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ABSTRACT 

THERMAL MODELING AND MEASUREMENTS OF LI-ION BASED ENERGY STORAGE 

DEVICES 

Krishna Shah 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Ankur Jain 

Heat transfer is of significant importance in energy conversion and storage devices such as 

Lithium-ion batteries for its safe operation and performance. Li-ion batteries are considered to be 

the state of the art among the energy storage devices due to their very high energy density and high 

power density. However, the safety of Li-ion batteries has become a concern in light of recent 

incidents, where there have been catastrophic events reported due to overheating of large battery 

packs. It is imperative to fully understand the nature of thermal transport in Li-ion cells. However, 

this has not been explored in detail  yet. 

Recent findings have suggested very large thermal conductivity anisotropy in cylindrical 

Li-ion batteries. In order to make accurate predictions of thermal behavior of the Li-ion cell, it is 

very important for thermal models to account for such a high degree of anisotropy.  

In the present work, analytical steady state and transient thermal models have been 

developed for a cylindrical Li-ion cell. These models can be used as a tool to optimize design 

parameters and provide directions for further research in improving heat transfer inside a cell for 

improved safety. 

A key conclusion from this thermal modeling work is the presence of a very large 

temperature gradient inside the battery, which indicates poor heat transfer from the core to the 
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surface of a cell, even if cooled aggressively at the surface. This can be explained by a thermal 

resistor model where the radial conduction resistance is shown to be the rate limiting factor in heat 

dissipation. 

From the thermal modeling work, it appears that the heat from the core of the cell isn’t 

being effectively transferred to the surface. This can be due to the large thermal resistance offered 

by the battery material which the heat has to propagate through. If an axial fluidic channel is 

provided through the core of the cell, it can significantly improve heat removal from the core of 

the cell.  

Fluid flow through an annular channel is a promising strategy for cooling a Li-ion cell. A 

simplified analytical model is developed to understand this in detail. The model predicts 

temperature rise inside a cell as a function of average convective heat transfer coefficient over the 

channel surface and the size of the channel. Gain in terms of higher charge/discharge rate due to 

the effective cooling is also estimated. Reduction in temperature rise or increase in power density 

is also compared against the reduction in energy density as a function of channel size. 

A related fundamental problem of conjugate heat transfer is solved. A classical example of 

such a problem is flow in a thick tube, which is similar  to the problem of the proposed design of 

a Li-ion battery with an axial fluidic channel. A framework is proposed to solve conjugate heat 

transfer problem and is demonstrated by solving a couple of commonly occurring conjugate heat 

transfer problems in reality. The method is validated with a well validated past model and finite 

element solver. 

Experimental demonstration of the conceptual design of a Li-ion cell with an annular 

channel has been done on a thermal test cell. Various cooling strategies, active as well as passive, 

have been implemented, evaluated and compared. Active cooling is demonstrated by passing air 
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through the channel in the thermal test cell. For passive cooling, a heat pipe/copper rod is inserted 

in the channel with the tip protruding outside the cell. The results from this work show 

effectiveness of internal cooling of a Li-ion cell over convectional external cooling.  

Thermal runaway leads to catastrophic events in energy storage devices with high energy 

density, such as a pack of Li-ion cells. An experimentally validated thermal model is developed to 

capture the nonlinear nature of heat generation in a Li-ion cell due to the temperature dependent 

behavior of exothermic electrochemical reactions. The thermal modeling effort lead to the 

discovery of a non-dimensional number named as Thermal Runaway Number (TRN) which can 

help predict onset of thermal runaway and determine thermal stability of a Li-ion cell. This analysis 

can prove to be crucial to better understand thermal runaway phenomena in Li-ion batteries. 

Further, thermal modeling to compute temperature in Li-ion cell with temperature 

dependent heat generation has also been developed. The model has been experimentally validated 

by simulating temperature dependent heat generation for different values of heat generation 

parameters. Effect of heat transfer parameters on temperature has also been analyzed.     
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CHAPTER 1  

INTRODUCTION 

A significant amount of research has been carried out in the past few 

decades on Li-ion batteries for energy storage. Despite several advantages over 

other energy storage technologies such as high specific energy and energy density 

[1-2], the commercialization of Li-ion battery technology has been slower than 

expected due to risks associated with high temperature operation and other safety-

related concerns. Such concerns have been highlighted in several recent incidents, 

where Li-ion batteries and battery packs have been found to be responsible for fires 

aboard aircrafts [3-4]. These incidents underscore the importance of developing a 

fundamental understanding of the thermal characteristics of Li-ion cells, 

particularly the capability of temperature prediction during the operation of a cell.  

Similar to any other energy storage device, charging or discharging a Li-ion 

battery results in heat generation, which causes an increase in temperature due to 

exothermic electrochemical reactions and Joule heating [5-6].  Heat generation rate 

is known to be a function of depth-of-discharge, temperature and the rate at which 

a cell is charged or discharged, often referred to as C-rate [7].  

There are severe limitations to temperature rise permitted in a Li-ion cell, 

particularly for military applications with high reliability requirements. Thermal 

runaway at high temperature is a well-known problem in Li-ion batteries [8-9]. 

While a small temperature rise is known to actually improve performance due to 

reduced impedance [10], a larger temperature rise results in a series of exothermic 
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reactions associate with certain electrochemical processes including decomposition 

of the Solid-Electrolyte Interface (SEI) [11-12], short circuit due to separator layer 

rupture from dendrite formation, which ultimately leads to catastrophic failure [8]. 

Fundamentally, thermal runaway in a Li-ion cell is a cascade of successive 

processes and reactions that feed into one another through heat generation that 

increases with temperature, eventually leading to explosion and fire [9,13]. 

Pertinent processes in thermal runaway include decomposition of the solid-

electrolyte interface [14], various chemical reactions involving the electrolyte and 

electrode binder [11,15,16], and eventually, decomposition of the electrolyte [17] 

and the positive electrode active material [18]. A large amount of literature is 

available on understanding each of these processes [9,13,14,15,19,20]. In 

particular, the reaction kinetics and heat generation profiles of these processes have 

been widely studied, both theoretically [19] and through experimental 

measurements using tools such as Differential Scanning Calorimetry (DSC) and 

Accelerated Rate Calorimetry (ARC) [14,15,20]. These processes are modeled 

using Arrhenius reaction kinetics, with a reaction rate that increases exponentially 

with temperature [9,13]. Numerical values of these reaction rates and heat 

generation rates, as well as their temperature dependence have been determined 

[13]. Due to these temperature dependent processes and heat generation, Li-ion 

cells must operate in a very narrow temperature window. In addition to absolute 

temperature rise, spatial uniformity of the temperature field is also desirable [21], 

since this prevents imbalance of temperature-dependent electrochemical reaction 
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rates within the cell or battery pack. This makes thermal modeling and thermal 

management of Li-ion cells of great importance.  

Despite the clear importance of thermal management of cylindrical Li-ion 

batteries, only a limited amount of literature is available on thermal management 

and cooling of Li-ion batteries. Only a few studies have reported measurement of 

thermophysical properties such as thermal conductivity and heat capacity of Li-ion 

cells [12, 22]. Early work in this direction did not recognize the strong anisotropy 

in thermal conduction in a Li-ion cell. Recent measurements have reported a 

method for rapid measurement of anisotropic thermal conductivity as well as heat 

capacity of a Li-ion cell [14]. These measurements indicate nearly two orders of 

magnitude difference in the radial and axial thermal conductivities of a Li-ion cell 

[14]. It is important to determine the limits of air/liquid based convective cooling 

approaches [7] and to develop a sound theoretical framework to understand the 

dependence of temperature rise in a convectively cooled Li-ion cell on various 

parameters, such as geometry, cooling, etc. A first step towards effective thermal 

management of Li-ion cells is the capability to accurately model and predict 

temperature fields within an operating cell. The temperature field resulting from 

the heat generation depends on a variety of parameters including geometry, material 

properties, etc. and needs to be modeled accurately. A number of models are 

available for predicting volumetric heat generation rates as a function of electrical 

operating parameters of the cell, ranging from very simple, which assume uniform 

heat generation rate [5], to very sophisticated [9; 21]. Some papers also model 
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volumetric heat generation as a space dependent parameter, accounting for Joule 

heating that occurs primarily at the two current collector tabs, resulting in non-

uniformity, particularly at high discharge rates [9]. Heat generation modeling is 

complicated by the fact that heat generation may vary with time in specific 

applications, if the charge/discharge rate changes [6]. For example, in an electric 

vehicle, changes in demand on the battery due to vehicle acceleration and other 

factors may result in the heat generation rate being a function of time.  

In contrast to heat generation modeling, limited work has been reported on 

temperature field prediction [9, 23-28], which is a more critical parameter for safety 

and performance considerations. While these models provide a basis for 

temperature prediction, there are several shortcomings. Many past models are one-

dimensional [24] and do not account for the spirally-bound geometry of a 

cylindrical Li-ion cell, boundary conditions encountered in actual applications, or 

the thermal conduction anisotropy in a cylindrical cell. Several thermal models of 

a Li-ion cell reported in the recent past treat the cell as a lumped body with a single 

temperature [24,25], which may not be an appropriate assumption for most 

applications. Three-dimensional thermal models for a Li-ion cell have been 

presented [26], but this model is solved numerically, and does not offer analytical, 

closed-form solutions for the temperature field. Some recent work accounts for the 

spiral nature of the electrodes in a cylindrical Li-ion cell [29], but this work neglects 

the axial dimension of the cell and does not present a closed-form analytical 

solution. Recent work has presented analytical models for temperature distribution 
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in prismatic Li-ion cells [27,28], but these models do not readily apply to a 

cylindrical geometry, where heat transfer characteristics are fundamentally 

different from a prismatic cell. 

The operation of a Li-ion cell is inherently a transient thermal phenomenon. 

As a Li-ion cell is charged and discharged at a rate that changes with time based on 

variations in load requirements and power availability, the heat generation rate 

within a Li-ion cell also changes as a function of time. For example, a sudden 

increase in power demand may produce pulsed spikes in the heat generation rate in 

the cell as a function of time, due to which the cell temperature may also rise. 

Depending on the thermal mass of the cell and the C-rate, a steady-state may never 

actually be reached, and the entire operation of the cell may be transient in nature. 

