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ABSTRACT

DISCRETE TIME RISK MODELS

WITH RANDOM PREMIUMS

Llewellyn Hillyer Smith, Jr., Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Andrzej Korzeniowski

Over the past century insurance companies relied to a large extent on the continuous time Mathe-

matical Risk Model proposed by Lundberg, known for its ability to estimate the probability of ruin

(capital reserve falling below zero), given the initial capital, linear premium rate and cumulative

random size claims occurring at random times. In this Dissertation we introduce a discrete time

risk model that allows random premiums, and derive the estimates of the ruin probabilities on both

finite and infinite time horizons. Tools applied are drawn from modern probability and include,

Martingales, Invariance Principle for Brownian motions, and Large Deviation Principle for the

asymptotics of rare events. Our considerations can be dubbed “end of the day model”, as ruin is

neither declared nor acted upon when it falls between successive discrete times.
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Chapter 1

Introduction

Mathematical Risk Theory is concerned with the probability that the following stochastic process:

U(t) = u+ ct−
Nt

∑
i=1

Xi,

which models the risk reserve of an insurance company will ever have a negative value. The

analysis of this process is usually carried out by numerical inversion of an associated Laplace

Transform used to solve a renewal equation involving the probability of ruin in infinite time. Since

the joint work of Hans Gerber and Elias Shiu [23] [24] in the late 1990’s it has been customary

to analyze the process in terms of an expected discounted penalty function. Various attempts

have also been made to add a Lévy Process component to the model in [16], [1], [3], and [29]

among many others. Over the years, discrete time versions of the model have been studied, see for

example [27] for recent work along these lines. Lately, a stochastic income component has been

added, see for example [5]. Much of the current theory and applications are elucidated in a number

of reference works; [2], [6], and [25].

The process U(t) represents the money available to pay the claims Xi which show up at ran-

dom times Nt . The income stream ct is assumed to be a deterministic process. While this may be

reasonable for an insurance company since their customers are contractually obligated to pay pre-

miums in order to receive any coverage of their claims, it is certainly not a reasonable assumption

for most models of business income. Also, while it may be true “on average” that an insurance

company receives premiums as a continuous stream, even insurance companies receive discrete

payments at discrete times. For this reason, we have replaced ct by a stochastic component. This

has been done before, and leads to a partial differential equation while solving the resulting re-

newal equation in [5]. Additionally, we discretized the time variable t. Finally, we were able to

find a corresponding representation of the process U(t) as a discrete time zero-mean random walk.
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This allows us to analyze the model with a wide variety of tools from modern probability theory.

Our model has the rare benefit of being both more practical since it encompasses a much

larger class of possible business processes, and at the same time more amenable to mathematical

analysis due to the wide variety of tools that can be applied to it.

This dissertation is organized as follows. In Chapter 2, we introduce a few selected results

from the classical theory. The statement of sufficiency of ct > E(Nt)E(Xi) is well-known, but our

proof is new, and quite a bit shorter than any we have seen. We introduce the basic definitions used

in the field.

In Chapter 3, we show how the continuous model can be approximated by the discrete risk

process. Additionally, we introduce an important technical tool that will be used to replace the

stochastic index variable Nt by a deterministic index variable n.

In Chapter 4, we derive our model, and show how a zero-mean random walk can be used to

analyze risk processes.

In Chapter 5, we develop and elucidate various properties of our model.

In Chapter 6, we start applying our first tool, the Kolmogorov Maximal Inequality. to the

question of getting an upper bound on the probability of ruin.

In Chapter 7, we point out a curious problem with relying on ultimate ruin as metric of

solvency without also considering finite ruin probabilities.

In Chapter 8, we develop and apply martingale methods to the key question about the proba-

bility of ruin.

In Chapter 9, we solve for a general distribution of the time of ruin of a corresponding model

that allows us to estimate both finite and ultimate survival probabilities at once. We do this using

hitting time distributions of Brownian motion.

In Chapter 10, we apply large deviations principles to gain further insight about the decay rate

of the probability of ruin away from the expected value of the process.
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Chapter 2

Classical Continuous Time Risk Theory

Modern Insurance Risk Theory started in 1903 with Filip Lundberg’s PhD Thesis. In the 1930’s,

Harold Crámer [7] put the material on a firmer mathematical foundation. In the 1960’s, Feller [19]

used renewal theory to express the probability of ruin as the unknown solution of a diffeo-integral

equation.

We present some of the essential results of what is variously known as mathematical risk

theory or insurance mathematics. We present the classical continuous time theory. The basic

problem for an insurance business is that they sign contracts with their customers which - on paper

- obligate them to potentially pay out much more money in total claims than they currently have

available in cash reserves or ever will. The key word here is “potentially”. That is, if every car

insurance customer had a 50,000 dollar car wreck tomorrow, then every car insurance company

would simply go into bankruptcy and be unable to pay all of those claims. But such an event is

extremely unlikely to occur. And the insurance businesses, themselves, are heavily regulated and

monitored to prevent exactly this kind of thing from happening. Never-the-less, there is a great

need for the insurance companies to study the probability distribution of the anticipated claims, and

carefully track and predict the impact of the actual total claims on their current cash reserves. The

following stochastic process tracks the current level of that reserve, which is, broadly speaking,

initial capital plus total current income minus total current costs.

Definition 2.1 (Risk Reserve). The stochastic process U(t,ω) for t ∈ [0,∞) and ω ∈ Ω is called

the risk reserve of an insurance company if and only if

(RR) U(t,ω) = u+ ct−
Nt(ω)

∑
i=1

Xi(ω),

where the real-valued random variable Xi(ω) ≥ 0 denotes the amount of the ith claim. The non-

negative integer valued random variable Nt(ω) is a counting process that reveals the number of
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claims up to, and including time t ≥ 0. The gross premium rate, c > 0, is a real-valued constant,

and u≥ 0 is the real-valued amount of the initial capital.

Notation 2.2. We often write U(t) or Ut instead of U(t,ω), and likewise Xi for Xi(ω), and Yi for

Yi(ω) especially when the argument or formula does not depend explicitly on a particular subset

or value of Ω.

Remark 2.3. The Xi are assumed to be independent, and, identically distributed (i.i.d.), and each is

independent of Nt .

Remark 2.4. The gross premium rate c is the total premium across all contracts in the risk pool

collected per unit time (often measured in dollars per unit time). The number of contracts in the

risk pool is assumed to be a fixed large positive integer K. Some individual contracts may pay

less than c
K per unit time, and some individual contracts may pay more than c

K per unit time. But

the insurance company will collect c per unit time from the collection of K contracts, as a whole,

with the intention of covering all claims generated by the collection. This is known as a collective

insurance model.

Remark 2.5. The two parameters c, the rate per unit time charged to cover a collection of K

contracts, and u, the initial capital set aside from the start to cover the claims generated by this

collection, are the two parameters which the insurance company can choose before offering to

cover the losses generated by K contracts.

Remark 2.6. In any given finite time interval (t1, t2] there can be at most finitely many claims.

Additionally, no two claims occur at exactly the same time. At time 0 there is almost surely no

claim.

Remark 2.7. We allow claims of size 0, subject to the same restrictions; no two claims of size 0

occur at the same time, and any finite interval contains at most finitely many of them.

4



Remark 2.8. For a fixed ω0 ∈ Ω the mapping t 7→ U(t,ω0) is assumed to be a function of t on

[0,∞) which is right-continuous with left-limits for a.e. ω0 ∈ Ω. The set {U(t,ω0) | t ∈ [0,∞)}

is then called a particular trajectory for the stochastic process U(t,ω). And the mapping ω0 7→

{U(t,ω0) | t ∈ [0,∞)} associates with a single point, ω0 in the sample space, Ω, the entire path of

a particular trajectory. With this mapping in mind, it makes sense to refer to Ω as the set of all

possible trajectories.

Now, we are ready to discuss how Nt and Xi might be distributed. Once we know the proba-

bility distributions of Nt and Xi, these two, together, induce a probability measure, P(·), on the set

of all possible trajectories, Ω. In the classical theory, Nt is usually a Poisson Process.

Definition 2.9. A stochastic process Nt is said to be a Poisson Process if and only if

1. Nt has independent increments for t ≥ 0;

2. Nt ∼ Poisson(λ t) for each fixed t ≥ 0.

Here Poisson(λ t) means a Poisson distribution with parameter λ t. A random variable N with

N(ω) ∈ {0,a,2a,3a, . . .}, where a > 0 and ω ∈ Ω, is said to have a Poisson distribution with

parameter λ > 0 and jump size a if and only if

P(N = ak) =
λ k

k!
e−λ k = 0,1,2,3, . . .

Notation 2.10. Unless otherwise indicated, we assume a≡ 1.

If Nt is a Poisson process then ∑
Nt
i=1 Xi is called a compound Poisson process. In the classical

theory, Xi is often exponentially distributed. This brings us to the classical Crámer-Lundberg

model. The typical path of a single trajectory starting with initial capital x would look like the line

x+ ct interrupted by downward “jumps” at random times Ti. Ruin simply means that the current

level of the risk reserve at some point along the trajectory has become negative.
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Definition 2.11 (Crámer-Lundberg Model). A risk reserve model (RR)

(CL) U(t,ω) = u+ ct−
Nt(ω)

∑
i=1

Xi(ω)

is called the Crámer-Lundberg risk model if and only if ∑
Nt
i=1 Xi is a compound Poisson process.

Figure 2.1
A single ruinous trajectory

The probability space Ω is said to be a filtered probability space and is denoted as (Ω,F ,Ft ,P).

We assume, unless otherwise stated, that the sigma-algebra F is complete. A filtration Ft is by

definition a nested sequence of increasing subsets of the sigma-algebra F such that if s ≤ t then

Fs ⊂ Ft , and each Ft is a sub sigma-algebra of F . We always assume that Ut is adapted to

the filtration Ft , that is we assume that Ut is measurable with respect to the sigma-algebra Ft .

Additionally, we require that the filtration Ft is right-continuous so that stopping times are well-

defined, and we can employ martingale methods. Unless otherwise stated, we assume that Ft is

the smallest filtration with these properties. And, finally, P is a probability measure on Ω.

We return, now, to the chief concern of an insurance company: the probability that they will

be able to pay all of their claims. First, though, we ask, “Should any company ever be in the

insurance business?” That is, can a company choose c, the collective premium rate, and provide
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u, the initial capital, in response to knowing the distribution of Nt , the rate of claims, and the

distribution of Xi, the size of each claim, and expect to stay in business in the short run, and make

a profit in the long run? That is, does there exist some condition on c, and/or a condition on u from

which we can conclude that some portion, S, of the set of all trajectories, Ω, never experience a

negative cash reserve, U(t,ω)< 0? And, if there is such a set S, can it be made sufficiently large?

We now turn to address these questions.

2.1 Net Profit Condition

Choosing a correct premium rate at the start has profound theoretical and practical consequences.

The premium rate c is chosen according to the net profit condition (NPC), which requires that

ct > E(Nt)E(Xi),

where E(·) represents the expectation of a random variable.

The following theorem shows that such a choice is sufficient to guarantee the existence of an

arbitrarily large survival set, even if the variance is infinite.

Theorem 2.12. Given U(t) = u+ ct−∑
Nt
i=1 Xi, suppose ∑

Nt
i=1 Xi is a compound Poisson process.

If c > E(Nt)E(Xi) then for every η ∈ (0,1) there exists an initial capital u≥ 0, and a survival set

S⊂Ω with P(S)≥ 1−η such that for all t ≥ 0, and for all ω ∈ S,

U(t,ω) = u+ ct−
Nt(ω)

∑
i=1

Xi(ω)≥ 0.

Proof. Let η ∈ (0,1) be given, we will show the existence of an initial capital u, and a set S

satisfying the conclusion of the theorem.

Applying the expected value to both sides of the equation, U(t) = u+ ct−∑
Nt
i=1 Xi we get:
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E(Ut) = E(u+ ct−
Nt

∑
i=1

Xi)

= E(u+ ct)−E(
Nt

∑
i=1

Xi)

= u+ ct−E(
Nt

∑
i=1

Xi).

