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Abstract 

 
FACTORS THAT INFLUENCE STUDENT PERFORMANCE IN PHYSICS 

Michael Alan Greene, Ph.D. 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Ramon E. Lopez 

This study is composed of several projects in the field of physics education 

research. First, Investigations into flipped physics classrooms at the senior and graduate 

level show that students uniformly agree that the active learning techniques (peer 

instruction, group problem solving, etc.) were beneficial to their learning regardless of 

their feelings toward the flipped format of the class. One possible impact of flipping 

graduate-level physics courses is an increase in pass rates on the relevant section of the 

departmental graduate qualifying exam. Next, in the calculus-based introductory physics 

course, a novel statistical methodology called nonlinear casual resource analysis was 

used to construct predictive models of student performance based on widely-accepted 

factors that influence performance in physics courses. The prediction efficiency of the 

model was compared to traditional linear and nonlinear regression models using 

dichotomous forecasting, and results from the two different approaches come to similar 

conclusions. Finally, certain measures of cognitive ability (scientific reasoning, mental 

rotation ability, mathematics proficiency etc.) and affective beliefs were studied 

longitudinally in students enrolled in PHYS 1443 from semester to semester. Some of 

those factors were also studied “vertically” as they were measured in higher level physics 

courses including a graduate course. Trends in the descriptive statistics are reported for 

UTA students as well as comparisons to TCU and Yale University students.  
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Chapter 1  

Introduction to Physics Education Research (PER) 

The field of education has been under reform ever since Joseph Rice went on a 

tour of United States schools in 1893 and documented that students across the nation 

were simply being told what to say and how to say it (Rice 1893). Even today, the belief 

that teaching is an art form, and that the scientific method cannot be made to fit inside of 

the classroom, permeates the minds of people today (Beichner 2000). There has been a 

strong desire to make informed decisions and policies using primary data generated from 

within schools (Halverson 2007). This data-directed drive further supported the need for a 

scientific thought process when conducting education research, and is partly responsible 

for the recognition of a subfield of physics known as Physics Education Research (PER).  

It is unclear when exactly PER as a subfield emerged, but there have been 

formal academic papers published regarding PER since the 1970’s, and regular PER 

conferences since 1997 (Barthelemy 2015). In 1999, the American Physical Society 

released a statement supporting PER as a subfield of physics, calling practitioners to be 

held to the same standards and rigors of research as any other subfield (Research in 

Physics Education, 1999). Beichner describes “basic” PER as a fundamental attempt to 

understand what students are thinking when they are learning physics, and “applied” 

PER when instructors actively modify their teaching methods as a result of the 

information and theories generated by foundational research (Beichner 2000). The 

ultimate goal of PER, like any other subfield of physics, is to develop testable 

hypotheses, implement innovative research methods, and use the results to improve 

existing theories or challenge what is generally accepted. For this reason, PER 

specialists are often found inside of physics departments, and depending on the nature of 

the work, they often collaborate with faculty members of other departments such as the 
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College of Education or the College of Psychology. Graduate students who are 

conducting physics education research at top-tier research institutions will possess the 

quantitative and qualitative skills needed to perform well in scientific and industrial 

careers, just like their peers conducting research in more traditional subfields of physics. 

They will also have training and knowledge in the education field, allowing them to find 

employment at a university where there is strong emphasis on teaching (Beichner 2000).  

Relevant Landmarks in Physics Education  

One of the most influential early members of the PER community was Lillian 

McDermott. The work of Dr. McDermott identified the need to address an issue which 

demonstrated that conceptual misunderstandings of physical topics persisted even after 

formal instruction in physics (McDermott 1984). Over the next several years, a significant 

amount of research in student’s conceptual understanding lead to the development of an 

instrument which was meant to probe a student’s beliefs on physics topics, known as the 

Force Concept Inventory or FCI (Hestenes et al. 1992). The widespread usage of the FCI 

lead to the famous study by Hake (1998) who discovered that classrooms using active 

learning techniques, discussed later in the Active Learning section, lead to greater 

learning gains than their peers in more traditional classrooms.  Since then, other concept 

inventories have been developed to probe understanding of other concepts such as 

electromagnetic theory and thermodynamics. Concept inventories have even been 

developed for other STEM disciplines such as chemistry and biology. An exhaustive list 

of concept inventories as of 2008 can be found in a list compiled by Libarkin (2008).  

In addition to research in student understanding, there has also been a 

substantial amount of work done related to student learning and knowledge. Hammer 

(2000) defined resources as mental images or cognitive storage that needs to be 

activated at the right moment in order to understand some physical process. Work in this 
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area was based on valid psychological theories of constructing knowledge, and has led to 

many researchers and education practitioners to re-evaluate how they approach student 

understanding using a more cognitive framework (Elby 2010). 

Because of the influence of these researchers and educators, the word 

“performance” and “resources” can take on many meanings in the context of PER. 

Performance can refer to how well a student can solve a quantitative problem, how a 

student handles being confronted with a misconception, or how well a student scores on 

a standardized test. Resources could mean what a student is thinking during a problem, 

or what concepts they may need to understand before moving on to a new topic. In this 

research project, I will define performance and resources in a different way which will be 

made explicitly clear in the relevant section.  

Applied Physics Education Research – The Evolution of the Classroom 

The Traditional Classroom 

A picture of a “traditional” classroom might include a hall full of silent students 

seated while taking notes from a distinguished individual who may be considered an 

expert in the subject being taught. The teacher at the front of the room conveys 

information by reading from handwritten notes, writing on a chalkboard, or using some 

multimedia such as electronic text slides with embedded graphics and videos.  This 

teaching method is considered traditional because it has been used since the Middle 

Ages at medieval universities to study all disciplines of the arts including law and 

medicine, and is still being widely used today across national and international 

universities (Rait 2012). 

Although traditional lecturing does have its advantages, such as being able to 

deliver a large amount of information during a short amount of time, this method of 

teaching is being criticized for its inability to cater to students with various learning styles, 
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its assumption that all students are learning at the same pace and keeping up, and the 

lack of assessment of formative student comprehension (Bonwell 1996). Many 

misconceptions can be formed by this method, and those misconceptions often persist 

after completion of the course, and are extremely resistant to traditional instruction 

techniques (McDermott, 2001). Teachers and their schools have been using integrated 

technology to address some of those issues, such as multimedia presentations like 

showing YouTube videos in class embedded in PowerPoint slides with eye-catching 

graphics, but still students are not retaining the presented information. Additionally, 

minority student don’t usually have the background knowledge that many professors 

assume during a lecture, and will not be able to make connections with the “real-world” 

content being presented (Paul 2015).  

Active Learning  

Education practitioners have different interpretations of active learning, but it is 

generally accepted in the education community that active learning is an instructional 

method that involves and engages the student in his or her own learning (Prince 2004). 

Hake (1998) found that using active learning techniques increased student understanding 

of historically difficult physical concepts (measured by the FCI) and increased the 

problem solving ability of the students, compared to traditional instruction techniques. 

Additionally, Freeman et al. (2014) conducted a meta-analysis of 225 studies that 

compared student performance in undergraduate science, technology, engineering, and 

mathematics (STEM) courses using traditional lecturing versus active learning methods. 

Their results show that there was a significant different in examination scores, concept 

inventories, and failure rates. The results are compelling - students who were using 

active learning techniques scored higher on assessments, and were less likely to fail the 

course (Freeman et al. 2014).  
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A physics classroom that is using active learning methods might have students 

who are working in small groups of three or four with each person contributing to the 

solution of a problem, or one student solving a problem from the previous night’s 

homework on the board while his or her peers give feedback and critiques the work. The 

instructor would not be standing at the front delivering information for an hour, but instead 

be asking deep questions and allowing students time to think about the answer, share 

and defend their answers, and let other students discuss their answers. Alternatively, the 

instructor might pose a multiple choice question, and let students perform a think-pair-

share activity where they come up with their own answer, then in small groups discuss 

their answers until the group comes to a consensus. Active learning spans a continuum 

of complexity ranging from the most simple of tasks which would be just allowing time 

during a lecture to pause for reflection and internalization, or as complicated as an inquiry 

lab where students design and implement an experiment (Active Learning Continuum 

2016).  

The Flipped Classroom 

Performing all of the student-centered activities, such as small group discussions 

and independent research projects, would undoubtedly deduct from the amount of time 

teachers would be able to spend lecturing, and thus decrease the amount of material 

presented in a semester. King (1993) urged instructors to consider using class time to 

“construct” knowledge rather than just transmit information. Since then, educators have 

been experimenting with the “flipped” or inverted classroom.  

The flipped classroom takes events that traditionally take place inside the 

classroom and moves outside and into the home, and vice versa (Lage 2000). In general, 

educators will deliver information to the students outside of class time using various 

multimedia methods such as recorded in-class lectures from previous years, homemade 
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video lectures, or electronic whiteboard apps with voiceovers, all of which completely or 

partially replace the in-class lecture. In the classroom, students use a variety of active 

learning techniques to clarify anything from the videos, solve examples or homework 

problems, and discuss the concepts from the videos. Freeman et al. (1998) found that 

there was a significant difference in learning gains when comparing across the size of the 

classrooms; the smaller the class, the greater the benefit of implementing active learning 

techniques. However the classes in most of the studies still reported positive learning 

gains when compared to a traditional lecture (Freeman 2014). This suggests that any 

size class can be flipped, but there may be some differences and adjustments to be 

made in meeting the needs of all students.  

Flipping the classroom draws the attention and curiosity of instructors who want 

their students to truly master the content and perform at their best. Fulton (2012) listed 

several advantages to flipping the classroom: students move and learn at their own pace; 

solving problems in class allows teachers better insight into student difficulties and 

misconceptions; classroom time is used more effectively and creatively; teachers using 

this method see greater interest, engagement, and performance; differentiated 

multisensory instruction is supported by learning theory; and the usage of technology is 

flexible and appropriate for “21st century learning”.  

The flipped classroom is not without its problems however. Selecting a video 

hosting service is often intimidating for instructors who aren’t comfortable with today’s 

fast-changing technology, and many tenured professors do not want to put in the work 

required to create videos when they could just use the slides they’ve perfected over the 

years (Herreid 2013). Technology has made it easier than ever to host your own websites 

where you can uploaded your own videos, and many colleges allot bandwidth and 

storage space to faculty and students to host academic media. Additionally, a growing 
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number of free and paid services make it easy to record your personal electronic device’s 

screen (such as tablets and phones) and allow you to record voiceovers. The flipped 

classroom also asks students to put in time at home watching videos, and since most 

college students don’t do assigned readings, why should instructors expect students to 

watch lecture videos? Detailed more in Chapter 2, our study and other flipped classroom 

studies suggest that when the class is structured in such a way that using the videos are 

an essential component to success in the course, students will do what it takes to be 

successful. In my opinion, I compare the student who doesn’t watch the assigned videos 

to the student who skips class or sleeps during lectures. That type of student is not likely 

to pass the class regardless of the structure of the course, and there will always be 

students who are simply unwilling to put in the necessary work to be successful in the 

course.  

Introduction to Modeling Student Performance  

Traditional Quantitative Methods Used in PER 

When conducting research in more traditional fields of physics such as high-

energy or condensed matter, there are often well defined and universally agreed-upon 

sets of physical properties associated with the entities being studied, and standard 

techniques for measuring them (Ding 2012). In contrast, quantitative investigations in 

PER almost always attempt to measure the non-physical characteristics of human beings 

such as conceptual understanding, scientific reasoning skills, and attitudes and beliefs 

(Ding 2012). Furthermore, the PER community has not yet reached a consensus on the 

definitions of these constructs, and there is no universally accepted tool or methodology 

for measuring them. For this reason, it is commonly understood that most PER studies 

involving quantitative methods will have validity and reliability within the project, but may 

be difficult to reproduce and generalize. Nevertheless, there are still a number of 
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fundamental statistical techniques for making inferences and descriptions of the data 

measured, such as using correlative statistics, single and multiple regressions, and 

hypothesis testing, which are common among all scientific studies, including PER. 

Linear Regression Models  

One specific application of correlational statistics is simple linear regression 

modeling. This powerful and well-studied technique involves identifying a relationship 

between two variables by plotting the independent variable on the x-axis and the 

dependent variable on the y-axis. In general, it can be used to develop a prediction based 

on empirical data, or it can be used to describe how well a linear equation describes the 

variance in the data. When working with data collected from human subjects, it’s 

expected that the variance among the results is high due to the complicated nature of 

human behavior. Simple linear regression models can be quite useful when the sample 

size is large enough to account for this large variation, and has been used extensively in 

scientific research, economic and finance industries, and business applications.  

Nearly every real-world phenomenon depends on several variables at once 

instead of just one. Linear regression can be extended to include multiple variables acting 

simultaneously contributing to the same dependent variable; this analysis is known as 

multiple regression.  

Hypothesis Testing 

When a researcher wants to compare the means or variance of two or more 

distinct but similar data samples, such as the means of final exam scores from students 

are two different universities, the researcher may engage in a statistical methodology 

known as hypothesis testing. Hypothesis testing always includes testing a null hypothesis 

against an alternative hypothesis. In the example of final exam scores, the null 

hypothesis would be “There is no difference between the means of the scores”, and the 
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alternative hypothesis could be “University A has a different mean than University B.” 

Before making this type of inference, the researchers must be careful in choosing a 

significance level which must be evident before concluding which hypothesis to accept or 

reject. In PER, the standard significance level is p ≤ 5% (Ding 2012).  

The primary hypothesis testing statistic used in this study is the Welch’s t-test. 

The t-statistic can be calculated by using the following equation:  

𝑡 =  
𝑋1̅̅ ̅̅ −𝑋2̅̅ ̅̅

√
𝑠1

2

𝑁1
+

𝑠2
2

𝑁2

                                                                ( 1 ) 

Where t is the t-statistic, 𝑋1
̅̅ ̅ is the mean of sample 1, 𝑋2

̅̅ ̅ is the mean of sample 2, 𝑠1 is the 

standard deviation of sample 1, 𝑠2 is the standard deviation of sample 2, and 𝑁 is the 

respective sample size. The t-statistic, in conjunction with the degrees of freedom of the 

combined sample, 𝑑𝑓 (rounded down), can be used to look up a p-value.  
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Where 𝑣1 = 𝑁1 − 1, the degrees of freedom of the respective sample. All t-tests and p-

values reported in this study use the Welch’s test, which is a modification of the student’s 

t-test which is more appropriate when the sample sizes are different and if the sample 

variance is different from the population variance. More information about hypothesis 

testing and Welch’s method can be found in any modern statistic handbook or Welch’s 

original paper (Welch 1947). Furthermore, the null hypothesis for all studies in this report, 

unless otherwise stated, is that there is no difference in the mean values. 

Non Traditional Statistical Methods 

General Systems Performance Theory 

In 1986, professor of electrical engineering and bioengineering Dr. George 

Kondraske founded the Human Performance Institute at The University of Texas at 
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Arlington. In this research group, he and his interdisciplinary team have focused on 

modeling how human beings interact with a task from the perspective of performance 

(Kondraske 2011). In his 30 years of studying how humans interact with a task in specific 

circumstances, such as driving a car or performing a surgery, Dr. Kondraske found that 

no concise body of knowledge exists for a generalized theoretical treatment of system 

performance, and that most performance models are often specific in their applications 

(Kondraske 2011).  

