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Abstract 

 

TRUST BASED TIME-VARYING NETWORK TOPOLOGY FOR 

DISTRIBUTED CO-OPERATIVE CONTROL OF  

MULTI-CLASS MULTI-AGENT SYSTEMS 

 

Ankur Dalal, MS 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Frank Lewis 

With increased levels of autonomy in most of the engineering fields and 

booms in areas such as swarms, platoons and Internet of Things (IoT), 

communication and information flow has become a highly researched field. With 

advancements in autonomous vehicles (AVs) and drones in armed warfare, more 

and more focus is being laid on intercommunication between these vehicles and 

its surroundings as well as intra-communication among the fleets/swarms itself. 

It is easier to deal with individual agents whereas it is quite challenging to 

deal with multi-agent systems especially with highly dynamic agents. In this 

thesis, we propose a general protocol for dealing with such multi-agent systems 

and how to manage dynamic agents. The approach is preliminarily based on graph 

theory for distributed multi-agent consensus control and contagion spread from 
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adversaries to the other agents is quarantined by methods of graph clustering. 

During the research, position consensus controller was experimentally verified 

and clustering methods were simulated on computer. 

A major focus of the research is on how to accommodate for parting of 

existing adversaries from the group and allow for the entry of new agents to the 

flock as and when required in time. This aspect of the research allows for 

mitigating risk factors associated with hacked agents and couple new agents (with 

similar motives to that of the flock) to the flock. 
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Introduction 

1.1 Background and motivation 

With increase in the levels of autonomy in almost every industry such as 

manufacturing, food processing, aviation and most recently transportation, there 

has emerged a need for connectedness. Internet of things (IoT) has been 

flourishing in the modern era and its basis lies in interconnection of devices and 

appliances over the internet. The network maybe a global one (like the internet) or 

a local one (like a Local Area Network), but the underlying motive remains the 

same, i.e. connectivity. Similar notion applies to robots as well. Whether they are 

autonomous ground vehicles for delivery or unmanned aerial vehicles in army, 

connectivity and interconnectedness play a crucial role in the performance of 

these vehicles, commonly known as “agents” in the control engineering society. 

US Army invests huge sums in defense related research and development, 

a part of which comprises of research regarding multi-agent co-operative flights 

of unmanned aerial systems and its performance. With a revolutionary wave 

going across the automotive industry, all major automakers and tech giants like 

Google (division Waymo), Baidu and ride hailing service providers such as Uber 

and Lyft are investing heavily in the field of self-driving cars.  
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Fig.  1.1 Connected cars [34]. 

 

All of the above, in a way or other, are looking for interconnectivity for 

better performance and control. Not only tech companies, but companies like 

Facebook also make use of graph based analysis techniques on social networks 

for estimating group dynamics. With the above mentioned applications in mind 

and many more, the work presented in this thesis focusses on development and 

real-world simulation of strong network protocols for co-operative behavior and 

improvement of its performance. 

In the light of above, efforts are made to develop and test position 

consensus controller with time-varying graph links. Most of the prior work 

conducted in this field lacks experimental verifications due to the complexity of 

the system. Different works propose different approaches such as differential 
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game theory [19], graph theory [20] and provide theoretical basis and computer 

simulation results. This thesis provides simulation results on existing theories 

with experimental verifications and simulations for the proposed way forwards. 
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1.2 Literature Review 

One of the past works conducted in the field of consensus control of multi-

UAV formation is [19] which formulates the formation control problem as a 

differential game problem. It considers fixed information graphs for exchange of 

information. The research in [19] proposes open-loop Nash strategy instead of 

classical Nash strategy. Aircraft dynamics are proposed as point-mass dynamics 

and high level formation control is designed. The models are cited from [21] [22] 

[23] which describes the point mass system as 

 �̇�𝑖 = 𝑉𝑖 cos 𝛾𝑖 cos 𝜒𝑖 (1) 

 �̇�𝑖 = 𝑉𝑖 cos 𝛾𝑖 sin 𝜒𝑖 (2) 

 ℎ̇𝑖 = 𝑉 sin 𝛾𝑖 (3) 

 
�̇�𝑖 =

𝑇𝑖 − 𝐷𝑖

𝑚𝑖
− 𝑔 sin 𝛾𝑖 

(4) 

 
�̇�𝑖 =

𝐿 cos𝜙𝑖 − 𝑚𝑖𝑔 cos 𝛾𝑖

𝑚𝑖𝑉𝑖
 

(5) 

 

 
�̇�𝑖 =

𝐿𝑖 sin𝜙𝑖

𝑚𝑖𝑉𝑖 cos 𝛾𝑖
 

(6) 

With 𝑥𝑖 as the displacement in downward direction, 𝑦𝑖 as the cross-range 

displacement, ℎ𝑖 as the altitude, 𝑉𝑖 as ground speed, 𝛾𝑖 is the flight path angle, 

𝜒𝑖  is the heading angle, 𝑇𝑖 is the engine thrust, 𝐷𝑖  the drag and 𝐿𝑖  the lift. 

The research implements time-invariant directed graph for information 

flow. The game theory implementation seeks open loop Nash equilibrium for 

agents where the input 𝑈𝑖 of agent 𝑖 is a function of only the initial states 
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𝑧1(0),… , 𝑧𝑁(0) and 𝑡. The paper references to Pontryagin’s minimum principle 

[24] for providing proof of optimality. The paper also mentions how open-loop 

Nash strategies are not applicable directly to directed graphs unless the graphs are 

fully connected. The author then proposes a sampled-Nash approach [25] which 

hints towards a possibility of handling time-varying information topology which 

might occur due to reasons such as communication failures and that is exactly 

what we are looking for and would build more on. The research presents a 

simulation result for five UAV system with some assumed parameters and 

constants and conclusion is derived on how distributed control over the multiple 

UAV system is achieved. 

Other research focusing on a different concept of dynamic topology 

includes [26] which also considers the agent to be a point mass and considers 

switching graph topology for improvement in the performance of communication 

between agents. The research provides performance analysis for time varying 

topology in graph. One of the major assumption in the research is that the graph 𝐺 

at any time instant belongs to a finite set of graph structures with pre-defined 

number of nodes. The research work involves a typical motion equation as the 

system dynamics and control protocol is divided into two parts: a local feedback 

controller and a distributed state feedback controller. The end results provided 

involve computer based simulations which show the convergence of the control 
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protocol. This research also in part forms a basis for the research proposed in this 

thesis. 

