
JSSpe: A SYMBOLIC PARTIAL EVALUATOR FOR JAVASCRIPT

by

SÜMEYYE SÜSLÜ

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2018

Copyright © by SÜMEYYE SÜSLÜ 2018

All Rights Reserved

Her zaman arkamda olan annem ve babama...

To my loving parents Ali and Gülay...

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge Dr. Christoph Csallner for his guidance

and support throughout this thesis. His supervision enabled me to acquire numerous

skills and gain different points of view to attack the challenges experienced during

research. He has also been an excellent mentor. His practical experience and smart

solutions have helped and supported me greatly. My thanks extend to respected com-

mittee members Dr. David Kung and Dr. Jeff Lei for their feedback and constructive

criticism.

I am grateful to my country Republic of Turkey for all of the effort they have

put into me even during its unfortunate times. Also, I would like to thank Turkish

Ministry of Education for supporting me throughout my Master education.

My fiance Dr. Onur Daşkıran has supported and helped me every time that I

need and I’m forever deeply indebted to him.

My loving parents Ali and Gülay, brother Muhammed Enes, sisters Hacer and

Emine Merve and my extended family have been intensely supportive and under-

standing even though I was not with them at times when they needed me around the

most.

March 27, 2018

iii

ABSTRACT

JSSpe: A SYMBOLIC PARTIAL EVALUATOR FOR JAVASCRIPT

SÜMEYYE SÜSLÜ, M.S.

The University of Texas at Arlington, 2018

Supervising Professors: Christoph Csallner

Currently, JavaScript is one of the mostly used programming languages for Web

and Mobile platforms. This brings a large demand for optimization and smarter re-

source allocation of the applications written in JavaScript. Partial evaluation is a

program transformation technique which rewrites a program by evaluating it with

respect to its known variables. Recently, Facebook proposed Prepack: A partial

evaluator for JavaScript which will make original program shorter and faster by per-

forming both concrete and symbolic evaluation (concolic evaluation). Although it

is proposed as a planned improvement, symbolic evaluation engine currently does

not implement an SMT solver. In this work, a JavaScript symbolic partial evaluator

(JSSpe) is designed using Babel plugin and it is connected to the Microsoft-Z3 SMT

solver to investigate its contribution to its performance. Several test scenarios are

experimented in order to show the performance enhancements through using an SMT

solver in partial evaluator design.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . vii

LIST OF TABLES . viii

LIST OF LISTINGS . ix

Chapter Page

1. Introduction and Motivation . 1

1.1 Motivating Example . 2

2. Background . 5

2.1 Partial Evaluation . 5

2.1.1 Representation of Partial Evaluation 8

2.1.2 Interpreters and Compilers . 9

2.1.3 Compilation Using a Partial Evaluator 11

2.1.4 Online versus Offline Partial Evaluation 15

2.2 Generation of Abstract Syntax Tree 16

2.2.1 Abstract Syntax Tree . 17

2.2.2 Babel . 19

2.3 Symbolic Execution . 20

2.3.1 Constraint Solvers . 22

2.3.2 Microsoft Z3 . 23

3. Overview and Design . 28

3.1 Partial Evaluator Design . 28

v

3.1.1 Partial Evaluation Using Babel Plugin 29

4. Experiments and Results . 43

4.1 Research Questions . 43

4.2 Experimental Setup . 45

4.3 Micro Benchmark: 7 Sample Programs 45

4.3.1 Concrete Value To Abstract Value 46

4.3.2 Concrete Evaluation of If-Else If Statements 47

4.3.3 Abstract Evaluation of If - Else Statements 49

4.3.4 Updating Constant Variables 52

4.3.5 Folding Binary Operations . 53

4.3.6 Abstract While Loops . 54

4.4 Evaluation . 56

4.4.1 RQ1: Performance of JSSpe and Prepack 56

4.4.2 RQ2: Performance of Residual code 57

4.4.3 RQ3: Comparison of code sizes 57

5. Related Work . 59

6. Future Work . 61

7. Conclusions . 62

REFERENCES . 63

BIOGRAPHICAL STATEMENT . 68

vi

LIST OF FIGURES

Figure Page

2.1 General Structure of A Partial Evaluator 6

2.2 Notation For Partial Evaluation . 8

2.3 Interpreter . 10

2.4 Compiler . 11

2.5 Partial Evaluation . 11

2.6 First Futamura Projection . 13

2.7 Second Futamura Projection . 14

2.8 Third Futamura Projection . 15

2.9 Graphical Representation of AST . 18

2.10 Stages of Babel . 19

2.11 An Example of Symbolic Execution Over Control Flow Graph 22

3.1 JSSpe Workflow Overview . 28

3.2 Stages for the resolution of path conditions using Z3. 42

vii

LIST OF TABLES

Table Page

2.1 Usage of Several Z3 Commands For A Satisfiable Example 25

2.2 Usage of Several Z3 Commands For An Unsatisfiable Z3 Examples . . 25

2.3 An Example For Usage of (push) and (pop) Commands in Z3 27

4.1 Results on micro-benchmark samples: Both JSSpe itself and JSSpe-

generated programs had a lower runtime than with Prepack (PP). . . . 58

viii

LIST OF LISTINGS

Listing Page

1.1 A Motivating Example: Original foo function 3

1.2 Residual Code of Prepack . 3

1.3 Residual Code of JSSpe . 4

2.1 Original Function . 6

2.2 Residual Function . 7

2.3 An Example Source Code . 18

2.4 An Example JavaScript Code For Symbolic Execution 21

3.1 Function Declaration . 29

3.2 Variable Declaration . 30

3.3 Assignment Expression . 31

3.4 Logical Expression . 32

3.5 Binary Expression . 33

3.6 If Statement . 36

4.1 Concrete to Abstract Value (Sample 1). 46

4.2 Prepack’s Residual Code Creates New Variables to Transfer Current

Variables Listing 4.1. 46

4.3 JSSpe’s Residual Code for Listing 4.1. 47

4.4 Nested If Statement (Sample 2). 47

4.5 Prepack’s Residual Code for Listing 4.4. 48

4.6 JSSpe’s Residual Code for Listing 4.4. 48

4.7 Feasible Abstract If-Else Statement (Sample 3). 49

ix

4.8 Z3 Representation of If-Else Statement 49

4.9 Prepack’s Residual Code for Listing 4.7. 50

4.10 JSSpe’s Residual Code for Listing 4.7. 50

4.11 An Unfeasible Abstract If-Else Statement Case (Sample 4). 51

4.12 Prepack’s Residual Code Does Not Remove Unsatisfiable Statement in

Listing 4.11. 51

4.13 JSSpe’s Residual Code for Listing 4.11. 51

4.14 Updating Constant Variables (Sample 5). 52

4.15 Prepack’s Residual Code for Listing 4.14. 53

4.16 JSSpe’s Residual Code for Listing 4.14. 53

4.17 Folding Binary Operations (Sample 6). 53

4.18 Prepack’s Residual Code for Listing 4.17. 54

4.19 JSSpe’s Residual Code for Listing 4.17. 54

4.20 Abstract While Loops (Sample 7). 55

4.21 Prepack’s Residual Code for Listing 4.20. 55

4.22 JSSpe’s Residual Code for Listing 4.20. 55

x

CHAPTER 1

Introduction and Motivation

JavaScript is one of the mostly used programming languages for Internet-based

Web content productions. As of January 2018, 94.9% of all the websites are employing

JavaScript [1]. Almost every modern browsers run with JavaScript. In addition, in

recent years, JavaScript has gained more popularity over languages such as Python

and PHP in the back-end development. Applications built using JavaScript such as

Facebook’s React platform serve a large number of users at the same time. This

requires a fast execution and efficient usage of resources. Due to this fact it has

become crucially important to optimize JavaScript code to make it run faster and

consume less resources.

Partial evaluation is a program transformation technique which creates a spe-

cialized version of the input program by evaluating all the variables which has known

values. It removes unnecessary branches, propagate constants over the program, per-

forms function calls and loop unwinding. This way, it acts like optimizing compilers

but it is more powerful as it can create different outputs based on the provided en-

vironment. In many JavaScript applications, there are many variables which can be

static based on specific scenarios and usually repetitive function calls are performed

using this variables. This makes partial evaluation a good candidate for optimiz-

ing and specializing JavaScript applications by providing shorter code size and faster

execution time.

Original program contains static and dynamic variables in the environment and

during execution of partial evaluation these variables can change to dynamic or static

1

and expression of the abstract values can not be done without symbolic execution.

Symbolic execution is a technique to execute the whole program without having

numerical values of the variables within program. By combining symbolic execution

with partial evaluation this restriction can be removed.

Previously, there has been attempts to solve this problem. Jeene [2] is a very

limited partial evaluator based on Crockford’s parser [3]. Closure compiler [4] opti-

mizes JavaScript code removes dead code and checks JavaScript syntax. Prepack [5]

is currently the best solution not only performs concrete evaluation but also imple-

ments abstract interpretation. However, it lacks judging satisfiability of abstract

expressions. Prepack proposed to solve this problem by incorporating with an SMT

solver such as Microsoft-Z3 [6]. However, waiting to be implemented.

In this work, instead of Prepack, JSSpe, a symbolic partial evaluator is created

using Babel’s [7] plugin and visitor patterns. It is connected to the SMT solver Z3;

thus, when it encounters with unsatisfiable abstract expressions, it eliminates using

Z3. This is useful especially decision points where the program flow branches different

paths. Partial evaluation can determine which branch to take when decision expres-

sion is fully concrete but in the abstract case, it should be send to the Z3. JSSpe is a

proof of concept implementation; thus, it doesn’t cover all the statements. However,

experiments performed in this study demonstrate the performance enhancement of

combining a symbolic execution engine with a partial evaluation solver.

1.1 Motivating Example

Following example displays a possible pitfall of a partial evaluator without ac-

cess to an SMT solver. In Listing 1.1, a JavaScript code with three consecutive if-else

if statements is shown. The test cases in these if - else if statements are dependent

on abstract variable x; thus, they can not be evaluated and omitted using concrete

2

evaluation. However, the second if statement includes an unsatisfiable test condition

for all of values of x. A partial evaluator such as Prepack has no connection to an

SMT solver. Therefore, it can not remove this unsatisfiable branch from the program

and its residual code is shown in Listing 1.2. As can be seen, it keeps branches as

it is, renames variables, and does not perform any optimization. JSSpe eliminates

unnecessary branches and produces shorter code size and empirically faster run time

execution as can be seen in Listing 1.3.

