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Abstract 

 
MAPPING OF PREFRONTAL HEMODYNAMIC RESPONSES TO NOXIOUS 

STIMULATION AND CHRONIC PAIN RELATED RESTING-STATE FUNCTIONAL 

NETWORKS ASSESSED BY FNIRS 

 

Amarnath Yennu, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Hanli Liu 

Neural representations of chronic pain are complex and are least understood. 

Numerous magnetic resonance imaging (MRI) studies have revealed structural and 

functional abnormalities in several cortical and sub-cortical regions in subjects with 

chronic low-back pain (CLBP).  A more recent MRI study has reported that structural and 

functional brain abnormalities in pain-treated patients with CLBP are reversible, 

demonstrating that an appropriate treatment of chronic pain can restore normal brain 

functions for the patients. Due to high cost, non-portability, and other restrictions of MRI, 

the development of a complementary brain imaging tool is therefore crucial in order to 

improve the understanding of neural representations of CLBP and to assess potential 

brain plasticity resulting from physical or pharmacological treatment of CLBP. 

Functional near-infrared spectroscopy (fNIRS) has been extensively used more 

than 20 years to investigate functional brain activities in subjects with and/or without 

neurological disorders. To date, however, fNIRS has not been utilized to study neural 

correlates of either chronic pain or CLBP.  Therefore, the goal of my dissertation was (1) 
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to examine whether or not noxious and innocuous thermal pain can be objectively 

measured and discriminated by fNIRS taken in the frontal cortical regions of healthy 

subjects, and (2) to utilize fNIRS as an objective imaging modality to explore pain-induced 

hemodynamic activities and resting-state brain functional connectivity in all cortical 

regions of normal subjects and subjects with CLBP, as well as to reveal any characteristic 

distinctions in such hemodynamic signals between the two groups.  

In my dissertation, for Aim 1, I demonstrated the feasibility of fNIRS for mapping 

neural correlates of selective attention and interference in the prefrontal cortex of subjects 

with post-traumatic stress disorder, using the linear general model. For Aim 2, I quantified, 

analyzed and discriminated frontal cortical hemodynamic signals in response to two levels 

of thermal pain, so the feasibility of using fNIRS to study neural correlates of acute thermal 

pain in healthy participants was reported. For Aim 3, I quantified robust temporal and 

spatial characteristics of hemodynamic responses in the prefrontal cortex during noxious 

thermal pain, induced by thermal-stimulations over three different body regions. For Aim 

4, by utilizing a 133-channel fNIRS brain imager, I mapped and characterized pain-

induced neural correlates in the whole cortex of normal older adults and age- and gender-

matched CLBP patients, and I also observed restoration of normal brain functions in 

CLBP subjects after a four-week exercise treatment. For the last aim, I applied the group-

level independent component analysis to the 133-channel fNIRS hemodynamic signals 

taken at resting state over control and CLBP subjects and successfully identified four 

resting-state functional networks, consistently among the pre-exercise CLBP and healthy 

subjects. The conclusion was that the connectivity of default mode network of subjects 

with CLBP is compromised due to chronic pain. 
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Chapter 1 

Introduction 

1.1 Pain 

 Pain is the primary symptom for physician consultations in the United States; it can 

significantly interfere with a person's quality of life and general functioning (Breivik et al., 

2008; R. P. Hart, Wade, & Martelli, 2003). Particularly, chronic low back pain (CLBP) is a 

major public health problem throughout the world. The lifetime prevalence of non-specific 

low back pain is reported to be as high as 84%, and the lifetime prevalence of CLBP is 

about 23%, with 11-12% of the population being disabled by low back pain (van Dieen, 

Kuijer, Burdorf, Marras, & Adams, 2012).  Impairments in cognitive functioning, such as 

attention control, working memory, mental flexibility, problem-solving and information 

processing speed, are observed in patients suffering from acute and chronic pain (R. P. 

Hart et al., 2003). Pain can also aggravate psychological attributes, such as depression, 

anxiety, fear, and anger (Bruehl, Burns, Chung, & Chont, 2009). It is highly desirable to 

be able to objectively assess the pain, which may aid patients suffering from chronic pain, 

and for patients who lack communication ability (e.g., infants, patients with a speech 

disability, and coma). However, because of the lack of a reliable quantitative measure of 

pain, it is often difficult for clinicians to evaluate the degree of pain to help guide its’ clinical 

management. 

 

1.1.1 Transmission of nociceptive information to brain 

Pain is a subjective experience, and it is highly individual and can vary with the 

emotional state of the individual. It is the brain’s interpretation of sensory information 
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transmitted along pathways that starts at nociceptors (Silverthorn, Hill, & Silverthorn, 

2010). Nociceptors are the specialized sensory receptors which are responsible for the 

detection of noxious stimuli and transforming the stimuli into electrical signals. Then, the 

electrical signals are conducted to the central nervous system. They are the free nerve 

endings of primary afferent Aδ and C fibers. Distributed throughout the body (skin, 

viscera, muscles, joints, meninges) they can be stimulated by mechanical, thermal or 

chemical stimuli. ‘Fast pain’ which can be described as sharp and localized pain 

associated with Cold or mechanical stimuli, is rapidly transmitted (12-30 m/sec) to the 

central nervous system by myelinated A-δ fibers. Whereas, ‘slow pain’ which is described 

as duller and more diffuse pain associated with heat, cold, or mechanical stimuli, is slowly 

transmitted (0.5-2 m/sec) to CNS by unmyelinated C fibers (Price, Hu, Dubner, & Gracely, 

1977; Silverthorn et al., 2010). These nerve fibers synapse in the dorsal horn of spinal 

cord, where they are modulated (Inhibitory/excitatory) by interneurons. Then, the 

secondary spinal projection neurons transmit the information to the brainstem, specifically 

to the ventral medulla and periaqueductal gray. Information from brainstem is further 

relayed to the thalamus and then to cerebral regions such as somatosensory cortex, 

where information is interpreted as pain (for review see (Martucci, Ng , & Mackey, 2014; 

Willis & Westlund, 1997). In the chronic pain condition, it is suggested that inflammatory 

factors and sensitized receptors in the skin cause an abnormally increased transmission 

of nociceptive signals from preferably nerve fibers. Also, chronic pain can be attributed to 

either lack of inhibition or increased excitation, or both at the spinal cord, brainstem or in 

higher cortical layers, called ‘central sensitization’ (Latremoliere & Woolf, 2009; Woolf, 

2011). 
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1.1.2 Functional neuroimaging of CNS during acute pain 

Numerous functional neuroimaging studies have been performed on the human 

central nervous system using functional Magnetic Resonance Imaging (fMRI), position 

emission tomography (PET), and Single Photon Emission Computed Tomography 

(SPECT) to understand hemodynamic correlates of acute pain [for review (Apkarian et 

al., 2005)]. Such studies have shown the involvement (increased hemodynamic activity 

during acute pain) of various cortical and sub-cortical regions of the brain in pain 

processing, which are often grouped together and referred to as the ‘Pain Matrix’ or ‘Pain 

Network’, Commonly reported pain network regions are primary somatosensory cortex 

(S1), secondary somatosensory cortex (S2), anterior cingulate (ACC), insular cortex (IC), 

thalamus, and prefrontal cortex (PFC), Primary motor cortex (M1), and supplementary 

motor cortex (SMA), posterior parietal cortex (PPC), posterior cingulate cortex (PCC), 

basal ganglia (BG), hypothalamus (HT), amygdala (AMYG), parabrachial nuclei (PB), and 

periaqueductal gray (PAG) (See Fig. 1.1 for Illustration of most commonly activated 

regions during pain). A Meta-analysis article of neuroimaging studies on acute pain (using 

Contact heat, Laser Heat, Cold, Electric shock, Cutaneous pressure as noxious stimulus) 

processing by Apkarian and colleagues (Apkarian et al., 2005), reported that both S1 and 

S2 regions are most commonly activated in heat pain studies. Evidence suggests that the 

nociceptive input into these regions underlies the perception of sensory features of pain 

(Chen et al., 2002; Coghill et al., 1999; Peyron et al., 1999). Limbic system components 

such as ACC and IC are also activated in neuroimaging studies of heat pain, and these 

components have been implicated to be involved in the affective processing of pain 

(Fulbright et al., 2001; Rainville et al., 1997; Tolle et al., 1999). Other cortical regions such 
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as PFC and Parietal Association areas are also activated by heat pain and may be linked 

to cognitive variables such as memory or evaluation of stimulus (Coghill et al., 1999; 

Strigo et al., 2003). Primary Motor and Premotor cortices are less frequently activated 

and their role may be related to suppression of movement or actual pain evoked 

movements itself.  

 

Figure 1.1 Color-coded cortical and sub-cortical regions involved in pain processing, their 

inter-connectivity [Figure retrieved from (Apkarian, Bushnell, Treede, & Zubieta, 2005)]. 

Marked regions are primary somatosensory cortex (S1, red), secondary somatosensory 

cortex (S2, Orange), anterior cingulate (ACC, green), insula (blue), thalamus (yellow), 

and prefrontal cortex (purple), Primary motor cortex (M1, dark blue), and supplementary 

motor cortex (SMA), posterior parietal cortex (PPC), posterior cingulate cortex (PCC), 
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basal ganglia (BG, pink), hypothalamus (HT), amygdala (AMYG), parabrachial nuclei 

(PB), and periaqueductal gray (PAG). 

 

1.1.3 Structural and functional changes in brain associated with CLBP 

Chronic pain is a complex process, and underlying neural mechanisms of chronic 

pain have been poorly understood. To understand brain’s neural mechanisms in the 

presence of chronic low back pain in humans, numerous structural and functional 

neuroimaging studies have been performed on central nervous system using imaging 

modalities such as MRI and PET (Wand et al., 2011). Multiple structural MRI studies have 

revealed decreased Grey Matter in Dorsolateral Prefrontal Cortex (Apkarian, Sosa, Sonty, 

et al., 2004; Ivo et al., 2013; Schmidt-Wilcke et al., 2006; Seminowicz et al., 2011), 

Temporal Lobes (Baliki, Schnitzer, Bauer, & Apkarian, 2011; Luchtmann et al., 2014; 

Schmidt-Wilcke et al., 2006; Seminowicz et al., 2011), Primary Somatosensory Cortex 

(Schmidt-Wilcke et al., 2006; Seminowicz et al., 2011), Insula (Baliki et al., 2011; 

Seminowicz et al., 2011), and several other cortical and sub-cortical regions of CLBP 

patients.  

Functional neuroimaging studies using fMRI, and PET reported abnormal cerebral 

hemodynamic activities in CLBP patients (Baliki et al., 2006; Baliki, Geha, Apkarian, & 

Chialvo, 2008; Derbyshire et al., 2002; Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 

2010). Also, several other neuroimaging studies have reported increased cortical 

responses to noxious subcutaneous stimulation of back (Flor, Knost, & Birbaumer, 1997), 

acute experimental muscle pain (Diers et al., 2007), and peripheral noxious input 

(Giesecke et al., 2006; Giesecke et al., 2004; Kobayashi et al., 2009) in the CLBP 
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patients. Notably, a recent MRI-based study demonstrated that functional and structural 

brain abnormalities (specifically the left DLPFC) are reversible and thus treating chronic 

pain can restore normal brain (Seminowicz et al., 2011).  Therefore, the development of 

complementary assessment tools for monitoring CLBP is crucial to improving the 

understanding of neural representations of CLBP and to assess potential brain plasticity 

resulting from physical or pharmacological treatment in CLBP condition. 

1.1.4 Abnormal Resting-state functional connectivity (RSFC) in CLBP  

The temporal synchronization of spontaneous, low-frequency neuronal activity in 

anatomically separated regions in the brain is referred to as resting-state functional 

connectivity. A Recent method of resting-state fMRI has focused on multiple regions in 

the brain, targeting inherent and altered measures of connectivity between regions and 

within brain 'networks' (Fox et al., 2005). RSFC method has the advantage of providing 

information about the natural state of brain activity in chronic pain without having to apply 

any external sensory or cognitive stimulation. Chronic pain has been noted to alter several 

networks, of individual brain regions with similar low-frequency oscillatory activity and an 

increase or decrease in the presence or absence of external stimulation (Smith et al., 

2009).These networks are primarily the default-mode networks (DMN) (Greicius, 

Krasnow, Reiss, & Menon, 2003), its constituents are more active at rest; the salience 

and executive control networks, its constituents are more active during stimulation of the 

senses or tasks; and sensory-motor networks, its constituents are related to sensory and 

motor processing. Recent functional MRI studies using resting-state functional 

connectivity analysis, have reported disrupted Default Mode Network (DMN) connectivity 

in CLBP patients (Baliki et al., 2008; Kornelsen et al., 2013; Loggia et al., 2013; 
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Tagliazucchi et al., 2010). Using fMRI, Baliki and colleagues reported reduced DMN 

connectivity in CLBP patients, specifically in the medial prefrontal cortex, posterior 

cingulate cortex and amygdala (Baliki et al., 2008). In another resting-state fMRI study, 

Tagliazucchi and colleagues reported that abnormal connectivity in DMN structures such 

as angular gyrus, bilateral insular cortex, and orbital part of the middle frontal gyrus 

(Tagliazucchi et al., 2010). 

1.2 Principles of Functional Near Infrared Spectroscopy 

Functional Near-infrared spectroscopy (fNIRS) is a non-invasive imaging 

technique which has been widely used in the field of neuroscience to study neural activity 

in the human brain. It employs safe levels (1-2eV photon energy) of optical radiation 

(Near-infrared radiation) within 650-950 nm wavelength range (referred as ‘optical 

window’ or ‘Physiological Window’) [see Fig. 1.2], where the relatively low attenuation of 

near infrared light accounts for light penetration through several centimeters of biological 

tissue of interest. Due to low NIR light attenuation, it is possible to non-invasively probe 

the human cerebral cortex and obtain cerebral concentration of hemoglobin which is 

dominant NIR light absorbing chromophore in the brain. Figure 1.3 shows the banana-

shaped path followed by NIR light from the source to the photo-detector while passing 

through Skin, Galea Aponeurotica, Skull, Dura and Arachnoid matter, and superficial 

layers of cerebral cortex.  Due to the differential NIR absorption spectra of oxy-

hemoglobin (HbO2) and deoxy-hemoglobin (HbR), we can obtain separate 

measurements of [HbO2] and [HbR] concentrations in the brain. To separately measure 

[HbO2] and [HbR] concentrations simultaneously, NIRS measurements at two 

wavelengths are sufficient. These two types of hemoglobin concentrations measured are 
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the result of the interplay between regional blood flow, blood volume, and metabolic rate 

of oxygen consumption. The sum of [HbO2] and [HbR] concentrations gives an estimate 

of cerebral blood volume. 

 
Figure 1.2 Absorption spectra of major tissue chromophores (Oxy-Hemoglobin, Deoxy-

Hemoglobin, Water, and Lipid) over the wide wavelength range. Within physiological 

window, wavelength-dependent absorption coefficients (μa) of water and lipid are relative 

very low as compared to that of Oxy-Hemoglobin and Deoxy-Hemoglobin. Therefore, light 

can penetrate several centimeters into the tissue [Figure retrieved from.(Durduran et al., 

2010)]. 

 
1.2.1 Continuous-wave (CW) fNIRS systems  
 

There are three types of NIR imaging systems based on the type of light source, 

namely, Continuous-wave (CW), Time-resolved (TRS), and Frequency domain (FD) 

NIRS systems (Durduran et al., 2010). CW NIR systems are simplest, portable, 

inexpensive, and most commercially available systems Which use CW light as their 

source. In this study, I used two CW-fNIRS systems, namely, Cephalogics brain imager, 

and Shimadzu brain imager [Fig. 1.4]. CW-fNIRS instruments measure regional changes 
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in hemoglobin concentration, and oxygenation, based on the light attenuation 

measurements through the cortical tissue. Using these attenuation measurements, it is 

very difficult to obtain absolute concentrations of hemoglobin since the real path length of 

the light within the tissue is unknown and cannot be measured with CW-fNIRS systems. 

FD and TRS NIRS systems can be used to obtain information about real path length of 

photons along with attenuation measurements (Chance et al., 1988; Delpy et al., 1988; 

Patterson, Chance, & Wilson, 1989), such that the absolute concentrations of hemoglobin 

can be calculated. CW-fNIRS systems rely on the simplified assumptions about the tissue 

being probed and the changes in the sampled volume. Therefore, only relative 

hemoglobin concentration changes from baseline can be measured. 

 

 
 

Figure 1.3 Light from the NIR light source is guided to the head by an optode. A photo-

detector will collect the light which leaves the head at certain distance (typically source 

and detector are placed 3 centimeters apart). The photons follow a banana-shaped path 

from light source to the detector while passing through Skin, Galea Aponeurotica, Skull, 

Dura and Arachnoid matter, and superficial layers of cerebral cortex. 
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Figure 1.4 Continuous-wave fNIRS systems used in this study. (A) Cephalogics brain 

imager. (B) Shimadzu brain imager. 

 
1.2.2 Modified Beer-Lambert Law 

Modified Beer-Lambert law (MBLL) is based on classic Beer-Lambert law. It is a 

widely used model for calculating hemodynamic responses in the cerebral cortex of 

humans. Beer-Lambert law describes linear relationship between absorbance [also 

referred as Optical Density (OD)], OD, of light through a medium and wavelength 

dependent extinction coefficient (Molar absorptivity of a chromophore), 𝜀(𝜆). Beer-

Lambert law is shown in equation (1.1) below. 

𝑂𝐷 =  𝐿𝑜𝑔 (
𝐼

𝐼0
) =  𝜀(𝜆). 𝑐. 𝐿 equation           (1.1) 

In equation (1.1), I is the intensity of detected light after transmission through the 

medium, I0 is the intensity of incident light, c is the concentration of the chromophores, 

and L is the length of the path traveled by the light in the medium. Beer-Lambert law has 

been successfully applied to CW-fNIRS imaging under simplified assumptions, and it is 

referred as MBLL (Cope & Delpy, 1988; Reynolds et al., 1988). Assumptions are (1) 
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Medium is assumed to highly, but constant scattering, (2) Medium is homogeneous, and 

(3) Medium has a homogeneous change of properties of interest within each sampled 

volume (Obrig & Villringer, 2003). For scattering medium, equation (1.1) can be rewritten 

as equation (1.2) below. 

𝑂𝐷(𝜆) =  𝜀(𝜆). 𝑐. 𝑑. 𝐷𝑃𝐹(𝜆) + 𝐺(𝜆)             (1.2) 

𝑊ℎ𝑒𝑟𝑒 𝐷𝑃𝐹(𝜆) =  〈𝐿〉 𝑑⁄              (1.3) 

In equation (1.2), G(λ) is wavelength dependent contribution of the attenuated light 

corresponding to scattering, d is the distance between source and detector, DPF(λ) is the 

wavelength dependent differential path length factor, and 〈𝐿〉 is the mean path length 

travelled by the detected photons. The DPF accounts for the increase in path length due 

to tissue scattering. The DPF values of various tissue samples have been studied 

experimentally (Duncan et al., 1995; Kohl et al., 1998), and can be looked up in a table 

(Essenpreis et al., 1993). Based on the assumption that the tissue is highly, but constant 

scattering, DPF(λ) and G(λ) can be assumed to be constant. This assumption allows us 

for assessment of changes in chromophore concentration by subtracting out G(λ) term in 

equation (1.2) This is considered reasonable while measuring hemodynamic activity 

changes since it affects the absorption coefficient more significantly that the scattering 

coefficient (Obrig & Villringer, 2003). Then, equation (1.2) can be rewritten as equation 

(1.4) below. 

∆𝑂𝐷(𝜆) = 𝑂𝐷𝑡(𝜆) − 𝑂𝐷𝑡0(𝜆) =  𝜀(𝜆). ∆𝑐. 𝑑. 𝐷𝑃𝐹(𝜆)        (1,4) 

In equation (1.4), 𝑂𝐷𝑡0 is the initial absorbance, and 𝑂𝐷𝑡 is the absorbance at time 

t after the change in concentration of chromophores. Each of the chromophores have 

distinct absorption spectrum in the near-infrared range of wavelengths, therefore, the 
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simultaneous measurements of several chromophores concentration changes by taking 

fNIRS measurements at multiple wavelengths is possible. The absorption spectra of main 

chromophores in optical window are shown in figure (1.2). In fNIRS, HbO2 and HbR are 

mainly of interest since they are related to regional cerebral blood flow (rCBF) and other 

chromophores’ changes are orders of magnitude smaller than that of HbO2 and HbR. 

Using two wavelengths of light, we can derive two simultaneous equations to be solved 

for each of two hemoglobin (Δ[HbO2] and Δ[HbR]) chromophores changes. Equation (1.4) 

can be rewritten as equation (1.5) and (1.6) for two distinct wavelengths of light after 

separating the contributions from HbO2 and HbR. 

∆𝑂𝐷(𝜆1) = (𝜀𝐻𝑏𝑂(𝜆1)∆[𝐻𝑏𝑂2] +  𝜀𝐻𝑏𝑅(𝜆1)∆[𝐻𝑏𝑅]). 𝑑. 𝐷𝑃𝐹(𝜆1)                 (1.5) 

∆𝑂𝐷(𝜆2) = (𝜀𝐻𝑏𝑂(𝜆2)∆[𝐻𝑏𝑂2] + 𝜀𝐻𝑏𝑅(𝜆2)∆[𝐻𝑏𝑅]). 𝑑. 𝐷𝑃𝐹(𝜆2)        (1.6) 

where ∆[𝐻𝑏𝑂2] is the change in HbO2 concentration and ∆[𝐻𝑏𝑅] is the change in 

HbR concentration. Assuming that 𝜀(𝜆) for each chromophore and can be looked up from 

the extinction spectra and DPF values of the tissue is known, concentration changes of 

HbO2 and HbR can be obtained by solving the two simultaneous equations at two distinct 

wavelengths, i.e., equations (1.5) and (1.6). 

 

1.3 Specific Aims 

In the past two decades, fNIRS has been extensively used in the field of 

neuroscience for studying functional brain activities in health and disease. Researchers 

have utilized fNIRS to study neural correlates of seizures (Adelson et al., 1999; Sokol, 

Markand, Daly, Luerssen, & Malkoff, 2000; Watanabe et al., 2000), Alzheimer disease 

(Fallgatter et al., 1997; Hock et al., 1996), depression (Eschweiler et al., 2000; Matsuo, 
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Kato, Fukuda, & Kato, 2000), schizophrenia (Fallgatter & Strik, 2000; Okada, Tokumitsu, 

Hoshi, & Tamura, 1994), and post-traumatic stress disorder (Tian et al., 2014; Yennu et 

al., 2016). Also, functional NIRS-based pain studies have been reported to investigate 

somatosensory cortex hemodynamic responses to thermally-induced pain (Becerra et al., 

2009), prefrontal hemodynamic responses to mechanically-induced low back pain 

(Holper et al., 2014) and somatosensory hemodynamic responses to noxious electrical 

stimulation of the thumb (Yucel et al., 2015). However, to date, none of the fNIRS-based 

studies have investigated neural correlates of either chronic pain or CLBP in the whole 

cortex. Functional NIRS-based brain imaging modality may have the ability to facilitate a 

better understanding of pain processing at the cortical regions induced by acute pain and 

in chronic pain condition. Understanding of temporal and spatial characteristics of such 

hemodynamic responses might have potential applications in a clinical setting where pain 

needs to be assessed objectively. The main objective of this study was to demonstrate 

that fNIRS can reveal cortical activities and abnormalities in patients with CLBP during 

pain-inducing leg raising tasks, and it can further reveal abnormal resting-state functional 

networks in whole cortex of CLBP, such that it could become a portable and 

complementary neuroimaging tool to monitor and guide treatments for patients with 

CLBP. Specifically, my research aims were,  

1. To establish the methodology to map prefrontal hemodynamic responses measured 

by fNIRS, and to demonstrate the feasibility of fNIRS to be able to reveal neural 

correlates of selective attention in the prefrontal cortex of PTSD patients [Chapter 2; 

(Yennu et al., 2016)]. 
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2. To examine whether or not noxious and innocuous thermal pain can be objectively 

measured and discriminated by fNIRS measurements taken in the frontal cortical 

regions of healthy subjects [Chapter 3, (Yennu et al., 2013)]. 

3. To test the robustness and consistency of temporal and spatial characteristics of 

hemodynamic responses in the prefrontal cortex during noxious thermal pain, induced 

by thermal-stimulations over three different body regions: right forearm; right 

temporomandibular joint, and left forearm [Chapter 4]. 

4. To demonstrate feasibility of fNIRS for studying and mapping whole-cortex neural 

correlates of pain induced by leg-raising-tasks in CLBP patients and monitoring of 

treatment effects [Chapter 5] 

5. To demonstrate feasibility of fNIRS for studying and mapping Independent-

Component-Analysis-derived resting state functional networks in whole-cortex of 

CLBP patients [Chapter 6]. 
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Chapter 2 

Prefrontal Responses To Stroop Tasks In Subjects With Post-Traumatic Stress Disorder 

Assessed By Functional Near Infrared Spectroscopy 

2.1 Abstract 

Studies on post-traumatic stress disorder (PTSD) showing attentional deficits 

have implicated abnormal activities in the frontal lobe. In this study, I utilized multichannel 

functional near-infrared spectroscopy (fNIRS) to investigate selective attention-related 

hemodynamic activity in the prefrontal cortex among 15 combat-exposed war-zone 

veterans with PTSD and 13 age- and gender-matched healthy controls. While performing 

the incongruent Stroop task, healthy controls showed significant activations in the left 

lateral prefrontal cortex (LPFC) compared to baseline readings. This observation is 

consistent with previously reported results. In comparison, subjects with PTSD failed to 

activate left LPFC during the same Stroop task. Observations in this study may implicate 

that subjects with PTSD experienced difficulty in overcoming Stroop interference. I also 

observed significant negative correlation between task reaction times and hemodynamic 

responses from left LPFC during the incongruent Stroop task in the PTSD group. 

Regarding the methodology used in this study, I have learned that an appropriate design 

of Stroop paradigms is important for meeting an optimal cognitive load which can lead to 

better brain image contrasts in response to Stroop interference between healthy versus 

PTSD subjects. Overall, the feasibility of fNIRS for studying and mapping neural 

correlates of selective attention and interference in subjects with PTSD is reported. 
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2.2 Introduction 

According to American Psychiatric Association, post-traumatic stress disorder 

(PTSD) is an anxiety disorder that can be developed after exposure to traumatic events, 

such as combat environment, sexual assault, or the serious injury, resulting in 

psychological trauma. Patients with PTSD often re-experience the traumatic event in the 

form of nightmares, intrusive recollections, flashbacks, and physiological arousal and 

distress in response to reminders of trauma. Hyperarousal symptoms, such as 

hypervigilance, exaggerated startle, and difficulty sleeping or concentrating are also 

reported among PTSD patients. The estimated lifetime prevalence of PTSD among 

American adults is 7.8% (Kessler, Sonnega, Bromet, Hughes, & Nelson, 1995). Combat-

related PTSD is found in 9–25% of war-zone veterans and is often persistent and 

comorbid with other psychiatric disorders, even after the veterans return to their civilian 

lives (Arbanas, 2010; Dohrenwend et al., 2006; Erickson, Wolfe, King, King, & 

Sharkansky, 2001; Hoge et al., 2004; Kessler et al., 1995). 

Numerous neuropsychological studies have reported the presence of cognitive 

dysfunction associated with PTSD, including memory impairments, attention deficits and 

learning disabilities (Brandes et al., 2002; Bremner et al., 1993; Koenen et al., 2001; 

Roca, Hart, Kimbrell, & Freeman, 2006; Vasterling, Brailey, Constans, & Sutker, 1998; 

Vasterling et al., 2002). In recent years, neuroimaging studies using positron emission 

tomography (PET) or functional magnetic resonance imaging (fMRI) on PTSD patients 

have primarily focused on symptom provocation or responses to trauma-related or 

emotional stimuli. The reviews and meta-analysis of the PTSD related neuroimaging 

studies suggest that hyperactivation within limbic regions (mainly amygdala and insula) 
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may account for exaggerated fear responses and the persistence of traumatic memories 

(Etkin & Wager, 2007; Francati, Vermetten, & Bremner, 2007; Liberzon & Sripada, 2008; 

Shin & Liberzon, 2010). In addition, it is suggested that hypoactivation of prefrontal 

regions (mainly anterior cingulate cortex and ventromedial prefrontal cortex) associated 

with hyperactivation of amygdala may indicate inability of prefrontal regions to inhibit 

amygdala activity. A recent review article on neuropsychological and neuroimaging 

studies of PTSD patients highlights the importance of further understanding the PTSD 

related attentional and inhibitory dysfunctions in order to successfully treat PTSD patients 

(Aupperle, Melrose, Stein, & Paulus, 2012). 

In the past decade, functional near infrared spectroscopy (fNIRS), a noninvasive 

optical imaging method, has been extensively used in the field of neuroimaging for 

studying functional brain activities. This technique measures the cerebral hemodynamics 

and oxygenation using near infrared light (670 to 900 nm) which can penetrate through 

the scalp and skull to reach superficial layers of cerebral cortex, while being partially 

absorbed by the oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) in 

the cerebral blood (Boas, Dale, & Franceschini, 2004). In a recent report, a multi-channel 

fNIRS was utilized to measure prefrontal cortex hemodynamic activations from 16 

veterans with PTSD and age-/gender- matched healthy controls during non- trauma-

related memory tasks (Tian et al., 2014). In particular, the PTSD participants, but not the 

controls, appeared to suppress prefrontal activity during memory retrieval. This 

deactivation was more pronounced in the right dorsolateral prefrontal cortex during the 

retrieval phase. These deactivations in PTSD patients might implicate an active inhibition 

of dorsolateral prefrontal neural activity during retrieval of working memory. Overall, that 



18 

study demonstrates that fNIRS could be a portable and complementary neuroimaging 

tool to study the cognitive dysfunctions associated with PTSD. 

In this study, I focused on an objective and quantitative understanding of the 

selective attention and inhibitory function of cognition in subjects with PTSD, specifically 

using the color-word matching Stroop task. The Stroop test (MacLeod, 1991; Stroop, 

1935) was introduced by J. R. Stroop (Stroop, 1935) and has been a classic protocol 

utilized to measure selective attention, cognitive flexibility and processing speed, as well 

as executive functions. While the color-word Stroop test includes neutral, congruent, and 

incongruent trials conventionally, researchers often focus on brain activations or 

performance outcomes during incongruent Stroop trials with respect to either neutral or 

congruent trials. During an incongruent Stroop test, a word is displayed in an ink color 

different from what the name of the word means (e.g., word “BLUE” is printed in red ink). 

Naming the ink color of the word requires more mental effort than just reading the word. 

The cognitive mechanism of Stroop test is associated with selective attention; the subject 

has to manage his or her attention by inhibiting or interfering one response in order to 

promote another. This phenomenon is called ‘Stroop interference’. Numerous functional 

neuroimaging studies investigating neural correlates of the Stroop interference using PET 

and fMRI consistently reported activation in lateral prefrontal cortex (LPFC) regions, 

reflecting the Stroop interference along with activation of the anterior cingulate cortex 

(Derrfuss, Brass, Neumann, & von Cramon, 2005; Laird et al., 2005). Recent fNIRS 

studies on the Stroop interference also reported activation in LPFC regions, implicating 

that LPFC plays a critical role in coping up with the Stroop interference (Ehlis, Herrmann, 

Wagener, & Fallgatter, 2005; Schroeter, Zysset, Kruggel, & von Cramon, 2003; 
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Schroeter, Zysset, Kupka, Kruggel, & Yves von Cramon, 2002; Schroeter, Zysset, & von 

Cramon, 2004; Yanagisawa et al., 2010). Using fNIRS, moreover, Matsuo and colleagues 

revealed reduced prefrontal activity in a PTSD group when compared to a non-PTSD 

group during a verbal fluency task (Matsuo et al., 2003). 