Another research on similar lines is [20] which also investigates the 

performance of consensus protocol based on time-varying graph topology and 

dynamic re-structuring of the links to sustain the co-operation among the agents 

under an external attack or internal performance degradation. The methodology 

adopted by the researchers involve a detection logic and internal connection 

restructuring which is essentially graph re-structuring. The theory involves indices 

which measure system performance. Thresholds are then chosen to classify the 

agents as either good or bad and based on that classification, the interconnection 

between agents is restructured. The way this is achieved is by checking for the 

indices at fixed intervals of time known as buffer time which is denoted by  

𝑇𝑏𝑢𝑓𝑓𝑒𝑟 . There is a performance index in terms of whether the agent is broken or 

not, corresponding to each agent. The index here is chosen as mean of the 

distance of the agent under inspection from its neighbors. 

But according to the above, if the neighbors are under the influence of a 

wrong leader, the agent under consideration would be misguided and would sway 

away from the desired global consensus just like its neighbors. Hence, we put 

forward a concept of self-trust and consensus trust to account for personal 

performance as well as the opinion of neighbors. Not only this, but we also take 

into account the past history of every individual agent in order to minimize false 
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judging by neighbors. [20] provides a simulation result involving formation flight 

of 6 flights and compares the performance of controller with and without the 

faulty agent detection logic. The judging criteria and performance index 

calculation does not seem to be complete in this case and seem to be missing from 

considering important information. Therefore, we move to the next research 

which throws some light on what could possibly considered in order to correctly 

identify and classify agents into groups. 

An approach to circumvent the above challenge could be to incorporate 

trust indices as a measure of sanity of an agent. In [27] a concept of trust 

establishment in autonomic networks was first introduced in [30] as a specific 

application of distributed trust management. Though the research mainly focusses 

on computer networks, the concept could be extended to any multi-agent network 

involving flow of information across nodes. Some other prior works focusing on 

trust in decentralized networks are [28] and [29]. An important concept in [27] is 

distrust which is essentially a negative trust index and is helpful in discarding or 

punishing the poor performing agents and neighbors.  

Another interesting approach of segregating the agents into groups of good 

and bad agents is described in [31] where the inspiration to solve the network 

attack and prevention issue is addressed by methods of quarantining the affected 

nodes in order to minimize the spread of negative effects using graph topologies. 

It takes into consideration the extent to which a node and its neighbors are 
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affected and adopts a protocol of distributing the nodes into groups or districts 

which minimizes the spread. An effective way to do the partitioning of the 

topological graphs in order to achieve the desired grouping is required. The 

research in [32] provides a good insight by introducing graph clustering methods. 

The research illustrates multiple graph clustering methods such as normalized 

cuts, kernel k-means clustering and spectral clustering. The methods are shown to 

be quite useful on an undirected graph. Implementing it on a directed graph is 

quite a challenging task. 

The simulations provided in the later chapters explain how the position 

consensus problem is simulated on a computer and control protocol involving 

graph theory is implemented. The simulations also incorporate trust calculations 

and edge weight modification accordingly. The classification and clustering 

problem is implemented in a novel way. 

  



17 

1.3 Challenges 

Highly time-varying dynamical systems coupled with unpredictable 

behavior of agents pose a massive challenge in the maintenance of coordinated 

behavior of multi-agent systems. Co-operative control is highly researched and 

implemented area. Applications range from autonomous vehicle fleet to aerial 

swarms, network management to epidemic prevention and control, social network 

analysis and many others. But the major challenges pertaining to these 

applications and other include data lag, data loss, poor performing agents, 

handling of dynamic addition and parting of agents from the swarm and time-

varying graphical structures. 

Data lag depends on the network infrastructure and graph structures. Fully 

connected graphs help overcome this hurdle but has other issues and is rarely 

practically implementable due spatial spread of the network and power 

consumption. Therefore, strongly and weakly connected directed graphs are 

considered instead. Data loss may occur due to interference in network, external 

attack and hijacking.  

Another major challenge to maintain good co-ordination amongst the 

agents is the stability of agents. There could be numerous reasons for this, not to 

mention the one’s described in the prior paragraph. But a major cause of 

instability in agents is its dynamics. Agents under consideration are usually not 

perfect and have errors built into them. This makes it difficult to control 
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individual agent and multiple of these combined is an even worse case. Coupled 

with all these, the need of the hour is to add and part agents dynamically as time 

progresses. This is essentially helpful in maintaining continuum of highly mobile 

agents as they propagate through space and time. The problem arises due to the 

interaction of one graphical structure with a neighboring one, an isolated agent or 

even between agents and its surrounding. Most of the applications till date address 

the problem of finite time-invariant agents whereas this research proposes a novel 

concept to deal with time varying members. 
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1.4 Examples of agents 

The graphs described in the previous chapters operate on some nodes or 

vertices. These nodes could be real physical system(s) or virtual centers of 

information exchange. Several systems could be modeled using this concept 

where some desired consensus is required among multiple of such nodes. It could 

be general behavior of quad-copters or reliable and secure data transfers. Some of 

them are explained below. 

 

1.4.1 Vehicles as nodes  

With modernization and boom in industrial automation, vehicle systems 

have seen some major applications of graph theory. Logistics is a huge, lucrative 

and continuously growing industry. This being one of the reasons for lots of 

recent R&D in this field. 

Autonomous vehicles on streets is no longer a myth. It all began with the 

DARPA grand challenge back in March of 2004 [7] where multiple teams 

including teams from universities competed in an autonomous vehicle challenge. 

Today there are over a dozen companies [8] testing their autonomous vehicles on 

the streets of California. Freight platooning [9] another example of application of 

such autonomy. Each vehicle forming the platoon can be considered a node with 

one of them being the leader and rest being the followers. The vehicles adjust 

their speeds and try to maintain appropriate distances from each other. The aspect 
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that is of importance in maintaining such co-operative behavior is communication 

between the agents.  

 

Fig.  1.2 Truck platooning [10]. 

 

Fig.  1.3 Freight platooning [9]  
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1.4.2 Network nodes as agents 

Similarly, network nodes that communicate to each other could be 

modelled as nodes of this graph and reliable communication across the network 

could be obtained.  
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1.5 Objectives and approach 

1.5.1 Objectives  

The main objective of this research is to develop a reliable infrastructure 

for obtaining consistent co-operative behavior. There are several methods of 

obtaining distributed control and achieving co-operative behavior but this 

research primarily focusses on graph theory based consensus control. 

