
TRUST BASED TIME-VARYING NETWORK TOPOLOGY FOR

DISTRIBUTED CO-OPERATIVE CONTROL OF

MULTI-CLASS MULTI-AGENT SYSTEMS

by

ANKUR VIPULKUMAR DALAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2018

ii

Copyright © by Ankur Dalal 2018

All Rights Reserved

1

To my family.

2

Acknowledgements

I would like to thank my supervising professor Dr. Frank L. Lewis for

providing me with an opportunity to work in his lab at The University of Texas at

Arlington Research Institute (UTARI). I am grateful for his continuous support

and mentorship during my research.

 I would like to acknowledge and thank my thesis advisor Dr.

Kamesh Subbarao for all his guidance and support. I would also like to thank Dr.

Robert L. Woods and Dr. Alan P. Bowling for taking interest in my research and

serving on my thesis committee.

 I would also like to extend my gratitude towards my colleagues

Patrik Kolaric and Cody L. Lundberg for all the support that they have provided

me while working at UTARI. I would also like to thank all the staff at UTARI for

all their support.

April 12, 2018

3

Abstract

TRUST BASED TIME-VARYING NETWORK TOPOLOGY FOR

DISTRIBUTED CO-OPERATIVE CONTROL OF

MULTI-CLASS MULTI-AGENT SYSTEMS

Ankur Dalal, MS

The University of Texas at Arlington, 2018

Supervising Professor: Frank Lewis

With increased levels of autonomy in most of the engineering fields and

booms in areas such as swarms, platoons and Internet of Things (IoT),

communication and information flow has become a highly researched field. With

advancements in autonomous vehicles (AVs) and drones in armed warfare, more

and more focus is being laid on intercommunication between these vehicles and

its surroundings as well as intra-communication among the fleets/swarms itself.

It is easier to deal with individual agents whereas it is quite challenging to

deal with multi-agent systems especially with highly dynamic agents. In this

thesis, we propose a general protocol for dealing with such multi-agent systems

and how to manage dynamic agents. The approach is preliminarily based on graph

theory for distributed multi-agent consensus control and contagion spread from

4

adversaries to the other agents is quarantined by methods of graph clustering.

During the research, position consensus controller was experimentally verified

and clustering methods were simulated on computer.

A major focus of the research is on how to accommodate for parting of

existing adversaries from the group and allow for the entry of new agents to the

flock as and when required in time. This aspect of the research allows for

mitigating risk factors associated with hacked agents and couple new agents (with

similar motives to that of the flock) to the flock.

5

Table of Contents

Acknowledgements ... 2

Abstract ... 3

List of Illustrations .. 7

Introduction ... 9

1.1 Background and motivation .. 9

1.2 Literature Review ... 12

1.3 Challenges ... 17

1.4 Examples of agents ... 19

1.4.1 Vehicles as nodes ... 19

1.4.2 Network nodes as agents .. 21

1.5 Objectives and approach ... 22

1.5.1 Objectives .. 22

List of publications ... 23

Chapter 2 Mathematical preliminary and system description 24

2.1 Problem formulation ... 24

2.2 Methods involved ... 27

2.2.1 Graph .. 27

2.2.2 Trust indices ... 30

2.2.3 Clustering ... 31

Chapter 3 Analytical approach.. 33

6

3.1 Consensus controller ... 33

3.2 Position consensus controller .. 34

3.3 Convergence of the errors ... 37

3.4 Simulation ... 43

3.4.1 System model ... 43

3.4.2 Trust model .. 44

3.4.3 Simulation cases ... 46

Chapter 4 Position consensus controller experiment .. 54

4.1 Experimental setup and system architecture ... 54

4.1.1 Crazyflie 2.0 ... 54

4.1.2 CRTP .. 59

4.1.3 Vicon tracker .. 60

4.2 Flight tests ... 61

4.2.1 Test flight 1 .. 63

4.2.2 Test flight 2 .. 64

4.2.3 Test flight 3 .. 66

Chapter 5 Conclusion and future work ... 68

Chapter 6 References .. 69

Bibliographical information .. 72

7

List of Illustrations

Fig. 1.1 Connected cars .. 10

Fig. 1.2 Truck platooning .. 20

Fig. 1.3 Freight platooning .. 20

Fig. 2.1 Directed graph showing edge weights. ... 29

Fig. 2.3 Examples of graph clustering objectives. ... 32

Fig. 3.1 Graph showing the edge weights. ... 47

Fig. 3.2 Displacement in X-direction. .. 47

Fig. 3.3 Displacement in Y-direction. .. 48

Fig. 3.4 Control input 𝑢𝑥. .. 48

Fig. 3.5 Control input 𝑢𝑦. .. 49

Fig. 3.6 Graph showing the edge weights. ... 51

Fig. 3.7 Displacement in X-direction. .. 51

Fig. 3.8 Displacement in Y-direction. .. 52

Fig. 3.9 Control input 𝑢𝑥. .. 52

Fig. 3.10 Control input 𝑢𝑦. .. 53

Fig. 4.1 CrazyFlie 2.0 with Vicon tracker markers.. 55

Fig. 4.2 CrazyFlie 2.0 system architecture .. 57

Fig. 4.3 CrazyRadio PA. .. 59

Fig. 4.4 Experiment 1, Position in x-direction. .. 63

8

Fig. 4.5 Experiment 1, Position in y-direction. .. 64

Fig. 4.6 Experiment 2, Position in x-direction. .. 65

Fig. 4.7 Experiment 2, Position in y-direction. .. 66

Fig. 4.8 Experiment 3, Position in x-direction. .. 67

Fig. 4.9 Experiment 3, Position in y-direction. .. 67

9

Introduction

1.1 Background and motivation

With increase in the levels of autonomy in almost every industry such as

manufacturing, food processing, aviation and most recently transportation, there

has emerged a need for connectedness. Internet of things (IoT) has been

flourishing in the modern era and its basis lies in interconnection of devices and

appliances over the internet. The network maybe a global one (like the internet) or

a local one (like a Local Area Network), but the underlying motive remains the

same, i.e. connectivity. Similar notion applies to robots as well. Whether they are

autonomous ground vehicles for delivery or unmanned aerial vehicles in army,

connectivity and interconnectedness play a crucial role in the performance of

these vehicles, commonly known as “agents” in the control engineering society.

US Army invests huge sums in defense related research and development,

a part of which comprises of research regarding multi-agent co-operative flights

of unmanned aerial systems and its performance. With a revolutionary wave

going across the automotive industry, all major automakers and tech giants like

Google (division Waymo), Baidu and ride hailing service providers such as Uber

and Lyft are investing heavily in the field of self-driving cars.

10

Fig. 1.1 Connected cars [34].

All of the above, in a way or other, are looking for interconnectivity for

better performance and control. Not only tech companies, but companies like

Facebook also make use of graph based analysis techniques on social networks

for estimating group dynamics. With the above mentioned applications in mind

and many more, the work presented in this thesis focusses on development and

real-world simulation of strong network protocols for co-operative behavior and

improvement of its performance.

In the light of above, efforts are made to develop and test position

consensus controller with time-varying graph links. Most of the prior work

conducted in this field lacks experimental verifications due to the complexity of

the system. Different works propose different approaches such as differential

11

game theory [19], graph theory [20] and provide theoretical basis and computer

simulation results. This thesis provides simulation results on existing theories

with experimental verifications and simulations for the proposed way forwards.