A system is something that comprises many small parts. A complicated system 

has many different parts, but understanding how each part functions individually lessens 

the complexity of the system. Kondraske (2011) points out that human being is a 

complicated and complex system, due to the high unpredictability of human behavior 

emergence. Emergence is the phenomenon where the whole system behaves in a way 

that is different or greater than the sum of the individual parts. Defined by Kondraske 

(2011), performance is what a system is capable of doing, whereas behavior is what the 

system actually does. Performance is a central value of today’s data-driven decisions, 

and is fundamental for human and artificial systems. Despite the importance of modeling 

and predicting performance, most models have been based on specific applications in 

narrow domains, and generalizations have often been of secondary interest to 

researchers in that field (Kondraske 2011).  

Kondraske (1988) developed such a theoretical framework that can model a 

complex system’s performance by using a nonlinear combination of factors that might 

influence the performance of the system. He calls the task at hand the high level task 

(HLT), and the individual factors that influence the overall performance a basic 

performance resource (BPR). The performance prediction methodology uses Nonlinear 

Causal Resource Analysis (NCRA), which combines each BPR in such a way that allows 
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a researcher to ask, “What is the least amount of a given performance resource required 

to support a given degree of higher level task performance?” (Kondraske 2011). This is 

fundamentally different than using traditional correlative statistics to determine 

relationships between BPRs and the HLT.  

To explain NCRA and highlight the special nature of system performance and 

performance variables, consider data of the type in Figure 1. This type of distribution is 

explained by GSPT’s economic resource threshold idea and the logical combination of 

multiple BPRs at play when a system executes a high level task (Kondraske 2011). 

Points in the upper left region are particularly informative. For example, one can have 

excellent visual acuity (one BPR) and not fly a plane well (HLT) if one also has low visual 

information processing speed (a different BPR). The resource demand function (RDF) 

represents the result of a task analysis telling us how much of the BPR is required to 

support a given amount of HLT performance (Kondraske 2011). Note that the RDF is 

derived from data reflecting BPR availability. Thus, the amount required (or demanded) is 

inferred from data representing the amount of resource available. 
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Prediction Efficiency  

When using any predictive model, whether it comes from linear regression or 

GSPT, it’s important to evaluate the efficiency of the model’s predictions, since the value 

of a prediction is measured by how well it helps a decision maker obtain some benefit. 

Two metrics to interpret the prediction efficiency of the model are distance from the actual 

result to the predicted result, and a method used by the meteorological community known 

as dichotomous forecasting. The meteorological community has developed an extensive 

set of tools for measuring the accuracy of predictions, which we adapted for our purposes 

(Stanski 1989). The simplest category of prediction is for events that have a "YES" or 

"NO" outcome, e.g. "this student fails the class" or "this student gets an ‘A’ in physics". 

Figure 1 – Resource Demand Function (lower boundary of data points), representing the minimum 

amount of the BPR required to support a given level of HLT performance (Kondraske 2011). 
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Analysis of such dichotomous predictions begins with a contingency table, shown in 

Table 1, which accounts for the four possible combinations of YES/NO events for 

predictions and observations. 

 Observe YES Observe NO Total 

Predict YES Hit (H) False Alarm (F) PY=H+F 

Predict NO Miss (M) Correct Negative (N) PN=M+N 

Total OY=H+M ON=F+N T=PY+PN=OY+ON 

Table 1 – Contingency Table. 

In Table 1, H is the number of hits, F is the number of false alarms, M is the 

number of misses, and N is the number of correct negatives. A hit represents a correct 

prediction (student X was predicted to get an ‘A’ and that occurred) a false alarm is an 

incorrect prediction (student X was predicted to get an ‘A’ but did not). A miss represents 

an event which did occur which was not predicted, while a correct negative represents a 

NO event occurring with a correct forecast. 

Table 1 can be used to calculate several measures that assess the model’s 

ability to predict correctly, such as Accuracy (A), A=(H+N)/T, which is a simple measure 

of the fraction of the correct predictions. It ranges from 0 to 1 with 1 being a perfect score. 

It is fairly intuitive to use, but the results can be misleading since it is heavily biased by 

the most common situation of correct forecasting of NO events. Model Bias (B)  

B= (H+F)/ (H+M) compares the predicted frequency of YES events to the observed 

frequency of YES events. It ranges from 0 to infinity with 1 being a perfect score. It 

indicates whether the model has a tendency to under forecast (<1) or over forecast (>1) 

events. It provides no measurement of how well these forecasts correspond to the 

observations.  

Probability of detection (POD) POD= H/(H+M) measures the fraction of observed 

YES events that were correctly predicted. It ranges from 0 to 1 with 1 being a perfect 



 

27 

score. POD is good for rare events, but it can be artificially improved with more YES 

predictions to increase hits. It should be used in conjunction with the false alarm ratio 

(FAR) FAR= F/(H+F) which measures the fraction of predicted YES events that did not 

occur. It ranges from 0 to 1 with 0 being a perfect score. There are many additional 

metrics not described here. 

While these metrics for model prediction efficiency were developed for 

meteorology, and have also been used for space weather prediction (Lopez 2007), as 

long as a prediction can be expressed dichotomously to create a contingency table, they 

can be used. In fact it may be possible to “tune” a model to improve a specific kind of 

result. For example, the multiple regression models could be compared to find the best 

balance of variables that provide a large predictive correlational coefficient as well as a 

large adjusted correlational coefficient. But the models could likewise be tuned to 

maximize, for example, the POD and the FAR, thus producing a trustworthy model that 

could make reliable predictions. Similarly, the NCRA model could be adjusted to 

maximize prediction efficiency by modifying RDFs.  
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Chapter 2  

Investigation of flipped classrooms in the upper division and graduate level physics 

courses 

Statement of the Problem and Purpose of Research 

Since the 2000’s, thousands of classrooms, then tens of thousands, have been 

flipped across the nation (Goodwin 2013). Many of the flipped classrooms involve middle 

school and high school, but flipped classrooms have been found to be successful in large 

introductory college courses such as physics and chemistry as well (Deslauriers 2011, 

Flynn 2015). The body of available knowledge diminishes as you progress into higher 

education and graduate school. The purpose of this project was to implement a flipped 

classroom in an upper-level physics course and a graduate-level physics course. This 

project is important because it would represent an application of an existing framework of 

the flipped classroom model to a population of students that have not been widely studied 

under this framework.  

Research Questions 

The flipped classroom was implemented in two upper-level physics courses at 

UTA, advanced mechanics and classical mechanics. Advanced mechanics is traditionally 

taken during an undergraduate physics major’s junior or senior year. Classical mechanics 

is traditionally taken in the first semester of graduate school, and effectively picks up 

where advanced mechanics leaves off. We would like to answer the following questions: 

1. To what extent is the flipped classroom appropriate for upper-level physics 

undergraduate and graduate students? 

2. What impact does the flipped classroom have on graduate student 

performance on the qualifying exam? 
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3. Do advanced undergraduate or graduate students prefer one instructional 

method over another? 

Course Description 

For both the graduate classical mechanics and the undergraduate advanced 

mechanics, the instructor recorded three or four video lectures, 7-8 minute each, in which 

the instructor narrates sections from the current chapter in the textbook while writing on a 

tablet-based whiteboard app. Students watching the videos would hear the narration and 

see the writing as if it was live. These videos were recorded on and uploaded to a 

website that was made specifically for these type of videos called Educreations 

(www.educreations.com). Students will create a free account and log in and view the 

videos before coming to class. Educreations offers view tracking, so the instructor can 

see how many times the videos have been viewed. The instructor of this flipped class 

also required the students to take notes while watching the videos, just as many students 

take notes during a lecture. During the videos, the instructor will ask the viewer to pause 

the video periodically, in order to think about the answer to a conceptual question. For 

example, the instructor can pose a multiple-choice problem, ask the viewer to pause the 

video and think, and then give the answer and explanation shortly after when the viewer 

resumes. This is similar to Peer Instruction (e.g., Mazur, 1997), except that students do 

not have anyone to talk to while thinking about the conceptual question, unless they 

happen to view the lecture with another student. Additionally, the instructor can ask 

students to show steps in deriving expressions that the author of the textbook skips, or 

that the instructor intentionally leaves out of the videos. This allows for immediate 

feedback to the student on comprehension, and some interactivity between the viewer 

and the video at the pace of the viewer.  
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In class, there is an expectation that students will have watched the videos 

before coming to class, so that they have some understanding of the material. Students 

are also expected to have notes written for the videos, as well as an attempt that was 

made on their own to answer any homework problems assigned. The instructor expects 

students to make an attempt at a homework problem, even if they only get “half way”, so 

that they have something to contribute to the group discussion. During class, the 

instructor will divide students into groups of three or four, and have each group discuss 

one of the problems that are to be completed. When the group comes to a consensus of 

what they think is the correct answer, a volunteer from the group will explain it to the 

class. At this time, other groups may offer a different solution or some critique, and 

together will come to the correct answer. The instructor may need to facilitate the 

discussion or intervene if the direction is heading towards a misunderstanding. This 

process is repeated until all homework problems have been solved, and all students have 

communicated their level of understanding.  

At the end of class, students will fill out an index card with their names and any 

question they still have that have not been answered, or write a request for additional 

clarification of a certain concept. These index cards allow the instructor to see what the 

students are still not understanding, and the instructor will incorporate these questions 

into the next session’s recorded lecture videos.  The ability for an instructor to determine 

a student’s understanding is a crucial and elusive element of any educational program 

(Roehl 2013). In traditional courses, many instructors rely on exams given infrequently to 

make this measurement, but in a flipped classroom, the index card and class discussions 

allow an instructor to make these measurements much more frequently. 
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Methodologies 

This project was a case study and used a combination of surveys and 

comparative design methodologies.  

Survey Design  

A survey of 24 Likert-type items was developed to understand a student’s work 

habits and perceptions of a flipped classroom. Students would rank whether they strongly 

agreed, somewhat agreed, felt neutral about, somewhat disagreed, or strongly disagreed 

with a statement. Student responses were converted to a numerical value by equating a 

strongly disagree with a 1, somewhat disagree with a 2, neutral with a 3, somewhat agree 

with a 4, and strongly agree with a 5. This way, the higher the number, the more students 

agree with the statement. Statements were organized in four categories: affective - e.g., 

“I enjoyed this flipped classroom.” participatory - e.g., “I watched every video before 

class.”, cognitive - e.g., “Solving problems in class was helpful for my understanding of 

the topics.”, and procedural - e.g., “While watching the videos, I took notes on paper.” 

Average statement responses were compared to the neutral response, to determine if 

students overall agreed or disagreed with the statement. In other words, the null 

hypothesis is that students have a neutral opinion on particular items, and the alternative 

hypothesis (two-tailed) is that students either agree or disagree overall on those items.  

Comparative Design  

To measure the effects of the flipped classroom with graduate students, we will 

compare pass rates on the UTA qualifying exam from a time period before flipping the 

class and after flipping. Information about the qualifying exam will be discussed later in 

this chapter on page 38. 

To measure the effects of the flipped classroom with upper-level undergraduates, 

the survey asks students about their perceptions of the class and the extent to which the 
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active learning techniques and videos were helpful in their performance in the course and 

in their understanding of the material. Data such as final grades will not be used to make 

inferences of the flipped classrooms because at the time of the study, there was only one 

section of each type of course, and thus no “traditional instruction” grades to compare to.  

Results 

Undergraduate Population 

The results from the survey given to the undergraduate students is shown below 

in Table 2. A few important results can be concluded from the results of the survey: 

 Students watched nearly every video that was required 

 Students set specific time for them to watch the videos, usually on the weekdays 

 When there were multiple videos posted, most students would watch them over 

the span of one to three days 

 While watching the videos, students took notes on paper, but didn’t necessarily 

follow along in the book 

 Students often would pause, rewind, and rewatch videos at their own pace, and it 

was beneficial to have that option 

 Before an exam, some students would rewatch videos  

 Student enjoyment of the class was neutral. Some students liked it and would 

take additional flipped classes, and some disliked it and would not like any more 

flipped classes.  

 Compared to traditional lecture courses, some students felt they learned less 

during this flipped class 

 Nearly every student felt that the active learning components of the course (peer 

discussions, small groups problem solving) was beneficial to them 
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Statement N Mean StDev p 

I watched every lecture video before class 12 4.42 0.52 0.000* 

I watched most of the lecture videos, but skipped a few 12 2.08 1.62 0.076 

I watched the lecture videos as soon as they were posted 12 2.75 1.06 0.429 

I dedicated specific times in the week for watching the 
videos 

12 3.58 1.08 0.089 

I watched the lecture videos only on the weekends 12 1.92 0.90 0.002* 

I watched the group of posted lecture videos all in one 
session 

12 3.50 1.31 0.214 

I spread out watching the lecture videos over more than 
three days 

12 2.17 1.27 0.044* 

While watching the videos, I took notes on paper 12 4.92 0.29 0.000* 

While watching the videos, I also followed along in the 
textbook 

12 2.25 1.55 0.121 

While watching the videos, I paused the videos to stop and 
think 

12 4.33 0.65 0.000* 

While watching the videos, I would frequently go back a 
few minutes to listen again 

12 4.08 0.90 0.002* 

After watching the entire video, I would rewatch it 12 2.00 1.13 0.011* 

Before an exam, I rewatched some of the lecture videos 12 3.75 1.55 0.121 

Watching the videos more than once helped me 
understand some topics. 

12 3.42 1.17 0.241 

I enjoyed this flipped classroom 12 2.75 1.36 0.536 

I learned less from this flipped class compared to what I 
learn in traditionally taught classrooms 

12 3.33 1.23 0.368 

I learned more from this flipped class compared to what I 
learn in traditionally taught classrooms 

12 2.42 0.90 0.046* 

I would enjoy taking additional “flipped” courses 12 2.75 1.22 0.491 

Solving problems in class was helpful for my understanding 
of the topics 

12 4.33 0.99 0.001* 

Working in groups during class helped me understand the 
material better than working on my own 

12 3.67 1.23 0.087 

I enjoyed discussing conceptual questions in class that 
were asked in the lecture videos 

12 4.17 1.03 0.002* 

The additional discussions and clarifications in the 
classroom sessions were important to understanding the 
material 

12 4.33 1.16 0.002* 

The recorded lecture videos were helpful for my 
understanding of the topics 

5 4.20 0.37 0.033* 
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Watching the recorded lecture videos helped me 
understand the material better than a traditional lecture in 
class 

5 2.80 1.30 0.749 

Table 2 – Undergraduate students’ responses to the end of course survey. The null 

hypothesis is the neutral response, a mean of exactly three. 

* indicates the value is significant at the 95% confidence interval. 

Graduate Students  

The results from the survey given to the graduate students in classical 

mechanics is shown below in Table 3. A few important results can be concluded from the 

results of the survey:  

 Students watched most of the videos that were required, but skipped several 

 Students did not set specific time for them to watch the videos, but watched more 

videos during the weekdays than the weekends 

 When there were multiple videos posted, some students would watch them all at 

once, and some would spread them out over several days 

 While watching the videos, students took notes on paper, and most followed 

along in the book at the same time 

 Students often would pause, rewind, and rewatch videos at their own pace, and it 

was beneficial to have that option 

 Before an exam, a majority of students would rewatch videos  

 Student enjoyment of the class was neutral. Some students liked it and would 

take additional flipped classes, and some disliked it and would not like any more 

flipped classes.  