The existing consensus protocols involve static edge weights, directed or 

undirected graph structure, time-varying graph topologies and graph clustering. 

All these methods aim at improving the performance of the system. The method 

proposed in this research enhances the concept of trust propagation in graph and 

allows for dynamic edge weights which in turn allows for dynamic leader. The 

main idea behind this objective is to enable effective communication between 

nodes (vehicles in particular) and allow for co-operative behavior between 

existing agents and newly discovered agents in order to accommodate the new 

agents in the flock. This would help for smooth propagation of multiple flocks in 

a confined space. Similarly, there may exist situations where an agent might be 

required to leave the group voluntarily or under the influence of neighbors. Such 

scenarios occur when an agent is not performing well or has a different motive 

than the group. 
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Chapter 2  

Mathematical preliminary and system description 

2.1 Problem formulation 

From various modules of chapter 1, it is necessary to reduce the problem 

to a much narrower definition in order to tackle the challenges that are listed. It 

may be noted that the ultimate goal of the research is to be able to develop a 

solution that could create a pipeline for the communication between autonomous 

vehicles in order to have successful operation without worrying about the 

individual case of interaction between vehicles or with its surroundings that may 

arise due to continuously varying spatial formation of the vehicle. But at 

educational and master’s thesis level, it was not practically possible to develop the 

whole solution which could be used as an out-of-the box solution. Therefore, the 

research has focused on the development of general algorithm that could be 

applied not only to autonomous cars, but to any system where communication is a 

key to the operation and where formation control is desired. In order to extend the 

research to autonomous vehicles, significant efforts would be required. 

We propose a position control problem involving 𝑛 angents. The aim is to 

maintain a constant goal following in a particular fashion while maintaining the 

initial spatial formation. The algorithm must be robust enough to accommodate 

any changes in the number of agents as time progresses. This scenario may occur 

when some agents start to develop a consensus of their own and are influenced by 
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the wrong agents. This scenario would eventually lead to a similar behavior by 

other agents following the bad agent and the whole consensus would see high 

inputs in an undesired direction. In order to prevent such a scenario to build up, 

necessary preventive measures are proposed. 

An index that would judge the performance of the agent according to its 

behavior with respect to time. The concept of trust is incorporated as seen in [27] 

but slightly differently in order to better criticize each agents. Two indices are 

introduced: self-trust and consensus trust. Both the indices evolve with time and 

consider the time history of agents while criticizing the agents. As the names 

suggest, self-trust is a measure of performance of an agent as seen by the agent 

itself while consensus trust is a performance index of an agent as seen by its 

neighbors. There may arise some doubts regarding this concept as to what would 

happen to the indices in case the critics (the neighbors) of a particular agent have 

poor performance (meaning a low self-trust). Obviously the critics in this case 

would be bad judges. These kind of circumstances are explained and dealt with in 

detail in later chapters. 

Once the trust values for each of the agents is calculated, next we pose the 

problem of classifying them into adversaries or non-adversaries. We classify the 

non-co-operating agents as adversaries and the rest as non- adversaries based on 

the trust values. Upon successful classification of all the agents, we then move on 

to the problem where we need to minimize the spread of the contagion. We came 
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across several graph clustering techniques in [32] which explains algorithms for 

classifying nodes of an information graph into multiple classes based on some 

criteria. The methods suggested work best for undirected graph where the 

direction of flow of information is not taken into account but instead just 

represents a relation between nodes. 

The thesis here aims to extend the graph clustering methods to directed 

graphs. But that alone would not suffice. Our ultimate objective is to add and part 

agents dynamically and in order to achieve that, we need a means to place graph 

cuts at the correct positions (graph weights) modifying the existing edge weights 

(increasing or reducing, but mostly reducing). This has to be done in such a 

fashion so as to reduce the spread of the negative effects of the adversarial agents 

to others and for that reason we incline to quarantine methods in [31]. 
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2.2 Methods involved 

2.2.1 Graph  

Graph theory is a widely used theory in computer science, electrical 

engineering, biological studies [1], social network analysis [2] and several other 

fields. It also finds wide applications in shortest path search algorithms [3][4][5] 

like the Dijkstra’s algorithm and A*. 

Graph is a mathematical structure represented by a pair 𝐺 = (𝑉, 𝐸) 

with 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁 }, where V are vertices and E are edges of the structure. 

(𝑣𝑖 , 𝑣𝑗)  ∈ 𝐸 represents the edge from vertex 𝑣𝑖 to the vertex 𝑣𝑗  . If graph’s edges 

have direction then graph is directed. If edges are not directed (which means that 

they are bidirectional), then the graph is said to be undirected. Visual example of 

a directed graph is shown on Fig. 1. Each edge has a weight that can model a 

strength of connection between the nodes. Number of edges that are entering a 

node is called in-degree, while number of edges that are exiting a node is called 

out-degree. Graph can be presented in a form of matrix where column index 

corresponds to a source of an edge and row index to a sink of an edge. Matrix 

element 𝑎𝑖𝑗 indicates weight of corresponding edge in the graph. Matrix 

constructed of elements 𝑎𝑖𝑗 is called Adjacency matrix (𝐴). 𝐴 is a very 

convenient as it enables analysis of graph theory in the field of linear algebra. 

𝑑𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑖=1  is a row sum of 𝐴. 𝑑𝑖 is again introduced because of its 
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convenience in future analysis. Matrix 𝐷 is diagonal matrix of in-degrees, =

𝑑𝑖𝑎𝑔(𝑑𝑖) . Finally, we introduce Laplacian matrix 𝐿 = 𝐷 − 𝐴 which is important 

in analysis of graph’s dynamical properties. 

 

Types of graphs –  

Graphs are primarily classified into directed graphs (or commonly called 

digraphs) and undirected graphs. The difference between the two as the name 

suggests is in the nature of the edge weights. If the edge weights are directional, 

the graph is said to be directed graph else it is called an undirected graph. Based 

on the direction of the edge weight, the edge might be an in-link into or an out-

link from a node. 

Various applications demand for different variants of these graphs. Graphs 

could be open ended or close ended, may or may not have spanning tree, could be 

fully connected or not and might or might not have self-links from nodes to itself. 

A graph is said to be strongly connected if it has a spanning tree from 

every node, i.e., if it has a path from every node to every other. A graph could 

have all the edge weights equal or different weights. 