12

1.2 Literature Review

One of the past works conducted in the field of consensus control of multi-

UAV formation is [19] which formulates the formation control problem as a

differential game problem. It considers fixed information graphs for exchange of

information. The research in [19] proposes open-loop Nash strategy instead of

classical Nash strategy. Aircraft dynamics are proposed as point-mass dynamics

and high level formation control is designed. The models are cited from [21] [22]

[23] which describes the point mass system as

 �̇�𝑖 = 𝑉𝑖 cos 𝛾𝑖 cos 𝜒𝑖 (1)

 �̇�𝑖 = 𝑉𝑖 cos 𝛾𝑖 sin 𝜒𝑖 (2)

 ℎ̇𝑖 = 𝑉 sin 𝛾𝑖 (3)

�̇�𝑖 =

𝑇𝑖 − 𝐷𝑖

𝑚𝑖
− 𝑔 sin 𝛾𝑖

(4)

�̇�𝑖 =

𝐿 cos𝜙𝑖 − 𝑚𝑖𝑔 cos 𝛾𝑖

𝑚𝑖𝑉𝑖

(5)

�̇�𝑖 =

𝐿𝑖 sin𝜙𝑖

𝑚𝑖𝑉𝑖 cos 𝛾𝑖

(6)

With 𝑥𝑖 as the displacement in downward direction, 𝑦𝑖 as the cross-range

displacement, ℎ𝑖 as the altitude, 𝑉𝑖 as ground speed, 𝛾𝑖 is the flight path angle,

𝜒𝑖 is the heading angle, 𝑇𝑖 is the engine thrust, 𝐷𝑖 the drag and 𝐿𝑖 the lift.

The research implements time-invariant directed graph for information

flow. The game theory implementation seeks open loop Nash equilibrium for

agents where the input 𝑈𝑖 of agent 𝑖 is a function of only the initial states

13

𝑧1(0),… , 𝑧𝑁(0) and 𝑡. The paper references to Pontryagin’s minimum principle

[24] for providing proof of optimality. The paper also mentions how open-loop

Nash strategies are not applicable directly to directed graphs unless the graphs are

fully connected. The author then proposes a sampled-Nash approach [25] which

hints towards a possibility of handling time-varying information topology which

might occur due to reasons such as communication failures and that is exactly

what we are looking for and would build more on. The research presents a

simulation result for five UAV system with some assumed parameters and

constants and conclusion is derived on how distributed control over the multiple

UAV system is achieved.

Other research focusing on a different concept of dynamic topology

includes [26] which also considers the agent to be a point mass and considers

switching graph topology for improvement in the performance of communication

between agents. The research provides performance analysis for time varying

topology in graph. One of the major assumption in the research is that the graph 𝐺

at any time instant belongs to a finite set of graph structures with pre-defined

number of nodes. The research work involves a typical motion equation as the

system dynamics and control protocol is divided into two parts: a local feedback

controller and a distributed state feedback controller. The end results provided

involve computer based simulations which show the convergence of the control

14

protocol. This research also in part forms a basis for the research proposed in this

thesis.

Another research on similar lines is [20] which also investigates the

performance of consensus protocol based on time-varying graph topology and

dynamic re-structuring of the links to sustain the co-operation among the agents

under an external attack or internal performance degradation. The methodology

adopted by the researchers involve a detection logic and internal connection

restructuring which is essentially graph re-structuring. The theory involves indices

which measure system performance. Thresholds are then chosen to classify the

agents as either good or bad and based on that classification, the interconnection

between agents is restructured. The way this is achieved is by checking for the

indices at fixed intervals of time known as buffer time which is denoted by

𝑇𝑏𝑢𝑓𝑓𝑒𝑟 . There is a performance index in terms of whether the agent is broken or

not, corresponding to each agent. The index here is chosen as mean of the

distance of the agent under inspection from its neighbors.

But according to the above, if the neighbors are under the influence of a

wrong leader, the agent under consideration would be misguided and would sway

away from the desired global consensus just like its neighbors. Hence, we put

forward a concept of self-trust and consensus trust to account for personal

performance as well as the opinion of neighbors. Not only this, but we also take

into account the past history of every individual agent in order to minimize false

15

judging by neighbors. [20] provides a simulation result involving formation flight

of 6 flights and compares the performance of controller with and without the

faulty agent detection logic. The judging criteria and performance index

calculation does not seem to be complete in this case and seem to be missing from

considering important information. Therefore, we move to the next research

which throws some light on what could possibly considered in order to correctly

identify and classify agents into groups.

An approach to circumvent the above challenge could be to incorporate

trust indices as a measure of sanity of an agent. In [27] a concept of trust

establishment in autonomic networks was first introduced in [30] as a specific

application of distributed trust management. Though the research mainly focusses

on computer networks, the concept could be extended to any multi-agent network

involving flow of information across nodes. Some other prior works focusing on

trust in decentralized networks are [28] and [29]. An important concept in [27] is

distrust which is essentially a negative trust index and is helpful in discarding or

punishing the poor performing agents and neighbors.

Another interesting approach of segregating the agents into groups of good

and bad agents is described in [31] where the inspiration to solve the network

attack and prevention issue is addressed by methods of quarantining the affected

nodes in order to minimize the spread of negative effects using graph topologies.

It takes into consideration the extent to which a node and its neighbors are

16

affected and adopts a protocol of distributing the nodes into groups or districts

which minimizes the spread. An effective way to do the partitioning of the

topological graphs in order to achieve the desired grouping is required. The

research in [32] provides a good insight by introducing graph clustering methods.

The research illustrates multiple graph clustering methods such as normalized

cuts, kernel k-means clustering and spectral clustering. The methods are shown to

be quite useful on an undirected graph. Implementing it on a directed graph is

quite a challenging task.

The simulations provided in the later chapters explain how the position

consensus problem is simulated on a computer and control protocol involving

graph theory is implemented. The simulations also incorporate trust calculations

and edge weight modification accordingly. The classification and clustering

problem is implemented in a novel way.

17

1.3 Challenges

Highly time-varying dynamical systems coupled with unpredictable

behavior of agents pose a massive challenge in the maintenance of coordinated

behavior of multi-agent systems. Co-operative control is highly researched and

implemented area. Applications range from autonomous vehicle fleet to aerial

swarms, network management to epidemic prevention and control, social network

analysis and many others. But the major challenges pertaining to these

applications and other include data lag, data loss, poor performing agents,

handling of dynamic addition and parting of agents from the swarm and time-

varying graphical structures.

Data lag depends on the network infrastructure and graph structures. Fully

connected graphs help overcome this hurdle but has other issues and is rarely

practically implementable due spatial spread of the network and power

consumption. Therefore, strongly and weakly connected directed graphs are

considered instead. Data loss may occur due to interference in network, external

attack and hijacking.

Another major challenge to maintain good co-ordination amongst the

agents is the stability of agents. There could be numerous reasons for this, not to

mention the one’s described in the prior paragraph. But a major cause of

instability in agents is its dynamics. Agents under consideration are usually not

perfect and have errors built into them. This makes it difficult to control

18

individual agent and multiple of these combined is an even worse case. Coupled

with all these, the need of the hour is to add and part agents dynamically as time

progresses. This is essentially helpful in maintaining continuum of highly mobile

agents as they propagate through space and time. The problem arises due to the

interaction of one graphical structure with a neighboring one, an isolated agent or

even between agents and its surrounding. Most of the applications till date address

the problem of finite time-invariant agents whereas this research proposes a novel

concept to deal with time varying members.