In such a case, it is important to predict the nature of temperature spikes in response 

to changes in C-rates, so that appropriate thermal management mechanisms may be 

designed. This highlights the need for a thorough fundamental understanding of the 

transient thermal behavior of a Li-ion cell and the capability to predict temperature 

rise as a function of time due to time-varying heat generation rate.  

Some research has also been carried out on thermal modeling and 

measurements for Li-ion cells in thermal runaway situations [19, 8,30, 31, 32, 

33,34]. Analytical methods and simulation tools [19,8,17,18,30,31] have been used 

for modeling thermal behavior of a cell at elevated temperatures. Experiments have 

been carried out to measure temperature of a cell or an appropriate thermal 

surrogate [32,33] during runaway. However, not much work has been carried out 
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on connecting heat removal and heat generation processes that occur during thermal 

runaway. While heat generation is a function of the chemical reactions occurring 

within the cell, heat removal from the cell comprises of two processes that occur in 

series [35,36,37] – thermal conduction within the cell to its outside surface, and 

heat removal which is usually through convection from the outside surface to the 

ambient. The nature of interaction between these heat generation and heat transfer 

processes eventually determines the thermal state of the cell, and whether thermal 

runaway occurs or not. It is critical to model both in a holistic fashion to better 

understand thermal runaway, and design the means to prevent thermal runaway. 

Specifically, it is of interest to determine how thermal transport properties of the 

cell and its ambient conditions influence and govern the occurrence of thermal 

runaway. Such experimentally-verified theoretical limits on the occurrence or 

avoidance of thermal runaway may result in valuable design tools for safety of Li-

ion cells. 

The interaction between heat generation and heat removal has been 

represented in past papers in the form of a Semenov plot [37,38], that compares the 

rates of heat generation and heat removal as functions of the temperature of the cell. 

A Semenov plot uses the imbalance between the two processes – which increase 

linearly and exponentially respectively as functions of temperature – as the basis 

for predicting thermal runaway [37,38]. However, this approach assumes the cell 

to be a lumped thermal mass with uniform temperature throughout the cell volume. 

As shown by recent measurements [39,40], this may not be an accurate assumption. 
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As a consequence, the Semenov analysis predicts the thermal runaway process to 

be independent of the thermal conductivity of the cell, which is not accurate in 

several cases. For example, the Biot number [41] for a typical 26650 cell in natural 

convection conditions can be estimated to be 2-6.5, based on recent thermal 

conductivity measurements of the cell [22,42]. A value of Bi>1 indicates strong 

temperature gradients within the cell, making the lumped mass based Semenov 

analysis inaccurate. Because the Semenov approach neglects heat transfer within 

the cell, it has not been possible so far to predict the internal and external thermal 

conditions needed to prevent thermal runaway for a specific cell chemistry, with 

well-known chemical kinetics and heat generation rates as functions of 

temperature. Accounting for this phenomenon will help optimize materials design 

from a thermal perspective, and help maintain a balance between internal and 

external heat transfer for avoiding thermal runaway. 

In the present work, a cell-level steady-state analytical thermal model for a 

cylindrical Li-ion cell being cooled on the outside surface by convective flow is 

presented. Thermal conduction anisotropy within the cell is modeled. Closed-form 

analytical solutions for both uniform and space-dependent heat generation rates are 

presented. An analytical solution to the energy conservation equations that govern 

transient thermal transport within a heat-generating cylindrical Li-ion cell is also 

described and implemented to develop a transient model. This approach results in 

expressions for the temperature field in the cell due to time-varying heat generation 

rate. This experimentally-validated analytical model is used to develop an 
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understanding of the role of various physical parameters on transient temperature 

rise. The thermal response of the cell to a spike in heat generation, and to a sequence 

of multiple discharge-charge cycles is also investigated. Various trade-offs between 

thermal design and other cell-level design considerations are identified. 

 The Steady-state and transient models for the thermal conduction within a 

cylindrical Li-ion cell highlight the importance of radial thermal conductance 

within the cell in determining the temperature field of the cell. One particular 

challenge in the cooling of cylindrical Li-ion cells is that while the radial outer 

surface is most commonly available for heat dissipation, thermal conductance 

within the cell in the radial direction is particularly poor. Cooling at the outer 

surfaces is likely to be ineffective for the core regions of the cell, which are farthest 

from the outer surface. Due to the relatively large axial thermal conductivity, axial 

conduction within the cell may provide an effective heat dissipation pathway. 

However, the two outer surfaces at the axial ends of the cylinder are normally used 

for connecting to the anode and cathode, and are not available for heat dissipation.  

Theoretical and experimental analysis has also been carried out to 

investigate thermal runaway in Li-ion cells by extending the Semenov analysis to 

account for heat transfer within the cell. The governing energy conservation 

equation that accounts for both heat generation and heat removal processes is 

solved to determine a non-dimensional parameter – named the Thermal Runaway 

Number (TRN) – whose value is shown to govern if thermal runaway occurs. This 

parameter includes contributions from heat transfer processes within and outside 
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the cell, as well as the rate of increase in heat generation with temperature. Results 

indicate that thermal conductivity within the cell is a critical thermal property 

governing runaway. Experiments that implement a temperature-dependent heat 

generation with a controllable temperature slope are carried out to validate the 

theoretical model. These experimental data are in good agreement with theoretical 

results, and demonstrate successful avoidance of thermal runaway through changes 

in the convective heat transfer coefficient external to the cell. Design guidelines 

that predict the parameter space in which thermal runaway is prevented are 

developed using the model. The experimentally-verified fundamental insights in 

this paper may lead to design guidelines for thermal properties of the cell and its 

ambient for prevention of thermal runaway. 

In addition to thermal runaway analysis, a non-linear semi-analytical 

thermal model has been developed. This thermal model can be utilized for both 

nominal and thermal abuse conditions to compute temperature field in a cell. Thus, 

this if conditions favorable to thermal runaway exist. The model is based on 

solution of non-linear heat equation with piecewise linear heat generation profile, 

with respect to temperature. The model is validated experimentally by simulating 

temperature dependent heat generation in a thermal test cell. The simulated 

temperature dependent heat generation has been made to behave similar to 

exothermic heat generation in a Li-ion cell. The model is used to analyze effect of 

various heat generation, heat transfer and heat dissipation parameters on the thermal 

state and temperature of the cell. Effect of high discharge rate in pushing a cell into 
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thermal runaway has been shown by the model. In addition, simulation of thermal 

abuse such as oven test is also demonstrated using this model. Finally, this model 

has been utilized in determining thermal thresholds in terms of various parameters 

in heat generation, heat transfer and heat dissipation. Such analysis and the model 

presented in this work can also help determine guidelines for future considerations 

as this technology continues to develop. 

Overheating is a key issue in Li-ion based energy storage devices, which 

raises safety related concerns. This makes thermal management of Li-ion cells 

technologically important. A variety of approaches for cell cooling have been 

investigated. Convective cooling with air or liquid flow over the cell [43], and 

coldplate [44] cooling are two commonly used approaches. Thermal management 

using phase change materials (PCMs) and microchannel fluid flow have also been 

investigated [45-47]. Fundamentally, the process of heat removal from a Li-ion cell 

is a two-step process – heat generated inside the cell is first conducted to the outside 

surface of the cell, followed by heat removal from the surface [35]. The second step 

of this process occurs typically through convection with a coolant, such as air, or 

conduction through the surrounding material of the battery pack. It has been shown 

that thermal conduction within the Li-ion cell is usually the slower, and hence rate-

determining step [35]. This emanates from the poor thermal conductivity of the Li-

ion cell, particularly in the direction normal to the electrodes [48]. This makes it 

particularly difficult to remove heat generated in the core of the cell, resulting in a 

hot core and a large temperature gradient within the cell. Measurements have shown 
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as much as 24 °C temperature gradient between the core and outer surface of a 

26650 cell at 10C discharge rate [39]. While a phase change material may address 

short transient power spikes, this approach does not address the problem of steady-

state thermal management of Li-ion cells. This approach may also be difficult to 

integrate with the manufacturing of Li-ion cells and may interfere with the 

performance of the cell. Finally, inclusion of any non-electrochemical material 

inside the cell will reduce energy storage capacity. An alternative possible approach 

is to provide a through-hole along the axis of the cell and flow a liquid or gas 

coolant through this channel. This opens up a new mechanism for heat removal 

which reaches the core of the cell, making it more effective than cooling the outer 

surface. However, this results in reduced cell capacity, since the cell volume is 

reduced. In view of this trade-off, it is important to carry out a comprehensive 

thermal analysis to fully understand the thermal benefits of coolant flow in an 

annular Li-ion cell, and compare these benefits with costs associated with reduced 

cell capacity. Such an exercise may help determine the feasibility of this thermal 

management approach, and develop practical guidelines for multi-physics 

optimization design and operation of Li-ion cells.  

As a part of the present work, analytical models for determining the steady-

state and transient temperature distributions in a heat-generating annular Li-ion cell 

containing an axial through-hole with coolant flow are developed. The effect of the 

coolant is modeled using a convective heat transfer coefficient at the inner wall. 

The governing energy conservation equations are solved to derive an expression 

for steady-state and transient temperature distributions. Results are in excellent 
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agreement with finite-element simulations. The effect of various thermal 

parameters, including convective boundary conditions and precooling of the 

coolant, on temperature distribution is examined. It is shown that precooling 

provides limited benefit in thermal performance of the cell.  It is shown that the 

provision of axial cooling reduces the cell temperature, making it possible for the 

cell to dissipate more heat. This provides additional thermal head that may be used 

to operate the cell at a higher C-rate. This can be viewed as a trade-off between the 

energy and power capacities of the cell. By quantifying this trade-off, this work 

contributes towards a comprehensive multi-physics understanding of this type of 

Li-ion cell thermal management approach. 

Following up on modeling efforts, experimental work is also done to 

evaluate and demonstrate core cooling of Li-ion cell. It investigates thermal 

management of a Li-ion cell utilizing cooling through a hollow tube passing 

through the cell. The effectiveness of cooling a thermal test cell through internal air 

flow, as well as heat pipe and metal rod insertion is experimentally investigated. A 

thermal test cell of the same dimensions as a 26650 Li-ion cell, and similar thermal 

properties is fabricated. Heat generation in the test cell through Joule heating is 

used to mimic electrochemical heating in a Li-ion cell. Experimental data is shown 

to be in good agreement with finite-element simulation results. This approach is 

shown to result in effective cooling of the Li-ion cell due to the direct access that 

this provides to the core of the cell. Despite the manufacturing challenges and 

thermal-electrochemical trades that an embedded heat pipe may present, the 
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dramatic improvement in thermal management may make this an attractive 

approach for thermal management of Li-ion cells. 