Here we have utilized the fact that ω 7→ (u+ct) for all ω ∈Ω, hence E(u+ct) = u+ct. That

is each trajectory associated with a particular ω0 ∈ Ω can be broken down into its “deterministic

part”, and its “stochastic part.” Namely, every point ω ∈ Ω maps to a trajectory which can be

decomposed into a straight line, “the deterministic part”, u+ ct which is the same for all ω ∈ Ω,

minus a “stochastic part”, E(∑Nt
i=1 Xi) which varies for each ω ∈Ω.

Now, since ∑
Nt
i=1 Xi is a compound Poisson process we know that Nt is distributed as poisson(λ t)

by definition. Hence E(Nt) = λ t with λ > 0, and, also, c > 0 is, by definition, a real number. And

by our hypothesis, c > E(Nt)E(Xi) for t ∈ [0,∞). In particular, for t ∈ (0,∞) which implies λ t is

positive since λ > 0, hence c > λ tE(Xi) implies E(Xi) = µ < ∞. Now, by Wald’s equation, we

have

E(
Nt

∑
i=1

Xi) = E(Nt)E(Xi)

= λ tµ.

So we can write

E(Ut) = u+ ct−λ tµ

= u+(c−λ µ)t.
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Now, as a consequence of the Strong Law of Large Numbers (SLLN) for compound Poisson

processes, we have that

lim
t→∞

Ut

t
=

u
t
+(c−λ µ) a.s.

≥ 0+(c−λ µ) since u≥ 0

> 0 since, by hypothesis, (c−λ µ)> 0.

So there exists t0 ≥ 0 such that for t > t0 we have

P{ω ∈Ω | Ut(ω)

t
> 0}= P{ω ∈Ω |Ut(ω)> 0}

≥ 1− η

2
.

The set B = {ω ∈Ω |Ut(ω)≥ 0 for t > t0} has probability greater than or equal to 1− η

2 , and

all trajectories included in B are greater than or equal to 0 for all t > t0.

Now we construct another set A such that for all ω ∈ A, we have Ut(ω) ≥ 0 for 0 ≤ t ≤ t0,

and the probability of A is within η

2 of 1 as well, namely P(A)≥ 1− η

2 .

For a Poisson process the probability of getting k claims by time t0 can be computed exactly

as

pk =
λ k

k!
e−λ t0 k = 0,1,2,3, . . . .

Observe that we can partition the sample space Ω into a countable partition by defining

Ak = {ω ∈Ω | Nt0(ω) = k} for k = 0,1,2,3, . . . ,

and that each Ak has probability pk of occurring. Now we have

∞

∑
k=0

pk = 1,

hence, there exists an N such that

N

∑
k=0

pk ≥
√

1− η

2
for t ≤ t0.

9



Now, we turn our attention to the distribution of the Xi’s. Define the kth convolution of FX the

distribution of X with itself as

F∗kX (u) = P(X1 +X2 + · · ·+Xk ≤ u),

where F0
X (u) ≡ 1. Observe that F∗kX (u) is a true distribution function, in particular, for each fixed

k, we have lim
u→∞

F∗kX (u) = 1. Now, for k = 0,1,2, . . . ,N define uk = in f{u≥ 0 |
√

1− η

2 ≤ F∗kX (u)}.

Let umax = max{uk}, hence we have that

F∗kX (umax)≥
√

1− η

2
for all k ∈ {0,1,2, . . .N}.

Now, define

A0(umax) = {ω ∈Ω | Nt0(ω) = 0}

Ak(umax) = {ω ∈Ω | Nt0(ω) = k & X1(ω)+ · · ·+Xk(ω)≤ umax}.

Set A = ∪N
k=0Ak(umax) and compute a lower bound on the probability of A.

P(A) =
N

∑
k=0

P(Ak)

=
N

∑
k=0

pkF∗kX (umax) by the indep. of Nt and Yi

≥
N

∑
k=0

pk

√
1− η

2

=

√
1− η

2

N

∑
k=0

pk

≥
√

1− η

2

√
1− η

2

= 1− η

2
.
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Let S = A∩B, and observe that

P(S) = P(A∩B)

= P(A)+P(B)−P(A∪B)

≥ 1− η

2
+1− η

2
−1

= 1−η .

Choosing u = umax gives

U(t,ω) = umax + ct−
Nt(ω)

∑
i=1

Xi(ω).

and

U(t,ω) = umax + ct−
Nt(ω)

∑
i=1

Xi(ω)

≥ umax−
Nt(ω)

∑
i=1

Xi(ω)

≥ 0 for all ω ∈ S and t ∈ (0, t0],

whereas

U(t,ω) = umax + ct−
Nt(ω)

∑
i=1

Xi(ω)

≥ ct−
Nt(ω)

∑
i=1

Xi(ω)

≥ 0 for all ω ∈ S and t ∈ (t0,∞).

Hence for all ω ∈ S, and u = umax, we have U(t,ω)≥ 0 with P(S)≥ 1−η , as claimed.

The set S can naturally be thought of as the “survival set,” on which all of the trajectories in

the set never go below the x−axis. In practice, one would want η to be no more than 0.005. That

is, you would want to have at least a 99.5% probability of survival.
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2.2 Probability of Ruin

The preceding theorem naturally leads to a number of new definitions. For each trajectory or

equivalently for each ω0 ∈Ω, we can look at the set of all possible times, if any, at which it has a

negative risk reserve (RR), and then define the “time of ruin” in the following way:

Definition 2.13 (Time of Ruin). Given U(t,ω) = u+ ct−∑
N(t,ω)
i=1 Xi(ω) then the value T ∈ [0,∞]

of the extended-real valued function (u,ω0) 7→ T is said to be the time of ruin of a given trajectory

if and only if

T (u,ω) = in f{t > 0 |U(t,ω)< 0}.

Observe that in the case that the set {t > 0 |U(t,ω0)< 0} is empty then we have that T = ∞

because of the usual convention that in f /0 = ∞. Unfortunately, calling T the time of ruin is

standard, even in the case that T = ∞. That is when T = ∞ we have no ruin at all, rather we have

survival. Likewise, although we technically allow T = 0, we have as an assumption of our model

that U(0) = 0 a.s., so the set of trajectories for which T = 0 has at most probability 0. Furthermore,

observe that T (ω) is an extended real valued random variable defined on the sample space Ω. Now,

we can define the probability of ultimate ruin in the following way:

Definition 2.14 (Probability of Ultimate Ruin). The function Ψ(0,∞)(u) for u≥ 0 is said to be the

probability of ultimate ruin as a function of the initial capital u if and only if

Ψ(0,∞)(u) = P(ω ∈Ω : T (u,ω)< ∞).

That is, we simply mark a trajectory with the in f of the set of all times when it crosses below

the line y = 0 and then we compute the probability of all trajectories which have been marked

in such a way. The probability of ultimate survival or just survival if the meaning is clear from

context can also be defined without using T in the following way:
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Definition 2.15 (Ultimate Survival). The function Φ(u) for u ≥ 0 is said to be the probability of

ultimate survival as a function of u if and only if

Φ(u) = P(ω ∈Ω | ∀t > 0 s.t. u+ ct−
Nt(ω)

∑
i=1

Xi(ω)≥ 0).

Likewise, the probability of ultimate ruin can also be defined without using T in the following

way:

Definition 2.16 (Probability of Ultimate Ruin). The function Ψ(0,∞)(u) for u≥ 0 is said to be the

probability of ultimate ruin as a function of the initial capital u if and only if

Ψ(0,∞)(u) = P(ω ∈Ω : ∃t > 0 s.t. u+θ µt−SN(t)(ω)< 0).

It should always be clear from context which definition is being used, but they are equivalent,

so in general it won’t matter. The probability of ultimate ruin is used as a metric of solvency.

2.3 Adjustment Coefficient and Lundberg Upper Bound

In the current practice, the main object of study in risk theory is the probability of ruin in infinite

time rather than finite time. In the best case scenario, the probability of ruin in infinite time will

decrease at an exponentially fast rate as the amount, u, of initial capital increases.

In general, except for certain starting values of u (e.g. u = 0), and/or certain claim size

distributions (e.g. exponential, and finitely supported), there is no known closed form solution to

Ψ(u). This situation gave rise to the need to find an upper bound on Ψ(u). This was done by

Lundberg in 1909.

For a large class of claim size distributions, there exists a positive number R> 0, and a number

C ∈ (0,1) such that Ψ(u)≤Ce−Ru. This number R, if it exists, is called the adjustment coefficient.

The reason for the name is that the number R > 0 reveals how much each additional dollar of initial
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capital will "adjust" the ruin probability downward. Observe that

Ce−R(u+1) =Ce−Rue−R,

and with R > 0 we have e−R < 1; hence each additional dollar lowers the ruin probability by a

factor of e−R. We can also "adjust" the ruin probability by increasing our premium rate c, in cases

where R exists.

Before explaining the conditions under which the positive number R will exist, it is helpful to

see an example where there is no such R. The Inverse Gaussian distribution is a standard example

of a claim size distribution for which we may not be able to find an adjustment coefficient R for

all possible models U(t). For some values of c the line ct will not hit the incomplete moment

generating function.

Figure 2.2
Incomplete Moment Generating Function of Inverse Gaussian

This next theorem is a standard argument. It establishes necessary and sufficient conditions

to ensure the existence of an adjustment coefficient coefficient R.
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Theorem 2.17. The adjustment coefficient, R, exists if and only if the following equation can be

solved for a unique positive R:

1+(1+θ)µR = mX(R).

Here mX(s) = EX(exp(sX)) is the moment generating function of X, µ = E(X), and θ is the safety

loading in the premium rate c. That is, assuming we have chosen c such that c−λ µ > 0, then θ

can be determined as

θ =

(
c

λ µ

)
−1.

Proof. Our equation, 1+(1+θ)µR = mX(R) can be thought of as equating a line on the left-hand

side with a concave up curve on the right-hand side. Consider the equation with the variable s,

where s≥ 0,

1+(1+θ)µs = mX(s).

Let

h(s) = m(s)−1− (1+θ)µs

so

h(0) = m(0)−1− (1+θ)µ ·0

= m(0)−1

= EX(e0·X)−1

=
∫

∞

−∞

1dFX(x)−1

= 1−1 = 0.

Therefore, h(0) = 0, and graphically both the line, and the moment generating function go

through the point (0,1). Now, we consider the derivative of h(s) at 0. We are assuming that, at

the very least, mX(s) exists and is differentiable in an ε-neighborhood of 0. So, we can take the
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derivative of h(s), and evaluate it at 0. Which leads to

[
h′(s)

]
s=0 =

[
m′(s)

]
s=0− (1+θ)µ.

Therefore,

h′(0) =
[

d
ds

∫
∞

−∞

esx dFX(x)
]

s=0
− (1+θ)µ

=

[∫
∞

−∞

d
ds

esx dFX(x)
]

s=0
− (1+θ)µ

=

[∫
∞

−∞

xesx dFX(x)
]

s=0
− (1+θ)µ

=
∫

∞

−∞

xe0x dFX(x)− (1+θ)µ

=
∫

∞

−∞

xdFX(x)− (1+θ)µ

= µ− (1+θ)µ = µ−µ−θ µ

= µ−µ−θ µ

=−θ µ < 0.

Hence, we see that h(s) is decreasing in a neighborhood of 0. Likewise, looking at h′′(s), we

see that

h′′(s) =
d
ds

h′(s) =
d
ds

[∫
∞

−∞

xesx dFX(x)− (1+θ)µ

]
=

d
ds

[∫
∞

−∞

xesx dFX(x)
]
−0

=
∫

∞

−∞

x2esx dFX(x)> 0.

Hence, h(s) is concave up, but observe that m′′(s) = h′′(s), so m(s) is also concave up.