There also exist special forms of graphs where the topology keeps 

switching with time [6]. Sometimes it is inherent in the system while at other 

times, it would be modeled in order to obtain better performances.  
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Fig.  2.1 Directed graph showing edge weights. 

 

In the graph shown above, solid dots represent the vertices of the graph 

structure and the lines represent the edges and the numbers on these edges 

represent the edge weight. Agents under consideration are represented by the 

vertices and their mutual relationships are represented by the edge weights. The 

direction of the edge shows which vertex is influencer and which on is influenced. 
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2.2.2 Trust indices  

Trust is a very general term. Some of the approaches like [27] and [30] 

have tried to define and quantify the word trust. Sometimes it is desired to have 

the value of trust as a binary value (like in [30]) and sometimes a floating point 

value (like in [27]). Sometimes a thresholding may be required while in other 

cases, thresholding might be applied prior to the calculation of trust index. So it 

generally varies from application to application. Another important formulization 

during implementation of trust indices is distrust index. Distrust is nothing but 

negative trust which could be used to heavily penalize disagreeing agents. But the 

idea behind all of them remain the same, i.e. to develop a measuring index in 

order to prioritize or weigh different agents/entities according to a given cost 

function. 

In our case, the cost function would essentially be the positional tracking 

error. Based on how good the agent is following the leader, it would be assigned a 

trust index, better performance (low tracking error), higher trust value and vice-

versa. For our discussion, we limit the trust values in the closed interval [0,1] 

because negative trust values would mean driving away the adversaries (which 

could be done in extreme cases) and trust values higher than unity would mean 

changing of the leader (more on this in later chapters). 

We incorporate two trust indices, namely self-trust index and consensus 

trust index. As the name suggests, the prior index takes into account the 
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performance of an agent as viewed by itself whereas the latter index is formed by 

the combined judgment of the neighbors of the agent. The main motive behind 

considering two indices instead of one is to reduce the number of outliers. The 

way this works is that each individual agent judges itself based on the inputs 

received and the output that it produced. This forms the basis for self-trust index. 

While consensus trust index is formed by the collective decision of the neighbors 

on how the agent under consideration performed and how it should have 

performed. It might be argued that consensus trust should suffice and there would 

not be any requirement of another index but self-trust helps weigh the neighbor 

judgment according to its own performance. For instance, an agent with multiple 

poor performing agents would be judged incorrectly as the agents are seeking 

different goals. 

 

2.2.3 Clustering  

After assigning trust indices to every agent, the next step is to classify the 

agents as adversaries and non-adversaries. Simple thresholding can be 

implemented to achieve the classification. Once the classification is complete, 

there may exist multiple groups, each segregated into either adversary or non-

adversary. Depending on the group to which a particular agent belongs to, clusters 

could be formed around them to restrict the spread of contagion. 
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Now there comes an important decision making step, whether to let go of 

the bad agents or just reduce the dependency of good agents on adversaries. Some 

of the methods explained in [32] and [33] as shown below such as normalized cut, 

ratio cut and ratio association are some of the partitioning techniques that can be 

implemented. 

 

Fig.  2.2 Examples of graph clustering objectives [33]. 

 

A concern here is the necessary trade-offs in order to maintain consensus 

in maximum number of agents while eliminating/reducing dependency on 

adversaries. The factors that would come into play while deciding the trades-offs 

consist of rate of information transfer which is basically dictated by the graph 

structure in our case. The information transfer rate determines how fast the 

contagion would spread and depending on that, we need to cluster the agents in 

such a way that we lose as minimum number of agents as possible. 
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Chapter 3  

Analytical approach 

3.1 Consensus controller 

Consensus controller refers to a control protocol for maintaining co-

ordination among agents in a system by distributed error minimization and control 

input. Efforts have been made to test the consensus algorithm by application of 

graph theory and improving its performance by implementing trust based time-

varying graphical edge weights and dynamic leader and clustering of the existing 

graph into groups of adversaries and non-adversaries. For the purpose of 

demonstration, highly dynamically unstable system comprised of nano quad-

copters called CrazyFlie 2.0 [11] are used. 

The aim is to maintain coordinated flight of a swarm of UAV in a fixed 

formation inside a Vicon motion capture [12] tracking environment. The 

formation control involves maintaining fixed distances from neighbors and 

achieve an overall flight formation. Information is shared locally between agents, 

meaning only neighbors according to the graph are allowed to communicate with 

each other. This brings about the distributedness in the system. 
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3.2 Position consensus controller 

Consider the following control protocol on a graph: 

 𝑢𝑖(𝑡) = ∑ 𝑎𝑖𝑗(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))

𝑗𝜖𝑁𝑖

 
(7) 

Where 𝑥𝑖(𝑡) is the current state of the node 𝑖 and 𝑢𝑖 is the control input 

generated by consensus protocol. Graph states 𝑥𝑖 can be controlled by applying 

the following control law: 

 �̇�𝑖(𝑡) = 𝑢𝑖(𝑡) (8) 

Equations of closed loop dynamics can then be rearranged: 

 �̇�𝑖(𝑡) =  −𝑥𝑖  ∑ 𝑎𝑖𝑗

𝑗 𝜖 𝑁𝑖

+ ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗 𝜖 𝑁𝑖

 

= −𝑑𝑖𝑥𝑖 + [𝑎𝑖1 …𝑎𝑖𝑁][𝑥1 . . . 𝑥𝑁 ]𝑇 

 

(9) 

Vectorization of 𝑥𝑖 into 𝑥 =  [𝑥1 . . . 𝑥𝑁 ]𝑇 gives more compact way to 

rewrite Eq. 18 as: 

 �̇� = (𝐴 −  𝐷)𝑥 =  −𝐿𝑥 (10) 

Where L represents the Laplacian matrix. 

We introduce Δ𝑖 of UAV 𝑖 from the center of the formation. Different 

combinations of Δ𝑖 can now be used to encode various formations. 𝑥0 is the agent 

leader and is directly linked to those agents that have non-zero pinning gain 𝑔𝑖. 