The analytical model developed for an annular cylinder to model a Li-ion 

with axial fluidic channel led to a more fundamental problem of conjugate heat 

transfer. Conjugate heat transfer involving coupled conduction and convection is 

of significance in many engineering systems. A large volume of past research [50-

63] has been devoted to solving temperature fields for a fluid flowing in contact 

with a solid body, wherein thermal convection within the fluid domain occurs in 

conjunction with conduction within the solid domain. While the effect of 

conduction in the solid body is important in the thermally developing fluid region 

[51,64], it is also clearly important in case of internal heat generation in the solid 

that is being convected by the flowing fluid [65]. This makes it critical to develop 

analytical solutions for conjugate problems involving convection in fluid flow and 

conduction in a solid which is in contact with the fluid flow. Problems involving 

external flow and internal flow are both of interest. 

Derivation of solutions for convection-only or conduction-only problems is 

relatively straightforward. Well-known solutions exist for specific boundary 

conditions such as constant temperature or constant heat flux [50,53-54]. Similarly, 

theoretical solutions for a variety of conductions problems are also available 

[66,67]. However, analytical derivation of temperature distribution in conjugate 

problems is a lot more challenging [68]. A fundamental problem underlying several 

conjugate heat transfer problems was first solved by Graetz [52-53], who derived 
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an analytical expression for temperature in a fluid flowing through a duct with 

constant temperature boundary condition, assuming that the flow is 

hydrodynamically developed and thermally developing. Analytical expressions for 

eigenvalues and eigenfunctions for this solution have been computed [56], and this 

solution has been used to derive the solution for a more general problem with 

continuously or discretely varying wall temperature using linear superimposition 

[52,56-57].  Boundary layer solution for fluid flow over a plate for thermal 

boundary layer non-similarity arising from both velocity field and streamwise 

variation of temperature have been analyzed [55]. The case of constant or axially 

varying wall heat flux has also been analyzed. While axial conduction in the fluid 

is mostly neglected, some papers have accounted for this phenomenon [58,69], 

which is relevant for specific technological applications.  

While the classical convection problems for internal and external flows do 

not consider thermal conduction within the solid body in contact with the fluid flow, 

solutions to these problems provide the building blocks for deriving temperature 

distributions in conjugate problems, where thermal conduction in the solid and 

thermal convection in the fluid must be considered simultaneously. A number of 

approaches have been presented for solving this conjugate problem. A series form 

of the wall temperature has been assumed, and energy conservation at the solid-

liquid interface has been used to derive expressions for coefficients of the series 

form [59-60,70]. This results in analytical expressions for the entire temperature 

distribution. In particular, expressions for pipe flow [59], a plate in liquid or gas 
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flow [60-61], flow between parallel plates [59,71] and for turbulent flows [69] have 

been presented. A solution for the conjugate problem of flow over a flat plate has 

also been presented using the method of the asymptotic solution of singular integral 

equations [62]. In addition to such approaches, the integral transform technique has 

also been used for solving conjugated heat transfer problems [72-73]. Semi-

analytical [74-78] and purely numerical [79-81] techniques have also been used. 

These papers utilize discretization based on finite-element or finite-difference 

based methods. 

This work presents a solution for the conjugate heat transfer problem using 

an iterative approach that utilizes analytical solutions of both conduction and 

convection problems solved independently. Solutions to these two sub-problems 

are coupled with each other through temperature continuity and energy 

conservation at the solid-liquid interface. Both internal and external flow problems 

are addressed. In this method, the temperature at the interface between adjacent 

layers is assumed, based on which the temperature distribution in each layer is 

determined analytically. Using energy conservation at the interface between 

adjacent layers, the interface temperature distribution is determined. This is then  

used to iteratively improve the wall temperature distribution until reasonable 

convergence. Such an approach has been used in the past for analytical 

determination of temperature distribution in thermal conduction problems in a 

multi-layer solid body [82-84]. In addition, a few papers have also utilized a similar 

iterative method for semi-analytical solution of conjugate heat transfer problems, 
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wherein a finite-element or finite-difference discretization approach is used to 

numerically solve the thermal conduction problem [76-78,84]. The present 

approach determines both fluid and solid temperature distributions analytically. 

This results in reduced mathematical complexity compared to classical, non-

iterative approaches [59-61,69,72], without the need to resort to discretization and 

numerical techniques used in past semi-analytical approaches [74-78]. It is found 

that only a small number of iterations are sufficient for reasonable convergence of 

results. The iterative method is utilized to analyze conjugate heat transfer in two 

specific problems – the cooling of a hollow heat generating cylinder with 

anisotropic thermal conductivity, and the cooling of a heat generating solid block 

due to fluid flow over the block. 
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Abstract 

While Lithium-ion batteries have the potential to serve as an excellent means of 

energy storage, they suffer from several operational safety concerns. Temperature 

excursion beyond a specified limit for a Lithium-ion battery triggers a sequence of 

decomposition, and release, which can preclude thermal runaway events and 

catastrophic failure. As a result, electronic controls and liquid or air-based 

convective cooling are often provided, particularly in high-rate discharge 

applications where significant heat generation is expected.  To optimize these 

approaches, it is important to accurately model the thermal response of Lithium-

ion batteries to convective cooling. This manuscript presents closed-form analytical 

solutions for the steady-state temperature profile in convectively cooled cylindrical 

Lithium-ion batteries. These models account for the strongly anisotropic thermal 

conductivity of cylindrical Lithium-ion batteries due to the spirally wound 

electrode assembly. Model results are in excellent agreement with experimentally 

measured temperature rise in a thermal test cell. Results indicate that improvement 

in radial thermal conductivity and improvement in the axial convective heat transfer 

coefficient may result in significant peak temperature reduction. Battery sizing 

optimization using the analytical model is discussed, indicating the dependence of 

thermal performance of the cell on its size and aspect ratio. Results presented in 

this manuscript are expected to aid in accurate thermal design and thermal 

management of Lithium-ion batteries. 

Keywords: Lithium-Ion Batteries, Convective Cooling, Thermal Management, 

Safety, Thermal Runaway.  
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2.1 Analytical Model: Uniform Heat Generation 

Consider a cylindrical Lithium-ion battery of radius R and height H shown 

schematically in Figure 2.1. Volumetric heat generation rate Q is assumed within 

the cell due to electrochemical reactions and Joule heating. In this Section, Q is 

assumed to be spatially uniform, whereas Section 3 considers the case where Q may 

be a function of space. It is assumed that the outside surfaces of the cell are being 

cooled with heat transfer coefficients of hr and hz for the curved surface and the end 

surfaces respectively. 

 
Figure 2.1: Schematic diagram showing battery geometry and thermal parameters 

for the analytical thermal model. Q may be uniform (Section 1.1) or may vary 
radially/axially (Section 22.2). 

 
The ambient temperature for convective cooling is assumed to be T0. The 

thermal conductivities in radial and axial directions are assumed to be kr and kz 

respectively. Recent measurements show that kr and kz differ by nearly two orders 
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of magnitude [22], thereby indicating the importance of anisotropic modeling of 

thermal conductivity in a cylindrical Li-ion cell. The governing steady state energy 

conservation equation in this case is given by 
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where θ(r,z) is the temperature rise above ambient, given by 
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Equation (1) is a non-homogeneous partial differential equation subject to four 
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 θ
θ

z

z

k

h

z
=

∂

∂
 at z = 0                        (3) 

 θ
θ

z

z

k

h

z
−=

∂

∂
 at z = H                      (4) 

 0=
∂

∂

r

θ
 at r = 0                       (5) 

 θ
θ

r

r

k

h

r
−=

∂

∂
 at r = R                      (6) 

The boundary conditions in equation (5) represent the requirement of symmetry 

and finiteness of the temperature profile at r=0, whereas boundary condition in 

equations (3), (4) and (6) represent energy balance at the respective surface. 
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The final solution is given by  
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The eigenvalues µn are obtained from roots of the transcendental equation  
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where γ is the degree of anisotropy given by 
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For the case of Li-ion batteries, γ is expected to be greater than one. Recent 

measurements indicate a value of γ=200 for 26650 geometry LiFePO4 cells [22]. 

In addition to the peak temperature rise, another important thermal 

parameter of interest is the temperature gradient within the cell, defined as the 

difference between the maximum and minimum temperature. In particular, it is 

desirable to reduce the difference between maximum and minimum temperature in 

a cell, since a gradient leads to performance imbalance, etc. From equation (7), the 

temperature gradient within the cell is given by 
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Equation (14) provides a means to quantify the temperature non-uniformity within 

the cell as a function of various non-dimensional parameters. 

2.2 Analytical Model: Non-Uniform Heat Generation 

Since the rate of electrochemical reactions contributes to heat generation, 

spatial variation in rate of electrochemical reactions may lead to space-dependent 

Q. In such a case, the temperature field in the Li-ion cell continues to be governed 

by equation (1) and boundary conditions (3) - (6), except that the Q term in equation 

(1) is a function of space. Two particular cases of interest are considered in this 

Section: one in which Q is a function of z only, Q(z); and second, in which Q is a 

function of r only, Q(r). 
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2.2.1 Solution for axially varying heat generation rate: 

Any given well-behaved function Q(z) can be approximated by an N-order 

polynomial as follows [85]: 
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where the coefficients ci are chosen appropriately to fit the function Q(z). 

With such a polynomial approximation for Q(z), the function s(z) is given by 
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Equation (18) above, together with equations (8) and (10) - (13) completely define 

the temperature field for axially varying heat generation.  

2.2.2 Solution for radially varying heat generation rate: 

In case the heat generation rate varies in the radial direction, a solution of 

the temperature field may be derived by first approximating Q(r) with a polynomial 

expansion,  
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The solution approach for this case is similar to one described in Section 2 

following equation (7). The solution is given by 
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The eigenvalues µn are determined from roots of the transcendental equation  
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where µn is related to λn through the degree of anisotropy and is given by equations 

using equation (12) - (13). 

Also, s(r) is given by  
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Equations (20) - (23) define the temperature solution in the case of a radially 

varying heat generation. For more details on the derivation of these analytical 

solutions, please refer to [35].   