In this study, fNIRS was used to acquire prefrontal hemodynamic signals from a 

group of veterans with PTSD and age- and gender-matched healthy controls, in order to 

investigate both temporal and spatial patterns of pre-frontal responses during 

performance of a Stroop paradigm. The goal of the study was to further illustrate that 

fNIRS is able to reveal prefrontal activities and deficits in subjects with PTSD during 

selective attention processes, and that fNIRS could become a portable and 

complementary neuroimaging tool to monitor and guide treatments for patients with 

PTSD. 

 

2.3 Materials and Methods 
 

2.3.1 Participants   

A Total of 15 combat exposed veterans diagnosed with PTSD (all males, right- 

handed, mean ± SD age  = 29.1 ± 9.0 years) were recruited in this study. The comorbid 

conditions diagnosed in these 15 veterans are provided in Table 2.1. The comorbid 

conditions diagnosed are attention deficit hyperactivity disorder (ADHD) (n = 4), major 

depressive disorder (n = 5), alcohol dependence (n = 4), musculoskeletal pain (n = 4), 

insomnia (n =  3), history of blast exposure (n = 1), anxiety disorder (n = 2), mild traumatic 

brain injury (mTBI) (n = 3), and learning disorder (n = 2). The hemodynamic activations in 

veterans with PTSD were compared against 13 age- and gender- matched healthy 
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controls (all males, right- handed, mean ± SD age  = 33.3 ±  10.3 years). The protocol 

used in the study was reviewed and approved by the Institutional Review Board (IRB) of 

the University of Texas at Arlington (UTA). The methods were carried out in accordance 

with approved guidelines by IRB of UTA. Written informed consent was obtained from all 

participants prior to the fNIRS scan. 

 
Table 2.1.  Comorbid conditions of veteran participants with PTSD. 

 

Participant 
number 

Comorbidities 

1 PTSD and Anxiety Disorder (Not otherwise specified) 

2 PTSD, ADHD and Substance Abuse Disorder 

3 PTSD, ADHD and Musculo-skeletal pain 

4 PTSD, Anxiety Disorder (Not Otherwise specified), Musculo-skeletal 
pain and insomnia 

5 PTSD, Musculo-skeletal pain and Insomnia 

6 PTSD, Alcohol Dependence, History of blast exposure and learning 
disorder 

7 PTSD, Major depressive episodes and Alcohol Abuse 

8 PTSD, Major depressive episodes, Insomnia and Musculo-skeletal pain  

9 PTSD and Moderate Traumatic brain injury 

10 PTSD, Major depressive episodes, Moderate TBI and History of learning 
disorder 

11 PTSD, Major depressive episodes, ADHD and Insomnia 

12 PTSD, Depression symptoms, Attentionality symptoms,  

13 PTSD, Moderate TBI, Major depressive episodes, Alcohol abuse 

14 PTSD, ADHD and Alcohol abuse 

15 PTSD 

 

2.3.2 Tasks and paradigm 

The paradigm used in this study consisted of two sessions. The first session, 

named Stroop1, was a similar version of neutral trails of the Stroop color-word task. It 

consisted of word-name matching tasks and was a simple paradigm where participants 

had to match the name of the word displayed at the center of a computer screen to either 
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one of the options displayed at the bottom of the screen, by using arrow buttons on the 

keyboard (See Fig. 2.1A). In this task, all of the words were written in black ink color. The 

second session was called Stroop2 and made of incongruent trails of the Stroop color-

word task. During this session, participants had to match the ink color of the displayed 

word, whose color was different from the name of the word itself, to the name of the word 

given in options (See Fig. 2.1B). 

 

Figure 2.1.  Examples of Stroop trials used in this study. (A) Stroop1 (i.e., neutral Stroop 

task) trial: Participants should match the word name given at the center of the screen to 

word name given in options at bottom of the screen, by pressing the appropriate left or 

right arrow key. (B) Stroop2 (i.e., incongruent Stroop task) trial: Participants should match 

the ink color of the word given at the center of the screen to word name given in options 

at the bottom of the screen, by pressing the appropriate left or right arrow key. 

 

All the participants were asked to sit comfortably before a computer, and complete 

a session of Stroop1 task, followed by a session of Stroop2 task, while their brains were 

scanned by multichannel fNIRS. Within each Stroop1 and Stroop2 session, the paradigm 
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consisted of a baseline (resting) period of 30 sec, followed by eight blocks of stimulation- 

and-resting sequences. Within each block, five random Stroop trials (generated by 

computer) were given to the subjects. The subjects were instructed to select the 

appropriate option accurately without any time constraint. Between two blocks, there was 

an inter-stimulus or resting interval of 15 sec. Before each fNIRS measurement session 

started, all participants were trained to practice a few trials of Stroop1 and Stroop2 tasks. 

An experimenter observed the course of practice to confirm that the participants 

understood the paradigm correctly. The accuracy of each participant’s performance in 

each of the Stroop task was measured by the percentage of correctly performed trials 

divided by the total number of trials ( = 5 trials × 8 blocks) in each session. The reaction 

time measured for each participant was defined as time taken to complete a single block 

of five Stroop trials. 

 
2.3.3 Functional near infrared spectroscopy 

2.3.3.1 Instrument.   

A multi-channel, continuous wave, fNIRS imaging system (Cephalogics LLC., 

Boston, MA) was used to acquire each participant’s prefrontal hemodynamic activities 

during performance of the tasks (Zeff, White, Dehghani, Schlaggar, & Culver, 2007). The 

system consisted of near infrared light sources (light emitting diodes, LEDs) emitting at 

two wavelengths (750 nm and 850 nm) of light and avalanche photodiodes (APDs) as 

detectors. This system provided fNIRS signals with a sampling rate of 10.8 Hz. For this 

specific experiment, the fNIRS probe array composed of 12 pairs of light sources and 16 

detectors, was placed symmetrically over both hemispheres of the participant’s forehead 

(see Fig. 2.2). The bottom row of 6 pairs of light sources in the probe was placed just 



23 

above the participant’s eyebrows, and its midpoint was ~3.5 cm above the nasion. This 

probe provided a total of 36 measurements (channels) when only the nearest source-

detector pairs were considered (the nearest source-detector separation was 2.8 cm). 

Other measurements from larger source-detector separations were excluded because 

their signals were too weak to be scientifically meaningful. The probe assembly was 

constructed with low-weight optical fibers (TechEn Inc., Boston, MA) and thin 

polyethylene film to ensure participants’ comfort during the experiment. 

 

Figure 2.2.  Configuration and cortical position of the multi-channel fNIRS probe array. 

(A) Configuration of the fNIRS probe. Red circles represent light sources, blue squares 

represent detectors, and gray ellipses represent the nearest source-detector pairs (as 

channels) to measure the brain activities. (B) Placement of the fNIRS probe on a 

participant’s forehead. (C) Co-registration of the sources and detectors on a standard 
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brain atlas template. The probe partially covers the frontopolar, dorsolateral, and 

ventrolateral prefrontal regions on both hemispheres. The anatomical position of each 

channel on the brain atlas is detailed in Table 2.2. 

 

2.3.3.2 Spatial registration 

To estimate the cortical regions covered by the fNIRS probe, a spatial registration 

procedure was performed among six randomly selected participants (Singh, Okamoto, 

Dan, Jurcak, & Dan, 2005).  

Once the fNIRS probe was placed on the subject’s forehead (see Fig. 2.2B), the positions 

of light sources and detectors along with five cranial landmarks (the nasion, inion, left and 

right pre-auricular points, and vertex) were measured using a PATRIOT motion tracking 

system (Polhemus, Colchester, Vermont, USA.). The cranial landmarks served as 

mediators to convert the real -world stereotaxic coordinates of the optodes to the Montreal 

Neurological Institute (MNI) coordinates used in a standard brain MRI atlas based on the 

affine transformation (Tian et al., 2012). Figure 2.2C shows the registered optode 

positions (aver-aged over six participants) on the standard human brain atlas. The probe 

partially covered the frontopolar area (BA 10), dorsolateral prefrontal cortex (DLPFC; BAs 

9 and 46), pars triangularis (BA 45) and pars opercularis (BA 44). A detailed report is 

given in Table 2.2. Because the fNIRS probe was carefully placed on each individual 

participant’s forehead by referring to the nasion and eyebrows, the registered optode 

positions across individual participants were relatively consistent (positional variations 

were about 5 mm) in comparison with the separation of two neighboring measurement 

channels. 
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Table 2.2. Registration of the fNIRS channel positions on a standard brain atlas. 
The channel numbers are defined in Fig. 2.2A. 

 

Hemisphere 
Brodmann 
Area (BA) 

Channel # 

Right 

BA9 13, 14, 15, 16, 17, 18 

BA10 4, 5, 6 

BA44 9, 10 

BA45 1, 7, 8 

BA46 2, 3, 11, 12 

Left 

BA9 
28, 31, 32, 33, 34, 35, 
36 

BA10 22, 23, 24 

BA44 27 

BA45 19, 25, 26 

BA46 20, 21, 29, 30 

 
 

2.3.3.3 Data screening and processing  

The temporal evolutions of light intensities measured during both Stroop1 and 

Stroop2 sessions were screened and processed using a publically available toolbox 

(Homer,  http://www.nmr.mgh.  harvard.edu /PMI/resources/ homer/home.htm) (Huppert, 

Diamond, Franceschini, & Boas, 2009). First, the raw light intensity signals were visually 

inspected to exclude blocks associated with significant motion artifacts (with an intensity 

fluctuation of 15% or larger from the baseline) during each session. Then the resulted 

signals free from motion artifacts were low-pass filtered at a cut- off frequency of 0.2 Hz 

to remove electronic noise and systemic noise (cardiac and respiratory oscillations) and 

high-pass filtered at a cut-off frequency of 0.01 Hz to remove any possible slow baseline 

drift. Then, changes of oxygenated and deoxygenated hemoglobin concentrations (i.e., 

HbO2 and Hb, respectively) relative to the baseline were quantified following the modified 

Beer- Lambert Law (Cope et al., 1988). At this step, we estimated the differential 

http://www.nmr.mgh.harvard.edu/
http://www.nmr.mgh.harvard.edu/
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pathlength factor (DPF) to be 6.2 at 750 nm and 5.8 at 850 nm, based on published data 

for adult heads (Essenpreis et al., 1993). 

 

2.3.3.4 Linear regression for reaction times and HbO2 changes  

For both Stroop tasks, correlations between the participants’ reaction times and 

corresponding HbO2 changes (i.e., β-values) were tested using linear regression at each 

measurement channel for both control and PTSD groups, separately. In addition, 

correlations between participants’ reaction times and ROI-averaged HbO2 responses 

(i.e., Mean β-values over the ROI) were calculated for both the control and PTSD groups, 

separately. 

 

2.3.3.5 General linear model (GLM) analysis 

To quantify cerebral hemodynamic activities during Stroop1 and Stroop2 tasks, a 

model-based statistical analysis tool, general linear model (GLM), was utilized. GLM 

analysis has been increasingly utilized to analyze fNIRS data over the last decade to 

identify cortical areas which are significantly stimulated during a given task (Hassanpour 

et al., 2014; Plichta et al., 2006; Tian & Liu, 2014; Ye, Tak, Jang, Jung, & Jang, 2009). In 

GLM, a hemodynamic response function (HRF) is used to serve as a model to predict the 

change in HbO2 signals due to task stimulation; GLM can be expressed by equation (2.1): 

z(t) = β f(t) + ε,                         (2.1) 

 where f(t) = h(t) ⊗ s(t). (2.2) 

In equation (2.1), z(t) represents the temporal profile of HbO2 or Hb changes at 

each measurement channel, f(t) is the predicted stimulation-specific response and is 
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expected to match the profiles of measured signals, h(t) is a given HRF, and s(t) is the 

stimulation-specific boxcar function for a given task. Moreover, β is the estimated 

amplitude of HbO2, while εis an error term to account for any residual due to the mismatch 

between the actual data and the model. By fitting equation (2.1) to the temporal profile of 

HbO2 obtained from each channel from each participant, I would be able to obtain (i) the 

estimated amplitude, (ii) its variance, and thus (iii) a statistical t-value representing the 

statistical significance of the brain activation at each respective channel. 

Ideally, the HRF derived from the fNIRS signals via an event-related experimental 

paradigm would be appropriate for this study. However, to the best of my knowledge, 

such an HRF is not available for attention-evoked responses in the prefrontal cortex. 

Therefore, I used a standard HRF derived from BOLD fMRI as a surrogate (Glover, 1999). 

By fitting the predicted stimulation response function to the channel-wise, temporal 

profiles of    HbO2 responses, the amplitudes (expressed by β-values in μM) of prefrontal 

activations or deactivations in response to each Stroop task were obtained. 

 

2.3.3.6 Random effects 

For group-level hemodynamic measures, β-values at each channel were 

calculated by aver-aging β-values across each group of the subjects. Random-effect 

analysis was performed in order to generate statistically meaningful quantities at the 

group level. This was accomplished by conducting the one-sample t-test on β-values from 

all subjects at each channel for each subject group. For both control and PTSD subjects, 

group- level t-statistic analysis parameters (expressed by t-values) were obtained to show 

statistically increased and/or decreased brain activations during Stroop1 and Stroop2 
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tasks when compared to the baseline readings. To identify the regions showing significant 

differences in brain activations or deactivations between the control and PTSD groups, 

two sample t-tests were performed on β-values obtained from individual subjects. Both t-

statistic values (expressed by t-values) and p-values were derived from the t-tests for 

each channel and used to generate t-maps in topographic images. 

 

2.3.3.7 Topography.   

Topographic images of prefrontal activations and/or deactivations were generated 

using EasyTopo, an optical topography toolbox (Tian et al., 2012). EasyTopo overlays 2D 

images of HbO2 or Hb activations/ deactivations over a standard brain MRI atlas after 2D 

angular interpolation of the channel-wise activation data in a spherical coordinate system. 

In this study, the channel-wise β-values derived from GLM analysis and t-values from 

subsequent statistical comparisons were interpolated to generate activation maps (β-

maps and t-maps) induced by Stroop1 and Stroop2 tasks. 

 

2.4 Results 

2.4.1 Behavioral measures   

Table 2.3 reports the reaction times (i.e. average time taken to complete a block 

of 5 Stroop trials) of the control and PTSD groups for Stroop1 (i.e., neutral Stroop trials) 

and Stroop2 (i.e., incongruent Stroop trials) tasks (See Table 2.3). For statistical 

comparison of reaction times, Student t-test was used. As listed in Table 2.3, each group 

of healthy and PTSD subjects took significantly longer time to complete Stroop2 task than 

that to finish Stroop1 task. However, no significant difference in reaction times was 
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observed between the control and PTSD groups for either Stroop1 (p =0.41) or Stroop2 

(p =0.49) tasks. Both groups responded to Stroop1 and Stroop2 with 100% accuracy. 

Table 2.3. Task-dependent reaction times (sec) of control and PTSD groups 
 

 Control group PTSD group 

Stroop 1 Stroop 2 Stroop 1 Stroop 2 

Reaction time (Mean ± 
SD) 

4.78±0.62 
6.28±0.74 

5.06±1.12 
6.54±1.27 

p value within each 
group 

<10-6 

 
<10-4 

 

p value between two 
groups 

> 0.41 
> 0.49 

 
 

 
 

2.4.2 Hemodynamic responses.   

2.4.2.1 HbO2 changes induced by Stroop1 and Stroop2 tasks in control group 

For healthy controls, Fig. 2.3A shows a topographic image of prefrontal HbO2 

changes (β-map) by Stroop1 task, and Fig. 2.3C is a 3D rendered t- map (p < 0.05, FDR 

corrected) to display brain regions where the HbO2 changes are significantly different 

from the baseline readings induced by Stroop1 task. Fig. 2.3A shows that during Stroop1 

task, prefrontal regions towards the midline (line separating two hemispheres) are 

deactivated and lateral prefrontal regions are slightly activated. Similarly, Fig. 2.3B 

illustrates a topographic image of prefrontal HbO2 β -map by Stroop2, and Fig. 2.3D marks 

regions where the HbO2 changes are statistically different from the baseline readings (t-

map, p <0.05, FDR corrected). Close comparison between Fig. 2.3A,B hinted that the 

prefrontal β-map induced by Stroop2 exhibits a similar spatial pattern to that evoked by 

Stroop1 task. Further statistical analysis revealed that Stroop1 task did not stimulate any 

significant activations and/or deactivations in any channels (Fig. 2.3C), but Stroop2 task 
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resulted in significant alternations of HbO2 in three distinct small regions, as shown in Fig. 

2.3D. 

 

Figure 2.3.  Topographic images of the task-evoked prefrontal activations derived from 

changes in HbO2 in control group. (A) Group-averaged prefrontal activation (β-map in μ

M) evoked by Stroop1 tasks; (B) Group-averaged β-map (in μM) evoked by Stroop2 tasks. 

(C) A t-statistical map (t-map) that shows significant activations and/or deactivations (one 

sample t-test, p < 0.05; FDR corrected) on the brain template during Stroop1 tasks. (D) A 

t-map showing significant activations and/or deactivations evoked by Stroop2 tasks. 

 
To be more specific for demonstrating deactivations and/or activations at the 

identified regions, I have shown group-averaged HbO2 time courses evoked by Stroop1 

and Stroop2 at channel 34 around the medial LPFC (see Fig. 2.4E,F for channel location), 

as shown in Fig. 2.4A,B, respectively. These two figures show clear reduction of HbO2 

responses in the cortical region near Channel 34 by both Stroop trials (i.e., neutral versus 
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incongruent trails) with very similar magnitude and temporal pattern, implying that no 

significant difference existed between HbO2 responses by the two Stroop trials at this 

cortical region. 

 

Figure 2.4.  Mean Stroop-evoked hemodynamic changes of HbO2 in left DLPFC (i.e., 

channel 34 shown in Panels (E,F)) from both groups. (A,B) Group-averaged HbO2 

response from the healthy group evoked by Stroop1 and Stroop2 tasks, respectively. 

(C,D) Group-averaged HbO2 response from the subjects with PTSD evoked by Stroop1 

and Stroop2, respectively. In all four panels, the thick black bars represent the stimulation 

periods; the red lines represent the mean time courses of HbO2; the blue lines represent 

the mean time courses of Hb; the error bars represent the standard errors of mean. (E) It 

shows the position or location of channel 34 on a standard human brain template. (F) It 

shows the configuration of fNIRS channels on the left frontal cortex. Red circles represent 

light sources, blue squares represent detectors, and gray ellipses represent the nearest 

source-detector pairs (as channels) to measure the brain activities. 
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On the other hand, channel-wise data analysis revealed a significant increase in 

HbO2 response (p = 0.007) near left LPFC (BA 44, Channel 27; see Fig. 2.5E,F for 

channel location). Then, group-averaged HbO2 time courses were taken and plotted from 

channel 27 under both Stroop1 and Stroop2 tasks, as Fig. 2.5A,B show, respectively. 

Close visual inspection between these two figures suggests that Stroop2 evoked more 

HbO2 signals than Stroop1, resulting in significant changes with respect to the baseline 

readings (as seen in Fig. 2.3D). 

 

Figure 2.5.  Mean Stroop-evoked hemodynamic changes of HbO2 in left pars opercularis 

(see channel 27 shown in Panels E,F) from both groups. (A,B) Group-averaged HbO2 

response from the healthy group evoked by Stroop1 and Stroop2 tasks, respectively. 

(C,D) Group-averaged HbO2 response from the subjects with PTSD evoked by Stroop1 

and Stroop2, respectively. In all four panels, the thick black bars represent the stimulation 

periods; the red lines represent the mean time courses of HbO2; the blue lines represent 

the mean time courses of Hb; the error bars represent the standard errors of mean. (E) It 

shows the position or location of channel 27 on a standard human brain template. (F) It 
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shows the configuration of fNIRS channels on the left frontal cortex. Red circles represent 

light sources, blue squares represent detectors, and gray ellipses represent the nearest 

source-detector pairs (as channels) to measure the brain activities. 

 
2.4.2.2 HbO2 changes induced by Stroop1 and Stroop2 tasks in PTSD group.   

For the PTSD group, Fig. 2.6A shows a topographic image of prefrontal HbO2 β-

map by Stroop1 task, and Fig. 2.6C is a 3D rendered t-map (p < 0.05, FDR corrected) to 

mark regions that have significant HbO2 changes from the baseline induced by Stroop1. 

Fig. 2.6A shows that prefrontal regions are mildly deactivated by Stroop1 task. Similarly, 

Fig. 2.6B illustrates a topographic image of prefrontal HbO2 β-map by Stroop2. It is clear 

that deactivations induced by Stroop2 task are widespread across the prefrontal cortex. 

Fig. 2.6D marks regions where the HbO2 changes are statistically different from the 

baseline readings (t-map, p <0.05, FDR corrected). Overall, in the PTSD group, spatial 

extent of pre-frontal deactivation induced by Stroop2 task has been observed much larger 

than that induced by Stroop1 task. 

To better understand and demonstrate deactivations and/or activations at the 

identified regions in the PTSD group, I have also plotted group-averaged HbO2 time 

courses evoked by Stroop1 and Stroop2 at channel 34 (as I did for the control group in 

Fig. 2.4A,B), as shown in Fig. 2.4C,D, respectively. These two figures also show clear 

reduction of HbO2 responses near the medial LPFC by both Stroop trials, with a larger 

deactivation magnitude by Stroop2 task. Regarding HbO2 activation, for easy and 

quantitative comparison between the control and PTSD groups, I have also shown group-

averaged HbO2 time courses from channel 27 under both Stroop tasks, as Fig. 2.5C,D 

show, respectively. Close visual inspection between these two figures suggests that 
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neither of the Stroop tasks evoked much HbO2 signals with respect to the baseline 

readings.  

 

Figure 2.6.  Topographic images of the task-evoked prefrontal activations derived from 

changes in HbO2 from the PTSD group. (A) Group-averaged prefrontal activation (β-map 

in μM) evoked by Stroop1 tasks; (B) Group-averaged β-map (in μM) evoked by Stroop2 

tasks. (C) A t-statistical map (t-map) that shows significant activations and/or 

deactivations (one sample t-test, p <0.05; FDR corrected) on the brain template during 

Stroop1 tasks. (D) A t-map showing significant activations and/or deactivations evoked 

by Stroop2 tasks. 

It is clear that deoxy-hemoglobin responses in both control and PTSD groups 

under both Stroop tasks were relatively low and insignificant (See Figs 2.4A–D and 2.5A–

D). Therefore, Hb responses were excluded from further data analysis. 
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Figure 2.7.  Topographic images of the prefrontal activations derived from HbO2, showing 

differences between the PTSD and control groups in response to Stroop2 (incongruent 

Stroop) tasks. (A) Group-averaged differences in activations or β-maps (in μM) between 

the two groups. (B) A t-map (p-value <0.1; FDR corrected) showing the regions of 

significantly different activations and deactivations between the groups. 

 
2.4.2.3 HbO2 changes induced by Stroop interference in control versus PTSD group 

The main focus of this study was to explore differences of prefrontal hemodynamic 

signals in response to Stroop interference between a group of veterans with PTSD and 

age- and gender-matched healthy controls, in order to investigate possible deficits of 

selective attention processes in PTSD subjects. Furthermore, both Figs 2.3C and 2.6C 

do not show any significant cortical activation or deactivation evoked by Stroop1 task. 

Thus, I directed my attention to only Stroop2 task hereafter. Specifically, I found distinct 

differences of HbO2 changes in both temporal and spatial patterns between the two 

subject groups only during incongruent trials. Figure 2.7A shows a differential topographic 

HbO2 β-map between the PTSD and control groups, while Fig. 2.7B marks regions where 

the differential HbO2 responses between the two groups are significantly different (t-map, 
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p < 0.1, FDR corrected) in response to incongruent Stroop trials. Specifically, channel-

wise data analysis revealed that nine out of total 36 channels exhibited significantly 

reduced HbO2 values in the PTSD group when compared to the control group. Two 

channels were located in right pars triangularis [ Brodmann Area 45, Channels 1 (p = 

0.04) and 7 (p = 0.04)]. Seven channels were located on the left LPFC: three on the left 

pars triangularis [BA 45, Channels 19 (p = 0.02), 25 (p = 0.03) and 26 (p =0.02)] and four 

on the left dorsal LPFC (DLPFC) [BAs 9 & 46, Channels 20 (p = 0.03), 29 (p = 0.02), 30 

(p = 0.04), 32 (p = 0.03)]. For better visualization of the mentioned channel locations, Fig. 

2.2 presents the configuration and cortical position of the multi-channel fNIRS probe 

array. 

 

2.4.2.4 Correlation between behavioral and hemodynamic measures 

Linear regression analyses were performed between the task reaction times and 

corresponding HbO2 response magnitude (i.e., β-values) at each channel during Stroop1 

and Stroop2 tasks. For Stroop1 task, neither control nor PTSD group showed any 

significant correlation between the task reaction times and HbO2 responses in any of the 

36 channels. However, for Stroop2 task, two of total 36 channels exhibited a significant 

negative correlation between the task reaction times and HbO2 responses from only the 

PTSD group, Those channels were located in left DLPFC [BA 9, Channels 28 (R =−0.55, 

p =0.03) and 31 (R =−0.52, p =0.04)]. The control group did not present a Stroop2-

activated linear correlation between the task reaction times and HbO2 responses. 

2.4.2.5 Left DLPFC as Region of Interest (ROI)  
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Figure 2.8.  Mean Stroop2-evoked hemodynamic responses from the selected ROI, which 

includes channels 28, 29 and 31 from left DLPFC, from both groups. (A) Group-averaged, 

ROI-averaged HbO2 responses from the control group evoked by Stroop2 tasks. (B) 

Group-averaged, ROI-averaged HbO2 responses from the PTSD group evoked by 

Stroop2 tasks. In both panels, the thick black lines represent the stimulation period; the 

thick red lines represent the mean time courses of changes in HbO2; the thick blue lines 

represent the mean time courses of changes in Hb; the error bars represent standard 

errors of mean. Asterisks ‘*’ indicate significant (p <0.05) HbO2 responses with respect to 

the mean baseline at different time points. 

 
While the above t-maps shown in Figs 2.3D, 2.6D and 2.7B were corrected by the 

FDR (false discovery rate), the correction was less stringent for Type I errors compared 

to the familywise error correction. In particular, the FDR-corrected confidence level for 
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Fig. 2.7B was set to be 90% with a p value less than 0.1. Therefore, it was necessary to 

perform an ROI-based data analysis according to recently published and accepted 

findings (Ehlis et al., 2005; Schroeter et al., 2003; Schroeter et al., 2002; Schroeter et al., 

2004; Yanagisawa et al., 2010), which consistently reported bilateral LPFC activation with 

predominant activation in left LPFC due to Stroop interference (Schroeter et al., 2002; 

Yanagisawa et al., 2010). 

 

Figure 2.9.  Correlation between individual task reaction times and ROI-averaged HbO2 

responses (i.e., β-values) from the ROI (i.e., channels 28, 29 and 31) in the left DLPFC 

under Stroop2 task, taken from PTSD subjects. 

 
In this current study, I thus selected Channels 28, 29 and 31 (See Fig. 2.8C,D for 

channel locations) as the ROI, which corresponded to the left DLPFC and roughly 

matched the activation sites in aforementioned studies. Given this ROI, I investigated the 

ROI-averaged HbO2 signals induced by the incongruent Stroop task in both control and 



39 

PTSD groups. Fig. 2.8A,B plot group-averaged, ROI-based temporal HbO2 responses 

from the control and PTSD group, respectively. The control group shows a Stroop2-

evoked significant increase (p <0.05) in HbO2 response during the first several seconds 

of stimulation from the mean baseline within the ROI (See Fig. 2.8A), but the PTSD group 

did not show any significant difference in HbO2 response from the mean ROI-averaged 

baseline (See Fig. 2.8B). Furthermore, Stroop2 task resulted in a marginally significant 

negative correlation (R = −0.54, p =0.04) between the individual task reaction times and 

the ROI-averaged HbO2 responses from the PTSD group (See Fig. 2.9) while no 

significant correlation was seen in the control group. 

 

2.5 Discussion 

2.5.1 Experimental Observations   

The present study compared and contrasted prefrontal hemodynamic responses 

during the Stroop color-word neutral and incongruent tasks between the veterans with 

PTSD and age- and gender-matched controls. The observed results under the 

incongruent task are meaningful and thus summarized first as follows: 

Observation 1: When being compared to the baseline, the healthy group exhibited 

significant hemodynamic activation in the left pars opercularis of control subjects (see 

Figs 2.3D and 2.5B). 

Observation 2: When being compared to the baseline, both the healthy and PTSD 

groups showed significant hemodynamic deactivations, particularly in the bilateral frontal 

polar area (FPA) and bilateral DLPFC regions towards the midline (see Figs 2.3B,D and 

2.6B,D). 
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Observation 3: The PTSD group presented reduced hemodynamic activity in the left 

DLPFC and bilateral pars triangularis (BA 45) significantly when being compared to the 

control group (see Fig. 2.7). 

Observation 4: The ROI-based analysis confirmed that healthy subjects displayed 

significant hemodynamic activation in the selected ROI (i.e., left DLPFC) (see Fig. 2.8A), 

while the PTSD group did not show any significant hemodynamic activation or 

deactivation in the ROI during the same Stroop task (see Fig. 2.8B). 

Observation 5: Regarding the brain imaging and behavioral relationship, I observed a 

marginally significant negative correlation between the task reaction time and HbO2 

response amplitude taken from the ROI of the PTSD group (see Fig. 2.9). 

 

2.5.2 Interpretations   

Interpretation for Observation 1: Activation of left pars opercularis by Stroop2 task 

in control subjects.  Hemodynamic activations observed in this study in the LPFC 

regions, especially in the left DLPFC, were consistent with numerous fNIRS and fMRI 

studies that reported earlier neural correlates of Stroop interference (Banich et al., 2000; 

Ehlis et al., 2005; Schroeter et al., 2003; Schroeter et al., 2002; Schroeter et al., 2004; 

Yanagisawa et al., 2010). Particularly, a recent fNIRS study has demonstrated that Stroop 

interference evoked significantly the left DLPFC after acute bout of exercise, and that 

such increased activation in the mentioned cortical region in turn matched with improved 

Stroop task performance after the exercise (Yanagisawa et al., 2010). Therefore, it is 

reasonable to expect that cerebral hemodynamic activation in the left DLPFC is highly 

associated or linked with Stroop interference. 
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Interpretation for Observation 2: Deactivations in the bilateral FPA and bilateral 

DLPFC in both groups. In this study, I observed deactivations in channels from the DLPFC 

(BA 9) area towards midline and FPA (BA 10) during Stroop2 task in healthy subjects. 