Now, if we assume that there exist a > 0, b > 0 such that m(s) exists on (−a,b), and that

lims→b m(s) = ∞. Here b might possibly be ∞, and, observing that m(s) is C∞ on (−a,b). Then,
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under these assumptions, we can see that the moment generating function, mX(s), intersects the

line 1+(1+ θ)µs once, and only once on (−a,b). Observe that both the line, and the moment

generating function go through the point (0,1). The line has positive slope (since 1+θ > 0, µ > 0).

The moment generating function has negative slope since d
dsm(s)|s=0 < 0. Recall that m′′(s)> 0 on

(−a,b), so we need to show that lims→b of mX(s)−(1+(1+θ)µs) =∞. If b<∞ then lims→b(1+

(1+θ)µs) = (1+(1+θ)µb)< ∞. But, lims→b m(s) = ∞ so lims→b m(s)− (1+(1+θ)µs) = ∞.

Hence, m(s) is now above the line as the line approaches b. Recall that m(s) was below the line

when s = 0. Also, it had a negative derivative when s = 0. Therefore, it must now have a positive

derivative. It changed signs, and it changed signs only once since m′′(s)> 0. It is C∞ on (−a,b).

So, by the Intermediate Value Theorem (IVT), it assumed the value 0 on the interval (a,b). Any,

by the previous derivative arguments, it assumed that value only once. Hence, there is one-and-

only-one positive value R solving

1+(1+θ)µR = mX(R).

If b=∞, then we will show that lims→∞ m(s)−(1+(1+θ)µs)=∞. Remember that E(X)= µ > 0

and that X ≥ 0. So, there exists a δ > 0 and an m > 0 so that P(X > δ )≥ m > 0. Observe that we

are simply saying that a nonnegative random variable with positive expectation can be bounded

away from 0 on a set of positive measure. So we have

mX(s) =
∫

∞

0
esx dFX(x)

≥
∫

∞

δ

esx dFX(x)

≥ esδ m

since esδ ≤ esx ∀s≥ δ and PX [δ ,∞)≥ m. So we get

lim
s→∞

(mX(s)− (1+(1+θ)µs))
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≥ (esδ m−1− (1+θ)µs)≥ ∞,

since mesδ dominates a linear function in s. So, this shows that mX(s) goes to ∞ faster than

(1+(1+θ)µs). Hence, it intersects it exactly once. And, again, there exists one-and-only-one R

for which the equation is satisfied.

We have shown that there exists a unique positive constant R - known as the adjustment

coefficient - in the case where the moment generating function is defined on an interval (−a,b)

about 0. And, on that interval, the moment generating function approaches ∞ as s approaches the

right hand boundary b of our interval around 0. Furthermore, this number R, can be used to get an

upper bound on the probability of ruin Ψ(u). Namely,

Ψ(u)≤ e−Ru.

This is a famous standard result in risk theory first proved by Lundberg [18]. We will often refer

to it as a standard of comparison. Its primary value is that it guarantees a certain rate of decay of

the probability of ultimate ruin as the initial capital u increases.
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Chapter 3

Discrete Time Risk Theory

We introduce the discrete time risk model. This model eliminates the continuous time arrival

process for individual claims. The aggregate claim process and the aggregate premium process

arrive at the end of the current period, n, simultaneously.

One particular version of a discrete time risk model, building on the work of De Vylder [8],

was used by Dickson and Waters [14], and studied extensively by Dickson in later works, [11],

[12], and [13]. Suppose for example that the premium rate c = 1 is given, and that the mean of the

claims E(Zi)< 1 is given, then we could write

(D) U(n) = u+n−
n

∑
i=1

Zi,

where the initial capital u ∈ {0,1,2, . . .} is given, and n ∈ {1,2,3, . . .} is the total accumulated

premium by the end of period, n. Furthermore, suppose that Zi ∈ {0,1,2,3, . . .} then observe that

we would have U(n) ∈ Z. Suppose further that Zi ∼ Z i.i.d., with P(Z = k) = pk, k = 0,1, . . . .

It is important to note that Dickson also showed that this model (D) is equivalent to the

binomial model,

(BM) U(n) = u+n−
N(n)

∑
i=1

Yi, n = 1,2 . . .

studied by Gerber [22], where Yi∼Y i.i.d. claim sizes, P(Y = k)= pk, k= 1,2, . . . , with qE(Y )< 1,

and N(n) = ε1+ · · ·+εn is a Binomial Process where εi i.i.d. P(εi = 1) = q, P(εi = 0) = 1−q = p.

The significance of (D) and (BM) equivalence lies in (BM) involving a random sum of random

variables, but (D) is a non-random sum of random variables, and thus a much simpler object to

study.
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Furthermore, Dickson showed that for (D) with

P(Z = 0) = p, P(Z = k) = q(1−α)α(k−1),k = 1,2, . . . and letting

P(Y = k) = (1−α)α(k−1),ν = E(Y ) =
1

(1−α)
and

P(X = k) = q(1−q)k−1,µ = E(X) =
1
q
,

the ruin probability is

(3.1) Ψ
D(u) =

q
1−α

(
α

p

)u

=
E(Y )
E(X)

(
P(Y > 1)
P(X > 1)

)u

.

Notice that X and Y each have a geometric distribution.

3.1 Estimating the Ruin Probability of a Continuous Model

For the continuous Crámer-Lundberg model (CL), U(t) = u+ ct−∑
N(t)
i=1 Yi there is a known prob-

ability of ruin for all u ≥ 0 (see for example [2]). Provided that the Poisson counting process

N(t) has intensity 1
λ

and that Xi ∼ X1 are i.i.d. inter-arrival times, with p.d.f. 1
µ

e−
1
µ

x, E(X1) = µ ,

and Yi ∼ Y1 are i.i.d. claim sizes, with p.d.f. 1
ν

e−
1
ν

x, E(Y1) = ν . And given that ν < µ then the

probability of ultimate ruin is:

(3.2) Ψ
CL(u) =

ν

µ
e−(

1
ν
− 1

µ
)u
=

E(Y1)

E(X1)

(
P(Y1 > 1)
P(X1 > 1)

)u

.

Observing the form of equation (3.1) and equation (3.2) suggests that there may be a connec-

tion between ΨD(u), and ΨCL(u) when q, p→ 0.

Theorem 3.3. Given the discrete model, U(t) (D), with the notation, and assumptions of equa-

tion (3.1), and given the continuous model, U(t) (CL), with the notation, and assumptions of

equation (3.2), suppose that qn =
1

µn , and 1−αn =
1

νn ; then ΨD
n (u)→ΨCL(u) as n→ ∞.
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Proof. Observe that the rescaled geometric distribution converges to an exponential distribution.

Namely, let P(Zθ = k) = θ(1− θ)(k−1)k = 1,2, . . . Fix n and let θ = λ

n , x = k
n then the random

variable Zn
θ

with values in {1
n ,

2
n , . . .} satisfies

1 =
∞

∑
k=1

P
(

Zn
θ

n
=

k
n

)
=

∞

∑
k=1

P
(

Z θ

n
= k
)

=
∞

∑
k=1

λ

(
1− λ

n

)n· kn 1
n

n→∞−→
∫

∞

0
λe−λx dx.

This means Zn
λ

n
converges in distribution to W , W ∼ exponential with density λe−λx

Therefore P(Zn
λ

n
> 1)→ P(W > 1) = e−λ

Now

Ψ
D
n (u) =

qn

1−αn

 P(Y n
1

νn
> 1)

P(Xn
1

µn
> 1)

u

→ ν

µ

(
e−

1
ν

e−
1
µ

)u

= Ψ
C(u).

We have shown the pointwise convergence of the probability of ruin associated with a se-

quence of discrete models to the probability of ruin for a continuous model. This establishes that

we can use a discrete risk model and its associated probability of ruin to approximate the proba-

bility of ruin for a continuous risk model.
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Chapter 4

A New Model Utilizing a Zero-Mean Random Walk

In the last chapter, we utilized a sequence of discrete models (D) of the form

U(n) = u+n−
n

∑
i=1

Zi.

To each model in the sequence we calculated its ruin probability and formed another sequence.

This sequence of ruin probabilities approached the ruin probability of a continuous time model (CL)

of the form

U(t) = u+ ct−
Nt

∑
i=1

Xi.

Observe, though, that our model (D) is actually a deterministic sum since the upper index on the

sum is n whereas the model whose ruin probability we have approximated is a random sum since

the upper index on the sum is Nt . Also, notice that the discrete model (D) is a random walk with

an offset, and a linear drift.

Random walks and their close cousins Brownian motion have a long history in the analysis

of financial time series. In fact, they were the predominant method of analysis before the advent

of Geometric Brownian motion. Stocks and Bonds can never take on a negative value, and so

Geometric Brownian which is never negative is a better model. On the other hand, the risk re-

serve (RR) of an insurance company can certainly take on negative values. So, it is natural to seek

to analyze the risk reserve process with a random walk, and with Brownian motion.

The key questions in this chapter are 1) what is the best form of the random walk we will use,

that is, what is “our model,” and 2) is there a better form of the Crámer-Lundberg model whose

ruin probability we may be able to approximate?

For the sake of comparing to the current standard, we outline a heuristic to suggest how one

might approximate the ruin probability of the classical compound Poisson process used in insur-
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ance mathematics. But we believe that a random walk rather than a compound Poisson process is

simply better suited to the task of modeling the risk reserve of an insurance company.

4.1 Derivation of the Model

Boikov [5] in 2002 introduced a generalized continuous time model, which we call the Continuous

Boikov model:

(CB) U(t) = u+
N2(t)

∑
j=1

y j−
N1(t)

∑
i=1

xi,

where U(t), u, ∑
N1(t)
i=1 xi, with ∑

N1(t)
i=1 xi ≡ ∑

N(t)
i=1 xi are as before. On the other hand, ∑

N2(t)
j=1 y j rep-

resents the total premium arrivals y j by time t, which arrive according to a Poisson Process N2(t)

assumed to be independent of N1(t).

Our objective is to introduce and study a new model which can be considered a discrete

time counterpart to (CB). Furthermore, our model allows for a considerable reduction in random

complexity, by proposing an equivalent U(t) representation that replaces random sums ∑
N2(t)
j=1 y j,

∑
N1(t)
i=1 xi, by ∑

t
j=1 ỹ j, ∑

t
i=1 x̃i for appropriately defined ỹ j, and x̃i. The significance of our model

is that it applies to actual real-world practice. “Ruin” is naturally defined as having a negative

balance at the end of the day. Likewise, “ruin” has not occurred if the balance at the end of the

day is not negative. This is irrespective of whether or not the balance may have been in the “red”

at some point before the end of the day.

To this end, we introduce the well-known discrete binomial model, which can be written as

Ut = u+ t−
Nt

∑
i=1

Xi t ∈ {1,2,3, . . .},

where Nt = I1 + I2 + · · ·+ It are i.i.d. Bernoulli random variables representing the presence or

absence of a claim during period t. Dickson [14] was able to simplify this model to

(DD) Ut = u+ t−
t

∑
i=1

Xi t ∈ {1,2,3, . . .},
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which we call the Discrete Dickson (DD) model. Here the only change was to replace the random

upper bound Nt with a deterministic upper bound t - namely, just the number of periods that have

elapsed since time equals 0. He did this by allowing for a claim size of 0, and then defining the

probability of a “claim” of size 0 by the exact probability of not getting any claim in period t.

In our new model, we propose to discretize time in the Boikov model (CB), and use the

deterministic upper bound technique from the Dickson model (DD) applied to both summands.

The model would then become

Ut = u+
t

∑
j=1

Yi−
t

∑
i=1

Xi, t ∈ {1,2,3, . . .}

which we often call “our model,” henceforth, where Yj ∈ [0,∞), and X j ∈ [0,∞). Notice that Yj and

Xi are now allowed to assume the value 0. Finally, since we have the same upper bound t for both

summands, we can look at

Ut = u+
t

∑
i=1

Yi−
t

∑
i=1

Xi

= u+
t

∑
i=1

(Yi−Xi),

where (Yi−Xi) ∈ R. In this way, we can model the surplus as a discrete random walk.