The next Sections discuss experimental validation of the analytical model, 

and presents a parametric analysis of the dependence of temperature field on 

various parameters including the degree of anisotropy and external convective 
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cooling coefficient. A few design studies enabled by the analytical models are also 

discussed.  

2.3 Experimental Validation 

The temperature model presented in this paper is validated by comparison 

with experimental data. Experimental data on temperature rise at different heating 

powers and analytical model results are both plotted in Figure 2.2. The analytical  

Figure 2.2. Comparison of analytical model with experimental data on 
temperature rise at the outer surface of a 26650 cell at mid-height as a function of 

heating power. 
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model is in good agreement with experimental data, and captures the trend of 

temperature rise as a function of heating power. 

Figure 2.3 Comparison of analytical models presented in Sections 2.1 and 2.2 
with finite-element simulation results for (a) radial temperature variation at z = 

H/2 with uniform heat generation, and (b) axial temperature variation at r = 0 with 
two cases of axially varying heat generation. 

 

In addition, the analytical model presented in this paper is also compared 

with finite-element model (FEM) simulations. Figure 2.3(a) shows the radial 

temperature variation at mid-cell height for uniform heat generation of 6 W over 

the entire cell volume. While the analytical model accounts for any general 

polynomial, Figure 2.3(b) shows the axial temperature variation at r = 0 for two 

specific cases of z-dependent heat generation rate: a linear variation given by  

H

z
QzQ max2)( ⋅=  and a quadratic variation given by 

2

max 2

1
12)( 








−⋅=

H

z
QzQ . In 

each case, the analytical model compares well with FEM results.The temperature 

solution for various cases in Sections 1 and 2 is derived in the form of an infinite 

series. It is found that these series converge very quickly as the number of terms 

increases. Considering only three eigenvalues is sufficient for temperature 

computation with an error of less than 1%. 
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2.4 Results and Discussion 

2.4.1 Dependence of temperature field on γ and hr 

Figure 2.4 shows a steep increase in peak temperature at low values of kr. The 

measured value of kr [22] is indicated with a blue arrow.  

Figure 2.4. Variation of peak temperature rise with radial thermal conductivity of 
battery material, showing significant potential for temperature reduction by 

improving radial thermal conductivity. 
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This figure shows that the greater the degree of anisotropy, the larger is the 

peak temperature rise. There is significant potential for reducing temperature rise 

by improving radial thermal conductivity and, hence, reducing γ . In effect, radial 

conduction is the rate-limiting step in heat dissipation. In most practical cases, 

convective cooling is available at the radial surface at r = R, whereas the top and 

bottom ends are used primarily for electrical interconnection. Finally, since kz has 

been measured to be much larger kr [22], improvement in kr is more beneficial for 

temperature reduction. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Variation of temperature field in a 26650 cell as a function of heat 

transfer coefficient for hr=(i) 10 W/m2K, (ii) 50 W/m2K, (iii) 100 W/m2K, (iv) 

500 W/m2K, (v) 1000 W/m2K, (vi) 1500 W/m2K. 
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Figure 2.5 shows 2D cross-section temperature color plots for various 

values of hr. As the radial convective heat transfer coefficient increases, the cell 

temperature field reduces as expected. However, beyond approximately hr = 1000 

W/m2K, there is negligible incremental improvement in the temperature profile. 

This is further illustrated in Figure 2.6(a) which shows temperature line plots as 

function of r at the cell’s mid-height. These results show that improvement in the 

external convective heat transfer coefficient helps reduce cell temperature, but this 

effect quickly saturates. Beyond a specific value, there is not much further 

improvement. This illustrates the limitation of radial convective cooling 

mechanisms for cylindrical Li-ion cells. The fundamental reason behind this is that 

heat flow from within the cell to the ambient encounters two thermal resistances in 

series – one due to thermal conduction within the cell material, and the second due 

to convective heat transfer at the outside surface of the cell. 

Figure 2.6. 1D Solution for temperature as a function of r at mid-height for 
various values of (a) hr and (b) hz. 

 

In the radial direction, it is the conduction thermal resistance within the cell that is 

dominant, which is caused by a very low value of radial thermal conductivity [22]. 
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As hr increases, the convective heat transfer resistance rapidly becomes negligible 

compared to the conduction resistance, which dominates the thermal response of 

the cell.  

When considering the axial-direction, Figure 2.6(b) shows the temperature 

profiles for different values of hz. As hz increases, the temperature profiles become 

lower and lower, and do not saturate similar to the radial case in Figure 2.6(a). 

These results indicate that there may be significant potential in cooling the Li-ion 

cells from the top and bottom surfaces despite the lower surface area because axial 

conduction within the cell is more effective than radial conduction. Convective heat 

transfer at the axial ends may be complicated by the presence of electrical 

connections. On the other hand, overall heat transfer in the radial direction also 

requires a close examination of the conduction resistance within the cell, which is 

shown to be the slower, rate-determining step in radial conduction. Improvements 

in convective heat transfer at the axial ends, and radial conduction within the cell 

may be effective technological tools for reducing operating temperature in Li-ion 

cells. 

In addition to absolute temperature rise, temperature gradient within a cell 

is also of interest for thermal design of cells. It is desirable to minimize spatial 

variation in temperature within the cell. Temperature variation causes an 

electrochemical imbalance which may reduce cell lifetime and reliability. Figure 

2.7 plots the intra-cell temperature gradient as a function of the radial convective 

heat transfer coefficient hr. It is found that as hr improves, the temperature gradient 

within the cell actually increases. This is because at higher 
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values of hr, heat generation in the region close to the r = R surface gets dissipated 

more and more effectively, whereas heat generation in the core of the cell continues 

to see the internal thermal resistance, which remains unaffected by the improved 

value of hr. This demonstrates that while increasing hr may produce limited 

improvement in the absolute temperature rise, it may actually increase the intra-cell 

temperature gradient. 

Figure 2.7. Effect of radial heat transfer coefficient on intra-cell temperature 

gradient 
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2.4.2 Battery sizing optimization 

Figure 2.8: Effect of battery size on total power and maximum temperature rise, 
assuming constant power density 

 

One application of the analytical models presented in previous Sections for 

battery sizing is presented next. Two particular design optimization problems are 

discussed. The first problem relates to trade-offs between cell power and 

temperature rise as functions of cell size. It is of interest to understand how the cell 

temperature changes as the cell size increases. Figure 2.8 plots the total power and 

temperature rise as functions of the cell radius, assuming that the cell height and 

other parameters remain constant. Figure 2.8 shows that as the cell radius increases 

and aspect ratio H/R decreases, the energy capacity of the cell increases in a 



 33 

quadratic fashion. On the other hand, the peak temperature rise in the cell also 

increases, but the rate of increase with radius slows down after a certain radius. 

This is because assuming constant cell power density based on the packing density 

of the electrode material inside the cell, a larger cell has more storage capacity and 

hence greater total power. On the other hand, increased size also leads to greater 

heat generation, which causes greater temperature rise. The increase in temperature 

with increasing radius however is not as rapid particularly for larger cells because 

a larger cell has larger outer surface available for convective cooling. Figure 2.8 

demonstrates the fundamental trade-off between power storage and thermal 

management. Increasing the cell size makes it more attractive from the power 

perspective, but also exacerbates the thermal management problem. 

While Figure 2.8 examines the effect of increasing the cell size, it is also 

instructive to examine the dependence of peak temperature on the aspect ratio of 

the cell while maintaining the same total volume. In several applications, the cell 

volume is fixed due to system-level considerations, while it might be possible to 

change the aspect ratio within the fixed cell volume. The choice then is whether to 

have a thin and slender cell, or a short and stout cell. For constant total cell volume 

V and hence constant total power capacity, the radius and height are related to each 

other. For a given radius, the height is given by
2R

V
H

π
= . If convective heat transfer 

is limited to only the r = R boundary, then assuming uniform heat generation in the 

cell, the temperature field is given by equation (15), which shows that the peak 

temperature at r = 0 increases as R increases. Thus in this case, it is thermally 
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preferable to have thin cells of high aspect ratio H/R. If on the other hand, 

convective heat transfer occurs at both r = R and the top/bottom faces of the cell, 

then the peak temperature depends on R in a more complicated fashion.  

Figure 2.9: Variation of peak temperature rise as a function of cell radius for fixed 
total cell volume 

 
Figure 2.9 plots peak temperature rise for this case as a function of R for 

fixed total volume, fixed hz, and for different values of the radial convective heat 

transfer coefficient, hr. The total fixed volume is assumed to be that of a 26650 cell. 

Figure 2.9 shows that there is a radius at which the temperature rise attains a 

maximum. This could be considered a worst-case radius, which roughly 

corresponds to the radius that minimizes the integral of heat transfer coefficient 

with respect to area over all surfaces. Note that the worst-case radius is a function 

of hr and hz, and that it becomes larger and larger as hr increases over hz.  
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Figure 2.9 shows the position of the 26650 cell on the x-axis, indicating the 

26650 geometry is far from optimal particularly for low values of hr. Reducing the 

radius of the 26650 cell while increasing height to maintain constant volume may 

be helpful in reducing the peak temperature rise, particularly when the convective 

heat transfer coefficient hr is somewhat low.  
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CHAPTER 3  

AN EXPERIMENTALLY VALIDATED TRANSIENT THERMAL MODEL 
FOR CYLINDRICAL LI-ION CELLS 
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Abstract 

Measurement and modeling of thermal phenomena in Li-ion cells is a critical 

research challenge that directly affects performance and safety. Even though the 

operation of a Li-ion cell is in most cases a transient phenomenon, most available 

thermal models for Li-ion cells predict only steady-state temperature fields. This 

paper presents the derivation, experimental validation and application of an 

analytical model to predict the transient temperature field in a cylindrical Li-ion 

cell in response to time-varying heat generation within the cell. The derivation is 

based on Laplace transformation of governing energy equations, and accounts for 

anisotropic thermal conduction within the cell. Model predictions are in excellent 

agreement with experimental measurements on a thermal test cell. The effects of 

various thermophysical properties and parameters on transient thermal 

characteristics of the cell are analyzed. The effect of pulse width and cooling time 

for pulsed operation is quantified. The thermal response to multiple cycles of 

discharge and charge is computed, and cell-level trade-offs for this process are 

identified. The results presented in this paper may help understand thermal 

phenomena in Li-ion cells, and may contribute towards thermal design and 

optimization tools for energy conversion and storage systems based on Li-ion cells. 