 Compared to traditional lecture courses, most students felt that they learned the 

same amount of material as a traditionally taught course 
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 Nearly every student felt that the active learning components of the course (peer 

discussions, small groups problem solving) was beneficial to them 

 

Statement N Mean StDev p 

I watched every lecture video before class 12 4.00 1.04 0.007* 

I watched most of the lecture videos, but skipped a few 12 3.17 1.64 0.732 

I watched the lecture videos as soon as they were 
posted 

12 3.08 1.56 0.857 

I dedicated specific times in the week for watching the 
videos 

12 3.17 1.80 0.754 

I watched the lecture videos only on the weekends 12 2.33 1.23 0.087 

I watched the group of posted lecture videos all in one 
session 

12 2.83 1.40 0.689 

I spread out watching the lecture videos over more than 
three days 

12 2.92 1.44 0.845 

While watching the videos, I took notes on paper 12 4.17 1.12 0.004* 

While watching the videos, I also followed along in the 
textbook 

11 3.82 1.25 0.055 

While watching the videos, I paused the videos to stop 
and think 

12 4.67 0.49 0.000* 

While watching the videos, I would frequently go back a 
few minutes to listen again 

12 4.67 0.65 0.000* 

After watching the entire video, I would rewatch it 12 3.42 1.17 0.241 

Before an exam, I rewatched some of the lecture videos 12 4.00 0.60 0.000* 

Watching the videos more than once helped me 
understand some topics. 

12 3.75 1.06 0.032* 

I enjoyed this flipped classroom 11 3.09 1.22 0.810 

I learned less from this flipped class compared to what I 
learn in traditionally taught classrooms 

11 2.91 1.14 0.796 

I learned more from this flipped class compared to what I 
learn in traditionally taught classrooms 

11 3.00 1.00 1.000 

I would enjoy taking additional “flipped” courses 11 3.09 1.22 0.810 

Solving problems in class was helpful for my 
understanding of the topics 

11 4.36 0.67 0.000* 

Working in groups during class helped me understand 
the material better than working on my own 

11 3.64 1.43 0.172 

I enjoyed discussing conceptual questions in class that 
were asked in the lecture videos 

11 4.18 0.75 0.000* 
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The additional discussions and clarifications in the 
classroom sessions were important to understanding the 
material 

11 4.36 0.92 0.001* 

Table 3 – Graduate students’ responses to the end of course survey. The null hypothesis 

is the neutral response, a mean of exactly three. 

* indicates the value is significant at the 95% confidence interval. 

Conclusions and Discussion 

There are similarities and differences between the responses to the flipped 

classroom of the graduate and undergraduate students: 

 Both groups watched a majority of the videos that were assigned 

 Undergraduate students had more structured video-watching habits, whereas 

graduate students were more sporadic 

 Graduate students used the textbook while watching the videos more than 

undergraduates 

 Having the ability to pause, rewind, and replay videos was beneficial to both 

groups 

 Both groups rewatched several videos before an exam 

Although the opinions of the flipped classroom were neutral overall for both 

graduates and undergraduates. There are clearly three groups of students: one group of 

students who preferred the flipped format, ones who did not like the flipped structure, and 

a neutral group, as seen in Figure 2.  
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However, a majority of students form both groups reported that discussing the 

lecture videos in class, doing homework in a group, and solving problems in small groups 

was beneficial to their understanding of the material. This is an important conclusion 

because it is more evidence for the use of active learning techniques even at the upper 

division and graduate level. Benefits of active learning are reported regardless of how a 

student felt about the format of the class. Student attitudes towards the flipped classroom 

may, however, be a predictor for their perception of how much they learned in the class, 

as seen in Figure 3. A study by Sarah Zappe suggested that engineering students overall 

Figure 2 – Histogram of student response to “I enjoyed 

this flipped classroom”. A score of 1 is strongly 

disagree, 3 is neutral, and 5 is strongly agree. 
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were neutral about the flipped lectures, but would prefer to flip some and keep some 

traditional (Zappe et al. 2009).  

The Qualifying Exam 

The qualifying exam consists of four three-hour exams, one in each of four core 

subjects in physics: classical mechanics, statistical mechanics, quantum mechanics, and 

electricity & magnetism. When new graduate students begin their physics PhD program 

at UTA, they must pass all parts of a qualifying exam by the end of the third long 

semester (summer does not count) to remain in the program. Students are given three 

opportunities to take the exam: once at the start the semester they arrive, again during 

the next semester, and a third and final attempt. The exam taken right after beginning 

graduate school does not count against the student if the student fails, but if the student 

passes, the exam is considered passed. Typically, students arrive in the fall and take 

their first “bonus” exams, then after taking two of the four core courses, they take any 

y = 0.4854x + 1.2816
R² = 0.4045, N=23

0

1

2

3

4

5

6

0 1 2 3 4 5 6I l
e

ar
n

e
d

 m
o

re
..

. t
h

an
 t

ra
d

it
io

n
al

 -
C

3

I enjoy the flipped classroom - C1

I learned more vs I enjoy

Figure 3 – Correlation between perceived learning and enjoyment of the flipped 

course. 
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unpassed exams again in the spring. Finally, after taking the other two core courses and 

studying over the summer, students take any remaining unpassed exams in the fall.  

Each exam is composed of two “short” problems that are at the introductory 

physics level, and two “long” problems that are at the upper division/very beginning 

graduate level.  Topics that would be encountered only at the advanced graduate level 

(Hamilton-Jacobi theory, for example) are not included in the exams. The exams are 

constructed each semester by committees, which also grade that particular exam and 

report the score to the Graduate Studies Committee. A passing grade on an exam is 60% 

or better. If a student does not pass an exam by the third long semester, buts does score 

between 40%-59%, the students qualifies to take an oral exam on this topic if a faculty 

member so petitions. This represents a “last ditch” effort for a student to pass a remaining 

subject and stay in the Ph.D. program.  Typically about 10%-20% of students find 

themselves in this situation, but most pass. Over the past few years only 5% of students 

have been dismissed from the program for failure to pass the qualifying exams. 

Exact historical passing rates of the UTA qualifying exam in classical mechanics 

is not publically or institutionally available, nor could it be de-identified to comply with IRB 

protocol. However, it is known that the passing rate for classical mechanics was less than 

100% before implementing the flipped classroom, and there was no significant difference 

between the passing rates in classical mechanics and the other subjects. After 

implementing the flipped graduate level classical mechanics in the fall of 2014, every 

student who has taken the flipped version (the only one offered) has passed the classical 

mechanics section of the qualifying exam – a 100% pass rate. No other section of the 

qualifying exam has this pass rate.  

Although the content of the classical mechanics qualifying exam questions has 

remained consistent before and after the flip (the committees tend to recycle popular 
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problems while adding one or two new ones), there is not enough evidence at this time to 

say that this increase in pass rates is because of the flipped classroom model or the 

inclusion of active learning techniques. However, the circumstantial evidence points in 

this direction since the change in the pass rate was coincident with the adoption of active 

learning in the graduate class. No other graduate class uses these techniques, and their 

pass rates have remained essentially unchanged. 
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Chapter 3  

Predictive models of student performance in introductory calculus-based mechanics 

using traditional statistical tools 

Statement of the Problem and Purpose of Research  

Single and multiple llinear regression discussed on page 21 provides a useful 

tool for determining a relationship, if any, between one or more independent variables 

and a particular outcome. The purpose of this project is to determine the extent to which 

a regression model founded on empirical student data has the capacity to provide 

accurate and consistent predictions of a future set of students’ performance in an 

introductory physics course. Such a predictive model would be incredibly useful for 

educators to identify students who may be at risk for failing the course due to a lack of 

performance resources such as scientific thinking skills, math ability, reading ability, etc. 

Administrators may also be interested in such a prediction to either improve the college 

selection process, placement of students in appropriate courses, or even budgeting for 

future scholarships.  

 
Research Questions 

 
The first question that must be addressed is to identify several factors that 

influence a student’s performance in physics which can also be measured readily in the 

beginning of the semester.  Collecting data as soon as possible is imperative because 

the model will be used to predict the students’ performance based upon their abilities 

coming in the course. After collecting such primary data, the next step is to develop 

several linear and nonlinear models to form a relationship between these factors and the 

students’ performance. The final research question is to determine the prediction 

efficiency of the models. Discussed previously on page 25, the model can be considered 
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successful by reporting a high accuracy and probability of detection, and a low false 

alarm ratio.  

 
Methodology 

To address the first research questions, a list of factors that are known to 

influence performance in physics was generated. Each factor must be well supported in 

peer-reviewed publications and should be readily measured via standardized assessment 

or survey. This step was accomplished by several brainstorming sessions, followed by a 

literature review. The literature review then leads to other possible factors, which returns 

back to a discussion session among the PER group members1.  

Next, an appropriate assessment must be identified or developed for each 

relevant factor. This was done by categorizing the factor as something that could be 

collected from a survey, from a paper-and-pencil test, or from the physics department 

records. Much of the literature associated with each factor presented a section which 

described the best way to assess or quantize that factor. For example, a student’s mental 

rotation ability can be assessed by the Mental Rotation Test (Vandenberg and Kuse, 

1978); or a student’s mathematics ability inferred from the student’s SAT Math score can 

be provided by the department of physics. Other factors that are demographic or 

attitudinal can be quantized by means of a survey. 

To develop the single and multiple linear regression models, the quantized 

factors are plotted on the x-axis and the student’s final grade, a measure of their 

performance, is plotted on the y-axis. Minitab® Statistical Software2 and Microsoft Excel 

                                                 
1 Thank you to Amanda Benson, Colby Hair, and Amanda Horton for their work contributing to 

this project. 
2 MINITAB® and all other trademarks and logos for the Company's products and services are the 

exclusive property of Minitab Inc. All other marks referenced remain the property of their 

respective owners. See minitab.com for more information. 
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(2013) were used to determine the linear and nonlinear equations which represent the 

relationships between the dependent and independent variables, as well as conducting 

hypothesis testing on the coefficients of the resulting equations.   

Once the models are developed, they can be used to predict the performance of 

students taking that physics course the next semester by measuring the aforementioned 

factors and plugging them into the respective equation. The result of that operation will be 

what is called the “predicted grade” for that individual. The predicted grade will then be 

compared to the final grades actually earned in the course at the end of the semester 

using the metrics described earlier on page 25.  

 
Results 

Factors that influence student performance in physics 

Below is a table of factors identified, a reference to the literature citing the 

factor’s important or effect on the performance of the students in physics, and the method 

used to collect the data. 

 

Factor Metric How it’s measured Citation 

Spatial ability (mental 

rotation ability) 

MRT1 score In-class assessment Wai 2009 

Scientific Reasoning CTSR2 score In-class assessment Lawson 1978 

English /reading 

ability 

SAT Reading score, 

primary language spoken 

Transcript, in-class 

survey 

Koch 1995 

Basic math 

knowledge 

SAT Math score, number 

of math courses taken 

Transcript, in-class 

survey 

Meltzer 2002 
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Basic physics 

knowledge 

Number of physics 

courses taken in high 

school or college 

In-class survey Sadler 2001 

Academic 

preparedness  

Grade point average 

(GPA) 

Transcript Kuncel 2002 

Initial self-

assessment of 

science ability 

Student-reported score 

on Likert-scale  

In-class survey Ajzen 2002 

Initial self-

assessment of math 

ability 

Student-reported score 

on Likert-scale  

In-class survey Ajzen 2002 

Time spent on 

homework 

Hours logged in to online 

homework service 

Reported from online 

service 

Keith 1982 

Hours worked at job Student reported In-class survey Trockel 2000 

Hours slept per night Student reported In-class survey Trockel 2000 

Table 4 – List of factors that influence student performance in physics.  

1 Mental Rotation Test 

2 Classroom Test of Scientific Reasoning 
 

The Mental Rotation Test (MRT) is a multiple choice assessment in which 

students select two 2-d representation of 3-d objects out of a group of four objects which 

are identical to a given object with the only difference being that they are presented at a 

different angle in 3-d space (Vandenburg 1978). It was selected as the best assessment 

for spatial ability because of its widely accepted reliability, accuracy, and availability. The 

MRT has a total of 20 questions between two parts. Each part must be completed in 3 

minutes, with a one minute break in between. The Classroom Test of Scientific 
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Reasoning (CTSR) is a multiple choice assessment in which students select an answer 

which they think is the correct conclusion, outcome of an experiment, or explanation of a 

phenomenon, as well as indicate why they think that is their answer is correct (Lawson 

1978). This assessment was also selected for its common usage in the field of PER as a 

reliable way to quantify students’ scientific reasoning ability. Questions include topics 

about conservation of mass, probability, and experiment design.  

Single-variable linear regression 

As an example of a linear equation with regression, Figure 4 below shows the 

relationship between a student’s SAT math score and his or her performance in the 

course, constructed from four consecutive long semesters.  

 
Figure 4 – A linear regression model of students’ SAT score and their performance in 

physics.  
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The equation in the top right corner represents a linear equation which 

theoretically represents how much the dependent variable will change given a change in 

the independent variable. The coefficient of the dependent variable can be statistically 

different or similar to a value (such as zero), and so can the intercept. The equation is 

accompanied by a calculated regression correlation coefficient, 𝑅2 , which represents 

how well the equation accounts for the variability in the data. A value of zero would mean 

the equation does not model accurately the data at all, and a value of one would mean 

that the equation models the data perfectly. To determine if the values of the slope or 

intercept are statistically different from zero, a two-tailed t-test is used with the standard 

error of the associated value. The t-test computes a t-value, which is then converted to a 

p-value based on the number of degrees of freedom of the measurement. In PER, 

researchers typically use a confidence interval of 95%, which means that a p-value less 

than or equal to 0.05 represents a significant difference from the chosen value, and that 

the difference between the values is due to something other than random chance.  

Single-variable linear models 

The following table summarizes the regression coefficients (the slope of the line), 

intercept, corresponding p-values, correlation coefficients (𝑅2), and number of data points 

in that set (N) of the factors found in Table 4. The equations were constructed from data 

collected from three consecutive long semesters beginning fall 2015 until fall 2016.  

Factor Slope p-value Intercept p-value 𝑅2 N 

Spatial ability 0.696 <0.001* 72.85 <0.001* 0.0670 229 

Scientific Reasoning 1.859 <0.001* 67.06 <0.001* 0.1167 219 

English/reading ability 0.0402 0.0840 60.60 <0.001* 0.0433 70 

Basic math knowledge (SAT Math) 0.0933 <0.001* 24.40 0.020* 0.3107 80 
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Basic physics knowledge 2.008 0.006* 79.64 <0.001* 0.0425 180 

Academic preparedness (GPA) 10.91 <0.001* 47.43 <0.001* 0.3027 150 

Initial self-assessment of science ability 2.538 <0.001* 73.97 <0.001* 0.0729 180 

Initial self-assessment of math ability 2.843 0.004* 70.62 <0.001* 0.0455 179 

Time spent on homework 0.00746 0.018* 75.76 <0.001* 0.0644 86 

Hours worked at job -1.082 <0.001* 84.075 <0.001* 0.0671 179 

Hours slept per night 2.478 0.001* 65.83 <0.001* 0.0651 181 

* indicates significance at 95% confidence interval 

Table 5 – A summary of linear regression equations, correlation coefficients, and 

hypothesis testing of coefficients. 

In general, the linear equations with the largest value of 𝑅2 have the strongest correlation 

correlation between the independent and dependent variables.  According to * indicates 

significance at 95% confidence interval 

Table 5, the factors which have the largest correlation coefficients are the 

student’s score on the mathematics portion of the SAT, his or her GPA at the beginning 

of the semester, and his or her score on the classroom test of scientific reasoning. These 

results that they may be among the most influential quantitative factors to influence 

student performance.  