1 var x = Date.now();

2 function foo(x) {

3 var a;

4 if (x < 0)

5 a = 4;

6 else if (x < 2 && x > 8)

7 a = 6;

8 else if (x > 0)

9 a = 8;

10 return a;

11 }

12 var m = foo(x);

Listing 1.1: A Motivating Example: Original foo function

1 (function () {

2 var _$1 = this;

3 var _$0 = _$1.Date.now();

4 var _1 = _$0 < 0;

5 var _7 = _$0 < 2;

6 var _9 = _$0 > 8;

7 var _6 = _7 && _9;

8 var _d = _$0 > 0;

9 var _c = _d ? 8 : void 0;

3

10 var _5 = _6 ? 6 : _c;

11 var _0 = _1 ? 4 : _5;

12 m = _0;

13 }).call(this);

Listing 1.2: Residual Code of Prepack

1 var x = Date.now();

2 function foo(x) {

3 var a;

4 if (x < 0)

5 a = 4;

6 else if (x > 0)

7 a = 8;

8 return a;

9 }

Listing 1.3: Residual Code of JSSpe

4

CHAPTER 2

Background

Meta-programming is the procedure of generating new programs by analyzing

and modifying existing programs [8]. Compilers and interpreters are the most trivial

examples of meta-programs since they are programs whose inputs and outputs are

also programs. Similarly, partial evaluation is by its nature a meta-programming

implementation.

In this chapter, several key concepts on design and analysis of partial evaluators

are introduced. Lexical and syntactic structure of programs and ways to represent pro-

gram syntax in tree form is demonstrated. General definitions of symbolic execution

and SMT solvers are explained and through several examples usage of Microsoft-Z3

SMT solver is presented.

2.1 Partial Evaluation

Partial evaluation or also known as program specialization is a technique that

creates a specialized program with respect to some of the inputs of an original program

which are known at the compilation time. These inputs are also known as concrete

or static inputs. A partial evaluator must generate a residual program which runs

with remaining inputs and produces same results with the original program which

runs with all inputs. Remaining inputs in the residual program are not known at the

time of compilation. These are called abstract or dynamic inputs and their values are

determined during the execution. Concept of partial evaluation is proven in recursive

5

function theory by Kleene’s s-m-n theorem [9]. Inputs of a program can be represented

under two categories.

As can be seen in Fig. 2.1, a source program p has two inputs in1 and in2 and

creates an output. Assuming one of the inputs in1 has a static value, partial evaluator

can transform this source program into a specialized program pin1 , which has only

single dynamic input in2. Partial evaluator is a separate program whose inputs are

source code of program p and static variable in1. Output of the partial evaluator is

known as the residual program.

Figure 2.1: General Structure of A Partial Evaluator

Consider following function shown in Listing 2.1 which performs the exponential

operation in JavaScript.

1 function power(n,x){

2 var p=1;

3 while(n>0){

4 if(n%2===0){

5 x = x*x;

6 n = n/2;

7 } else{

6

8 p = p*x;

9 n = n-1;

10 }

11 }

12 return p;

13 }

Listing 2.1: Original Function

This function has two inputs base, (x) and exponent, (n). In the cases which

it is required to compute values for a fixed exponent, this function can be specialized

for a static value of exponent using partial evaluation as can be seen in Listing 2.2.

1 function power_3(x){

2 return x * x * x;

3 }

Listing 2.2: Residual Function

These two functions create the same output for given base values. Execution

of residual function is going to be faster and shorter than the original function as

the while loop has been unfolded. On the other hand, this can not be generalized

for all cases as partial evaluation does not necessarily guarantee that the specialized

program will be any better than the source program [10]. For instance, it is possible

to create a specialized program that simply calls the source program with the given

static inputs. Even though this specialized program is shorter, it is going to perform

worse than the source program due to redundant program calls.

In general, following two conditions should be met in order to talk about the

advantages of partial evaluation [10]:

(i) Most computations are based on static data such as library functions are called

with constant parameters, in these cases, partial evaluation may have influence

7

on the speed even though no input is provided. This way, greater speed up can

be achieved than the optimizing compilers. However, partial evaluators may

create excessive amount of loops and code size, hence they are inappropriate as

default optimizers.

(ii) These computations are executed more than once, either due to a repetitive

structure such as loops or the program itself is required to run several times.

2.1.1 Representation of Partial Evaluation

Partial evaluation can be represented by mathematical equations. In the liter-

ature, there are several notations defined for the partial evaluation and throughout

this work, notation of [10] is used. In addition, visualizations regarding interpreters,

compilers, and Futamura projections are inspired by the work of [11].

A program denotes either the actor which converts inputs into outputs or the

textual script which describes the conversion process. These two implications of

program should be distinguished. In Fig. 2.2, [[p]] represents the program, while p

represents the source code of the program which can be an input or output to other

programs. L represents the language which p is written, x1, x2, . . . , xn can be static

or dynamic inputs of the program.

Figure 2.2: Notation For Partial Evaluation

8

As can be seen in the Eq. (2.1), this notation is used in order to state outputs

of original and partially evaluated functions equal each other.

[[power]]js [3, x] = [[power 3]]js x (2.1)

Assume a program p which has two arguments x1 and x2. Specializing p with

respect to a part of its input x1 = d1 generates residual program pd1 . This process is

performed by another program peval and satisfies partial evaluation equation:

[[peval]] [p, d1] = pd1 ⇒ [[pd1]]d2 = [[p]] [d1, d2] ∀d2 (2.2)

which implies original program p with full inputs d1, d2 should yield the same result

with residual program pd1 with input d2.

In Eqs. (2.1)- (2.2), language which the partial evaluator is written (L), as well

as the source (S) and target (T) languages are not specified. We assume that all three

languages are same for notational simplicity. However, if L = S this opens possibility

for applying the partial evaluator itself. For example, Prepack specializes JavaScript

code and also written in JavaScript.

2.1.2 Interpreters and Compilers

Program generation procedure of interpreters and compilers can also be repre-

sented using a similar notation with the partial evaluation.

2.1.2.1 Interpreters

An interpreter provides a single stage execution. This is also called “run time”

and it uses same language with the source program. Operation of the interpreter

which is depicted in the Fig. 2.3 must satisfy interpreter equation:

[[s]]S d = [[Sint]]L [s, d] (2.3)

9

where s is a source program written in language S, d is input data and Sint is an

interpreter for language S written in language L. As Eq. (2.3) implies if program s is

executed with input d on an S supported platform same result should be obtain when

program s and input d are passed to interpreter Sint on an L supported machine.

Figure 2.3: Interpreter

2.1.2.2 Compilers

Operation of compilers are performed in two execution stages: “compile time”

and “run time” as shown in the Fig. 2.4. A compiler satisfies the equation:

[[STcomp]]L p = p′ ⇒ [[p′]]T d = [[p]]S d ∀d (2.4)

where p is a program written in language S, STcomp is a compiler from source S to

target T language, and p is the compiled version of program p in L language. Assum-

ing no errors occurring during compilation, executing program p in an L platform

with input d should yield the same result when executing program p on a T platform

with the same input.

10

Figure 2.4: Compiler

2.1.3 Compilation Using a Partial Evaluator

A partial evaluator behaves as a crossing between an interpreter and a compiler

in the Fig. 2.5.

Figure 2.5: Partial Evaluation

If it is expected to execute programs with different inputs in multiple times, it

becomes necessary to partially evaluate the interpreter with respect to a fixed known

program and unknown inputs. Using partial evaluation, we obtain:

[[peval]] [Sint, s] = Sints ⇒ [[Sints]] d = [[Sint]]L [s, d] ∀d (2.5)

11

Using definition of interpreter:

[[Sints]]L d = [[s]]S d ∀ (2.6)

Residual program is obtained by compiling source code s from language S into

language L. Partial evaluator peval takes two inputs, source code of interpreter Sint

in L language and source code of s written in S language. It outputs a specialized

program Sints in L language. It creates identical output with program s in S language

for a given input d. This shows compilation from S to L is performed using partial

evaluation of an interpreter. This is also known as the first Futamura projection and

depicted in the Fig. 2.6:

[[peval]] [interpreter; source] = target (2.7)

12

Figure 2.6: First Futamura Projection

Similarly, second Futamura projection, shown in Fig. 2.7 states that a compiler

can be generated by partially evaluating an interpreter and a partial evaluator :

[[peval]] [peval; interpreter] = compiler

[[compiler]] source = target (2.8)

13

Figure 2.7: Second Futamura Projection

The third Futamura projection depicted in the Fig. 2.8 states that using partial

evaluation compiler generator can be generated that is for any given interpreter a

compiler is generated:

[[peval]] [peval; peval] = compilergenerator

[[compilergenerator]] interpreter = compiler (2.9)

14

Figure 2.8: Third Futamura Projection

2.1.4 Online versus Offline Partial Evaluation

Based on the analysis and procedure of the partial evaluation stages, partial

evaluators are classified into two categories as online and offline.

15

Online partial evaluators do not perform any analysis of static and dynamic

variables. During the partial evaluation, it uses known concrete values of the variables

to evaluate expressions and keeps abstract variables as symbolic expressions. In this

way, operation of online partial evaluators are quite similar to interpreters. Decisions

of concretely evaluating statements or keeping them in the residual code as symbolic

expressions are made during the execution of partial evaluator.

On the other hand, offline partial evaluators introduce a preliminary stage where

the all variables and expressions in the program are traced and assessed to be either

concrete or abstract variables. This procedure is called Binding Time Analysis. Based

on the assessed characteristics of the variables, expressions in the program are marked

either to be concretely evaluated or to be inserted into residual code. This separation

of variables must follow a property known as congruence which states if a concrete

variable is updated with an abstract variable, it should be considered as an abstract

value. In the second stage, actual partial evaluation is performed and based on the

findings of Binding Time Analysis, residual code is created.

2.2 Generation of Abstract Syntax Tree

In the previous section, definition and methods of partial evaluation were pre-

sented. Partial evaluators take program source code as their inputs and process them.

However, this process uses specialized representations of input programs rather than

their textual representation. This type of representations provide partial evaluator

to modify, remove or insert new program structures easily. The most common repre-

sentation used for this purpose is Abstract Syntax Trees (AST).

In this section, first concept of AST is introduced and next a tool for creating

and manipulating ASTs in JavaScript language is described.

