 5.6.

5.7.1 Data Source

In order to examine the accuracy of our approach, we implemented our algo-

rithm by using a C++ program. Our test environment was a Windows 10 64-bit op-

erating system, Intel Core i7-6500U CPU @ 2.50GHz, with 16GB RAM. The dataset

used to evaluate this work cames from BerlinMod, a benchmark for spatio-temporal

database management systems (STDBMS) by the University of Hagen [35]. The

moving object data were sampled from the simulated behavior of workers commuting

between their places of home and work, and additional trips in their leisure time

on the street network of the German capital Berlin which contains 3212 routes and
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Table 5.1: BerlinMod datasets characteristics

Category Days Vehicles Trip Moving points
1 2 141 1,797 346,657
2 6 447 15,045 2,998,674
3 13 894 62,510 12,091,785
4 28 2000 292,940 56,129,943

11449 edges [36]. This dataset consists of 4 different sizes of sub-datasets as well

as the benchmark queries for them (see Table. 5.1). Since the dataset does not

provide the actual route that the moving object traveled on, we needed to generate

the trajectory units for each trip. In order to do this, we found the closest route to

the starting and end points of each trajectory (trips of the commuters we mentioned

above). We then found the shortest path between the starting and the end points.

Once we had the exact routes for the trajectory, we used Algorithm 5. In Algorithm

Algorithm 5 TRAJECTORY MAKER
1: procedure TrajectoryMaker(π, periodAvg, periodSD, errorAvg, errorDS, t)
2: for all Ri in π do
3: length = Length(Ri)
4: speed = Speed(Ri, t)
5: portion = begining of Ri

6: while portion < end of Ri do
7: err = makeError(errorAvg, errorDS)
8: result.Push(position + err)
9: period = Period(periodAvg, periodSD)
10: delt = speed * period
11: position = position + delta

5, we get the path as one of the inputs. periodAvg and periodSD are other inputs that

indicate the average period of time and the standard deviation between 2 location

messages, respectively. We also get errorAvg and errorDS that show the average and

standard deviation of error for the location where it is sent. t is another parameter

that shows the time of the day and is used to retrieve the average speed of a moving

object at a specific time along the given route.
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A path π contains a sequence of routes. We needed to create location update

messages at a certain amount of time (called period) for each route. The for loop

in lines 2 - 10 shows the process that is done for each route. First, in lines 3 and 4

we calculate the length and the average speed for the route, respectively. Then, we

start our travel on the route. Our position is set to the beginning of the route. We

calculate the error (err) and save the position with that error. Then we calculate

period, considering periodAvg and periodSD. Then, considering speed and calculated

period, we make the delta and move the location to be delta.

5.7.2 Evaluation

In this subsection, we are going to evaluate our approach based on accuracy. In

this regard, we use Correct Matching Percentage (CMP) as defined in [61].

CMP = Correct Matched Point

Number of points to be matched
(5.1)

As we already mentioned for our experiment we use BerlinMod Dataset [35]

summarized in Table 5.1. In category 4 of this dataset, we have 292294 trajectories.

With the help of these trajectories, we can calculate the average and standard devi-

ation of Location Update Messages. Also, we consider 5 meters as the average GPS

error and 1 meter for the standard deviation [54]. In this experiment, we can assume

the maximum speed for the average at anytime. Algorithm 5 can be used as the gen-

eral GPS generator because it considers the time for the average speed. However, in

this experiment, we assume that moving objects travel on the road network as fast as

the maximum speed of the road. Although this assumption can have influence on the

sampling rate, we ignore this in the current work, and a more accurate experiment

can be done in future work.
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Figure 5.5: CMP for 100 Trajectories

As we mentioned, we use Equation 5.1 to evaluate the accuracy of our work. To

do this, we choose 100 pairs of random points from the traffic network (of Berlin City)

and find the shortest path between them. Then with the help of Algorithm 5 and

aforementioned parameters values, we generate GPS points for those 100 trajectories.

Then we sort the trajectories based on the number of their trajectory units from 67 to

424. Figure 5.5 shows the result. In Figure 5.5 the X-axis is the number of trajectory

units and the Y-axis is CMP for that trajectory. As we can see, the accuracy increases

when the number of sampling points is higher. The reason for this is when we have a

higher number of points we have a better ability to determine the actual routes for the

(middle) trajectory units. Also, the starting and end trajectory units are usually are

assigned to incorrect routes, as we have less insight about their neighbors. In the

second experiment, we neglect the first ten and the last ten trajectory units, and again

calculate CMP for the same 100 trajectories. Figure 5.6 shows both experiments. The

blue dots show CMP before neglecting and the orange ones show after. As we can

see, the growth of accuracy for trajectory with less trajectory units is higher. As
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Figure 5.6: CMP for 100 Trajectories after neglecting the first ten beginning and the
last ten end trajectory units

mentioned, the beginning and end points of trajectory can be assigned incorrectly

because we do not have enough insight about their previous routes.