Prediction efficiency of single-variable linear models 

Using the models from page Error! Bookmark not defined., students enrolled in 

the spring 2017 and fall 2017 physics 1443 course were given the same tests and 

surveys as the previous semesters’ students, and a predicted final grade was computed 

by substituting the quantified factor back into the model. This value was compared to 

their actual earned final grade, so Table 1 was used to determine the number of hits, 

misses, etc. in order to determine prediction efficiency of the models. The question being 
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asked was either “Will the student get an ‘A’? (greater than or equal to 90% final grade)” 

or “Will the student fail the course? (less than 70% final grade)” 

The tables of such prediction metrics are presented below: 

Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability 

of detection 

False Alarm 

Ratio 

Spatial ability 0 4 0 51 0.927 0.000 0.000 N/A 

Scientific Reasoning 0 4 0 49 0.925 0.000 0.000 N/A 

English/reading 

ability 

0 4 0 23 0.852 

 

0.000 0.000 N/A 

Basic math 

knowledge (SAT 

Math) 

0 3 0 31 0.912 0.000 0.000 N/A 

Basic physics 

knowledge 

0 4 0 40 0.909 0.000 0.000 N/A 

Academic 

preparedness (GPA) 

3 3 1 49 0.929 0.667 0.500 0.250 

Initial self-

assessment of 

science ability 

0 4 0 40 0.909 0.000 0.000 N/A 

Initial self-

assessment of math 

ability 

0 4 0 40 0.909 0.000 0.000 N/A 

Hours worked at job 0 4 0 39 0.907 0.000 0.000 N/A 
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Hours slept per night 0 4 0 40 0.909 0.000 0.000 N/A 

Table 6 – Prediction efficiency for single-variable linear regression models; “Will the 

student fail the course?” – Spring 2017 

 
Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability 

of detection 

False Alarm 

Ratio 

Spatial ability 0 15 0 40 0.727 0.000 0.000 N/A 

Scientific Reasoning 0 14 0 39 0.736 0.000 0.000 N/A 

English/reading 

ability 

1 8 0 18 0.704 0.111 0.111 0.000 

Basic math 

knowledge (SAT 

Math) 

4 7 1 22 0.765 0.455 0.364 0.200 

Basic physics 

knowledge 

0 13 0 31 0.705 0.000 0.000 N/A 

Academic 

preparedness (GPA) 

3 12 1 40 0.768 0.267 0.200 0.250 

Initial self-

assessment of 

science ability 

0 13 0 31 0.705 0.000 0.000 N/A 

Initial self-

assessment of math 

ability 

0 13 0 31 0.705 0.000 0.000 N/A 

Hours worked at job 0 12 0 31 0.721 0.000 0.000 N/A 
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Hours slept per night 0 13 0 31 0.705 0.000 0.000 N/A 

Table 7 - Prediction efficiency for single-variable linear regression models; “Will the 

student get an A?” – Spring 2017 

 
Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability 

of detection 

False Alarm 

Ratio 

Spatial ability 0 15 0 70 0.824 0.000 0.000 N/A 

Scientific Reasoning 0 14 2 68 0.800 0.133 0.000 N/A 

English/reading 

ability 

0 3 0 24 0.889 0.000 0.000 N/A 

Basic math 

knowledge (SAT 

Math) 

0 4 0 26 0.867 0.000 0.000 N/A 

Basic physics 

knowledge 

0 11 0 53 0.828 0.000 0.000 N/A 

Academic 

preparedness (GPA) 

3 10 3 37 0.755 0.462 0.231 0.500 

Initial self-

assessment of 

science ability 

0 11 0 53 0.828 0.000 0.000 N/A 

Initial self-

assessment of math 

ability 

0 11 0 53 0.828 0.000 0.000 N/A 

Hours worked at job 0 11 0 52 0.825 0.000 0.000 N/A 
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Hours slept per night 0 11 0 52 0.825 0.000 0.000 N/A 

Table 8 - Prediction efficiency for single-variable linear regression models; “Will the 

student fail the course?” – Fall 2017 

Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability 

of detection 

False Alarm 

Ratio 

Spatial ability 0 15 0 70 0.824 0.000 0.000 N/A 

Scientific Reasoning 0 15 0 70 0.824 0.000 0.000 N/A 

English/reading 

ability 

0 5 0 22 0.815 0.000 0.000 N/A 

Basic math 

knowledge (SAT 

Math) 

2 3 0 25 0.900 0.400 0.400 0.000 

Basic physics 

knowledge 

0 9 0 55 0.859 0.000 0.000 N/A 

Academic 

preparedness (GPA) 

1 6 1 45 0.868 0.286 0.143 0.500 

Initial self-

assessment of 

science ability 

0 9 0 55 0.859 0.000 0.000 N/A 

Initial self-

assessment of math 

ability 

0 9 0 55 0.859 0.000 0.000 N/A 

Hours worked at job 0 9 0 54 0.857 0.000 0.000 N/A 
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Hours slept per night 0 8 1 54 0.857 0.125 0.000 1.000 

Table 9 - Prediction efficiency for single-variable linear regression models; “Will the 

student get an A?” – Fall 2017 

 
Multi-variable linear regression  

Simple (single variable) regression is a powerful tool for making predictions for 

values that are within the range of the data set form which the equations are generated. 

Data collected from human subjects and projects which measure the performance of 

humans are almost never modelled by one single regression model. When multiple 

factors are acting simultaneously and contributing to the dependent variable being 

measured (performance), it’s possible to achieve higher regression coefficients and 

therefore higher prediction efficiency by constructing multi-variable linear regression 

equations. These equations linearly combine two or more factors in such a way that each 

factor will have its own coefficient of slope, but will produce a single regression coefficient 

which behaves the same way a single variable regression equation does. There are 𝑛𝐶𝑟 

ways to linearly combine 𝑛 factors with 𝑟 terms, and since a multiple regression has at 

least two variables, the total number of possible linear combinations is  

∑ 𝑛𝐶𝑟

𝑛

𝑟=2

  

Where n is the number of factors measured, and r is the number of terms in the 

regression equation (not counting any constants), and C is the standard formula for 

combinatorics (
𝑛!

𝑟!(𝑛−𝑟)!
) . When 𝑛 = 10, this means 1013 possible linear multiple 

regression equations. The combinations only include equations which have no cross 

terms, and no order or exponent greater than one. In principal, it’s possible to write a 

program that will compute all of these equations with the corresponding 𝑅2 values, and 
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one could then identify the maximum value and the corresponding equation. Minitab 

already has such capabilities, so that equation can be determined readily. Additionally, 

one could also use only the factors which were found to have significant p-values and 

include those in another model as well.  

Multivariable linear models 

Below are several equations which were either constructed using Minitab multiple 

regression capabilities, or by choosing factors which have the highest linear regression 

correlations, or factors which have significant p-values, and various combinations of 

those. The equations will be named according to the order in which they are presented, 

and then followed by a table with similar statistics to the above tables.  

Equation I  

Equation I was constructed by including every factor above in a single equation: 

𝐹𝑛𝑙_𝐺𝑟𝑑 =  30.4 +  0.345 𝑀𝑅𝑇 +  0.620 𝐶𝑇𝑆𝑅 −  0.0156 𝑆𝐴𝑇_𝑅 +  0.0522 𝑆𝐴𝑇_𝑀 

−  1.49 𝑆𝑙𝑒𝑒𝑝_𝐻𝑟𝑠 −  0.475 𝑊𝑜𝑟𝑘_𝐻𝑟𝑠 +  1.24 𝐻𝑆_𝑃ℎ𝑦𝑠 

−  1.04 𝑃ℎ𝑦𝑠_𝐵𝑓𝑟 +  0.59 𝑀𝑎𝑡ℎ_𝐵𝑓𝑟 +  9.36 𝐺𝑃𝐴_𝑈𝑇𝐴 

 

Factor Description p-value N 𝑅2 

Overall   33 0.6294 

MRT Mental rotation ability 0.341   

CTSR Scientific reasoning ability 0.509   

Sat_R SAT Reading score 0.580   

SAT_M SAT Math score 0.091   

Sleep_Hrs Hours slept per day 0.383   

Work_Hrs Hours worked per day 0.399   
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HS_Phys Number of physics courses taken in 

high school 

0.329   

Phys_Bfr Self-assessed ability in physics at 

beginning of course 

0.545   

Math_Bfr Self-assessed ability in math at 

beginning of course 

0.791   

GPA_UTA Incoming UTA GPA 0.008*   

Table 10 – Multi-variable linear regression Equation I and its correlation statistics 

 

Equation II  

Equation II was constructed by taking an individual’s mental rotation ability, 

scientific reasoning ability, and SAT math scores as the only three factors. These were 

the factors that were originally hypothesized to have a significant impact on a student’s 

performance in physics early on in this research project:  

 𝐹𝑛𝑙𝐺𝑟𝑑 = 22.6 +  0.096 𝑀𝑅𝑇 +  0.221 𝐶𝑇𝑆𝑅 +  0.0911 𝑆𝐴𝑇_𝑀 

Factor Description p-value N 𝑅2 

Overall   66 0.2834 

MRT Mental rotation ability 0.737   

CTSR Scientific reasoning ability 0.729   

Sat_M SAT Math score <0.001*   

Table 11 – Multi-variable linear regression Equation II and its correlation statistics 

 

Equation III  

Equation III was constructed by taking the top three factors with the largest 

𝑅2 values from Table 5:  
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 𝐹𝑛𝑙𝐺𝑟𝑑 = 26.4 + 0.579 𝐶𝑇𝑆𝑅 +  0.0342 𝑆𝐴𝑇_𝑀 + 9.36𝐺𝑃𝐴_𝑈𝑇𝐴 

Factor Description p-value N 𝑅2 

Overall   45 0.4585 

CTSR Scientific reasoning ability 0.278   

Sat_M SAT Math score 0.133   

GPA_UTA Incoming UTA GPA <0.001*   

Table 12 – Multi-variable linear regression Equation III and its correlation statistics 

 

Equation IV  

Equation IV was constructed by taking the top two factors with the largest 

𝑅2 values from Table 5:  

 𝐹𝑛𝑙𝐺𝑟𝑑 = 25.9 +  0.0342 𝑆𝐴𝑇_𝑀 + 9.36𝐺𝑃𝐴_𝑈𝑇𝐴 

Factor Description p-value N 𝑅2 

Overall   56 0.4611 

Sat_M SAT Math score <0.001*   

GPA_UTA Incoming UTA GPA 0.007*   

Table 13 – Multi-variable linear regression Equation IV and its correlation statistics  

 
Equation V  

Finally, Equation V was constructed by taking the two attitudinal factors from 

Table 5: 

 𝐹𝑛𝑙𝐺𝑟𝑑 = 65.49 + 2.269 𝑃ℎ𝑦𝑠𝐵𝑓𝑟 + 2.316 𝑀𝑎𝑡ℎ𝐵𝑓𝑟   

Factor Description p-value N 𝑅2 

Overall   179 0.1022 
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Phys_Bfr Self-assessed ability in physics at 

beginning of course 

0.001   

Math_Bfr Self-assessed ability in math at 

beginning of course 

0.017   

Table 14 – Multi-variable linear regression for Equation V and its correlation statistics 

 

 

Prediction efficiency of multi-variable linear models 

With the above equations, we can perform a prediction efficiency analysis in the 

same way described on page 47. The tables below summarize the results: 

Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation I 1 1 0 14 0.938 0.500 0.500 0.000 

Equation II 0 3 0 27 0.900 0.000 0.000 N/A 

Equation III 3 0 0 27 1.000 1.000 1.000 0.000 

Equation IV 3 0 1 30 0.971 1.333 1.000 0.250 

Equation V 0 4 0 40 0.909 0.000 0.000 N/A 

Table 15 – Prediction efficiency for multivariate linear regression models; “Will the 

student fail the course?” – Spring 2017 

Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation I 0 5 0 10 0.688 0.167 0.167 0.000 
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Equation II 3 5 1 20 0.767 0.444 0.333 0.250 

Equation III 4 5 0 21 0.833 0.444 0.444 0.000 

Equation IV 0 11 0 23 0.676 0.000 0.000 N/A 

Equation V 0 13 0 31 0.705 0.000 0.000 N/A 

Table 16 - Prediction efficiency for multivariate linear regression models; “Will the student 

get an ‘A’?” – Spring 2017 

Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation I 0 1 0 5 0.833 0.000 0.000 N/A 

Equation II 0 4 0 25 0.862 0.000 0.000 N/A 

Equation III 0 3 2 9 0.642 0.667 0.000 1.000 

Equation IV 0 3 3 8 0.571 1.000 0.000 1.000 

Equation V 0 11 0 53 0.828 0.000 0.000 N/A 

Table 17 - Prediction efficiency for multivariate linear regression models; “Will the student 

fail the course?” – Fall 2017 

Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation I 0 0 0 6 1.000 0.000 0.000 N/A 

Equation II 2 2 0 25 0.931 0.500 0.500 0.000 

Equation III 0 1 0 13 0.929 0.000 0.000 N/A 

Equation IV 0 1 0 13 0.929 0.000 0.000 N/A 

Equation V 0 9 0 55 0.859 0.000 0.000 N/A 



 

58 

Table 18 - Prediction efficiency for multivariate linear regression models; “Will the student 

get an ‘A’?” – Fall 2017 

 

Multi-variable non-linear regression 

To truly construct as many possible regression equations as possible, we can 

allow for our multiple regression models to also include higher order terms and cross 

terms. In theory, there is no limit to the order for which a model could be constructed, for 

example perhaps the performance could be modelled as GPA to the power of 9 plus SAT 

math to the power of 50. To limit the computational time and produce a result that is 

within the scope of this project, I will constrain the model to only include up to quadratic 

terms and cross-terms. This means that at most one factor will either be multiplied with 

itself or one other factor. This choice allows for:  

∑ 𝑗𝐶𝑟

𝑛

𝑟=1

  

combinations where 𝑗 = 𝑛2, 𝑛 is the number of factors measured, and 𝑟 is the 

number of terms in the regression equation (not counting any constants), and 𝐶 is the 

standard formula for combinatorics (
𝑗!

𝑟!(𝑗−𝑟)!
) . When 𝑛 = 10, this means over 1012 possible 

nonlinear multiple regression equations.  

Additionally, nonlinear regression models do not give reliable 𝑅2 values because 

there are assumptions about linear models that are not true for nonlinear models (Spiess 

2010).  Furthermore, it’s often not possible to report p-values for the coefficients of 

nonlinear regression equations. For linear equations, the null hypothesis is that a 

coefficient of zero implies that additional amounts of a predictive factor have no influence 

on the final result. For nonlinear equations, however, that predictive factor may show up 

in several different terms, and thus a single coefficient being zero will not imply that a 



 

59 

particular factor changing will have no effect on the result (Frost 2014). For these 

reasons, we choose to only include a small number of factors which were shown to have 

a significant correlation to performance, and will rely on the prediction efficiency of the 

model to evaluate its effectiveness.  

Multi-variable non-linear models 

Below are equations which were either constructed using Minitab multiple 

regression capabilities, or by choosing factors which have the highest linear regression 

correlations, or factors which have significant p-values, and various combinations of 

those.  