16

2.2.1 Abstract Syntax Tree

Abstract syntax tree is a tree representation of hierarchical syntactic structure

of source program in a programming language [12]. An abstract syntax tree captures

essential structure of the input and operators while omitting unnecessary syntactic

details. In the tree data structure of ASTs, interior nodes represent operator and

each interior node has children which are operands. In object oriented languages,

tree nodes are implemented as classes, instance variables of leaf nodes are used to

hold information about nodes value e.g. literal values, references into a simple table.

ASTs can be generated with multiple methods. Hand-written parsers mix pars-

ing code with AST construction code which makes the parser difficult to maintain.

Automatic parser generation is an alternative to hand-written parsers, constructing

a customized AST data structure is a problem which must be considered [12].

In order to perform necessary operations on nodes of ASTs, all tree structure

should be traversed. This can be performed using visitor patterns. In simple terms,

visitor patterns are a class definition of methods accepting particular AST nodes [7].

During the AST traversal, each node is examined and if a particular method in the

visitor class is encountered, context is passed to the method for execution, so it can

be analyzed or manipulated [13].

In the following example, structure of the AST is shown in Fig. 2.9 for a small

program is shown in Listing 2.3. AST root node is a File node and its children

nodes are Program and Comments. Comments node holds static text values of the

comment lines existing in the code and this code is not visited as there is no children

to it. Program node contains all the functional content of the program. All program

components make up children nodes based on the program flow. In this example,

Program node has two children, V ariable Declaration and Function Declaration,

respectively. Also, these children nodes have their children. V ariable Declaration

17

has two children nodes, V ariable Declarator and Call Expression. Subnode of

V ariable Declarator is id which is defined as an identifier. Call Expression node

has two subnodes, callee and arguments. Type of callee node is identifier and its

name is myFunction, arguments node has two literal values, 4 and 3. In addition,

Function Declaration has three children nodes, id, params, body. In the id node,

function’s name myFunction is defined as an identifier. params node has two subn-

odes and in these subnodes, types of variables are identified and names are determined.

Lastly, body node’s type is accepted as Block Statement, and also Return Statement

is taken to the AST. Return Statement has argument Binary Expression and type

Binary Expression Operator and its subnodes are identified as left and right. Type

of left subnode is identifier and name is a, type of right subnode is identifier and

name is b. It can be stated that during creation of AST, all of nodes are traversing

and their names and values are taken.

1 var x = myFunction (4,3);

2 function myFunction(a,b){

3 return a*b;

4 }

Listing 2.3: An Example Source Code

Figure 2.9: Graphical Representation of AST

18

2.2.2 Babel

Babel is a multi-purpose compiler specifically source to source compiler called

as transpiler [7]. It takes a JavaScript source code as input and returns a transformed

output source code. This transformation can be generating a code written in the

latest ES6 standard into a code which is Browser compatible.

This transformation of the source code is handled using three main tools: parse,

transform and generate as can be seen in Fig. 2.10.

Figure 2.10: Stages of Babel

In the first stage parse, the input source code is converted into an AST. Initially,

the source code is read character by character and converted into an array of tokens.

This is called Lexical Analysis. In the second part which is called Syntactic Analysis,

these tokens are formed in a tree data structure in a way to represent flow of the

code.

Main transformations on the AST are performed by traversing all nodes in the

tree and implementing specific operations. Babel traverse package provides tools and

functions in order to write customized plugin files that can control what sort of modi-

fications can be performed on nodes and connected subnodes. For instance, if a plugin

is used to convert ES6 JavaScript code into Browser supported JavaScript code, all

visited nodes are replaced with the corresponding ES5 nodes and code transforma-

19

tion is managed without altering the flow of the program. At the end of the process,

resulting AST represent desired form with respect to the plugin.

The final stage is performed using Babel generate package. Transformed AST

is evaluated once more from top to down and corresponding JavaScript code is gener-

ated. Output of this stage is a transformed code and a source map which shows one

by one mapping of input code and output code lines. Source maps are mostly used

in development purposes such as debugging.

The main transformation of the source code is performed by manipulating the

AST by adding, removing and altering its nodes. Nodes in AST are visited Depth-

First. These manipulations are provided as plugin files. All nodes of AST are tra-

versed by the plugin and necessary functions are executed in every node based on the

types. This is handled by implementing a visitor pattern.

Visitor pattern allows to define a new operation without changing the classes

of element on which it operates[14]. During the AST traversal, custom functions are

executed whenever specific nodes are encountered. This function can be implemented

either as soon as the node is reached which is called enter() method or before leaving

the node exit() method. This methods provide flexibility while executing children

nodes.

Object representation between nodes is known as path [7]. Path represents the

position of node within tree and provides several methods in order to manipulate

nodes.

2.3 Symbolic Execution

Symbolic execution is a program analysis technique where the program is ex-

ecuted with provided symbols representing the numerical values of variables used in

the program [15]. It has been introduced in mid-1970s for the purpose of creating a

20

tool for software testing. Recently, due to tremendous developments in the computer

hardware, it has become a point of interest [16].

In the concrete execution of programs, the numerical values of the variables are

fixed. For this reason, only a certain flow graph can be followed during execution.

On the other hand, in symbolic execution, multiple control flows can be followed and

executed. This provides a faster and more generalized program execution. Symbolic

execution is performed using a symbolic execution engine which consist of a symbolic

memory store and a model checker [17]. Symbolic memory store holds the symbolic

variables and updated as the assignment occur in the path which is executed. Model

checker is used to check whether there are any violations on the explored path and

constraint solvers are used in the stage.

In the following Listing 2.4, an example JavaScript code which has several if- else

if statements is given. All variables in the test condition of the if-else if statements are

symbolic variables. A symbolic execution engine visits code line by line and creates

a tree representing the execution flow of the code which is called control flow graph

(CFG). During the generation of CFG, all possible paths are considered as there is

no concrete test statements to decide if a path is taken or not. In Fig. 2.11, control

flow graph for the example and procedure of symbolic execution is demonstrated.

Symbolic execution traverses all of the nodes and for each decision point, it produces

path condition by using the logical representations of the symbolic variables. At the

end, constraint solver checks if this path conditions are satisfiable. Based on the

response, unsatisfiable paths are eliminated.

1 var x, y, z; // Symbolic

2 var a = 0; b = 0; c = 0;

3 if (x > z){

4 a = 2;

21

5 }

6 else if (y < x){

7 if (z < 3){

8 b = -2;

9 }

10 c = 4;

11 }

Listing 2.4: An Example JavaScript Code For Symbolic Execution

Figure 2.11: An Example of Symbolic Execution Over Control Flow Graph

2.3.1 Constraint Solvers

Constraint resolution is required in different problems such as program analysis,

type checking and software testing/verification [18]. Common to all these problems, a

solution of a logical expression is searched. Most general version of constraint solving

problem is Boolean satisfiability problem (SAT), where a prepositional logic formula

with boolean inputs is tested to be satisfied with respect to different combinations of

true/false values of its inputs.

22

SAT solvers implements a systematic search in order to provide a solution to

first order logic equations. Formulas are represented in a graph where vertices are

the logical variables called atoms and the edges are the logical operators such as

conjunction, disjunction and negation.

In most of the practical problems, inputs of the constraint formula are not only

restricted to Boolean types. Satisfiability Modulo Theories (SMT) are an expansion of

SAT, where the inputs of the formula can obtain non-binary types such as integers,

real numbers and more complex data structures based on primitive types. SMT

solvers employ an abstraction layer where atoms in the formula are converted into

logical variables. After the problem is represented in SAT form, SAT solver procedures

can be implemented to solve the constraint equations.

In the recent years, attention to the field has increased greatly and many SMT

solvers have been introduced. This is partly due to the international SMT compe-

tition and the workshop, associated with the annual Computer Aided Verification

conference. Novel SMT solvers follow the benchmark and the specifications defined

in the SMT-LIB standard. One of the novel SMT solvers developed by Microsoft

Research is Z3 and it has been used as the symbolic engine for the efforts of this

study.

2.3.2 Microsoft Z3

Z3 is a modern SMT solver which is an active and expressive combination of a

large group of solvers [19]. It is developed by Microsoft Research in 2011 and most

commonly used to check satisfiability of logical formulas. Z3 is often used as a part

of the other tools which performs optimization, sequencing and heuristic search. In

this research, Z3 is a component of partial evaluation and symbolic execution.

23

Z3 has different commands defined in its API that can be executed in the script.

In the following, several command types of Z3 is explained with examples.

• All of commands can be accessed typing (help).

• In order to display a message (echo) command can be used.

• (declare− const) defines constant variable of a given type.

• (declare− fun) defines functions.

• Formulas can be added using (assert) command.

• (check−sat) command checks if formula is satisfiable or not for given variables.

• If it is satisfiable, it produces the constant value for given variable and can be

accessed using (get−model) command. This command produces the model and

explains how the result is created.

In Table 2.1, an example Z3 script with several command types with its corre-

sponding responses are shown. As a result of (echo) command, message inside of the

(echo) will be displayed. In addition, type of variable x is integer and written using

(declare − const) command. Also, function f has integer and boolean variable type

arguments and return type of this function is an integer value. First formula states

that value of x variable should be greater than 10. This is expressed using (assert)

command. In the second formula, function f must return a result smaller than the

20. In the result of (check − sat) command, Z3 deems the formula satisfiable, thus

it can be understood that this formula gives satisfiable result, for at least one value

of the variable x. To access one of the these results, (get−model) command is used

and value of x is produced as 11.

In addition, if the result of (check − sat) command is unsat, this means that

for any value assigned to x, it is not possible to satisfy the constraints represented in

the formula. In this case, (get−model) command can not be used to access the value

24

Table 2.1: Usage of Several Z3 Commands For A Satisfiable Example

Several Z3 Commands Response

(echo "Z3 is an SMT solver...") Z3 is an SMT solver...

(declare-const x Int)

(declare-fun f (Int Bool) Int)

(assert (> x 10))

(assert (< (f x true) 20))

(check-sat) sat

(get-model) (model

(define-fun a () Int 11)

(define-fun f ((x!0 Int)

(x!1 Bool)) Int

(ite (and (= x!0 11)

(= x!1 true)) 0 0))

)

of the variable as can be seen in Table 2.2. It only displays the response as unsat

since no model can be generated for an unsatisfiable formula.