 

Keywords: Lithium-ion Cells, Energy Conversion, Transient Thermal 

Management, Battery Cooling, Laplace Transforms. 
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3.1 Analytical Model 

Figure 3.1 shows a schematic of a heat-generating, cylindrical Lithium-ion cell of 

radius R and height H. Heat generation within the cell occurs due to a variety of 

physical mechanisms, including Joule heating, entropic heating, enthalpies of 

reactions, etc. [5,86]. The volumetric heat generation rate Q(t) is assumed to be 

uniform in space, but time-dependent. Convective heat transfer is assumed to occur 

on the outside surfaces, with heat transfer coefficients given by hr and hz for the  

Figure 3.1. Schematic of the geometry of a cylindrical Li-ion cell under 

consideration. 

radial and axial outer surfaces respectively. Thermal conductivity of the Li-ion cell 

is assumed to be anisotropic [14], with values of kr and kz in radial and axial 

directions respectively. 
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The transient temperature field for this problem is governed by the following 

energy conservation equation: 
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where θ(r,z,t) is the temperature rise above ambient. 

Equation (24) is a non-homogeneous, transient partial differential equation subject 

to four homogeneous boundary conditions given by  
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In addition, it is assumed that the cell is at ambient temperature at t=0  

 0=θ  at t = 0             (29) 

Deriving an analytical expression for equation (24) subject to boundary conditions 

(25)-(28), and initial condition (29) is not straightforward due to the time-

dependence of the heat generation term. To do so, Laplace transform of equations 



 40 

(24)-(28) is carried out, resulting in the following governing equation in the Laplace 

space: 
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where ),( zrθ and )(sQ are Laplace transforms of the temperature rise field 

),,( tzrθ and heat generation term )(tQ respectively. s is the Laplace variable.  

The final solution is found to be  
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where,  
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The coefficients A and B in equation (36) are determined by using boundary 

conditions in the z-direction, which results in 
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Note that the series coefficients cn in equation (35) are given by  
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The eigenvalues µn are obtained from roots of the transcendental equation  
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where BiH and BiR are axial and radial Biot numbers, respectively, defined as 
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where γ is the degree of anisotropy given by 
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Equations (35)-(42) represent an analytical solution for the temperature 

field in the Laplace space. Since the resulting expression is somewhat complicated, 

conversion into time domain is carried out using de Hoog’s quotient difference 

algorithm [87] for inverse Laplace transformation, as implemented by Hollenbeck 

[88]. 

While the solution methodology described above is applicable for spatially-

uniform heat generation rate, a different approach needs to be adopted if, in addition 

to time, heat generation rate is a function of space as well. This could be done 

similar to a recently reported approach for solving the corresponding steady state 

problem with space dependent heat generation [35]. 
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3.2 Experimental Validation 

A thermal test cell is utilized for experimentally validating the thermal 

model discussed in section 1. This thermal test cell has the same dimensions as a 

26650 cell, and has a thin stainless steel resistive heater rolled inside the cell body. 

The test cell is placed in a chamber without forced air flow, representative of natural 

convection conditions. A K-type thermocouple attached to the outside surface of 

the test cell at mid-height provides temperature measurements as a function of time, 

which is compared against computations based on the model shown in Section 3.1.  

Figure 3.2. Temperature plot showing experimental validation of the analytical 

model. 

A picture of the thermal test cell with the thermocouple and lead wires for 

the heater is shown in the inset of Figure 3.2. A Keithley 2401 sourcemeter is used 

to source the heating current, and a NI 9213 DAQ is used for temperature 

acquisition. All instruments are controlled by a LabVIEW code, which regularly 
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makes minor adjustments to the heating current in order to provide constant power. 

This accounts for any increase in resistance of the heater due to increased 

temperature inside the cell.  

The analytical model in Section 3.1 is used to predict the temperature as a 

function of time for the experimental conditions. Thermal properties of the same 

test cell used in experiments are implemented in the model. These properties – 

radial and axial thermal conductivities and heat capacity – are determined by using 

a recently described experimental technique [22]. The measured values for the test 

cell are found to be close to recently reported values for an actual 26650 cell. The 

convective heat transfer coefficients hr and hz are assumed to be 10 W/m2K, which 

is representative of natural convection cooling [41]. Figure 2.2 presents the 

measured temperature rise at the outer surface at mid-height (r=R, z=H/2) as a 

function of time for three different heat generation rates. The temperature variation 

predicted by the analytical model presented in Section 3.1 is also shown in Figure 

3.2. In each case, the analytical model is in excellent agreement with experimental 

data. The model correctly captures both absolute temperature rise and the time scale 

for the temperature rise for each power. The maximum deviation between the two 

during the entire experiment is 0.63 °C.  

3.3 Results and Discussion 

For further confirmation of the validity and accuracy of the analytical model 

derived in section 1, the temperature field is computed as a function of time for two 

cases, and compared with results from finite-element simulations. These cases 

address the temperature response of a 26650 Li-ion cell to two different heating 



 45 

profiles – a constant heating of 6 W, and a step function where the heating power 

spikes from 2 W to 10 W between t=1000s and t=1500s.  

Note that the heat generation rate is closely related to the C-rate through the 

discharge current and effective internal resistance of the cell as follows: 

 int
2

rIQ ⋅=   (43) 

Thus, assuming a 2.6 A-hr cell with an effective internal resistance of 20 mΩ, the 

6 W heating case corresponds to a C-rate of 6.7C and the 2-10 W range corresponds 

to a C-rate range of 3.8-8.6C. 

Figures 3.3(a) and 3.3(b) plot the temperature profile computed for these 

cases using the analytical model, along with results from finite-element 

simulations. Adequately fine meshing is carried out in these simulations to ensure 

grid-independence of results. In both cases, there is excellent agreement between 

the analytical model and results from finite-element simulations, which provides 

additional validation of the analytical model presented in section 3.1.  

Figure 3.3. Comparison of analytical model with finite-element simulations (a) 

Constant, and (b) Pulsed heat generation profiles. 



 46 

Since the external heat transfer coefficient hr and radial thermal 

conductivity kr are key parameters that determine thermal performance of the Li-

ion cell, temperature is computed as a function of time for different values of these 

parameters, while considering the same heat generation rate. These plots, presented 

in Figure 3.4(a) and 3.4(b) show that the temperature profile and the peak 

temperature are strong functions of both hr and kr. The cell temperature reduces as 

hr increases, since greater convective heat transfer on the cell surface reduces heat 

accumulated within the cell, and hence the cell temperature. 

Figure 3.4. Plots showing variation in temperature profiles as function of (a) 

Convective heat transfer coefficient, hr, (b) Radial thermal conductivity, kr.  

However, the effect of increasing hr on lowering the cell temperature 

saturates, as seen in Figure 3.4(a). Increasing the value of hr beyond around 500 

W/m2K has negligible incremental effect on reducing the cell temperature. This can 

be explained in terms of the overall thermal resistance comprising of the thermal 

conduction resistance within the cell, and convective resistance from the cell 

surface to the ambient. Once the latter resistance has been reduced sufficiently, it 

does not dominate any more, and the cell temperature becomes nearly independent 

of the convective thermal resistance. On the other hand, increasing the value of kr,, 

which contributes towards reducing the internal conduction resistance, is found to 
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strongly reduce the cell temperature, as shown in Figure 3.4(b). No saturation effect 

similar to Figure 3.4(a) is observed in this case. The temperature curve continues 

to drop with increasing kr. Note that the largest value of kr examined in Figure 

3.4(b) is 30 W/mK, which is the experimentally measured axial thermal 

conductivity [22], and hence likely to be the upper limit of kr.  

The analytical model is also used to investigate the thermal effects of 

transient spikes in heat generation rate during the operation of a Li-ion cell. It is 

assumed that the Li-ion cell encounters a pulse of excess load resulting in a 13.5 W 

heat generation, corresponding to 10C discharge rate. This is followed by zero heat 

generation rate. Such a pulse can occur, for example, during sudden acceleration of 

a hybrid/electric vehicle that demands large power draw from the battery for a short 

amount of time [89]. It is clearly of much importance to understand the thermal  

phenomena associated with such a power draw, particularly the peak temperature  

Figure 3.5. Plot of the maximum cell temperature as a function of time for 

different pulse widths. 
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reached by the cell, and the time taken by the cell to recover to baseline temperature. 

 
Figure 3.5 presents plots of the cell temperature as a function of time for 

different pulse widths in the 2.5-30s range, which may be typical for vehicular 

applications [89]. hr and hz are assumed to be 100 W/m2K each, and kr and kz are 

assumed to be 0.2 and 30 W/mK respectively, based on measurements [14].  

Figure 3.6. Plot of cooling time required to cool down to a baseline 

temperature of 1 °C above ambient as a function of the convective heat transfer 

coefficient hr. 

 

Figure 3.5 shows that as the pulse width increases, the cell temperature 

increases as expected. The time taken to cool down back to a specific temperature 

also increases as the pulse width increases. One possible strategy for timely cooling 

is to increase convective heat transfer during the cooling process, for example by 

blowing more air or coolant, which effectively increases the value of hr. Figure 3.6 
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plots the time required by the cell to cool down to a temperature of 1 °C above 

baseline temperature after a 50s pulse of 13.5 W as a function of the convective 

heat transfer coefficient hr. In general, the time required to cool reduces as hr 

increases. However, this effect saturates, similar to the saturation observed in 

Figure 3.4(a), wherein beyond around 500 W/m2K, increasing hr further results in 

only minimal improvement in time needed to cool. As shown in Figure 3.4(b), 

further improvements in the thermal performance of the Li-ion cell must come from 

improved thermal conductance within the cell due to dominance of the internal 

conduction resistance in the overall thermal resistance. 

Another pulsed power scenario with interesting and technologically 

relevant thermal concerns is the discharge of a given energy in a pulse. In case the 

cell is to discharge a specific amount of energy, there may be a fundamental choice 

in whether to discharge the energy at high power over a short time, or at low power 

over a large time. While the former choice increases the power dissipated in the 

cell, there is more time in the latter for the cell temperature to rise. This problem is 

examined using the analytical model presented in section 3.1.  

Figure 3.7. Temperature profile for various discharge rates dissipating a constant 
total energy for (a) short pulse duration, and (b) long pulse duration. 
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In particular, the maximum cell temperature is plotted in Figures 3.7 (a) and 

3.7(b) as a function of time for a number of discharges that each dissipate a fixed 

amount of energy, but at different powers and discharge times. Figure 3.7(a) 

addresses relatively shorter pulse widths, with total 60 J energy dissipation, while 

Figure 3.7(b) addresses longer pulse widths, with total 600 J dissipation. hr, hz, kr 

and kz are assumed to be the same as in Figure 3.5. Figure 3.7(a) shows that at low 

pulse widths, the peak temperature reached is not a strong function of pulse width. 