Equation VI 

Equation VI was constructed by using two cognitive factors and the two highest 

linear 𝑅2 factors (N=44; 𝑅2=0.7735): 

𝐹𝑛𝑙_𝐺𝑟𝑑 =  −73.2 +  0.42 𝑀𝑅𝑇 +  5.90 𝐶𝑇𝑆𝑅 +  0.581 𝑆𝐴𝑇_𝑀 −  50.5 𝐺𝑃𝐴_𝑈𝑇𝐴 

−  0.1939 𝑀𝑅𝑇 ∗ 𝑀𝑅𝑇 −  0.000703 𝑆𝐴𝑇_𝑀 ∗ 𝑆𝐴𝑇_𝑀 +  0.2800 𝑀𝑅𝑇

∗ 𝐶𝑇𝑆𝑅 +  0.674 𝑀𝑅𝑇 ∗ 𝐺𝑃𝐴_𝑈𝑇𝐴 −  2.673 𝐺𝑃𝐴_𝑈𝑇𝐴 ∗ 𝐶𝑇𝑆𝑅 

+  0.1124 𝑆𝐴𝑇_𝑀 ∗ 𝐺𝑃𝐴_𝑈𝑇𝐴 
Equation VII 

Equation VII was constructed by using only the two highest linear 𝑅2 factors 

(N=56; 𝑅2=0.5205): 

𝐹𝑛𝑙_𝐺𝑟𝑑 =  −172.4 +  0.651 𝑆𝐴𝑇_𝑀 +  8.02 𝐺𝑃𝐴_𝑈𝑇𝐴 −  0.000450 𝑆𝐴𝑇_𝑀 ∗ 𝑆𝐴𝑇_𝑀 

 

 

Equation VIII 

Equation VIII was constructed by using two behavioral factors and two factors 

related to self efficacy (N=177; 𝑅2=0.2136): 

𝐹𝑛𝑙𝐺𝑟𝑑 =  37.9 +  6.08 𝑆𝑙𝑒𝑒𝑝𝐻𝑟𝑠 +  0.712 𝑊𝑜𝑟𝑘𝐻𝑟𝑠 +  7.48 𝑃ℎ𝑦𝑠𝐵𝑓𝑟 −  0.34 𝑀𝑎𝑡ℎ𝐵𝑓𝑟

−  0.218 𝑊𝑜𝑟𝑘𝐻𝑟𝑠 ∗ 𝑊𝑜𝑟𝑘𝐻𝑟𝑠  −  1.220 𝑆𝑙𝑒𝑒𝑝_𝐻𝑟𝑠 ∗ 𝑃ℎ𝑦𝑠_𝐵𝑓𝑟 

+  0.644 𝑃ℎ𝑦𝑠_𝐵𝑓𝑟 ∗ 𝑀𝑎𝑡ℎ_𝐵𝑓𝑟 
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Prediction efficiency of multi-variable nonlinear models 

With the above equations, we can perform a prediction efficiency analysis in the 

same way as the preceding sections. The tables below summarize the results: 

 

Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation VI 2 2 3 24 0.839 1.250 0.500 0.600 

Equation VII 1 2 0 31 0.941 0.333 0.333 0.000 

Equation VIII 0 4 0 39 0.907 0.000 0.000 N/A 

Table 19 – Prediction efficiency for multivariate nonlinear regression models; “Will the 

student fail the course?” – Spring 2017 

Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation VI 1 8 0 22 0.742 0.111 0.111 0.000 

Equation VII 6 5 1 22 0.824 0.636 0.545 0.143 

Equation VIII 0 12 0 31 0.721 0.000 0.000 N/A 

Table 20 - Prediction efficiency for multivariate nonlinear regression models; “Will the 

student get an ‘A’?” – Spring 2017 

Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation VI 0 3 2 9 0.642 0.667 0.000 1.000 
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Equation VII 0 3 1 10 0.714 0.333 0.000 1.000 

Equation VIII 0 11 2 49 0.790 0.182 0.000 1.000 

Table 21 - Prediction efficiency for multivariate nonlinear regression models; “Will the 

student fail the course?” – Fall 2017 

Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

Equation VI 0 1 1 12 0.857 1.000 0.000 1.000 

Equation VII 0 1 1 13 0.857 1.000 0.000 1.000 

Equation VIII 0 8 1 53 0.855 0.125 0.000 1.000 

Table 22 - Prediction efficiency for multivariate nonlinear regression models; “Will the 

student get an ‘A’?” – Fall 2017 

 

 

Conclusions and Discussion 

The goal of this study is to determine the extent to which a model derived from 

empirical data is useful for modelling student performance in a calculus-based 

introductory mechanics course, and predicting the academic performance of students in  

subsequent semesters. For this study, a model is considered to be successful if the 

metrics used to evaluate the prediction efficiency indicate a high accuracy, high 

probability of detection (POD), and a low false alarm rate (FAR). Since failing the course 

is a relatively “rare” event, it’s important to understand what a false alarm might mean for 

the practical application of this type of work. If an educator asks, “Will the student fail the 

course?”, it would be better to have a slightly higher FAR because it would be more 

beneficial to the student to have extra attention given to that individual student who might 
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have passed anyway, rather than the student who might actually fail the course on their 

own be “ignored”, which would be a “miss” according to our metrics. For these reasons, 

the models with a higher probability of detection should be given more weight when 

deciding which model to select as the best, since it contains information about the 

number of misses (see page 25). Furthermore, the best models should give a consistent 

prediction from semester to semester, and have similar prediction metrics.  

Single Variable Linear Models 

With the above preferences in mind, the single variable linear model that 

produced a finite, non-zero FAR and POD with respect to failing the course was the 

equation relating a student’s performance with that individual’s incoming grade point 

average (GPA), indicated by Table 6 and Table 8. The relatively high POD and low FAR 

in one semester show that this model may be useful for selecting individuals who may not 

have a strong academic background, and thus may need more personalized attention.  

On the other side of the coin, both the single linear models using GPA and SAT 

math scores were able to consistently give finite, non-zero POD and FAR when it comes 

to identifying students who may be capable of earning an “A” grade for the course, 

indicated by Table 7 and Table 9. Interestingly, the SAT math score had a higher POD in 

the fall than in the spring. One hypothesis is that students in the fall semester have just 

recently taken the SAT, which is meant to be a predictor of first-year college success, 

while students taking mechanics in the spring may be less traditional students who may 

have taken the SAT more than one year ago. 

Multivariate Linear Models  

The multivariate linear equation which produces the highest POD and lowest 

FAR for identifying at-risk students by far was Equation III (page 54) with a POD of 1.000, 

and a false alarm of 0.000, shown in Table 15. This means that out of the 3 students that 
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failed the course that semester (who also had information about their CTSR, GPA, and 

SAT scores), this particular equation was able to identify all three of them as students at 

risk to fail the course. Unfortunately, this same equation failed completely the next 

semester, unable to identify a single at-risk student from Table 17. Further investigation is 

needed to determine whether different models could be used for different semesters. 

With respect to getting an “A”, Equation II (page 54) was the only model to give a 

consistent finite non-zero POD and FAR over two semesters, although the probability of 

detection was about 33% in the spring but rose up 50% in the fall, with zero false alarms, 

shown in Table 16 and Table 18.  

Looking at Table 10 through Table 14, we find many coefficients which are not 

significantly different from zero. In fact, typically only one or two factors are among the 

set are significantly different from zero. However, the overall correlation coefficient (𝑅2) 

increases to a value which is above any individual single linear regression correlation 

coefficient. This may be due to multicollinearity, which is a condition where some of the 

factors used in the model correlate to other factors. This can have the effect of making 

any single variable seem insignificant even when it is expected to be significant. 

Measurements of multicollinearity can be performed to determine if this effect is 

influencing the results by computing the variance inflation factor (VIF) for each variable. 

Further research is needed to determine the extent to which the variables are collinear.  

 

Multivariate Nonlinear Models 

There were no nonlinear multivariate models that consistently predicted any 

failing individual or ‘A’ student in both semesters, especially in the fall. In the spring, 

however, Equation VI (page 59) shown relatively high POD and low FAR (Table 19 and 
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Table 20), and may be a possible candidate for further study and refining. Equation VI 

represented a relationship between SAT math scores and GPA.  

Final Remarks 

Predictive models are only useful when they allow someone to make a decision. 

The choice to use any single model to evaluate a possible course of action should be 

heavily considerate of the impact that decision could have. In this context, admitting or 

denying a student admission to a university or to a course based on the predicted grade 

of any single equation would be unethical. However, all of the models presented in this 

chapter that were somewhat consistent from semester to semester were the ones which 

included information about their mathematics ability (SAT) and their academic 

preparedness (GPA). This finding is consistent with today’s body of physics education 

research and may serve as a starting place for additional research projects in the space 

of predictive analysis.  
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Chapter 4  

Predictive modelling of student performance in introductory calculus-based mechanics 

using non-traditional statistical tools 

Statement of the Problem and Purpose of Research  

The previous chapter used traditional statistical methodology to construct 

predictive models of academic performance. It may be possible, however, that there is 

such a complicated interaction among the variables identified in Table 4 that the use of 

any regression model will not be able to accurately and reliably predict an individual’s 

future performance. Modelling and predicting human behavior as they interact with a task 

has been the study of Dr. George Kondraske for over 30 years (see page 22), and in this 

study we will explore the extent to which a theory that considers the human as a system 

of resources can be used to develop a predictive model of academic performance: 

General Systems Performance Theory (GSPT).  

Background on General Systems Performance Theory 

General Systems Performance Theory (GSPT) is based on the idea that an entity 

may have emergent behavior. Emergent behavior is when a system exhibits more 

behaviors than the individual parts which make up the system (the resources) can display 

on their own. For example the brain is composed of about 75% water and the rest is a 

combination of atoms, molecules, and chemicals (the resources), and yet the brain 

serves as the primary controller of the nervous system and gives humans consciousness 

(emergent behavior). In our context, we model the student as a system composed of 

several resources attempting to perform the task of being successful in a physics course. 

In this study, we define the basic performance resources (BPR) as the factors which 

influence a student performance in physics shown in Table 4, and the high-level task 

(HLT) as passing a physics course.  
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The basic idea of GSPT is that the system can only function as well as its 

weakest part. That is, if one critical resource is missing or inadequate then the system will 

not be able to accomplish the task with a given level of satisfaction. The relationship 

between a single resource and the task performance is given by a resource demand 

function (RDF) which represents the amount of a particular resource needed in order to 

accomplish a specific level of performance. For example, the image in Figure 1 shows a 

scatterplot of a resource (on the y-axis) and the performance on a task (on the x-axis). 

The RDF is a function which defines the lower boundary, and points that lie along the 

RDF represent the minimum amount of that resource to achieve that level of success on 

the task.  

Once the RDF has been determined for a number of independent resources, one 

can begin to use the RDFs as predictive functions. Inverting the function then substituting 

values of the quantified resource into the new equation produces a predicted level of 

performance. Doing this for all factors will produce a range of predictive task 

performance. Taking the lowest value in this range will serve as the final predicted level 

of performance because it means that value came from an RDF in which the individual 

had the lowest amount of resource, and therefore, that resource is the individual’s limiting 

factor of success. This analysis of using RDFs to predict future performance is calls 

Nonlinear Causal Research Analysis (NCRA). 

Motivations  

The motivation for a project such as this comes from two events. The first event 

was a research project conducted by a former UTA PhD candidate, Alfonso Hinojosa. 

The bulk of his work relied on traditional statistical analysis, but one part of his 

dissertation included using NCRA to predict the SAT scores of 30 high school AP physics 



 

67 

students (Hinojosa 2015). Error! Reference source not found. shows the result of this 

prediction.  

 

The basic performance resources used were science ability (grades in high 

school physics and the score on the state science assessment, the TAKS – Texas 

Assessment of Knowledge and Skills), math ability (math grades and TAKS/Math), 

English language ability (TAKS/ELA), scientific reasoning ability (measured by Lawson’s 

test), and spatial ability (measured by the MRT).  As can be seen, the model predictions 

are close to the real values, with 20 of the 30 predicted scores within 60 points of the 

actual scores (the standard error for SAT according to the College Board). But the model 

is post hoc and researchers only had the SAT scores for the thirty students (Hinojosa 

2015). 

The second motivating event was a study conducted again by Hinojosa (2015) 

and others as part of his dissertation which compared the performance in STEM courses 

Figure 5 - Model predicted SAT score as a function of actual SAT scores 

(Hinojosa 2015) 
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of high school students enrolled in a magnet school versus a non-magnet school, and 

their relationships to math ability, scores on standardized assessments, and other 

metrics. One of the major conclusions was that many of the factors studied (math ability, 

English ability, grades in STEM courses, mental rotation ability, etc.) had statically 

significant correlations to the TAKS standardized assessments and physics courses. 

However, many of those same factors were not significantly correlated to the non-magnet 

students, with the exception of mathematics ability. 

For example, the statistically significant correlations of the non-magnet students’ 

class grades with the CTSR score disappear, as does the correlation of the MRT with the 

physics grade. A possible explanation for the non-magnet students’ performance is that 

the primary cognitive resource that determines the grade is the student’s math ability.  If 

the non-magnet students have a lower ability to use math in their classes, then math 

would be the primary limiting factor in their performance in those classes and eclipse 

other factors.  But for a magnet student, with stronger math ability, the limiting 

performance factor might be spatial ability, scientific reasoning skill, English language 

ability, or science content knowledge because the requisite threshold math ability exists 

(Hinojosa 2015). 

Research Questions 

Inspirited by the accuracy of the post-hoc SAT score prediction from the NCRA 

(Figure 5) and working with the hypothesis of a threshold effect where you must possess 

a minimum amount of resource to perform at a particular level on a task before being 

limited by some other resource, we will investigate the following research questions:  

1. To what extent can a nonlinear causal resource analysis (NCRA) be 

used to predict academic performance of physics students? 
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2. How does the prediction efficiency of the NCRA compare to that of 

traditional statistical prediction metrics? 

 

 
Methodology 

 
To answer the above research questions, I used the same empirical data set 

described in Chapter 3, that is, three semesters of PHYS 1443, a calculus based 

introductory physics course. Each factor (with the exception of some, discussed later) 

identified from Table 4 is considered a basic performance resource (BPR), and a scatter 

plot is made with the BPR on the y-axis and the final grade (the high level task (HLT)) on 

the x-axis. The resource demand function (RDF) is then generated by constructing a 

piecewise function based on the lower boundary of all the data, shown below:  

 

Figure 6 – A scatterplot of GPA vs Final Grade. The dashed blue line is a 

traditional linear regression line, and the solid red line is the RDF. 
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Once the RDF’s have been created for all the BPRs, the RDFs are then inverted, 

and the next semester of quantified BPRs can be inputted. The result will be a number 

which is the predicted performance based on the amount of BPR the individual has. To 

construct the predictive models, and conduct NCRA, each individual student will have 

one BPR which produces the lowest value of performance. That lowest value is the 

student’s predicted level of performance (final grade), and is associated with the limited 

performance resource.  

 
Results 

 
After generating plots like Figure 6 for each BPR, the following RDF’s were 

constructed. Time spent on homework was not included because we switched to a 

different homework service that does not report the time spent on the assignment, and 

SAT reading was also not included because of a high number of outliers. Due to the 

Figure 7 – An NCRA approach to determine the predicted final grade (Kondraske 2011). 
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nature of GSPT requiring that “more” of a quantity is “better”, the number of hours worked 

in a day is subtracted from 24, and thus becomes number of hours “not worked” during 

the day. 