The reference is generated by the leader and is effectively transmitted to the 

whole system through the distributed communication network. 
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The neighborhood error is defined as 

 𝑒𝑖 = ∑ 𝑎𝑖𝑗(𝑥𝑗 − Δ𝑗 − 𝑥𝑖 + Δ𝑖) + 𝑔𝑖(𝑥0 − 𝑥𝑖 + Δ𝑖)

𝑗𝜖𝑁𝑖

 
(11) 

And neighborhood time derivative of the error 

 �̇�𝑖 = ∑ 𝑎𝑖𝑗(�̇�𝑗 − Δ̇𝑗 − �̇�𝑖 + Δ̇𝑖) + 𝑔𝑖(�̇�0 − �̇�𝑖 + Δ̇𝑗)

𝑗 𝜖 𝑁𝑖

 
(12) 

If we assume that the position of the leader (𝑥0) and the relative positions 

between the agents (Δ𝑖, ∀𝑖) are not changing during the experiment then 

 �̇�𝑖 = ∑ 𝑎𝑖𝑗(�̇�𝑗 − �̇�𝑖) + 𝑔𝑖(− �̇�𝑖)

𝑗 𝜖 𝑁𝑖

 
(13) 

The alias of ideal positions displaced by Δ𝑖 is introduced 

 𝑥𝑖
𝑎 = 𝑥𝑖 − Δ𝑖 (14) 

For 𝑖 = 1,2, … , 𝑁. From above equation, position errors between the two 

agents are given as 

 𝛿𝑖𝑗 = 𝑥𝑗
𝑎 − 𝑥𝑖

𝑎 

 

(15) 

From the above equation, the neighborhood error defined previously now 

has the form 

 𝑒𝑖 = ∑ 𝑎𝑖𝑗(𝑥𝑗
𝑎 − 𝑥𝑖

𝑎) + 𝑔𝑖(𝑥0 − 𝑥𝑖
𝑎)

𝑗𝜖𝑁𝑖

 
(16) 
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 �̇�𝑖 = ∑ 𝑎𝑖𝑗(�̇�𝑗 − �̇�𝑖) + 𝑔𝑖(− �̇�𝑖)

𝑗 𝜖 𝑁𝑖

 
(17) 
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3.3 Convergence of the errors 

Define 1𝑁 = [1, 1, … , 1]𝑇 𝑅𝑁 with all 𝑁 elements ones. The global forms 

of (25) and (26) are now expressed as 

 𝑒 =  −((𝐿 + 𝐺)  ⊗ 𝐼𝑛)(𝑥𝑎 − 1𝑁 ⊗ 𝑥𝑜)  (18) 

 �̇� =  −((𝐿 + 𝐺) ⊗ 𝐼𝑛)�̇� (19) 

In order to further develop the discussion on that hypothesis, the second 

order dynamics is first calculated  

 �̈� =  −((𝐿 + 𝐺) ⊗ 𝐼𝑛)�̈� (20) 

Plugging (19) in (29) gives 

 �̈� =  −((𝐿 + 𝐺) ⊗ 𝐼𝑛)[(𝐼𝑛 ⊗ 𝐴)𝑥 + (𝐼𝑛 ⊗ 𝐵)𝑣 ] 

= −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝐴𝑔𝑥 + 𝐵𝑔𝑣) 

 

(21) 

Where 𝐴𝑔 = 𝐼𝑁 ⊗ 𝐴 and 𝐵𝑔 = 𝐼𝑁 ⊗ 𝐵 . Without the loss of generality, 

further simplification is introduced 

 �̈� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝐴𝑔𝑥 + 𝑢) (22) 

Where 𝑢 = 𝐵𝑔𝑣 is defined as the global vector of inputs. 

To drive both position and velocity to zero, we use the sliding mode 

control and define the sliding mode error as 

 𝑟 =  �̇� + ⋀𝑒  (23) 
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Where ⋀ is a positive definite. 𝑒 is bounded as long as 𝑟 is bounded let 

𝜆 = 𝑑𝑖𝑎𝑔(𝜆𝑖) be 𝑁 dimensional diagonal matrix with 𝜆𝑖 on the diagonal, each 

corresponding to one agent. Then ⋀ = 𝜆 ⊗ 𝐼𝑛 . Taking the time to derivative of 

(32) yields 

 �̇� =  �̈� + ⋀�̇� =  −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝐴𝑔𝑥 + 𝑢) 

−⋀((𝐿 + 𝐺) ⊗ 𝐼𝑛)�̇� 

 

(24) 

By using Kronecker rule (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) (under the 

assumption that dimensions of 𝐴, 𝐵, 𝐶, 𝐷 allow multiplications 𝐴𝐶 and 𝐵𝐷 ), we 

introduce the following for convenience 

 𝑍 = ((𝐿 + 𝐺) ⊗ 𝐼𝑛) 

𝑍𝐴 = ((𝐿 + 𝐺) ⊗ 𝐼𝑛)𝐴𝑔 = ((𝐿 + 𝐺) ⊗ 𝐴) 

𝑍𝜆 = (𝜆 ⊗ 𝐼𝑛)((𝐿 + 𝐺) ⊗ 𝐼𝑛) = ((𝜆 (𝐿 + 𝐺)) ⊗ 𝐼𝑛) 

 

(25) 

Rewrite (33) as  

 �̇� =  −𝑍𝐴𝑥 − 𝑍𝜆�̇� − 𝑍𝑢 (26) 

Based on the undirected graph topology, we make some assumptions 

useful for the control design. 

Assumption 1 

𝐿 is irreducibly diagonally dominant matrix. 

Assumption 2 

𝐺 has at least one diagonal entry. 
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It is not restrictive to make assumptions 1 and 2, since many practical 

multi-agent systems fall under that category. 

The control law locally and globally is introduced as 

 𝑢𝑖 = 𝑢1𝑖 + 𝐾𝑖𝑟𝑖 (27) 

 𝑢 = 𝑢1 + (𝐼𝑁 ⊗ 𝐾𝑖)𝑟 = 𝑢𝑖 + 𝐾𝑟 (28) 

Where matrix 𝐾𝑖 = 𝐾𝑗 , ∀𝑖, 𝑗 is used for control design. Assume that 𝑢𝑖  is 

specified later in the theorem. Under that assumption, re-writing (28) in the global 

form 

 �̇� =  −((𝐿 + 𝐺) ⊗ 𝐾𝑖)𝑟 =  −𝑍𝐾𝑟 (29) 

Lemma 1 

Let assumptions 1 and 2 hold. If we define 

 
𝑊 = 𝑑𝑖𝑎𝑔(𝑤𝑖) = 𝑑𝑖𝑎𝑔(

1

𝑞𝑖
) 

(30) 

Where 

 𝑞 = (𝐿 + 𝐺)−11𝑁   (31) 

Then, both 𝑊 𝑎𝑛𝑑 𝑄 = 𝑊(𝐿 + 𝐺) + (𝐿 + 𝐺)𝑇𝑊 are positive definite. 