On the other hand, for larger pulse durations, as shown in Figure 3.7(b), the cell 

temperature increases with decreasing discharge time due to increased power. Thus, 

it may be preferable to discharge over a longer time with lower power, although 

this effect is not significant in the short pulse width range. 

Several energy conversion applications may require multiple periodic 

discharges – each of which results in heat generation – from the Li-ion cell, with a 

cooling time interspersed between successive discharges. Such successive 

discharges may cause heat buildup within the cell and excessive temperature rise, 

possibly leading to thermal runaway. As a result, thermal analysis of a multiple 

discharge process is of critical importance. The model presented in section 1 is 

utilized to compute the temperature as a function of time for a 10-step process of 

successive discharges. Each discharge is assumed to result in 6W heat generation 

over a 10 second period.  
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Figure 3.8. (a) Comparison of temperature profile for two different ten-step 

discharge-charge processes with cooling times of 10s and 20s, (b) Plot showing 

dependence of maximum temperature rise on cooling time. 

 

Figure 3.8(a) presents the resulting temperature curves for two cooling 

times of 10 and 20 s. The cooling time is a critical parameter in the thermal well-

being of the cell during the multiple discharge process. Figure 3.8(b) plots the peak 

temperature rise at the end of the ten-cycle process as a function of cooling time 

between successive discharges. A large cooling time permits the cell to recover 

between discharges, whereas heat buildup may occur within the cell if the cooling 

time is too small. Increasing the cooling time – which is clearly thermally beneficial 

– however, is in conflict with possible system-level goals of reducing total energy 

conversion time. A careful balance between conflicting objectives, driven by 

analytical models such as ones presented here may be the key for safe and optimal 

operation of Li-ion cell based energy conversion systems. 
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CHAPTER 4  

MODELING OF STEADY-STATE AND TRANSIENT THERMAL 
PERFORMANCE OF A LI-ION CELL WITH AN AXIAL FLUIDIC 

CHANNEL FOR COOLING 
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Abstract 

Thermal management of Li-ion cells is an important technological problem for 

energy conversion and storage. Effective dissipation of heat generated during the 

operation of a Li-ion cell is critical to ensure safety and performance. In this paper, 

thermal performance of a cylindrical Li-ion cell with an axial channel for coolant 

flow is analyzed. Analytical expressions are derived for steady-state and transient 

temperature fields in the cell. The analytical models are in excellent agreement with 

finite-element simulation results. The dependence of the temperature field on 

various geometrical and thermal characteristics of the cell is analyzed. It is shown 

that coolant flow through even a very small diameter axial channel results in 

significant thermal benefit. The trade-off between thermal benefit and reduction in 

cell volume, and hence capacity due to the axial channel is analyzed. The effect of 

axial cooling on geometrical design of the cell, and transient thermal performance 

during a discharge process is also analyzed. Results presented in this paper are 

expected to aid in the development of effective cooling techniques for Li-ion cells 

based on axial cooling. 

Keywords: Lithium-Ion Cells, Battery Cooling, Battery Safety, Thermal Modeling. 
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4.1 Analytical Model 

Consider an annular Li-ion cell with height H, and outer and inner radii Ro and Ri 

respectively, shown schematically in Figure 4.1. The cell is assumed to dissipate a 

constant volumetric heat generation Q, which is dependent on the C-rate of the cell. 

The radial and axial thermal conductivities of the cell are assumed to be kr and kz  

Figure 4.1. Schematic of geometry of the annular cell. 

  
respectively. Assumption of anisotropic thermal conductivity is necessary based on 

recent measurements that show significant difference in radial and axial thermal 

conductivities [14].  
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For a general case, convective heat transfer coefficients hro and hz are assumed at 

the outer surfaces in the radial (r=R) and axial directions (z=0, z=H) respectively. 

Setting any of these to zero makes these boundary conditions adiabatic. A constant 

temperature boundary condition, which is easier to model, but less realistic than 

convective heat transfer boundary conditions can also be analyzed using methods 

similar to one discussed here. Coolant flow through the axial channel is modeled 

using a convective heat transfer coefficient hri along the inner wall. Note that the 

convective heat transfer coefficients listed above are all assumed to be surface-

averaged values over the respective surfaces. This significantly simplifies the 

analysis. Expressions for the steady-state and transient temperature distributions in 

the cell are derived in the following sub-sections. 

4.1.1. Steady State Temperature Distribution 

The governing steady state energy conservation equation for the annular cell is 

given by [66-67] 
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where T(r,z) is the temperature rise above ambient.  

The governing equation is subject to the following boundary conditions [50]: 
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Where Tcool is the temperature of the coolant with respect to ambient temperature. 

For a coolant entering at the same temperature as ambient, Tcool=0.  

The temperature distribution is  
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The two components of the temperature distribution are given by 
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and 
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The coefficients An and Bn in equation (8) are given by 
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The eigenvalues µn are obtained from roots of the transcendental equation  
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where BiH is the axial Biot number, defined as 
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Finally, 
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where γ is the degree of anisotropy given by 
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Equations (49)-(58) represent the solution for the steady-state temperature 

distribution in the cell. 

4.1.2. Transient Temperature Distribution 

The modeling of transient thermal characteristics of the annular cell is important 

for understanding time-dependent phenomena such as pulsed power operation, 

periodic or one-time spike in heat generation rate, etc. In order to account for such 

phenomena, the heat generation term must be considered to be time-dependent. The 

modeling of transient temperature distribution presents additional challenges 
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compared to steady state modeling. The transient governing energy equation is 

given by  
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Where T(r,z,t) is the temperature rise above ambient. 

The boundary conditions associated with equation (59) are the same as for 

the steady state problem, equations (45-48) discussed in the previous section. In 

addition, it is assumed that the cell is at ambient temperature at t=0, i.e. T=0 at t=0. 

The primary difficulty in solving the transient problem arises from the heat 

generation term, which is a general time-dependent function. The first step towards 

deriving a solution for this general case is to carry out a Laplace transform of the 

governing energy equation and associated boundary conditions. This results in a set 

of partial differential equations in the Laplace space, given by 
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),( zrT and )(sQ are Laplace transforms of T(r,z,t) and Q(t) respectively. Given a 

certain heat generation function Q(t), the function )(sQ can be easily computed. 

The final solution is found to be 
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The first part of the solution, )(zp is given by  
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The coefficients C  and D   in equation (66) are determined by using boundary 

conditions in the z-direction, which results in 
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The second part of the solution, ),( zrw  is found to be  
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where, 

 
( ) ( ) ( )[ ]

( )[ ] ( )[ ])()()()(2
2

1

/)(

111

22

0

onnronoroonnronoroHHn

H

nzznnro

n

RKkRKhRIkRIhBiBiH

dzzSinkhzCoszph

A

λλλβλλλµ

µµµ

−++⋅++

+⋅−

=
∫  

(70) 

 
( ) ( ) ( )[ ]

( )[ ] ( )[ ])()()()(2
2

1

/)(

121

22

0

innrinoriinnrinoriHHn

H

nzznnri

n

RKkRKhRIkRIhBiBiH

dzzSinkhzCoszph

B

λλλβλλλµ

µµµ

++−⋅++

+⋅−

=
∫  

(71) 

where, 

                                 
)()(

)()(

1

1
1

inoriinnr

inoriinnr

RKhRKk

RIhRIk

λλλ

λλλ
β

+

−
=  (72) 



 62 

                   
)()(

)()(

1

1
2

onoroonnr

onoroonnr

RKhRKk

RIhRIk

λλλ

λλλ
β

−

+
=  (73) 

The eigenvalues µn are the same as eigenvalues for the steady state problem, given 

by equation (56). Finally, 
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Equations (65)-(74) represent the solution for ),( zrT , from where, the temperature 

distribution T(r,z,t) can be obtained from inverse Laplace transform. In case the 

Laplace transform is too difficult to invert explicitly, a numerical inversion 

technique is adopted using de Hoog’s quotient difference method algorithm [87] 

for inverse Laplace transformation, as implemented by Hollenbeck [88]. 

4.1.3. Extension to space-dependent heat generation 

The analytical derivations presented in sections 4.1.1 and 4.1.2 assumed uniform 

heat generation rate in the entire volume of the cell. While this is usually assumed 

to be the case, in general, the heat generation rate may vary with space, for example, 

if a short circuit causes high heat generation in a specific part of the cell. In such a 

case, an approach similar to one recently described for solid cells may be adopted 



 63 

[35]. Any well-behaved function Q(z) can be written as a polynomial expansion as 

follows 
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Following this, s(z) can be determined by twice integrating the governing ordinary 

differential equation that contains the polynomial expansion for Q(z). The second 

part of the solution, w(r,z), given by equation (51) remains unchanged. 

4.2 Comparison with finite-element simulation 

Figure 4.2. Comparison of temperature distribution as a function of r predicted by 

the steady state model with finite-element simulation results. 

 



 64 

 In order to validate the model presented in Section 4.1, the temperature 

distribution computed from the model is compared with finite-element simulations. 

Figure 4.2 plots the steady-state temperature computed using equations (49)-(58) 

as a function of the radial coordinate at mid-height. The cell considered here has 

the same outer dimensions as a 26650 cell, but has an axial hole of radius 1.3 mm. 

The convective heat transfer coefficients are assumed to be hri=1000 W/m2K, 

hro=100 W/m2K and hz=100 W/m2K. Based on recent measurements [22], the 

thermal conductivities of the cell are assumed to be kr=0.2 W/mK and kz=30 W/mK 

respectively. The cell is assumed to dissipate 6 W power. The temperature 

distribution predicted by a finite-element simulation software is also plotted, and 

there is excellent agreement between the two. The negligible error between the two 

occurs due to truncation errors in the respective computations.  

Figure 4.3. Comparison of peak cell temperature as a function of time predicted 

by the transient model with finite-element simulation results. 
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Figure 4.3 plots the temperature computed using equations (65)-(74) at the 

center of the cell material at mid-height as a function of time. The value of Ri is 

taken to be 2.6mm, and all other parameters are the same as Figure 4.2. Similar to 

Figure 4.2, there is good agreement between the transient model and finite-element 

simulation results.  