Recall that the safety loading requirement applied to the traditional model would yield, for

some θ > 0,

E(ct) = (1+θ)E(
Nt

∑
i=1

Xi)

= (1+θ)λ tE(Xi).

So, since E(ct) = ct, dividing both sides of the equation by t we get c = (1+ θ)λE(Xi). Now,

applying this same logic to the new model we get, for some θ > 0,

E(
t

∑
i=1

Yi) = (1+θ)E(
t

∑
i=1

Xi)

= (1+θ)tE(Xi).
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So, since E(∑t
i=1Yi) = tE(Yi), dividing both sides of the equation by t we see that

E(Yi) = (1+θ)E(Xi)

= θE(Xi)+E(Xi)

is required to achieve a safety loading percent of θ .

We are now in a position to represent the model

Ut = u+
t

∑
i=1

Yi−
t

∑
i=1

Xi

in a much more informative manner.

We will write the process Ut as the sum of a fixed offset u plus a deterministic linear drift, and

finally plus a mean-zero random process. We will rewrite the process in the following way:

Ut = u+
t

∑
i=1

Yi−
t

∑
i=1

Xi

= u+
t

∑
i=1

(θE(Xi)+Yi−θE(Xi))−
t

∑
i=1

Xi

= u+
t

∑
i=1

θ µ +
t

∑
i=1

(Yi−θ µ)−
t

∑
i=1

Xi

= u+θ µt−
t

∑
i=1

[Xi− (Yi−θ µ)]

= u+θ µt−
t

∑
i=1

[Xi−Yi +θ µ]

= u+θ µt−
t

∑
i=1

Zi,
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where Zi = Xi−Yi +θ µ . Notice that

E(Zi) = E(Xi)−E(Yi)+E(θE(Xi))

= µ− (1+θ)µ +θ µ

= µ−µ−θ µ +θ µ

= 0.

So, Zi is a zero-mean process, as expected. Hence, we have represented our process as

Un = u+θ µt−
t

∑
i=1

Xi−Yi +θ µ

= u+θ µt−
t

∑
i=1

Zi.

That is, we have represented it as an initial value u, plus a deterministic linear drift θ µt, and finally,

minus a mean-zero random walk ∑
t
i=1 Zi. The first two terms, u+θ µt, remain the same for every

trajectory, hence they are best described as “deterministic.” The last term, −∑
t
i=1 Zi, is the only

one that represents the random variation of the process.

4.2 Zero Net Profit Leads to Ruin

Consider the following example. Suppose Zi has the following distribution:

P(Zi =−1) =
1
4

P(Zi = 0) =
1
2

P(Zi = 1) =
1
4
.

We have indicated that adding an “atom” at 0 may be necessary to approximate the ruin proba-

bilities of the classical continuous process. In some cases, an “atom” at 0 naturally appears in

successive iterates of the random variable.
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Observe that the distribution is symmetrically distributed about 0, but not equally distributed

among its 3 possible values. Surprisingly, though, this distribution can be thought of as sampling

from the following symmetric random walk at its even time points.

Suppose Vk k = 0,1,2,3, . . . has the following distribution. For k = 0, P(V0 = 0) = 1, and

for k ≥ 1

P(Vk =−
1
2
) =

1
2

P(Vk =
1
2
) =

1
2
.

Now, for i = 0, P(Z0 = 0) = 1, and for i≥ 1 we use the following equivalence Zi ≡V2i−1 +V2i for

i = 1,2,3, . . . . Now, the distribution of Zi can be determined by

P(Zi =−1) = P(V2i−1 =−
1
2

and V2i =−
1
2
)

=
1
2
· 1

2
=

1
4

P(Zi = 0) = P(V2i−1 =−
1
2

and V2i =
1
2
)

+P(V2i−1 =
1
2

and V2i =−
1
2
)

=
1
2
· 1

2
+

1
2
· 1

2
=

1
4
+

1
4
=

1
2

P(Zi = 1) = P(V2i−1 =
1
2

and V2i =
1
2
)

=
1
2
· 1

2
=

1
4
,

which agrees with our original distribution of Zi. At the moment, we don’t need to use this obser-

vation, but it is important to note that this Zi process is equivalent to the sum of two symmetric

simple random walks.

Now, we calculate the probability of ruin for this example. Consider the case where u ≥ 0,

θ = 0, and Zi has the distribution from above.
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Proposition 4.1. Given the model Un = u+ θ µn−∑
n
i=1 Zi with no safety loading, that is θ = 0

and any arbitrary amount of initial capital, u≥ 0, suppose Zi has the distribution above. Then the

probability of ultimate ruin is 1.

Proof. Due to independent and stationary increments, the probability of survival only depends

on the level u, and not the time n. That is, P( Survival with U0 = 0 for Zn n = 1,2,3, . . .) =

P( Survival with Uk = 0 for Zn n = k + 1,k + 2,k + 3, . . .k ≥ 0). Of course, Uk = u+ θ µk +

∑
k
i=1 Zi is the current level of the risk reserve.

Now, continuing with our proof, let u = 0, θ = 0, U0 ≡ 0, and for i > 0 P(Zi = −1) = 1
4 ,

P(Zi = 0) = 1
2 , and P(Zi = 1) = 1

4 .

By using the total probability formula, we get

P( Survival from U0 = 0) =
1
4

P( Survival from U1 = 1)

+
1
2

P( Survival from U1 = 0)

≤ 1
4
+

1
2
=

3
4
.

This makes perfect sense, since there was a 1
4 chance of getting U1 = −1 which is “ruin”.

Recalling that

P( Survival from U0 = 0) = P( Survival from U1 = 0),

we get

P( Survival from U0 = 0) =
1
4

P( Survival from U1 = 1)

+
1
2

P( Survival from U1 = 0).
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Now, skipping the phrase "survival from," and skipping the index, we can write

P(U = 0) =
1
4

P(U = 1)+
1
2

P(U = 0)

And then, subtracting 1
2P(U = 0) from both sides we get

1
2

P(U = 0) =
1
4

P(U = 1).

Finally, multiplying both sides by 2, we see that

P(U = 0) =
1
2

P(U = 1)≤ 1
2
.

But

P(U = 1) =
1
4

P(U = 2)+
1
2

P(U = 1)+
1
4

P(U = 0),

and using the substitution P(U = 0) = 1
2P(U = 1) we get

P(U = 1) =
1
4

P(U = 2)+
1
2

P(U = 1)+
1
4
[
1
2

P(U = 1)]

=
1
4

P(U = 2)+
1
2

P(U = 1)+
1
8

P(U = 1)

=
1
4

P(U = 2)+
5
8

P(U = 1).

So, subtracting 5
8P(U = 1) from both sides, we get

3
8

P(U = 1) =
1
4

P(U = 2).

And, now, using the substitution 2P(U = 0) = P(U = 1) we have

3
8
[2P(U = 0)] =

1
4

P(U = 2) so

3
4

P(U = 0) =
1
4

P(U = 2) or

P(U = 0) =
1
3

P(U = 2)≤ 1
3
.
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So now we can use our substitutions, and our known probabilities, to get

P(U = 0) =
1
3

P(U = 2)

=
1
3
[
1
4

P(U = 3)+
1
2

P(U = 2)+
1
4

P(U = 1)]

=
1
3
{1

4
P(U = 3)+

1
2
[3P(U = 0)]+

1
4
[2P(U = 0)]}

=
1

12
P(U = 3)+

1
2

P(U = 0)+
1
6

P(U = 0)

=
1

12
P(U = 3)+

2
3

P(U = 0)

=
1
4

P(U = 3)≤ 1
4
.

Now, we will make an induction hypothesis. Suppose the following equation holds for U = 1,U =

2, . . . ,U = k

P(U = 0) =
1

k+1
P(U = k).

We need to show that P(U = 0) = 1
k+2P(U = k+1) in order to complete the proof. Assuming, by

our induction hypothesis, P(U = 0) = 1
k+1P(U = k), is true, we can use it to compute

P(U = 0) =
1

k+1
{1

4
P(U = k+1)+

1
2

P(U = k)+
1
4

P(U = k−1)}

=
1

k+1
{1

4
P(U = k+1)+

1
2
[(k+1)P(U = 0)]+

1
4
[kP(U = 0)]}

=
1

k+1
1
4

P(U = k+1)+
1

k+1
k+1

2
P(U = 0)+

1
k+1

k
4

P(U = 0).

Now, gathering all the terms that involve P(U = 0) on one side of the equation, and solving for
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P(U = k+1) on the other side, we get

P(U = 0)− 1
2

P(U = 0)− k
k+1

1
4

P(U = 0) =
1

k+1
1
4

P(U = k+1)

1
2

P(U = 0)− k
k+1

1
4

P(U = 0) =
1

k+1
1
4

P(U = k+1)

2P(U = 0)− k
k+1

P(U = 0) =
1

k+1
P(U = k+1)

2
k+1
k+1

P(U = 0)− k
k+1

P(U = 0) =
1

k+1
P(U = k+1)

2k+2− k
k+1

P(U = 0) =
1

k+1
P(U = k+1)

k+2
k+1

P(U = 0) =
1

k+1
P(U = k+1)

P(U = 0) =
1

k+2
P(U = k+1).

Now, we have proven our inductive hypothesis is true. In other words,

P(U = 0) =
1

k+1
P(U = k)

is true for all k > 1. So now, we can take the limit as k→ ∞

lim
k→∞

P(U = 0) = lim
k→∞

1
k+1

P(U = k)

≤ lim
k→∞

1
k+1

→ 0,

so P(U = 0) = 0 as claimed. As a consequence, observe the we have shown that P(U = 0) =

1
k+1P(U = k), and hence that P(U = k) = (k+1)P(U = 0) for all k. But we have also proven that

P(U = 0) = 0, so

P(U = k) = (k+1)P(U = 0)

= (k+1)0

= 0 for all k.
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Chapter 5

Properties of the Model

We now introduce some of the basic facts, definitions, lemmas, and theorems associated with the

analysis of our model. Usually these facts have some clear connection with the classical continu-

ous risk process (Ut = u0 +(1+ θ)µt−∑
Nt
i=1 Xi). Often they are simply routine facts that would

need to be established for any risk theory model. Sometimes they are the particular peculiarities

encountered when using a zero-mean (Zi(ω)) process, and its sum (Sn(ω)) in the context of math-

ematical risk theory. Occasionally, they are the specific results, derivable from our model, that

provide a foundation for future chapters.

Given our model,

Un(ω) = u0 +θ µn−
n

∑
i=1

Zi(ω) for all ω ∈Ω,

we introduce the following definitions.

The probability of ultimate ruin is used as a metric to compare different models, and to de-

termine if an insurance business is deemed solvent with probability η . In the setting of a classical

continuous risk process, this number is difficult to calculate explicitly. There are very few known

examples where it can be calculated in a closed form. Also, this ignores the obvious shortcom-

ing that we are concerning ourselves with the probability of ruin on an infinite time scale (0,∞),

when it might be more reasonable to study the probability of ruin on a finite time scale, (0,N).

None-the-less, here is the definition of the probability of ultimate ruin adapted to the setting of our

model.

Definition 5.1 (Probability of Ultimate Ruin). The function Ψ(0,∞)(u) for initial capital u ≥ 0 is

said to be the probability of ultimate ruin as a function of u if and only if

Ψ(0,∞)(u) = P(ω ∈Ω : ∃n > 0 s.t. u+θ µn−Sn(ω)< 0).
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The probability of ruin by time T is also used as a metric of solvency in finite time. Naturally,

it leads to the question of how to find specific values of T , and how to get a bound on the probability

of ruin after time T .

Definition 5.2 (Probability of Ruin by Time T). The function Ψ(0,T ](u) for u≥ 0 is said to be the

probability of ruin by time T as a function of the initial capital u for T ∈ {1,2, . . .} if and only if

Ψ(0,T ](u) = P(ω ∈Ω : ∃n ∈ (0,T ] s.t. u+θ µn−Sn(ω)< 0).