However, the deactivations observed were not statistically significant compared to the 

baseline for most of channels (see Fig. 2.3D). For the PTSD group, more channels from 

similar DLPFC area towards midline and FPA illustrated deactivations (see Fig. 4D) than 

the healthy group. In comparison, functional NIRS study by Matsuda and colleagues 

reported deactivations in dorsal prefrontal cortex (DPFC, BAs 9 and 10) of adults and 

children during videogame tasks (Matsuda & Hiraki, 2006). This fNIRS study implicated 

that deactivations observed in DPFC were due to neural inhibition derived from 

continuous attention demand for video game tasks. A meta -analysis of 9 PET studies 

also reported regional cerebral blood flow (rCBF) decreases in medial frontal regions 

running along a dorsal-ventral axis (BAs 8, 9, 10 and 32), during 9 goal-directed tasks 

(such as spatial attention, visual search, and language tasks) (Shulman et al., 1997). The 

goal-directed tasks, which were analyzed in the meta-analysis report, had nothing in 

common except that all tasks required a response to certain visual stimuli. In an fMRI 

study, Mazoyer and colleagues demonstrated deactivations in dorsal medial prefrontal 

cortex (DMPFC; BAs 9, 10) during sustained attention to visual stimuli. In the meantime, 

a negative correlation between the load of sustained attention towards visual stimuli and 

blood oxygenation level dependent (BOLD) signal in DMPFC was reported as well 

(Mazoyer, Wicker, & Fonlupt, 2002). Based on those reported findings, therefore, it is 

reasonable to attribute the deactivations observed in this study as the response to visual 

stimuli or sustained attention to visual stimuli rather than Stroop specific deactivations. 
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Interpretation for Observations 3 and 4: Reduced response in left DLPFC in PTSD 

group than healthy group. For between-group differences in behavioral measures, I did 

not observe any significant difference in either performance accuracy or reaction times 

during Stroop interference task between the control and PTSD groups. However, in 

hemodynamic measures, during Stroop2 task, PTSD subjects showed significant 

reduction in HbO2 responses in right pars triangularis (BA 45, Channels 1 and 7), left pars 

triangularis (BA 45, Channels 19, 25 and 26) and left DLPFC (BAs 9 & 46, Channels 20, 

29, 30, 32) when compared to controls (see Fig. 2.7). This reduced response was 

expected since the control group exhibited significant activation in left lateral prefrontal 

regions, especially in the left DLPFC region to overcome Stroop interference, whereas 

the PTSD group failed to activate left lateral prefrontal regions. This result might implicate 

the difficulty experienced by PTSD subjects in coping up with Stroop interference. 

Therefore, restoration of left DLPFC activity in PTSD participants might improve their 

selective attention performance. Such improvements can be monitored and/or revealed 

by multi-channel fNIRS combined with the conventional Stroop color-word task. 

The Stroop color-word test used in this study can also be thought as a measure of 

inhibitory control. Each participant performing this task had to inhibit the automatic or 

prepotent response of word naming in order to choose the appropriate color name of the 

word. During the Stroop2 color-word matching task, I observed significant 

reduction/deactivation in HbO2 responses in bilateral pars triangularis (BA 45) in the 

PTSD group than in the control group. Pars triangularis is a part of ventrolateral prefrontal 

cortex (VLPFC). This reduction in VLPFC activations during Stroop2 task may suggest 

abnormal inhibitory mechanism in PTSD subjects. A recent fMRI study reported that 
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during the task involving inhibitory control (such as go-nogo task), PTSD patients 

exhibited reduced activation in the inferior frontal cortex, VLPFC and DLPFC relative to 

controls (Falconer et al., 2008). 

Observation 5: Negative correlation between the brain imaging and behavior.  

Furthermore, results in this study illustrated that the brain responses within the selected 

ROI during Stroop2 task were negatively correlated with the reaction time (see Fig. 2.9) 

in the PTSD group. This observation may imply that the attenuated activations may be 

well correlated with inhibitory control. Several neuroimaging studies investigating neural 

correlates of emotion regulation have reported increased PFC activity and associated 

decrease in amygdala activity during successful emotion regulation (Delgado, Nearing, 

Ledoux, & Phelps, 2008; Erk et al., 2010; Lieberman et al., 2007; Ochsner, Bunge, Gross, 

& Gabrieli, 2002; Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008). These 

published studies suggest that activities in several sub-regions of PFC, such as VLPFC 

and DLPFC, are involved in emotion control, including inhibition of Stroop interference. 

The reason for not being able to observe such a negative correlation in the control group 

could be attributed to the relative easiness of the tasks for the healthy subjects. 

 

2.6 Limitation 

A few limitations exist in this current study, including both the protocol design and 

technical limitations. In protocol design, Stroop1 task (i.e., neutral task) was too easy for 

the study, based on two experimental outcomes: (1) the brain responses to Stroop1 did 

not show any significant difference from the baseline readings, in both healthy and PTSD 

groups (see Figs 2.3C and 2.6C); (2) there was no significant difference in brain response 
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to Stroop1 between the healthy and PTSD group (see Fig. 2.4A vs 2.4C; Fig. 2.5A vs. 

2.5C). Similarly, in behavioral measures, both groups took longer time to complete 

Stroop2 task when compared to Stroop1 task, as expected because of the Stroop 

interference effect. However, no significant difference in reaction times and accuracy was 

observed between the two groups (see Table 2.3). It is clear that more challenging or 

complex neural and interference Stroop tasks should be designed or used in future 

studies in order to gain better contrasts in brain responses between neutral/congruent 

versus incongruent tasks and between healthy and PTSD subjects. 

Furthermore, there are three technical limitations in the present study. First, I had 

only a limited region of the prefrontal cortex covered by the fNIRS probe, so functions of 

other cortical regions involved during the Stroop tasks were not studied. Second, most 

veterans with PTSD in the study suffered from comorbid conditions, which could confound 

or bias the measured signals that were considered only from PTSD conditions. Lastly, it 

was possible that the fNIRS signals used for cerebral -hemodynamic quantification could 

include some contamination from extra cranial vasculature, such as from the scalp and 

skull. This contamination may be minimized by regression of the signals from superficial 

layers that are recorded with short source-detector separations of 0.8–1 cm. 

 

2.7 Conclusions 

In the present study, functional near infrared spectroscopy was utilized to assess 

the involvement of the prefrontal cortex in selective attention processes among 15 

veterans with PTSD and 13 age-/gender- matched healthy controls. While performing 

Stroop (color-word) incongruent task, healthy controls showed hemodynamic activations 
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in lateral prefrontal cortex regions, especially in left DLPFC and left Pars opercularis, 

whereas veterans with PTSD failed to activate those cortical regions during the same 

Stroop task. These observations might implicate difficulty experienced by the PTSD 

subjects in coping up with Stroop interference. In addition, significant negative correlation 

was observed between task reaction times and HbO2 responses from left DLPFC during 

color-word matching task. The present study clearly demonstrates that fNIRS is a portable 

and complementary neuroimaging tool to study the neural correlates of selective attention 

and interference in subjects with PTSD. 
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Chapter 3 

A Preliminary Investigation Of Human Frontal Cortex Under Noxious Thermal 

Stimulation Over The Temporomandibular Joint Using Functional Near Infrared 

Spectroscopy 

 
3.1 Abstract 

Functional near infrared spectroscopy (fNIRS) was used to explore hemodynamic 

responses in the human frontal cortex to noxious thermal stimulation over the right 

temporomandibular joint (TMJ). fNIRS experiments were performed on nine healthy 

volunteers under both low-pain stimulation (LPS) and high-pain stimulation (HPS), using 

a temperature-controlled thermal stimulator. By analyzing the temporal profiles of 

changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, 

several regions of interest in the prefrontal cortex, such as the dorsolateral prefrontal 

cortex and the anterior prefrontal cortex, were identified, where significant differences ( p 

< 0.05) between HbO responses to LPS and HPS were shown. In order to classify these 

two levels of pain, a neural network-based classification algorithm was utilized. With 

leave-one-out cross-validation, the two levels of pain were identified with 99% mean 

accuracy to high pain. Furthermore, the “internal mentation hypothesis” and the default-

mode network were introduced to explain my observations of the contrasting trend, as 

well as the rise and fall of HbO responses to HPS and LPS. 

 

3.2 Introduction 
 

Pain is the primary symptom for physician consultations in the United States; it can 

significantly interfere with a person’s quality of life and general functioning (Breivik et al., 

2008; Turk & Dworkin, 2004). Impairments in cognitive functioning, such as attention 
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control, working memory, mental flexibility, problem solving, and information processing 

speed, are observed in patients suffering from acute and chronic pain (R. P. Hart et al., 

2003). Pain can also aggravate psychological attributes, such as depression, anxiety, 

fear, and anger (Bruehl et al., 2009). It is highly desirable to be able to quantitatively 

assess pain, which may aid patients suffering from chronic pain, and for patients who lack 

communication ability (e.g., infants and patients with a speech disability). However, 

because of the lack of a reliable quantitative measure of pain, it is often difficult for 

clinicians to evaluate the degree of pain to help guide its’ clinical management. 

In order to understand pain processing in humans, neuroimaging studies have 

been performed on the central nervous system using position emission tomography (PET) 

and functional magnetic resonance imaging (fMRI). Such studies have shown the 

involvement of pain in various cortical and subcortical regions of the brain (Casey, 1999; 

Peyron, Laurent, & Garcia-Larrea, 2000), which are often grouped together and referred 

to as the “pain matrix” (Mackey & Maeda, 2004; Neugebauer, Galhardo, Maione, & 

Mackey, 2009; Seminowicz, Mikulis, & Davis, 2004; Tracey & Mantyh, 2007; Zhuo, 2008), 

because they are highly associated during pain processing. The pain matrix includes the 

primary (S1) and secondary (S2) somatosensory cortices; they are known to be 

associated with sensory-discriminative aspects and additional affective/cognitive 

functions, respectively. Insular cortex and anterior cingulate cortex (ACC) are involved in 

affective-motivational and various cognitive aspects of pain, including anticipation, 

attention, and evaluation (Apkarian et al., 2005; Neugebauer et al., 2009; Ohara, Vit, & 

Jasmin, 2005; Seminowicz et al., 2004). Other prefrontal cortical and subcortical areas 

besides ACC, such as the amygdala, are also shown to play a role in secondary pain 
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effect, namely conscious awareness and cognitive evaluation of pain (Kulkarni et al., 

2007; Neugebauer, Li, Bird, & Han, 2004; Ochsner et al., 2006; Price, 2000; Tracey & 

Mantyh, 2007). Thus, while the somatosensory cortex is shown to be primarily 

responsible for the perception of pain sensations, activity in the prefrontal cortex (PFC) 

during pain sensation is acknowledged as well (J. Lorenz, Minoshima, & Casey, 2003; 

Park, 2011). Also, a recent study has reported physiology-based pain measures using 

fMRI signal patterns, and demonstrated the feasibility of discriminating painful from non-

painful stimulations (Brown, Chatterjee, Younger, & Mackey, 2011). 

In the past decade, functional near infrared spectroscopy (fNIRS), a non-invasive 

optical imaging method, has been extensively investigated in the field of neuroimaging 

for studying functional brain activities. However, very little has been reported on pain 

processing measured by noninvasive fNIRS until a study by Becerra and colleagues 

(Becerra et al., 2009), which found qualitative correlations or relationships between pain 

and temporal characteristics of the hemodynamic responses observed by fNIRS in the 

sensory cortex. No finding however, has been reported to discriminate noxious pain from 

innocuous pain using fNIRS-derived signals seen at the PFC or frontal cortex. The aim of 

this present study was to therefore examine whether or not noxious and innocuous 

thermal pain can be objectively measured and discriminated by fNIRS measurements 

taken in the frontal cortical regions. The portable, easy-to-use, cost-effective, fNIRS-

based brain imaging modality may have the ability to facilitate a better understanding of 

pain processing at the cortical regions induced by acute pain. my long-term goal is to 

utilize fNIRS as an objective imaging modality to explore and detect hemodynamic 

activities in the frontal cortical regions induced by pain, as well as to reveal if there exist 
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any characteristic distinctions in such hemodynamic signals between normal subjects and 

pain patients. Specifically, my study population focuses on patients with 

temporomandibular joint and muscle disorder (i.e., TMJMD), of which 75% of the US 

population experiences symptoms during their lifetime, according to the American 

Academy of Orofacial Pain. While the prevalence of TMJMD varies widely among studies, 

researchers surveying the prevalence literature estimated that, in any given year, 10% of 

women and 6% of men have TMJMD pain, which translates to some 20 million adults 

(Drangsholt & LeResche, 1999). Keeping my long-term goal in mind, I initiated this study 

by performing fNIRS measurements in the frontal regions of normal subjects who were 

under thermal stimulation by a computer-controlled thermode placed on each subject’s 

skin over TMJ region. Channel-wise hemodynamic signals in response to two levels of 

thermal pain were quantified, analyzed, and compared, as reported in following sections. 

 

3.3 Materials and Procedure 
 
3.3.1 Subjects 

A total of nine healthy volunteers from the University of Texas at Arlington (UTA) 

community were recruited for this study. The subjects taking part in the study were right-

handed, and in the age range of 22–35 years. Prior to the study, none of the subjects had 

any neurological or psychological disorder, or were taking any kind of medications. 

Written informed consent was obtained from all the subjects before the measurement. 

The protocol used in the study was reviewed and approved by the Institutional Review 

Board at UTA.  
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3.3.2 Instruments 

The instrument used for data acquisition was a multi-channel, continuous-wave, 

fNIRS imaging system (Cephalogics, Boston, MA; see Figure 3.1A), consisting of three 

750nm and one 830nm light emitting diodes to form a source optode (Zeff et al., 2007). 

The detector optodes used in the system were connected to avalanche photo diodes. The 

head optode array utilized for the study consisted of 18 source optodes and 18 detector 

optodes (see Figure 3.3B,C for more details). For generating pain stimuli, I employed a 

temperature-controlled pain generator (MEDOC PATHWAY ATS MODE; see Figure 

3.1B), which can generate a wide range of temperatures (–10°C to 55°C) in order to evoke 

various levels of innocuous and noxious pain. 

 

Figure 3.1. (A) A multichannel functional near infrared spectroscopy-based brain imager. 

(B) A temperature-controlled pain generator. (C) Placement of the thermode over the right 

side of each subject’s temporo-mandibular joint region. 

 

3.3.3 Experimental Paradigm 

In order to estimate the magnitude of thermal pain to be applied, a staircase 



51 

approximation method was utilized when I first conducted pain perception estimation. A 

thermode of 16X16 mm2 from the ATS thermal stimulator was attached to each subject’s 

skin, over the right TMJ region (see Figure 3.1C), with variable temperatures from 41°C 

to 47°C. Using the visual analog pain rating scale (0–10), each subject was asked to rate 

the perception of pain before the actual pain-dependent measurements took place. 

Perception rating levels of 0, 3, 7 and 10 corresponded to no pain, low pain, high pain 

and extreme pain conditions, respectively. A linear correlation (R2 = 0.98) between the 

stimulus temperatures (41°C-47°C) used and the average of pain perception rated by the 

nine subjects is presented in Figure 3.2. In the actual measurements, two levels of thermal 

stimuli (one rated at 3 and the other at 7) were selected. These pain stimuli are termed 

as low-pain stimuli (LPS) and high-pain stimuli (HPS), respectively. During fNIRS 

measurements, average temperatures over all the subjects to create the LPS and HPS 

were 43.0 1.4°C and 46.1 0.6°C, respectively. 

 

Figure 3.2. Linear correlation between pain stimulus temperatures (41–47°C) used and 

average of pain perception rated by nine subjects, when skin over the temporomandibular 

joint was thermally stimulated. Pain perception rating levels of 0, 3, 7, and 10 
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corresponded to no pain, low pain, high pain, and extreme pain conditions, respectively. 

Error bars are standard deviation of pain perception across nine subjects. 

 

Figure 3.3. (A) Experimental paradigm used in this study for thermal stimulation. (B) 

Selection of nine clusters for data analysis. The first and third rows from the bottom 

represent light sources; the second and fourth rows from the bottom represent detectors. 

Solid black arrows (n = 7) are channels (source-detector pairs) grouped as one cluster. 

Right is each subject’s right side. (C) Optical optode array placed on a subject’s head with 

the geometry shown in Figure 3.3B. 
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The experimental protocol was a blocked design with variable inter-stimulus 

intervals (ISI). The paradigm had an initial baseline of 60 seconds, during which the 

temperature applied was 27°C, followed by a 4-sec ramp increase in temperature to reach 

the desired/designed stimulus temperature. Then, the temperature remained constant for 

20 seconds, followed by a 4-sec ramp decrease in temperature to return to the baseline 

temperature. The complete protocol consisted of six blocks, each of which had a 30–40 

seconds variable ISI between two adjacent blocks (see Figure 3.3A). 

 
3.3.4 Data Acquisition 
 

For data acquisition of fNIRS signals, 18 sources and 18 detectors (see Figure 

3.3B) were placed on each subject’s frontal cortex region (see Figure 3.3C). The distance 

between source-to-source, as well as detector-to-detector, horizontally was 2.5 cm. I 

obtained data from 75 source-detector pairs (i.e., channels), using the first and second 

nearest neighbors with 3 cm and 3.9 cm separations, respectively. The total area covered 

by the optode probe (TechEn, Inc., Milford, MA) on the brain was 20 X 9 cm2 (see Figure 

3.3C). 

To find the corresponding neuro-anatomical positions of the optodes, an 

international 10–20 system of electrodes placement was used (Okamoto et al., 2004). 

Subjects were made to sit comfortably, and the distances between nasion (Nz) to inion 

(In), and left ear (AL) to right ear (AR), were measured, respectively. Also, the cross point 

between Nz-In and AL-AR, denoted as Cz, was identified. Using a marker, Nz, In, AL, 

AR, and Cz were highlighted and used as coordinate references for optode co-registration 

on a human brain template. The coordinates of all optodes along with Nz, In, AL, AR and 

Cz were recorded using a 3D Patriot digitizer (Polhemus Inc., Colchester, VT). A 
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MATLAB-based, open-source software (i.e., NIRS-SPM) was used to obtain spatial 

locations of the optodes on a human brain template (Ye et al., 2009). This software 

enabled us to identify each of the Brodmann Areas (BA) interrogated by the fNIRS 

optodes and the respective percentage of covered BA over the entire area of the optode 

array, as listed in Table 3.1. It is clear that my optode array covered seven major BAs: 

BAs 6, 8, 9, 10, and BAs 44, 45, 46, all of which took 96.62% of the area interrogated by 

the optode array. A very small portion of the optode array (1.52%) interrogated S2 (BA 

43). 

 

          Table 3.1 Percentages of Covered BAs over the Entire Area of the Optode Array 

Brodmann 

Area  

Cerebral region Percent (%) 

3 Primary somatosensory cortex 0.06 

4 Primary motor cortex 1.03 

6 Premotor cortex 6.03 

8 Frontal eye fields 14.60 

9 Dorsolateral prefrontal cortex 24.96 

10 Anterior prefrontal cortex 11.99 

38 Temporopolar area 0.37 

43(S2) Secondary somatosensory cortex 1.52 

44 Pars opercularis 5.56 

45 Pars triangularis Broca’s area 18.95 

46 Dorsolateral prefrontal cortex 14.53 

48 Retrosubicular area 0.41 
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Figure 3.4. (A) Power spectral density (PSD) of raw optical intensities obtained from 

channels 22, 24, and 25, respectively, during high pain stimulation. (B) Temporal changes 

in oxy-hemoglobin concentration (HbO) obtained from channels 22, 24, and 25 during 

high pain stimulation. Green lines mark stimulus starting times. 

 

3.3.5 Data Analysis 

For processing the fNIRS data, an open-source, MATLAB-based software, called 

HomER, was used (Huppert et al., 2009). The raw optical intensities from all the channels 

were checked individually for each subject in order to identify any channels with large 

noise. The channels showing large noise were further inspected by performing power 
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spectral density (PSD) analysis on the raw optical intensities. An example is shown in 

Figure 3.4: Figure 3.4A displays PSD curves of two uncorrupted (channels 22 and 24) 

and one corrupted (channel 25) raw optical intensity profiles, while Figure 3.4B presents 

temporal changes in oxygenated hemoglobin concentration (HbO) from the 

corresponding channels during high-pain stimulation. It is seen that PSD of the two 

uncorrupted signals show a clear fundamental frequency around 1.1 Hz because of 

cardiac pulsation, whereas PSD of a noisy channel 25 does not exhibit any characteristic 

frequency. In order to exclude noisy channels from data analysis, I introduced a functional 

signal to noise ratio (fSNR) of changes in HbO for all channels; fSNR was defined as the 

averaged HbO value over the stimulation phase divided by the standard deviation (SD) 

of HbO during the 5-sec baseline prior to stimulation. The corresponding fSNR for 

channels 22, 24, and 25 were found to be 6.3, 6.1, and -2.3, respectively. Consequently, 

channels without the characteristic cardiac pulsation frequency and fSNR between -3 and 

3 (i.e., signal magnitude < 3 SD) were considered to be noisy and were excluded from 

further analysis. The large noise may have resulted from various factors, such as the 

subject’s high density or dark color of hair, imperfect probe placement on the scalp, and/or 

body motion artifact. 

Apart from the signals coming from activation of the cerebral cortex, fNIRS signals 

may contain various other physiological components, such as systemic physiological 

noise caused by cardiac pulsation, respiratory signal and systemic blood pressure. Also, 

because of a relatively high sampling rate of the fNIRS system, the measured signals 

could include instrumental noise as well (Jang et al., 2009). Thus, to remove such noise 

within the fNIRS signals, as well as to correct the low-frequency baseline drift, the optical 
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signals were band-pass filtered from 0.01 to 0.2 Hz. Then, using the stimulus timing 

information, the fNIRS signals were averaged over the six blocks: the averaged temporal 

block had a time span of 65 seconds, namely 5-sec pre-stimulus, followed by 28-sec 

stimulation, and 32-sec recovery (see Figure 3.3). Averaging fNIRS signals over six 

blocks for each of the channels was performed in order to improve the signal-to-noise 

ratio. Last, the temporal profiles of HbO and deoxygenated hemoglobin concentration 

(HbR) were obtained for all the channels of each subject, using modified Beer– Lambert’s 

law (Cope et al., 1988). 

 

3.4 Results 

After obtaining channel-wise HbO and HbR temporal files, spatially dependent 

hemodynamic responses to the pain stimulation were obtained. Specifically, all the 

channels were grouped into nine different clusters (see Figure 3.3B), covering the PFC 

and major regions of the frontal lobe (see Figure 3.3C). Each cluster consisted of seven 

channels. For group-level cluster analyses, the temporal profiles of seven channels in 

each cluster were averaged first for each subject, and then further averaged across all 

nine subjects. The grand-averaged temporal profiles of HbO signals for all the clusters 

are labeled as C1, C2, . . . , and C9, as shown in Figure 3.5, in response to both LPS and 

HPS. Clusters C1, C4, and C7 are on the ipsilateral (right) side of the frontal lobe with 

respect to the stimulation side; C3, C6, and C9 are on the contralateral (left) side; C2, C5, 

and C8 are located around the medial portion of the forehead. In most of these clusters, 

the temporal profiles of HbO in response to LPS (blue curves) show a slight decrease in 

HbO concentration during the stimulus period, followed by recovery to baseline. However, 
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the temporal profiles of HbO in response to HPS show a slight increase in HbO 

concentration during the stimulation phase, followed by a noticeable decrease in HbO 

during recovery before returning to baseline. In the meantime, the grand-averaged 

temporal profiles of HbR signals for all the clusters are shown in Figure 3.6, demonstrating 

little changes in HbR signals in response to either LPS or HPS, during or post stimulation. 

 

Figure 3.5. Grand average of temporal profiles of oxy-hemoglobin concentration (HbO) 

(in microMolar) across nine subjects under temporomandibular joint (TMJ) thermal 

stimulation, for all clusters (labeled as C1, C2 . . . C9). Dark and light colored curves 

represent grand-averaged temporal profiles of HbO in response to low pain and high pain 

stimulation, respectively. 

 
In order to understand the spatial coverage of fNIRS optode array on the frontal 
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cortex, I present a 3D-rendered human brain map with BAs labeled (“Brodmann Areas . . 

.” 2013) and also mark optode locations on the human brain template (see Figure 3.7). 

As listed in Table 3.1 earlier, large portions of the optode array covered the anterior PFC 

(BA 10), dorsolateral PFC (BAs 9 and 46), frontal eye fields (BA 8), as well as BAs 45 

and 44. By comparing the two panels in Figure 3.7, I expect that the clusters C3 and C6 

(also C1 and C4) possibly cover the left (right) side of BAs 10, 9, 46, 45, and 44, while C9 

(and also C7) may cover some portions of BA 8 and BA 6. While BA 43 (i.e., S2) is not 

clearly covered by the optodes, it is in the vicinity of clusters C6 and C9 (see Figure 3.7B). 

According to Table 3.1 and Figure 3.7, it is possible that signals obtained at clusters C9 

and C7 may include small contribution from S2 because of the scattering or diffuse nature 

of light in tissue. 

To identify hemodynamic signals in different cortical regions induced by HPS and 

LPS, areas-under-the-curve (AUC) within a selected time window (0–20 seconds) for 

each HbO profile in each cluster was calculated as the average concentrations of HbO 

during the thermal stimulations. Statistical comparison of AUC in response to LPS or HPS 

and baseline was conducted using paired t tests (N = 9) for each cluster individually. 

Statistical analysis of the AUC demonstrated that significant differences in AUC of HbO 

temporal profiles between the response to LPS and baseline occurred in clusters C4 ( p 

< .05), C6 ( p < .05), C7 ( p < .03), and C9 ( p < .03) during the 20-sec stimulation phase. 

The HbO responses were significantly decreased during LPS when compared with 

baseline. In contrast, significant differences in AUC of HbO profiles between the response 

to HPS and baseline occurred in clusters C3 ( p < .05), C4 ( p < .05), C6 ( p < .05), C7 ( 

p < .05), and C9 ( p < .01) during the 20-sec stimulation phase, with significant increases 
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in HbO during HPS. Further statistical analysis revealed the most significant differences 

in AUC of HbO signals between the responses to LPS and to HPS occurred in clusters 

C3 ( p < .03), C4 ( p < .02), C6 ( p < .01), C7 ( p < .01), and C9 ( p < .01) during the 20-

sec stimulation phase. Then, only these clusters were chosen for the next step of data 

processing, namely, pain classification and discrimination. Note that C3, C6, and C9 were 

contralateral, while C4 and C7 were ipsilateral, with respect to the pain stimulation side 

(i.e., over the right TMJ region). HbR signals were excluded from further analysis because 

they did not show significant difference between responses to LPS or HPS and baseline. 

 

Figure 3.6. Grand average of temporal profiles of deoxygenated hemoglobin 

concentration (HbR) (in Molar) across nine subjects under temporomandibular joint (TMJ) 

thermal stimulation, for all clusters (labeled as C1, C2 . . . C9). Dark and light colored 
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curves represent grand-averaged temporal profiles of HbR in response to low pain and 

high pain stimulation, respectively. 

 

3.4.1 Pain Classification 

A multilayer perceptron (MLP) neural network-based classification algorithm was 

used to classify two levels of pain. Figure 3.8 provides an overview of the classification 

steps. In this procedure, only those clusters (C3, C4, C6, C7, and C9), which showed 

significant difference between LPS and HPS, were considered. 

 

Figure 3.7. (A) A standard human cortex surface map marked by Brodmann areas 

(“Brodmann Areas . . .” 2013). (B) Brodmann areas covered by the optical optode array 

on the frontal cortex; it was obtained by marking the optode positions with a 3-D digitizer. 

Small solid squares are the optode positions superimposed on the brain template. The 

shaded portion around the center represents the area/volume interrogated by a particular 

source-detector pair. 

 

 



62 

 

Figure 3.8. Classification flowchart, including (1) feature extraction to reduce 708 

temporal points to 63 features, then (2) feature selection to further reduce features to 12 

time points, followed by leave-one-out cross-validation using neural net classifier training. 

 

The block averaged temporal curve of a cluster had 5 seconds of baseline prior to 

the stimulus, followed by 28 seconds of stimulus including a ramp increase and decrease 

in temperature, and followed further by 32 seconds of recovery. In total, I had 90 (5 

clusters x 2 classes x 9 subjects) of 65-sec temporal curves, 45 each for the LPS and 

HPS classes, respectively, which were used to perform pain classification and cross-

validation. 

 

3.4.2 Feature Selection and Feature Extraction 

Because 708 data points in a temporal curve (i.e., a 65-sec profile with a data 

acquisition rate of 10.8 Hz) from each cluster were too many to be used for pain 
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classification, it was necessary to down-sample the data points by more than 10-fold. To 

do so, each temporal curve was averaged in temporal blocks of approximately 1.1 

seconds each, to produce 63 time points or features. Then, these selected features were 

the input to a feature-extraction algorithm. In order to find near-optimal feature subsets, 

the 63 features were evaluated using the piecewise linear orthonormal floating search 

(PLOFS) algorithm (Li, Manry, Narasimha, & Yu, 2006). PLOFS comprises: (1) the 

floating search subset generation algorithm; and (2) a piecewise linear network’s mean-

squared error (MSE) to calculate the subset evaluation function (Chandrasekaran & Kim, 

1999; Fukunaga, 1990; Pudil, Novovicová, & Kittler, 1994; Yuc & Manry, 2007). PLOFS 

is a wrapper-based approach to feature selection (Kohavi & John, 1997). The feature 

selection algorithm yielded the best subset of features between sizes 1–63, and also 

calculated their performance. On the basis of the performance error, the subset of size 

12 (or 12 features corresponding to 12 specific time points) was found and selected to be 

the most appropriate. The top portion of Figure 3.8 illustrates these steps. 

 

3.4.3 Classifier Design and Cross-Validation 

A leave-one-out method for cross-validation was used to test the classification 

algorithm. In order to keep the training and validation data independent, all observations 

(i.e., five selected clusters) from a subject were treated as a single unit, which was used 

only in the training or validation process, but not for both. Specifically, in this study, nine 

leave-one-out data sets were generated by keeping one set of the nine subjects’ data as 

a validation set, and the remaining eight as the training sets (see Figure 3.8). A feed-

forward neural net classifier was trained for each cross-validation data set, and the 
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accuracy of each set was calculated. The network was trained using output weight 

optimization–hidden weight optimization (OWO–HWO; (Yu, Manry, Li, & Lakshmi 

Narasimha, 2006)).  

Table 3.2 Leave-One-Out Cross-validation Results for Right 

Temporomandibular Joint Thermal Stimulation 

 
 

Data set # Sensitivity Specificity Accuracy AUC 
     

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 

6 1 1 1 1 

7 1 0.8 0.9 0.88 

8 1 1 1 1 

9 1 1 1 1 

Mean 1.00 0.98 0.99 0.99 

SD 0.00 0.07 0.03 0.04 
     

 
                                    AUC = areas-under-the-curve; SD = standard deviation. 

 

In order to properly size the MLP during training, the number of hidden units was 

adjusted such that the validation error was minimized. The network produced an 

approximate probability for each possible classification outcome (Wan, 1990), of which 

the class with the highest probability was chosen to be the classification decision (Ruck, 

Rogers, Kabrisky, Oxley, & Suter, 1990). The classification accuracy was defined as the 

percentage of patterns correctly classified. In this way, several network configurations 

with different number of units in the hidden layer, and different number of training 

iterations, were evaluated during cross-validation process; the best configuration was 

chosen. An MLP with 10 hidden units trained for a single iteration produced the best 
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results. 

Based on the cross-validation results, I was able to classify high pain from low 

pain, with a 100% mean sensitivity, 98% mean specificity, and 99% mean accuracy based 

on nine subjects’ data (see Table 3.2) in response to thermal stimulation given on the 

TMJ. The corresponding receiver operating characteristics curve was obtained and is 

shown in Figure 9, with an AUC of 0.99. 

 
3.5 Discussion 

 
In this present study, temporal changes in HbO signals showed an initial activation 

in the frontal cortex during the high-pain stimulation phase, followed by deactivation 

during the recovery phase before returning to the baseline. In the meantime, deactivation 

was also observed during low-pain stimulation in the frontal cortex. Cluster-based 

analyses allowed us to investigate pain-induced HbO changes in different cortical 

locations. In this study, a comparison of characteristic parameter (i.e., AUC) of HbO 

temporal curves for all the clusters was performed. Significant differences ( p < .05) in 

AUC of HbO temporal profiles between LPS and HPS conditions were observed in 

clusters C3, C4, C6, C7 and C9 during the stimulation phase (0–20 seconds), but not 

during the recovery phase (30–40 seconds). Specifically, Clusters C3 and C6, covering 

a sizeable portion of the left dorsolateral PFC (BAs 9 and 46), showed significant 

differences between the LPS and HPS conditions. Also, clusters C7 and C9, covering a 

portion of dorsolateral PFC (BA 9) and frontal eye fields (BA 8), showed significant 

differences in AUC of HbO signals between LPS and HPS within the stimulation period. 