Compared to the finite-element simulation, the analytical model presented 

in Section 4.1 is capable of computing temperature much faster, only a few seconds 

for the entire temperature distribution in the cell, compared to several minutes for 

a typical finite-element simulation tool, without even accounting for time needed 

to set up and mesh the problem geometry. Moreover, the analytical model provides 

a fundamental understanding of thermal characteristics of the annular cell, and 

facilitates rapid parametric studies of the effect of different variables on the 

temperature distribution. 

4.3 Results and discussion 

The analytical model presented in Section 4.1 is used for developing an 

understanding of the effect of various parameters on the temperature distribution in 

the annular cell, and to examine various trade-offs in the thermal design of an 

annular cell.  
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Figure 4.4. (a) Steady state temperature as a function of r for different values of Ri 

at fixed hri; (b) Steady state temperature as a function of hri for different values of 

Ri at fixed Ri. 

Figures 4.4(a) and 4.4(b) plot the radial temperature distribution at mid-

height as function of the inner radius Ri, and the inner convective heat transfer 

coefficient hri respectively for fixed outer geometry of the cell. In Figure 4.4(a), hri 

is held constant at 1000 W/m2K, and in Figure 4.4(b), Ri is held constant at 2.6 mm. 

Figure 4.4(a) shows that as the inner radius increases, there is a substantial 

reduction in peak temperature rise. The peak temperature rise for an equivalent 

solid cell without an axial channel is 30.0 °C, also shown in Figure 4.4(a). In 

addition to temperature reduction, there is also a shift in the location where the peak 

temperature rise occurs. The greater the inner radius, the farther out is the location 

of peak temperature rise. Figure 4.4(b) shows, as expected, that for a given cell 

geometry, increasing the convective heat transfer coefficient hri reduces the peak 

temperature rise. A larger value of hri could be obtained, for example, by increasing 

the flow rate or thermal conductivity of the coolant. 
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Another possible strategy to reduce temperature rise through axial cooling 

is to precool the coolant prior to entering the annular cylinder. Figure 4.5 plots 

radial temperature distributions at mid-height when the coolant is precooled by 

different temperatures.  

Figure 4.5. Temperature distribution in the annular cell as a function of extent of 

precooling of the coolant fluid. 

Figure 4.5 shows that precooling may not be a particularly effective strategy 

for cooling of Li-ion cells. For example, precooling the coolant by 10 °C results in 

a peak temperature reduction of less than 5 °C. Precooling offers the advantage that 

it partially shifts the cooling load from the cell to the coolant, which in most cases 

is likely to be easier to implement, for example by using a remotely located chiller. 

It is possible in certain applications where performance is critical, and the cost of 

precooling is acceptable, that precooling may be an attractive option. 
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 Figure 4.6. Cell capacity and peak temperature rise as functions of inner radius 

Ri. 

One fundamental thermal-electrical trade-off that active cooling of an 

annular Li-ion cell must address is the trade-off between reduction in cell 

temperature and reduction in cell capacity. By increasing the inner radius of the 

annular cylinder, it is possible to reduce the cell temperature due to increased 

coolant flow. However, this also results in reduction in capacity of the cell since 

the increased coolant flow region reduces the cell volume and hence the cell 

capacity. This trade-off is analyzed in Figure 4.6, which plots the peak temperature 

rise in the cell and total capacity as functions of the inner radius of the cell. The 

heat generation rate in the cell is assumed to stay the same at 6 W. The baseline 

case considered here is that of a 26650 cell that delivers 2.6 A-hr charge at 3.0 V, 

resulting in a total energy capacity of 28080 J. It is assumed that the capacity scales 
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with the cell volume, since the volume directly influences that total volume of 

electrodes within the cell, thus affecting the capacity of the cell.  

It is seen that increasing the inner radius results in rapid temperature 

reduction. The temperature curve in Figure 4.6 is very steep at low Ri. This indicates 

that even an axial hole of very small diameter results in significant temperature 

reduction with negligible reduction in capacity. For example, an annular cell with 

Ri=0.1 mm results in a temperature rise of only 24 °C compared to a 30 °C 

temperature rise for an equivalent 26650 cell without an axial channel. At the same 

time, the reduction in cell capacity due to the axial channel is negligible. At a 

somewhat larger value of Ri=1.3 mm, the reduction in capacity is still only 1% 

whereas there is a 40% reduction in peak temperature compared to the equivalent 

cell without an axial channel. However, as Ri increases, the cell capacity also 

reduces, due to which the trade-off between capacity reduction and improved 

thermal performance must be analyzed in detail. A reduction in peak temperature 

rise of a cell due to active cooling presents a direct opportunity to improve the 

electrical performance of the cell. The thermal head provided by the reduced cell 

temperature enables, for example an increase in the C-rate of the cell. The C-rate 

of the cell can be increased in order to reach the baseline temperature rise. This 

opportunity enabled by active cooling, however comes at the cost of reduced cell 

capacity. Thus, active cooling can be thought of as a means to balance the trade-off 

between capacity and power of a Li-ion cell.  
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Figure 4.7. Maximum possible C-rate and cell capacity as function of inner radius 

Ri. 

Figure 4.7 examines this by plotting the total capacity and C-rate as 

functions of the inner radius Ri, while keeping all other parameters constant. In 

particular, the C-rate is chosen in order to maintain the same peak temperature 

rise of 30 °C. The heat generation rate in the cell is modeled to vary as the square 

of the C-rate, or discharge current. That is, 

 effrIQ int,
2=  (76) 
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Where rint,eff is the effective internal resistance of the cell that determines the heat 

generation rate. Note that rint,eff absorbs a number of disparate heat generation 

mechanisms that occur inside the cell, including Ohmic losses, entropic heating, 

heats of reactions, etc. [5,86]. In Figures 4.6 and 4.7, a Li-ion cell with a capacity 

of 2.6 A-hr is assumed for calculating the C-rate. Figure 4.7 shows that by 

increasing the radius of the axial channel in the Li-ion cell, the C-rate of the cell 

can be increased significantly without any increase in operating temperature. Even 

small Ri results in significant potential for C-rate improvement. However, even with 

Ri as small as 1.3 mm, the C-rate can be 7.7 compared to the baseline C-rate of 6.0 

for a solid cell, with minimal reduction in cell capacity. 

Figure 4.8. Maximum possible C-rate as a function of hri for fixed Ri. 
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The improvement in C-rate due to effective cooling, as demonstrated in 

Figure 4.7 is also a function of hri, the convective heat transfer coefficient available 

at the inner wall of the cell where heat is convected out from the cell into the cooling 

fluid. Improvement in hri can be brought about by increasing coolant flowrate, 

increasing coolant thermal conductivity, etc. Improvement in hri is expected to 

result in reduced temperature, and hence increased C-rate to maintain the same 

baseline temperature. Figure 4.8 plots the maximum possible C-rate as a function 

of hri, and shows that initially, C-rate increases rapidly with increasing hri. This 

effect however diminishes at large values of hri, and the improvement obtained in 

C-rate is minimal a value of hri of about 300 W/m2K. This is because at large hri, 

convection to the coolant fluid is no longer the thermal bottleneck, and hence 

further improvement in hri does not any more result in significant further 

improvement in C-rate. Given the critical importance of limiting temperature rise 

in Li-ion cells in order to prevent thermal runaway, it may be acceptable to sacrifice 

some capacity in return for improved thermal performance, which as shown in 

Figures 4.6 and 4.7 may in turn be used to increase discharge rates. Other challenges 

that may need to be considered in the system-level analysis of this trade-off include 

the pumping power required to flow coolant through the axial channel, which can 

be large particularly for small sized channels, sealing of the channel, and its effect 

on the electrochemistry of the cell. 
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Figure 4.9. Effect of cell sizing on thermal performance of the annular cell. 

Figure 4.9 analyzes the effect of the overall shape of the annular Li-ion cell 

on maximum temperature rise in the cell, which is plotted as a function of the outer 

radius Ro. The overall volume of the cell is maintained constant, in this case equal 

to the volume of the 26650 cell. As Ro increases, the cell becomes shorter and 

stouter. In each case, Ri is maintained at 20% of Ro. Figure 4.9 shows that as Ro 

increases, the peak temperature of the cell increases until a worst-case value of Ro 

beyond which the temperature reduces. This phenomenon occurs because as Ro 

changes, the surface area, and hence the rate of convective heat transfer from cell 

to the ambient changes. The worst-case value of Ro can be thought of as one at 

which the available convective surface area is the minimum, resulting in worst 
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conditions for convective heat loss from the cell. Figure 4.9 indicates that tall and 

slender cells may in general be thermally more attractive. 

Figure 4.10. Computed temperature at the center of the cell material as a function 

of time for a short time excursion in heat generation rate. 

Figures 4.10 and 4.11 present applications of the transient model discussed 

in Section 4.1.2. The case of a discharging annular Li-ion cell is considered. Figure 

4.10 considers a transient scenario where there is a sudden in heat generation rate 

in a Li-ion cell, possibly due to short circuiting. The heat generation rate is assumed 

to rise from 6 W to 12 W for a period of 50s. The variation of temperature with 

time, computed using the model in Section 1.2, shows a sudden spike in the rate at 

which temperature increases. Once the heat generation rate returns to baseline 

value, so does the rate of increase in temperature. 
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Figure 4.11. Peak cell temperature as a function of time for pulsed discharge 

processes at different rates, with fixed total discharge energy. 

On the other hand, discharge at a low C-rate results in lower heat 

generation, but longer duration for the heat generation. In Figure 4.11, the cell is 

assumed to discharge a specific amount of energy, 3000 J in this case. Three 

different cases are considered with different C-rates, due to which heat dissipation 

of the cell and duration of discharge vary. For discharge at a high C-rate, the heat 

generation rate is large, while the discharge duration is small. On the other hand, 

discharge at a low C-rate results in lower heat generation, but longer duration for 

the heat generation. The peak temperature of the cell is plotted as a function of 

time during these discharge processes. It is found that despite the shorter 

discharge duration, the peak temperature rise in the high power discharge case is 

the highest. This indicates that from a thermal perspective, it is preferable to 

discharge at low rates, even if the discharge lasts for a longer duration. Note, 



 76 

however, that a longer duration discharge reduces overall system throughput, 

since each discharge process takes a long time. Figure 4.6 quantifies a typical 

thermal vs. performance trade-off that must be considered in the design of the 

operation of annular Li-ion cells. 