Table 2.2: Usage of Several Z3 Commands For An Unsatisfiable Z3 Examples

Several Z3 Commands Response

(declare-const x Int)

(declare-const y Int)

(assert (= (+ (* 3 x) y) 10))

(assert (= (+ (* 2 x) (* 2 y)) 21))

(check-sat) unsat

25

Another point is that if Z3 can not determine whether formula is satisfiable or

unsatisfiable, it returns unknown as a result.

In some applications, same declarations or formulas may be required to be used

again. For this kind of situations, Z3 provides a stack type interface in order to

store such declarations and formulas. The command push when applied, takes all the

commands defined previously and pushes them into the stack and use them in the rest

of the program. Similarly, pop command works diametrically to the push command.

It removes all of the declarations or formulas until pop command is defined. These

commands can be beneficial for saving time and effort.

In the following example 2.3, type of x and y variables is integer and using

(push) command they are stored into the stack. These variables are applied to the

formulas inside of the (assert) commands and result is produced as satisfiable. Using

(pop) command, all of the expressions between push and pop commands are removed.

A new (push) command creates a new scope for the new (assert) expressions. At

this time, unsatisfiable result is produced. Also, new variables can be defined in any

place in the code. In this example 2.3, p is defined as Boolean type and using (pop)

command, it is definition can be removed and after this process p can not be used

without defining it again.

Python, C# and other a few languages have native bindings for Z3 while

JavaScript has not. Several workarounds are made in order to combine Z3 features

into JavaScript language. One attempt in [20], creates a framework to import Z3 as

a Javascript library and implement SMT2 structures by native JavaScript functions.

Another proposed solution in [21] first converts expressions into SMT2 language and

uses childProcess feature of Node.js in order to create parallel threads which can

execute Z3 within the application.

26

Table 2.3: An Example For Usage of (push) and (pop) Commands in Z3

Several Z3 Commands Response

(declare-const x Int)

(declare-const y Int)

(push)

(assert (= (+ x y) 10))

(assert (= (+ x (* 2 y)) 20))

(check-sat) sat

(pop)

(push)

(assert (= (+ (* 3 x) y) 10))

(assert (= (+ (* 2 x) (* 2 y)) 21))

(check-sat) unsat

(declare-const p Bool)

(pop)

(assert p) ERROR: unknown constant p

27

CHAPTER 3

Overview and Design

In this chapter, a unified solution JSSpe is proposed for the partial evaluation

problem using the design principles of partial evaluators and symbolic execution tech-

niques which were described in the previous chapter. In the first section, a simple

partial evaluator for JavaScript language (JSSpe) is designed using Babel plugin and

combined with Microsoft Z3 to overcome the issues which were mentioned previously.

An overview of JSSpe is shown in the Fig. 3.1. At a high level, JSSpe consists of

Babel transpiler to convert the JavaScript code into AST, Microsoft Z3 SMT solver

to decide if abstract branches are satisfiable or not and the wrapper code to provide

interaction between major components.

Figure 3.1: JSSpe Workflow Overview

3.1 Partial Evaluator Design

In this section, the tools introduced in the previous chapters are put in use in or-

der to design a partial evaluator in JavaScript language. Partial evaluator is expected

to specialize JavaScript programs by elimination of dead code branches, updating and

28

tracking constants, concrete and abstract evaluation of if - else statements, folding of

arithmetic and logical expressions, and inlining of function calls.

In the first subsection, the general behavior of partial evaluation is defined

using a custom Babel plugin by using a visitor pattern. In the second subsection,

the class definitions for converting test structures into SMT language expressions

and transferring into Microsoft-Z3 using Child processes in Node.js environment are

explained in detail.

3.1.1 Partial Evaluation Using Babel Plugin

Different methods are implemented in nodes of AST in order to partially eval-

uate a given source code with respect to known concrete and unknown abstract vari-

ables.

3.1.1.1 Function Declaration

A function declaration node has several properties which stores name of the

function and inputs of the function. During partial evaluation, if one of inputs are

known and previously stored in the environment, they are removed from the list of

function inputs. This code is located in the enter() method since it is desired to

remove the known input before it is replaced by its numerical value in children nodes.

1 FunctionDeclaration: {

2 enter(path) {

3 for (var i of path.node.params) {

4 if (env[i.name] != null && env[i.name]. value != null) {

5 var index = path.node.params.indexOf(i);

6 if (index !== -1) {

7 path.node.params.splice(index , 1);

Listing 3.1: Function Declaration

29

3.1.1.2 Variable Declaration

A variable can be declared either as an abstract variable or concrete if it is

initialized during declaration. The visitor checks if the variable declaration node owns

an init property. In this case, a new concrete value is created in the environment and

this concrete value is propagated through out the code until it is modified with an

abstract value. This is to satisfy constant folding and constant propagating features

of a partial evaluator.

1 VariableDeclaration: {

2 exit(path) {

3 for (var i of path.node.declarations) {

4 if (i.init == null) {

5 env[i.id.name] = { value: null };

6 }

7 else if (i.init.type == 'CallExpression ') {

8 env[i.id.name] = { 'value ': null , 'type': "Int" };

9 path.node.declarations.splice(path.node.

declarations.indexOf(i), 1);

10 }

11 else {

12 if (env[i.id.name] != null

13 && env[i.id.name]. value != null)

14 env[i.id.name]. value = i.init.value;

15 else

16 env[i.id.name] = { value: i.init.value };

17 }

18 if (path.node.declarations.length == 0) path.remove ();

19 }

20 path.skip();

21 }

30

22 }

Listing 3.2: Variable Declaration

3.1.1.3 Assignment Expression

Assignment expression is inside of the exit() method because in the beginning it

is desired to evaluate the left hand side of equation. When the evaluation of left hand

side is finished, first it is checked whether the left side of the equation is a numerical

quantity. In this case, if the variable on right hand side is already registered in the

environment its value is updated. Otherwise, a new concrete value is created within

the environment. If left hand side is not a numerical quantity, then this means that it

is an abstract expression. In this case, if right hand side variable is already registered

in the environment, it is removed as it lost its concrete definition. This enables

a healthy implementation of constant propagation. At the end of exit() method,

path.skip() function is called in order to skip this newly generated path and avoid

possible errors.

1 AssignmentExpression: {

2 exit(path) {

3 if (iflvl == 0) {

4 if (path.node.right.type == "NumericLiteral"

5 || path.node.right.type == "BooleanLiteral") {

6 if (env[path.node.left.name] != null) {

7 env[path.node.left.name]. value

8 = path.node.right.value;

9 env[path.node.left.name].type

10 = path.node.right.type;

11 } else {

12 env[path.node.left.name] = {

31

13 value: path.node.right.value

14 };

15 }

16 }

17 else {

18 if (env[path.node.left.name] != null) {

19 delete env[path.node.left.name];

20 }

21 }

22 path.skip();

23 }

24 }

25 }

Listing 3.3: Assignment Expression

3.1.1.4 Logical Expression

In the logical expression node, it is checked whether both operands are concrete

boolean literals, then the path is evaluated and whole logical expression node is

replaced with a boolean literal node.

1 LogicalExpression: {

2 exit(path) {

3 var lval = path.node.left;

4 var rval = path.node.right;

5 var op = path.node.operator;

6 var res;

7 if (lval.type == 'BooleanLiteral '

8 && rval.type == 'BooleanLiteral ') {

9 res = path.evaluate ();

10 path.replaceWith(t.BooleanLiteral(res.value));

32

11 }

12 path.skip();

13 }

14 }

Listing 3.4: Logical Expression

3.1.1.5 Binary Expression

Similar to logical expression node, in the binary expression node, first thing

is checking if both operands are numerical values or identifiers (symbolic variables)

whose concrete values are registered in the environment. In these cases, the path can

be evaluated and whole binary operation can be replaced with a numerical literal or

a boolean literal based on the return type of the operator. However, if only one of

operands is known by its concrete value only this operand is replaced with a numerical

literal while whole path stays as a binary expression.

1 BinaryExpression: {

2 exit(path) {

3 var lval = path.node.left;

4 var rval = path.node.right;

5 var op = path.node.operator;

6 var res;

7 if (lval.type == 'NumericLiteral '

8 && rval.type == 'NumericLiteral ') {

9 res = path.evaluate ();

10 opPath(res , op, path);

11 } else if (lval.type == 'BooleanLiteral '

12 && rval.type == 'BooleanLiteral ') {

13 res = path.evaluate ();

14 if (res.value)

33

15 path.replaceWith(t.BooleanLiteral(true));

16 else

17 path.replaceWith(t.BooleanLiteral(false));

18 } else if (lval.type == 'NumericLiteral '

19 && rval.type == 'Identifier ') {

20 if (env[rval.name] != null && env[rval.name]. value != null)

{

21 rval.value = env[rval.name]. value;

22 path.node.right = t.NumericLiteral(rval.value);

23 res = path.evaluate ();

24 opPath(res , op , path);

25 }

26 } else if (lval.type == 'Identifier '

27 && rval.type == 'NumericLiteral ') {

28 if (env[lval.name] != null && env[lval.name]. value != null)

{

29 lval.value = env[lval.name]. value;

30 path.node.left = t.NumericLiteral(lval.value);

31 res = path.evaluate ();

32 opPath(res , op , path);

33 }

34 }

35 else if (lval.type == 'Identifier '

36 && rval.type == 'Identifier ') {

37 if (env[lval.name] != null && env[lval.name]. value != null

38 && env[rval.name] != null

39 && env[rval.name].value != null) {

40 lval.value = env[lval.name]. value;

41 rval.value = env[rval.name]. value;

42 path.node.right = t.NumericLiteral(rval.value);

43 path.node.left = t.NumericLiteral(lval.value);

34

44 res = path.evaluate ();

45 opPath(res , op, path);

46 } else if (env[lval.name] != null &&

47 env[lval.name]. value != null

48 && env[rval.name] == null) {

49 path.node.left

50 = t.NumericLiteral(env[lval.name].value);

51 } else if (env[lval.name] == null && env[rval.name] != null

52 && env[rval.name]. value != null) {

53 path.node.right

54 = t.NumericLiteral(env[rval.name].value);

55 }

56 else if (env[lval.name] != null && env[lval.name]. value ==

null

57 && env[rval.name] != null

58 && env[rval.name]. value != null) {

59 path.node.right = t.NumericLiteral(env[rval.name].

value);

60 }

61 else if (env[lval.name] != null

62 && env[lval.name]. value != null

63 && env[rval.name] != null

64 && env[rval.name]. value == null) {

65 path.node.left = t.NumericLiteral(env[lval.name].

value);

66 }

67 }

68 path.skip();

69 }

Listing 3.5: Binary Expression

35

3.1.1.6 If Statement

An if statement node has three properties: test, consequent, alternate. If test

passes, consequent branch is taken and alternate branch is taken in the contrary.