19

1.4 Examples of agents

The graphs described in the previous chapters operate on some nodes or

vertices. These nodes could be real physical system(s) or virtual centers of

information exchange. Several systems could be modeled using this concept

where some desired consensus is required among multiple of such nodes. It could

be general behavior of quad-copters or reliable and secure data transfers. Some of

them are explained below.

1.4.1 Vehicles as nodes

With modernization and boom in industrial automation, vehicle systems

have seen some major applications of graph theory. Logistics is a huge, lucrative

and continuously growing industry. This being one of the reasons for lots of

recent R&D in this field.

Autonomous vehicles on streets is no longer a myth. It all began with the

DARPA grand challenge back in March of 2004 [7] where multiple teams

including teams from universities competed in an autonomous vehicle challenge.

Today there are over a dozen companies [8] testing their autonomous vehicles on

the streets of California. Freight platooning [9] another example of application of

such autonomy. Each vehicle forming the platoon can be considered a node with

one of them being the leader and rest being the followers. The vehicles adjust

their speeds and try to maintain appropriate distances from each other. The aspect

20

that is of importance in maintaining such co-operative behavior is communication

between the agents.

Fig. 1.2 Truck platooning [10].

Fig. 1.3 Freight platooning [9]

21

1.4.2 Network nodes as agents

Similarly, network nodes that communicate to each other could be

modelled as nodes of this graph and reliable communication across the network

could be obtained.

22

1.5 Objectives and approach

1.5.1 Objectives

The main objective of this research is to develop a reliable infrastructure

for obtaining consistent co-operative behavior. There are several methods of

obtaining distributed control and achieving co-operative behavior but this

research primarily focusses on graph theory based consensus control.

The existing consensus protocols involve static edge weights, directed or

undirected graph structure, time-varying graph topologies and graph clustering.

All these methods aim at improving the performance of the system. The method

proposed in this research enhances the concept of trust propagation in graph and

allows for dynamic edge weights which in turn allows for dynamic leader. The

main idea behind this objective is to enable effective communication between

nodes (vehicles in particular) and allow for co-operative behavior between

existing agents and newly discovered agents in order to accommodate the new

agents in the flock. This would help for smooth propagation of multiple flocks in

a confined space. Similarly, there may exist situations where an agent might be

required to leave the group voluntarily or under the influence of neighbors. Such

scenarios occur when an agent is not performing well or has a different motive

than the group.

23

List of publications

Accepted:

Kolaric, P., Chen, C., Dalal, A., & Lewis, F. (2018). Consensus controller for

multi-UAV navigation. Control theory and technology.

24

Chapter 2

Mathematical preliminary and system description

2.1 Problem formulation

From various modules of chapter 1, it is necessary to reduce the problem

to a much narrower definition in order to tackle the challenges that are listed. It

may be noted that the ultimate goal of the research is to be able to develop a

solution that could create a pipeline for the communication between autonomous

vehicles in order to have successful operation without worrying about the

individual case of interaction between vehicles or with its surroundings that may

arise due to continuously varying spatial formation of the vehicle. But at

educational and master’s thesis level, it was not practically possible to develop the

whole solution which could be used as an out-of-the box solution. Therefore, the

research has focused on the development of general algorithm that could be

applied not only to autonomous cars, but to any system where communication is a

key to the operation and where formation control is desired. In order to extend the

research to autonomous vehicles, significant efforts would be required.

We propose a position control problem involving 𝑛 angents. The aim is to

maintain a constant goal following in a particular fashion while maintaining the

initial spatial formation. The algorithm must be robust enough to accommodate

any changes in the number of agents as time progresses. This scenario may occur

when some agents start to develop a consensus of their own and are influenced by

25

the wrong agents. This scenario would eventually lead to a similar behavior by

other agents following the bad agent and the whole consensus would see high

inputs in an undesired direction. In order to prevent such a scenario to build up,

necessary preventive measures are proposed.

An index that would judge the performance of the agent according to its

behavior with respect to time. The concept of trust is incorporated as seen in [27]

but slightly differently in order to better criticize each agents. Two indices are

introduced: self-trust and consensus trust. Both the indices evolve with time and

consider the time history of agents while criticizing the agents. As the names

suggest, self-trust is a measure of performance of an agent as seen by the agent

itself while consensus trust is a performance index of an agent as seen by its

neighbors. There may arise some doubts regarding this concept as to what would

happen to the indices in case the critics (the neighbors) of a particular agent have

poor performance (meaning a low self-trust). Obviously the critics in this case

would be bad judges. These kind of circumstances are explained and dealt with in

detail in later chapters.

Once the trust values for each of the agents is calculated, next we pose the

problem of classifying them into adversaries or non-adversaries. We classify the

non-co-operating agents as adversaries and the rest as non- adversaries based on

the trust values. Upon successful classification of all the agents, we then move on

to the problem where we need to minimize the spread of the contagion. We came

26

across several graph clustering techniques in [32] which explains algorithms for

classifying nodes of an information graph into multiple classes based on some

criteria. The methods suggested work best for undirected graph where the

direction of flow of information is not taken into account but instead just

represents a relation between nodes.

The thesis here aims to extend the graph clustering methods to directed

graphs. But that alone would not suffice. Our ultimate objective is to add and part

agents dynamically and in order to achieve that, we need a means to place graph

cuts at the correct positions (graph weights) modifying the existing edge weights

(increasing or reducing, but mostly reducing). This has to be done in such a

fashion so as to reduce the spread of the negative effects of the adversarial agents

to others and for that reason we incline to quarantine methods in [31].

27

2.2 Methods involved

2.2.1 Graph

Graph theory is a widely used theory in computer science, electrical

engineering, biological studies [1], social network analysis [2] and several other

fields. It also finds wide applications in shortest path search algorithms [3][4][5]

like the Dijkstra’s algorithm and A*.

Graph is a mathematical structure represented by a pair 𝐺 = (𝑉, 𝐸)

with 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁 }, where V are vertices and E are edges of the structure.

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 represents the edge from vertex 𝑣𝑖 to the vertex 𝑣𝑗 . If graph’s edges

have direction then graph is directed. If edges are not directed (which means that

they are bidirectional), then the graph is said to be undirected. Visual example of

a directed graph is shown on Fig. 1. Each edge has a weight that can model a

strength of connection between the nodes. Number of edges that are entering a

node is called in-degree, while number of edges that are exiting a node is called

out-degree. Graph can be presented in a form of matrix where column index

corresponds to a source of an edge and row index to a sink of an edge. Matrix

element 𝑎𝑖𝑗 indicates weight of corresponding edge in the graph. Matrix

constructed of elements 𝑎𝑖𝑗 is called Adjacency matrix (𝐴). 𝐴 is a very

convenient as it enables analysis of graph theory in the field of linear algebra.

𝑑𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑖=1 is a row sum of 𝐴. 𝑑𝑖 is again introduced because of its

28

convenience in future analysis. Matrix 𝐷 is diagonal matrix of in-degrees, =

𝑑𝑖𝑎𝑔(𝑑𝑖) . Finally, we introduce Laplacian matrix 𝐿 = 𝐷 − 𝐴 which is important

in analysis of graph’s dynamical properties.