Additionally, if 𝑄 is a positive definite then 𝑄 ⊗ 𝐼𝑛 is also positive definite. 𝑄 =

𝑊(𝐿 + 𝐺) + (𝐿 + 𝐺)𝑇𝑊  

Proof: the first assertion follows the results in [35]. For the second 

assertion, we obtain that eigenvalues of a matrix generated by Kronecker product 

are cross-products of all possible combinations of eigenvalues from matrix 𝑄 and 
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𝐼𝑛. Both 𝑄 and 𝐼𝑛 are positive definte and corresponding eigenvalues all positive. 

This completes the proof. 

Assumption 3 

Let �̅� be the measurements of ideal state vector 𝑥  

 �̅� = 𝑥 + 𝜇1 

�̇̅� =  �̇� + 𝜇2 

�̅� = 𝑥0 + 𝜇0  

 

(32) 

Then define the bound on sensor noise 

 ||𝜇1|| < 𝜇1,𝐵 

||𝜇2|| < 𝜇2,𝐵 

||𝜇0|| < 𝜇0,𝐵 

 

(33) 

Where 𝜇0,𝐵 denotes the measurement error of leader’s position. 

Sliding mode error injected with noises is 

 �̅�𝑖 = �̅��̇� + 𝜆𝑖�̅�𝑖  (34) 

Where 

 �̅�𝑖 = ∑ 𝑎𝑖𝑗(�̅�𝑗 − Δ𝑗 − �̅�𝑖 + Δ𝑖) + 𝑔𝑖(�̅�0−�̅�𝑖 − Δ𝑖)

𝑗 𝜖 𝑁𝑖

 
(35) 

 �̅�𝑖 = ∑ 𝑎𝑖𝑗(�̇̅�𝑗 − �̇̅�𝑖) + 𝑔𝑖(−�̇̅�𝑖)

𝑗 𝜖 𝑁𝑖

 
(36) 

 

The global form of noisy error is  
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 �̅� = �̇̅� + ⋀�̅�   (37) 

Where 

 �̅� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(�̅�𝑎 − 1𝑁 ⊗ �̅�0)  

= −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝑥𝑎 + 𝜇1 − 1𝑁 ⊗ 𝑥0 − 1𝑁 ⊗ 𝜇0) 

= −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝜇1 − 1𝑁 ⊗ 𝜇0) + 𝑒 

= −𝑍𝜇2 + �̇� 

 

(38) 

 �̇̅� = −𝑍𝜇2 + �̇� (39) 

 �̈̅� = −(𝐴𝑔�̅� + 𝑢) 

= −𝑍𝐴𝑔𝜇1 + �̈� 

(40) 

Extracting the ideal sliding mode error from the measured error gives 

 �̅� = 𝑟 − ⋀𝑍(𝜇1 − 1𝑁 ⊗ 𝜇0) − 𝑍𝜇2  (41) 

Substituting (42) and (41) into (26) yields 

 �̇̅� = �̇� − 𝑍𝐴𝑔𝜇1 − ⋀𝑍𝜇2 (42) 

Definition 1 

The signal z(t) is said to be uniformly ultimately bounded (UUB) with the 

ultimate bound b, if given positive constants b and c for every 𝑑 ϵ(0, c), there 

exists 𝑇(𝑑, 𝑏), independent of 𝑡0, such that 

 ||𝑧(𝑡0)|| ≤ 𝑑 ⇒ ||𝑧(𝑡)|| ≤ 𝑏, ∀𝑡 ≥ 𝑡0 + 𝑇  (43) 

Theorem 1 
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Let assumptions 1-3 hold. Defining the sliding mode error dynamics as 

(26). Select the control policy for the local agent as 

 𝑢𝑖 = 𝐾𝑖�̅�𝑖 − 𝐴�̅�𝑖 − 𝜆𝑖 �̇̅�𝑖 (44) 

Assume that 𝜆𝑖 = 𝜆𝑗 , ∀𝑖, 𝑗 (53).  Consider the error dynamics (38) and 

design matrices Q and R. Pick the following control gain 

 𝐾𝑖 = 𝑅−1𝑃 (45) 

 

 𝐾 = (𝐼𝑁 ⊗ 𝐾𝑖) (46) 

Where P is the unique positive definite solution of control algebraic 

Riccati equation 

 0 = 𝑄 − 𝑃𝑅−1𝑃 (47) 

The control law (53) with the gain (54) guarantees asymptotic stability for 

(38). Moreover it stabilizes the system (19) and makes the ideal tracking error 

(20) UUB. 

The controller drags all aliases 𝑥𝑖
𝑎  for 𝑖 = 1,… ,𝑁 to the center of the 

formation. If all aliases are in the center of the formation, no action from the 

controller is required. Neighborhood errors quantify the spatial disharmony of the 

formation. The controller determines an action 𝑢𝑖  of the agent 𝑖 such that it 

recovers consensus. ⋀ is a tuning parameter. As given, controller resembles well 

known standard PD controller. 
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3.4 Simulation 

3.4.1 System model 

In order to verify the validity of the above proposed consensus controller, 

a computer simulation is carried out on Matlab. Initially, five agents are 

simulated. An input is provided to the agent labelled as 1 . This agent acts as the 

leader. There are four other follower agents labeled 2 𝑡𝑜 5. As the control 

protocol, following equations is used 

 

𝑢𝑖 = 𝐾𝑐 [ ∑ 𝑎𝑖𝑗(𝑥𝑗 − Δ𝑗 − 𝑥𝑖 + Δ𝑖) + 𝑔𝑖(𝑥0 − 𝑥𝑖 + Δ𝑖)

𝑗 𝜖 𝑁𝑖

] 

 

(48) 

 

 

𝐺 =  [

𝑎11 ⋯ 𝑎1𝑗

⋮ ⋱ ⋮
𝑎𝑖1 ⋯ 𝑎𝑖𝑗

] 

(49) 

The dynamics of the system are kept simple for simulation purposes and is 

modelled as  

 𝑝𝑜𝑠 =  [ 
𝑥
𝑦 ]  (50) 

 𝑥𝑡+1 = (𝑥𝑡 + 𝑢𝑥) + 𝜂𝑤  ∀𝑖 (51) 

 𝑦𝑡+1 = (𝑦𝑡 + 𝑢𝑦) + 𝜂𝑤 ∀𝑖 (52) 

To add a dimension of reality to the simulation, the agents are infused with 

Gaussian white noise denoted by 𝜂𝑤. 
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3.4.2 Trust model 

The trust function in the system is modelled to account for the past history 

of error and current error of the agent and modifies the edge weight associated 

with that particular agent accordingly. An important point to note here is that 

depending on the performance of the agent, other agents may lose dependency on 

a bad agent while the bad agent still maintaining similar dependence on the other 

agents. Before we can formulate trust index, we need to formulate error indices as 

explained below. 