Expressions in the consequent and alternate branches modify the environment in

different ways. For this reason, in order to partially evaluate an if statement, it is

very important to evaluate the test property. In this implementation, two cases for

the test are considered. First, test is assumed to be composed of concrete variables.

In the second part, test is considered to be an abstract expression which requires

symbolic execution.

1 IfStatement: {

2 enter(path) {

3 iflvl ++;

4 },

5 exit(path) {

6 if (path.node.test.type == "BooleanLiteral") {

7 if (path.node.test.value == true) {

8 if (path.node.consequent.type == "BlockStatement")

{

9 path.replaceWithMultiple(path.node.consequent.

body);

10 }

11 else {

12 path.replaceWith(path.node.consequent);

13 }

14 }

15 else {

16 if (path.node.alternate != null) {

17 if (path.node.alternate.type=="BlockStatement")

{

36

18 path.replaceWithMultiple(path.node.alternate.

body);

19 }

20 else {

21 path.replaceWith(path.node.alternate);

22 }

23 } else

24 path.remove ();

25 }

26 } else {

27 var tmpCode = babel.transformFromAst(t.file(t.program ([

t.expressionStatement(path.node.test)])));

28 var check_SAT = symExec.solvePathConstraint(tmpCode.

code);

29 if (check_SAT.err) {

30 var errorMessage = (check_SAT.err instanceof Error)

31 ? check_SAT.err.message

32 : 'Uknown error';

33 symExec.response.errors.push(errorMessage);

34 console.log('error ' + check_SAT.err.message);

35 }

36 else {

37 if (! check_SAT.res.isSAT) { // test unsatisfied ,

38 console.log('test unsatisfied ');

39 if (path.node.alternate != null) {

40 if (path.node.alternate.type == "

BlockStatement") {

41 path.replaceWithMultiple(path.node.

alternate.body);

42 }

43 else {

37

44 path.replaceWith(path.node.alternate);

45 }

46 } else

47 path.remove ();

48 }

49 else {

50 console.log('test satisfied ');

51 }

52 }

53 }

54 iflvl --;

55 }

56 }

Listing 3.6: If Statement

3.1.1.6.1 Concrete Branch Decision

Before path is executed, environment is populated with concrete variables through

the constant propagation. Both consequent and alternate branches include expres-

sions such as assignment, binary operation, function calls, etc. and if no special treat-

ment is made, visitor implements these expressions without considering which branch

is taken. In the enter() method of if statement visitor has not executed children

properties; consequent and alternate. Therefore, the environment is not modified.

However, at this point, a decision can not be made, since test is also a children node

and it has not been evaluated yet. In the exit() method, the test is evaluated and it

is possible to make a decision. However, both consequent and alternate branches are

also evaluated and environment has been altered.

One approach is implementing both enter() and exit() methods in the following

way: In the enter() method, a flag is raised to avoid execution of assignment oper-

38

ations. This way when children nodes are evaluated, environment is not modified,

only test is executed. In the exit() method, knowledge of which branch is going to

be taken is available as well as the environment is still untouched. At this point, the

whole if statement node can be replaced with either consequent or alternate branches

depending on the result of test. In addition, path is removed completely if no alter-

nate is provided and test fails. Consequent and alternate branches may have either

single expressions or multiple expressions located in block statement which provides

curly braces. For this reason, during the path replacement, this situation is controlled

either using path.replaceWith() or path.replaceWithMultiple() methods. Here, an-

other point to consider is that it is necessary to revisit this new path in order to

execute expressions of selected branch and update the environment accordingly. This

can be done by removing the path.skip() method which is used in the other exit()

methods.

3.1.1.6.2 Abstract Branch Decision

In this case, same treatment of the concrete decision case is applied in the

enter() method. In the exit() method, if the test property has not reduced into a

boolean since it includes abstract variables, a direct decision can not be made on which

branch to take. In this case, both consequent and alternate branches are inserted back

to the AST. Using path.skip() function, it can be avoided to enter the path again

and cause the environment to be altered. However, it is also necessary to check all

the assignment expressions within both branches and if any variables registered in

the environment are used, they need to be removed from the environment as they no

longer guaranteed to hold a concrete value.

Although it can not be decided which branch to take by above procedure, in

some cases if test expression is unsatisfiable, it can be removed from the AST. In

39

order to understand whether an abstract expression is satisfiable or not, an SMT

solver such as Microsoft-Z3 can be used. For this purpose, in the cases where the test

statement is abstract, statement is passed to a symbolic execution function which

is detailed in Section 3.1.1.7. According to the result of the symbolic execution, if

the test statement is not satisfiable under any circumstances, then the consequent

statement is removed from the AST, and the alternate is executed. However, if the

symbolic execution returns satisfiable result, no changes are made on the AST since

branch is feasible based on the concrete values it will take during run time.

3.1.1.7 Calling Microsoft Z3 From JavaScript

In Section 2.3, Microsoft Z3 and SMT language was explained in detail and

several examples were shown. In addition, Z3 API was introduced and usage of Z3

in several languages were described. In this section, conversion process of abstract

if-else test conditions into Z3 compatible SMT blocks and general communication

architecture between the partial evaluator and Z3 processes are described.

As described in the previous section, partial evaluator program implements

the visitor pattern within the Babel plugin and based on the visited node type a

different method is executed. During the execution, if partial evaluator decides a

branch condition is abstract, it requires Microsoft Z3 to resolve this condition before

evaluating the node. All communication, processing and resolving tasks are performed

by the methods defined in the SymbolicExecution class. This class is partly inspired

from a JavaScript symbolic execution engine called Leena [21]. SymbolicExecution

class consists of a constructor which creates a new symbolic execution environment

which requires the valid path of Z3 on the computer and location for a directory

to store the SMT files. Main method responsible of solving the constraint is called

40

solvePathConstraints() and its argument is the text based representation of the

expression which is desired to be resolved in the Z3.

Since in the partial evaluator program, all analysis of the code is performed

using the AST representation rather than the textual representation, whenever a

condition check is needed, condition cannot be passed to solvePathConstraints()

method directly. For this reason, before calling the method, the sub-AST for the

condition is embedded into a program AST. This way, a new AST which only contains

the test condition is created. This AST is converted into a program source code using

Babel’s generate function and passed into the symbolic execution method for analysis.

After the test condition is converted into a separate program text and handed

over the symbolic execution method, it goes through a parsing process similar to the

Babel parse stage using the methods in the ParserExpression class. This parsing

process divides the program into its subexpressions and then replaces them with the

corresponding SMT language expressions. Following the completion of parsing the

program text, some extra lines are inserted in order to display the model generated by

Z3 and resulting SMT code is saved to the temporary directory with .smt2 extension.

Created SMT file can be directly run with Z3 in a console application and com-

puted response can be obtained. Similarly, during the execution of partial evaluator,

a new process can be created and the SMT file can be passed into this process. This is

performed via the ChildProcess feature of Node.js environment. The run() method

of the symbolic execution class creates a new child process and spawns the execution

into this new process. Node.js allows to perform running this process both asyn-

chronously and synchronously. For the implementation in this study, a synchronous

implementation is preferred in order to maintain compatibility with the other por-

tions of the code. Z3 executes SMT code and determines if the provided condition is

satisfiable or unsatisfiable. It also creates an example model if it decides the condition

41

is satisfiable. After the execution of Z3 is completed a response message is created

based on the findings of the SMT computation. This procedure is demonstrated in

the Fig. 3.2a, for unsatisfiable, in the Fig. 3.2b, for satisfiable branches.

(a)

(b)

Figure 3.2: Stages for the resolution of path conditions using Z3.

The response obtained from Z3 is converted into a string message and sent back

to the partial evaluator for further processing. A second parsing process is used to

convert this string message into a data structure which carries the information about

the result of the satisfiability and the created model if Z3 found the condition to

be satisfiable. At this point, partial evaluator uses this data structure to view the

satisfiability of the test condition and makes its final decision to either keep or remove

the related branch in the AST.

42

CHAPTER 4

Experiments and Results

In this chapter, first the main objectives of this research effort is described by de-

termining the research questions. Expected results and related hypothesis are defined.

Next, test subjects and test environment which was used in the process of execution

of the experiments are introduced. Finally, each individual test case is presented and

obtained residual code and measured performance metrics are demonstrated.

4.1 Research Questions

To evaluate JSSpe, following research questions are inquired:

(a) Does JSSpe generate a residual program which has faster run time than the

original program or residual program obtained by third party partial evaluators

such as Prepack?

(b) Does the generated residual program have less line of code than the original

program or residual program obtained by third party partial evaluators such as

Prepack?

Therefore, the following three research questions (RQ), expectations (E), and hy-

potheses (H) are investigated:

• RQ1: What is runtime of JSSpe compared to third party partial evaluators?

– E1: Due to its additional overhead to create parallel threads for evaluat-

ing branches in Z3 compared to third party partial evaluators, it is not

expected to have faster run time in all cases.

43

– H1: JSSpe takes longer time than third party partial evaluators when

number of abstract branch expressions are high in the source program.

• RQ2: What is the runtime of residual program generated by JSSpe compared

to third party partial evaluators and original program?

– E2: Assuming the original program has expressions which have the po-

tential to be partially evaluated, it is expected that residual program gen-

erated by JSSpe executes faster than the original program as well as the

residual program generated by third party partial evaluators. Former is

due to evaluation of concrete expressions and modifications (simplify or

remove) of symbolic expressions. Latter, depends on the structure of the

original program and the amount of symbolic branches which can be re-

moved by Z3.

– H2: For a program which has potential to be partially evaluated and con-

tains infeasible branches, the runtime of residual program generated by

JSSpe is faster than the third party partial evaluators and original pro-

gram.

• RQ3: What is the code size of residual program generated by JSSpe compared

to the residual program generated by third party partial evaluators and original

program?

– E3: Assuming the original program has expressions which have the po-

tential to be partially evaluated, it is expected that residual program gen-

erated by JSSpe contains fewer lines of code than the residual program

generated by third party partial evaluators and original program.