The probability of ruin at time T provides a natural way to construct a countable partition of

the sample space Ω. We will construct that partition and use it often.

Definition 5.3 (Probability of Ruin at Time T). The function Ψ[T ](u) for u ≥ 0 is said to be the

probability of ruin at time T as a function of the initial capital u for T ∈ {1,2, . . .} if and only if

Ψ[T ](u) = P(ω ∈Ω : ∀m ∈ (0,T −1] s.t. u+θ µm−Sm(ω)≥ 0 & u+θ µT −ST (ω)< 0).

The distribution of ruin probabilities is the principal object in our model. We will establish

some results about its structure that will allow us to compare ruin probabilities at different time

periods, and different initial capital levels.

Definition 5.4 (Distribution of Ruin Probabilities). The infinite sequence (Ψ[1](u),Ψ[2](u), . . .) is

said to be the Distribution of Ruin Probabilities as a function of the initial capital u and n.

For our model we have P(ω ∈ Ω : u0− S0(ω) ≥ 0) = 1 a.s., since, by assumption, there

is almost surely no claim at time 0, (S0(ω) = 0 a.s.), and u0 ≥ 0. Let Ψ[0](u) = 0 to denote

this fact. Furthermore, in our model we only allow the initial capital to be in whole units, i.e.

u0 ∈ {0,1,2,3, . . .}. Although after time n = 0, we certainly allow Un(ω) to be any real number.

For a given fixed u0 we might naturally wonder if the Distribution of Ruin Probabilities

(Ψ[1](u0),Ψ[2](u0), . . .) is a true probability distribution rather than a defective probability dis-

33



tribution. In particular, do we have ∑
∞
n=1 Ψ[n](u0) = 1, rather than only ∑

∞
n=1 Ψ[n](u0) ≤ 1? That

question is answered in the next lemma.

5.1 Defective Probability of Ruin

Lemma 5.5. Given Un(ω) = u0 +θ µn−Sn(ω), and u0 ≥ 0 fixed, then ∑
∞
n=1 Ψ[n](u0)≤ 1.

Proof. Let A0 = {ω ∈Ω : ∀n > 0 s.t. u0 +θ µn−Sn(ω)≥ 0}.

Let A1 = {ω ∈Ω : u0 +θ µ1−S1(ω)< 0}.

Let A2 = {ω ∈Ω : ∀m ∈ (0,1] s.t. u0 +θ µm−Sm(ω)≥ 0 & u0 +θ µ2−S2(ω)< 0}.

Let Ak = {ω ∈Ω : ∀m ∈ (0,k−1] s.t. u0 +θ µm−Sm(ω)≥ 0 & u0 +θ µk−Sk(ω)< 0}.

Now we show that the Ak’s form a partition of the sample space Ω. Suppose i ≥ 0 and j > i are

given. Consider the case of i = 0, and observe that ω0 ∈ A0 means ∀n > 0 u0+θ µn−Sn(ω0)≥ 0.

Hence, ω0 /∈ A j ∀ j ≥ 1 by definition of the sets A j for j ≥ 1. Consider the case i ≥ 1 and j > i,

then ω0 ∈ Ai would imply that u0 +θ µi−Si(ω0)< 0, but then ω0 /∈ A j since for all A j with j > i

we have u0+θ µi−Si(ω0)≥ 0 Therefore, we have shown that Ai∩A j = /0 for all i≥ 0, j > i. Now,

let ω1 ∈ Ω be arbitrary, and suppose ∀n > 0 u0 +θ µn−Sn(ω1) ≥ 0; then ω1 ∈ A0, as otherwise,

there exists k for which u0+θ µk−Sk(ω1)< 0 so ω1 ∈ Ak. Hence Ω⊂∪∞
k=0 Ak. Now we compute

the probability of our partition of Ω

Ω = ∪∞
k=0 Ak taking the probability of both sides

P(Ω) = P(∪∞
k=0 Ak) giving

1 =
∞

∑
k=0

P(Ak) since the Ak are disjoint

1 = P(A0)+
∞

∑
k=1

P(Ak) now move P(A0) to the other side

1−P(A0) =
∞

∑
k=1

P(Ak)≤ 1.
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So we only have ∑
∞
n=1 Ψ[n](u0)≤ 1, and if P(A0)> 0, then we have ∑

∞
n=1 Ψ[n](u0)< 1. From

the definition of A0 we see that it defines the subset of the sample space Ω whose trajectories never

go into ruin. So, in general, we usually have P(A0) > 0. Also, from the definition of Ak we see

that the probability of ultimate ruin Ψ(0,∞)(u) = P(∪∞
k=1 Ak).

Notation 5.6. In the event that we are considering two different models A, and B, which differ only

in their θ values, and/or their µ values, we may designate this fact by writing u+θAµAn−Sn, or

u+θBn−Sn, and sometimes append the letter A or B in the upper right of the appropriate symbol.

5.2 Ordering Relations

Now we define the infinite array of ruin probabilities. This allows us to establish ordering relations

on the set of all ΨA
[k]( j).

Definition 5.7 (Infinite Array of Ruin Probabilities). For a given model A,

the following is called the Infinite Array of Ruin Probabilities

...
...

...
...

ΨA
[1](3) ΨA

[2](3) ΨA
[3](3) ΨA

[4](3) . . .

ΨA
[1](2) ΨA

[2](2) ΨA
[3](2) ΨA

[4](2) . . .

ΨA
[1](1) ΨA

[2](1) ΨA
[3](1) ΨA

[4](1) . . .

ΨA
[1](0) ΨA

[2](0) ΨA
[3](0) ΨA

[4](0) . . .

Notation 5.8. In the event that A is clear from context, then we omit it.

We prove the following fact about the row sum of the Infinite Array of Ruin Probabilities.

Lemma 5.9. Given Un(ω) = u0 +θ µn−Sn(ω), with u0 = j,

then ∑
∞
n=1 Ψ[n]( j)≤ 1.

Proof. Apply previous lemma with u0 = j.
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We show the inequality relations for a given fixed column.

Lemma 5.10. Given Un(ω) = u0 +θ µn−Sn(ω), suppose n is fixed,

Then the following inequalities hold: if k > j then Ψ[n](k)≤Ψ[n]( j).

Proof.

Let Ak = {ω ∈Ω : ∀m ∈ (0,n−1] s.t. k+θ µm−Sm(ω)≥ 0 & k+θ µn−Sn(ω)< 0}.

Let A j = {ω ∈Ω : ∀m ∈ (0,n−1] s.t. j+θ µm−Sm(ω)≥ 0 & j+θ µn−Sn(ω)< 0}.

Suppose ω0 ∈ Ak is given; then Sn(ω0)≥ k+θ µn by the definition of Ak.

But, k+θ µn > j+θ µn since k > j by hypothesis, which means Sn(ω0) > j+θ µn so ω0 ∈ A j,

giving Ak ⊂ A j. Therefore, P(Ak)≤ P(A j) by the monotonicity of measure.

So, applying the definition of probability of ruin at time n we see

Ψ[n](k) = P(Ak)≤ P(A j) = Ψ[n]( j).

Corollary 5.11. Given Un(ω) = u0 +θ µn−Sn(ω), suppose n is fixed.

Then the following inequality holds: for all k > 0 then Ψ[n](k)≤Ψ[n](0).

Proof. Apply previous lemma with j = 0.

We establish the following results for the limit of a sequence, and the limit of the tail of a

series.

Lemma 5.12. Given Un(ω) = u0 +θ µn−Sn(ω), suppose u0 = j is fixed.

Then lim
n→∞

Ψ[n]( j) = 0, and lim
n→∞

∑
∞
k=n Ψ[k]( j) = 0.

Proof. By previous lemma we have ∑
∞
n=1 Ψ[n]( j)≤ 1.

So, by necessity, lim
n→∞

Ψ[n]( j) = 0, and lim
n→∞

∑
∞
k=n Ψ[k]( j) = 0.
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5.3 Uniform Convergence

Now, we establish some uniform convergence results.

Lemma 5.13. Given Un(ω) = u0 +θ µn−Sn(ω), suppose u0 = u is allowed to vary.

Then lim
n→∞

Ψ[n](u) = 0, uniformly in u and lim
n→∞

∑
∞
k=n Ψ[k](u) = 0 uniformly in u.

Proof. Let ε > 0 be given, then ∃N1 such that Ψ[N1](0)< ε since lim
n→∞

Ψ[n](0) = 0, but by the pre-

vious lemma Ψ[n](0)≥Ψ[n](u) for all u≥ 0 so Ψ[N1](u)< ε for all u≥ 0 hence Ψ[n](u) converges

uniformly to 0. Likewise, ∃N2 such that ∑
∞
n=N2

Ψ[n](0)< ε , since lim
n→∞

∑
∞
k=n Ψ[k](0) = 0. But, again,

Ψ[n](0) ≥ Ψ[n](u) for all u ≥ 0 so ∑
∞
n=N2

Ψ[n](u) < ε for all u ≥ 0 hence ∑
∞
k=n Ψ[k](u) converges

uniformly to 0.

Using the uniform convergence result, we get a uniform bound on the convergence of

lim
n→∞

∞

∑
k=n

Ψ[k](u).

Lemma 5.14. Given Un(ω) = u0 +θ µn−Sn(ω) then, for every ε > 0 there exists an N such that

∑
∞
k=N Ψ[k](u)< ε for all u≥ 0.

Proof. Let ε > 0 be given. Since ∑
∞
k=n Ψ[k](0) converges as n→ ∞, we know there exists an N

such that ∑
∞
k=N Ψ[k](0)< ε . But, by the previous uniform convergence result we also have

∞

∑
k=N

Ψ[k](u)≤
∞

∑
k=N

Ψ[k](0)< ε for all u.

With this result in hand, it now makes sense to introduce the following augmented Infinite

Array of Ruin Probabilities where we have reduced the number of columns from ∞ to N, and

replaced the appropriate entry by the sum which is greater than or equal to the sum of the elements

we have eliminated. The following is a representation of that effect.
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...
...

...
...

ΨA
[1](3) ΨA

[2](3) ΨA
[3](3) . . . ∑

∞
k=N Ψ[k](0)

ΨA
[1](2) ΨA

[2](2) ΨA
[3](2) . . . ∑

∞
k=N Ψ[k](0)

ΨA
[1](1) ΨA

[2](1) ΨA
[3](1) . . . ∑

∞
k=N Ψ[k](0)

ΨA
[1](0) ΨA

[2](0) ΨA
[3](0) . . . ∑

∞
k=N Ψ[k](0)

For the sake of completeness, and to set the stage for further analysis, we verify that Un
n almost

surely converges to θ µ .

Lemma 5.15. Suppose Un(ω) = u0+θ µn−Sn(ω), where Sn(ω) = Z1(ω)+Z2(ω)+ · · ·+Zn(ω)

and Zi(ω) are i.i.d. with E(Zi(ω)) = 0. Then

lim
n→∞

Un(ω)

n
= θ µ a.s.

Proof.

lim
n→∞

Un(ω)

n
= lim

n→∞

(
u0

n
+

θ µn
n
− Sn(ω)

n

)
= lim

n→∞

(u0

n

)
+ lim

n→∞
(θ µ)− lim

n→∞

(
Sn(ω)

n

)
= 0+θ µ− lim

n→∞

(
Sn(ω)

n

)
= 0+θ µ−0 a.s. by the SLLN

= θ µ.

Notice that, in general, we would not expect to find a specific algorithm, N(ε,η) such that,

for a given ε , and a given η , this algorithm would finish in a finite number of steps, and produce

an N that would satisfy the following:

n≥ N(ε,η)⇒ |Sn(ω)|< ε for all ω ∈ΩN(ε,η) ⊂Ω with P(ΩN(ε,η))≥ 1−η .
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And, even if we could construct such an algorithm N(ε,η), we would not expect it to involve

all (or even some) of the parameters u0,θ ,µ , or Var(Zi). The construction of such an algorithm,

N(ε,η), that involves the parameters, u0,θ ,µ , and Var(Zi), is a goal.