While this study is at its preliminary phase, the results are promising and encouraging, 

indicating that fNIRS-derived hemodynamic responses are able to give rise to different 



66 

temporal characteristics in response to high-pain or low-pain stimulation in several cortical 

regions (such as BAs 9 and 46). Further confirmation and quantification of such cerebral 

signals in response to pain given at different pain levels, and at different body locations, 

will be further carried out and explored in future studies. 

It should be noted that, because pain is a very complex neurological process and 

phenomenon, a variety of studies for a better understanding of pain and pain mechanisms 

have been conducted using neuroimaging tools. Several fMRI-based studies have 

recently revealed possible interrelationships between pain and brain functions. For 

example, Kong and colleagues reported significant increases in fMRI signals in a number 

of brain areas under HPS as compared with LPS (Kong et al., 2010). I also obtained the 

similar conclusion on several prefrontal cortical areas (i.e., BAs 8, 9, 10, 44, 45, and 46), 

as shown earlier in this paper. Another fMRI study demonstrated the role of the 

anterolateral PFC in expected and perceived control over pain (Wiech et al., 2006). It was 

also reported by a separate group that the dorsolateral PFC (DLPFC) and caudate 

nucleus were activated when healthy subjects made efforts to disengage from feeling of 

pain during constant thermal stimulation. This study suggested the crucial role of the 

caudate nucleus and PFC in the initiation and maintenance of suppression of pain, 

respectively (Freund et al., 2009). In addition, a PET-based study of pain demonstrated 

the influence of DLPFC on pain perception by modulating cortico-subcortical and cortico-

cortical pathways (J. Lorenz et al., 2003). Relatedly, in order to obtain relief from 

intractable pain, surgical removal of PFC was performed on patients with treatment-

refractory pain syndromes via cingulotomy or capsulotomy (Bouckoms, 1994; Davis, 

Hutchison, Lozano, & Dostrovsky, 1994; Talbot, Villemure, Bushnell, & Duncan, 1995). 
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All of these studies have clearly demonstrated that the PFC is one of the key elements in 

the “pain matrix” and plays a significant role in pain processing. 

 

Figure 3.9. Receiver operating characteristics curve obtained using leave-one-out cross-

validation for discrimination of high pain from low pain induced by thermal stimulation on 

the skin of under right temporomandibular joint (TMJ). 

 

One of the interesting findings in this paper is the observation that LPS generated 

decreases in HbO responses in most of prefrontal cortical areas, namely, anterior PFC 

(BA 10) and DLPFC (i.e., BAs 8, 9, 44, 45, and 46), while HPS produced increases in 

HbO signals in the respective locations. This set of results is actually in excellent 

agreement with the report given by Kong and colleagues (Kong et al., 2010). They clearly 

demonstrated that LPS induced widespread brain deactivations in several key regions of 

the default-mode network (DMN), including bilateral BAs 8, 9, and 10 and many other 

subcortical areas, and that HPS induced brain activations in many cortical and subcortical 

regions, also including prefrontal regions of BAs 8, 9, 10, 44, and 46. The explanation for 
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the contrasting trend of brain responses to HPS and LPS was based on the understanding 

of DMN. DMN is an extensive network of brain structures that are engaged when 

individuals are left undisturbed as a baseline or default state, and attenuated during 

specific goal-directed behaviors (Gusnard, Akbudak, Shulman, & Raichle, 2001; Kong et 

al., 2010). The hypothesis and explanation given by Kong et al. works well for us to 

interpret and understand the HbO changes induced by HPS and LPS. The given and 

supported hypothesis is the “internal mentation hypothesis,” which states that “the DMN 

would support internally directed cognitive activity that is largely detached from the 

external world” (Kong et al., 2010, p. 8). According to this hypothesis, I expect that LPS 

may require the brain network to evaluate painfulness of LPS, resulting in the decoupling 

from the default mode and presenting deactivation in key regions of DMN. When HPS is 

given, however, the subject needs to instinctively find a potential solution to the current 

threat by partially counteracting the DMN inhibition. 

Furthermore, the fact that HbO recovery trends during the post-stimulation phase 

in response to both HPS and LPS followed the same pattern without significant difference 

can be explained using the same argument or hypothesis. Regarding LPS, DMN restores 

its connection when the evaluation of painfulness is complete; so, the deactivated HbO 

functions within key regions of DMN recover gradually to their pre-LPS baseline. In case 

of HPS, HbO responses of the PFC network were increased during the stimulation period, 

but decreased during the post-HPS period. This was due to the demand to continuously 

evaluate painfulness with DMN suppressed and then to return to the default mode. Thus, 

during the recovery phase, HbO signals were reduced and then gradually returned to the 

pre-HPS baseline. 
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Besides the PFC, the bilateral activation in the secondary somatosensory cortex 

(i.e., S2) was reported by a magnetoencephalography study in response to unilateral 

painful heat stimulation applied to upper and lower limb of normal subjects, using a CO2 

laser beam (Kakigi et al., 1995). In an fMRI study, bilateral activation in S2 was observed 

during mechanical-impact pain. These activations were significantly correlated with 

scores for the sensory discriminative component, demonstrating the crucial role of S2 in 

the sensory discriminative dimension of pain (Maihofner, Herzner, & Otto Handwerker, 

2006). Consistently, it has recently been shown that Blood Oxygen Level Dependent 

(BOLD) signals taken only from S2 could give rise to 71.9% accuracy when classifying 

painful stimuli, significantly better than those when the BOLD signals from any other brain 

region were utilized for pain classification (Brown et al., 2011). All of these studies strongly 

indicate that S2 should be another important “pain matrix” element to consider in the 

future pain and pain-mechanism studies. In this study, as pointed out earlier, only a small 

portion of the optode array interrogated S2 (see Table 3.1 and Figure 3.7B), but it is 

possible that clusters C9 and C7 may include small contribution from S2 due to the 

scattering or diffuse nature of light in tissue. 

In terms of further developing an objective measure of pain, a recent fMRI-based 

study was able to distinguish painful from non-painful thermal stimulation, with 81% 

accuracy using support vector machine learning on BOLD responses to thermal pain from 

several brain regions combined, including the PFC and S2 (Brown et al., 2011). In 

comparison, the present study was able to discriminate HPS from LPS, stimulated 

thermally on the TMJ, with 99% accuracy, using a multilayer perceptron-based 

classification algorithm. Specifically, I selected HbO responses from several key cortical 
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regions, which were within or near several key components of the “pain matrix,” namely 

the anterior PFC and DLPFC (i.e., BAs 8, 9, 10, 44, 45, and 46). the results of achieving 

high mean sensitivity, specificity, and accuracy (see Table 2) suggest that the anterior 

PFC and DLPFC play a significant role in pain processing, as reported by other groups, 

and thus may serve as biomarker locations for an objective measure to monitor and/or 

assess pain by fNIRS. 

3.6 Limitations 

Because this study was my first-step, preliminary investigation toward using fNIRS 

to quantify acute pain in control subjects, a few limitations need to be noted. First, the 

sample size was relatively small (n = 9); an increase in sample size in future studies will 

enhance the statistical power of the findings. Second, in the cluster-based analysis, the 

size of the clusters chosen (seven channels combined) was spatially large, so I could not 

identify very accurately the cortical sites or locations that showed strong HbO responses 

to pain stimulation. In particular, the cortical regions near S2 were not covered by the 

fNIRS optode array; otherwise, the discrimination between HPS and LPS might have 

been more distinct with an easier and more general classification algorithm. Future 

studies will need to either reduce the cluster size or co-register the optodes with a human 

brain template in order to better localize the pain-stimulated cortical regions with a good 

spatial resolution. Covering the S2 area more adequately in order to better detect sensory 

discriminative and affective/cognitive responses induced by pain is further needed. A third 

limitation was associated with the fact that, because this was my initial effort to apply a 

feature extraction/selection algorithm to fNIRS temporal patterns, the selected features 

used in pain classification might have been too specific or restrictive (i.e., only for thermal 
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stimulations over the subjects’ right TMJ). It needs to be relaxed and valid with different 

types of pain stimulations at different body locations. Along these lines, more general 

temporal/spatial features can be identified through current feature extraction/selection 

algorithms, and be used to develop an effective classifier, suitable for a broad range of 

quantitative pain measurement and discrimination. Finally, while I acknowledge the depth 

limitation of fNIRS, my goal was to focus on the relationships between pain and 

cerebral/cortical activations/deactivations induced by pain. Once I can integrate additional 

subcortical, pain-processing knowledge with these fNIRS data, I will be able to gain a 

better understanding of pain mechanisms and pain pathways. The hope is that fNIRS-

derived HbO signals taken in the PFC during pain sensation can serve as biomarkers for 

an objective measure of pain in the future. 
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Chapter 4 

Prefrontal Hemodynamic Mapping By Functional Near-Infrared Spectroscopy In 

Response To Thermal Stimulations Over Three Body Regions  

 

4.1 Abstract 

Functional near infrared spectroscopy (fNIRS) was used to map and test the 

robustness of hemodynamic responses in the prefrontal cortex during noxious thermal 

pain, induced by thermal-stimulations over three different body regions over the: right 

forearm; right temporomandibular joint (TMJ); and left forearm. Functional NIRS 

measurements were obtained from three groups of healthy volunteers (one group for 

each body region). Each group was subjected to both low-pain stimulation (LPS) and 

high-pain stimulation (HPS) administered by a 1616 mm2 thermode of a temperature-

controlled pain generator or thermal stimulator over the respective three mentioned body 

regions. During HPS, it was found that, in all three regions, changes in oxy-hemoglobin 

concentration (HbO) in the prefrontal cortex, especially in the dorsolateral prefrontal 

cortex [i.e., Broadmann Areas (BA) 9 and 46], were significantly increased (p<0.05, False 

Discovery Rate corrected), with similar temporal patterns and spatial localizations. None 

of the three groups, however, exhibited any significant changes in HbO in the prefrontal 

regions under LPS. The observed prefrontal cortical activations induced by acute HPS 

were consistent with previous reports by fMRI-based pain studies. Furthermore, it was 

also revealed that there was a peculiar global trend of deactivation in the prefrontal cortex 

during the post-HPS period, which may be attributed to global vasoconstriction due to 

induction of acute nocuous pain. Overall, these results indicate that the temporal and 
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spatial characteristics of hemodynamic activities in the prefrontal cortex in response to 

actute thermal stimulation were robust across all three body regions. They have 

significant clinical implications for imaging the brain without the need for the constraints 

and patient phobias associated with remaining in a magnet chamber.  

 

4.2 Introduction 

4.2.1 Relationship between Pain and the Prefrontal Cortex 

In order to understand pain processing in humans, functional neuroimaging studies 

using position emission tomography (PET) and functional magnetic resonance imaging 

(fMRI) have been performed on the central nervous system. Such studies have shown 

that pain processing involves various cortical and sub-cortical regions of the brain (Casey, 

1999; Peyron et al., 2000) , which are often grouped together and referred to as the “pain 

matrix” (Mackey & Maeda, 2004; Neugebauer et al., 2009; Seminowicz et al., 2004; 

Tracey & Mantyh, 2007; Zhuo, 2008). The pain matrix mainly includes the primary (S1) 

and secondary (S2) somatosensory cortices, which are known to be associated with 

sensory-discriminative aspects and additional affective/cognitive functions, respectively. 

Sub-cortical regions, such as insular cortex and anterior cingulate cortex (ACC), are often 

involved in affective–motivational and cognitive aspects of pain, including anticipation, 

attention, and evaluation (Apkarian et al., 2005; Neugebauer et al., 2009; Ohara et al., 

2005; Seminowicz et al., 2004). Prefrontal cortical and sub-cortical areas other than ACC 

are also shown to play a role in secondary-pain effects, namely, conscious awareness 

and the cognitive evaluation of pain (Ji, Fu, Ruppert, & Neugebauer, 2007; Kulkarni et al., 

2007; Neugebauer et al., 2004; Ochsner et al., 2006; Price, 2000; Tracey & Mantyh, 
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2007). Although the somatosensory cortex is shown to be primarily responsible for the 

perception of pain sensations, activity in the prefrontal cortex (PFC) during pain sensation 

is acknowledged as well (J. Lorenz et al., 2003; Park, 2011). Recent fMRI studies have 

reported the role of the medial prefrontal area in pain encoding (J. Lorenz et al., 2003), 

and the role of the dorsolateral prefrontal area in expected and perceived control over 

pain (Wiech et al., 2006). Several other neuroimaging studies also demonstrated 

involvement of prefrontal cortical regions in pain processing, which includes the 

orbitofrontal gyrus, the dorsolateral prefrontal cortex, and the medial prefrontal cortex 

during acute pain in multiple chronic pain conditions, such as neuropathic pain and 

complex regional pain syndromes (Baliki et al., 2006; Becerra, Breiter, Wise, Gonzalez, 

& Borsook, 2001; Becerra et al., 2006; Geha et al., 2008; Lebel et al., 2008). Furthermore, 

the role of prefrontal regions in pain, placebo analgesia, and their modulations by 

analgesic drugs is also demonstrated (Craggs, Price, Verne, Perlstein, & Robinson, 2007; 

I. H. Lorenz et al., 2008). These studies provide us with the motivation to further explore 

the role of the prefrontal cortical regions in cognitive evaluation of pain by using functional 

near infrared spectroscopy (fNIRS). 

4.2.2 Motivation of this Study 

In the past decade, fNIRS, a non-invasive, portable, easy-to-use, cost-effective, 

optical-imaging method, has been extensively used in the field of neuroimaging for 

studying human brain functions. This complementary brain imaging modality may have 

the ability to facilitate a better understanding of pain processing at the cortical regions 

induced by acute pain. A better understanding of temporal and spatial characteristics of 

pain-induced hemodynamic responses might have potential applications in a clinical 
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setting where pain needs to be assessed objectively. A recent fNIRS-based pain study 

by Becerra and colleages found qualitative correlations or relationships between 

thermally-induced pain and temporal characteristics of hemodynamic responses in the 

somatosensory cortex (Becerra et al., 2009). Also, several other fNIRS-based pain 

studies have been reported to investigate prefrontal hemodynamic responses to 

mechanically-induced low back pain (Holper et al., 2014) and somatosensory 

hemodynamic responses to noxious electrical stimulation of the thumb (Yucel et al., 

2015). However, to date, none of the fNIRS-based studies have reported robustness of 

prefrontal hemodynamic responses to noxious thermal stimuli over different body regions. 

In this present study, we mapped and examined hemodynamic responses in the 

prefrontal cortex of three groups of healthy subjects in response to thermal pain 

stimulations at three different body sites, by applying thermal stimulations over the: right 

forearm; right temporomandibular joint (TMJ); and left forearm. The results 

unambiguously showed robustness and consistency of hemodynamic activities in the 

prefrontal cortex under actute thermal stimulations administered at three different body 

parts. However, it was also revealed that there was a peculiar global trend of deactivation 

in the prefrontal cortex during the post pain-stimulation period, which needs to be further 

explored for its physiological mechanism.  

4.3 Material and Methods 

4.3.1 Subjects 

A total of 16 adults (all males, right-handed, mean  SD age = 24.8 ± 4.1 years) 

were recruited to study prefrontal cortical responses to the thermal stimulation given on 

the right forearm. A total of 9 adults (all males, right-handed, mean  SD age = 25.5 ± 5.3 
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years) were recruited to study the prefrontal cortical responses to the thermal stimulation 

on the right TMJ. A total of 9 adults (all males, right-handed, mean  SD age = 24.5 ± 3.8 

years) were recruited to study prefrontal cortical responses to the thermal stimulation on 

the left forearm. The protocol used was reviewed and approved by the Institutional 

Review Board (IRB) of the University of Texas at Arlington (UTA). The methods were 

carried out according to approved guidelines by the IRB of UTA. Written informed consent 

was obtained from each of the participants before the thermal stimulation and the fNIRS 

measurements were performed. 

 

4.3.2 Instruments 

In this study, a continuous-wave, multichannel, fNIRS imaging system 

(Cephalogics, Boston, MA) was used, consisting of near infrared light emitting diode 

sources (at 750 nm and 850 nm) and avalanche photodiode detectors (Zeff et al., 2007). 

A head optode array consisting of 18 source optodes and 18 detector optodes [see Fig. 

4,1(C) and 4.1(D)] was utilized to probe the human prefrontal cortex when the participants 

underwent two levels of (noxious and innocuous) thermal stimulation over three different 

parts of the body. A temperature-controlled pain generator (MEDOC PATHWAY ATS 

MODE) was utilized to produce a range of temperatures to evoke various levels of 

innocuous and noxious thermal stimulations.  

 

4.3.3 Experimental Paradigm 

In order to estimate the magnitude of thermal pain generated by the thermal 

stimulator, a thermode of 1616 mm2 from the stimulator was attached on the surface or 
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skin in the region of interest, such as on the arm or TMJ. Then, the temperature was 

varied between 41 °C to 48 °C with an interval of 1°C to generate thermal stimulation, 

which could be either innocuous or noxious. Next, using the visual analog pain rating 

scale (0-10), each participant was asked to rate the perception of pain before the actual 

pain-dependent fNIRS measurements were taken. Perception rating levels of 0, 3, 7 and 

10 corresponded to no pain, low pain, high pain and extreme pain conditions, 

respectively. While taking pain-related fNIRS measurements, two levels of thermal stimuli 

(one rated at 3 and the other at 7) were used to induce low pain and high pain, which 

were termed as low-pain stimuli (LPS) and high-pain stimuli (HPS), respectively.  

For noxious thermal stimulation over the right forearm paradigm, average 

temperatures over all the subjects (n=16) to create the LPS and HPS were 43.4±1.3 °C 

and 47.1±0.7 °C, respectively. For noxious thermal stimulation over the the right TMJ 

paradigm, average temperatures over all the subjects (n=9) to create the LPS and HPS 

were 43.0±1.4 °C and 46.1±0.6 °C, respectively. For noxious thermal stimulation over left 

forearm paradigm, average temperatures over all the subjects (n=9) to create the LPS 

and HPS were 42.1±1.1 °C and 46.0±0.6 °C, respectively. 

The experimental paradigm was a blocked design, with variable inter-stimulus-

intervals (ISI). The paradigm had an initial baseline period of 60 seconds, during which a 

27 °C temperature was applied, followed by a 4-sec ramp increase in temperature to 

reach the destination stimulus temperature. Subsequently, the temperature remained 

constant for 20 sec, followed by a 4-sec ramp decrease in temperature to return to the 

baseline temperature. The complete protocol consisted of six blocks of stimulus-resting 

periods, with a 30-40 sec variable ISI between two adjacent blocks [see Figure 4.1(A)]. 
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Figure 4.1 (A) Experimental paradigm used in this study for thermal stimulation. (B) 

Selection of 12 clusters for data analysis. Red circles are light sources, and blue circles 

are light detectors. Solid black arrows at the left bottom (n=6) show the six channels 

(source-detector pairs) grouped as one cluster. The word “Right” marks each subject’s 

right side. (C) Optical optode array placed on a subject’s head with the geometry shown 

in Fig. 4.1(B). (D) Co-registration of the light sources and detectors on a standard human 

brain template. 

4.3.4 Data Acquisition  

For fNIRS data acquisition, an optical optode array, consisting of 18 sources and 

18 detectors, was placed on each subject’s prefrontal cortex region [see Fig 4.1(C)]. The 

distance between source-to-source, as well as detector-to-detector, horizontally was set 

as 2.5 cm. The nearest distance between source and detector vertically was 3 cm [see 
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Fig. 4.1(B)]. Using this probe geometry, I was able to obtain fNIRS signals from 75 source-

detector pairs (i.e., channels) when the first and second nearest neighbors with 3 cm and 

3.9 cm separations, respectively, were utilized. The total surface area covered by the 

optode probe on the frontal lobe was ~209 cm2.  

A co-registration procedure was applied based on four randomly-selected 

participants to estimate the frontal/prefrontal cortical regions covered by the fNIRS probe 

(Singh et al., 2005). After placing the fNIRS probe on each subject’s forehead [see Fig. 

4.1(C)], positions of five reference cranial landmarks, (i.e., the nasion, inion, left and right 

pre-auricular points, and vertex), light sources, and detectors, were measured or marked 

using a motion tracking system (PATRIOT, Polhemus, USA.). These cranial landmarks 

served as reference positions to convert the real-world stereotaxic coordinates of the 

optodes to the Montreal Neurological Institute (MNI) coordinates used in a standard brain 

MRI atlas, based on the affine transformation (Tian et al., 2012). Using NIRS-SPM 

software (Ye et al., 2009). Each of the Brodmann Areas (BA) probed by the fNIRS optode 

array, and the respective percentage of covered BA over the entire area of the optode 

array, were identified. It was observed that the optode array mainly examined seven major 

Brodmann Areas: BAs 6, 8, 9, 10, 44, 45, and 46, all of which covered 96.62% of the area 

interrogated by the optode array. The percentage of probe area covered by the premotor 

cortex (PMC; BA 6) is 6.03%, the percentage by the frontal eye fields (FEF, BA 8) is 

14.60%, percentage by the frontopolar area (FPA; BA 10) is 11.99%, percentage by the 

dorsolateral prefrontal cortex (DLPFC; BAs 9 & 46) is 39.89%, and percentage by the 

ventrolateral prefrontal cortex (VLPFC; BAs 44 & 45) is 24.91%. Figure 4.1D shows the 
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registered optode positions (averaged over four participants) on the standard human 

brain atlas. 

 

4.3.5 Data Screening and Pre-processing 

The temporal profiles of light intensities obtained after fNIRS measurements were 

screened and pre-processed using a publically-available toolbox known as HOMER 

(Huppert et al., 2009). First, the raw light intensity signals were visually inspected to 

exclude blocks associated with motion artifacts. Then, the resultant signals free from 

motion artifacts were low-pass filtered at a cut-off frequency of 0.2 Hz to remove systemic 

or physiological noise (such as cardiac and respiratory oscillations) and electronic noise, 

and then high-pass filtered at a cut-off frequency of 0.01 Hz to exclude any possible 

baseline drift. Using the modified Beer-Lambert Law,  changes of oxygenated and 

deoxygenated hemoglobin concentrations (i.e., HbO2 and Hb, respectively) relative to 

the baseline were quantified (Cope et al., 1988).  

 

4.3.6 Data Analysis 

To quantify cortical hemodynamic activities during the thermal stimulation, a 

model-based statistical analysis tool [namely, general linear model (GLM)] was utilized. 

Over the last several years, GLM analysis has been extensively used to analyze fNIRS 

data to identify cortical areas which are significantly activated during a given task 

(Hassanpour et al., 2014; Plichta et al., 2006; Tian & Liu, 2014; Ye et al., 2009). In GLM, 

a hemodynamic response function (HRF) is used to serve as a model to predict the 
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change in HbO signals due to task stimulation; GLM can be expressed by the equation 

(4.1): 

𝑧(𝑡) = 𝛽𝑓(𝑡) + ℰ,                                                                                 (4.1) 

where, 𝑓(𝑡) = ℎ(𝑡) ⊗ 𝑠(𝑡).                                                                   (4.2) 

In equation (4.1), z(t) represents the temporal profile of ΔHbO or change in 

deoxyhemoglobin concentration (ΔHb) at each measurement channel; f(t) is the 

stimulation-specific predicted response which is expected to match the temporal profiles 

of measured hemodynamic signals (i.e., ΔHbO or ΔHb); h(t) is a given hemodynamic 

response function (HRF); and s(t) is the stimulation-specific boxcar function for a given 

task. Moreover,  is the estimated amplitude of ΔHbO, while ε is residual due to the 

mismatch between the actual data and the predicted model. By fitting the equation (4.1) 

to the temporal profile of ΔHbO obtained or measured from each channel of each 

participant, I would be able to obtain: (a) the estimated amplitude, ; (b) its variance, and 

thus (3), a statistical t-value representing the statistical significance of the brain activation 

at each respective channel. In this way, the amplitudes (expressed by  values in µM) of 

prefrontal or frontal activations or deactivations in response to thermal stimulation were 

obtained by fitting the predicted stimulation response function to channel-wise, temporal 

profiles of ΔHbO responses.  

For group-level hemodynamic analyses, group-level  values at each channel 

were averaged over each group of subjects.  Random-effect analysis was performed to 

generate statistically-meaningful quantities at the group level. For each of three 

measurement groups, it was accomplished by conducting the one-sample t-test on  

values obtained from all subjects at each channel. In this way, a group-level t-statistic 
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(expressed by t-values) was obtained to show statistically increased and/or decreased 

brain activations during thermal stimulation compared to the baseline readings. Both t-

statistic values and p-values were derived from the t-tests for each channel and used to 

generate t-maps in topographic images. 

Topographic images of prefrontal activations and/or deactivations were generated 

using EasyTopo, an optical topography toolbox (Tian et al., 2012). It overlays 2D images 

of HbO or Hb activations/deactivations over a standard human brain MRI atlas after 2D 

angular interpolation of the channel-wise activation data in a spherical-coordinate system. 

The channel-wise β-values derived from GLM analysis and t-values from subsequent 

statistical comparisons were used to generate activation maps (i.e., β-maps and t-maps) 

induced by thermal stimulation over different body regions.  

 

4.4 Results 

4.4.1 Channel-wise HbO Data Analysis 

After obtaining channel-wise HbO and Hb temporal profiles, spatially-dependent 

hemodynamic responses to the pain stimulation were obtained. Initially, all the channels 

were grouped into 12 different clusters [see Figure 4.1(B)], probing the prefrontal cortex 

[see Figure 4.1(D)]; each cluster consisted of six channels. Then, using the stimulus 

timing information, mean HbO and Hb signals from each cluster were further averaged 

over the six temporal blocks: the block- averaged temporal profile of HbO and Hb had 

a time span of 65 seconds, namely 5-sec prior to the  stimulation, followed by 28-sec 

thermal stimulation, and ~35-sec recovery. For qualitative assessment of group-level 
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temporal hemodynamic responses, HbO profiles were averaged (across six channels) 

within each cluster for each subject, and then further averaged across all subjects.   

 

Figure 4.2 Group average of temporal profiles of HbO concentration (in microMolar) 

across 16 subjects under the right forearm thermal stimulation, for all clusters (labeled as 

C1, C2 …. C12). Blue and red curves represent group-averaged temporal profiles of 

HbO in response to low pain and high pain stimulation, respectively. Error bars are 

standard errors. Solid green lines represent the stimulation period.  

The group-averaged temporal profiles of HbO and Hb for all the clusters in 

response to both LPS and HPS are shown in Figures 4.2, 4.3, and 4.4, respectively, for 

the stimulations on (1) the right forearm, (2) the right TMJ region, and (3) the left forearm. 

Clusters are labeled as C1, C2 … C12. Clusters C1, C2, C5, C6, C9, and C10, are located 

on the right side of the frontal lobe, while C3, C4, C7, C8, C11, and C12 are located on 

the left side of the frontal lobe [see Figs. 4.1(B)]. In most of the clusters, the temporal 
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profiles of HbO in response to LPS show a slight decrease in HbO concentration during 

the stimulation period, followed by recovery to baseline, in all the three groups [see Figs. 

4.2, 4.3, and 4.4]. On the other hand, the temporal profiles of HbO in response to HPS 

show a slight increase in HbO concentration during the stimulation period, followed by a 

decrease in HbO during the recovery period before returning to baseline. Overall, the 

temporal characteristics of prefrontal HbO responses were consistent when thermal 

stimulation was applied to the right forearm, right TMJ region, and left forearm, separately 

[Compare Figs. 4.2, 4.3, and 4.4]. 

 

 

Figure 4.3. Group average of temporal profiles of HbO concentration (in microMolar) 

across 9 subjects under right TMJ thermal stimulation, for all clusters (labeled as C1, C2 

…. C12). Blue and red curves represent group-averaged temporal profiles of HbO in 

response to low pain and high pain stimulation, respectively. Error bars are standard 

errors. Solid green lines represent the stimulation period. 
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Figure 4.4 Group average of temporal profiles of HbO concentration (in microMolar) 

across 9 subjects under left forearm thermal stimulation, for all clusters (labeled as C1, 

C2 …. C12). Blue and red curves represent group-averaged temporal profiles of HbO in 

response to low pain and high pain stimulation, respectively. Error bars are standard 

errors. Solid green lines represent the stimulation period. 

4.4.2 Deactivation of HbO during Post-HPS Recovery  

While channel-wise data analysis provided excellent temporal profiles for each cluster, 

it did not afford adequate spatial resolution to mark/map pain-evoked cortical regions with 

statistical significance. Thus, GLM was used to obtain topographic mapping for each of 

the three groups for respective thermal stimulation.    
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Figure 4.5 (A-C) show group-averaged norms of residuals averaged across respective 

subjects when the recovery predictor duration was varied (between 1 s to 30 s with an 

increment of 1s) to fit HbO in response to LPS over the right forearm, right TMJ, and left 

forearm, respectively. (D-F) show group-averaged norms of residuals averaged across 

respective subjects when the recovery predictor duration was varied to fit HbO in 

response to HPS over the right forearm, right TMJ, and left forearm, respectively. 

 

Because there existed a clear, negative post-stimulation phase in HbO responses 

under either LPS or HPS, I assumed two regressors or predictors to better fit the data by 

GLM. The first regressor was to reflect HbO in response to the thermal stimulation, and 
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the second was to match the post-stimulation recovery phase. Since the duration of this 

recovery regressor was unknown, I varied the recovery duration and produced a duration-

dependent error function (norm of residuals), averaged across all subjects for each of the 

three groups. Specifically, the recovery regressor duration was varied between 1s to 30s 

with an increment of 1s, to fit either post-LPS or post-HPS HbO responses. 

Figures 4.5A, 4.5B, and 4.5C show averaged norms of residuals across all subjects 

with LPS on the right forearm, right TMJ, and left forearm, respectively. Because the least-

fitting errors appeared when the recovery regressor duration was at 1 sec in all three 

groups, this recovery regressor was not needed to fit HbO in response to LPS. On the 

other hand, Figures 4.5D, 4.5E, and 4.5F illustrate averaged norms of residuals across 

all subjects with HPS on the right forearm, right TMJ, and left forearm, respectively. In the 

HPS case, the least averaged errors were obtained when the recovery predictor durations 

were at 19 s, 17 s, and 15 s when HPS was given over the right forearm, right TMJ, and 

left forearm, respectively. Thus, I employed two predictors in the GLM fitting for HPS data, 

one for high thermal stimulation and another for post-HPS recovery. After GLM analysis, 

group-averaged -maps and corresponding t-maps were generated, with different 

reference contrasts for statistical comparisons, such as statistical differences in brain 

activation: (a) between LPS phase and baseline (i.e., LPS-baseline); (b) between HPS 

phase and baseline (HPS-baseline); and (c) between post-HPS recovery phase and 

baseline (recovery-baseline). These comparisons are shown in the following sub-

sections. 
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4.4.3  Changes in HbO Induced by Noxious Thermal Stimulation Given on the Right 

Forearm 

Figures 4.6A, 4.6B, and 4.6C show topographic images of prefrontal HbO 

responses (-maps) during LPS (stim-map), HPS (stim-map), and post-HPS recovery 

(post-stim-map) periods, respectively, when the thermal stimulations were given over the 

right forearm of the study group (n=16).  Correspondingly, Figures 4.7A, 4.7B, and 4.7C 

show respective topographic t-maps with significant difference [p<0.05, False Discovery 

Rate (FR) corrected]. According to the -map of Fig. 4.6A, the prefrontal regions in the 

left hemisphere were de-activated during LPS over the right forearm. However, none of 

the regions showed a significant difference from the baseline readings (see Fig. 4.7A).  

On the other hand, during HPS, 20 out of total 75 channels measured from the 

prefrontal cortex were significantly activated with increased HbO responses (Fig. 4.7B). 