– H3: For a program which has potential to be partially evaluated and con-

tains infeasible branches, residual program generated by JSSpe has fewer

lines of code than the third party partial evaluators and original program.

44

4.2 Experimental Setup

Several test subjects are determined in order to adequately answer the research

questions put forward by this study. Test subjects are in the form of JavaScript source

code which includes different types of expressions. Test cases are passed to both JSSpe

and Facebook Prepack version 0.2.19-alpha.0 which is a third party partial evaluator.

Based on the obtained residual codes, performances are compared.

For the test runs, JavaScript code is executed in Node.js version 9.2.0 environ-

ment on a 6 GB RAM Virtual Machine with Ubuntu 16.04 LTS operating system.

Host platform for the Virtual Machine is a Laptop computer with 2.20 GHZ 64 Bit In-

tel i5-5200 processor, 12 GB RAM and Windows 10 operating system. Measurement

of the runtimes are performed using built-in time function in Unix. Both Prepack

and JSSpe are executed for 100 times and averaged for each sample cases and using

chrt mechanism priority of the task is raised to near real time. For the original and

residual code runtimes, we used Benchmark.js [22] which is a statistical benchmarking

tool for JavaScript. Also, for line of code count, jsmeter [23] is used which counts the

statements in the code rather than the line numbers which can be misleading due to

different formattings.

4.3 Micro Benchmark: 7 Sample Programs

In this section, several experiment code snippets are generated in order to

demonstrate the capabilities of the JSSpe and compare its results with Prepack.

These programs include both concrete and abstract statements which partial evalua-

tors either calculate the numerical values or leave as symbolic expressions. Abstract

variables are created using Date.now() statement for both partial evaluators. In fol-

lowing subsections results of the experiment cases are shown and discussed.

45

4.3.1 Concrete Value To Abstract Value

Most of the programs uses several constant parameters and configuration vari-

ables. Partial evaluator is expected to use the concrete values of this constants while

evaluating the expressions in the program body. For this reason, it is highly impor-

tant for a partial evaluator to deal with constant variables in a correct and careful

manner. Some variables might have constant values in the beginning of the program.

However, they can be subjected to operations which converts them into abstract vari-

ables. A partial evaluator must be careful to this sort of conversions and update the

environment accordingly.

In this experiment, in source code of Listing 4.1, initially, (t) and (rx) are

concrete whose values are known and their values are 3, 4, respectively, and variable

(q) is abstract whose value is unknown. In Listing 4.2, residual code of Prepack is

shown, Prepack computes similar residual code with a different format. In JSSpe,

after some binary operations, (t) and (rx) become abstract variables and preserve

their abstract values, shown in the Listing 4.3.

1 var k = Date.now();

2 function foo(k){

3 var t = 3, rx = 4;

4 rx = rx * k;

5 t = 2 + rx;

6 return t;

7 }

8 var t = foo(k);

Listing 4.1: Concrete to Abstract Value (Sample 1).

1 (function (){

2 var _$1 = this;

3 var _$0 = _$1.Date.now();

46

4 var _2 = _$0 * 4;

5 var _0 = 2 + _2;

6 t = _0;

7 }).call(this);

Listing 4.2: Prepack’s Residual Code Creates New Variables to Transfer Current

Variables Listing 4.1.

1 var k = Date.now();

2 function foo(k) {

3 var t = 3, rx = 4;

4 rx = 4 * k;

5 t = 2 + rx;

6 return t;

7 }

8 var t = foo(k);

Listing 4.3: JSSpe’s Residual Code for Listing 4.1.

4.3.2 Concrete Evaluation of If-Else If Statements

In this experiment, in source code of Listing 4.4, our approach is to test con-

crete values within if-else if statement. Initially, (t) and (rx) variables have values

6 and 2, respectively. Code faces with an if statement and test condition will eval-

uate according to concrete variable (t). However, the first test condition is already

unsatisfiable thus, next test condition will execute. Although second test condition is

satisfiable, value of (t) does not satisfy the condition. Since either of the if branches

were not taken, they will not affect the environment. Therefore, the last line of code

will participate to the execution and produce the residual code. Output of Prepack

is shown in Listing 4.5 and output of JSSpe is shown in Listing 4.6 and these outputs

are similar because of the concrete evaluation.

47

1 var a = Date.now();

2 function bar(a) {

3 var p, t = 6, rx = 2;

4 if (t < 10 && t > 12)

5 rx = 6;

6 else if (t > 12 && t < 14)

7 rx = 8;

8 p = a * rx;

9 return p;

10 }

11 var p = bar(a);

Listing 4.4: Nested If Statement (Sample 2).

1 (function () {

2 var _$1 = this;

3 var _$0 = _$1.Date.now();

4 var _0 = _$0 * 2;

5 p = _0;

6 }).call(this);

Listing 4.5: Prepack’s Residual Code for Listing 4.4.

1 var a = Date.now();

2 function bar(a) {

3 var p,

4 t = 6,

5 rx = 2;

6 p = a * 2;

7 return p;

8 }

9 var p = bar(a);

Listing 4.6: JSSpe’s Residual Code for Listing 4.4.

48

4.3.3 Abstract Evaluation of If - Else Statements

One of the main contributions of this study is augmenting a partial evaluator

with symbolic execution in order to decide when abstract statements are present. If

statement is an interesting test case in order to assess the performance of JSSpe.

In Listing 4.7, a simple JavaScript code is demonstrated. Code encounters with

an if statement and in order to decide which branch to take, the value of variable

(x) should be known. However, (x) is an abstract value and for this reason, partial

evaluator can not execute the test condition. Output of Prepack in Listing 4.9 and

output of JSSpe in Listing 4.10 produce similar results. However, Prepack creates

new variables to transfer current variables and it converts if statement to ternary

operation by creating new variables. In JSSpe, when this kind of a situation arises

the test statement is passed to the Z3 using an interface to evaluate the branches. The

interface code transforms test statement into SMT language as shown in Listing 4.8

and transfers to Z3. In this experiment, test condition is satisfiable thus, during

execution of partial evaluator our source code will be kept as it is.

1 var x = Date.now();

2 function bar(x) {

3 var a;

4 if (x > 0 && x < 2) a = 2; else a = 5;

5 return a;

6 }

7 var a = bar(x);

Listing 4.7: Feasible Abstract If-Else Statement (Sample 3).

1 (declare -const x Int)

2 (assert (and (> x 0) (< x 2)))

3 (check -sat)

49

4 (get -value (x))

Listing 4.8: Z3 Representation of If-Else Statement

1 (function () {

2 var _$1 = this;

3 var _$0 = _$1.Date.now();

4 var _2 = _$0 > 0;

5 var _5 = _$0 < 2;

6 var _1 = _2 && _5;

7 var _0 = _1 ? 2 : 5;

8 a = _0;

9 }).call(this);

Listing 4.9: Prepack’s Residual Code for Listing 4.7.

1 var x = Date.now();

2 function bar(x) {

3 var a;

4 if (x > 0 && x < 2) a = 2;

5 else a = 5;

6 return a;

7 }

8 var a = bar(x);

Listing 4.10: JSSpe’s Residual Code for Listing 4.7.

Unlike Listing 4.7, in the Listing 4.11, test condition is unsatisfiable and evaluat-

ing this branch should be avoided because it will be unnecessary and time-consuming.

Prepack produces the result in Listing 4.12 which does not remove unsatisfiable state-

ment and it produces larger code size. JSSpe removes unsatisfiable branch and takes

the alternate branch to produce the residual code in Listing 4.13.

50

In the case our proposed solution is not implemented, partial evaluator can not

make a judgment on removing the infeasible if - else statement. The resulting residual

code would be the same with the input code in Listing 4.11.

1 var x = Date.now();

2 function bar (x){

3 var a;

4 if (x<0 && x>2)

5 a=2;

6 else if (x>0)

7 a=3;

8 return a;

9 }

10 var a = bar(x);

Listing 4.11: An Unfeasible Abstract If-Else Statement Case (Sample 4).

1 (function () {

2 var _$1 = this;

3 var _$0 = _$1.Date.now();

4 var _2 = _$0 < 0;

5 var _5 = _$0 > 2;

6 var _1 = _2 && _5;

7 var _9 = _$0 > 0;

8 var _8 = _9 ? 3 : void 0;

9 var _0 = _1 ? 2 : _8;

10 a = _0;

11 }).call(this);

Listing 4.12: Prepack’s Residual Code Does Not Remove Unsatisfiable Statement

in Listing 4.11.

1 var x = Date.now();

2 function bar(x) {

51

3 var a;

4 if (x > 0) a = 3;

5 return a;

6 }

7 var a = bar(x);

Listing 4.13: JSSpe’s Residual Code for Listing 4.11.

4.3.4 Updating Constant Variables

In a program, there may be several branches and the same constant variables can

be modified in different ways in each of these branches. If the partial evaluator can be

certain of which branch is going to be taken from concrete evaluation then the values of

constant variables are updated in the environment based on the assignment operations

in the branch. Source code is in the Listing 4.14. Prepack creates result in Listing 4.15

which does not remove unsatisfiable branch and evaluate the constant variables. On

the other hand, JSSpe produces Listing 4.16 which removes unsatisfiable branch and

takes care of constant variables.

1 var z = Date.now();

2 var b = Date.now();

3 function foo (z, b){

4 var x = 5, a = 9;

5 if (z>2 && z<0){ b = 5 - a; }

6 else if (x>=5) { a = 2; }

7 else { a = a+2; b = b-1;}

8 a = a - 6;

9 return a;

10 }

11 var a = foo(z, b);

Listing 4.14: Updating Constant Variables (Sample 5).

52

1 (function () {

2 var _$2 = this;

3 var _$0 = _$2.Date.now();

4 var _3 = _$0 > 2;

5 var _6 = _$0 < 0;

6 var _2 = _3 && _6;

7 var _1 = _2 ? 9 : 2;

8 var _0 = _1 - 6;

9 a = _0;

10 }).call(this);

Listing 4.15: Prepack’s Residual Code for Listing 4.14.

1 a = -4;

Listing 4.16: JSSpe’s Residual Code for Listing 4.14.

4.3.5 Folding Binary Operations

Partial evaluation is required to perform several binary operations and retrieve

their numerical results if it is possible. It replaces this calculated values with the

operation statements and as a result, decisions can be made.