Types of graphs –

Graphs are primarily classified into directed graphs (or commonly called

digraphs) and undirected graphs. The difference between the two as the name

suggests is in the nature of the edge weights. If the edge weights are directional,

the graph is said to be directed graph else it is called an undirected graph. Based

on the direction of the edge weight, the edge might be an in-link into or an out-

link from a node.

Various applications demand for different variants of these graphs. Graphs

could be open ended or close ended, may or may not have spanning tree, could be

fully connected or not and might or might not have self-links from nodes to itself.

A graph is said to be strongly connected if it has a spanning tree from

every node, i.e., if it has a path from every node to every other. A graph could

have all the edge weights equal or different weights.

There also exist special forms of graphs where the topology keeps

switching with time [6]. Sometimes it is inherent in the system while at other

times, it would be modeled in order to obtain better performances.

29

Fig. 2.1 Directed graph showing edge weights.

In the graph shown above, solid dots represent the vertices of the graph

structure and the lines represent the edges and the numbers on these edges

represent the edge weight. Agents under consideration are represented by the

vertices and their mutual relationships are represented by the edge weights. The

direction of the edge shows which vertex is influencer and which on is influenced.

30

2.2.2 Trust indices

Trust is a very general term. Some of the approaches like [27] and [30]

have tried to define and quantify the word trust. Sometimes it is desired to have

the value of trust as a binary value (like in [30]) and sometimes a floating point

value (like in [27]). Sometimes a thresholding may be required while in other

cases, thresholding might be applied prior to the calculation of trust index. So it

generally varies from application to application. Another important formulization

during implementation of trust indices is distrust index. Distrust is nothing but

negative trust which could be used to heavily penalize disagreeing agents. But the

idea behind all of them remain the same, i.e. to develop a measuring index in

order to prioritize or weigh different agents/entities according to a given cost

function.

In our case, the cost function would essentially be the positional tracking

error. Based on how good the agent is following the leader, it would be assigned a

trust index, better performance (low tracking error), higher trust value and vice-

versa. For our discussion, we limit the trust values in the closed interval [0,1]

because negative trust values would mean driving away the adversaries (which

could be done in extreme cases) and trust values higher than unity would mean

changing of the leader (more on this in later chapters).

We incorporate two trust indices, namely self-trust index and consensus

trust index. As the name suggests, the prior index takes into account the

31

performance of an agent as viewed by itself whereas the latter index is formed by

the combined judgment of the neighbors of the agent. The main motive behind

considering two indices instead of one is to reduce the number of outliers. The

way this works is that each individual agent judges itself based on the inputs

received and the output that it produced. This forms the basis for self-trust index.

While consensus trust index is formed by the collective decision of the neighbors

on how the agent under consideration performed and how it should have

performed. It might be argued that consensus trust should suffice and there would

not be any requirement of another index but self-trust helps weigh the neighbor

judgment according to its own performance. For instance, an agent with multiple

poor performing agents would be judged incorrectly as the agents are seeking

different goals.

2.2.3 Clustering

After assigning trust indices to every agent, the next step is to classify the

agents as adversaries and non-adversaries. Simple thresholding can be

implemented to achieve the classification. Once the classification is complete,

there may exist multiple groups, each segregated into either adversary or non-

adversary. Depending on the group to which a particular agent belongs to, clusters

could be formed around them to restrict the spread of contagion.

32

Now there comes an important decision making step, whether to let go of

the bad agents or just reduce the dependency of good agents on adversaries. Some

of the methods explained in [32] and [33] as shown below such as normalized cut,

ratio cut and ratio association are some of the partitioning techniques that can be

implemented.

Fig. 2.2 Examples of graph clustering objectives [33].

A concern here is the necessary trade-offs in order to maintain consensus

in maximum number of agents while eliminating/reducing dependency on

adversaries. The factors that would come into play while deciding the trades-offs

consist of rate of information transfer which is basically dictated by the graph

structure in our case. The information transfer rate determines how fast the

contagion would spread and depending on that, we need to cluster the agents in

such a way that we lose as minimum number of agents as possible.

33

Chapter 3

Analytical approach

3.1 Consensus controller

Consensus controller refers to a control protocol for maintaining co-

ordination among agents in a system by distributed error minimization and control

input. Efforts have been made to test the consensus algorithm by application of

graph theory and improving its performance by implementing trust based time-

varying graphical edge weights and dynamic leader and clustering of the existing

graph into groups of adversaries and non-adversaries. For the purpose of

demonstration, highly dynamically unstable system comprised of nano quad-

copters called CrazyFlie 2.0 [11] are used.

The aim is to maintain coordinated flight of a swarm of UAV in a fixed

formation inside a Vicon motion capture [12] tracking environment. The

formation control involves maintaining fixed distances from neighbors and

achieve an overall flight formation. Information is shared locally between agents,

meaning only neighbors according to the graph are allowed to communicate with

each other. This brings about the distributedness in the system.

34

3.2 Position consensus controller

Consider the following control protocol on a graph:

 𝑢𝑖(𝑡) = ∑ 𝑎𝑖𝑗(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))

𝑗𝜖𝑁𝑖

(7)

Where 𝑥𝑖(𝑡) is the current state of the node 𝑖 and 𝑢𝑖 is the control input

generated by consensus protocol. Graph states 𝑥𝑖 can be controlled by applying

the following control law:

 �̇�𝑖(𝑡) = 𝑢𝑖(𝑡) (8)

Equations of closed loop dynamics can then be rearranged:

 �̇�𝑖(𝑡) = −𝑥𝑖 ∑ 𝑎𝑖𝑗

𝑗 𝜖 𝑁𝑖

+ ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗 𝜖 𝑁𝑖

= −𝑑𝑖𝑥𝑖 + [𝑎𝑖1 …𝑎𝑖𝑁][𝑥1 . . . 𝑥𝑁]𝑇

(9)

Vectorization of 𝑥𝑖 into 𝑥 = [𝑥1 . . . 𝑥𝑁]𝑇 gives more compact way to

rewrite Eq. 18 as:

 �̇� = (𝐴 − 𝐷)𝑥 = −𝐿𝑥 (10)

Where L represents the Laplacian matrix.

We introduce Δ𝑖 of UAV 𝑖 from the center of the formation. Different

combinations of Δ𝑖 can now be used to encode various formations. 𝑥0 is the agent

leader and is directly linked to those agents that have non-zero pinning gain 𝑔𝑖.

The reference is generated by the leader and is effectively transmitted to the

whole system through the distributed communication network.