We define a past error history 𝐸𝑝
𝑠  as, 

 
𝐸𝑝

𝑠 = ∫ (𝑥0 − (𝑥𝑖 − Δ𝑖))
𝑡

0

 
(53) 

And current error as 𝐸𝑐
𝑠  as, 

 𝐸𝑐
𝑠 = (𝑥0 − (𝑥𝑖 − Δ𝑖)) (54) 

We also define a weighting matrix W (belongs to R 1x2) as, 

 𝑊𝑠 = [𝑤1
𝑠 𝑤2

𝑠] (55) 

where 𝑤1
𝑠 represents the weight factor for past errors and 𝑤2

𝑠 represents the 

weight factor for present error and the factors must satisfy the condition 

 𝑤1
𝑠 + 𝑤2

𝑠 = 1 (56) 

in order to preserve the total error. We then define error index 𝛿s as 

 
𝛿𝑠 = [𝑤1

𝑠 𝑤2
𝑠] [

𝐸𝑝
𝑠

𝐸𝑐
𝑠] 

(57) 
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And we define self-trust index τs as 

 
𝜏s = 

(𝛿𝑠 − 𝛿𝑢)2

((𝛿𝑢 − 𝛿𝑙)2)
 

(58) 
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3.4.3 Simulation cases 

Case 1 – Fully connected graph. 

Initial displacements of the agents are as follows 

 

𝑝𝑜𝑠 = (𝑥, 𝑦) =  

[
 
 
 
 
50 60
10 10
20 20
80 20
90 10]

 
 
 
 

 

 

(59) 

 

𝐺 =  

[
 
 
 
 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0]

 
 
 
 

 

 

(60) 

The agent 1 is modelled to be the leader as 

 

𝐺𝑙 = 

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

  

(61) 

The leader is modelled with an agent input of  

 𝑢1 = [0 0.6] (62) 

 

  



47 

Result: 

 

Fig.  3.1 Graph showing the edge weights. 

 

Fig.  3.2 Displacement in X-direction. 
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Fig.  3.3 Displacement in Y-direction. 

 

Fig.  3.4 Control input 𝑢𝑥. 
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Fig.  3.5 Control input 𝑢𝑦. 

 

 

Conclusion:  

From the above, it is concluded that the agents are trying to follow the 

leader. It can be seen in the control input plots how agents try to keep up with 

each other in order to maintain the formation. 
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Case 2 – Random graph with trust implementation. 

Initial displacements of the agents are as follows 

 

𝑝𝑜𝑠 = (𝑥, 𝑦) =  

[
 
 
 
 
50 60
10 10
20 20
80 20
90 10]

 
 
 
 

 

(63) 

 

𝐺 =  

[
 
 
 
 
0 1 1 1 4
5 0 5 3 1
1 3 0 5 5
5 5 3 0 5
4 5 5 5 0]

 
 
 
 

 

(64) 

The agent 1 is modelled to be the leader as 

 

𝐺𝑙 = 

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

  

(65) 

he leader is modelled with an agent input of  

 𝑢1 = [0 0.6] (66) 
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Result: 

 

Fig.  3.6 Graph showing the edge weights. 

 

Fig.  3.7 Displacement in X-direction. 
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Fig.  3.8 Displacement in Y-direction. 

 

Fig.  3.9 Control input 𝑢𝑥. 
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Fig.  3.10 Control input 𝑢𝑦. 

 

 

Conclusion:  

From the above, it is evident that due to unsymmetrical and random graph 

structure, the controller initially fails to respond to the position formation 

objectives and this is quite the scenario in real world situations. But we see that as 

trust kicks in at 𝑡 = 20, the errors converge and formation is regained. 
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Chapter 4  

Position consensus controller experiment 

4.1 Experimental setup and system architecture 

4.1.1 Crazyflie 2.0 

The CrazyFlie 2.0 is a nano quadcopter weighing only 27 grams. It is an 

open source product developed by bitcraze.io for research and development 

purpose. Crazyflie 2.0 has two options for wireless connectivity: Bluetooth Low 

Energy (BLE) and radio communication through Crazyradio PA. The quadcopter 

is powered through an onboard battery that can be recharged using a standard 

micro USB cable. Each charge can provide about 7 minutes of flight time. This 

factor makes it challenging to use multiple of these for formation flight because it 

is a known fact that with change in charge levels, the dynamics of quadcopter 

change which also makes it an ideal system to test the performance of consensus 

algorithms developed by us. It supports wireless firmware update as well. All the 

parts could be quickly assembled and the quad-copter is designed to break at 

cheap replaceable plastic parts in case of crash and the parts are available as 

spares on the company’s website. Also, due to the light weight characteristic of 

the aerial vehicle, the crash is not too destructive due to low kinetic energy during 

collision. 
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Fig.  4.1 CrazyFlie 2.0 with Vicon tracker markers. 