5.8 Conclusion and Future work

In this work, we presented a new approach to do Map Matching. In other

words, we used Frechet Distance algorithm in Map Matching issue. In order to

do this, first we described Frechet Distance. Then, we explained Frechet Distance

algorithm. In the following, we came up with some GIS applications for Frechet

Distance. Out of these application, we talked about Map Matching and how we can

utilize Frechet Distance in this regard. After some formal definition about frequently

used concepts and the problem, we explained our algorithm. Finally, we talked about

the dataset we used to evaluate our work, and we evaluated our approach. As we

already mentioned, the Frechet Distance algorithm can be used in variety of different

domains, such as machine learning (pattern recognition, speech recognition, signature

verification, computer vision, etc.) and GIS applications. In our future work, we want
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to use Frechet Distance in other GIS application such as Map Integration and Map

Integrity.



CHAPTER 6

CONCLUSIONS

6.1 Summary of Contributions

This dissertation was focused on three aspects of Moving Object Databases:

Formalizing of Network-constrained moving objects and their queries and introduc-

ing of Temporally Enhanced Network-constrained (TENC) Rtree; Scalable urban

traffic congestion prediction by using Deep learning; Map Matching by using Frechet

Distance algorithm.

In Chapter 2 and 3, we categorized the various types of Network-constrained

moving objects queries based on 4 different aspects of these types of data, namely,

Spatial, Temporal, Object id, and the Path where the moving objects travel on. Then,

we formally defined these categories by using Relational calculus expressions. These

categories can be used for 3 purposes:

1. Comparing the performance of indexing methods,

2. Showing the completeness of benchmarks, and

3. Writing the Moving Object Queries easily.

In this regard, we proposed a new indexing method called Temporally Enhanced

Network-constrained (TENC) Rtree. This indexing method exponentially shorten

the response time to the queries with Temporal, Object id, or/and Path aspect.

In Chapter 4, we tried to predict the traffic flow of road network where we do

not have any historical data about them based on the traffic patterns of other road

networks where we have their historical data about them.

101
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In Chapter 5, we talked about polylines similarity. Polylines similarity is a

very fundamental concept when dealing with Spatial, Spatio-temporal, and Moving

object databases. One of Polylines similarity applications is Map Matching, where

we correspond the location points generated by GPS devices associated with moving

objects to the road network to determine which road they are traveling (or traveled)

on. In this chapter, we concentrated on a very intuitive measure called Frechet

distance with superior quality in theory and practice to solve Map Matching. The

Frechet distance is defined as the minimal length of a leash connecting to a dog on

one trajectory with its owner on a second trajectory, both never moving backwards.
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[35] C. Düntgen, T. Behr, and R. H. Güting, “Berlinmod: a benchmark for moving

object databases,” The VLDB Journal, vol. 18, no. 6, pp. 1335–1368, 2009.



107

[36] ——. (2011) Berlinmod. Http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html.

[37] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis,

“R-trees in spatiotemporal databases,” in R-Trees: Theory and Applications.

Springer, 2006, pp. 99–115.

[38] L.-V. Nguyen-Dinh, W. G. Aref, and M. Mokbel, “Spatio-temporal access meth-

ods: Part 2 (2003-2010),” 2010.

[39] T. T. T. Le and B. G. Nickerson, “Efficient search of moving objects on a planar

graph,” in Proceedings of the 16th ACM SIGSPATIAL international conference

on Advances in geographic information systems. ACM, 2008, p. 41.

[40] Y. Fang, J. Cao, Y. Peng, and L. Wang, “Indexing the past, present and future

positions of moving objects on fixed networks,” in Computer Science and Soft-

ware Engineering, 2008 International Conference on, vol. 4. IEEE, 2008, pp.

524–527.

[41] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[42] C. Goller and A. Kuchler, “Learning task-dependent distributed representations

by backpropagation through structure,” in Neural Networks, 1996., IEEE Inter-

national Conference on, vol. 1. IEEE, 1996, pp. 347–352.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[45] S. of California. (2014) Pems. Http://pems.dot.ca.gov/.



108

[46] M. D. Laboratory. (2016) Traffic dataset. https :

//www.dropbox.com/sh/uo634k3ybvmu1dc/AAAOxRpk −

2Q187fZ9tZmRABa?dl = 0.

[47] S. Dieleman, J. SchlÃĳter, C. Raffel, E. Olson, S. K. SÃÿnderby, D. Nouri,

D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman,

diogo149, B. McFee, H. Weideman, takacsg84, peterderivaz, Jon, instagibbs,

D. K. Rasul, CongLiu, Britefury, and J. Degrave, “Lasagne: First release.” Aug.

2015. [Online]. Available: http://dx.doi.org/10.5281/zenodo.27878

[48] Theano Development Team, “Theano: A Python framework for fast

computation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,

May 2016. [Online]. Available: http://arxiv.org/abs/1605.02688
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