35

The neighborhood error is defined as

 𝑒𝑖 = ∑ 𝑎𝑖𝑗(𝑥𝑗 − Δ𝑗 − 𝑥𝑖 + Δ𝑖) + 𝑔𝑖(𝑥0 − 𝑥𝑖 + Δ𝑖)

𝑗𝜖𝑁𝑖

(11)

And neighborhood time derivative of the error

 �̇�𝑖 = ∑ 𝑎𝑖𝑗(�̇�𝑗 − Δ̇𝑗 − �̇�𝑖 + Δ̇𝑖) + 𝑔𝑖(�̇�0 − �̇�𝑖 + Δ̇𝑗)

𝑗 𝜖 𝑁𝑖

(12)

If we assume that the position of the leader (𝑥0) and the relative positions

between the agents (Δ𝑖, ∀𝑖) are not changing during the experiment then

 �̇�𝑖 = ∑ 𝑎𝑖𝑗(�̇�𝑗 − �̇�𝑖) + 𝑔𝑖(− �̇�𝑖)

𝑗 𝜖 𝑁𝑖

(13)

The alias of ideal positions displaced by Δ𝑖 is introduced

 𝑥𝑖
𝑎 = 𝑥𝑖 − Δ𝑖 (14)

For 𝑖 = 1,2, … , 𝑁. From above equation, position errors between the two

agents are given as

 𝛿𝑖𝑗 = 𝑥𝑗
𝑎 − 𝑥𝑖

𝑎

(15)

From the above equation, the neighborhood error defined previously now

has the form

 𝑒𝑖 = ∑ 𝑎𝑖𝑗(𝑥𝑗
𝑎 − 𝑥𝑖

𝑎) + 𝑔𝑖(𝑥0 − 𝑥𝑖
𝑎)

𝑗𝜖𝑁𝑖

(16)

36

 �̇�𝑖 = ∑ 𝑎𝑖𝑗(�̇�𝑗 − �̇�𝑖) + 𝑔𝑖(− �̇�𝑖)

𝑗 𝜖 𝑁𝑖

(17)

37

3.3 Convergence of the errors

Define 1𝑁 = [1, 1, … , 1]𝑇 𝑅𝑁 with all 𝑁 elements ones. The global forms

of (25) and (26) are now expressed as

 𝑒 = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝑥𝑎 − 1𝑁 ⊗ 𝑥𝑜) (18)

 �̇� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)�̇� (19)

In order to further develop the discussion on that hypothesis, the second

order dynamics is first calculated

 �̈� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)�̈� (20)

Plugging (19) in (29) gives

 �̈� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)[(𝐼𝑛 ⊗ 𝐴)𝑥 + (𝐼𝑛 ⊗ 𝐵)𝑣]

= −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝐴𝑔𝑥 + 𝐵𝑔𝑣)

(21)

Where 𝐴𝑔 = 𝐼𝑁 ⊗ 𝐴 and 𝐵𝑔 = 𝐼𝑁 ⊗ 𝐵 . Without the loss of generality,

further simplification is introduced

 �̈� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝐴𝑔𝑥 + 𝑢) (22)

Where 𝑢 = 𝐵𝑔𝑣 is defined as the global vector of inputs.

To drive both position and velocity to zero, we use the sliding mode

control and define the sliding mode error as

 𝑟 = �̇� + ⋀𝑒 (23)

38

Where ⋀ is a positive definite. 𝑒 is bounded as long as 𝑟 is bounded let

𝜆 = 𝑑𝑖𝑎𝑔(𝜆𝑖) be 𝑁 dimensional diagonal matrix with 𝜆𝑖 on the diagonal, each

corresponding to one agent. Then ⋀ = 𝜆 ⊗ 𝐼𝑛 . Taking the time to derivative of

(32) yields

 �̇� = �̈� + ⋀�̇� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝐴𝑔𝑥 + 𝑢)

−⋀((𝐿 + 𝐺) ⊗ 𝐼𝑛)�̇�

(24)

By using Kronecker rule (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) (under the

assumption that dimensions of 𝐴, 𝐵, 𝐶, 𝐷 allow multiplications 𝐴𝐶 and 𝐵𝐷), we

introduce the following for convenience

 𝑍 = ((𝐿 + 𝐺) ⊗ 𝐼𝑛)

𝑍𝐴 = ((𝐿 + 𝐺) ⊗ 𝐼𝑛)𝐴𝑔 = ((𝐿 + 𝐺) ⊗ 𝐴)

𝑍𝜆 = (𝜆 ⊗ 𝐼𝑛)((𝐿 + 𝐺) ⊗ 𝐼𝑛) = ((𝜆 (𝐿 + 𝐺)) ⊗ 𝐼𝑛)

(25)

Rewrite (33) as

 �̇� = −𝑍𝐴𝑥 − 𝑍𝜆�̇� − 𝑍𝑢 (26)

Based on the undirected graph topology, we make some assumptions

useful for the control design.

Assumption 1

𝐿 is irreducibly diagonally dominant matrix.

Assumption 2

𝐺 has at least one diagonal entry.

39

It is not restrictive to make assumptions 1 and 2, since many practical

multi-agent systems fall under that category.

The control law locally and globally is introduced as

 𝑢𝑖 = 𝑢1𝑖 + 𝐾𝑖𝑟𝑖 (27)

 𝑢 = 𝑢1 + (𝐼𝑁 ⊗ 𝐾𝑖)𝑟 = 𝑢𝑖 + 𝐾𝑟 (28)

Where matrix 𝐾𝑖 = 𝐾𝑗 , ∀𝑖, 𝑗 is used for control design. Assume that 𝑢𝑖 is

specified later in the theorem. Under that assumption, re-writing (28) in the global

form

 �̇� = −((𝐿 + 𝐺) ⊗ 𝐾𝑖)𝑟 = −𝑍𝐾𝑟 (29)

Lemma 1

Let assumptions 1 and 2 hold. If we define

𝑊 = 𝑑𝑖𝑎𝑔(𝑤𝑖) = 𝑑𝑖𝑎𝑔(

1

𝑞𝑖
)

(30)

Where

 𝑞 = (𝐿 + 𝐺)−11𝑁 (31)

Then, both 𝑊 𝑎𝑛𝑑 𝑄 = 𝑊(𝐿 + 𝐺) + (𝐿 + 𝐺)𝑇𝑊 are positive definite.

Additionally, if 𝑄 is a positive definite then 𝑄 ⊗ 𝐼𝑛 is also positive definite. 𝑄 =

𝑊(𝐿 + 𝐺) + (𝐿 + 𝐺)𝑇𝑊

Proof: the first assertion follows the results in [35]. For the second

assertion, we obtain that eigenvalues of a matrix generated by Kronecker product

are cross-products of all possible combinations of eigenvalues from matrix 𝑄 and

40

𝐼𝑛. Both 𝑄 and 𝐼𝑛 are positive definte and corresponding eigenvalues all positive.

This completes the proof.

Assumption 3

Let �̅� be the measurements of ideal state vector 𝑥

 �̅� = 𝑥 + 𝜇1

�̇̅� = �̇� + 𝜇2

�̅� = 𝑥0 + 𝜇0

(32)

Then define the bound on sensor noise

 ||𝜇1|| < 𝜇1,𝐵

||𝜇2|| < 𝜇2,𝐵

||𝜇0|| < 𝜇0,𝐵

(33)

Where 𝜇0,𝐵 denotes the measurement error of leader’s position.