Resource Equation Domain  

Spatial ability y =  1.667E-05*x + 0  for x < 60    

 y =  0.049*x - 2.99   for 60 ≤ x <  80  

 y =  0.140*x - 10.220  for 80 ≤ x <  87.13  

 y =  0.233*x -18.3  for 87.13 ≤ x  ≤ 100  

Scientific Reasoning ability y =  0.0173*x + 0  for x < 57.67    

 y =  3.53E-05*x +0.997  for 57.67 ≤ x <  85.92  

 y =  0.141*x - 11.1  for 85.92 ≤ x <  93  

 y =  0.428*x - 37.8  for 93 ≤ x  ≤ 100  

Basic math knowledge (SAT Math) y =  8.83*x + 0  for x < 60    

 y =  4.34E-05*x + 529  for 60 ≤ x <  83  

 y =  6.24*x + 11.3 for 83 ≤ x <  91  

 y =  8.33*x - 178  for 91 ≤ x <  97  

 y =  13.3*x - 663  for 97 ≤ x  ≤ 100  

Basic physics knowledge y =  1.10E-05*x + 0  for x < 90.977    

 y =  0.111*x - 10.1  for 90.977 ≤ x  ≤ 100  

Academic preparedness (GPA) y =  0.0143*x + 0  for x < 48    

 y =  0.0164*x - 0.100  for 48 ≤ x <  67  
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 y =  0.0683*x -3.58  for 67 ≤ x <  81  

 y =  0.0482*x -1.95  for 81 ≤ x <  95.93  

 y =  0.325*x -28.5  for 95.93 ≤ x  ≤ 100  

Initial self-assessment of science 

ability 

y =  0.0115*x + 0  for x < 86.86    

 y =  0.0824*x - 6.16 for 86.86 ≤ x <  99  

 y =  x - 97.0  for 99 ≤ x  ≤ 100  

Initial self-assessment of math ability y =  0.0136*x + 0  for x < 73.3    

 y =  0.0483*x - 2.54  for 73.3 ≤ x <  94  

 y =  0.167*x - 13. 7  for 94 ≤ x  ≤ 100  

Hours not worked at job (/day) y =  0.263*x + 0  for x < 57    

 y =  6.667E-05*x + 

15.0  

for 57 ≤ x <  72  

 y =  0.0473*x + 11.6  for 72 ≤ x <  93.1  

 y =  0.385*x - 19.8  for 93.1 ≤ x <  97  

 y =  2.17*x - 193  for 97 ≤ x  ≤ 100  

Hours slept per night y =  0.0455*x + 0  for x < 66    

 y =  0.0588*x - 0.882 for 66 ≤ x <  83  

 y =  0.0625*x - 1.19 for 83 ≤ x <  99  

 y =  x - 94  for 99 ≤ x  ≤ 100  
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Table 23 – Piecewise linear RDF for each basic performance resource. The x-value is an 

expected level of performance, and the y-value is the minimum amount of that resource 

needed. 

 
Using the same RDFs for both semesters, student data from Spring 2017 and 

Fall 2017 were inputted to produce the predicted final grade for each resource. The 

lowest value of these functions was taken as the final predicted grade, and it was 

compared to the actual earned grade. The same dichotomous prediction efficiency 

metrics was used as previous chapters, and the following figures and tables summarize 

the prediction efficiency:  

Figure 8 – A graph of spring 2017 students’ predicted final grades versus 

actual final grades. The dashed line represents the linear trendline, and the 

solid line has been added for reference and has a slope of 1, representing a 

perfect prediction (N=60). 
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In Figure 8, the solid line with a slope of 1 was manually added to indicate a 

“perfect” prediction. If a student is above the line, that individual got a lower grade than 

what was predicted, if a student is below the line, he or she scored above the predicted 

grade. The dashed line represents the correlational trend in the predicted vs. actual 

grade. The following figure shows the predictions for the following 2017 semester. 

 

 

 

 

 

 

 

 

Figure 9 - A graph of fall 2017 students’ predicted final grades versus 

actual final grades. 
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Finally, the two semesters combined: 

 

 In Figure 10, there are two possible outliers identified. To be an outlier on this 

graph means that the individual scored very differently from the predicted outcome. 

Through the lens of GSPT, outliers above the solid line, such as student 1, means that 

they performed worse than predicted, and that they possibly were limited by the lack of 

resource which was not included in the construction of the NCRA. In other words, there 

was some factor which was not included in the model that was holding him or her back. It 

may be possible in the future to interview students like these to get a better 

understanding of the cause of this poor performance. Student 2 on the other hand is far 

below the line, which means that this individual performed well despite being predicted to 

have poor performance due to low BPRs. The first run of this analysis produced several 

outliers below the line, and a majority of them were due to low SAT reading scores. In 

Figure 10 – A graph of spring (dots) and fall (diamonds) 2017 students’ 

predicted final grades versus actual final grades. 

2 

1 
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each case, the next limiting factor would have been SAT math score, and each of their 

resulting predicted grades would have been closer to their final grade. Student number 2 

was reported to be limited by the number of hours worked at a job per day, and without 

that factor, he or she would have been predicted to earn an A (which that individual 

actually did earn). 

Prediction Efficiency  

Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

NCRA 1 5 1 53 0.900 0.333 0.167 0.500 

Table 24 – Prediction efficiency for NCRA; “Will the student fail the course?” – Spring 

2017 

Will the student get an ‘A’? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

NCRA 16 1 32 11 0.450 2.824 0.941 0.667 

Table 25 - Prediction efficiency for NCRA; “Will the student get an ‘A’?” – Spring 2017 

 
Will the student fail the course? 

Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

NCRA 0 15 3 67 0.788 0.200 0.000 1.000 

Table 26 – Prediction efficiency for NCRA; “Will the student fail the course?” – Fall 2017 

Will the student get an ‘A’? 
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Model Used Hits Misses False 

Alarm 

Correct 

Negative 

Accuracy Model 

Bias 

Probability of 

detection 

False Alarm 

Ratio 

NCRA 11 4 45 25 0.424 3.733 0.733 0.804 

Table 27 - Prediction efficiency for NCRA; “Will the student get an ‘A’?” – Fall 2017 

 

 
Conclusions and Discussion 

 
General Systems Performance Theory can be used as a framework for modelling 

human performance on a task. In this study, the student is considered a system of 

resources which are drawn upon to complete the high level task. The basic performance 

resources are the factors that influence performance in physics, and the task is passing a 

physics course. By quantifying and measuring the resources of incoming students, it can 

be compared to the resource level and performance of previous students in order to 

construct a predictive model. This type of Nonlinear Casual Resource Analysis (NCRA) 

approach has never been used in the context of an introductory physics course 

sequence, and thus presents a unique approach to identifying at-risk or high-performing 

students.  

With regards to the NCRA model, Table 24 through Table 27 show inconsistent 

or unreliable prediction efficiency. Although the false alarm ratio and probability of 

detection are relatively low in the spring for detecting at-risk students (Table 24), it does 

not give the same results in the subsequent semester (Table 26). The high probability of 

detection for identifying “A” students is consistent and promising (Table 25 and Table 27), 

but the high false alarm ratio and model bias means that the model in general tends to 

over predict students’ performance, and may not be the most trustworthy.  
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One of the benefits to using NCRA over traditional statistical methodology is the 

fact that the NCRA models will report which resource is the limiting factor for a particular 

individual. The top three most common limiting resources for the spring was GPA, SAT 

Math scores, and mental rotation ability. The top two most common limiting resources for 

the fall was GPA and, surprisingly, hours worked. However, the overwhelming majority of 

predicted values for hours worked were above 95%, so the third most common limited 

resource was actually the SAT math scores, followed by mental rotation ability.  

One very interesting finding is that the NCRA model actual produces similar 

trends of prediction efficiency metrics. That is, in both traditional linear regression and in 

NCRA, there were models which had consistent prediction for “A”’ students, relatively 

promising results in the spring for identifying at-risk students, and the models which had 

the biggest influence were those related to GPA, SAT scores, and mental rotation ability. 

Another benefit to using NCRA is that we are able to identify which factor may be most 

limiting to a student’s performance. This could allow a researcher to develop a 

personalized intervention for that individual and thus improve his or her predicted 

performance. The downside is that if a student has a poor single-point measurement, 

such as SAT reading score or MRT score, then the predicted performance may show an 

exceedingly low score. This is the case with the outliers from an initial version of this 

analysis, in which three additional students were all limited by SAT reading scores in 

such a way that they were considered extreme outliers in Figure 10. It’s entirely possible 

that these individuals did not perform well on the reading portion of the SAT due to 

distraction, lack of sleep, or any other number of reasons and therefore was not a true 

reflection of their ability. That fact that a majority of these outliers are due to this particular 

factor supports the hypothesis that this particular factor should not be included in this 

model, and was therefore left out. Additionally, a majority of the twelve students below 
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the solid orange line from Figure 10 all were limited by a single-points measurement such 

as number of hours worked, mental rotation ability, or their confidence in science or 

mathematics, with only one student being limited by their GPA, which is not typically 

considered a single-point measurement. 

Although the conclusion of this study did not lead to profound predictive 

capability of physics students, a novel application of statistical methodology that comes to 

a similar conclusion as traditional statistical methods means that the use of GSPT and 

NCRA may have place in an educational context, but will require further refinement of the 

approach or the model, and may serve as the beginning of future research projects.  
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Chapter 5   

Trends in cognitive ability and affective measures among courses and institutions   

Statement of the Problem and Purpose of Research  

When developing predictive models of student performance in Chapter 3 and 

Chapter 4, a question that arises is whether or not students in the fall and spring 

semesters are the same, or at least considered to be independent samples of the same 

population. If so, then we should expect that the same predictive models can apply to 

both semesters. If not, then it will likely be that two different models are needed for two 

different populations. Investigating trends in cognitive ability (mental rotation ability, 

scientific reasoning, SAT scores, etc.) and affective measures (self-efficacy, motivations, 

etc.) over a period of successive semesters will allow professors and instructor to have 

quantitative evidence of their students’ ability and thinking, and can allow researchers to 

determine if students are similar enough to warrant using the same predictive models.   

Furthermore, comparing these measures from one course to another may allow 

insight into the effect of staying in a STEM program may have on their cognitive ability 

and attitudes towards physics as they progress from an introductory physics course all 

the way to graduate school. Finally, comparing these metrics across institutions may 

reveal interesting patterns in the effect an institution may have on their student body such 

as one institution filtering out individuals or another providing a larger growth in cognitive 

ability. 

 
Research Questions 

In this study, we will attempt to answer the following research questions: 

1. Do factors that influence performance in physics have consistent 

correlation with performance from semester to semester within a course? 
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2. What are the differences in the descriptive statistics of some of these 

factors among the same course in different institutions? 

3. How do these factors change as physics students grow and take 

additional physics courses? 

 

 
Methodology 

 
To answer these research questions, we administered a variety of assessments 

and surveys either in-class or online to students enrolled in physics courses at The 

University of Texas at Arlington (UTA), Texas Christian University (TCU), and Yale 

University (Yale). The assessments primarily included the Mental Rotation Test (MRT), 

the Classroom Test of Scientific Reasoning (CTSR), and a select number of questions 

from the Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich 1991). The 

MRT and CTSR were described on page 43. The MSLQ is a questionnaire in which 

students respond to various statements using a Likert scale. Students were also given a 

survey which asked various questions related to demographics, academic preparedness, 

attitudes towards the course, self-efficacy in math and science ability, and other 

academic habits. This survey was also selected because of its proven reliability and 

availability.  

The collaboration efforts began in spring 2017 with Texas Christian University 

when a lecturer in the physics department at both UTA and TCU, Dr. Fajer Jaafari, 

suggested that we also collect data from TCU students for comparison for the upcoming 

fall semester. Meanwhile at a GIREP conference in Dublin during the summer of 2017, 

my research advisor Ramon Lopez met Dr. Claudia De Grandi, a Helmsley Postdoctoral 
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Teaching Scholar in Physics at Yale University, and began to discuss the extent to which 

Yale could collaborate with UTA during the upcoming fall as well.  

To answer research question 1, we gave the same assessments as before to 

students enrolled in PHYS 1443 at UTA, the same students from Chapter 3 and 4, and 

recorded their responses to each test and survey item. We are then able to track the 

means, standard deviations, correlations and other statistical information from semester 

to semester. To answer research question 2, a collaboration was formed among UTA, 

TCU, and Yale to give the MRT, CTSR, and MSLQ to their respective calculus-based 

introductory physics courses. All parties involved collected data under the same UTA 

Institutional Review Board (IRB) protocol, and all documentation (physical or electronic) 

including consent forms are kept secure following UTA IRB guidelines. To answer 

research question 3, the MRT and CTSR was administered to students enrolled in 

freshman-, junior-, and senior-level physics courses at UTA, such as modern physics and 

advanced mechanics, as well as to graduate students.  

 
Results 

 
Trends in factors that influence performance in physics in a single course. 

Answering research question 1, from fall 2015 to fall 2017, eight factors from 

Table 4 were individually correlated to the students’ final grade in PHYS 1443, the 

calculus based introductory physics course at UTA. Thus for each factor in each 

semester, a simple linear regression equation was calculated in the same was as 

described in the “ 

Single-variable linear regression” section. The following diagrams show the slope 

of the regression equation on the x-axis, and the y-intercept of the equation on the y-axis. 

The errors bars in both the x- and the y-direction represent the standard error in the slope 
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and y-intercept respectively. The standard error is an estimation of the standard deviation 

of the entire population from which the sample was drawn, and is equal to the standard 

deviation of the sample divided by the square root of the sample size. Hypothesis testing 

can be used to determine the statistical differences of these quantities, because 

overlapping standard error bars may indicate that the quantities are not significantly 
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different, and if we computer the standard deviation from the standard error, we can then 

determine if the values are statistically different.  

Figure 11 – A representation of single linear regression equations in successive 

semesters for Final Grade vs SAT Math (top) and Reading (bottom) 



 

85 

 

Figure 12 – A representation of single linear regression equations in successive 

semesters for Final Grade vs GPA (top) and Hours Worked (bottom) 
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Figure 13 – A representation of single linear regression equations in successive 

semesters for Final Grade vs MRT (top) and CTSR (bottom) 
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Figure 14 – A representation of single linear regression equations in successive 

semesters for Final Grade vs Confidence in Physics (top) and Math (bottom) 
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Figure 11 through Figure 14 show how various factors correlate to performance 

in the course throughout several semesters. Using a one-way ANOVA test, there were no 

significant differences in the slope or intercept of any factor. However, a visual inspection 

of the above figures shows that one or both spring semesters is usually on one extreme 

end of the figure in either slope, intercept, or both. In addition to the trends in the 

correlational metrics, below are the trends in the means and standard deviations of the 

same factors above from fall 2015 to fall 2017. 

 

Factor Metric Fall 2015 Spr 2016 Fall 2016 Spr 2017 Fall 2017 

SAT Math Mean 635.52 674.17 640.00 640.00 629.68 

 St.Dev 56.23 71.32 70.47 54.62 57.47 

 N 29 24 30 36 31 

SAT Read Mean 576.96 588.18 605.71 580.36 592.14 

 St.Dev 42.26 75.63 67.08 64.89 60.27 

 N 23 22 28 28 28 

GPA Mean 3.07 3.09 2.96 3.04 2.94 

 St.Dev 0.56 0.76 0.56 0.72 0.67 

 N 44 50 61 62 53 

MRT Mean 12.09 9.79 10.50 10.75 10.21 

 St.Dev 5.24 4.45 5.01 4.88 5.16 

 N 76 52 112 60 85 

CTSR Mean 7.55 7.38 6.62** 7.84** 7.08 

 St.Dev 2.38 2.54 2.50 2.02 2.23 

 N 76 50 104 58 86 



 

89 

Hr Worked Mean 1.99 1.65 1.71 1.05 2.21 

 St.Dev 2.80 2.84 2.31 2.11 2.91 

 N 67 39 73 43 63 

Conf. Sci Mean 3.13 3.26 3.23 3.43 3.34 

 St.Dev 1.17 1.21 1.13 1.25 1.03 

 N 67 
 

39 74 44 64 

Conf. Math Mean 3.94 4.16 4.07 4.02 4.28 

 St.Dev 0.92 0.79 0.73 1.00 0.68 

 N 67 38 74 44 64 

Table 28 – Trends in the means and standard deviations among successive semesters of 

eight factors that influence performance in physics 

None of the means or standard deviations of the factors show any significant 

difference at the 95% CI with the exception of the CSTR mean between fall 2016 and 

spring 2017. This result somewhat agrees with Figure 11 through Figure 14, which show 

that the overall correlation to the performance in the course can vary to a small degree 

from semester to semester, with the exception of the spring semesters being different to 

a somewhat larger degree.  