 

Some of the other hardware specifications are as follows [14]: 

 Mechanical specification 

 Weight: 27g 

 Size (WxHxD): 92x92x29mm (motor-to-motor and including 

motor mount feet) 

 Radio specification 

 20 dBm radio amplifier tested to > 1 km range LOS with 

Crazyradio PA 

 Bluetooth Low Energy support with iOS and Android clients 

available (tested on iOS 7.1+ and Android 4.4+) 

 Radio backwards compatible with original Crazyflie and 

Crazyradio 

 Micro-controllers 
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 STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb 

SRAM, 1Mb flash) 

 nRF51822 radio and power management MCU (Cortex-M0, 

32Mhz, 16kb SRAM, 128kb flash) 

 𝜇USB connector 

 On-board LiPo charger with 100mA, 500mA and 980mA modes 

available 

 Full speed USB device interface 

 Partial USB OTG capability (USB OTG present but no 5V output) 

 IMU 

 3 axis gyro (MPU-9250) 

 3 axis accelerometer (MPU-9250) 

 3 axis magnetometer (MPU-9250) 

 High precision pressure sensor (LPS25H) 

 Flight specification 

 Flight time with stock battery: 7 minutes 

 Chraging time with stock battery: 40 minutes 

 Max recommended payload weight: 15 g 

 Expansion connector with 

 VCC (3.0V, max 100mA) 

 GND 
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 VCOM (unregulated VBAT or VUSB, max 1A) 

 VUSB (both for input and output) 

 I2C (400kHz) 

 SPI 

 2 x UART 

 4 x GPIO/CS for SPI 

 1-wire bus for expansion identification 

 2 x GPIO connected to nRF51 

 8KB EEPROM 

 

 

Fig.  4.2 CrazyFlie 2.0 system architecture [15]. 
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Each system consists of nRF51822 and STM32F405. nRF51822 which 

has ARM Cortex-M0 serves for radio functionality and responsible for power 

management but it is not powerful enough to do the other controller computations 

as required for the operation of CrazyFlie. It uses CRTP (Crazy Real-Time 

Protocol) and BLE for radio communication. The nRF51 chip was designed to run 

off of a coin battery and hence is highly power efficient. 

The other part is STM32F405 which is used for computation and 

processing of GPS and IMU data and other computationally heavy algorithms. 

This part has sufficient memory to accept new code as well as log sensor data. All 

other flight control such as motor control and telemetry is also handled by 

STM32F405. There is inter communication link setup between STM32F405 and 

nRF51822. 
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4.1.2 CRTP  

CRTP stands for Crazy Real-Time Protocol. This protocol is used to 

communicate with the CrazyFlie wirelessly via CrazyRadio or CrazyRadio PA 

[16]. 

 

 

Fig.  4.3 CrazyRadio PA [16]. 
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4.1.3 Vicon tracker  

Vicon Tracker is a motion capture system which implements localization 

by principle of reflection of light. It involves infrared cameras to track specially 

designed highly reflective markers and provides the location in real-time [17]. 

Multiple of such infrared cameras could be used in conjunction to provide better 

pose estimates. For the purpose of our experiments, 16 such cameras were 

employed. The raw data was processed on a Windows 7 machine using the 

Tracker software. The software is optimized to track multiple objects in real-time 

[18]. The processed data output is in the form of position and orientation of the 

object as created in the software. This data is broadcasted via a router and made 

available to other users through ROS channel under a specific topic name. 
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4.2 Flight tests 

The experimental test flights are carried out with a swarm of 3 CrazyFlie 

2.0s. The take-off sequence takes off individual quad-copter at predefined time 

intervals. Once all the quad-copters achieve an initial goal formation location, the 

position controller switches from goal following controller to consensus 

controller. The positions and orientations are in the form of a vector 

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑅
𝑃
𝑌]
 
 
 
 
 

  

 

Where (𝑥, 𝑦, 𝑧) represent the position in three directions and (𝑅, 𝑃, 𝑌) 

denote the roll, pitch and yaw1 respectively. All these values are coming from the 

Vicon tracker and are therefore in a global world frame. In order to perform local 

neighborhood error calculations, these need to be transformed to local agent 

frames. This is taken care by using pre-built ROS functions. 

A total of 3 test flights are conducted, each with different graph topology 

as well as leader weights. 

The initial displacement vectors of the agents for all of the three flights are 

taken as (in the order of X,Y,Z) 

                                                 
1 Note: Quaternions are used in place of RPY in code in order to avoid singularities. 
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𝑎𝑔𝑒𝑛𝑡 1 ∶  [ 0.5, 0.5, 0.0 ] 

𝑎𝑔𝑒𝑛𝑡 2 ∶  [ −0.5, −0.5, 0.0 ] 

𝑎𝑔𝑒𝑛𝑡 3 ∶  [ −0.5, 0.5, 0.0 ] 

(All link lengths are in meters.) 
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4.2.1 Test flight 1  

For the first test flight, the graph topology is 

 

𝐺 =  [
0 3 0
3 0 2
0 2 0

] 

Agent 1 is connected to the leader and other two agents follow agent 1 as 

per the graph topology. 

The position variation of the quad-copters in X and Y directions2 are 

shown below 

 

Fig.  4.4 Experiment 1, Position in x-direction. 

                                                 
2 Z direction controller is not considered as it has different dynamics. 
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Fig.  4.5 Experiment 1, Position in y-direction. 

 

4.2.2 Test flight 2   

For the first test flight, the graph topology is 

𝐺 =  [
0 3 2
3 0 2
2 2 0

] 

Agent 1 is connected to the leader and other two agents follow agent 1 as 

per the graph topology. 

The position variation of the quad-copters in X and Y directions are shown 

below 
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Fig.  4.6 Experiment 2, Position in x-direction. 
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Fig.  4.7 Experiment 2, Position in y-direction. 

 

4.2.3 Test flight 3   

For the first test flight, the graph topology is 

𝐺 =  [
0 1 1
1 0 1
1 1 0

] 

This time, all the agents are connected to the leader by using pinning gains 

𝑔1 = 𝑔2 = 𝑔3 = 1 

The position variation of the quad-copters in X and Y directions are shown 

below 
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Fig.  4.8 Experiment 3, Position in x-direction. 

 

 Fig.  4.9 Experiment 3, Position in y-direction. 
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Chapter 5 Conclusion and future work 

  

From the test flights conducted, it is evident that with change in the graph 

topology the behavior of the swarm changes. With reduction in graph links, the 

latency in transfer of information increases in vice-versa. But the controller tries 

to minimize the positional errors anyways. 

Also, it is concluded that the controller works for multi-agent systems and 

as it was tried on two systems with completely different dynamics, the controller 

also works for multi-class agents. Irrespective of what the initial topology of the 

network would look like, the controller tries to drive the agents such that the 

errors converge. 

All the discussion above forms a small part of the big vision of 

establishing a mode of efficient and robust connectivity protocol between multi-

class multi-agent systems. The simulations showed the convergence of the control 

algorithm for fixed and time-variant graphical topologies and the experiments 

verified the same. With this as the basis, future development should include 

developing dynamic leader switching and testing the time-variant topologies on 

some dynamical system of multi-agents with implementation of clustering where 

agents with different motives could choose to form separate teams and pursue 

individual goals. This could be done by appointing novel leaders within each new 

cluster.  
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