Out of these 20 activated channels, 2 channels were located on the left pre-motor area 

(PMA; BA 6), 7 channels were located on the left DLPFC (BA 9 & 46), 8 channels were 

located on the left VLPFC (BA 44 & 45), 1 channel was located on the right FEF (BA 8), 

1 channel was located on the right VLPFC, and 1 channel was located on the right 

DLPFC. These activated regions are all marked or shown by Fig. 4.7B. It is clear that the 

activation was predominant in the left prefrontal cortex during HPS of the right forearm.  

Additionally, I observed significant deactivations with decreased HbO, when 

compared to the baseline, in most of the prefrontal cortical regions during the post-HPS 

recovery period: 59 out of total 75 channels showed significant deactivations in the 

prefrontal cortical regions measured (see Fig. 4.7C). It is seen from this Figure that the 
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59 deactivated channels cover the PMA, FEF, DLPFC, VLPFC, and FPA on both 

hemispheres bilaterally. 

 

 

Figure 4.6 (A-C) Topographic images of group-averaged prefrontal cortical activations 

and/or deactivations (i.e., β-maps derived from HbO) during LPS, HPS, and post-HPS 

recovery periods, respectively, with thermal stimulation given on the right forearm. (D-F) 

Topographic images of group-averaged prefrontal cortical activations and/or 

deactivations (β-maps) during LPS, HPS, and post-HPS periods, respectively, with 

thermal stimulation on the right TMJ region. (G-I) Topographic images of group-averaged 

frontal cortical activations and/or deactivations (β-maps) during LPS, HPS, and post-HPS 

periods, respectively, with thermal stimulation over the left forearm. 
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4.4.4 Changes in HbO Induced by Noxious Thermal Stimulation Given Over the Right 

TMJ  

Figures 4.6D, 4.6E, and 4.6F show topographic images of prefrontal HbO responses (-

maps) during LPS, HPS, and post-HPS recovery periods, respectively, when the thermal 

stimulations were given over the right TMJ area of the study group (n=9). 

Correspondingly, Figs. 4.7D, 4.7E, and 4.7F show respective t-maps with significant 

difference (p<0.05, FDR corrected) for those contrasts. According to the -map and t-map 

shown in Figs. 4.6D and 4.7D, the bilateral prefrontal regions were deactivated during 

LPS, but none of the regions showed a significant difference from the baseline readings 

(see Fig. 4.7D). During HPS over the right TMJ, 14 out of total 75 channels measured 

from the prefrontal cortex were significantly activated bilaterally (see Fig. 4.7E). The 14 

activated channels covered the left DLPFC and left VLPFC; on the right hemisphere side, 

one channel was located on the right FEF, two channels were on the right VLPFC, and 

four channels were on the right DLPFC.  

In addition, we observed significant deactivations in most of prefrontal cortical 

regions during the post-HPS recovery from the thermal stimulation over the right TMJ 

(see Fig. 4.7F). During this recovery phase, 29 out of total 75 channels showed bilateral 

deactivation; they covered the left PMA, left DLPFC and left VLPFC, right PMA, right 

DLPFC, and right FPA.  
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Figure 4.7 (A-C) Topographic images of statistical t-maps (p<0.05, FDR corrected) for 

LPS versus baseline, HPS versus baseline, and post-HPS recovery versus baseline, 

respectively, with thermal stimulation given on the right forearm. (D-F) Topographic 

images of t-maps (p<0.05, FDR corrected) for LPS versus baseline, HPS versus baseline, 

and post-HPS recovery versus baseline, respectively, with thermal stimulation over the 

right TMJ area. (G-I) Topographic images of t-maps (p<0.05, FDR corrected) for LPS 

versus baseline, HPS versus baseline, and post-HPS recovery versus baseline, 

respectively, with thermal stimulation over the left forearm. 

 
4.4.5 Changes in HbO Induced by Noxious Thermal Stimulation over the Left Forearm 

Figures 4.6G, 4.6H, and 4.6I show topographic images of prefrontal HbO responses (-

maps) during LPS, HPS, and post-HPS recovery periods, respectively, when the thermal 
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stimulations were given over the left forearm of the study group (n=9). Correspondingly, 

Figs. 4.7G, 4.7H, and 4.7I show respective t-maps with significant difference (p<0.05, 

FDR corrected) for those contrasts. According to the -map and t-map shown in Figs. 

4.6G and 4.7G, the bilateral prefrontal regions did not show significant changes from the 

baseline readings. During HPS over the left forearm, 17 out of total 75 channels from the 

prefrontal cortex were significantly activated bilaterally but not symmetrically (see Fig. 

4.7H). The 17 channels covered the left DLPFC, but covered more on the right prefrontal 

region: one channel on the right PMA, one channel on the right VLPFC, eight channels 

on right the DLPFC, and one channel on the right FPA.  

Additionally, I found significant deactivations in most of the prefrontal cortical 

regions during the post-HPS recovery from the thermal stimulation over the left forearm. 

During the recovery phase, 29 out of total 75 channels showed significant deactivations 

bilaterally, but not symmetrically (see Fig. 4.7I). The deactivation areas covered the left 

FEF, left DLPFC, and left VLPFC, but there were more deactivation channels seen on the 

right prefrontal cortex: 5 channels were located on the right FEF, 10 channels on the right 

DLPFC, and 4 channels on the right FPA.   

 

4.5 Discussion 

The results presented in Section 4.4 demonstrate that HbO signals were 

significantly increased with respect to the baseline in the prefrontal cortex during the high-

pain stimulation period, followed by a significant decrease from the baseline during the 

recovery period (see Figs. 4.2-4.4). On the other hand, during the low-pain stimulation 

period, HbO deactivation was observed in the frontal cortex, although the deactivation 
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was not significantly different from the baseline (also see Figs. 4.2-4.4). During HPS over 

the right forearm, it was found that the HbO activation was predominant in the left frontal 

cortex, which includes left PMA (BA 6), left DLPFC (BAs 9 & 46) and left VLPFC (BAs 44 

& 45) (see Fig. 4.7B). During HPS over the right TMJ region, I noted bilateral HbO 

activation in the prefrontal cortex, which includes left DLPFC, left VLPFC, right FEF (BA 

8), right VLPFC, and right DLPFC (see Fig. 4.7E]. During HPS over left forearm, HbO 

activation was also bilateral in the prefrontal cortex, which includes left DLPFC, right PMA, 

right VLPFC, right DLPFC, and right FPA (BA10) (see Fig. 4.7H). Overall, I noted that the 

temporal hemodynamic characteristics obtained from the prefrontal cortex were 

consistent and robust during noxious thermal stimulation over the three different body 

sites, while they were stimulated separately. Additionally, high-pain thermal stimulation 

activated a large portion of the prefrontal cortex, especially in the left DLPFC (BAs 9 & 

46) and left VLPFC (BAs 44 & 45) regions. 

In recent years, a variety of studies have been conducted using neuroimaging tools 

in order to develop a better understanding of complex neurological process and 

phenomena underlying pain.  Several fMRI-based studies have revealed possible inter-

relationships between pain and brain functions non-invasively. In particular, Kong and 

colleagues reported significant activations (i.e., BOLD signal increase from baseline) in 

several cortical and subcortical regions during high-pain thermal stimulation over the right 

forearm of a group of controls using fMRI. Some of the activated regions reported 

included, but were not limited to, the prefrontal (BAs 9, 10, 44, 46) and somatosensory 

cortices (i.e., S1 and S2 regions) (Kong et al., 2010). Another recent fMRI study also 

reported significant activations in several cortical and sub-cortical regions when a high-
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pain cold stimulus was applied to the thenar surface of the right hand. The activated 

regions included, but were not limited to, the bilateral anterior insula, bilateral dorsal 

anterior cingulate cortex extending into the pre-supplementary motor area (BAs 6, 8, 24, 

32), and the right lateral PFC (i.e., DLPFC and VLPFC; BAs 9, 10, 44, 45, 46, 47) (Wilcox 

et al., 2015). In this present study, the results also present similar activations in several 

prefrontal cortical areas (such as BAs 8, 9, 10, 44, 45, and 46) during high-pain thermal 

stimulation given at different body sites or regions [see Figs. 4.6 and 4.7]. These 

consistent HPS-evoked activations within the PFC might suggest its critical role in the 

cognitive evaluation of noxious stimuli. However, this interpretation or expectation needs 

to be further confirmed by correlating its hemodynamic responses with different levels of 

noxious stimuli (which was not available in this present study).   

An fMRI-based pain study by Freund and colleagues reported that the DLPFC and 

caudate nucleus were significantly activated when healthy subjects made efforts to 

disengage from feeling pain during constant thermal stimulation (Freund et al., 2009). In 

addition, they suggested that caudate nucleus and PFC play a crucial role in initiation and 

maintenance of suppression of pain, respectively (Freund et al., 2009). Another fMRI 

study by a separate group also demonstrated the role of the anterolateral prefrontal cortex 

in expected and perceived control over pain (Wiech et al., 2006). Also, a PET-based study 

of pain reported the influence of DLPFC on pain perception by modulating cortico-

subcortical and cortico-cortical pathways (J. Lorenz et al., 2003). All of these published 

studies suggest that the prefrontal cortex is one of the key elements in the “pain matrix,” 

and it plays a significant role in pain processing. the present results are in good agreement 

with, and strongly support, this overall observation and scientific findings. 
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Apart from HbO activations in the prefrontal cortex during high-pain thermal 

stimulation at three different body sites or regions, I also consistently observed a 

significant deactivation of HbO in most of the prefrontal cortical regions during the post-

HPS recovery period (see Figs. 4.6 & 4.7). However, I did not detect any significant 

deactivation during the post-LPS recovery phase.  A recent fNIRS-based pain study 

reported post-stimulus HbO deactivation in the frontal cortex during noxious electrical 

stimulation of the left thumb (Yucel et al., 2015). Furthermore, another recent fNIRS-

based pain study reported a decrease in prefrontal HbO, along with reduced levels of 

end tidal CO2, during noxious mechanical stimulation in the low back region (Holper et al., 

2014). They attributed the observed PFC deactivations to pain-related hyperventilation. 

Hyperventilation can result in reduced levels of end-tidal CO2, which is a reliable estimate 

of partial pressure of CO2. Since CO2 is a known vasodilator, reduction in end tidal CO2 

should result in global vasoconstriction. In present study, I observed robust post-HPS 

hemodynamic deactivations in most of the frontal cortical regions. Therefore, I attributed 

the observed post-stimulation deactivations to vasoconstriction, caused by high pain 

thermal stimulation.  

Several potential limitations of this present study should be noted. First, my 

speculation on reduction of end-tidal CO2 during post-HPS could not be investigated 

because I did not use capnography to measure it while taking fNIRS measurements. 

Thus, simultaneous measurements of fNIRS with end-tidal CO2 are recommended in 

future pain-related studies, particularly under high-pain stimulations. Second, global 

physiological noises that may have contaminate pain-induced HbO changes were not 
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removed. In future studies, such potential limitations can be minimized. One approach is 

to collect short separation fNIRS measurements as systemic/physiological noise 

predictors for adaptive noise cancellation (Tian et al., 2011). Another approach is based 

on global signal regression by averaging fNIRS signals over the entire measurement 

channels as a noise predictor to remove global systemic effects (Mesquita, Franceschini, 

& Boas, 2010; Murphy, Birn, Handwerker, Jones, & Bandettini, 2009).   

In conclusion, this present study reported robust temporal characteristics and 

cortical mapping of prefrontal hemodynamics in response to noxious thermal stimulation 

over three body sites by using fNIRS. While the stimulations were given over the right 

forearm, right temporomandibular joint, and left forearm, separately, to three different 

groups of healthy subjects, changes of HbO in the prefrontal cortex, especially in the 

dorsolateral prefrontal cortex, were significantly increased (p<0.05, FDR corrected), with 

similar temporal patterns and spatial localizations. In contrast, low-pain stimulation did not 

result in any significant changes in HbO in the prefrontal regions in any of the three 

groups. The observed results were highly consistent with previous reports by other pain-

related studies. In addition, I introduced and optimally selected a variable recovery 

regressor to account for a peculiar global trend of deactivation in the prefrontal cortex 

during the post-HPS period. This post-stimulation recovery regressor allowed us to 

identify and map deactivation regions in the prefrontal cortex, which may be attributed to 

global vasoconstriction due to induction of acute nocious pain. Overall, this investigation 

concluded that the temporal and spatial hemodynamic activities in the prefrontal cortex in 

response to actute thermal stimulation were consistent and robust regardless of the 

stimulation sites, and that multi-channel fNIRS can be used to reveal such changes 
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quantitatively, and may have great potential for future clinical applications. This has major 

clinical implications for imaging the brain without the need of the constraints and patient 

phobias associated with remaining in a magnet chamber. 
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Chapter 5 

Mapping Cortical Hemodynamic Responses From Chronic Low-Back Pain Patients 

During Pain-Inducing Leg Raising Tasks: A Functional Near-Infrared Spectroscopy 

Study. 

 

5.1 Abstract 

Previous structural and functional neuroimaging studies have revealed abnormal 

cerebral structure and function in Chronic Low Back Pain (CLBP) patients. In this study, 

I utilized multichannel functional near-infrared spectroscopy (fNIRS) to investigate leg-

raising-task induced pain related hemodynamic activity in the cerebral cortex among 16 

elderly CLBP patients and 15 age- and gender-matched healthy controls. I compared 

cortical responses from controls and CLBP patients, patients before treatment versus 

after treatment. CLBP patients before treatment exhibited significant activations in a 

number of pain-related cortical regions during leg raising tasks; particularly robust 

widespread activations in the prefrontal cortex (BAs 9, 10, 46) were observed.  Also, 

CLBP patients before treatment exhibited significant activations in the left frontopolar area 

(FPA) and left dorsolateral prefrontal cortex (DLPFC) relative to controls, during right-leg-

raising (RLR) task. After treatment, CLBP patients did not show any significant differences 

in cortical responses relative to controls, during RLR task. Also, CLBP patients after 

treatment exhibited reduced prefrontal responses as compared to that of before 

treatment, during RLR task. My observations may implicate that abnormal prefrontal 

cortex function of CLBP patients was reversed to normal following treatment. Overall, the 
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feasibility of fNIRS for studying and mapping neural correlates of pain induced by leg-

raising-tasks in CLBP patients and monitoring of treatment effects is reported. 

 

5.2 Introduction 

Chronic low back pain (CLBP) is a major public health problem throughout the 

world. The lifetime prevalence of non-specific low back pain is reported to be as high as 

84%, and the lifetime prevalence of CLBP is about 23%, with 11-12% of the population 

being disabled by low back pain(van Dieen et al., 2012). Previous neuroimaging studies 

using structural and functional magnetic resonance imaging (MRI) have revealed the 

cerebral abnormalities (both structural and functional) associated with CLBP condition 

[for review see (Wand et al., 2011)]. Structural MRI studies have demonstrated reduced 

grey matter in several cortical and subcortical regions, such as the posterior parietal 

cortex (Buckalew, Haut, Morrow, & Weiner, 2008), the dorsolateral prefrontal cortex 

(DLPFC) (Apkarian, Sosa, Sonty, et al., 2004; Schmidt-Wilcke et al., 2006), the right 

anterior thalamus (Apkarian, Sosa, Sonty, et al., 2004), the brainstem, the somatosensory 

cortex (Schmidt-Wilcke et al., 2006) of CLBP patients. Functional neuroimaging studies 

using fMRI, and PET reported abnormal cerebral hemodynamic activities in CLBP 

patients (Baliki et al., 2006; Baliki et al., 2008; Derbyshire et al., 2002; Tagliazucchi et al., 

2010). Also, several other neuroimaging studies have reported increased cortical 

responses to noxious subcutaneous stimulation of back (Flor et al., 1997), acute 

experimental muscle pain (Diers et al., 2007), and peripheral noxious input (Giesecke et 

al., 2006; Giesecke et al., 2004; Kobayashi et al., 2009) in the CLBP patients. A recent 

MRI-based study demonstrated that functional and structural brain abnormalities 
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(specifically the left DLPFC) are reversible and thus treating chronic pain can restore 

normal brain (Seminowicz et al., 2011).  The development of assessment tools for 

monitoring CLBP is, therefore, crucial to improve the understanding of neural 

representations of CLBP and to assess potential brain plasticity resulting from physical or 

pharmacological treatment in CLBP condition. 

In the past decade, functional near-infrared spectroscopy (fNIRS), a noninvasive, 

portable, easy-to-use, cost-effective, optical imaging modality, has been extensively used 

in the field of neuroimaging for studying brain function. This complementary brain imaging 

modality may have the ability to facilitate a better understanding of pain processing in the 

cortical regions, and monitoring therapeutic effects in CLBP patients. However, to date, 

none of the fNIRS-based studies have investigated (1) hemodynamic responses from 

whole cortical of CLBP patients during leg raising tasks, and (2) the effects of therapy on 

cortical hemodynamic responses from CLBP patients. In this study, fNIRS was used to 

acquire cortical hemodynamic signals from a group of CLBP patients and age- and 

gender-matched healthy (elderly) controls, to investigate both temporal and spatial 

patterns of cortical responses during performance of pain inducing right leg raising and 

left leg raising tasks. I compared and contrasted cortical hemodynamic responses during 

the leg raising tasks between (1) CLBP group before treatment and control group, (2) 

CLBP group after treatment and control group, and (3) CLBP group after treatment and 

CLBP group before treatment. The goal of the study was to illustrate that fNIRS can reveal 

cortical activities and abnormalities in patients with CLBP during pain-inducing leg raising 

tasks and that fNIRS could become a portable and complementary neuroimaging tool to 

monitor and guide treatments for patients with CLBP. 
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5.3 Material and Methods 

5.3.1 Participants 

A total of 16 elderly participants diagnosed with CLBP (six males, ten females, 

mean  SD age = 73.3 ± 7.4 years) were recruited to study cortical hemodynamic 

responses to low-back pain induced by leg raising tasks. A total of 14 healthy participants 

(five males, nine females, mean  SD age =73.4 ± 7.7 years) matched with the CLBP 

group on gender and age were also recruited to study cortical responses to the leg raising 

tasks. Also, fifteen out of 16 CLBP patients underwent therapy sessions so that I could 

study the aftereffects of therapeutic sessions on CLBP patients’. The protocol used was 

reviewed and approved by the Institutional Review Board (IRB) of the University of Texas 

at Arlington (UTA). The methods were carried out according to approved guidelines by 

the IRB of UTA. Written informed consent was obtained from each of the participants 

before the tasks and the fNIRS measurements were performed. 

 

5.3.2 Instruments 

In this study, a continuous-wave, multichannel, fNIRS imaging system (LABNIRS, 

Shimadzu Corp., Kyoto, Japan) was used, consisting of near infrared light emitting 

semiconductor lasers (at 780 ± 5 nm, 805 ± 5 nm, and 830 ± 5 nm) and photomultiplier 

tube detectors [see Fig. 5.1(A)]. An fNIRS head probe consisting of 40 source optodes 

and 40 detector optodes was utilized to probe the whole cerebral cortex while the 

participants were performing leg raising tasks [see Fig. 5.1(A)]. The fNIRS probe 
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configuration is shown in Fig. 5.1B. Each source optode connects to three near infrared 

light emitting lasers with three different wavelengths. 

 

 

Figure 5.1 (A) Experimental setup showing LABNIRS brain imager and an optical head 

probe placed on a subject’s head with the geometry shown in Fig. 5.1(B). (B)  Probe 

geometry. Red circles are light sources, and blue circles are light detectors. The word 

“left” marks each subject’s left side. (C) Co-registration of the light sources and detectors 

on a standard human brain template. (D) Co-registration of the channels (source-detector 

pairs) on a standard human brain template. Channels are marked by green circles. 

 

5.3.3 Experimental Paradigm 

The paradigm used in this study consisted of two sessions of leg raising tasks. 

Each participant performed right leg raising (RLR) task in the first session, followed by 
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left leg raising (LLR) task in the second session. These two tasks were performed to 

induce low-back pain in the CLBP patients’. All the participants were asked to sit in an 

upright position in front of a computer, and complete a session of RLR task, followed by 

a session of LLR task, while their brains were scanned by multichannel fNIRS. The 

experimental paradigm was a blocked design, with variable inter-stimulus-intervals (ISI) 

[see Fig. 5.2].  Within each RLR and LLR session, the paradigm consisted of a baseline 

(resting) period of 60 seconds, followed by six blocks of stimulus-and-resting sequences. 

Within each stimulus period of 14 seconds, participants performed seven cycles of raising 

the leg and placing it back on the ground with a frequency of 0.5 Hz (Instructed by 

computer). Between two stimulus blocks, there was a variable inter-stimulus interval or 

resting interval ranging between 10 to 15 seconds. Then, each participant was asked to 

rate the perception of pain after each leg raising task session, using the visual analog 

pain rating scale (0-10). Perception rating levels of 0, 3, 7 and 10 corresponded to no 

pain, low pain, high pain and extreme pain conditions, respectively. Before each fNIRS 

measurement session started, all the participants were trained to practice a few trials of 

RLR and LLR tasks. An experimenter observed the course of practice to confirm that the 

participants understood the paradigm correctly.  

 

 

             Figure 5.2 Experimental Paradigm used in this study.  
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5.3.4 Data Acquisition  

For fNIRS data acquisition, an optical head probe, consisting of 40 sources and 40 

detectors, was placed bilaterally and symmetrically over the each participant’s cerebral 

cortex. The nearest distance between source and detector was 3 cm [see Fig. 5.1(B)]. 

Using this probe geometry, I were able to obtain raw optical intensities from 133 source-

detector pairs (i.e., channels) when the first nearest neighbors with 3 cm separations were 

used. The data sampling rate was 8.13 Hz. 

 

5.3.5 Optode co-registration 

A co-registration procedure was applied based on four randomly-selected 

participants to estimate the cortical regions covered by the fNIRS probe (Singh et al., 

2005). After placing the fNIRS probe over each subject’s cerebral cortex [see Fig. 5.1(A)], 

positions of four reference cranial landmarks, (i.e., the nasion, left and right pre-auricular 

points, and vertex), light sources and detectors were measured or marked using a motion 

tracking system (FASTRAK, Polhemus, VT, USA). These cranial landmarks were used 

as reference positions while converting the real-world stereotaxic coordinates of the 

optodes to the Montreal Neurological Institute (MNI) coordinates which are used in a 

standard brain MRI atlas, based on the affine transformation (Tian et al., 2012). Using 

NIRS-SPM software (Ye et al., 2009). Each of the Brodmann Areas (BA) probed by the 

fNIRS optode array were identified. It was observed that the fNIRS probe examined 

almost all superficial layers of cortical Brodmann Areas. Figure 5.1C shows the registered 

positions (averaged over four participants) of sources’ and detectors’ on the standard 
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human brain atlas. Figure 5.1D shows the registered positions (averaged over four 

participants) of source-detector pairs on the standard human brain atlas. 

 

5.3.6 Data Screening and Pre-processing 

The temporal profiles of light intensities obtained after fNIRS measurements were 

screened and pre-processed using an LABNIRS data analysis software. First, the raw 

light intensity signals were visually inspected to exclude data from source-detector pairs 

which were associated with motion artifacts. Then, the resultant signals free from motion 

artifacts were low-pass filtered at a cut-off frequency of 0.2 Hz to remove systemic or 

physiological noise (such as cardiac and respiratory oscillations) and electronic noise, 

and then high-pass filtered at a cut-off frequency of 0.01 Hz to exclude any possible 

baseline drift. Using the modified Beer-Lambert Law (Cope et al., 1988),  changes of 

oxygenated and deoxygenated hemoglobin concentrations (i.e., HbO2 and Hb, 

respectively) relative to the baseline were quantified.  

 

5.3.7 Global Signal Regression 

In order to remove the effect of global systemic noises on the measured 

hemoglobin concentration signals, a global signal regression (GSR) method was carried 

out on every concentration time series obtained from all the measurement sessions. I 

followed the GSR method described in the previous fMRI (Buckner, Andrews-Hanna, & 

Schacter, 2008; Murphy et al., 2009) and fNIRS (Mesquita et al., 2010) studies. 

Regression of the global signal is achieved by solving equation (5.1), where si(t) is a 

column vector representing the time series of the ith channel’s measurement (HbO2 or 
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Hb). The global signal g(t) is a column vector calculated by averaging the time series of 

hemoglobin concentrations obtained from all measurement channels over the whole 

cortex (See equation 5.2); the global signal calculated is used as a global noise predictor 

in a general linear model. N is a total number of measured channels, βi is the regression 

coefficient, zi(t) is desired noise free hemoglobin concentration time series obtained after 

global signal regression. 

      

              𝑠𝑖(𝑡) = 𝑔(𝑡)𝛽𝑖 + 𝑧𝑖(𝑡)        (5.1) 

                      Where,  𝑔(𝑡) =  
1

𝑛
∑ 𝑠𝑖(𝑡)𝑛

𝑖=1                       (5.2) 

 

5.3.8 Data Analysis 

In this study, a model-based statistical analysis tool, general linear model (GLM) 

was used to quantify cortical hemodynamic activities during the leg raising tasks. Over 

the last several years, GLM analysis has been extensively used to analyze fNIRS data to 

identify cortical areas which are significantly activated during a given task (Hassanpour 

et al., 2014; Plichta et al., 2006; Tian & Liu, 2014; Ye et al., 2009). In GLM, a 

hemodynamic response function (HRF) is used to serve as a model to predict the change 

in HbO signals due to task stimulation; GLM can be expressed by the equation (5.3): 

𝑧(𝑡) = 𝛽𝑓(𝑡) + ℰ,                                                                                 (5.3) 

where, 𝑓(𝑡) = ℎ(𝑡) ⊗ 𝑠(𝑡).                                                                   (5.4) 

In equation (5.3), z(t) represents the time series of HbO2 or ΔHb at each 

measurement channel after global signal regression. f(t) is the stimulation-specific 

predicted response which is expected to match the temporal profiles of measured 
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hemodynamic signals (i.e., HbO2 or ΔHb); h(t) is a given hemodynamic response 

function (HRF); s(t) is the stimulation-specific boxcar function for a given task. f(t) is 

obtained by convolving h(t) and s(t) (Equation 5.4).  Moreover,  is the estimated 

amplitude of HbO2, while ε is residual due to the mismatch between the actual data and 

the predicted model. By fitting the f(t) to the temporal profile of HbO2 obtained or 

measured from each channel of each participant, I would be able to obtain: (a) the 

estimated amplitude, ; (b) its variance, and thus (c), a statistical t-value representing the 

statistical significance of the brain activation at each respective channel. In this way, the 

amplitudes (expressed by  values in mM.cm) of cortical activations or deactivations in 

response to leg raising tasks were obtained by fitting the predicted stimulation response 

function to channel-wise, temporal profiles of HbO2 responses.  

For group-level hemodynamic analyses,  values at each channel were averaged 

over each group of participants. Random-effect analysis was performed to generate 

statistically-meaningful quantities at the group level. For each of three measurement 

groups, it was accomplished by conducting the one-sample t-test on  values obtained 

from all subjects at each channel. In this way, a group-level t-statistic (expressed by t-

values) was obtained to show statistically increased and/or decreased brain activations 

during leg raising task compared to the baseline readings. Both t-statistic values and p-

values were derived from the t-tests for each channel and used to generate t-maps in 

topographic images. 

Topographic images of cortical activations and/or deactivations were generated 

using EasyTopo, an optical topography toolbox (Tian et al., 2012). It overlays 2D images 

of HbO2 or Hb activations/deactivations over a standard human brain MRI atlas after 2D 
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angular interpolation of the channel-wise activation data in a spherical-coordinate system. 

The channel-wise β-values derived from GLM analysis and t-values from subsequent 

statistical comparisons were used to generate activation maps (i.e., β-maps and t-maps) 

induced by leg raising tasks.  

 

5.4 Results 

5.4.1  Behavioral measures  

Figure 5.3A shows the comparison of pain perception ratings reported by the 

control group, CLBP group before treatment (CLBP-Pretreatment), and CLBP group after 

treatment (CLBP-Posttreatment), following RLR task session. I observed that pain 

perceived by CLBP-pretreatment group was significantly higher (p=0.002) as compared 

to that of the control group, during RLR task. Furthermore, pain perceived by CLBP-

posttreatment group was also significantly higher (p=0.02) as compared to that of the 

control group, during RLR task.   However, no significant difference (p>0.05) in pain 

perception between CLBP-pretreatment and CLBP-posttreatment groups was observed, 

during RLR task. For all statistical comparisons throughout this study, Student t-tests 

were used. 

Figure 5.3.B shows the comparison of pain perception ratings reported by the 

control group, CLBP-Pretreatment group, and CLBP-Posttreatment group, following LLR 

task session. I observed that pain perceived by CLBP-pretreatment group was 

significantly higher (p = 0.0004) as compared to that of the control group, during to LLR 

task. Also, pain perception reported by CLBP-posttreatment group was significantly 

higher (p = 0.03) when compared to compared to control group, during LLR task. 
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However, no significant difference (p>0.05) in pain perception was observed between 

CLBP-pretreatment and CLBP-posttreatment groups during LLR task. 

 

Figure 5.3 Comparison of pain perception ratings between controls and CLBP patients 

during (A) Right leg raising task, and (B) Left leg raising task. Pain perception rating levels 

of 0, 3, 7, and 10 corresponded to no pain, low pain, high pain, and extreme pain 

conditions, respectively. Asterisks ‘*’ indicate significant (p<0.05), Asterisks ‘**’ indicate 

significant (p<0.01), and Asterisks ‘***’ indicate significant (p<0.001) 
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5.4.2 Hemodynamic Measures 

5.4.2.1 HbO2 changes induced by RLR and LLR tasks in control group 

Figures 5.4A, and 5.5A show topographic images of cortical HbO2 responses (group-

averaged -maps) during RLR, and LLR task periods, respectively.  Correspondingly, 

Figures 5.4D, and 5.5D show topographic t-maps [p<0.01, False Discovery Rate (FDR) 

corrected] to mark regions that have significant HbO2 changes from the baseline, 

induced by RLR and LLR tasks, respectively. According to the -map of Fig. 5.4A, the 

primary motor and pre-motor cortices in left hemisphere was predominantly activated 

during RLR task period. Whereas, according to the -map of Fig. 5.5A, the primary motor 

and premotor cortices in right hemisphere were activated during LLR task period.  

According to the t-map of Fig. 5.4D, 4 out of total 133 channels measured from the 

cortical surface were significantly activated with increased HbO2 responses during RLR 

task. Out of these 4 activated channels, 1 channel was located on the left dorsolateral 

prefrontal cortex (DLPFC, BA 9 & 46), 2 channels were located on pre-motor and 

supplementary motor cortex (PSMC, BA 6), and 1 channel was located on left primary 

motor cortex (M1, BA 4). These activated regions are all marked or shown by Fig. 5.4D. 

From the t-map, it is clear that the activation was predominant in the left motor and pre-

motor cortices of control group during RLR task.  

According to the t-map of Fig. 5.5D, 10 out of total 133 channels measured from 

the cortical surface were significantly activated during LLR task. Out of these 10 activated 

channels, 1 channel was located on the left DLPFC, 2 channels were located on bilateral 

frontal eye fields (FEF, BA 8), 2 channels were located on right PSMC, 1 channel was 

located on left PSMC, 2 channels were located on right M1, 1 channel was located on 
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right primary somatosensoty cortex (S1, BAs 1, 2, & 3 ), and 1 channel was located on 

right supramarginal gyrus part of Wernicke's area (SG, BA 40) These activated regions 

are all marked or shown by Fig. 5.4D. From the t-map, it is clear that the activation was 

predominant in the right motor and premotor cortices of control group during LLR task.  