In Listing 4.17, value of (t) is known in the environment and inside of test con-

dition binary comparison operation is performed by first evaluating numerical value

of the right side and then evaluating the less than operation. As a result, if statement

is removed from the residual code and only its consequent branch is executed which

is also a large binary operation. This binary operation is also numerically evaluated

to calculate a single (result) value as can be seen in Listing 4.18 and in Listing 4.19.

1 var k = Date.now();

2 function bar(k) {

3 var result , t = 2;

53

4 if (t < 1 + 5 * 3) {

5 result = 4 + 5 + 6 * 4 * 5 + 5 + 5 / k;

6 }

7 return result;

8 }

9 var result = bar(k);

Listing 4.17: Folding Binary Operations (Sample 6).

1 (function () {

2 var _$1 = this;

3 var _$0 = _$1.Date.now();

4 var _2 = 5 / _$0;

5 var _0 = 134 + _2;

6 result = _0;

7 }).call(this);

Listing 4.18: Prepack’s Residual Code for Listing 4.17.

1 var k = Date.now();

2 function bar(k) {

3 var result , t = 2;

4 result = 134 + 5 / k;

5 return result;

6 }

7 var result = bar(k);

Listing 4.19: JSSpe’s Residual Code for Listing 4.17.

4.3.6 Abstract While Loops

When the program has an abstract while loop, partial evaluator can not know

how many times the loop will be iterated. However, after the while loop ends, it is

known that the variables in the test condition are subjected to some constraints even

54

though their actual values are abstract. These constraints can be used to identify

if there are any unsatisfiable code structure in the remaining part of the program.

Listing 4.20 shows such a condition where the variable a is abstract, whereas it is

known to satisfy a >= 10 after the while loop ends. Therefore, all code structures

using a should also satisfy this constraint and should be removed if not. Currently,

Prepack does not support this type of an operation as Listing 4.21 shows the respective

error message. On the other hand, JSSpe tracks newly created constraints over the

abstract variables and using Z3 decides either to remove or keep the code fragments

based on their satisfiability conditions as can be seen in Listing 4.22.

1 var a = foo(Date.now());

2 function foo (a) {

3 var x = 0;

4 while (a < 10){

5 a += 1;

6 x +=1;

7 }

8 if (a < 5){

9 var y =2;

10 }

11 }

Listing 4.20: Abstract While Loops (Sample 7).

1 This operation is not yet supported on abstract value.

Listing 4.21: Prepack’s Residual Code for Listing 4.20.

1 var a = foo(Date.now());

2 function foo(a) {

3 var x = 0;

4 while (a < 10) {

5 a += 1;

55

6 x += 1;

7 }

8 }

Listing 4.22: JSSpe’s Residual Code for Listing 4.20.

4.4 Evaluation

In this section, research questions are validated based on the results of the

experiments. Experiments are performed using the six test cases detailed previously.

For all six test cases JSSpe and Prepack are executed in order to partially evaluate

the original source codes. Next, the generated residual codes for both JSSpe and

Prepack are run individually along with the original source codes. Runtimes of both

partial evaluation procedures and the execution of residual programs are measured

and experimental data are recorded. Lastly, line of codes in the residual programs

and the original program are counted to be compared.

4.4.1 RQ1: Performance of JSSpe and Prepack

Experiment results show that partial evaluation procedure takes around 1160

ms for Prepack and 660 ms for JSSpe. Although this result states that JSSpe has

better tool runtime performance, unlike JSSpe, Prepack performs partial evaluation

in multiple stages and covers additional evaluation steps. Because of this, comparing

JSSpe and Prepack performance solely based on runtimes is not viable. Hypothesis

drawn in RQ1 states JSSpe is expected to perform worse based on the fact that

creating parallel threads to Microsoft Z3 would lead longer execution times. It is

observed that JSSpe takes slightly longer runtimes for the cases which communicate

Z3 and the cases that do not.

56

4.4.2 RQ2: Performance of Residual code

Main performance benefit expected from the partially evaluated code is to run

faster since most of the branches are removed. In Sample 1, constant value is propa-

gated through the code. This is expected to lower the number of computations during

runtime. Both Prepack and JSSpe show performance benefit. In Sample 2 and 3,

both Prepack and JSSpe simplifies the original code.As a result, their runtimes are

lower than the original program. In Sample 4, since the if-else statement is feasible,

residual code is expected to be unchanged during partial evaluation. Prepack changes

the layout of the code to the ternary operations while JSSpe keeps as it is. For this

reason, they have similar runtimes. Sample 5 shows benefit of JSSpe as it includes

infeasible branches. In Sample 5, Prepack does not remove infeasible branches in

the residual code. On the other hand, JSSpe removes infeasible branches and pro-

duce shorter residual code. Runtime results show advantage of JSSpe. Sample 6 also

demonstrates one of the contributions of JSSpe. Original code has infeasible branches

and we want to update value of our variable. In the residual code of Prepack, infea-

sible branch is not able to be removed and residual code is same as the original code

with small layout changes. JSSpe removes infeasible branches and creates a residual

code which consists of a single line expression. Therefore, Prepack and original pro-

gram have slower runtime than the JSSpe. Data of these experiments are displayed

on Table 4.1.

4.4.3 RQ3: Comparison of code sizes

Partial evaluator is expected to reduce the size of the original program if there

are lines of code which can be concretely evaluated or can be removed as they are

infeasible. In cases such as Sample 1 and 4 there are no statements which can result

in code removal. Prepack manages to reduce the code size by changing the layout of

57

the code while for JSSpe residual code size stays the same. In Sample 2 and 3 both

Prepack and JSSpe shortens the original program expressions. In Sample 5, original

code includes an infeasible branch. Residual code of Prepack stays same while JSSpe

removes the branch and reduces the code size. In Sample 6, once again, an infeasible

branch exists in the original code. Although Prepack can provide some code size

reduction by changing layout of the code, JSSpe is able to remove the branch and

converts the program into a single line expression. Comparison of code sizes is shown

in the Table 4.1.

Table 4.1: Results on micro-benchmark samples: Both JSSpe itself and JSSpe-
generated programs had a lower runtime than with Prepack (PP).

Tool [ms] Residual [ns] Residual [LOC]
PP JSSpe Orig. PP JSSpe Orig. PP JSSpe

1 1160 607 1.51 1.43 1.46 9 6 9
2 1114 652 1.55 1.34 1.30 14 5 8
3 1263 644 1.54 1.41 1.44 9 6 7
4 1213 670 1.65 1.60 1.63 9 8 9
5 1147 842 1.68 1.54 1.51 11 11 8
6 1190 721 1.56 1.54 1.46 17 9 1
7 1103 670 1.71 n/a 1.37 10 n/a 7

58

CHAPTER 5

Related Work

One of the main objectives of this work is to use partial evaluation in order to

increase the performance of JavaScript programs. Several applications used partial

evaluation as a tool to improve performance such as speeding up numerical computa-

tions [24, 25], decreasing the complexity of rank aggregation problem [26], speeding

up execution of GPU compilation [27], removing object allocations and runtime type

checks in dynamic languages [28] and improving compilation time and code quality

for an embedded instruction set simulator [29].

In recent years, there have been many studies on the symbolic execution of

JavaScript programs. Most of these studies aims to find and correct the security

vulnerabilities and execution of automatic test cases. One of the earliest of these

studies developed a symbolic execution based tool: Kudzu in order to find the vul-

nerabilities via exploring the execution space of JavaScript programs [30]. Another

tool Jalangi provides implementation of heavy-weight dynamic analyses using sym-

bolic execution [31]. It performs a simple taint analysis by implementing concolic

testing, and analyzes to track origins of nulls and undefined variables to detect type

inconsistencies. A more recent tool SymJS provides a symbolic execution engine for

JavaScript, and an automatic event explorer for Web pages [32]. SymJS automatically

discovers Web events and symbolically execute the JavaScript code. It produces high

coverage automatic test cases based on dynamic feedbacks. In addition to symbolic

execution, partial evaluation is proposed as a method for vulnerability detection of

JavaScript programs [33].

59

Although several studies previously considered to combine partial evaluation

and symbolic execution, the main objective in these studies is to improve the perfor-

mance of symbolic execution using partial evaluation. Path explosion problem is a

well known problem in symbolic execution especially when the number of paths to

be executed is high. A compositional approach to symbolic execution that is based

on partial evaluation is proposed to overcome path explosion problem [34]. Symbolic

execution capabilities are increased to check liveness properties such as program ter-

mination using partial evaluation [35]. Performance boost in Java symbolic execution

is demonstrated by introducing a partial evaluator in the design [36]. Same authors

presented a software verification system which formalizes Java programming language

by capturing sequential semantics [37] and proposed a two stages approach to perform

partial evaluation for a Java like language by first symbolically executing the source

program then specializing the residual program using symbolic execution tree [38].

Partial evaluation of JavaScript has been proposed in the literature. An online

partial evaluator is suggested for improving runtime of browser specific JavaScript

code [2]. A more advanced tool aims to shorten JavaScript code size by eliminating in-

efficient code and generating optimized JavaScript code [4].A recent tool Prophecy im-

proves loading time of JavaScript Web applications by precomputing the data on the

server side [39]. Most relevant tool to this study developed by Facebook is Prepack [5].

Prepack performs both concrete and abstract evaluation of JavaScript code in order

to generate better runtime performance for JavaScript programs. Prepack currently

performs abstract interpretation without employing an SMT solver and it is a planned

item for future work to combine it with Z3. JSSpe is inspired from these plans and

targets to assess the performance enhancement as a result of integrating a partial

evaluator with a Microsoft Z3 SMT solver.

60

CHAPTER 6

Future Work

Several features of JSSpe can be improved in order to extend its capabilities and

coverage. These potential improvements can be performed on the partial evaluation

as well as the symbolic execution modules of JSSpe.

As discussed in the previous sections, partial evaluator created for JSSpe aims

to provide a proof of concept tool in order to display the possible performance en-

hancements by combining an SMT solver into a partial evaluator. For this reason,

partial evaluator design is only limited for selected source code constructs existing

in the AST. A possible enhancement is implementing remaining AST nodes such as

for/while loops and recursive function calls in order to cover all program constructs

of JavaScript language.

Symbolic execution module of JSSpe can be improved by optimizing the call

procedure of Microsoft Z3 and conversion of branch test statements into SMT2 lan-

guage. In the current implementation, a branch statement is first extracted from

AST, converted to a string message which later re-converted into AST during SMT2

conversion. Performance of symbolic execution module might be increased by modify-

ing the current code so that AST structures can directly be passed within functions.