Sliding mode error injected with noises is

 �̅�𝑖 = �̅��̇� + 𝜆𝑖�̅�𝑖 (34)

Where

 �̅�𝑖 = ∑ 𝑎𝑖𝑗(�̅�𝑗 − Δ𝑗 − �̅�𝑖 + Δ𝑖) + 𝑔𝑖(�̅�0−�̅�𝑖 − Δ𝑖)

𝑗 𝜖 𝑁𝑖

(35)

 �̅�𝑖 = ∑ 𝑎𝑖𝑗(�̇̅�𝑗 − �̇̅�𝑖) + 𝑔𝑖(−�̇̅�𝑖)

𝑗 𝜖 𝑁𝑖

(36)

The global form of noisy error is

41

 �̅� = �̇̅� + ⋀�̅� (37)

Where

 �̅� = −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(�̅�𝑎 − 1𝑁 ⊗ �̅�0)

= −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝑥𝑎 + 𝜇1 − 1𝑁 ⊗ 𝑥0 − 1𝑁 ⊗ 𝜇0)

= −((𝐿 + 𝐺) ⊗ 𝐼𝑛)(𝜇1 − 1𝑁 ⊗ 𝜇0) + 𝑒

= −𝑍𝜇2 + �̇�

(38)

 �̇̅� = −𝑍𝜇2 + �̇� (39)

 �̈̅� = −(𝐴𝑔�̅� + 𝑢)

= −𝑍𝐴𝑔𝜇1 + �̈�

(40)

Extracting the ideal sliding mode error from the measured error gives

 �̅� = 𝑟 − ⋀𝑍(𝜇1 − 1𝑁 ⊗ 𝜇0) − 𝑍𝜇2 (41)

Substituting (42) and (41) into (26) yields

 �̇̅� = �̇� − 𝑍𝐴𝑔𝜇1 − ⋀𝑍𝜇2 (42)

Definition 1

The signal z(t) is said to be uniformly ultimately bounded (UUB) with the

ultimate bound b, if given positive constants b and c for every 𝑑 ϵ(0, c), there

exists 𝑇(𝑑, 𝑏), independent of 𝑡0, such that

 ||𝑧(𝑡0)|| ≤ 𝑑 ⇒ ||𝑧(𝑡)|| ≤ 𝑏, ∀𝑡 ≥ 𝑡0 + 𝑇 (43)

Theorem 1

42

Let assumptions 1-3 hold. Defining the sliding mode error dynamics as

(26). Select the control policy for the local agent as

 𝑢𝑖 = 𝐾𝑖�̅�𝑖 − 𝐴�̅�𝑖 − 𝜆𝑖 �̇̅�𝑖 (44)

Assume that 𝜆𝑖 = 𝜆𝑗 , ∀𝑖, 𝑗 (53). Consider the error dynamics (38) and

design matrices Q and R. Pick the following control gain

 𝐾𝑖 = 𝑅−1𝑃 (45)

 𝐾 = (𝐼𝑁 ⊗ 𝐾𝑖) (46)

Where P is the unique positive definite solution of control algebraic

Riccati equation

 0 = 𝑄 − 𝑃𝑅−1𝑃 (47)

The control law (53) with the gain (54) guarantees asymptotic stability for

(38). Moreover it stabilizes the system (19) and makes the ideal tracking error

(20) UUB.

The controller drags all aliases 𝑥𝑖
𝑎 for 𝑖 = 1,… ,𝑁 to the center of the

formation. If all aliases are in the center of the formation, no action from the

controller is required. Neighborhood errors quantify the spatial disharmony of the

formation. The controller determines an action 𝑢𝑖 of the agent 𝑖 such that it

recovers consensus. ⋀ is a tuning parameter. As given, controller resembles well

known standard PD controller.

43

3.4 Simulation

3.4.1 System model

In order to verify the validity of the above proposed consensus controller,

a computer simulation is carried out on Matlab. Initially, five agents are

simulated. An input is provided to the agent labelled as 1 . This agent acts as the

leader. There are four other follower agents labeled 2 𝑡𝑜 5. As the control

protocol, following equations is used

𝑢𝑖 = 𝐾𝑐 [∑ 𝑎𝑖𝑗(𝑥𝑗 − Δ𝑗 − 𝑥𝑖 + Δ𝑖) + 𝑔𝑖(𝑥0 − 𝑥𝑖 + Δ𝑖)

𝑗 𝜖 𝑁𝑖

]

(48)

𝐺 = [

𝑎11 ⋯ 𝑎1𝑗

⋮ ⋱ ⋮
𝑎𝑖1 ⋯ 𝑎𝑖𝑗

]

(49)

The dynamics of the system are kept simple for simulation purposes and is

modelled as

 𝑝𝑜𝑠 = [
𝑥
𝑦] (50)

 𝑥𝑡+1 = (𝑥𝑡 + 𝑢𝑥) + 𝜂𝑤 ∀𝑖 (51)

 𝑦𝑡+1 = (𝑦𝑡 + 𝑢𝑦) + 𝜂𝑤 ∀𝑖 (52)

To add a dimension of reality to the simulation, the agents are infused with

Gaussian white noise denoted by 𝜂𝑤.

44

3.4.2 Trust model

The trust function in the system is modelled to account for the past history

of error and current error of the agent and modifies the edge weight associated

with that particular agent accordingly. An important point to note here is that

depending on the performance of the agent, other agents may lose dependency on

a bad agent while the bad agent still maintaining similar dependence on the other

agents. Before we can formulate trust index, we need to formulate error indices as

explained below.

We define a past error history 𝐸𝑝
𝑠 as,

𝐸𝑝

𝑠 = ∫ (𝑥0 − (𝑥𝑖 − Δ𝑖))
𝑡

0

(53)

And current error as 𝐸𝑐
𝑠 as,

 𝐸𝑐
𝑠 = (𝑥0 − (𝑥𝑖 − Δ𝑖)) (54)

We also define a weighting matrix W (belongs to R 1x2) as,

 𝑊𝑠 = [𝑤1
𝑠 𝑤2

𝑠] (55)

where 𝑤1
𝑠 represents the weight factor for past errors and 𝑤2

𝑠 represents the

weight factor for present error and the factors must satisfy the condition

 𝑤1
𝑠 + 𝑤2

𝑠 = 1 (56)

in order to preserve the total error. We then define error index 𝛿s as

𝛿𝑠 = [𝑤1

𝑠 𝑤2
𝑠] [

𝐸𝑝
𝑠

𝐸𝑐
𝑠]

(57)

45

And we define self-trust index τs as

𝜏s =

(𝛿𝑠 − 𝛿𝑢)2

((𝛿𝑢 − 𝛿𝑙)2)

(58)

46

3.4.3 Simulation cases

Case 1 – Fully connected graph.

Initial displacements of the agents are as follows

𝑝𝑜𝑠 = (𝑥, 𝑦) =

[

50 60
10 10
20 20
80 20
90 10]

(59)

𝐺 =

[

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0]

(60)

The agent 1 is modelled to be the leader as

𝐺𝑙 =

[

1
0
0
0
0]

(61)

The leader is modelled with an agent input of

 𝑢1 = [0 0.6] (62)

47

Result:

Fig. 3.1 Graph showing the edge weights.

Fig. 3.2 Displacement in X-direction.

48

Fig. 3.3 Displacement in Y-direction.

Fig. 3.4 Control input 𝑢𝑥.

49

Fig. 3.5 Control input 𝑢𝑦.

Conclusion:

From the above, it is concluded that the agents are trying to follow the

leader. It can be seen in the control input plots how agents try to keep up with

each other in order to maintain the formation.

50

Case 2 – Random graph with trust implementation.

Initial displacements of the agents are as follows

𝑝𝑜𝑠 = (𝑥, 𝑦) =

[

50 60
10 10
20 20
80 20
90 10]

(63)

𝐺 =

[

0 1 1 1 4
5 0 5 3 1
1 3 0 5 5
5 5 3 0 5
4 5 5 5 0]

(64)

The agent 1 is modelled to be the leader as

𝐺𝑙 =

[

1
0
0
0
0]

(65)

he leader is modelled with an agent input of

 𝑢1 = [0 0.6] (66)

51

Result:

Fig. 3.6 Graph showing the edge weights.