Multi-institutional differences in cognitive ability and affective beliefs of introductory 

physics students 

Answering research question 2, the Mental Rotation Test (MRT) and Classroom 

Test of Scientific Reasoning (CTSR) were administered along with selected question 

from the Motivated Strategies of Learning Questionnaire (MSLQ) to students enrolled in 

UTA’s PHYS 1443, TCU’s PHYS 20474, and Yale’s PHYS 180. The section tested at 

TCU also included a small group of honors students enrolled in the same course, these 

students will be put into a separate group. These three courses are calculus-based 
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physics courses covering Newtonian mechanics taken primarily by STEM majors. The 

following table summarizes the results from the fall 2017 semester. There will be some 

data missing because Yale did not administer the MRT to their students.  

Factor Metric UTA TCU / Honors Yale 

CTSR  Mean 7.09 7.39 / 9.44 9.95 

 St Dev 2.25 1.88 / 1.88 1.49 

 N 85 18 / 9 39 

MRT  Mean 10.21 12.72 / 15.11 --- 

 St Dev 5.16 4.05 / 3.48 --- 

  N 85 18 / 9  --- 

Table 29 – Descriptive statistics of CTSR and MRT scores of physics students at three 

institutions in fall 2017 

 

With respect to the CTSR, Yale students scored significantly different (higher) 

scores than UTA (p<0.001) and TCU regular (p<0.001), but not significantly higher than 

TCU honors (p=0.383). TCU honors students’ mean is also significantly different from the 

TCU regular students’ means (p=0.0131), and is significantly higher than UTA students’ 

means (p=0.0033).  TCU regular and UTA means were not significantly different 

(p=0.599).  

With respect to the MRT, TCU honors students did have significantly higher 

means from UTA students (p=0.003), but TCU regular students did not have statistically 

different means from the honors (p=0.144) or UTA students (p=0.0554).  

The MSLQ comprises 31 statements, and students report the extent to which 

they agree with the statement using a Likert scale where a 1 is strongly disagree, 4 is 

neutral, and 7 is strongly agree. There were 14 statements which showed significant 
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difference in the response of UTA students and Yale students.  The p-value associated 

with this difference will be labeled as p_YU. Furthermore, there response could be 

significantly different from 4 (the neutral response), and the p-values associated with this 

difference will be p_Y and p_U for Yale and UTA students respectively. The following 

table summarizes the significant responses:  

Statement Yale 
Mean 

UTA 
Mean 

Yale 
St. 

Dev 

UTA 
St. 

Dev 

Yale 
N 

UTA 
N 

p_YU p_Y p_U 

5 3.98 4.87 1.563 1.361 105 70 0.000 0.901 0.000 

6 3.762 4.814 1.638 1.618 105 70 0.000 0.139 0.000 

11 4.21 5.17 1.759 1.633 105 70 0.000 0.205 0.000 

15 4.067 4.886 1.607 1.565 105 70 0.001 0.672 0.000 

16 4.667 5.214 1.567 1.667 105 70 0.031 0.000 0.000 

17 4.314 5.029 1.695 1.711 105 70 0.007 0.060 0.000 

20 4.267 5.171 1.416 1.383 105 70 0.000 0.056 0.000 

21 4.429 5.343 1.44 1.35 105 70 0.000 0.003 0.000 

24 3.952 4.543 1.583 1.63 105 70 0.019 0.759 0.007 

26 4.562 5.214 1.664 1.559 105 70 0.009 0.001 0.000 

28 4.429 3.829 1.885 1.849 105 70 0.039 0.022 0.441 

29 4.505 5.1 1.395 1.571 105 70 0.011 0.000 0.000 

30 4.413 4.886 1.909 1.915 105 70 0.013 0.445 0.000 

31 4.505 5.271 1.395 1.424 105 70 0.001 0.000 0.000 

Table 30 – A table of significantly different responses to MSLQ statements between UTA 

and Yale students in fall 2017. p_YU is the p-value associated with the difference 

between Yale and UTA students, and the other p-values are the different from 4, the 

neutral response.   

Statement 
Number 

Statement 

5  I believe I will receive an excellent grade in this class 

6  I'm certain I can understand the most difficult material presented in the 
readings for this course 

11  The most important thing for me right now is improving my overall grade 
point average, so my main concern in this class is getting a good grade 

15  I'm confident I can understand the most complex material presented by the 
instructor in this course 
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16  In a class like this, I prefer course material that arouses my curiosity, even if 
it is difficult to learn 

17  I am very interested in the content area of this course 

20  I'm confident I can do an excellent job on the assignments and tests in this 
course 

21  I expect to do well in this class 

24  When I have the opportunity in this class, I choose course assignments that 
I can learn from even if they don't guarantee a good grade 

26  I like the subject matter of this course 

28  I feel my heart beating fast when I take an exam 

29  I'm certain I can master the skills being taught in this class 

30  I want to do well in this class because it is important to show my ability to 
my family, friends, employer, or others 

31  Considering the difficulty of this course, the teacher, and my skills, I think I 
will do well in this class 

Table 31 – A key for reading Table 30 

The first statement that showed a difference in response was “I believe I will 

receive an excellent grade in this class”. Yale students, on average, responded neutrally, 

while UTA students tends to agree with the statement more. In fact, UTA students 

consistently tended to agree more often than Yale students with nearly every statement 

except for “I feel my heart beating fast when I take an exam” in which the average 

response was neutral for UTA, whereas most Yale students agreed with the statement.  

 

Changes in the factors as students continue in the program  

In previous research by former graduate students, it was shown that scores on 

the MRT and CTSR can be influenced by either direct experimental intervention or just by 

taking additional physics courses (Ximena 2011). In this study we administered the MRT 

and CTSR to the introductory physics course, junior- and senior-level physics courses, 

and graduate-level courses in various semesters. The courses involved were PHYS 

1443, the freshman level introductory calculus based mechanics course; PHYS 3313, a 

junior-level introductory course into modern physics; PHYS 3446, a junior-level particle 

physics course; PHYS 4319, a senior-level advance mechanics course, and PHYS 5306, 
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classical mechanics, a graduate-level course. For 1443, data was averaged over five 

semesters (fall 2015 to spring 2018); for 3313, data was collected in spring 2018; for 

3446, data was collected in spring 2016; for 4319, data was collected from spring 2015 

and 2016; and for 5306, data was collected in fall 2015. The following table summarizes 

the means, standard deviations, and number of students for each class for the MRT and 

CTSR. 

Test Metric 1443 3313 3446 4319 5306 

MRT Mean 10.78 11.13 9.33 10.29 10.75 

 St Dev 5.04 5.14 4.33 4.85 5.97 

 N 402 40 12 28 8 

CTSR Mean 7.21* 8.71* 8.17+ 8.50*+ 8.00 

 St Dev 2.36 2.32 1.20 2.20 2.07 

 N 391 42 12 28 7 

Table 32 – Descriptive statistics of MRT and CTSR scores from various undergraduate 

physics courses up to a graduate level course 
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In Table 32, there is no significant difference in the mean MRT scores among 

any course. This is likely due to the fact that most of the sample sizes presented are 

small, and are thus highly influence by extreme values. On the CTSR, the freshman-level 

course, 1443, had the lowest mean overall. This value, however, was only significantly 

different from 3313 (p=0.0007) and 4319 (p=0.00172), indicted by the * symbol. 

Interestingly, the next significant difference is between 3446 and 4319, the junior and 

senior level courses, indicated by the + sign (p<0.001). Strangely, the graduate student 

scores were not significantly different from any other courses.  

 
Conclusions and Discussion 

 
The goal of this study was to determine the trends in various factors that 

influence performance in physics over successive semesters and as a student advances 
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in the program. These trends include the changes in the means, standard deviations, and 

correlations with performance. Furthermore, studying these trends lead to forming 

collaborations with other universities and investigating how measurements of these 

factors compare among the other students.  

Trends in factors that influence performance in physics in a single course 

 Figure 11 through Figure 14 show the trends in the linear correlations with each 

factor to the performance in the course. Although there were no significant differences in 

the slope or intercept at the 95% CI, something about the spring semesters seem to 

affect the correlations among factors. With the only exception of number of hours worked 

per day, a spring semester can be found at either the lowest or highest value of slope or 

intercept. Because of this result, I would caution against drawing generalized conclusions 

from any intervention relying on linear regressions from a single semester, because there 

seems to be an effect where correlations are somewhat different in slope, intercept, and 

𝑅2 values (see Appendix B) from spring to fall semesters.  

Overall, it does appear that the descriptive statistics of the factors identified 

remain consistent with each semester. Although most factors described did not have 

significantly different means and standard deviations, there was a significantly higher 

average CTSR score in the spring 2016 semester than the fall 2015 (Table 28).  An 

increase in the mean values that does not significantly affect the correlations implies that 

there may be a more complicated relationship between that factor (and others) to 

performance in the course which is not well suited to be defined by regression. From a 

GSPT standpoint, it may seem that the threshold for using scientific reasoning is already 

being met in both the spring and fall semesters, and that the threshold for “passing” 

performance falls below the lowest mean CTSR score value. In other words, if the mean 

CTSR values continue to increase or decrease somewhat, it isn’t likely that the 



 

96 

correlations will change because there will be some other factor which is more influential 

on performance.  

Multi-institutional differences in cognitive ability and affective beliefs of introductory 

physics students 

 
When it comes to scientific reasoning, STEM major students enrolled in the same 

type of course, an introductory calculus based physics course, showed much different 

ability. In Table 29, Yale and TCU honors students scored significantly higher than their 

peers at TCU (regular) and UTA. The physics course taught at TCU was the same 

course, but was composed of honors and regular students. Additionally, regular TCU 

students were not significantly different from UTA students. One explanation for this 

finding is that the demographics of the respective institutions are different. UTA is a 

public, Hispanic-serving institution, which means at least 25% of enrolled students are 

Hispanic, and 15.8% are African American. TCU and Yale are private universities, and 

enroll 11% Hispanic students each, with 4.8% and 10% African American students 

respectively. (https://oir.yale.edu/sites/default/files/factsheet_2016-17.pdf) 

(http://www.ir.tcu.edu/factbooks/2016/student_data.asp). The demographics of the study 

body of a school will affect the demographics of the courses being taught, but in the 

physics classroom specifically, minorities are still underrepresented in general. Another 

possible reason for the difference in scores is that students at Yale and TCU are already 

more likely to have been selected based on their academic performance. This is also 

supported by the fact that TUC honors students scored higher on average than the 

regular students, but doesn’t necessarily explain how regular TCU physics students 

performed the same as UTA physics students on average. 

With regard to the MRT, TCU honors students again performed on average 

better than UTA students, but this time not significantly better than their “regular” peers. 

https://oir.yale.edu/sites/default/files/factsheet_2016-17.pdf
http://www.ir.tcu.edu/factbooks/2016/student_data.asp
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Like scientific reasoning ability, individuals who were selected to join the honors college 

may have been selected on the basis of prior academic performance. This supports the 

idea that mental rotation ability and scientific reasoning ability may be influential to 

academic performance, or at least should be considered in the process of determining 

academic ability or performance. Since Yale did not participate in the MRT, no 

comparison can be made for those students.  

The MSLQ was given to Yale and UTA students, and Table 30 and Table 31 

show the results of statements that had a significant difference in levels of agreement. In 

general, UTA students tended to agree more to statements reflecting self-confidence and 

high expectations than Yale students who were more neutral. This could reflect a 

difference in mindset and patterns of thinking for students enrolled in physics courses at 

these institutions. It may be possible that students attending UTA expect to enjoy their 

classes and they expect that that they will learn what they need to know in order to be 

successful, whereas Yale students may be tougher on themselves and expect much 

more difficult experiences. One interesting exception to this trend is that Yale students 

tended to agree with the statement “I feel my heart beating fast when I take an exam” 

more than UTA students. This may reflect a more stressful testing environment at Yale 

where high academic achievement is required just to be considered for admission.  

Changes in the factors as students continue in the program 

Previous work in studying trends in cognitive ability have shown that mental 

rotation ability increases from high school to college (Hinojosa 2015) and that taking 

engineering or physics courses also tend to increase such ability (Cid 2011). It is then 

natural to study the progression of mental rotation ability and scientific reasoning skill 

from freshman-level physics courses up to graduate-level courses. When doing so, it’s 

important to keep in mind that these students are not the same students that move up, 
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but if the upper-division students follow the same trends as reported in this chapter, then 

it’s safe to assume that each course is a fair representation of the course for any 

semester. It’s also important to note that the findings in this chapter were from MRT and 

CTSR exams administered early in the semester. It has been shown that there is often 

improvement in the scores during a test/retest type of intervention, and out data matches 

up to previous work’s “pre” scores. The results in Table 32, visualized in Figure 15, show 

no significant differences in the mean values of MRT scores among students from PHYS 

1443, the introductory physics course, up until PHYS 5306, a graduate course in classical 

mechanics. There was, however, a significant increase in scientific reasoning ability from 

1443 to PHYS 3313, a junior-level physics course in modern physics. The next increase 

in scientific reasoning then comes from the junior-level particle physics, 3446, to the 

senior-level advanced mechanics, 4319, which is the last physics course a senior might 

take. It seems logical that scientific reasoning skills increase as you take more physics 

courses, but it may also be possible that students who were already scientifically minded 

persisted through the program and were more capable of taking on the additional 

challenged associated with higher level physics courses. This claim can be tested by 

tracking individual students from 1443 onward. This analysis was completed to a small 

extent by looking at students who participated in the study from 2015 and are now juniors 

in modern physics by 2018, but there were too few individuals to make any meaningful 

conclusions.   
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Chapter 6  

Summary and future research direction 

This dissertation represents my contribution to the field of physics education 

research (PER).  As classrooms change and technology improves, there is an increasing 

trend to incorporate primary data into not only PER research methodology but also 

pedagogy and classroom management.  The challenges of PER arise because humans 

beings to not behave like protons in a vacuum; we are all unique and have complicated 

motivations, expectations, and backgrounds. This doesn’t mean that quantitative 

research can’t exist, it just means that one must be more careful when interpreting the 

results of such a project. I believe that the strength of my contribution lies with the 

consistent statistical methodology used throughout it, and that it may be used again in the 

future as a link in the chain of another project.  

There were four major parts to this study. The first was determining the impact of 

flipped classrooms on upper-division and graduate students. The second and third parts 

involved using primary, empirical data to developed traditional and nontraditional 

predictive models of academic performance, and to determine the prediction efficiency of 

such models. Finally, an investigation of how factors that influence performance in 

physics change not just from semester to semester, but also from course to course as 

students progress in their major, and compare them to physics students at other 

institutions. 

In the flipped classroom, the major finding was that students found the active 

component of the course (small group discussions, group problem solving, notecard 

feedback, etc.) was uniformly seen as beneficial to their learning, regardless of their 

feelings toward the flipped class itself. Some students reported that they looked forward 

to taking more flipped classes, and some did not enjoy it, but seniors and graduate 
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students like both considered the active, in-class portions to continue more to their 

understanding than traditional lectures. Furthermore, pass rates on the graduate 

qualifying exam increased to 100% for the section which was taught in a flipped and 

active format, while other traditionally taught sections remained the same. Future 

research in the space of studying pass rate of the qualifying exam or other measures of 

graduate student success, would likely involve developing a concept inventory or another 

assessment and investigate if the increase in pass rate was due to increased knowledge 

retention due to active learning classes. Focusing more on the seniors, one might be 

interested in what students do after graduating, and if performing well in a flipped 

classroom influences their decisions to pursue graduate school. 