 

5.4.2.2 HbO2 changes induced by RLR and LLR tasks in CLBP group before treatment 

For CLBP-pretreatment group, topographic images of cortical HbO2 responses 

(-maps) during RLR, and LLR task periods, are shown in Figures 5.4B, & 5.5B, 

respectively.  Correspondingly, Figures 5.4E and 5.5E show topographic t-maps (p<0.01, 

FDR corrected) to mark regions that have significant HbO2 changes from the baseline, 

induced by RLR and LLR tasks, respectively. According to the -maps of Fig. 5.4B and 

5.5B, several sub-regions of frontal cortex (such as frontopolar area, DLPFC, etc.) were 

predominantly activated during RLR, and LLR task periods, respectively.  

According to the t-map of Fig. 5.4E, 39 out of total 133 channels measured from 

the cortical surface were significantly activated during RLR task. Out of these 39 activated 

channels, 4 channels were located on the left frontopolar area (FPA, BA 10), 3 channels 

were located on right FPA, 7 channels were located on the left DLPFC, 7 channels were 

located on the right DLPFC, 3 channels were located on left FEF, 2 channels were located 

on right FEF, 1 channel was located on left PSMC, 3 channels were located on right 

PSMC, 1 channel was located in left M1, 2 channels were located in right S1, 1 channel 

was located on left somatosensory association cortex (SAC, BA 7), 3 channels were 

located on right SAC, 1 channel was located on left SG, and 1 channel was located on 

left visual area 3 (V3, BA 19). These activated regions are all marked or shown by Fig. 
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5.4E. From the t-map, it is clear that the activation was predominant in the prefrontal 

cortex of the CLBP group during RLR task.  

 

 

 

Figure 5.4. Topographic maps of the right-leg-raising (RLR) task-evoked cortical 

activations derived from changes in HbO2 from the control and CLBP group. A: Group-

averaged cortical activation (-map in mM.cm) evoked by RLR task in the control group; 

B: Group-averaged cortical activation (-map) evoked by RLR task in CLBP group before 

treatment. C: Group-averaged cortical activation (-map) evoked by RLR task in CLBP 

group after treatment. D: a t-statistical map (t-map) that shows significant activations 

and/or deactivations (one sample t-test, p<0.01; FDR corrected) on the brain template 

during RLR task in the control group. E: a t-map showing significant activations and/or 

deactivations evoked by RLR task in CLBP group before treatment. F: a t-map showing 
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significant activations and/or deactivations evoked by RLR task in CLBP group after 

treatment. 

 

Figure 5.5. Topographic maps of the Left-leg-raising (LLR) task-evoked cortical 

activations derived from changes in HbO2 from the control and CLBP group. A: Group-

averaged cortical activation (-map in mM.cm) evoked by LLR task in the control group; 

B: Group-averaged cortical activation (-map) evoked by LLR task in CLBP group before 

treatment. C: Group-averaged cortical activation (-map) evoked by LLR task in CLBP 

group after treatment. D: A t-statistical map (t-map) that shows significant activations 

and/or deactivations (one sample t-test, p<0.01; FDR corrected) on the brain template 

during LLR task in the control group. E: A t-map showing significant activations and/or 

deactivations evoked by LLR task in CLBP group before treatment. F: A t-map showing 
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significant activations and/or deactivations evoked by LLR task in CLBP group after 

treatment. 

 

According to the t-map of Fig. 5.5E, 46 out of total 133 channels measured from 

the cortical surface were significantly activated during LLR task. Out of these 46 activated 

channels, 4 channels were located on the left FPA, 3 channels were located on right FPA, 

7 channels were located on the left DLPFC, 5 channels were located on the right DLPFC, 

2 channels were located on left FEF, 2 channels were located on right FEF, 1 channel 

was located on left pars triangularis (PT, BA 45), 1 channel was located on left PSMC, 3 

channels were located on right PSMC, 2 channels were located on right M1, 1 channels 

was located on left S1, 2 channels were located on right S1, 5 channels were located on 

right SAC, 1 channel was located on left SG, 4 channels were located on right SG, 1 

channel was located on left fusiform gyrus (FG, BA 37), 1 channel was located on left 

Angular gyrus, part of Wernicke's area (AG, BA 39), and 1 channel was located on right 

AG. These activated regions are all marked or shown by Fig. 5.5E. From the t-map, it is 

clear that the activation was predominant in the prefrontal cortex of the CLBP group during 

LLR task as well.  

 

5.4.2.3 HbO2 changes induced by RLR and LLR tasks in CLBP group after treatment 

For CLBP-posttreatment group, topographic images of cortical HbO2 responses 

(-maps) during RLR, and LLR task periods, are shown in Figures 5.4C, & 5.5C, 

respectively.  Correspondingly, Figures 5.4F, and 5.5F show topographic t-maps (p<0.01, 
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FDR corrected) to mark regions that have significant HbO2 changes from the baseline, 

induced by RLR and LLR tasks, respectively.  

According to the t-map of Fig. 5.4F, 29 out of total 133 channels measured from 

the cortical surface were significantly activated during RLR task. Out of these 29 activated 

channels, 1 channel was located on the left FPA, 1 channel was located on right FPA, 4 

channels were located on the left DLPFC, 1 channel was located on the right DLPFC, 2 

channels were located on left FEF, 1 channel was located on right FEF, 1 channel was 

located on left PT, 1 channel was located on left pars opercularis (PO, BA 44), 3 channels 

were located on left PSMC, 2 channels were located on right PSMC, 2 channels were 

located on left M1, 1 channel was located on left S1, 2 channels were located on right S1, 

1 channel was located on left SAC, 1 channel was located on right SAC , 1 channel was 

located on left superior temporal gyrus, (STG, BA 22), and 1 channel was located on right 

STG, 2 channels were located on left SG, and 1 channel was located on right FG. These 

activated regions are all marked or shown by Fig. 5.4E. From the t-map, it is clear that the 

activation was predominant in the left cortical hemisphere of CLBP group during RLR 

task.  

According to the t-map of Fig. 5.5F, 28 out of total 133 channels measured from 

the cortical surface were significantly activated during LLR task. Out of these 28 activated 

channels, 2 channels were located on right FPA, 1 channel was located on the left 

DLPFC, 5 channels were located on the right DLPFC, 3 channels were located on left 

FEF, 3 channels were located on right FEF, 1 channel was located on left PO, 3 channels 

were located on left PSMC, 5 channels were located on right PSMC, 1 channel was 

located on right M1, 1 channels was located on left S1, 2 channels were located on right 
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SG, and 1 channel was located on right AG. These activated regions are all marked or 

shown by Fig. 5.5F. From the t-map, it is clear that the activation was predominant in the 

right cortical hemisphere of the CLBP group during LLR task as well.  

5.4.2.4 HbO2 changes induced by RLR and LLR tasks in CLBP-pretreatment versus 

control group 

Figures 5.6A, and 5.7A show topographic images of cortical HbO2 differences (-

maps for CLBP-pretreatment minus control group contrast) induced by RLR, and LLR 

task periods, respectively.  Correspondingly, Figures 5.6D, and 5.7D show topographic t-

maps (p<0.05, FDR corrected) to mark regions that have significant HbO2 differences 

between CLBP-pretreatment and control group, induced by RLR and LLR tasks, 

respectively.  

According to the t-map of Fig. 5.6D, 2 out of total 133 channels measured from the 

cortical surface showed significantly increased HbO2 responses in CLBP-pretreatment 

group as compared to that of the control group, during RLR task. Out of these 2 activated 

channels, 1 channel was located on left FPA, and 1 channel was located on the left 

DLPFC. These activated regions are all marked or shown by Fig. 5.6D. From the t-map, 

it is clear that the HbO2 responses in left prefrontal were dominant in CLBP-pretreatment 

group as compared to that of control group, during RLR task.  

According to the t-map of Fig. 5.7D, 3 out of total 133 channels measured from the 

cortical surface showed significantly increased HbO2 responses in CLBP-pretreatment 

group as compared to that of control group, during LLR task. Out of these 3 activated 

channels, 1 channel was located on left FPA, 1 channel was located on the right DLPFC, 

and 1 channel was located on left AG. These activated regions are all marked or shown 
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by Fig. 5.7D. From the t-map, it is clear that the HbO2 responses in bilateral prefrontal 

cortex were dominant in CLBP-pretreatment group as compared to that of control group, 

during LLR task.  

 

Figure 5.6. Topographic images of the cortical activations derived from HbO2, showing 

differences between the CLBP and control groups in response to right-leg-raising task. A: 

Group-averaged differences in activations or -map (in mM.cm) between the CLBP group 

before treatment and control group during RLR task. B: Group-averaged differences in 

activations or -map between the CLBP group after treatment and control group during 

RLR task. C: Group-averaged differences in activations or -map between the CLBP 

group after treatment and CLBP group before treatment during RLR task.   D: a t-map (p-

value<0.05; FDR corrected) showing the regions of significantly different activations and 

deactivations between the CLBP group before treatment and control group during RLR 

task. E: a t-map showing the regions of significantly different activations and deactivations 
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between the CLBP group after treatment and control group during RLR task. F: a t-map 

showing the regions of significantly different activations and deactivations between the 

CLBP group after treatment and CLBP group before treatment during RLR task. 

 

Figure 5.7. Topographic images of the cortical activations derived from HbO2, showing 

differences between the CLBP and control groups in response to left-leg-raising task. A: 

Group-averaged differences in activations or -map (in mM.cm) between the CLBP group 

before treatment and control group during LLR task. B: Group-averaged differences in 

activations or -map between the CLBP group after treatment and control group during 

LLR task. C: Group-averaged differences in activations or -map between the CLBP 

group after treatment and CLBP group before treatment during LLR task.   D: a t-map (p-

value<0.05; FDR corrected) showing the regions of significantly different activations and 

deactivations between the CLBP group before treatment and control group during LLR 

task. E: a t-map showing the regions of significantly different activations and deactivations 
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between the CLBP group after treatment and control group during LLR task. F: a t-map 

showing the regions of significantly different activations and deactivations between the 

CLBP group after treatment and CLBP group before treatment during LLR task. 

 

5.4.2.5 HbO2 changes induced by RLR and LLR tasks in CLBP-posttreatment versus 

control group 

Figures 5.6B, and 5.7B show topographic images of cortical HbO2 differences (-

maps for CLBP-posttreatment minus control group contrast) induced by RLR, and LLR 

task periods, respectively.  Correspondingly, Figures 5.6E, and 5.7E show topographic t-

maps (p<0.05, FDR corrected) to mark regions that have significant HbO2 differences 

between CLBP-posttreatment and control group, induced by RLR and LLR tasks, 

respectively.  

According to the t-map of Fig. 5.6E, none of total 133 channels measured from the 

cortical surface showed significantly different HbO2 responses in CLBP-posttreatment 

group as compared to that of the control group, during RLR task. Whereas, according to 

the t-map of Fig. 5.7E, 1 out of total 133 channels measured from the cortical surface 

showed significantly increased HbO2 responses in CLBP-posttreatment group as 

compared to that of the control group, during LLR task. This activated channel was located 

on the right DLPFC.  

 

5.4.2.6 HbO2 changes induced by RLR and LLR tasks in CLBP-posttreatment versus 

CLBP-pretreatment group 
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Figures 5.6C, and 5.7C show topographic images of cortical HbO2 differences (-

maps for CLBP-posttreatment minus CLBP-pretreatment group contrast) induced by 

RLR, and LLR task periods, respectively.  Correspondingly, Figures 5.6F, and 5.7F show 

topographic t-maps (p<0.05, FDR corrected) to mark regions that have significant HbO2 

differences between CLBP-posttreatment and CLBP-pretreatment group, induced by 

RLR and LLR tasks, respectively.  

According to the t-map of Fig. 5.6F, 6 out of total 133 channels measured from the 

cortical surface showed significantly decreased HbO2 responses in CLBP-posttreatment 

group as compared to that of CLBP-pretreatment group, during RLR task. Out of these 6 

activated channels, 4 channels were located on left FPA, and 2 channels were located on 

the right FPA. These activated regions are all marked or shown by Fig. 5.6F. From the t-

map, it is clear that the HbO2 responses in left frontopolar cortex were significantly 

reduced in CLBP-posttreatment group as compared to that of CLBP-pretreatment, during 

RLR task. However, according to the t-map of Fig. 5.7F, none out of total 133 channels 

measured from the cortical surface showed significantly different HbO2 responses in 

CLBP-posttreatment group as compared to that of CLBP-pretreatment group, during LLR 

task. 

 

5.5 Discussion 

The present study compared and contrasted cortical hemodynamic responses 

between the chronic low back pain patients and age- and gender- matched healthy 

controls, during the right leg raising and left leg raising tasks. Specifically, comparison of 

cortical HbO2 responses between (1) CLBP group before treatment and control group, 
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(2) CLBP group after treatment and control group, and (3) CLBP group after treatment 

and CLBP group before treatment, during leg raising tasks are reported. The observed 

behavioral and hemodynamic results and corresponding interpretations under the leg 

raising tasks are summarized below. 

 

5.5.1 Experimental results/observations 

Hemodynamic responses from control group: From Figure 5.4D, it is clear that left 

PSMC and left M1 regions were predominantly activated in the control group during RLR 

task as compared to that of baseline. From Figure 5.5D, it is clear that bilateral PSMC, 

right M1, and bilateral FEF regions were predominantly activated in the control group 

during LLR task as compared to that of baseline. 

Hemodynamic responses from CLBP group: Relative to baseline, CLBP-

pretreatment group exhibited significant hemodynamic activations in a number of cortical 

regions during both RLR as well as LLR tasks (see Figs. 5.4E & 5.5E). During RLR task, 

CLBP-pretreatment group significantly activated bilateral FPA, bilateral DLPFC, bilateral 

FEF, bilateral PSMC, left M1, right S1, bilateral SAC, left SG, and left V3 as compared to 

that of baseline (see Fig. 5.4E). Whereas during LLR task, CLBP-pretreatment group 

significantly activated bilateral FPA, bilateral DLPFC, bilateral FEF, left PT, bilateral 

PSMC, right M1, bilateral S1, right SAC, bilateral SG, left FG, and left AG as compared 

to that of baseline (see Fig. 5.5E).  

             Furthermore, CLBP group after treatment also presented significant 

hemodynamic activations in a number of cortical regions as compared to that of baseline, 

during leg raising tasks (see Figs. 5.4F & 5.5F). During RLR task, CLBP-posttreatment 
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group activated bilateral FPA, bilateral DLPFC, bilateral FEF, left PT, left PO, bilateral 

PSMC, left M1, bilateral S1, bilateral SAC, bilateral STG, left SG, and right AG (see Fig. 

5.4F).  Whereas, during LLR task, CLBP-posttreatment group activated right FPA, 

bilateral DLPFC, bilateral FEF, left PO, bilateral PSMC, right M1, left S1, right SG, and 

right AG (see Fig. 5.5F).  

             Differential hemodynamic responses between control and CLBP groups: 

According to pain perception results, it is clear that both RLR as well as LLR tasks induced 

significantly higher pain in CLBP patients as compared to that of the control group (see 

Figs. 5.3A & 5.3B). However, treatment did not induce any significant changes in pain 

perception ratings of CLBP group. 

              Relative to controls, CLBP-pretreatment group exhibited significantly increased 

HbO2 responses in left FPA and left DLPFC, during RLR task (see Fig. 5.6D). Whereas, 

during LLR task, CLBP-pretreatment group showed significantly increased HbO2 

responses in left FPA, right DLPFC, and left AG relative to control group (see Fig. 5.7D). 

Overall, CLBP-pretreatment group presented predominant hemodynamic activations in 

the prefrontal cortex as compared to that of the control group, during both RLR as well as 

LLR tasks.  

            During RLR task, no significant difference in cortical HbO2 responses between 

CLBP-posttreatment group and control group was observed (see Fig. 5.6E). However, 

during LLR task, CLBP-posttreatment group exhibited significantly increased HbO2 

responses in right DLPFC as compared to that of the control group (see Fig. 5.7E). 

            CLBP-posttreatment group exhibited significantly decreased HbO2 responses in 

bilateral FPA as compared to that of CLBP-pretreatment group during RLR task (see Fig. 
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5.6F). However, no significant difference in HbO2 responses between CLBP-

posttreatment and CLBP-pretreatment groups during LLR task was shown (see Fig. 

5.7F). 

 

5.5.2 Interpretations 

            Interpretation of hemodynamic responses from control group: It is reasonable to 

attribute the significant activations in left PSMC and left M1 regions of the control group 

to inherent right leg movements associated with the RLR task. The hemodynamic 

activations in bilateral PSMC and right M1 regions of control group can be attributed to 

inherent left leg movements associated with the LLR task. Activations observed in 

bilateral FEF regions may be related to saccadic eye movements while following 

instructions on screen during leg raising task. 

            Interpretation of Hemodynamic responses from CLBP group: An fMRI-based pain 

study by Lloyd and colleagues reported significant hemodynamic activations (i.e., BOLD 

signal increase from baseline) in a number of cortical and sub-cortical regions 

corresponding to ‘pain matrix' during tactile stimulation (using constant current stimulator) 

of the lower back in chronic low back pain patients (Lloyd, Findlay, Roberts, & Nurmikko, 

2008). Significant activated regions include, Ventrolateral prefrontal cortex (VLPFC, BA 

44/45), Inferior parietal lobe (BA 40), DLPFC (BA 9/46), Superior temporal gyrus (STG), 

Intraparietal sulcus (BA 40/7), Supramarginal gyrus (SG, BA 40), Mid-insula, Putamen, 

Superior-medial frontal gyrus (BA 8/9), Secondary somatosensory cortex (S2, BA 42), 

Posterior insula, Anterior cingulate gyrus (BA 32), Primary somatosensory cortex (S1, BA 

2) (Lloyd et al., 2008). Several other neuroimaging studies also demonstrated activations 
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in extensive network of pain-related brain regions with peripheral noxious input to CLBP 

patients (Giesecke et al., 2006; Giesecke et al., 2004; Kobayashi et al., 2009). In this 

present study, results also present similar activations in a number of cortical areas (such 

as BAs 2, 4, 6, 7, 8, 9, 10, 19, 40, 46 ) of CLBP patients before treatment during RLR task 

(see Fig. 5.4D). Also, I observed activations in a number of cortical areas (such as BAs 

2, 4, 6, 8, 9, 10, 37, 39, 40, 45, 46 ) of CLBP patients before treatment during LLR task 

(see Fig. 5.5D). Also, the extent of prefrontal cortex (BAs 9, 10, & 46) activation in CLBP-

posttreatment group was much less when compared to that of in CLBP-pretreatment 

group (compare Figs. 5.4E versus 5.4F, & Figs 5.5E versus 5.5F). Overall, CLBP-

pretreatment group exhibited robust activations in several pain-related regions during 

both RLR and LLR tasks, especially widespread activations in bilateral FPA and DLPFC 

regions were noteworthy.  

Interpretation of differential hemodynamic responses between control and CLBP 

groups: A recent structural and functional MRI study by Seminowicz and colleagues 

reported reduced cortical thickness in several cortical (left DLPFC, left S1) and subcortical 

regions (bilateral anterior insula/frontal operculum, left mid/posterior insula, left medial 

temporal lobe, and right anterior cingulate cortex) of CLBP patients before treatment 

relative to pain-free controls. Also, they demonstrated increased cortical thickness in left 

DLPFC of CLBP patients after treatment (spine surgery or facet joint injections) compared 

to that of CLBP patients before treatment. Furthermore, they reported increased 

hemodynamic activity in left DLPFC of CLBP patients before treatment as compared to 

that of controls while performing an attention-demanding cognitive task, but activity was 

reversed to normal following treatment (Seminowicz et al., 2011). Another structural MRI 
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study also reported increased gray matter in several cortical and subcortical structures 

(such as bilateral DLPFC, orbitofrontal cortex, sensorimotor cortices, etc.) of a mix of 

chronic pain patients following cognitive behavioral therapy (Seminowicz et al., 2013). 

Several other pain-related neuroimaging and repetitive transcranial magnetic stimulation 

studies have implicated the role of DLPFC in Placebo analgesia (Krummenacher, Candia, 

Folkers, Schedlowski, & Schonbachler, 2010; Wager et al., 2004), pain modulation 

(Brighina et al., 2004; Fierro et al., 2010; Krummenacher et al., 2010), and perceived 

control of pain (Pariente, White, Frackowiak, & Lewith, 2005; Wiech et al., 2006). 

In the present study, results also present significantly increased HbO2 responses 

in prefrontal regions such as left FPA and left DLPFC of CLBP-pretreatment group relative 

to controls, during RLR task (see Fig. 5.6D). Although, CLBP-pretreatment group showed 

significantly increased HbO2 responses in right DLPFC, left FPA, and left AG relative to 

control group, during LLR task (see Fig. 5.7D).  Also, no significant difference in cortical 

HbO2 responses between CLBP-posttreatment group and control group was observed, 

during RLR task (see Fig. 5.6E). Furthermore, during RLR task, I observed that CLBP 

group after treatment exhibited significantly decreased HbO2 responses in bilateral FPA 

relative to CLBP group before treatment (see Fig. 5.6F), although, no significant changes 

in pain perception ratings were reported. These observations suggest that abnormal 

prefrontal cortex function of CLBP patients were reversed to normal following treatment.  

 

5.6 Conclusions 

In this study, fNIRS was utilized to compare and contrast cortical hemodynamic 

responses from 16 elderly patients with CLBP and 15 age-/gender- matched healthy 
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controls while performing leg raising tasks. Leg raising tasks induced significant pain in 

CLBP patients before treatment as well as after the treatment as compared to that of 

healthy controls. Healthy controls showed hemodynamic activations in pre-motor and 

primary motor cortices during leg raising tasks. Whereas CLBP patients before treatment 

activated a number of pain-related cortical regions during both RLR as well as LLR tasks, 

especially widespread activations in the prefrontal cortex were noteworthy. Relative to 

controls, CLBP patients after treatment did not show any significant differences in cortical 

responses during RLR task. Furthermore, during RLR task, CLBP patients after treatment 

exhibited reduced prefrontal responses as compared to that of before treatment.  These 

observations may suggest that abnormal prefrontal cortex function of CLBP patients were 

reversed to normal following treatment. The present study clearly demonstrates that 

fNIRS are a portable and complementary neuroimaging tool to study the neural correlates 

of pain induced by leg-raising-tasks in subjects with CLBP and monitoring treatment 

effects. 

 

 

 

 

 

 

 

 

 



127 

Chapter 6 

Mapping Of ICA-Derived Resting-State Functional Networks In Chronic Low-Back Pain 

Patients: A Functional Near Infrared Spectroscopy Study 

 

6.1 Abstract 

Numerous structural and functional neuroimaging studies have revealed the 

abnormal cerebral structure and resting-state functional connectivity in Chronic Low Back 

Pain (CLBP) patients. In this study, we used Independent Component Analysis method 

on resting-state functional near-infrared spectroscopy (RS-fNIRS) signals to identify 

resting-state functional networks (RSFNs) among 12 elderly CLBP patients and 12 age-

matched healthy controls. Furthermore, we compared and contrasted RSFNs between 

controls and CLBP patients. We identified four RSFNs consistently among the healthy 

controls and CLBP patients, namely, Default Mode Network (DMN), Somatomotor 

Network (SMN), Fronto-parietal Control Network (FPCN) and Visual Network (VN). The 

networks identified in this study were consistent with well- established RSFNs reported in 

previous neuroimaging studies. Also, we observed reduced DMN connectivity in CLBP 

patients relative to controls, specifically in right DMN constituents such as prefrontal 

cortex (BA 9) and Supramarginal Gyrus (BA 40) in the right cerebral hemisphere. The 

results suggest that the DMN connectivity in CLBP patients is compromised due to 

chronic pain. Overall, the feasibility of fNIRS for studying and mapping ICA-derived 

RSFNs in both healthy controls and CLBP patients is reported. 
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6.2 Introduction 

Chronic low back pain is a main public health problem across the world, and it is 

one of the common reasons for physician visits in USA (L. G. Hart, Deyo, & Cherkin, 

1995). The lifetime prevalence of non-specific low back pain (LBP) is as high as 84%, 

and the lifetime prevalence of CLBP is about 23%, with 11-12% of the population being 

disabled by LBP (van Dieen et al., 2012). Chronic back pain can significantly alter the 

normal brain function and lead to cognitive dysfunctions including depression, sleeping 

disturbances and decision-making ability (Apkarian et al., 2005; Apkarian, Sosa, Krauss, 

et al., 2004; Baliki et al., 2008).  

In last decade, a number of neuroimaging studies using structural and functional 

magnetic resonance imaging (MRI) have demonstrated structural and functional brain 

abnormalities in CLBP patients (Kregel et al., 2015; Wand et al., 2011). Multiple structural 

MRI studies have revealed decreased Grey Matter in Dorsolateral Prefrontal Cortex 

(Apkarian, Sosa, Sonty, et al., 2004; Ivo et al., 2013; Schmidt-Wilcke et al., 2006; 

Seminowicz et al., 2011), Temporal Lobes (Baliki et al., 2011; Luchtmann et al., 2014; 

Schmidt-Wilcke et al., 2006; Seminowicz et al., 2011), Primary Somatosensory Cortex 

(Schmidt-Wilcke et al., 2006; Seminowicz et al., 2011), Insula (Baliki et al., 2011; 

Seminowicz et al., 2011), and several other cortical and sub-cortical regions of CLBP 

patients. Recent functional MRI studies using resting-state functional connectivity 

analysis, have reported disrupted Default Mode Network (DMN) connectivity in CLBP 

patients (Baliki et al., 2008; Kornelsen et al., 2013; Loggia et al., 2013; Tagliazucchi et 

al., 2010). Using fMRI, Baliki and colleagues reported reduced DMN connectivity in CLBP 

patients, specifically in the medial prefrontal cortex, posterior cingulate cortex and 
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amygdala (Baliki et al., 2008).In another resting-state fMRI study, Tagliazucchi and 

colleagues reported that abnormal connectivity in DMN structures such as angular gyrus, 

bilateral insular cortex, and orbital part of the middle frontal gyrus (Tagliazucchi et al., 

2010). A recent MRI-based study demonstrated that both the functional and structural 

brain abnormalities (specifically the left DLPFC)  in the chronic pain patients are reversible 

and thus treating chronic pain can restore normal brain (Seminowicz et al., 2011). 

Therefore, the development of assessment tools for monitoring CLBP is crucial to 

improving the understanding of neural correlates of CLBP and to monitor brain’s 

functional changes resulting from physical or pharmacological treatment in CLBP 

condition. 

In the past decade, functional near-infrared spectroscopy, a noninvasive, optical 

imaging modality, has been extensively used in the field of neuroimaging for studying 

brain function.  It is portable, easy-to-use, and cost-effective as compared other functional 

imaging modalities such as fMRI and Positron Emission Tomography (PET). This 

complementary brain imaging modality may have the ability to identify abnormalities in 

CLBP patients so that it could facilitate better understanding of pain processing in the 

cortical regions, and monitoring therapeutic effects in CLBP patients. Resent Resting-

state fNIRS (RS-fNIRS) studies were able to identify resting state functional networks 

such as Sensorimotor Network and Visual Network using independent component 

analysis (Zhang, Duan, et al., 2011; Zhang, Zhang, et al., 2011; Zhang et al., 2010); ICA 

is a data-driven analysis method that can isolate independent brain networks that have 

temporally correlated hemodynamic activity. However, to date, none of the fNIRS-based 

studies have identified whole-cortex resting state functional networks in both healthy as 
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well as in CLBP patients. In this study, fNIRS was used to identify whole-cortex RSFNs 

in both Healthy and CLBP participants based on independent component analysis 

method. Furthermore, we compared and contrasted the ICA-derived RSFNs between 

healthy and CLBP participants. The goal of the study was to illustrate that (1) fNIRS can 

reveal RSFNs in both healthy and CLBP participants and (2) to detect if there exist any 

abnormalities in RSFNs (Objective biomarkers) of CLBP patients so that fNIRS could be 

used as portable and complementary neuroimaging tool to monitor and guide treatments 

for patients with CLBP. 

6.3 Material and Methods 

6.3.1 Participants 

A total of 12 elderly participants diagnosed with CLBP (four males, eight females, 

mean  SD age = 72.9 ± 8.8 years) and a total of 12 healthy participants (five males, 

seven females, mean  SD age =73.3 ± 8.2 years) age-matched with CLBP participants 

were recruited to study ICA-derived resting state cortical networks using fNIRS. The 

experimental methods in this study were carried out according to approved guidelines by 

the Institutional Review Board of the University of Texas at Arlington. Written informed 

consent was obtained from each participant before the fNIRS measurements were 

performed. 

 

6.3.2 Instruments 

In this study, we used a continuous wave, multichannel, fNIRS system (LABNIRS, 

Shimadzu Corp., Kyoto, Japan) which consists of near infrared light emitting 

semiconductor lasers (at 780 ± 5 nm, 805 ± 5 nm, and 830 ± 5 nm wavelengths) and 
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photomultiplier tube detectors, to record cortical hemodynamic activity in CLBP and 

healthy participants [see Fig. 6.1(A)]. I used an fNIRS head probe which could hold 40 

source optodes and 40 detector optodes to probe the whole cerebral cortex while the 

participants were following experimental paradigm [see Fig. 6.1(B)]. Each source optode 

connects to three near infrared light emitting lasers with three different wavelengths. The 

fNIRS probe geometry is shown in Figure 6.1C.  

 

Figure 6.1 (A) LABNIRS, Multichannel fNIRS system. (B) Placement of optical head probe 

on a subject’s head with the geometry shown in Fig. 6.1(C). (C)  Probe geometry: Red 

circles represent light sources, and blue circles represent light detectors. The word “left” 

marks each subject’s left side. (D) Co-registration of the light sources and detectors on a 

standard human brain template. (E) Co-registration of the channels (source-detector 

pairs) on a standard human brain template. Channels are marked by green circles. 
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6.3.3 Experimental Paradigm 

All the participants were asked to sit comfortably in a chair and rest for 8 minutes 

with eyes closed while scanned by multichannel fNIRS. The subjects were instructed to 

relax their mind and avoid head movements during the resting-state fNIRS session. An 

experimenter observed the fNIRS sessions to confirm that the participants followed the 

paradigm correctly.  

6.3.4 Data Acquisition  

For fNIRS data acquisition, an optical head probe holding 40 sources and 40 

detectors was placed bilaterally and symmetrically over each participant’s cerebral cortex 

[see Fig. 6.1(B)]. The nearest distance between source and detector was set as 3 cm. 

Using this probe geometry, I obtained raw optical intensities from 133 source-detector 

pairs (i.e., channels) when only the first nearest neighbors with 3 cm separations were 

used. The fNIRS data were acquired at a sampling rate of 8.13 Hz. 

 

6.3.5 Optode co-registration 

A co-registration procedure was followed using 3D digitizer measurements 

obtained from four randomly-selected participants to estimate the cortical regions probed 

by the fNIRS head-probe (Singh et al., 2005). After placing the fNIRS probe over each 

subject’s cerebral cortex [see Fig. 6.1(B)], positions of four reference cranial landmarks, 

(i.e., the nasion, left and right pre-auricular points, and vertex), light sources and detectors 

were measured using a motion tracking system (FASTRAK, Polhemus, VT, USA). The 

positions of cranial landmarks served as reference positions while converting the real-

world stereotaxic coordinates of the source and detector optodes to the Montreal 
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Neurological Institute (MNI) coordinates which are used in a standard brain MRI atlas, 

based on the affine transformation (Tian et al., 2012). Then, each of the Brodmann Areas 

(BA) probed by the fNIRS optode array were identified using NIRS-SPM software 

package (Ye et al., 2009). The fNIRS head-probe used in this study examined almost all 

superficial layers of cortical Brodmann Areas (BA). The co-registered positions (averaged 

over four participants) of optodes and source-detector pairs (calculated as the midpoint 

between a source and a detector) on the standard human brain atlas are shown in Figure 

6.1D and Figure 6.1E, respectively.  