Fig. 3.7 Displacement in X-direction.

52

Fig. 3.8 Displacement in Y-direction.

Fig. 3.9 Control input 𝑢𝑥.

53

Fig. 3.10 Control input 𝑢𝑦.

Conclusion:

From the above, it is evident that due to unsymmetrical and random graph

structure, the controller initially fails to respond to the position formation

objectives and this is quite the scenario in real world situations. But we see that as

trust kicks in at 𝑡 = 20, the errors converge and formation is regained.

54

Chapter 4

Position consensus controller experiment

4.1 Experimental setup and system architecture

4.1.1 Crazyflie 2.0

The CrazyFlie 2.0 is a nano quadcopter weighing only 27 grams. It is an

open source product developed by bitcraze.io for research and development

purpose. Crazyflie 2.0 has two options for wireless connectivity: Bluetooth Low

Energy (BLE) and radio communication through Crazyradio PA. The quadcopter

is powered through an onboard battery that can be recharged using a standard

micro USB cable. Each charge can provide about 7 minutes of flight time. This

factor makes it challenging to use multiple of these for formation flight because it

is a known fact that with change in charge levels, the dynamics of quadcopter

change which also makes it an ideal system to test the performance of consensus

algorithms developed by us. It supports wireless firmware update as well. All the

parts could be quickly assembled and the quad-copter is designed to break at

cheap replaceable plastic parts in case of crash and the parts are available as

spares on the company’s website. Also, due to the light weight characteristic of

the aerial vehicle, the crash is not too destructive due to low kinetic energy during

collision.

55

Fig. 4.1 CrazyFlie 2.0 with Vicon tracker markers.

Some of the other hardware specifications are as follows [14]:

 Mechanical specification

 Weight: 27g

 Size (WxHxD): 92x92x29mm (motor-to-motor and including

motor mount feet)

 Radio specification

 20 dBm radio amplifier tested to > 1 km range LOS with

Crazyradio PA

 Bluetooth Low Energy support with iOS and Android clients

available (tested on iOS 7.1+ and Android 4.4+)

 Radio backwards compatible with original Crazyflie and

Crazyradio

 Micro-controllers

56

 STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb

SRAM, 1Mb flash)

 nRF51822 radio and power management MCU (Cortex-M0,

32Mhz, 16kb SRAM, 128kb flash)

 𝜇USB connector

 On-board LiPo charger with 100mA, 500mA and 980mA modes

available

 Full speed USB device interface

 Partial USB OTG capability (USB OTG present but no 5V output)

 IMU

 3 axis gyro (MPU-9250)

 3 axis accelerometer (MPU-9250)

 3 axis magnetometer (MPU-9250)

 High precision pressure sensor (LPS25H)

 Flight specification

 Flight time with stock battery: 7 minutes

 Chraging time with stock battery: 40 minutes

 Max recommended payload weight: 15 g

 Expansion connector with

 VCC (3.0V, max 100mA)

 GND

57

 VCOM (unregulated VBAT or VUSB, max 1A)

 VUSB (both for input and output)

 I2C (400kHz)

 SPI

 2 x UART

 4 x GPIO/CS for SPI

 1-wire bus for expansion identification

 2 x GPIO connected to nRF51

 8KB EEPROM

Fig. 4.2 CrazyFlie 2.0 system architecture [15].

58

Each system consists of nRF51822 and STM32F405. nRF51822 which

has ARM Cortex-M0 serves for radio functionality and responsible for power

management but it is not powerful enough to do the other controller computations

as required for the operation of CrazyFlie. It uses CRTP (Crazy Real-Time

Protocol) and BLE for radio communication. The nRF51 chip was designed to run

off of a coin battery and hence is highly power efficient.

The other part is STM32F405 which is used for computation and

processing of GPS and IMU data and other computationally heavy algorithms.

This part has sufficient memory to accept new code as well as log sensor data. All

other flight control such as motor control and telemetry is also handled by

STM32F405. There is inter communication link setup between STM32F405 and

nRF51822.

59

4.1.2 CRTP

CRTP stands for Crazy Real-Time Protocol. This protocol is used to

communicate with the CrazyFlie wirelessly via CrazyRadio or CrazyRadio PA

[16].

Fig. 4.3 CrazyRadio PA [16].

60

4.1.3 Vicon tracker

Vicon Tracker is a motion capture system which implements localization

by principle of reflection of light. It involves infrared cameras to track specially

designed highly reflective markers and provides the location in real-time [17].

Multiple of such infrared cameras could be used in conjunction to provide better

pose estimates. For the purpose of our experiments, 16 such cameras were

employed. The raw data was processed on a Windows 7 machine using the

Tracker software. The software is optimized to track multiple objects in real-time

[18]. The processed data output is in the form of position and orientation of the

object as created in the software. This data is broadcasted via a router and made

available to other users through ROS channel under a specific topic name.

61

4.2 Flight tests

The experimental test flights are carried out with a swarm of 3 CrazyFlie

2.0s. The take-off sequence takes off individual quad-copter at predefined time

intervals. Once all the quad-copters achieve an initial goal formation location, the

position controller switches from goal following controller to consensus

controller. The positions and orientations are in the form of a vector

[

𝑥
𝑦
𝑧
𝑅
𝑃
𝑌]

Where (𝑥, 𝑦, 𝑧) represent the position in three directions and (𝑅, 𝑃, 𝑌)

denote the roll, pitch and yaw1 respectively. All these values are coming from the

Vicon tracker and are therefore in a global world frame. In order to perform local

neighborhood error calculations, these need to be transformed to local agent

frames. This is taken care by using pre-built ROS functions.

A total of 3 test flights are conducted, each with different graph topology

as well as leader weights.

The initial displacement vectors of the agents for all of the three flights are

taken as (in the order of X,Y,Z)

1 Note: Quaternions are used in place of RPY in code in order to avoid singularities.

62

𝑎𝑔𝑒𝑛𝑡 1 ∶ [0.5, 0.5, 0.0]

𝑎𝑔𝑒𝑛𝑡 2 ∶ [−0.5, −0.5, 0.0]

𝑎𝑔𝑒𝑛𝑡 3 ∶ [−0.5, 0.5, 0.0]

(All link lengths are in meters.)

63

4.2.1 Test flight 1

For the first test flight, the graph topology is

𝐺 = [
0 3 0
3 0 2
0 2 0

]

Agent 1 is connected to the leader and other two agents follow agent 1 as

per the graph topology.

The position variation of the quad-copters in X and Y directions2 are

shown below

Fig. 4.4 Experiment 1, Position in x-direction.

2 Z direction controller is not considered as it has different dynamics.

64

Fig. 4.5 Experiment 1, Position in y-direction.

4.2.2 Test flight 2

For the first test flight, the graph topology is

𝐺 = [
0 3 2
3 0 2
2 2 0

]

Agent 1 is connected to the leader and other two agents follow agent 1 as

per the graph topology.

The position variation of the quad-copters in X and Y directions are shown

below

65

Fig. 4.6 Experiment 2, Position in x-direction.

66

Fig. 4.7 Experiment 2, Position in y-direction.