There exist various recursive algorithms (see for example Dickson) to compute estimates

of the probability of ruin for a discrete risk process. But, as Asmussen notes in his book Ruin

Probabilities, while much work has been done on these algorithms, they invariably lose track

of the model parameters. That is, while they produce good numerical results, it is difficult to

get qualitative information out of them. For example, one might like to know how the solution

would change if some model parameter changed. We are not attempting to construct another

algorithm that computes the probability of finite or ultimate ruin in a discrete risk setting, and,

in addition, also preserves the model parameters. Rather, we let the idea of numerical precision

become secondary, and accept (as Asmussen remarks) that it is easier to get good results for large

n, or small n, but difficult to get good results for both small and large simultaneously.

We let the goal of obtaining qualitative information become primary; we are attempting to get

formulas for upper bound estimates on the probability of ruin (or certain portions of that probabil-

ity) that involve the model parameters explicitly. That is, we would like to understand dependence

of this upper bound estimate on certain model parameters. This is a fairly natural thing to attempt,

since the Lundberg upper bound, e−Ru in the continuous setting does something similar to this.
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Chapter 6

Probability of Ruin by the Kolmogorov Maximal Inequality

We introduce the following Lemma, to demonstrate that our model has the same limiting behavior

as the classical Crámer-Lundberg model. That is, we show that as the initial capital goes to infinity

then the probability of ruin goes to zero. Additionally, we actually get more than that. We get an

expression for the probability of ruin in the “tail” that involves the model parameters themselves.

Lemma 6.1. Suppose Un = u0 + θ µn− Sn, where Sn = Z1 +Z2 + · · ·+Zn, and Zi are i.i.d. with

E(Zi) = 0. Then for every integer q there exists an initial capital u0 s.t.

P(Ultimate Ruin) = P(∃n > 0 s.t Un < 0)<
1
q
.

Proof. Given a subsequence nk↗ ∞, n0 = 0, and an integer l,

P(Ultimate Ruin) = P( ruin occurs in (0,nl−1])+P(∪∞
k=l( ruin occurs in (nk−1,nk])

= P(∃m ∈ [1,nl−1] s.t u0 +θ µm < Sm)+
∞

∑
k=l

P( ruin occurs in (nk−1,nk])

≤ P( max
1≤m≤nl

|Sm|> u0)+
∞

∑
k=l

max
nk≤m≤nk+1

|Sm|> θ µn2/3
k

≤ P( max
1≤m≤nl

|Sm|> u0)+
∞

∑
k=l

max
1≤m≤nk+1

|Sm|> θ µn2/3
k .

Based on the figure below, choose u0 = θ µn(2/3)
l and denote by bk = P( max

1≤m≤nk
|Sm| > θ µn2/3

k )

Then

P(Ultimate Ruin)≤ bl +
∞

∑
k=l

bk.

To complete the proof it suffices to show that for a properly chosen subsequence {nk}∞
k=1, that

the ∑k bk converges, as then ∃l = l(q) such that bl +∑
∞
k=1 bk <

1
q . To this end, by Kolmogorov’s
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Figure 6.1
Approximating via f (x)∼ x2/3

Maximal Inequality with nk = k6, k = 1,2,3, . . . ,

P( max
(1≤m≤nk)

|Sm| ≥ n2/3
k θ µ)≤

var(Snk)

[n2/3
k θ µ]2

≤ nkvar(Zi)

n4/3
k θ 2µ2

≤ var(Z1)

θ 2µ2
1

n1/3
k

but nk = k6

≤ var(Z1)

θ 2µ2
1

(k6)1/3

≤ var(Z1)

θ 2µ2
1
k2 .

Hence,
∞

∑
k=1

bk ≤
var(Z1)

θ 2µ2

∞

∑
k=1

1
k2 =

var(Z1)

θ 2µ2
π2

6
< ∞.

41



Corollary 6.2. For every integer q there exists an initial capital u0, and time horizon T such that

P( Ruin by Time T )≤ 1
q
.

Proof. Choose u0 = T
√

var(Zi) and T = q. Then by Kolmogorov’s Maximal Inequality,

P( Ruin by time T ) = P(∃ 1≤ m≤ T s.t. u0 +θ µm < Sm)

≤ P(∃ 1≤ m≤ T s.t. u0 < Sm) = P( max
1≤m≤T

|Sm|> u0)

≤ var(ST )

u2
0

=
T var(Z1)

T 2var(Z1)
=

1
T
≤ 1

q

Remark 6.3. The above shows that starting with the capital T
√

var(Z1) the probability of survival

during the time interval (0,T ] is at least 1− 1
T .
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Chapter 7

Finite versus Infinite Time Horizon for Ruin

We introduce the idea of “switching” from one model UA
n = uA + θ AµA− Sn, called model “A,”

to another model UB
n = uB +θ BµB−Sn, called model “B,” with the same random zero-mean sum

Sn, but perhaps different initial capital values, and different θ , and µ . We mean to compare two

different alternatives, A, and B, and to conclude that the current standard of using the probability of

ultimate ruin for a given starting capital, Ψ(0,∞)(u), as a metric of solvency may have an unexpected

side-effect in some cases. It would allow choosing a model B which requires a company to borrow

less money uB than the capital required for another model uA. In particular, if the company can

demonstrate that their choices θ BµB would lead to the same or smaller probability of ultimate ruin

as the choice θ AµA, then the various regulatory agencies might score the two models the same.

But, surprisingly, model B may have a higher probability of ruin on some set of finite intervals,

(0,k] for some, potentially large, finite N, and all k ∈ [1,N−1].

In keeping with the notation used in the classical Crámer-Lundberg continuous model, we

usually write our model as

Un(ω) = u0 +θ µn−
n

∑
i=1

(Xi(ω)−Yi(ω)+θ µ) for all ω ∈Ω

= u0 +θ µn−
n

∑
i=1

Zi(ω) for all ω ∈Ω,

but actually, in our derivation we had

θ µ =
E(Yi)−E(Xi)

E(Xi)
E(Xi)

= E(Yi)−E(Xi)

= |E(Yi)−E(Xi)| since E(Yi)−E(Xi)> 0

= d(E(Yi),E(Xi)) where d is ordinary distance.
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In our model, the distribution of the Xi’s is relatively fixed and represents the expected distribution

of the claims. The distribution, or at least the expectation of the distribution of the E(Yi) is rela-

tively flexible, and represents the average premium amount our customers have signed a contract

to pay.

Suppose that E(Yi) can assume any positive real number, then we can represent the distance

between the different choices of E(Yi) and fixed choice of µ = E(Xi) as d1,d2,d3, . . . for some

sequence of choices for the mean of the Yi’s where the only thing that changes is the mean of

our premium distribution, and not its variance. If we had that situation then we could adopt the

following notation and our model would read,

Un(ω) = u0 +d jn−
n

∑
i=1

Zi(ω) for all ω ∈Ω.

We begin with a preliminary lemma. It provides a method for showing the existence another

model B which we can choose to have less starting capital, uB, than the starting capital, uA of our

original model A. But, the probability of ultimate ruin, ΨB
(0,∞)(u

B), for model B can be made to

match or be lower than the probability of ultimate ruin, ΨA
(0,∞)(u

A), of our initial model A. This

is done by choosing a larger distance, dB = d(E(Y B
i ),E(Xi)), between the expected value of the

premium size distribution for B, than the corresponding distance for model A.

Lemma 7.1. Suppose UA
n (ω) = uA + dAn−∑

n
i=1 Zi(ω), where dA = d(E(Y A

i ),E(Xi)) > 0, with

ΨA
(0,∞)(u

A) ∈ [0,1]. Then for every initial capital uB < uA there exists a model UB
n (ω) = uB +

dBn−∑
n
i=1 Zi(ω), where dB = d(E(Y B

i ),E(Xi))> 0, such that

(7.2) Ψ
B
(0,∞)(u

B)≤Ψ
A
(0,∞)(u

A).

Proof. We are trying to show the existence of another model with less initial capital, uB < uA, but

the same or lower probability of ultimate ruin.

Notation 7.3. The notation, S̄intercept
slope designates subsets of Ω which contain all of the non-survival,

or ruinous, trajectories with respect to a given expected reserve line.
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We form the following sets:

S̄uA

dA
= {ω ∈Ω : ∃n > 0 s.t. uA +dAn−Sn(ω)< 0}.

S̄uB

dA
= {ω ∈Ω : ∃n > 0 s.t. uB +dAn−Sn(ω)< 0}.

Suppose ω0 ∈ S̄uA

dA
then uA+dAN < SN(ω) for some N. But, by assumption, uB < uA so uB+dAN <

uA + dAN < SN(ω) giving ω0 ∈ S̄uB

dA
. This is true for all ω0 ∈ S̄uA

dA
, which implies S̄uA

dA
⊂ S̄uB

dA
, and

therefore, P(S̄uB

dA
)≥ P(S̄uA

dA
) giving Ψ

A1
(0,∞)

(uB)≥ΨA
(0,∞)(u

A). This inequality was anticipated, since

the expected reserve line of our starting model, uA + dAn, is parallel to, and above, the expected

reserve line uB +dAn.

Now, we seek to construct a model B1 whose expected reserve line is above the expected

reserve line of our starting model, for all n, but whose initial capital is, uB, less than uA. This

simply means that we solve

uB +d1 ·1 = uA +dA ·1

for d1. Which gives d1 = (uA−uB)+dA which is non-zero by our model assumption that dA > 0,

meaning E(Yi)> E(Xi). Now, we form the following set,

S̄uB

d1
= {ω ∈Ω : ∃n > 0 s.t. uB +d1n−Sn(ω)< 0},

and compare it to S̄uA

dA
the set from our original starting model.

Suppose ω0 ∈ S̄uB

d1
then uB+d1N < SN(ω) for some N. But, by construction, d1 = (uA−uB)+

dA ≥ dA so, supposing N = 1 then we would get uB + d1 · 1 = uA + dA hence ω0 ∈ S̄uA

dA
. Suppose

N > 1, then write N as 1+(N− 1), and observe that uB + d1N becomes uB + d1(1+(N− 1)) =

uB +d1 ·1+d1(N−1)> uA +dA, and gives ω0 ∈ S̄uA

dA
as well. Again, this is true for all ω0 ∈ S̄uB

d1
,

which implies S̄uB

d1
⊂ S̄uA

dA
, and therefore, P(S̄uA

dA
)≥ P(S̄uB

d1
) giving ΨA

(0,∞)(u
A)≥Ψ

B1
(0,∞)

(uB). But, we

already had Ψ
A1
(0,∞)

(uB) ≥ΨA
(0,∞)(u

A). Putting all this together, and summarizing, we have shown
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the following:

S̄uB

d1
⊂ S̄uA

dA
⊂ S̄uB

dA

P(S̄uB

d1
)≤ P(S̄uA

dA
)≤ P(S̄uB

dA
)

Ψ
B1
(0,∞)

(uB)≤Ψ
A
(0,∞)(u

A)≤Ψ
A1
(0,∞)

(uB).

The model, B1 satisfies the conclusion of the lemma.

We don’t expect the model B1 to be particularly sharp, in the sense that there might be another

model B∞ with a much shallower slope d∞ that also satisfies the conclusion of the theorem. We

now establish sufficient conditions to ensure that we can find the smallest slope d∞. That is, we

will be able to find a model B∞ whose expected reserve line has the smallest slope d∞, but whose

probability of ruin is equal to the probability of ruin of model A. We will also be able to ensure

that the expected reserve line of model B∞ intersects the expected reserve line of model A. The

basic idea of the theorem is to form a partial ordering (where the ordering is by set inclusion) of

subsets of Ω, and then use the fact that a probability measure is continuous on a monotone class.