In addition, current implementation uses synchronous blocking while starting new

threads. Asynchronous callback functions may perform better since they are one of

the native features of Node.js.

61

CHAPTER 7

Conclusions

Partial evaluation is a program transformation technique which rewrites a pro-

gram by evaluating it with respect to its known variables. Recently, Facebook pro-

posed Prepack: A partial evaluator for JavaScript which will make original program

shorter and faster by performing both concrete and symbolic evaluation (concolic

evaluation). Although it was proposed as a planned improvement, symbolic evalua-

tion engine did not implement an SMT solver. In this work, a JavaScript symbolic

partial evaluator (JSSpe) was designed using Babel plugin and it was connected to

the Microsoft-Z3 SMT solver to investigate its contribution to its performance. Sev-

eral test scenarios were experimented in order to show the performance enhancements

through using an SMT solver in partial evaluator design.

62

REFERENCES

[1] W3Techs, “Usage of javascript for websites,” https://w3techs.com/technologies/

overview/client side language/all, 2018, accessed Jan 2018.

[2] K. Krukow, “Jeene:an automatic partial evaluator for javascript,” http://blog.

higher-order.net/2008/09/14/jeene.html, 2008, accessed Jan 2018.

[3] D. Crockford, JavaScript: The Good Parts. ” O’Reilly Media, Inc.”, 2008.

[4] Google, “Closure compiler,” https://developers.google.com/closure/compiler/,

2015, accessed Jan 2018.

[5] Facebook, “Prepack,” https://prepack.io/, 2017, accessed Jan 2018.

[6] Microsoft, “Z3prover/z3,” https://github.com/Z3Prover/z3, 2013, accessed Jan

2018.

[7] J. Kyle, “Babel plugin handbook,” https://github.com/thejameskyle/

babel-handbook/, 2017, accessed Jan 2018.

[8] E. Visser, “Meta-programming with concrete object syntax,” in GPCE, vol. 2.

Springer, 2002, pp. 299–315.

[9] S. C. Kleene, N. de Bruijn, J. de Groot, and A. C. Zaanen, Introduction to

metamathematics. van Nostrand New York, 1952, vol. 483.

[10] T. Mogensen and P. Sestoft, “Partial evaluation,” Encyclopedia of Computer

Science and Technology, vol. 37, pp. 247–279, 1997.

[11] T. Stuart, “Compilers for free,” http://codon.com/compilers-for-free, 2013, ac-

cessed Jan 2018.

[12] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and

tools. Addison-wesley Reading, 2007, vol. 2.

63

https://w3techs.com/technologies/overview/client_side_language/all
https://w3techs.com/technologies/overview/client_side_language/all
http://blog.higher-order.net/2008/09/14/jeene.html
http://blog.higher-order.net/2008/09/14/jeene.html
https://developers.google.com/closure/compiler/
https://prepack.io/
https://github.com/Z3Prover/z3
https://github.com/thejameskyle/babel-handbook/
https://github.com/thejameskyle/babel-handbook/
http://codon.com/compilers-for-free

[13] D. Prince, “Understanding asts by building your own babel plugin,” https://

www.sitepoint.com/understanding-asts-building-babel-plugin/, 2016, accessed

Jan 2018.

[14] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: Elements

of reusable object-oriented software,” Reading: Addison-Wesley, vol. 49, no. 120,

p. 11, 1995.

[15] J. C. King, “Symbolic execution and program testing,” Commun. ACM,

vol. 19, no. 7, pp. 385–394, July 1976. [Online]. Available: http:

//doi.acm.org/10.1145/360248.360252

[16] I. Erete and A. Orso, “Optimizing constraint solving to better support sym-

bolic execution,” in Software Testing, Verification and Validation Workshops

(ICSTW), 2011 IEEE Fourth International Conference on. IEEE, 2011, pp.

310–315.

[17] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A survey

of symbolic execution techniques,” arXiv preprint arXiv:1610.00502, 2016.

[18] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and

applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, Sept. 2011. [Online].

Available: http://doi.acm.org/10.1145/1995376.1995394

[19] L. de Moura and N. Bjørner, “Z3-a tutorial,” 2011.

[20] B. Loring, “Z3javascript,” https://github.com/ExpoSEJS/z3javascript, 2015,

accessed Feb 2018.

[21] Mmicu, “Leena,” https://github.com/mmicu/leena, 2016, accessed Jan 2018.

[22] M. Bynens and J.-D. Dalton, “Benchmark.js v2.1.2,” https://benchmarkjs.com/,

2010, accessed Mar 2018.

[23] N. Peters, “jsmeter - javascript code metrics,” http://jsmeter.info, 2016, accessed

Mar 2018.

64

https://www.sitepoint.com/understanding-asts-building-babel-plugin/
https://www.sitepoint.com/understanding-asts-building-babel-plugin/
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/1995376.1995394
https://github.com/ExpoSEJS/z3javascript
https://github.com/mmicu/leena
https://benchmarkjs.com/
http://jsmeter.info

[24] A. Berlin, “Partial evaluation applied to numerical computation,” in Proceedings

of the 1990 ACM conference on LISP and functional programming. ACM, 1990,

pp. 139–150.

[25] A. Berlin and D. Weise, “Compiling scientific code using partial evaluation,”

Computer, vol. 23, no. 12, pp. 25–37, 1990.

[26] J. A. Aledo, J. A. Gmez, and A. Rosete, “Partial evaluation in rank aggregation

problems,” Computers & Operations Research, vol. 78, pp. 299 – 304, 2017.

[27] J. Fumero, M. Steuwer, L. Stadler, and C. Dubach, “Just-in-time gpu compila-

tion for interpreted languages with partial evaluation,” 2017.

[28] C. F. Bolz, A. Cuni, M. FijaBkowski, M. Leuschel, S. Pedroni, and A. Rigo,

“Allocation removal by partial evaluation in a tracing jit,” in Proceedings of the

20th ACM SIGPLAN workshop on Partial evaluation and program manipulation.

ACM, 2011, pp. 43–52.

[29] H. Wagstaff, M. Gould, B. Franke, and N. Topham, “Early partial evaluation in

a jit-compiled, retargetable instruction set simulator generated from a high-level

architecture description,” in Design Automation Conference (DAC), 2013 50th

ACM/EDAC/IEEE. IEEE, 2013, pp. 1–6.

[30] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A

symbolic execution framework for javascript,” in Security and Privacy (SP),

2010 IEEE Symposium on. IEEE, 2010, pp. 513–528.

[31] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective

record-replay and dynamic analysis framework for javascript,” in Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering, ser.

ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 488–498. [Online].

Available: http://doi.acm.org/10.1145/2491411.2491447

65

http://doi.acm.org/10.1145/2491411.2491447

[32] G. Li, E. Andreasen, and I. Ghosh, “Symjs: Automatic symbolic testing

of javascript web applications,” in Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser. FSE

2014. New York, NY, USA: ACM, 2014, pp. 449–459. [Online]. Available:

http://doi.acm.org/10.1145/2635868.2635913

[33] O. Tripp, P. Ferrara, and M. Pistoia, “Hybrid security analysis of web

javascript code via dynamic partial evaluation,” in Proceedings of the 2014

International Symposium on Software Testing and Analysis, ser. ISSTA

2014. New York, NY, USA: ACM, 2014, pp. 49–59. [Online]. Available:

http://doi.acm.org/10.1145/2610384.2610385

[34] J. M. Rojas and C. S. Pasareanu, “Compositional symbolic execution through

program specialization,” BYTECODE’13 (ETAPS), 2013.

[35] G. Vidal, “Closed symbolic execution for verifying program termination,” in

Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th International

Working Conference on. IEEE, 2012, pp. 34–43.

[36] R. Bubel, R. Hähnle, and R. Ji, “Interleaving symbolic execution and partial

evaluation,” in Formal Methods for Components and Objects. Springer, 2010,

pp. 125–146.

[37] R. Bubel, R. Hähnle, and R. Ji, “Program specialization via a software ver-

ification tool,” in Proc. 9th International Symposium on Formal Methods for

Components and Objects (FMCO). Springer, Nov. 2010, pp. 80–101.

[38] R. Ji and R. Bubel, “PE-KeY: A partial evaluator for java programs,” in Proc.

9th International Conference on Integrated Formal Methods (IFM). Springer,

June 2012, pp. 283–295.

66

http://doi.acm.org/10.1145/2635868.2635913
http://doi.acm.org/10.1145/2610384.2610385

[39] R. Netravali and J. Mickens, “Prophecy: Accelerating mobile page loads using

final-state write logs,” in Proc. 15th USENIX Symposium on Networked Systems

Design and Implementation (NSDI). USENIX, 2018.

67

BIOGRAPHICAL STATEMENT

Sumeyye Suslu was born in Kayseri, Turkey in 1991. She received her B.Sc.

degree in Computer Science from Gazi University, Turkey, in 2013. Following that,

she started her Master in Program Curriculum in Education in Gazi University and

continuing it. After that, she started her M.Sc program in Software Engineering

major in Computer Science and Engineering department in The University of Texas

at Arlington in 2016. She was also appointed as Graduate Teaching Assistant (UTA)

one semester in UTA. Her research interests are JavaScript, symbolic execution, SMT

solvers, software testing, software measurement and quality.

68

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF LISTINGS
	Introduction and Motivation
	Motivating Example

	Background
	Partial Evaluation
	Representation of Partial Evaluation
	Interpreters and Compilers
	Compilation Using a Partial Evaluator
	Online versus Offline Partial Evaluation

	Generation of Abstract Syntax Tree
	Abstract Syntax Tree
	Babel

	Symbolic Execution
	Constraint Solvers
	Microsoft Z3

	Overview and Design
	Partial Evaluator Design
	Partial Evaluation Using Babel Plugin

	Experiments and Results
	Research Questions
	Experimental Setup
	Micro Benchmark: 7 Sample Programs
	Concrete Value To Abstract Value
	Concrete Evaluation of If-Else If Statements
	Abstract Evaluation of If - Else Statements
	Updating Constant Variables
	Folding Binary Operations
	Abstract While Loops

	Evaluation
	RQ1: Performance of JSSpe and Prepack
	RQ2: Performance of Residual code
	RQ3: Comparison of code sizes

	Related Work
	Future Work
	Conclusions
	REFERENCES
	BIOGRAPHICAL STATEMENT