 

6.3.6 Data Screening and Pre-processing 

The temporal profiles of light intensities obtained after fNIRS measurements were 

screened and pre-processed using an LABNIRS data analysis software. First, the raw 

light intensity signals were visually inspected to exclude data from source-detector pairs 

which with motion artifacts. Then, the resultant signals free from motion artifacts were 

low-pass filtered at a cut-off frequency of 0.1 Hz to remove systemic or physiological noise 

(such as cardiac and respiratory oscillations) and electronic noise, and then high-pass 

filtered at a cut-off frequency of 0.01 Hz to exclude any possible baseline drift. Using the 

modified Beer-Lambert Law (Cope et al., 1988),  changes of oxygenated and 

deoxygenated hemoglobin concentrations (i.e., HbO2 and Hb, respectively) relative to 

the baseline were quantified.  

6.3.7 Global Signal Regression 

A global signal regression (GSR) method was applied to remove the effect of 

global systemic noises on the measured hemoglobin concentration signals. I followed the 
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GSR method described in the previous fMRI (Buckner et al., 2008; Murphy et al., 2009) 

and fNIRS (Mesquita et al., 2010) studies. Regression of the global signal can be 

achieved by solving equation (6.1), where si(t) is a time series of the ith channel’s 

hemoglobin measurement (HbO2 or Hb). The global signal g(t) is a column vector 

calculated by averaging the time series of hemoglobin concentrations obtained from all 

measurement channels over the whole cortex of each participant (See equation 6.2); the 

global signal calculated is used as a global noise predictor in a general linear model. N is 

a total number of measured channels, βi is the regression coefficient, xi(t) is desired noise 

free hemoglobin concentration time series obtained after global signal regression. 

      

 𝑠𝑖(𝑡) = 𝑔(𝑡)𝛽𝑖 + 𝑥𝑖(𝑡)                              (6.1) 

𝑔(𝑡) =  
1

𝑛
∑ 𝑠𝑖(𝑡)𝑛

𝑖=1                    (6.2)          

                                                                                     

6.3.8 Independent component analysis theory 

Independent component analysis is a data-driven statistical technique used to 

estimate the hidden factors (sources) from a set of measurements such that the sources 

are maximally independent. It can be can explained by a classic “cocktail party” problem. 

For example, assume that several microphones in a cocktail party simultaneously record 

voices from multiple people (sources).  The recorded signals are the mixture of several 

different voices. Given such mixed recordings, ICA can recover (estimate) the original 

voices under the assumption that the voices from different people are independent of 

each other. ICA assumes that the source signals are statistically independent and non-

gaussian, with an unknown, but linear mixing process.  
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In the case of fNIRS, signals x(t)=[x1(t), x2(t), x3(t), …… xN(t)]T recorded from N 

number of channels with t time samples can regarded as mixture of voices recorded by 

N microphones, and the N ‘true’ sources s(t)=[s1(t), s2(t), s3(t), …… sN(t)]T can be 

regarded as the voice signals from N number of people. The fNIRS measurements x(t) 

can thus be expressed as matrix multiplication of mixing matrix A and ‘true’ sources s(t) 

(Equation 6.3). The goal of ICA is to estimate the unmixing matrix W such that the 

estimate of ‘true’ source signals 𝑠̂(𝑡) can be obtained by matrix multiplication of unmixing 

matrix W and recorded fNIRS signals x(t) (Equation 6.4). An estimate of mixing matrix 𝐴̂ 

can be obtained by calculating pseudoinverse of unmixing matrix W (Equation 6.5). The 

estimated mixing matrix 𝐴̂ represents spatially independent components (Includes 

RSFNs and noise components) in x(t), and 𝑠̂(𝑡) represents temporal activities associated 

with those spatial components. 

 

𝑥(𝑡) = 𝐴𝑠(𝑡)                       (6.3)          

𝑠̂(𝑡) = 𝑊𝑥(𝑡)           (6.4)         

𝐴̂ = 𝑊−           (6.5)         

 

6.3.9 ICA-derived Resting state functional networks 

In this study, I utilized Temporal-ICA group analysis method which has been widely 

used in previous fMRI (Calhoun, Adali, Pearlson, & Pekar, 2001; Calhoun, Liu, & Adali, 

2009; Guo & Pagnoni, 2008; Schmithorst & Holland, 2004), RS-fNIRS (Zhang, Duan, et 

al., 2011; Zhang, Zhang, et al., 2011; Zhang et al., 2010) and task-based fNIRS studies 

(Markham, White, Zeff, & Culver, 2009; Medvedev, Kainerstorfer, Borisov, Barbour, & 
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VanMeter, 2008; Morren et al., 2004). I chose temporal ICA method since it is more 

suitable for analyzing fNIRS data which has a small number of measurement channels 

(e.g., 133 channels) but relatively high temporal sampling rate (8 minutes recording with 

8.13 Hz sampling rate). The advantage of Temporal ICA approach is that the independent 

components obtained after performing single ICA on the temporally concatenated data, 

can be further divided into subject-specific parts. Thus the comparison of group 

differences is straightforward.  

 

Figure 6.2: Schematic representation of temporal ICA method used in this study 

 

For ICA decomposition of fNIRS data, I used an MATLAB-based software package 

with a Graphical user interface called FastICA v2.5 

(http://research.ics.aalto.fi/ica/fastica/). FastICA implements a fixed-point algorithm for 

ICA decomposition (Hyvarinen, 1999). In this study, group-level temporal ICA 

http://research.ics.aalto.fi/ica/fastica/
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decomposition was performed on HbO2 signals with following steps (See Fig. 6.2 for 

Schematic representation of group-level temporal ICA method implemented in this study).  

Step 1: Initially, resting-state HbO2 signals obtained from both CLBP and healthy 

participants’ were temporally concatenated to form group matrix XN x t, where N is number 

of measurement channels and t is number of time points after temporal concatenation.  

Step 2: Principle component analysis (PCA) was performed to reduce the 

dimentionality of group matrix to Xc x t, where c is number of retained components after 

PCA reduction. By selecting first 40 principle components (PCs), I could retain 83% of 

data variance. I used a PCA algorithm which is available in FastICA v2.5 toolbox.  

Step3: ICA was performed on PCA-reduced group matrix Xc x t to generate group-

level estimated spatial component matrix AN x c , and estimated temporal IC matrix Sc x t , 

where c is number of ICs. The FastICA algorithm parameters were set as, approach = 

“deflation”, Number of ICs = 40, nonlinearity = “pow3”, Stabilization = “on”, epsilon 

(stopping criterion) = 0.0001, Maximum number of iterations = 1000, Initial state = 

“random”.  

Step 4: Back reconstruction of individual resting-state functional networks: The 

group-level temporal IC matrix Sc x t was partitioned into subject-specific matrices S1c x t1 

, S2c x t2 , ….. Smc x tn , where t1, t2 ….tn are a subject-specific number of time samples, 

and m is number of participants. Then, I obtained subject-specific spatial components 

related to ith temporal IC  by calculating Pearson's correlation coefficients between 

subject-specific cth temporal IC and subject-specific HbO2 time courses from each 

channel. Such spatial components were considered as subject-specific correlation vector 

(expressed by r-map) corresponding to cth temporal IC. Similarly, I obtained 40 subject-
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specific correlation vectors from each of control and CLBP participants. Correlation 

coefficients in spatial component matrix represent contribution strength of temporal ICs 

in each measured channel (HbO2 time series). By visual inspection, some of spatial 

components were considered to be RSFNs based on the criteria that the activity should 

be bilateral and symmetrical in cerebral cortex.  

Step 5:  The individual correlation vectors (r-maps) from both control as well as 

CLPB participants were normalized using Fisher’s z-transformation (equation 6.6). 

Similarly, I obtained individual z-maps for all the participants. 

𝑧 =
1

2
 𝑙𝑛 (

1+𝑟

1−𝑟
)                              (6.6)  

Step 6: Radom effects analysis: For group-level RSFNs, r-maps, and z-maps were 

averaged over each group of participants. Random-effect analysis was performed on z-

maps to generate statistically meaningful RSFNs at the group level. For each of two 

measurement groups, it was accomplished by conducting the two-tailed one-sample t-

test on z values obtained from all subjects at each channel. In this way, a group-level t-

statistic (expressed by t-values) was obtained to show significantly correlated brain 

regions related to specific network IC time-series. Both t-statistic values and p-values 

were derived from the t-tests for each channel and used to generate t-maps in topographic 

images. For between-group differences, two-sample t-tests were used on z-maps. 

Topographic images of RSFNs were generated using EasyTopo, an optical 

topography toolbox (Tian et al., 2012). It is used to overlay 2D images of correlation 

coefficients over a standard human brain MRI atlas after 2D angular interpolation of the 

channel-wise correlation coefficients in a spherical-coordinate system. The channel-wise 
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r-values, z-values, and t-values from subsequent statistical comparisons were used to 

generate topographic r-maps, z-maps, and t-maps. 

 

 

Figure 6.3: (A), (D), and (G): Topographic images of ICA-derived group-averaged r-map, 

z-map (Fisher’s z-transformation of r-map), and t-map (two-tailed, one sample t-test, 

p<0.01), corresponding to Default Mode Network (DMN) component in control group, 

respectively. (B), (E), and (H): Topographic images of ICA-derived group-averaged r-

map, z-map, and t-map (two-tailed, one sample t-test, p<0.01), corresponding to DMN 

component in CLBP group, respectively. (C), (F), and (I): Topographic images of 

between-group differences (Control minus CLBP contrast) r-map, z-map, and t-map (two-

tailed, two sample t-test, p<0.01), corresponding to DMN component, respectively. 
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6.4 Results 

In this study, by visual inspection of group-level ICA-derived spatial component 

maps , I identified four meaningful resting-state functional networks in control as well as 

in CLBP groups. The group-level spatial component maps corresponding to each 

temporal network component are described below. 

 

6.4.1 ICA-derived resting-state functional networks in control group  

6.4.1.1 Default Mode Network in control group 

The group-averaged spatial component maps corresponding to Default Mode 

Network (DMN) temporal component in the control group are shown in Figure 6.3. Figure 

6.3A shows a topographic image of group-averaged r-map corresponding to DMN 

network component in the control group. Figure 6.3D shows a topographic image of 

group-averaged z-map (Fisher’s z-transformation of r-maps) corresponding to DMN 

network component in the control group. Correspondingly, Figure 6.3G shows 

topographic t-map (p<0.01) to mark regions that have significant correlation between 

DMN temporal component and HbO2 time series from each channel.  

According to the t-map of Figure 6.3G, 41 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of DMN network. 

Out of these 41 significantly correlated channels, 5 channels were located on the left 

Frontopolar Area (FPA, BA 10), 2 channels were located on right FPA, 2 channels were 

located on left Dorsolateral Prefrontal Cortex (DLPFC, BA 9 & 46), 1 channel was located 

on right DLPFC, 1 channel was located on left Primary Somatosensory Cortex (S1, BAs 

1, 2 & 3), 1 channel was located on right S1, 1 channel was located on left Primary Motor 
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Cortex (M1, BA 4), 2 channels was located on right M1,  2 channels were located on left 

Supramarginal Gyrus part of Wernicke's area (SG, BA 40), 4 channels were located on 

right SG, 5 channels were located on left Somatosensory Association Cortex (SAC, BA 

7), 8 channels were located on right SAC, 2 channels were located on left Angular Gyrus 

part of Wernicke's area (AG, BA 39), 2 channels were located on right AG, 1 channel was 

located on left Visual Association Cortex  3 (V3, BA 19), and 2 channels were located on 

right V3 

 

Figure 6.4: (A), (D), and (G): Topographic images of ICA-derived group-averaged r-map, 

z-map (Fisher’s z-transformation of r-map), and t-map (two-tailed, one sample t-test, 

p<0.01), corresponding to Somatomotor Network (SMN) component in the control group, 

respectively. (B), (E), and (H): Topographic images of ICA-derived group-averaged r-
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map, z-map, and t-map (two-tailed, one sample t-test, p<0.01), corresponding to SMN 

component in CLBP group, respectively. (C), (F), and (I): Topographic images of 

between-group differences (Control minus CLBP contrast) r-map, z-map, and t-map (two-

tailed, two sample t-test, p<0.01), corresponding to SMN component, respectively. 

 

6.4.1.2 Somatomotor Network in control group 

The group-averaged spatial component maps corresponding to Somatomotor 

Network (SMN) temporal component in the control group are shown in Figure 6.4. Figures 

6.4A and 6.4D shows topographic images of group-averaged r-map and z-map 

corresponding to SMN network component in the control group. Correspondingly, Figure 

6.4G shows topographic t-map (p<0.01) to mark regions that have significant correlation 

between SMN temporal component and HbO2 time series from each channel.  

According to the t-map of Figure 6.4G, 29 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of DMN network. 

Out of these 29 significantly correlated channels, 4 channels were located on left Pre-

Motor and Supplementary Motor Cortex (PSMC, BA 6), 6 channels were located on right 

PSMC, 4 channels were located on left M1, 5 channels were located on right M1, 2 

channels were located on left S1, 3 channels were located on left SAC, 1 channel was 

located on right SAC, 1 channel was located on left AG, 1 channel was located on left 

SG, 1 channel was located on left Subcentral Area (SA, BA 43), and 1 channel was 

located in right Frontal Eye Fields (FEF, BA 8). 
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Figure 6.5: (A), (D), and (G): Topographic images of ICA-derived group-averaged r-map, 

z-map (Fisher’s z-transformation of r-map), and t-map (two-tailed, one sample t-test, 

p<0.01), corresponding to Fronto-parietal Control Network (FPCN) component in control 

group, respectively. (B), (E), and (H): Topographic images of ICA-derived group-averaged 

r-map, z-map, and t-map (two-tailed, one sample t-test, p<0.01), corresponding to FPCN 

component in CLBP group, respectively. (C), (F), and (I): Topographic images of 

between-group differences (Control minus CLBP contrast) r-map, z-map, and t-map (two-

tailed, two sample t-test, p<0.01), corresponding to FPCN component, respectively. 

6.4.1.3 Fronto-parietal Control Network in control group 

The group-averaged spatial component maps corresponding to Fronto-parietal 

Control Network (FPCN) temporal component in the control group are shown in Figure 
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6.5. Figures 6.5A and 6.5D shows topographic images of group-averaged r-map and z-

map corresponding to FPCN network component in the control group, respectively. 

Correspondingly, Figure 6.5G shows topographic t-map (p<0.01) to mark regions that 

have significant correlation between FPCN temporal component and HbO2 time series 

from each channel.  

 

Figure 6.6: (A), (D), and (G): Topographic images of ICA-derived group-averaged r-map, 

z-map (Fisher’s z-transformation of r-map), and t-map (two-tailed, one sample t-test, 

p<0.01), corresponding to Visual Network (VN) component in the control group, 

respectively. (B), (E), and (H): Topographic images of ICA-derived group-averaged r-

map, z-map, and t-map (two-tailed, one sample t-test, p<0.01), corresponding to VN 

component in CLBP group, respectively. (C), (F), and (I): Topographic images of 
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between-group differences (Control minus CLBP contrast) r-map, z-map, and t-map (two-

tailed, two sample t-test, p<0.01), corresponding to VN component, respectively. 

 

According to the t-map of Figure 6.5G, 24 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of FPCN. Out of 

these 24 significantly correlated channels, 1 channel was located on left DLPFC, 4 

channels were located on right DLPFC, 1 channel was located on left Pars Triangularis 

Broca's area (PT, BA 45), 2 channels were located on right PT, 1 channel was located on 

left Pars Pars Opercularis Broca's area (PO, BA 44), 1 channel was located on right PO, 

1 channel was located on left PSMC, 3 channels were located on left Superior Temporal 

Gyrus (STG, BA 22),  3 channels were located on left SG, 1 channel was located on right 

SG, 2 channels were located in left AG, 1 channel was located in right AG, 1 channel was 

located on right SAC, 1 channel was lcoated on left V3, and 1 channel was lcoated in left 

Primary Visual Cortex (V1, BA 17). 

 

6.4.1.4 Visual Network in control group 

The group-averaged spatial component maps corresponding to Visual Network 

(VN) temporal component in the control group are shown in Figure 6.6. Figures 6.6A and 

6D shows topographic images of group-averaged r-map and z-map corresponding to VN 

network component in the control group, respectively. Correspondingly, Figure 6.6G 

shows topographic t-map (p<0.01) to mark regions that have significant correlation 

between VN temporal component and HbO2 time series from each channel.  
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According to the t-map of Figure 6.6G, 18 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of FPCN. Out of 

these 18 significantly correlated channels, 1 channel was located in left M1, 3 channels 

were located on right M1, 2 channels were located on right S1, 1 channel was located on 

right SG, 2 channels were located in left SAC, 1 channel was located in left V3, 1 channel 

was located in right V3, 1 channel was located on left Visual Association Cortex 2 (V2, 

BA 18), 1 channel was located on right V2, 1 channel was located in left V1, and 2 

channels were located in right V1. 

 

6.4.2 ICA-derived resting-state functional networks in CLBP group  

6.4.2.1 Default Mode Network in CLBP group 

Figures 6.3B and 6.3E shows a topographic images of group-averaged r-map and 

z-map corresponding to default mode network component in CLBP group, respectively. 

Correspondingly, Figure 6.3H shows topographic t-map (p<0.01) to mark regions that 

have significant correlation between DMN temporal component and HbO2 time series 

from each channel.  

According to the t-map of Figure 6.3H, 22 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of DMN. Out of 

these 22 significantly correlated channels, 5 channels were located on the left FPA, 3 

channels were located on left DLPFC, 1 channel was located on left PT, 1 channel was 

located on left S1, 1 channel was located on right M1, 2 channels were located on left 

SG, 4 channels were located on left SAC, 4 channels were located on right SAC, and 1 

channel was located on left AG 
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6.4.2.2 Somatomotor Network in CLBP group 

Figures 6.4B and 6.4E shows topographic image of group-averaged r-map and z-

map corresponding to Somatomotor Network component in CLBP group, respectively. 

Correspondingly, Figure 6.4H shows topographic t-map (p<0.01) to mark regions that 

have significant correlation between SMN temporal component and HbO2 time series 

from each channel.  

According to the t-map of Figure 6.4H, 19 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of SMN. Out of 

these 19 significantly correlated channels, 4 channels were located on right PSMC, 4 

channels were located on left M1, 3 channels were located on right M1, 1 channel was 

located in left S1, 4 channels were located in left SAC, 2 channels were located in right 

SAC, and 1 channel was located in left SG. 

 

6.4.2.3 Fronto-parietal Control Network in CLBP group 

Figures 6.5B and 6.5E shows topographic image of group-averaged r-map and z-

map corresponding to Fronto-parietal Control Network component in CLBP group, 

respectively. Correspondingly, Figure 6.5H shows topographic t-map (p<0.01) to mark 

regions that have significant correlation between FPCN temporal component and HbO2 

time series from each channel.  

According to the t-map of Figure 6.5H, 10 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of FPCN. Out of 

these ten significantly correlated channels, 3 channels were located on right DLPFC, 2 

channels were located on left PT, 1 channel was located on right PT, 1 channel was 
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located on left PO, 1 channel was located on left SG, and 2 channels were located on 

right SAC. 

 

6.4.2.4 Visual Network in CLBP group 

Figures 6.6B and 6.6E shows topographic imagess of group-averaged r-map and 

z-map corresponding to Visual Network component in CLBP group, respectively. 

Correspondingly, Figure 6.6H shows topographic t-map (p<0.01) to mark regions that 

have significant correlation between VN temporal component and HbO2 time series from 

each channel.  

According to the t-map of Figure 6.6H, 14 out of total 133 channels measured from 

the cortical surface were significantly correlated to temporal component of VN. Out of 

these 14 significantly correlated channels, 1 channel was located on right S1, 1 channel 

was located in left SAC, 6 channels were located in right SAC, 1 channel was located in 

left V3, 1 channel was located in right V3, 1 channel was located in left V2, 1 channel was 

located in right V2, 1 channel was located in left V1, and 1 channel was located in right 

V1. 

 

6.4.3 Comparison of RSFNs between Control and CLBP group 

6.4.3.1 Default Mode Network differences between control group and CLBP group 

Figures 6.3C and 6.3F show topographic images of differential r-map and z-map 

for control group minus CLBP group contrast corresponding to DMN component, 

respectively.  Correspondingly, Figure 6.3I show topographic t-maps (p<0.01) to mark 

regions that have significant correlation differences between control group and CLBP 



149 

group, related to DMN component. According to the t-map of Fig. 6.3I, 4 out of total 133 

channels measured from the cortical surface showed significantly increased correlation 

in Control group as compared to that of the CLBP group, corresponding to DMN 

component. Out of these 4 channels which showed significant differences in correlation, 

1 channel was located in right DLPFC, 1 channel was located in right SG, I channel was 

located in right Middle Temporal Gyrus (MTG, BA 21), and 1 channel was located in right 

Fusiform Gyrus (FG, BA 37). 

 

6.4.3.2 Somatomotor Network differences between control group and CLBP group 

Figures 6.4C and 6.4F shows topographic images of differential r-map and z-map 

for control group minus CLBP group contrast corresponding to SMN component, 

respectively.  Correspondingly, Figure 6.4I shows topographic t-maps (p<0.01) to mark 

regions that have significant correlation differences between control group and CLBP 

group, related to SMN component. According to the t-map of Fig. 6.4I, none of total 133 

channels measured from the cortical surface showed significant differences in correlation 

corresponding to SMN component, between Control group and CLBP group,   

 

6.4.3.3 Fronto-parietal Control Network differences between control group and CLBP 

group 

Figures 6.5C and 6.5F show topographic images of differential r-map and z-map 

for control group minus CLBP group contrast corresponding to FPCN component, 

respectively.  Correspondingly, Figure 6.5I shows topographic t-maps (p<0.01) to mark 

regions that have significant correlation differences between control group and CLBP 
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group, related to FPCN component. According to the t-map of Fig. 6.3I, 4 out of total 133 

channels measured from the cortical surface showed significantly increased correlation 

in Control group as compared to that of the CLBP group, corresponding to FPCN 

component. Out of these 4 channels which showed significant differences in correlation, 

1 channel was located on right SG, 2 channels were located on left V1, and 1 channel 

was located in right V1. 

 

6.4.3.4 Visual Network differences between control group and CLBP group 

Figures 6.6C and 6.6F show topographic images of differential r-map and z-map 

for control group minus CLBP group contrast corresponding to VN component, 

respectively.  Correspondingly, Figure 6.6I shows topographic t-maps (p<0.01) to mark 

regions that have significant correlation differences between control group and CLBP 

group, related to VN component. According to the t-map of Fig. 6.6I, none of total 133 

channels measured from the cortical surface showed significant differences in correlation 

corresponding to VN component, between Control group and CLBP group. 

 

6.5 Discussion 

The present study identified four ICA-derived resting-state functional networks in 

both controls as well CLBP patients using fNIRS. Furthermore, I compared and 

contrasted the RSFNs between healthy (elderly) controls and CLBP patients. The 

observed RSFNs and corresponding interpretations are summarized below. 

 

6.5.1 Default Mode Network in Healthy and CLBP groups 
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DMN is a set of cortical and sub-cortical regions known to be more active during 

resting state as compared to that of during task performance (Buckner et al., 2008; 

Raichle et al., 2001; Shulman et al., 1997). DMN is associated with self-referential 

processing. Core regions associated with brain’s DMN are bilateral Prefrontal cortex 

(PFC, BAs 9, 10), Anterior Cingulate Cortex (ACC, BAs 24, 32), Posterior cingulate 

cortex/retrosplenial cortex (PCC/RSP, BAs 29/30, 23/31), bilateral Inferior parietal lobule 

(IPL, BAs 39 & 40), and Lateral temporal cortex (LTC, BA 21) (Buckner et al., 2008). In 

this study, in the control group, I also observed significant correlations between DMN 

temporal component and several DMN constituents, such as bilateral prefrontal regions 

(BAs 9, 10), bilateral AG (BA 39), bilateral SG (BA 40) [see Fig. 6.3G]. Apart from 

significant correlations in DMN related regions, I observed significant correlations 

between DMN temporal component and several non-DMN regions, such as in bilateral 

S1, bilateral M1, bilateral SAC, and bilateral V3 of the control group. Whereas, in CLBP 

group, Significant correlations between the DMN-temporal component and DMN 

constituents were not bilateral. DMN regions which showed significant correlations with 

DMN temporal component were left FPA (BA 10), left DLPFC (BA 9), left SG (BA 40) and 

Left AG (BA 39) [see Fig. 6.3H]. Non-DMN regions which showed significant correlations 

with DMN temporal component were left PT, left S1, right M1, and bilateral SAC. 

Numerous studies have demonstrated that the presence of chronic pain alters the 

functional connectivity among different brain regions. Recent fMRI studies have shown 

alterations in DMN connectivity in patients with chronic back pain (Baliki et al., 2008), 

neuropathic pain (Cauda et al., 2009), fibromyalgia (Napadow et al., 2010).  Also, a recent 

RS-fMRI study also reported abnormal functional connectivity within DMN regions of 
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patients suffering from chronic back pain, complex regional pain syndrome, and knee 

osteoarthritis (Baliki, Mansour, Baria, & Apkarian, 2014). A recent structural MRI study 

reported that fibromyalgia patients’ patients had significantly reduced total gray matter 

volume and 3.3 times greater age-associated decrease in gray matter volume as 

compared to that of the healthy controls (Kuchinad et al., 2007). Furthermore, reduction 

in gray matter density in the prefrontal cortex and thalamus of patients with chronic back 

pain is reported (Apkarian, Sosa, Sonty, et al., 2004). In this study, I observed that several 

DMN constituents in right cerebral hemisphere showed significantly increased 

correlations with DMN temporal component of the control group as compared to that of 

the CLBP group. Cortical regions which showed significant differences were right DLPFC 

(BA 9), right SG (BA 40) and MTG (BA 21) [see Fig. 6.3I]. Overall, I identified Default 

Mode Network in both healthy controls and CLBP patients, and the results suggest that 

resting state functional connectivity within DMN regions is compromised due to Chronic 

low back pain condition, specifically in right DMN regions.  

 

6.5.2 Somatomotor Network in Healthy and CLBP groups 

The Somatomotor Network includes the Precentral-gyrus/Primary Motor Cortex 

(BA 4), postcentral-gyrus/Primary Somatosensory Cortex (BAs 1, 2 & 3), and medial 

frontal gyri (BA 8 & 9), and supplementary motor area (BA 6) (Biswal, Yetkin, Haughton, 

& Hyde, 1995). In this study, in the control group, I also observed significant correlations 

between SMN temporal-component and several SMN constituents, such as bilateral 

PSMC (BA 6), bilateral M1 (BA 4), left S1 (BAs 1, 2 & 3), and right FEF (BA 8) regions 

[see Fig. 6.4G]. Apart from significant correlations in SMN related regions, I observed 
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significant correlations between SMN temporal component and several minor regions of 

non-SMN regions, such as in bilateral SAC, left SG, left AG, and left Subcentral Area. 

Whereas, in CLBP group, SMN regions which showed significant correlations with SMN 

temporal component were right PSMC (BA 6), bilateral M1 (BA 4), left S1 [see Fig. 6.4H]. 

Non-SMN regions which showed significant correlations with SMN temporal component 

were bilateral SAC and left SG. Between-groups comparison did not show any significant 

differences in SMN between control and CLBP groups [see Fig. 6.4I]. Overall I identified 

Somatomotor Network in both healthy controls and CLBP patients. 

 

6.5.3 Fronto-parietal Control Network in Healthy and CLBP groups 

Fronto-parietal Control Network mainly includes the lateral prefrontal cortex (lateral 

parts of BAs 9, 10, 44, 45, 46), ACC, and inferior parietal Lobule (BAs 39 & 40); it is 

suggested to be involved in cognitive control and decision-making processes (Vincent, 

Kahn, Snyder, Raichle, & Buckner, 2008). In this study, in the control group, I also 

observed significant correlations between FPCN temporal component and several FPCN 

constituents, such as in bilateral lateral prefrontal regions (BAs 9, 44, 45, & 46), bilateral 

AG (BA 39), and bilateral SG (BA 40) [see Fig. 6.5G]. Apart from significant correlations 

in FPCN related regions, I observed significant correlations between FPCN temporal 

component and several non- FPCN regions, such as in left PSMC, left STG, right SAC, 

left V1 and left V3 of the control group. Whereas, in CLBP group, the number of channels 

with significant correlations between the FPCN-temporal component and FPCN 

constituents were very less as compared to that of the control group. FPCN regions which 

showed significant correlations with FPCN temporal component were right DLPFC (BAs 
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9 & 46), left SG (BA 40), bilateral PT (BA 45), and left PO (BA 44 [see Fig. 6.5H]). Non-

FPCN region which showed significant correlations with FPCN temporal component is 

right SAC. 

In between-group differences, I observed that right SG and bilateral V1 regions 

showed significantly increased correlations with FPCN temporal component of the control 

group as compared to that of the CLBP group [see Fig. 6.5I]. However, only one channel 

is right SG showed a significant difference. Overall I identified fronto-parietal control 

network in both healthy controls and CLBP patients. Furthermore, I observed abnormal 

FPCN in CLBP patients which may indicate abnormal cognitive control or decision-

making abilities in CLBP patients. 

 

6.5.4 Visual Network in Healthy and CLBP groups 

Visual Network mainly includes most of occipital cortex (such as Primary Visual 

Cortex BA 17; Visual association area 2; BA 18, and Visual association area 3; BA 19) 

(Beckmann, DeLuca, Devlin, & Smith, 2005; Power et al., 2011; Smith et al., 2009; Yeo 

et al., 2011). In this study, in the control group, I also observed significant correlations 

between VN temporal component and several VN constituents, such as bilateral V1 (BA 

17), bilateral V2 (BA 18), and bilateral V3 regions [see Fig. 6.6G]. Apart from significant 

correlations in VN related regions, I observed significant correlations between VN 

temporal component and several regions of non-VN regions, such as in bilateral SAC, 

right M1, right S1, and right SG. The CLBP group also showed significant correlations 

between VN temporal component and VN network constituents, such as bilateral V1, 

bilateral V2, and bilateral V3 regions [see Fig. 6.6H]. Non-VN regions which showed 
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significant correlations with VN temporal component were bilateral SAC and right S1. 

Between-groups comparison did not show any significant differences in VN between 

control and CLBP groups [see Fig. 6.6I]. Overall, I identified Visual Network in both 

healthy controls and CLBP patients. 

  

6.6 Limitations 

Major technical limitation in this study is that I could not identify subcortical/deeper 

network constituents since fNIRS can probe only superficial layers of cerebral cortex. 

Also, there is a possibility that measured fNIRS may include contamination from extra-

cranial vasculature, even after global noise regression. Extracranial vasculature noise in 

measured fNIRS signals can be further minimized by using additional recordings of short 

source-detector separations (0.8 - 1 cm) as noise regressors (Tian et al., 2011). 

 

6.7 Conclusions 

In this study, RS-fNIRS was utilized to compare and contrast ICA-derived RSFNs 

between 12 elderly patients with CLBP and 12 age-matched healthy controls. I identified 

four consistent RSFNs (Default Mode Network, Somatomotor Network, Fronto-parietal 

Control Network, and Visual Network) among the healthy controls and CLBP patients. 

Also, CLBP group exhibited abnormal DMN connectivity, specifically in the right prefrontal 

cortex (BA 9) and right Supramarginal Gyrus (BA 40). The present study clearly 

demonstrates that fNIRS are a portable and complementary neuroimaging tool to study 

ICA-derived RSFNs in healthy and CLBP participants, and to reveal abnormal DMN 

connectivity in CLBP patients. 
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Chapter 7 

Conclusions 

In Chapter 2, fNIRS was used to study neural correlats of selective attention 

processes among 15 veterans with PTSD and 13 age-/gender- matched healthy controls. 