In particular, if we have a nested sequence of increasing subsets of Ω,

S̄d1 ⊂ S̄d2 ⊂ ·· · ⊂ S̄d∞
with ∪∞

k=1 S̄dk = S̄d∞
then lim

k→∞

P(S̄dk) = P(S̄d∞
).

The following diagram gives an overview of the theorem. We have labeled the initial capital

of model A as uA
0 . The other 3 models each have the same initial capital which we have labeled

uB∞

0 . The model with the lowest ruin probability, and hence highest survival probability is model

UB1
n . The model with the highest ruin probability, and hence lowest survival probability is model

UA1
n . The original given model is UA

n . The model with a lower initial capital than model UA
n but

none-the-less an equal probability of ruin is model UB∞
n . All of the models with initial capital uB∞

0

form a single monotone class.

Notation 7.4. We abbreviate uA
0 as uA, uB

0 , as uB, B∞, as B, and d∞ as dB.
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Figure 7.1
Expected Reserve Line for 4 Models

Theorem 7.5. Given UA
n (ω) = uA + dAn−∑

n
i=1 Zi(ω) where dA = d(E(Y A

i ),E(Xi)) > 0 with

ΨA
(0,∞)(u

A) ∈ (0,1). Suppose Xi is supported on (0,∞), then for every initial capital uB < uA

there exists a model UB
n (ω) = uB +dBn−∑

n
i=1 Zi(ω) where dB = d(E(Y B

i ),E(Xi))> 0 such that

(7.6) Ψ
B
(0,∞)(u

B) = Ψ
A
(0,∞)(u

A).

Proof. Applying Lemma (7.2), and using the same notation as in the Lemma, and, in view of the

fact that Xi is supported on (0,∞), we have the following sharp inequalities:

0 < P(S̄uB

d1
)< P(S̄uA

dA
)< P(S̄uB

dA
)< 1

0 < Ψ
B1
(0,∞)

(uB)< Ψ
A
(0,∞)(u

A)< Ψ
A1
(0,∞)

(uB)< 1.

Notice that we have a monotone class with

S̄uB

d1
⊂ S̄uB

dα
⊂ S̄uB

dA
for dA ≤ dα ≤ d1,
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where our set “in the middle” is S̄uB

dα
and not S̄uA

dA
. Note, with our notation, there are two clear ways

to generate a monotone class: either keep the slope fixed, and allow the initial capital to vary, or

keep the the initial capital fixed, and allow the slope to vary. We have chosen the later method, but

done so in such a way that the “top” of the chain is a subset of the sample space with probability

of ruin lower than the probability of ruin of model A, and the “bottom” of the chain is a subset of

the sample space with probability of ruin greater than the probability of ruin of model A. Also, our

assumption on the support of Xi ensures that P(S̄uB

dα1
) 6= P(S̄uB

dα2
) for dα1 6= dα2 .

Now, let g(dα) = P(S̄uB

dα
)−P(S̄uA

dA
), and restrict g to the monotone class just defined. Notice

that g(d1)> 0, and g(dA)< 0. But, P(·) is continuous on monotone classes, and by the intermediate

value theorem (IVT) g assumes all of its intermediate values. Hence there exists dB with P(S̄uB

dB
) =

P(S̄uA

dA
), which gives ΨB

(0,∞)(u
B) = ΨA

(0,∞)(u
A) as claimed.

The theorem can essentially be thought of as establishing conditions under which we can

“charge ourselves” a “claim” of size [(uA + dAn)− (uB + d∞n))] > 0 at time 0 ≤ n < N, and then

completely mitigate its impact on the ultimate survival probability by immediately increasing the

gross premium rate from dA to d∞. That is, we can “switch” to a different model with a lower

initial capital, but the same ultimate probability of ruin. Unfortunately, though, we may have

dramatically increased our probability of ruin in the short term. In the next few chapters we will

see an example which exhibits this phenomenon. The main point is that relying entirely on the

probability of ultimate ruin as a metric of solvency is missing crucial information about survival

in finite time. Models with the same ultimate survival probability can have very different finite

survival profiles. In Chapter 9, we will develop the machinery necessary to see this effect more

clearly.
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Chapter 8

Probability of Ruin by Stopping a Martingale

We show how martingale methods can be applied to our model.

Let Un = u+∑
n
i=1Yi−∑

n
i=1 Xi, E(Yi) = (1+θ)E(Xi), θ > 0 and Xi ∼ X1, Yi ∼Y1 are indepen-

dent and identically distributed nonnegative random variables with 0 < E(X)< ∞.

Theorem 8.1. Suppose ∃r 6= 0 such that E(er(X−Y )) = 1.

Then r > 0 and

(8.2) P(ultimate ruin)≤ e−ru.

Proof. Let Wi = Xi−Yi so W ∼ X −Y and E(W ) = −θE(X) < 0. By Jensen’s inequality, for

any convex Φ(X), Φ(E(W ))≤ E(Φ(W )), so taking Φ(x) = erx we have erE(W ) ≤ E(erW ) = 1 and

thereby r must be positive. Now for any a,b > 0 consider Sn = ∑
n
i=1Wi and

Pa,b = P(∃n Sn > a and min
1≤i≤n

Si >−b)

= P(Sn crosses a before crossing −b)

and

Pb,a = P(∃n Sn ≤−b and max
1≤i≤n

Si < a)

= P(Sn crosses −b before crossing a).

Define a stopping time N by

N = min{n | Sn ≥ a or Sn ≤−b}

= smallest n s.t. Sn exits the interval (a,b) and

N = ∞ in the case that no such n exists.
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Then Mn = erSn is a martingale because

E
[
erSn |W1,W2, . . . ,Wn−1

]
= E

[
erSn−1+uWn |W1, . . . ,Wn−1

]
= erSn−1E

[
euWn |W1, . . . ,Wn−1

]
= Mn−1,

as the conditional expectation becomes expectation due to the independence of {Wi}, and by as-

sumption equals 1. It is standard to check that P(N < ∞) = 1 (Durrett [17]) and

EMn = EMN = 1.

Now,

1 = E
[
erSN | SN ≥ a

]
Pa,b +E

[
erSN | SN ≤−b

]
Pb,a

≥ eraPa,b,

giving

(8.3) Pa,b ≤ e−ra for any b > 0.

Taking b = k ∈ N,

Pa,k = P(Sn crosses a before −k)

= P(∪∞
n=1{Sn ≥ a ∩ min

1≤i≤n
Si >−k}),

and setting

Cn,k = ∪∞
n=1{Sn ≥ a}∩{ min

1≤i≤n
Si >−k}

= ∪∞
n=1An∩Bnk , Bnk ⊂ Bnk+1
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we have Cnk ↗ in k. By the continuity of P(·) for monotone sequences

lim
k→∞

P(Cnk) = P(∪∞
k=1Cnk)

= P(∪∞
k=1∪∞

n=1 An∩Bnk)

= P(∪∞
n=1An∩ (∪∞

k=1Bnk))

= P(∪∞
n=1An∩{ min

1≤i≤n
Si >−∞})

= P(∪∞
n=1An) since P( min

1≤i≤n
Si >−∞) = 1.

Consequently

lim
k→∞

Pa,k = lim
k→∞

P(Cnk)

= P(∪∞
n=1An)

= P(∃n Sn ≥ a)

= P(Sn ever crosses a),

and by (8.3),

(8.4) P(Sn ever crosses a)≤ e−ra.

Turning to the proof of (8.2),

P(ultimate ruin) = P(∃n Un < 0)

≤ P(∃n Un ≤ 0)

= P(∃n u≤
n

∑
i=1

(Xi = Yi))

= P(∃n u≤
n

∑
i=1

Wi)

= P(∃n≤ Sn)
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= P(Sn ever crosses u)

≤ e−ru by (8.4) with a = u.

Example 8.5 (Exponential case).

Let the claim size X ∼ exponential with mean µ and premium size Y ∼ exponential with mean

λ = (1+θ)µ

Then the condition

(8.6) E(er(X−Y )) = 1

reads

MX−Y (r) =
1
µ

1
µ
− r
·

1
λ

1
λ
+ r

= 1.

Solving for r we obtain

r =
θ

(1+θ)µ
±

√
(2+θ)2− ( 4

µ
)2

µ(1+θ)
.

Remark 8.7. For solutions r to be well-defined and positive we must have

1. (2+θ)2− ( 4
µ
)2 ≥ 0,

which is always satisfied for µ ≥ 1 whereas for 0 < µ < 1, θ ≥ 2( 1
µ
−1)> 0.

2. r+ is always a positive solution; however, r− can also be a solution if 0 < r−, or equivalently

2( 1
µ
−1)≤ θ ≤ 1

µ2 −1 with 0 < µ < 1.

Consequently r = r+ if θ > 1
µ2 −1 and r = r− if 2( 1

µ
−1)≤ θ ≤ 1

µ2 −1.

3. The first term θ

(1+θ)µ in r is identical to the adjustment coefficient R in the continuous model

U(t) = u+ ct−∑
N(t)
i=1 Xi with claim size exponential with mean µ .
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Example 8.8 (Binomial case). Let Y ∼ Bin(pY ,k), and X ∼ Bin(pX ,k) and pX < pY , which gives

θ = kpY−kpX
kpX

= pY
pX
−1 Then the condition (8.6) reads,

MX−Y (r) = [(pX er +1− pX)(pY e−r +1− pY )]
k = 1.

Solving for r gives

r = ln
[
(1− pX)pY

(1− pY )pX

]
,

and (8.2) reads

P(ultimate ruin)≤ e−ru =

[
(1− pY )pX

(1− pX)pY

]u

α =
(1− pY )pX

(1− pX)pY
where 0 < α < 1 given pX < pY .

For example, for pX = .5, pY = .67, θ = .34 (safety loading of 34%) α = .492 or

P(ultimate ruin with initial capital u)<
(

1
2

)u

.

Namely, every extra dollar of initial capital halves the probability of ultimate ruin!
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Chapter 9

Probability of Ruin via Donsker Invariance Principle

In this chapter we will apply the celebrated Donsker’s Invariance Principle [15] for Brownian

Motion to derive the probability of ruin for the risk reserve process for both finite and infinite time

horizon under the mild natural assumption of finite second moments for the claims X , and the

premiums Y .

Typically the Invariance Principle is stated on the Space of Continuous Functions C[0,1] [4],

however our considerations require C[0,∞) and therefore the formulation here follows [28] pp.

66-71. To this end consider {ξ j}∞
j=1 i.i.d. with E(ξ j) = 0, Var(ξ j)< ∞, and Sk = ∑

k
j=1 ξ j, S0 = 0.

Define a continuous process {Yt , t ≥ 0} obtained by linear interpolation

(9.1) Yt = Sbtc+ t−btcξbtc+1, t ≥ 0,

where btc is the greatest integer less than or equal to t. Scaling appropriately both time and space

consider a sequence of processes, n ∈ N

(9.2) Xn
t =

1
σ
√

n
Ynt , t ≥ 0.

Donsker’s Invariance Principle (Theorem 9.20, [28]). Let (Ω,F ,P) be the probability space

on which {ξ j}∞
j=1 is defined. Let Pn be the probability induced by {Xn

t }t≥0 given by (9.2) on

(C[0,∞),B(C[0,∞)).

Then

Pn converges weakly to the Wiener measure.

The Wiener measure is the probability measure on C[0,∞) under which the coordinate map-

ping process Wt(◦)≡ w(t) is the standard Brownian motion B(t). Equivalently,

(9.3) Xn
t =⇒ B(t) as n→ ∞,
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where “=⇒” stands for convergence in distribution.

Remark 9.4. Since (t−btc)ξbtc+1→ 0 in probability, (9.3) can be stated, due to (9.1) and (9.3), as

(9.5)
Sbntc
σ
√

n
=⇒ B(t) as n→ ∞,

where, again, =⇒ is convergence in distribution.