Next, developing a reliable and robust predictive models of student performance 

would be an absolute revolution in the education industry. Identifying students at risk of 

failing the course would allow educational professionals to target such individuals with 

interventions or support to help them succeed. I don’t believe that any model will be 

100% efficient, but I believe finding the right combination of known factors may be a step 

in the right direction. To find this combination, factors that are known to influence 

performance in physics courses can be correlated to such performance. This type of 

investigation isn’t new by any definition, and complicated human behaviors make this 

analysis that much more difficult, but it allows us to draw a baseline for trying more exotic 

statistical and quantitative methodologies. Although the linear and nonlinear models 

developed in this project didn’t produce consistent predictions in general, there are some 

that show promise, and perhaps just need to be refined and given more time to make 

more predictions. Additionally, quantitative methodology from GSPT arrived at similar 

conclusions to the traditional methodology, which does inspire me to continue working on 

GPST models in an educational environment. Future work in both of these approaches 
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include identifying more factors that may influence performance in physics courses, 

expanding into other physics courses, developing more robust RDFs, and perhaps even 

considering two (or more) different models for different semesters. So much information 

can be learned from empirical sets of data that it is possible that a human can’t identify 

certain patterns which may exist, so I do have plans to apply principals of machine 

learning and deep learning to uncover potentially hidden patterns in the data.  

Finally, monitoring trends in student ability is of great importance to education 

and school administrators because it can offer one unique perspective of student learning 

or achievement. I believe that most teachers can get a “feel” for how well their students 

have been prepared for the course after only a few weeks, so one motivation for making 

comparisons from semester to semester of the same course is to provide quantitative 

records of the class demographics, cognitive ability, and affective beliefs. I must also 

assert that this analysis should be done by an independent party, as not to bias the 

instructor. In this study, we found that the means and correlations to performance of 

various factors remained consistent from one semester to another. Comparing ability 

among different courses, however, can give insight to how the students are growing 

mentally, or even what skills are required to make it to the senior year of a physics 

program. This study shows that there are significant increases in scientific reasoning 

ability as students move up in the program from some courses to another, but there may 

eventually be an upper limit which is reached around the junior year.  

Institutional differences in physics students may be of interest to recruiters, 

marketers, and any other individuals who have a stake in comparing student bodies. In 

this study, it was found that, across similar calculus based introductory physics courses 

for STEM majors, Yale and TCU honors students shows higher scientific reasoning ability 

than UTA and TCU regular students. Yale students, however, seem to have different 
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expectations of success than UTA students, and may be under more pressure to be 

academically successful. Future research in the area of longitudinal, vertical, or 

institutional comparisons will always benefit from having larger datasets, longer time 

periods, and additional intuitions. At a joint meeting of APS and Zone 13 of the SPS 

where some of these findings were presented, it was suggested that universities from 

state-wide conferences could submit their own data for a project entirely dedicated to 

these institutional studies. Our collaboration with Yale and TCU could even evolve to 

have those places collect vertical data on these factors from different courses, and make 

multi-intuitional vertical comparisons. The next logical step would then be to continuously 

collect this data over several semesters, to make an extremely comprehensive multi-

institutional longitudinal and vertical study of trends in factors that influence performance 

in physics.  
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Appendix A 

Surveys 
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Flipped Classroom Survey 1 

Throughout the semester, you engaged in what’s known as a “flipped classroom” where you review lecture notes 

and videos before coming to class, and during class you worked on solving problems and deepening your 

understanding. Please read the following statements and indicate the extent to which you agree with the statement by 

putting a checkmark in the appropriate box.  

Your responses will be kept confidential and will not be read until after final grades have been officially posted. 

Name: ________________________________ 

Statement Strongly 

Disagree 

Somewhat 

Disagree 

Neutral Somewhat 

Agree 

Strongly 

Agree 

 

I watched every lecture video before class 

 

     

I watched most of the lecture videos, but 

skipped a few 

 

     

I watched the lecture videos as soon as they 

were posted 

 

     

I dedicated specific times in the week for 

watching the videos 

 

     

I watched the lecture videos only on the 

weekends 

     

I watched the group of posted lecture videos 

all in one session 

 

     

I spread out watching the lecture videos over 

more than three days 

     

 

Statement Strongly 

Disagree 

Somewhat 

Disagree 

Neutral Somewhat 

Agree 

Strongly 

Agree 

 

While watching the videos, I took notes on 

paper 

 

     

While watching the videos, I also followed 

along in the textbook 

 

     

While watching the videos, I paused the 

videos to stop and think 

     

While watching the videos, I would 

frequently go back a few minutes to listen 

again 

     

After watching the entire video, I would 

rewatch it within one hour 
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Before an exam, I rewatched some of the 

lecture videos 

 

     

Watching the videos more than once helped 

me understand some topics. 

     

 

 

Statement Strongly 

Disagree 

Somewhat 

Disagree 

Neutral Somewhat 

Agree 

Strongly 

Agree 

 

I enjoyed this flipped classroom 

 

     

I learned less from this flipped class 

compared to what I learn in traditionally 

taught classrooms 

     

I learned more from this flipped class 

compared to what I learn in traditionally 

taught classrooms 

     

I would enjoy taking additional “flipped” 

courses 

 

     

 

 

Statement Strongly 

Disagree 

Somewhat 

Disagree 

Neutral Somewhat 

Agree 

Strongly 

Agree 

 

Solving problems in class was helpful for my 

understanding of the topics  

     

Working in groups during class helped me 

understand the material better than working 

on my own 

     

The additional discussions and clarifications 

in the classroom sessions were important to 

understanding the material 

     

I enjoyed discussing conceptual questions in 

class that were asked in the lecture videos 
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Flipped Classroom Survey 2 

 

The recorded lecture videos were helpful for my understanding of the topics. 
1 – Strongly Disagree 
2 – Disagree 
3 – Neutral 
4 – Agree 
5 – Strongly Agree 
 
Watching the recorded lecture videos helped me understand the material better than a 
traditional lecture in class. 
1 – Strongly Disagree 
2 – Disagree 
3 – Neutral 
4 – Agree 
5 – Strongly Agree 
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Student demographics and academic preparedness survey 

Demographic, Academic Preparedness, and Course Opinions Survey 

This survey is only to be completed by participants who have read and signed the informed 

consent document for:  

IRB Protocol Number: 2016-0122  

IRB Protocol Title: Using general systems performance theory to predict student success in 

introductory physics   

Participant name: (please print)____________________________________ 

Your name will only be used to verify your consent to participate in this research project, and 

then removed and replaced by a code known only to the principal investigator. When completed, 

please turn in this survey to the folder provided. This folder will be sealed and not opened until 

after final grades have been issued. Therefore, this survey will have no impact on any part of 

your grade. 

For the following questions, please answer honestly and accurately. Each question should be 

considered voluntary and optional, you are not required to answer every question. If you cannot 

remember the answer to a question, or are choosing not to answer a question, you may leave it 

blank and skip it.  

 
1. What is your age? ________  

 

2. What is your gender? (please circle one)  

a) Male 

b) Female 

c) Other 

d) Prefer not to answer 

3. What is your primary language? (please circle one) 

a) English 

b) Spanish 

c) Chinese 

d) Korean 

e) Hindi 

f) Vietnamese 

g) Thai 

h) Other 

i) Prefer not to answer

 

4. What is the highest degree or level of school you have completed? (please circle one) 

a) Some high school, no diploma 

b) High school graduate, diploma or 

the equivalent (for example: GED) 

c) Trade/technical/vocational training 

d) Some college credit, no degree 

e) Associate degree 

f) Bachelor’s degree 

g) Other 

h) Prefer not to answer  
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5. Approximately how many inches is the longest hair on your head? ______ 

 

6. On average, how many hours of sleep do you get per night? ______ 

 

7. How many hours do you spend per day at a job off campus? ______  

 

8. Do you live on, or within walking distance of, campus? (please circle one)    Yes        

No 

 

9. On average, how many hours per day do you spend traveling to and from school? 

______ 

 

10. Approximately how many hours per day do you spend on non-academic activities such 

as hobbies and being with friends and family? ______ 

 

11. Subtracting time spent sleeping, working a job, walking to and from school, and 

engaging in non-academic activities, how much time is available to you per day to 

spend on academic activities outside of the classroom such as doing homework, 

reading textbooks, studying for tests, etc.? ______ 

 

12. Approximately how much of the time available to you do you actually spend on 

academic activities per day? ______ 

 

 
13. How many hours per week do you spend in a structured supplemental academic 

environment (not the classroom) such as Supplemental Instruction, Peer Tutoring, 

Tutoring Clinic, etc. ______ 

 

14. How many hours per week do you spend studying one subject? ______ 

 

15. On average, how many of those hours are spent with one or more other people? 

______ 

 

16. How many physics courses did you take in high school? ______ 

17. Beyond Algebra II, how many math courses did you take in high school? ______ 

18. How many other physics courses have you taken in college? (do not include this 

course) ______ 
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19. How many math courses have you taken in college? (include any you are currently 

enrolled in) ______ 

20. Have you completed a precalculus course? (circle one)   YES    NO    

21. Have you completed a calculus I course? (circle one)   YES    NO    

22. Have you completed a calculus II course? (circle one)   YES    NO    

23. Have you completed a calculus III course? (circle one)   YES    NO    

 

If you can remember the following information, please provide it. Remember that 

responding to any question should be considered voluntary and optional. Every 

response to this survey will be kept confidential and anonymous.  
24. High school GPA: ________ out of ________ 

 

25. SAT Score: ________ out of ________ 

 

26. ACT Score: ________ out of ________ 

 

27. Have you ever received a grade of D or F in a college level mathematics course?  

(circle one) 

  YES   NO 

28. Have you ever received a grade of D or F in a college level science course?  (circle 

one) 

  YES   NO 

29. Have you ever withdrawn from a college level mathematics course due to academic 

reasons?  (circle one)    YES   NO 

30. Have you ever withdrawn from a college level science course due to academic 

reasons?  (circle one)     YES   NO 

 

Please mark the box which best reflects your opinion on the following statements 

 Strongly 

Agree 

Agree Neutral  Disagree  Strongly 

Disagree 

I had a good understanding of physical 

concepts before taking this class 

     

I have a good understanding of physical 

concepts after taking this class 

     

Before taking this class, I was confident 

in my mathematical ability  

     

After taking this class, I am confident in 

my mathematical ability 

     

I was very interested in taking this class 

before the start of the semester 
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 Strongly 

Agree 

Agree Neutral  Disagree  Strongly 

Disagree 

Class time was used effectively 

 

     

Because of my textbook, I was able to 

understand most physical concepts 

     

Because of my instructor, I was able to 

understand most physical concepts 

     

Attending classes is essential for 

understanding physics  

     

My instructor played an important role 

in my understanding of physics 

     

I mainly taught myself physics 

 

     

 

 Strongly 

Agree 

Agree Neutral  Disagree  Strongly 

Disagree 

Taking this class has improved my 
mathematical ability 

     

I can apply concepts from this course 
to the real world 

     

Taking this course improved my ability 
to analyze questions and problems 
inside the classroom 

     

Because of this class, I am able to 
make logical connections between 
abstract ideas 

     

I find myself applying physical 
concepts to situations outside of 
classes 

     

Taking this course improved my ability 
to analyze problems in the real world 

     

After taking this class, I better 
understand the world around me 

     

After taking this class, I can identify 
underlying physical concepts behind 
everyday phenomenon  
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I think more scientifically having taken 
this class 

     

 

In a few sentences, please describe your reasons for taking this course, and your 

motivations for being successful in this course:  

________________________________________________________________  

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

_____________________________________________ 
 

 

 

 



 

112 

Appendix B 

Data for Figure 11 through Figure 14 
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SAT Math Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 0.1495 0.0283 <0.001 -8.9 18.1 0.626 50.77% 28 

Spring 2016 0.0538 0.0289 0.077 48.7 19.6 0.022 14.80% 21 

Fall 2016 0.1059 0.0256 <0.001 15.8 16.5 0.346 38.79% 28 

Spring 2017 0.0601 0.0261 0.028 45.6 16.8 0.011 14.20% 33 

Fall 2017 0.071 0.032 0.035 33.4 20.2 0.109 14.92% 30 

         

SAT Reading Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 0.0845 0.0617 0.185 36.5 35.7 0.318 8.20% 22 

Spring 2016 -0.001 0.0335 0.976 84.9 19.7 <0.001 0.01% 19 

Fall 2016 0.075 0.0359 0.047 38.1 21.7 0.091 14.85% 26 

Spring 2017 0.0951 0.0395 0.024 26.9 22.8 0.248 18.84% 26 

Fall 2017 0.0208 0.0344 0.552 66.3 20.5 0.003 1.43% 27 

         

GPA Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 10.12 2.32 <0.001 50.72 7.22 <0.001 31.26% 43 

Spring 2016 9.78 1.83 <0.001 51.25 5.83 <0.001 39.37% 45 

Fall 2016 12.77 2.94 <0.001 41.11 8.77 <0.001 24.60% 59 

Spring 2017 8.66 1.66 <0.001 56.16 5.25 <0.001 33.45% 55 

Fall 2017 10.79 2.62 <0.001 43.9 7.9 <0.001 25.40% 52 

         

MRT Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 0.416 0.257 0.109 78.68 3.38 <0.001 3.43% 75 

Spring 2016 0.905 0.387 0.024 71.12 4.23 <0.001 11.27% 44 

Fall 2016 0.739 0.28 0.01 70.55 3.28 <0.001 6.15% 107 

Spring 2017 0.063 0.244 0.799 83.7 2.83 <0.001 0.12% 54 

Fall 2017 0.02 0.288 0.945 76.91 3.24 <0.001 0.01% 83 

         

CTSR Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 2.064 0.519 <0.001 67.67 4.11 <0.001 17.62% 75 

Spring 2016 1.199 0.755 0.12 70.96 5.86 <0.001 5.79% 42 

Fall 2016 1.821 0.571 0.002 66.1 4.08 <0.001 9.40% 99 

Spring 2017 0.884 0.594 0.143 77.25 4.85 <0.001 4.16% 52 

Fall 2017 1.829 0.614 0.004 64.2 4.56 <0.001 9.77% 84 
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Hours 
Worked 

Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 -1.443 0.457 0.002 86.38 1.56 <0.001 13.33% 66 

Spring 2016 -1.226 0.668 0.074 83.72 2.17 <0.001 8.35% 38 

Fall 2016 -0.559 0.513 0.279 82.05 1.47 <0.001 1.65% 72 

Spring 2017 -0.505 0.672 0.456 84.81 1.57 <0.001 1.36% 42 

Fall 2017 0.041 0.467 0.93 78.08 1.7 <0.001 0.01% 63 

         

Confidence 
Science 

Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 3.76 1.08 0.001 71.73 3.61 <0.001 15.67% 66 

Spring 2016 1.1 1.63 0.504 78.1 5.66 <0.001 1.22% 38 

Fall 2016 2.33 1 0.023 73.49 3.43 <0.001 6.98% 73 

Spring 2017 3.33 1 0.002 73.02 3.66 <0.001 20.77% 43 

Fall 2017 2.5 1.27 0.053 69.9 4.43 <0.001 5.90% 64 

         

Confidence 
Math 

Slope SE 
Slope 

p-value Intercept  SE 
Intercept 

p-value R^2  N 

Fall 2015 2.8 1.45 0.059 72.48 5.88 <0.001 5.39% 66 

Spring 2016 0.37 2.58 0.886 80.2 10.9 <0.001 0.06% 37 

Fall 2016 4.82 1.51 0.002 61.43 6.24 <0.001 12.38% 73 

Spring 2017 2.72 1.34 0.049 73.52 5.56 <0.001 8.89% 43 

Fall 2017 3.45 1.93 0.079 63.49 8.37 <0.001 4.89% 64 
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