After learning and implementing the general linear model, I was able to obtain multi-

channel fNIRS-based topography and identify/map Stroop-evoked prefrontal activtations 

in both subject groups. While performing the color-word Stroop task (Incongruent Stroop 

task), healthy controls showed hemodynamic activations in lateral prefrontal cortex 

regions, especially in left DLPFC and left Pars opercularis, whereas veterans with PTSD 

failed to activate those cortical regions during the same Stroop task. Also, significant 

negative correlation was observed between task reaction times and HbO2 responses 

from left DLPFC during color-word matching task. These observations implicate difficulty 

experienced by the PTSD subjects in coping up with Stroop interference. Overall, I 

demonstrated that fNIRS is a portable and complementary neuroimaging tool to study the 

neural correlates of selective attention and interference in subjects with PTSD. This work 

was published in Scientific Reports Journal (Yennu et al., 2016). 

In Chapters 3, fNIRS experiments were performed on 9 healthy volunteers to 

explore hemodynamic responses in the frontal cortex to low pain thermal stimulation 

(LPS) and high pain thermal stimulation (HPS) over the right TMJ region. By analyzing 

the temporal profiles of ΔHbO2 using cluster-based statistical tests, several regions of 

interest in the PFC, such as the DLPFC and the aPFC, were identified, where significant 

differences between ΔHbO2 responses to LPS and HPS were shown. Also, these two 

levels of pain were classified using a neural network-based classification algorithm. With 
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leave-one-out cross-validation, these two levels of pain were identified with 99% mean 

accuracy to high pain. Furthermore, the “internal mentation hypothesis” and the default-

mode network were introduced to explain the temporal characteristics of HbO2 responses 

to HPS and LPS. This work was published in Journal of Applied Biobehavioral Research 

Journal (Yennu et al., 2013). 

In Chapter 4, fNIRS experiments were performed on three separate groups of 

healthy participants, to test the robustness of temporal and spatial characteristics of 

prefrontal hemodynamics in response to noxious thermal stimulation over three body 

sites, namely, the right forearm, right temporomandibular joint, and left forearm, 

separately. During HPS, changes of HbO2 in the prefrontal cortex, especially in the 

DLPFC, were significantly increased, with similar temporal patterns and spatial 

localizations. In contrast, LPS did not result in any significant changes in HbO2 in the 

prefrontal regions in any of the three groups. These observations were highly consistent 

with previous reports by other acute pain-related studies. In addition, I introduced and 

optimally selected a variable recovery regressor to account for a peculiar global trend of 

HbO2 deactivation in the prefrontal cortex during the post-HPS period. This post-

stimulation recovery regressor allowed me to identify and map deactivation regions in the 

prefrontal cortex, which may be attributed to global vasoconstriction due to induction of 

acute noxious pain. Overall, the temporal and spatial hemodynamic activities in the 

prefrontal cortex in response to acute thermal stimulation were consistent and robust 

regardless of the stimulation sites. Therefore, multi-channel fNIRS can be used to reveal 

neural correlated of acute pain, and may have great potential for future clinical 
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applications. This work was published in A manuscript for this work was recently 

submitted to Neurophotonics Journal for publication. 

In Chapter 5, fNIRS was used to compare and contrast cortical hemodynamic 

responses from 16 elderly patients with Chronic Low Back Pain (CLBP) and 15 age-

/gender- matched healthy controls while performing leg raising tasks. Leg raising tasks 

induced significant pain in CLBP patients before treatment as well as after the treatment 

as compared to that of healthy controls. During the right-leg-raising (RLR) as well as the 

left-leg-raising (LLR) tasks, healthy controls showed significant HbO2 activations in pre-

motor and primary motor cortices. Whereas, CLBP patients before treatment activated 

several  pain-related cortical regions during leg raising tasks, especially activations in the 

prefrontal cortex were predominant. Relative to controls, CLBP patients after treatment 

did not show any significant differences in cortical responses during RLR task. Also, 

during RLR task, CLBP patients after treatment exhibited reduced prefrontal responses 

as compared to that of before treatment.  These observations may suggest that abnormal 

prefrontal cortex function of CLBP patients was reversed following treatment. Overall, I 

demonstrated that fNIRS can be used as a portable and complementary neuroimaging 

tool to study the neural correlates of pain induced by leg-raising-tasks in subjects with 

CLBP, and to monitor treatment effects as well. 

In Chapter 6, resting-state fNIRS  was used to compare and contrast independent-

component-analysis (ICA) derived resting-state functional networks (RSFNs) from 12 

elderly patients with CLBP and 12 age-matched healthy controls. I identified four 

consistent RSFNs, namely, (1) Default Mode Network (DMN), (2) Somatomotor Network, 

(3) Fronto-parietal Control Network, and (4) Visual Network, among the healthy controls 
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and CLBP patients. Furthermore, CLBP group exhibited abnormal DMN connectivity, 

specifically in the right prefrontal cortex (BA 9) and right Supramarginal Gyrus (BA 40). 

Overall, I demonstrated feasibilty of fNIRS to study ICA-derived RSFNs in healthy and 

CLBP participants, and to reveal abnormal DMN connectivity in CLBP patients. 

All in all, my doctoral research has concluded three major findings:  

(1) noxious and innocuous thermal pain can be objectively measured and 

discriminated by fNIRS taken in the frontal cortical regions of healthy subjects; 

(2) fNIRS can serve as an effective brain imaging modality to map pain-induced 

hemodynamic activities and resting-state brain functional connectivity in all cortical 

regions of both normal subjects and subjects with CLBP, as well as to identify any 

characteristic distinctions in hemodynamic signals between normal subjects and 

subjects with CLBP. 

(3) fNIRS offers a non-invasive means to reveal potential restoration of normal 

brain functions in CLBP subjects after exercise treatments. 
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Appendix A 

Matlab Code for Word-Matching Stroop Task 
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function varargout = stroop1new(varargin) 
% STROOP1NEW M-file for stroop1new.fig 
%      STROOP1NEW, by itself, creates a new STROOP1NEW or raises the existing 
%      singleton*. 
% 
%      H = STROOP1NEW returns the handle to a new STROOP1NEW or the handle to 
%      the existing singleton*. 
% 
%      STROOP1NEW('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in STROOP1NEW.M with the given input arguments. 
% 
%      STROOP1NEW('Property','Value',...) creates a new STROOP1NEW or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before stroop1new_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to stroop1new_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help stroop1new 
  
% Last Modified by GUIDE v2.5 29-Aug-2011 16:35:15 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @stroop1new_OpeningFcn, ... 
                   'gui_OutputFcn',  @stroop1new_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
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% --- Executes just before stroop1new is made visible. 
function stroop1new_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to stroop1new (see VARARGIN) 
  
% Choose default command line output for stroop1new 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes stroop1new wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = stroop1new_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
handles = guihandles(hObject);  
handles.correct=0; 
set(handles.pushbutton1,'visible','off'); 
set(handles.pushbutton2,'visible','off'); 
set(handles.text2,'visible','off'); 
guidata(hObject,handles) 
tic 
pause(30) 
for n=1:1:8 
    handles.stimulus(n)=toc; 
    set(handles.pushbutton1,'visible','on'); 
set(handles.pushbutton2,'visible','on'); 
set(handles.text2,'visible','on'); 
guidata(hObject,handles) 
for i=1:1:5 
c_word = {'YELLOW','RED', 'GREEN' ,'BLUE' ,'BLACK'}; 
% c = {'y','r','g','b','k'}; 
c=[1 2 3 4 5]; 
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rc = randperm(5); 
yc=c(5); 
switch yc 
    case 1 
        flag=[1 1 0]; 
    case 2 
        flag=[1 0 0]; 
    case 3 
        flag=[0 1 0]; 
    case 4 
        flag=[0 0 1]; 
    case 5 
        flag=[0 0 0]; 
end 
set(handles.text2,'string',c_word(rc(1))) 
set(handles.text2,'ForegroundColor',flag) 
handles.x=ceil(2*rand(1,1)) 
guidata(hObject,handles) 
switch handles.x 
    case 1 
set(handles.pushbutton1,'string',c_word(rc(1))); 
set(handles.pushbutton2,'string',c_word(rc(2))); 
  
    case 2 
set(handles.pushbutton1,'string',c_word(rc(2))); 
set(handles.pushbutton2,'string',c_word(rc(1))); 
end 
uiwait(gcf) 
handles.blockcor(i)=getappdata(0,'UserData'); 
guidata(hObject,handles) 
end 
handles.responce(n)=sum(handles.blockcor) 
handles.blockcor=0; 
handles.react(n)=toc-handles.stimulus(n) 
  
set(handles.pushbutton1,'visible','off'); 
set(handles.pushbutton2,'visible','off'); 
set(handles.text2,'visible','off'); 
pause(15) 
guidata(hObject,handles) 
end 
pause(30) 
  
save('output_strp1.mat','handles'); 
guidata(hObject,handles) 
close all 
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% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
handles = guidata(gcbo); 
if handles.x==1 
handles.correct=handles.correct+1; 
setappdata(0,'UserData',handles.correct); 
else 
    setappdata(0,'UserData',handles.correct) 
end 
guidata(hObject,handles); 
uiresume 
guidata(hObject,handles); 
  
  
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
handles = guidata(gcbo); 
if handles.x==2 
handles.correct=handles.correct+1; 
setappdata(0,'UserData',handles.correct); 
else 
    setappdata(0,'UserData',handles.correct) 
end 
guidata(hObject,handles); 
uiresume 
guidata(hObject,handles); 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on key press with focus on figure1 and none of its controls. 
function figure1_KeyPressFcn(hObject, eventdata, handles) 
switch eventdata.Key  
case 'leftarrow'  
%      
 pushbutton1_Callback(hObject, eventdata, handles);  
case 'rightarrow'  
%   
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pushbutton2_Callback(hObject, eventdata, handles);  
end 
% hObject    handle to figure1 (see GCBO) 
% eventdata  structure with the following fields (see FIGURE) 
%   Key: name of the key that was pressed, in lower case 
%   Character: character interpretation of the key(s) that was pressed 
%   Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on key release with focus on figure1 and none of its controls. 
function figure1_KeyReleaseFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  structure with the following fields (see FIGURE) 
%   Key: name of the key that was released, in lower case 
%   Character: character interpretation of the key(s) that was released 
%   Modifier: name(s) of the modifier key(s) (i.e., control, shift) released 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes during object creation, after setting all properties. 
function pushbutton1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
  
% --- Executes during object deletion, before destroying properties. 
function pushbutton1_DeleteFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over pushbutton1. 
function pushbutton1_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over pushbutton2. 
function pushbutton2_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes during object creation, after setting all properties. 
function pushbutton2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
  
% --- Executes during object deletion, before destroying properties. 
function pushbutton2_DeleteFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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Appendix B 

Matlab Code for Color-Word Stroop Task 
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function varargout = stroop2new(varargin) 
% STROOP2NEW M-file for stroop2new.fig 
%      STROOP2NEW, by itself, creates a new STROOP2NEW or raises the existing 
%      singleton*. 
% 
%      H = STROOP2NEW returns the handle to a new STROOP2NEW or the handle to 
%      the existing singleton*. 
% 
%      STROOP2NEW('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in STROOP2NEW.M with the given input arguments. 
% 
%      STROOP2NEW('Property','Value',...) creates a new STROOP2NEW or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before stroop2new_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to stroop2new_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help stroop2new 
  
% Last Modified by GUIDE v2.5 04-Aug-2011 05:12:47 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @stroop2new_OpeningFcn, ... 
                   'gui_OutputFcn',  @stroop2new_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
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% --- Executes just before stroop2new is made visible. 
function stroop2new_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to stroop2new (see VARARGIN) 
  
% Choose default command line output for stroop2new 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes stroop2new wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = stroop2new_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
handles = guihandles(hObject);  
handles.correct=0; 
set(handles.pushbutton1,'visible','off'); 
set(handles.pushbutton2,'visible','off'); 
set(handles.text2,'visible','off'); 
guidata(hObject,handles) 
tic 
pause(30) 
for n=1:1:8 
    handles.stimulus(n)=toc; 
    set(handles.pushbutton1,'visible','on'); 
set(handles.pushbutton2,'visible','on'); 
set(handles.text2,'visible','on'); 
guidata(hObject,handles) 
for i=1:1:5 
c_word = {'YELLOW','RED', 'GREEN' ,'BLUE' ,'BLACK'}; 
% c = {'y','r','g','b','k'}; 
c=[1 2 3 4 5]; 
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rc = randperm(5); 
yc=c(rc(2)); 
switch yc 
    case 1 
        flag=[1 1 0]; 
    case 2 
        flag=[1 0 0]; 
    case 3 
        flag=[0 1 0]; 
    case 4 
        flag=[0 0 1]; 
    case 5 
        flag=[0 0 0]; 
end 
set(handles.text2,'string',c_word(rc(1))) 
set(handles.text2,'ForegroundColor',flag) 
handles.x=ceil(2*rand(1,1)) 
guidata(hObject,handles) 
switch handles.x 
    case 1 
set(handles.pushbutton1,'string',c_word(rc(2))); 
set(handles.pushbutton2,'string',c_word(rc(1))); 
  
    case 2 
set(handles.pushbutton1,'string',c_word(rc(1))); 
set(handles.pushbutton2,'string',c_word(rc(2))); 
end 
uiwait(gcf) 
handles.blockcor(i)=getappdata(0,'UserData'); 
guidata(hObject,handles) 
end 
handles.responce(n)=sum(handles.blockcor) 
handles.blockcor=0; 
handles.react(n)=toc-handles.stimulus(n) 
  
set(handles.pushbutton1,'visible','off'); 
set(handles.pushbutton2,'visible','off'); 
set(handles.text2,'visible','off'); 
pause(15) 
guidata(hObject,handles) 
end 
pause(30) 
  
save('output_strp2.mat','handles'); 
guidata(hObject,handles) 
close all 
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% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
handles = guidata(gcbo); 
if handles.x==1 
handles.correct=handles.correct+1; 
setappdata(0,'UserData',handles.correct); 
else 
    setappdata(0,'UserData',handles.correct) 
end 
guidata(hObject,handles); 
uiresume 
guidata(hObject,handles); 
  
  
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
handles = guidata(gcbo); 
if handles.x==2 
handles.correct=handles.correct+1; 
setappdata(0,'UserData',handles.correct); 
else 
    setappdata(0,'UserData',handles.correct) 
end 
guidata(hObject,handles); 
uiresume 
guidata(hObject,handles); 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on key press with focus on figure1 and none of its controls. 
function figure1_KeyPressFcn(hObject, eventdata, handles) 
switch eventdata.Key  
case 'leftarrow'  
%      
 pushbutton1_Callback(hObject, eventdata, handles);  
case 'rightarrow'  
%   
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pushbutton2_Callback(hObject, eventdata, handles);  
end 
% hObject    handle to figure1 (see GCBO) 
% eventdata  structure with the following fields (see FIGURE) 
%   Key: name of the key that was pressed, in lower case 
%   Character: character interpretation of the key(s) that was pressed 
%   Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes on key release with focus on figure1 and none of its controls. 
function figure1_KeyReleaseFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  structure with the following fields (see FIGURE) 
%   Key: name of the key that was released, in lower case 
%   Character: character interpretation of the key(s) that was released 
%   Modifier: name(s) of the modifier key(s) (i.e., control, shift) released 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes during object creation, after setting all properties. 
function pushbutton1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
  
% --- Executes during object deletion, before destroying properties. 
function pushbutton1_DeleteFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over pushbutton1. 
function pushbutton1_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over pushbutton2. 
function pushbutton2_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% --- Executes during object creation, after setting all properties. 
function pushbutton2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
  
% --- Executes during object deletion, before destroying properties. 
function pushbutton2_DeleteFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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x1=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject1_rightleg.mat'); 
x2=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject2_rightleg.mat'); 
x3=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject3_rightleg.mat'); 
x4=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject4_rightleg.mat'); 
x5=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject5_rightleg.mat'); 
x6=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject6_rightleg.mat'); 
x7=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject7_rightleg.mat'); 
x8=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject8_rightleg.mat'); 
x9=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject9_rightleg.mat'); 
x10=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject10_rightleg.mat'); 
x11=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject11_rightleg.mat'); 
x12=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject12_rightleg.mat'); 
x13=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject13_rightleg.mat'); 
x14=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject14_rightleg.mat'); 
x15=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject15_rightleg.mat'); 
x16=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject16_rightleg.mat'); 
  
y1=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject1_leftleg.mat'); 
y2=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject2_leftleg.mat'); 
y3=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject3_leftleg.mat'); 
y4=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject4_leftleg.mat'); 
y5=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject5_leftleg.mat'); 
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y6=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject6_leftleg.mat'); 
y7=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject7_leftleg.mat'); 
y8=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject8_leftleg.mat'); 
y9=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject9_leftleg.mat'); 
y10=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject10_leftleg.mat'); 
y11=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject11_leftleg.mat'); 
y12=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject12_leftleg.mat'); 
y13=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject13_leftleg.mat'); 
y14=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject14_leftleg.mat'); 
y15=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject15_leftleg.mat'); 
y16=load('D:\chronic pain subjects hb data\hb data for pain subjects mat 
files\subject16_leftleg.mat'); 
  
for i=1:133 %% global signal regression 
    stats=regstats(x1.HbO(:,i),mean(x1.HbO(:,:),2)); 
    x1_new.HbO(:,i)=stats.r; 
    stats=regstats(x8.HbO(:,i),mean(x8.HbO(:,:),2)); 
    x8_new.HbO(:,i)=stats.r; 
    stats=regstats(x2.HbO(:,i),mean(x2.HbO(:,:),2)); 
    x2_new.HbO(:,i)=stats.r; 
    stats=regstats(x3.HbO(:,i),mean(x3.HbO(:,:),2)); 
    x3_new.HbO(:,i)=stats.r; 
    stats=regstats(x4.HbO(:,i),mean(x4.HbO(:,:),2)); 
    x4_new.HbO(:,i)=stats.r; 
    stats=regstats(x5.HbO(:,i),mean(x5.HbO(:,:),2)); 
    x5_new.HbO(:,i)=stats.r; 
    stats=regstats(x6.HbO(:,i),mean(x6.HbO(:,:),2)); 
    x6_new.HbO(:,i)=stats.r; 
    stats=regstats(x7.HbO(:,i),mean(x7.HbO(:,:),2)); 
    x7_new.HbO(:,i)=stats.r; 
    stats=regstats(x9.HbO(:,i),mean(x9.HbO(:,:),2)); 
    x9_new.HbO(:,i)=stats.r; 
    stats=regstats(x10.HbO(:,i),mean(x10.HbO(:,:),2)); 
    x10_new.HbO(:,i)=stats.r; 
    stats=regstats(x11.HbO(:,i),mean(x11.HbO(:,:),2)); 
    x11_new.HbO(:,i)=stats.r; 
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    stats=regstats(x12.HbO(:,i),mean(x12.HbO(:,:),2)); 
    x12_new.HbO(:,i)=stats.r; 
    stats=regstats(x13.HbO(:,i),mean(x13.HbO(:,:),2)); 
    x13_new.HbO(:,i)=stats.r; 
     stats=regstats(x14.HbO(:,i),mean(x14.HbO(:,:),2)); 
    x14_new.HbO(:,i)=stats.r; 
     stats=regstats(x15.HbO(:,i),mean(x15.HbO(:,:),2)); 
    x15_new.HbO(:,i)=stats.r; 
     stats=regstats(x16.HbO(:,i),mean(x16.HbO(:,:),2)); 
    x16_new.HbO(:,i)=stats.r; 
  
 end 
xhbo{1,1}=x1_new.HbO; 
xhbo{1,2}=x2_new.HbO; 
xhbo{1,3}=x3_new.HbO; 
xhbo{1,4}=x4_new.HbO; 
xhbo{1,5}=x5_new.HbO; 
xhbo{1,6}=x6_new.HbO; 
xhbo{1,7}=x7_new.HbO; 
xhbo{1,8}=x8_new.HbO; 
xhbo{1,9}=x9_new.HbO; 
xhbo{1,10}=x10_new.HbO; 
xhbo{1,11}=x11_new.HbO; 
xhbo{1,12}=x12_new.HbO; 
xhbo{1,13}=x13_new.HbO; 
xhbo{1,14}=x14_new.HbO; 
xhbo{1,15}=x15_new.HbO; 
xhbo{1,16}=x16_new.HbO; 
  
for i=1:133 %% global signal regression 
    stats=regstats(y1.HbO(:,i),mean(y1.HbO(:,:),2)); 
    y1_new.HbO(:,i)=stats.r; 
    stats=regstats(y8.HbO(:,i),mean(y8.HbO(:,:),2)); 
    y8_new.HbO(:,i)=stats.r; 
    stats=regstats(y2.HbO(:,i),mean(y2.HbO(:,:),2)); 
    y2_new.HbO(:,i)=stats.r; 
    stats=regstats(y3.HbO(:,i),mean(y3.HbO(:,:),2)); 
    y3_new.HbO(:,i)=stats.r; 
    stats=regstats(y4.HbO(:,i),mean(y4.HbO(:,:),2)); 
    y4_new.HbO(:,i)=stats.r; 
    stats=regstats(y5.HbO(:,i),mean(y5.HbO(:,:),2)); 
    y5_new.HbO(:,i)=stats.r; 
    stats=regstats(y6.HbO(:,i),mean(y6.HbO(:,:),2)); 
    y6_new.HbO(:,i)=stats.r; 
    stats=regstats(y7.HbO(:,i),mean(y7.HbO(:,:),2)); 
    y7_new.HbO(:,i)=stats.r; 
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    stats=regstats(y9.HbO(:,i),mean(y9.HbO(:,:),2)); 
    y9_new.HbO(:,i)=stats.r; 
    stats=regstats(y10.HbO(:,i),mean(y10.HbO(:,:),2)); 
    y10_new.HbO(:,i)=stats.r; 
    stats=regstats(y11.HbO(:,i),mean(y11.HbO(:,:),2)); 
    y11_new.HbO(:,i)=stats.r; 
    stats=regstats(y12.HbO(:,i),mean(y12.HbO(:,:),2)); 
    y12_new.HbO(:,i)=stats.r; 
    stats=regstats(y13.HbO(:,i),mean(y13.HbO(:,:),2)); 
    y13_new.HbO(:,i)=stats.r; 
     stats=regstats(y14.HbO(:,i),mean(y14.HbO(:,:),2)); 
    y14_new.HbO(:,i)=stats.r; 
     stats=regstats(y15.HbO(:,i),mean(y15.HbO(:,:),2)); 
    y15_new.HbO(:,i)=stats.r; 
     stats=regstats(y16.HbO(:,i),mean(y16.HbO(:,:),2)); 
    y16_new.HbO(:,i)=stats.r; 
end 
yhbo{1,1}=y1_new.HbO; 
yhbo{1,2}=y2_new.HbO; 
yhbo{1,3}=y3_new.HbO; 
yhbo{1,4}=y4_new.HbO; 
yhbo{1,5}=y5_new.HbO; 
yhbo{1,6}=y6_new.HbO; 
yhbo{1,7}=y7_new.HbO; 
yhbo{1,8}=y8_new.HbO; 
yhbo{1,9}=y9_new.HbO; 
yhbo{1,10}=y10_new.HbO; 
yhbo{1,11}=y11_new.HbO; 
yhbo{1,12}=y12_new.HbO; 
yhbo{1,13}=y13_new.HbO; 
yhbo{1,14}=y14_new.HbO; 
yhbo{1,15}=y15_new.HbO; 
yhbo{1,16}=y16_new.HbO; 
 
 fs = 8.13; 
stim=[60 84 113 139 168 192]; 
dura=[ 14 14 14 14 14 14]; 
mod=[1 1 1 1 1 1]; 
for i=1:16 
    y=xhbo{1,i}; 
        [beta_pain_rightleg(i,:,:)] = glm(y, {stim}, {dura}, {mod}, 1, 0, fs); 
    end 
for i = 1:16 
    y=yhbo{1,i}; 
        [beta_pain_leftleg(i,:,:)] = glm(y, {stim}, {dura}, {mod}, 1, 0, fs); 
end  
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Appendix D 

 

Matlab code for Back-Reconstruction of Individual Resting-state functional networks by 

correlation approach 
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load('D:\chronic pain subjects hb data\group_ica_combined40components'); 
l1=length(x1_new.HbO); 
l2=length(x2_new.HbO); 
l3=length(x3_new.HbO); 
l4=length(x4_new.HbO); 
l5=length(x5_new.HbO); 
l6=length(x6_new.HbO); 
l7=length(x7_new.HbO); 
l8=length(x8_new.HbO); 
l9=length(x9_new.HbO); 
l10=length(x10_new.HbO); 
l11=length(x11_new.HbO); 
l12=length(x12_new.HbO); 
l13=length(y1_new.HbO); 
l14=length(y2_new.HbO); 
l15=length(y3_new.HbO); 
l16=length(y4_new.HbO); 
l17=length(y5_new.HbO); 
l18=length(y6_new.HbO); 
l19=length(y7_new.HbO); 
l20=length(y8_new.HbO); 
l21=length(y9_new.HbO); 
l22=length(y10_new.HbO); 
l23=length(y11_new.HbO); 
l24=length(y12_new.HbO); 
  
s1=ICcombined_ica(:,1:l1); 
s2=ICcombined_ica(:,l1+1:l1+l2); 
s3=ICcombined_ica(:,l1+l2+1:l1+l2+l3); 
s4=ICcombined_ica(:,l1+l2+l3+1:l1+l2+l3+l4); 
s5=ICcombined_ica(:,l1+l2+l3+l4+1:l1+l2+l3+l4+l5); 
s6=ICcombined_ica(:,l1+l2+l3+l4+l5+1:l1+l2+l3+l4+l5+l6); 
s7=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+1:l1+l2+l3+l4+l5+l6+l7); 
s8=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+1:l1+l2+l3+l4+l5+l6+l7+l8); 
s9=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+1:l1+l2+l3+l4+l5+l6+l7+l8+l9); 
s10=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10); 
s11=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10
+l11); 
s12=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+1:l1+l2+l3+l4+l5+l6+l7+l8+l9
+l10+l11+l12); 
s13=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+1:l1+l2+l3+l4+l5+l6+l7+l
8+l9+l10+l11+l12+l13); 
s14=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+1:l1+l2+l3+l4+l5+l6
+l7+l8+l9+l10+l11+l12+l13+l14); 
s15=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+1:l1+l2+l3+l4+l
5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15); 
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s16=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+1:l1+l2+l3+
l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16); 
s17=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+1:l1+l2
+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17); 
s18=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+1:l
1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18); 
s19=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l1
8+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18+l19); 
s20=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l1
8+l19+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18+l19+l20); 
s21=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l1
8+l19+l20+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18+l19+l20
+l21); 
s22=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l1
8+l19+l20+l21+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18+l19
+l20+l21+l22); 
s23=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l1
8+l19+l20+l21+l22+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l18
+l19+l20+l21+l22+l23); 
s24=ICcombined_ica(:,l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17+l1
8+l19+l20+l21+l22+l23+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10+l11+l12+l13+l14+l15+l16+l17
+l18+l19+l20+l21+l22+l23+l24); 
  
for i=1:1:40 
    for j=1:1:133 
         temp=corrcoef(s1(i,:),x1_new.HbO(:,j)'); 
        corr_s_pain(i,j,1)=temp(1,2); 
         temp=corrcoef(s2(i,:),x2_new.HbO(:,j)'); 
        corr_s_pain(i,j,2)=temp(1,2); 
         temp=corrcoef(s3(i,:),x3_new.HbO(:,j)'); 
        corr_s_pain(i,j,3)=temp(1,2); 
         temp=corrcoef(s4(i,:),x4_new.HbO(:,j)'); 
        corr_s_pain(i,j,4)=temp(1,2); 
         temp=corrcoef(s5(i,:),x5_new.HbO(:,j)'); 
        corr_s_pain(i,j,5)=temp(1,2); 
         temp=corrcoef(s6(i,:),x6_new.HbO(:,j)'); 
        corr_s_pain(i,j,6)=temp(1,2); 
         temp=corrcoef(s7(i,:),x7_new.HbO(:,j)'); 
        corr_s_pain(i,j,7)=temp(1,2); 
         temp=corrcoef(s8(i,:),x8_new.HbO(:,j)'); 
        corr_s_pain(i,j,8)=temp(1,2); 
         temp=corrcoef(s9(i,:),x9_new.HbO(:,j)'); 
        corr_s_pain(i,j,9)=temp(1,2); 
         temp=corrcoef(s10(i,:),x10_new.HbO(:,j)'); 
        corr_s_pain(i,j,10)=temp(1,2); 
         temp=corrcoef(s11(i,:),x11_new.HbO(:,j)'); 
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        corr_s_pain(i,j,11)=temp(1,2); 
         temp=corrcoef(s12(i,:),x12_new.HbO(:,j)'); 
        corr_s_pain(i,j,12)=temp(1,2); 
        
        temp=corrcoef(s13(i,:),y1_new.HbO(:,j)'); 
        corr_s_control(i,j,1)=temp(1,2); 
         temp=corrcoef(s14(i,:),y2_new.HbO(:,j)'); 
        corr_s_control(i,j,2)=temp(1,2); 
         temp=corrcoef(s15(i,:),y3_new.HbO(:,j)'); 
        corr_s_control(i,j,3)=temp(1,2); 
         temp=corrcoef(s16(i,:),y4_new.HbO(:,j)'); 
        corr_s_control(i,j,4)=temp(1,2); 
         temp=corrcoef(s17(i,:),y5_new.HbO(:,j)'); 
        corr_s_control(i,j,5)=temp(1,2); 
         temp=corrcoef(s18(i,:),y6_new.HbO(:,j)'); 
        corr_s_control(i,j,6)=temp(1,2); 
         temp=corrcoef(s19(i,:),y7_new.HbO(:,j)'); 
        corr_s_control(i,j,7)=temp(1,2); 
         temp=corrcoef(s20(i,:),y8_new.HbO(:,j)'); 
        corr_s_control(i,j,8)=temp(1,2); 
         temp=corrcoef(s21(i,:),y9_new.HbO(:,j)'); 
        corr_s_control(i,j,9)=temp(1,2); 
         temp=corrcoef(s22(i,:),y10_new.HbO(:,j)'); 
        corr_s_control(i,j,10)=temp(1,2); 
         temp=corrcoef(s23(i,:),y11_new.HbO(:,j)'); 
        corr_s_control(i,j,11)=temp(1,2); 
         temp=corrcoef(s24(i,:),y12_new.HbO(:,j)'); 
        corr_s_control(i,j,12)=temp(1,2); 
  
    end 
end 
  
corr_s_control_z=0.5*log((1+corr_s_control)./(1-corr_s_control)); 
  
mean_corr_s_control=mean(corr_s_control,3); 
mean_corr_s_control_z=mean(corr_s_control_z,3); 
  
 
for i=1:40 
for j=1:133 
    [h_z_control(i,j),p_z_control(i,j),ci,stats] = ttest(corr_s_control_z(i,j,:),0,0.01); 
    t_z_control(i,j)=stats.tstat; 
end 
end 
  
% for i=1:40 
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% value=mean_corr_s_control(i,:)'; 
% EasyTop_rot 
%  
% end 
  
corr_s_pain_z=0.5*log((1+corr_s_pain)./(1-corr_s_pain)); 
  
mean_corr_s_pain=mean(corr_s_pain,3); 
mean_corr_s_pain_z=mean(corr_s_pain_z,3); 
  
 
for i=1:40 
for j=1:133 
    [h_z_pain(i,j),p_z_pain(i,j),ci,stats] = ttest(corr_s_pain_z(i,j,1:12),0,0.01); 
    t_z_pain(i,j)=stats.tstat; 
end 
end 
  
 
for i=1:40 
for j=1:133 
    [h_z_diff(i,j),p_z_diff(i,j),ci,stats] = 
ttest2(corr_s_control_z(i,j,1:12),corr_s_pain_z(i,j,1:12),0.01); 
    t_z_diff(i,j)=stats.tstat; 
end 
end 
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