Turning to the risk reserve process

Un = u+θ µn−Sn, n ∈ N,

where Sn = ∑
n
i=1 Zi, Zi = Xi−Yi + θ µ , E(Zi) = 0, E(Xi) = µ , E(Yi) = (1+ θ)µ , Xi, Yi are i.i.d.

and Xi independent of Yi. Denote the variance of Zi by

σ
2 =Var(Xi−Yi +θ µ)

=Var(Xi)+Var(Yi)

= σ
2
X +σ

2
Y ,

and set σ =
√

σ2
X +σ2

Y .

First we rename n as t and write

U(t) = u+θ µt−St , t ∈ N.

Then we extend the above to

(9.6) U(t) = u+θ µt−St , t ≥ 0,

where St is obtained by linear interpolation

St = Sbtc+(t−btc)Zbtc+1.
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Now we rescale the time by a factor 1
n , and consider a family of processes for n ∈N corresponding

to (9.6).

Un(t) =
√

nu+
1√
n

θ µtn−Sbntc(9.7)

=
√

n
[

u+θ µt−
Sbntc√

n

]
.(9.8)

Lemma 9.9. Given the above notation and assumptions,

Un(t)√
n

=⇒ u+θ µt−σB(t).

Proof. Apply Donsker’s Invariance Principle to

σ
Sbntc
σ
√

n
=⇒ σB(t).

Now, let

Tn = in f{t > 0 |Un(t)≤ 0}

and observe that by (9.7) for all n ∈ N

(9.10) Tn = in f{t > 0 | u+θ µt−
Sbntc√

n
≤ 0}.

Define

(9.11) T = in f{t > 0 | u+θ µt−σB(t)≤ 0}.

Before stating our main result we need the following fact concerning Brownian motion:

Fact 9.12 ([28], p. 196). Given Brownian motion with drift W (t) = ct +B(t). Let τ be the hitting

time of the barrier a 6= 0 given c 6= 0. Then the density

(9.13) fτ(t) =
a√

2πt3
e−

(a−ct)
2t , t ≥ 0
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is Inverse Gaussian and

P(τ ≤ t) =
∫ t

0
fτ(s)ds

P(τ < ∞) = eca−|ca|,

where

eca−|ca| =


1, if a and c have the same sign,

e2ca < 1, otherwise.

The case P(τ < ∞) = 1 corresponds to a drift c pointing toward the barrier, whereas P(τ <

∞) < 1 corresponds to a drift c pointing in the direction opposite to the barrier, and signifies the

fact that the density fτ(t) is defective, i.e. P(τ = ∞) = 1− e2ca.

Theorem 9.14.

lim
n→∞

P(Tn ≤ t) = P(T ≤ t)(9.15)

=
∫ t

0

u√
2πs3

e−
(u+θ µs)2

2sσ2 ds.(9.16)

Proof. The main benefit of the functional Central Limit Theorem, such as Donsker’s Invariance

Principle, is that continuous functionals of processes converging in distribution (here Un =⇒ u+

θ µt +σB(t)) also converge in distribution. The random variables Tn,T , defined by (9.10) and

(9.11) respectively, both satisfy Tn =⇒ T because both are derived from a continuous map on the

space of trajectories on C[0,∞). Namely,

τ : C[0,∞) 7→ R

defined by τ(x) = in f{t > 0 | X(t) ≤ 0} if non-empty, and +∞ otherwise, is measurable, and

almost surely continuous with respect to u+ θ µt +σB(t). This establishes the first equality of

(9.16).
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To show the second equality in (9.16) notice that

T = in f{t > 0 | u+θ µt−σB(t)≤ 0}

= in f{t > 0 | u
σ
≤−θ µ

σ
+B(t)},

whence by Fact (9.13) with a = µ

σ
, c =−θ µ

σ
the proof is complete.

Corollary 9.17.

P(ultimate ruin) = P(T < ∞) = e−
2θ µ

σ2 u
.

Note, the limiting distribution T of Tn is considered as corresponding to T for the original

process (9.6). Similar analysis for the classical Lundberg model u+ ct−∑
N(t)
i=1 Xi, N(t) a Poisson

process was done by Iglehart [26] on the space D[0,∞) of right continuous left limit functions.

As we indicated at the end of chapter 7, we did not yet have the machinery to fully illustrate

Theorem (7.5); now we do. By way of review, Theorem (7.5) established a disconcerting result: if

we say that two different processes are equivalent when they have the same probability of ultimate

ruin - which is the standard practice - then we may call two different processes equivalent, or

interchangeable, when, in fact, they have significantly different finite ruin probabilities.

Example 9.18. Let the expected value of the claim size distribution be 1, that is, µ = 1. And let the

standard deviation of the claims plus premium be 1, that is, σ = 1. Suppose we have two different

models A and B with the initial capital for A being u = 24 and the safety loading θ = 0.11, whereas

for B we have initial capital, 48, and safety loading 0.055. So by the above corollary we have

P(ultimate ruin A) = e−2(0.11)24 = 0.00509 = e−2(0.055)48 = P(ultimate ruin B).

That is, model A and model B both satisfy the same standard of having approximately a 1
2 of 1%

probability of ultimate ruin. But, the probability of ruin in finite time for model A and model B

correspond to very different Inverse Gaussian distributions.
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For model A the probability of ruin by time t corresponds to the following integral:∫ t

0

24√
2πs3

e−
(24+0.11s)2

2s ds.

We then see that after 4 years, or 1460 days, the probability of ruin in the tail for model A is

negligible. That is, we have already equaled our ultimate ruin probability since

∫ 1460

0

24√
2πs3

e−
(24+0.11s)2

2s ds = 0.00509.

Figure 9.1
Distribution of finite ruin for A

But, for B it takes 4 times as long for the tail ruin probability to become negligible. For model

B, see the figure below, the probability of ruin by time t corresponds to the following integral:∫ t

0

48√
2πs3

e−
(48+0.055s)2

2s ds.

And, after 4 years we still have∫ 1460

0

48√
2πs3

e−
(48+0.055s)2

2s ds = 0.00447.
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But, by year 20 we have

∫ 5840

0

48√
2πs3

e−
(48+0.055s)2

2s ds = 0.00509.

So, by year 20 the finite ruin probability for model B finally equals its ultimate ruin probability.

So, model A is significantly more risky than model B in the first 4 years, but the current standard

of regarding them as being equivalent is failing to highlight this distinction.

Figure 9.2
Distribution of finite ruin for B
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Chapter 10

Probability of Ruin via Large Deviation Principle

This section is concerned with the derivation of the upper bound for the probability of ruin on the

interval [n,∞), which we will refer to as tail ruin probability. Our arguments are based on the rate

function - a key ingredient of the Large Deviation Principle (LDP), so for the sake of completeness

we discuss the relevant basic facts.

Large deviations refer to a class of results which describe how probabilities of atypical events

away from typical events decay to zero. It turns out that very often P(An) ∼ exp−αn for large n

where the constant α > 0 is directly computable. One of the most important rates is concerned

with the Strong Law of Large Numbers (SLNN), and reads P(X1+···+Xn
n ∈ A) ∼ e−αn, whenever

E(Xi) = µ /∈ A. The first large deviation result dates back to the late 1930’s, and is attributed

to Crámer [7]. The most significant developments came in the 1980’s with the pioneering books

of Varadhan [30] for a large class of Stochastic processes(including Markov diffusions), Freidlin

and Wentzell [21] for dynamical systems(perturbed by Ito processes) and Freidlin [20] for PDEs.

More recent monographs on LDP are Dembo [9] and Hollander [10]. Since our analysis is related

to Crámer’s LDP we state it without proof.

Crámer’s Large Deviation (Th. I.4, [10]).

Let (Xi) be i.i.d with the moment generating function Φ(t) = E(etX1)< ∞, t ∈R, and Sn = ∑
n
i=1 Xi.

Then for any a > E(X1)

lim
n→∞

1
n

logP(Sn ≥ an) =−I(a)

where

I(a) = sup
t∈R

[at− logΦ(t)]

is the rate function.
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Remark 10.1. The above result has a straightforward extension to Φ(t)< ∞ for t from some subset

of R. Key properties of the rate function I(·) are as follows: 0 ≤ I(·), I(·) is convex, I(E(Xi)) =

I(µ) = 0, I(x) may assume +∞, I(x)↘ for x < µ , I(x)↗ for x > µ . I(x) is called a convex

conjugate or the Legendre Transform of the convex function logΦ(t).

Upper Bound Lemma. Assume E(etX)< ∞ for t ≥ 0. Then for all x > E(X) = µ

(10.2) P(Sn ≥ nx)≤ e−nI(x).

Proof. By Markov’s inequality,

P(Sn ≥ nx) = P(etSn−txn ≥ 1)

≤ E(etSn−txn)

= e−txn(MX(t))n

= e−n(xt−logMx(t)).

Now, since t is arbitrary, we can optimize this upper bound by maximizing h(t) = xt− logMX(t)

over t. We have

h′(t) = x−M′X(t)
MX(t)

|t=0 = x−µ > 0,

and therefore h(t) > 0 in some vicinity of t = 0, because h(0) = 0. This in turn, since h(t) is

concave down, shows that h(t) has a unique strictly positive max that can be obtained by solving

x− M′X (t)
MX (t)

= 0 for some t = t(x) and therefore max
t

I(x) = x t(x)− log(MX(t(x))) = I(x).

Theorem 10.3. Consider Un = u+θ µn−Sn, where Sn = ∑
n
i=1 Zi, Zi are i.i.d. E(Zi) = 0. Then we

have the following upper bounds for ruin probability:

P(ruin in [n,2n])≤ e−nI(θ µ+ u
2n )

1− e−I(θ µ+ u
2n )

(10.4)

P(ruin in [n,∞)≤ e−nI(θ µ)

1− e−I(θ µ)
.(10.5)
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Proof. We have

P(ruin in [n,2n]≤ P(∃n≤ k ≤ 2n | u+θ µk−Sk < 0)

= P(∪2n
k=nSk > kθ µ +u)

≤
2n

∑
k=n

P(Sk > kθ µ +u)

≤
2n

∑
k=n

e−kI(θ µ+ u
k ) by (10.2)

≤
2n

∑
k=n

e−kI(θ µ+ u
2n )

≤ e−nI(θ µ+ u
2n )

1− e−I(θ µ+ u
2n )

.

The proof of (10.5) is straightforward and is omitted.

In the example below we illustrate how the upper bound (10.4) can be used to estimate the

ruin probability on a finite time block, given that the probability of ultimate ruin has a known upper

bound.

Example 10.6. Consider our previous example 8.5 where the claim size ∼ exponential with mean

µ and premium size ∼ exponential with mean (1+θ)µ . Then

P(ruin in [0,∞))≤ e−ru,

where

r =
θ +

√
(2+θ)2− ( 4

µ
)2

(1+θ)µ
.

Let us now choose µ = 25, θ = .2 and u = 75.

Then we have

P(Ultimate Ruin)≤ e−ru = e−(.075805)(75) = .002515,

or 1
4 of 1%.
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On the other hand,

P(ruin between 5th and 10th year) = P(ruin ∈ [1825,3650])

≤ e−(.00843)(1825)

1− e−(.00843)

= .0000248.

i.e. 100 fold smaller or negligible.
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Chapter 11

Future Work

There are two natural directions to extend the model introduced and studied in this dissertation.

Namely, the first is to relax the independence of the increments of the random walk with positive

drift, and allow Markov or other correlated random walks. The second direction is to let the initial

capital u be invested in equities according to the Ito SDE of the form

(11.1)


dAt = mAt dt + vAt dWt , Wt = Brownian Motion,

A0 = u, u = initial capital, m = mean return, v = volatility.

Since the solution to (11.1) is known explicitly as Geometric Brownian Motion At = ue(m−
1
2 v2)t+vWt

one can consider its evolution at discrete time t = 0, 1, 2, . . . , and study the risk process of the

form

(11.2) Un = An +θ µn−
n

∑
i=1

Zi.

Preliminary analysis indicates that for m ≥ θ µ the upper bound for the probability of ruin for

(11.2) is strictly smaller than for our model with An ≡ u.
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