4.2.3 Test flight 3

For the first test flight, the graph topology is

𝐺 = [
0 1 1
1 0 1
1 1 0

]

This time, all the agents are connected to the leader by using pinning gains

𝑔1 = 𝑔2 = 𝑔3 = 1

The position variation of the quad-copters in X and Y directions are shown

below

67

Fig. 4.8 Experiment 3, Position in x-direction.

 Fig. 4.9 Experiment 3, Position in y-direction.

68

Chapter 5 Conclusion and future work

From the test flights conducted, it is evident that with change in the graph

topology the behavior of the swarm changes. With reduction in graph links, the

latency in transfer of information increases in vice-versa. But the controller tries

to minimize the positional errors anyways.

Also, it is concluded that the controller works for multi-agent systems and

as it was tried on two systems with completely different dynamics, the controller

also works for multi-class agents. Irrespective of what the initial topology of the

network would look like, the controller tries to drive the agents such that the

errors converge.

All the discussion above forms a small part of the big vision of

establishing a mode of efficient and robust connectivity protocol between multi-

class multi-agent systems. The simulations showed the convergence of the control

algorithm for fixed and time-variant graphical topologies and the experiments

verified the same. With this as the basis, future development should include

developing dynamic leader switching and testing the time-variant topologies on

some dynamical system of multi-agents with implementation of clustering where

agents with different motives could choose to form separate teams and pursue

individual goals. This could be done by appointing novel leaders within each new

cluster.

69

Chapter 6 References

[1] Mashaghi, A.; et al. (2004). "Investigation of a protein complex

 network". European Physical Journal B. 41 (1): 113–121

[2] Grandjean, Martin (2016). "A social network analysis of Twitter: Mapping

 the digital humanities community". Cogent Arts & Humanities. 3 (1):

 1171458

[3] Peter Sanders, (March 23, 2009). “Fast route planning”. Google Tech talk

[4] Abraham, Ittai; Delling, Daniel; Goldberg, Andrew V.; Werneck, Renato

 F. research.microsoft.com/pubs/142356/HL-TR.pdf "A Hub-Based

 Labeling Algorithm for Shortest Paths on Road Networks". Symposium

 on Experimental Algorithms, pages 230–241, 2011

[5] Prim, R.C. (1957). "Shortest connection networks and some

 generalizations" (PDF). Bell System Technical Journal. 36: 1389–1401

[6] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems

 under dynamically changing interaction topologies,” IEEE Trans. Autom.

 Control, vol. 50, no. 5, pp. 655–661, May 2005.

[7] Joseph Hooper (June 2004). "From Darpa Grand Challenge 2004:

 DARPA's Debacle in the Desert". Popular Science.

[8] http://www.businessinsider.com/the-companies-most-likely-to-get-

 driverless-cars-on-the-road-first-2017-4/#1-ford-18

[9] V. Turri, B. Besselink, and K. H. Johansson, “Cooperative look-ahead

 control for fuel-efficient and safe heavy-duty vehicle platooning”. IEEE

 Transactions on Control Systems Technology, 2017

[10] https://theloadstar.co.uk/psa-roadtest-autonomous-truck-platooning-

 singapore/

[11] https://www.bitcraze.io/crazyflie-2/

[12] https://www.vicon.com/motion-capture/engineering

[13] https://wiki.bitcraze.io/projects:crazyflie2:hardware:specification

70

[14] https://www.bitcraze.io/wp-

 content/uploads/2014/07/mcu_architecture1.png

[15] https://www.bitcraze.io/crazyradio-pa/

[16] https://www.vicon.com/file/vicon/tracker-3-11042017-55587.pdf

[17] https://www.vicon.com/products/software/tracker

[18] W. Lin, “Distributed UAV formation control using differential game

 approach”. Aerospace Science and Technology, 35 (2014), pp. 54-62

[19] J Seo, Y Kim, S Kim, A Tsourdos, “Consensus based reconfigurable

 controller design for unmanned aerial vehicle formation flight”

 Proceedings of the Institution of Mechanical Engineers, Part G: Journal of

 Aerospace Engineering. Vol 226, Issue 7, pp. 817 - 829

[20] P.Menon, G.Sweriduk, B.Sridhar, “Optimal strategies for free-flight air

 traffic conflict resolution”. Journal of Guidance, Control and Dynamics.

 22(2) (1999)202–211.

[21] Z.Qu,Cooperative “Control of Dynamical Systems: Applications to

 Autonomous Vehicles”, 2008. IEEE transactions on automatic control,

 Vol. 53, No. 4

[22] J. N. Wang and M. Xin, “Integrated optimal formation control of multiple

 unmanned aerial vehicles”, IEEE Transactions on Control Systems

 Technology, 21(5), 2013, pp. 1731-1744.

[23] L.S. Pontryagin, The Mathematical Theory of Optimal Processes, vol. 4,

 CRC Press, 1962.

[24] M. Simaan, J. Cruz Jr., “Sampled-data Nash controls in non-zero-sum

 differential games”, Int. J. Control 17 (6) (1973) 1201–1209.

[25] G Xie, L Wang, “Consensus control for a class of networks of dynamic

 agents: switching topology”, American control conference, 2006

[26] Jiang T, Baras J. “Graph algebraic interpretation of trust establishment in

 autonomic networks”. Preprint Wiley Journal of Networks, 2009.

71

[27] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open

 networks,” in Proceedings of 3rd European Symposium on Research in

 Computer Security – ESORICS’94, 1994, pp. 3–18.

[28] U. Maurer, “Modelling a public-key infrastructure,” in Proceedings

 of 1996 European Symposium on Research in Computer Security –

 ESORICS’96, 1996, pp. 325–350.

[29] T. Jiang and J. S. Baras, “Trust evaluation in anarchy: A case study on

 autonomous networks,” in Proceedings 2006 INFOCOM, Barcelona,

 Spain, April 2006.

[30] Y. Wan, S. Roy, A. Saberi, "Network design problems for controlling

 virus spread", Proc. IEEE Conf. Decision Control, pp. 3925-3932, 2007.

[31] Dhillon, Inderjit S., Guan, Yuqiang, Kulis, Brian, 2004. “Kernel k-means:

 Spectral clustering and normalized cuts”. In: Proc. 10th KDD, pp. 551–

 556.

[32] B. Kulis,S. Basu,I. Dhillon, and R. Mooney,“Semi‐supervised graph

 clustering: A kernel approach,” ICML '05: Proceedings of the 22nd

 International Conference on Machine Learning, ACM, New York,

 NY, 2005, pp.457–464.

[33] https://www.neowin.net/news/fiat-chrysler-will-join-bmw-intel-and-

 mobileye-to-develop-autonomous-driving

[34] Lewis, F. L., Zhang, H., Hengster-Movric, K., and Das, A. (2013).

 “Cooperative control of multi-agent systems: optimal and adaptive design

 Approaches”. Springer Science Business Media.

72

Bibliographical information

 Ankur Dalal, is a Mechanical engineer with research interests in

applied robotics and controls. He has worked as a research intern at two labs at

University of Texas at Arlington Research Institute (UTARI) where he worked on

a humanoid robot (called PR2) and unmanned aerial systems. His work has

mainly focused on development and application controls algorithm. Apart from

this, he has also worked as robotics engineer at a drone delivery startup company,

WAEC LLC., based out of Washington D.C., where his worked focused on

development and implementation of navigation and mapping techniques for

autonomous vehicles. He will be joining Aptiv PLC as a self-driving car engineer.