The availability of analytical tools to predict steady-state and transient 

temperature distribution in Li-ion cells could be used by the Battery Management 

System (BMS) to take smart, thermal-based decisions to maximize system-level 

performance without overheating. For example, based on current loads, the BMS 

can predict when a particular cell is close to overheating, and can accordingly 

reduce load at the appropriate time. 
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CHAPTER 5  

AN ITERATIVE, ANALYTICAL METHOD FOR SOLVING CONJUGATE 
HEAT TRANSFER PROBLEMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shah, K., & Jain, A. (2015). An iterative, analytical method for solving conjugate 
heat transfer problems. International Journal of Heat and Mass Transfer, 90, 1232-

1240. 
 

Reprinted with the permission of publisher (Elsevier), Copyright ©2015 
(Appendix A) 
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Abstract 

Conjugate heat transfer involving convection and conduction in a fluid flow and a 

solid body in contact with each other occurs commonly in engineering applications. 

While analytical solutions for the individual convection and conduction problems 

are relatively easier, it is a lot more challenging to solve the combined conjugate 

heat transfer problem. In this paper, an iterative method is developed for 

analytically solving conjugate heat transfer problems. Based on an initial 

assumption of the temperature field at the solid-fluid interface, the temperature 

distributions in the fluid and solid body are determined by separately solving the 

governing energy conservation equations in the two domains. These solutions are 

used to improve the initial assumption of the interface temperature until 

convergence. It is found that only a few iterations of this process are needed for 

convergence. Temperature fields computed from this analytical approach are found 

to be in good agreement with finite element simulation results. The iterative 

analytical approach is used to solve two technologically relevant problems related 

to internal and external flows. Given the general nature of the iterative approach, 

results from this paper may be helpful in solving a variety of conjugate heat transfer 

problems. 

 

Keywords: Conjugate Heat Transfer, Thermal Conduction, Convection, Analytical 

Methods. 
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5.1 General Solution: The Iterative Approach 

Figure 5.1. Schematic of a general conjugate heat transfer problem involving a 
fluid flow over an arbitrarily shaped solid with internal heat generation. 

 

This section presents the general approach for analytically solving a 

conjugate problem involving thermal conduction and convection in a solid and fluid 

flow respectively. Consider a solid (S) with an arbitrary shape as shown in Figure 

5.1. Fluid flow (F) occurs with a given velocity profiles. The solid and fluid phases 

intersect at an interface, denoted by S-F. In general, internal heat generation within 

the solid  
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is considered. Although Figure 5.1 shows an external flow scenario, in general, 

fluid flow may occur either over the solid (external flow), or it may be enclosed by 

the solid (internal flow). 

In general, the interest is in deriving expressions for temperature 

distributions Ts ( x ) and Tf ( x ) where x  is the general spatial coordinate. Only the 

laminar, steady state problem is considered here. The governing conservation 

equations that must be solved to determine these temperature distributions are given 

by 

 
 ( ) fff

2 gTvT +Φ⋅µ+∇⋅=∇α
r

              (77) 

and 
 0)(2 =+∇ xgTk ss                  

(78) 
Here, µ·Φ is the viscous dissipation, and 

fg  and sg   are volumetric heat 

generation rates in the solid and fluid respectively. The methodology discussed in 

this paper for deriving analytical solutions for the temperature fields in S and F is 

based on analytically solving the temperature fields individually in the solid and 

fluid domains, and utilizing principles of temperature compatibility and 

conservation of energy at the interface to iterate until a stable solution is obtained. 

To start with, the fluid temperature distribution at the interface S-F is assumed to 

be  

 )()( 0 FSFSf xTxT −− =  (79) 

Assuming the velocity field in the fluid is known in advance, equation (77) 

can now be solved along with the assumed boundary condition at the interface. 
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Once Tf ( x )is known, the heat flux into the solid at the solid-fluid interface can be 

obtained by differentiating.  

 

n

T
k)x(q f

fin,s
∂

∂
=  (80) 

 

Where n  is the outward normal to the solid surface at the S-F. 

Equation (80) represents a boundary condition for the temperature 

distribution in the solid Ts( x ). The governing equation (77) can now be solved 

along with equation (80). The solution for Ts( x ) provides a means to determine 

the temperature of the solid at the interface, which can then be used to update the 

interface temperature distribution that was assumed in equation (78). The entire 

procedure can be repeated to determine the temperature distributions over multiple 

iterations. Eventually, the temperature distributions may be expected to converge, 

with negligible change from one iteration to the next. 

The analytical framework described above is used for analyzing both 

internal and external flows, which are discussed in subsequent sub-sections. 

5.2 Internal flow 

Consider the laminar flow of a fluid through an annular cylinder, shown 

schematically in Figure 5.2(a). The fluid flow is assumed to be hydrodynamically 

fully developed when it enters the cylinder, with a given velocity profile u(r+) and 

entry temperature Te at the entrance, z+=0. The solid portion of the cylinder is 

assumed to generate heat with a volumetric rate of Q. Convective heat transfer with 

coefficients hro and hz are assumed over the outer surface and axial faces of the 

cylinder respectively.  
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Figure 5.2. (a) Schematic of hydrodynamically fully developed flow through an 
annular cylinder with anisotropic thermal conductivity and volumetric internal 
heat generation, (b) Schematic of fluid flow with constant freestream velocity 

over a semi-infinite flat plate with volumetric heat generation. 
 

To start with, a temperature distribution is assumed at the wall  

 )()( 0
++ = zTzTwall

 (81) 

Neglecting viscous dissipation, heat transfer in the fluid domain is governed by the 

following governing conservation equation [50], 
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The non-dimensional parameters z+ and r+ are given by 
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The temperature solution based on a given Twall (z
+) is obtained as follows 
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The integral in equation (85) accounts for continuous variations in wall 

temperature and summations account for discrete step changes. Note that the 

coolant entry temperature Te could be lower than zero in case the coolant fluid is 

precooled prior to entering the annular cylinder. This helps analyze the effect of 

precooling.  

The function θ is given by 
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Here, nλ are the eigenvalues, nR are the corresponding eigenfunctions and nC are 

constants. Analytical expressions for nλ , nR and nC are given by Sellars, et al. 

[56]. 
 

Equations (43)-(44) define the temperature solution within the fluid, from 
which the wall heat flux can be obtained:  
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where, 
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Analytical expression for Gn is also provided by Sellars, et al. [56]. Equation 

(88) provides an analytical basis for computing the heat flux distribution at the 

solid-fluid interface, given an assumed temperature distribution at the wall. Once 

the heat flux is determined, the temperature distribution in the solid domain can be 
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computed. In this case, the governing equation for the temperature distribution in 

the solid domain is 
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where Ts(r
+,z+) is the temperature rise in the solid. Note that thermal conductivities 

in the radial and axial directions are assumed to be unequal, in order to account for 

the general case of anisotropic thermal conduction in the Li-ion cell [22]. 

The governing equation is subject to the following boundary conditions: 
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Note that the wall heat flux in the boundary condition at r+=1 can be 

obtained based on the solution of the fluid problem. The temperature field may be 

determined by first splitting Ts(r
+,z+) into two components  



 85 

 ),()(),( 21
+++++ += zrTzTzrT sss

 (94) 
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The coefficients An and Bn in equation (96) are given by 
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where 
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The eigenvalues µnH are obtained from roots of the transcendental equation  
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BiH is the axial Biot number, defined as
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Finally, Twall(z
+) is determined from the solid temperature distribution in 

equation (94) computed at r+=1. This provides an update to the initial assumption 

of Twall(z
+) shown in equation (81) and initiates the next iteration of computing the 

fluid temperature field, followed by the solid temperature field. In order to avoid 

divergence, a weighted average of Twall from the previous iteration and Twall 

determined from the solid temperature field may be used for updating Twall for the 

next iteration. Iterations are carried out until the change in Twall(z
+) from one 

iteration to the next is below a desired threshold.  

5.3 External Flow 

The application of the general approach outlined in section 5.11 is now 

discussed for solving an external flow problem, in which a fluid with a known 

freestream velocity flows over a heated solid. The flow is assumed to be laminar. 
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Similar to the problem discussed in Section 5.2, this is also a commonly 

encountered heat transfer problem. As shown schematically in figure 5.2(b), a semi-

infinite flat plate of length L and thickness t generates heat at a volumetric rate of 

Q. Fluid flow occurs at the top surface with given freestream velocity and 

temperature of �� and �� respectively. The plate is also being cooled at the other 

three surfaces with convective heat transfer coefficient h. 

The procedure starts with an assumed temperature distribution Twall(x) on 

the solid-fluid interface, y=0. Neglecting viscous dissipation, the governing energy 

equation for the fluid is  
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The solution to equation (102) with the assumed wall temperature boundary 

condition is given by [50] 
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where the function θ (ξ,x,y) is given by [50]  
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The integral and summation terms in equation (103) account for the variation in 

Twall as a function of x, and any step changes that may exist in the Twall distribution.  

Similar to the internal flow problem, the wall heat flux can be computed as 

follows: 
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By differentiating (104) with respect to y, )0,x,(y ξθ is given by 
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qwall(x) computed by equation (105) is then used to provide a boundary condition 

for the energy conservation equation that governs the temperature distribution in 

solid: 
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where Ts(x,y) is the temperature rise above ambient in the solid. 

The governing equation is subject to the following boundary conditions:  
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Solution for Ts(x,y) proceeds along similar lines as the previous section. The 

temperature field may be determined by splitting Ts(x,y) into two components  

                                 ),()(),( yxwxpyxTs +=         (112) 

The two components of the temperature distribution are given by 
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and 
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The coefficients Cn, Dn and βn in equation (114) are given by 
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The eigenvalues µn are obtained from roots of the transcendental equation  
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Where  
k

hH
BiH =  &

k

hL
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This completes the solution methodology for the external flow problem. 

The wall temperature determined from the solid temperature distribution may be 

used to repeat the process outlined above, starting with solving the fluid flow 

problem, which will iteratively lead to a converged solution. 

Characteristics of the general methodology outlined above are discussed in 

the next section. Comparison with finite-element simulation results is also shown. 

Applications of the method for internal and external flow problems are also 

discussed. 
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5.4 Results and Discussion 

The solution methodology described and illustrated for internal and external 

flows in section 5.2 and 5.3 is iterative in nature, beginning with a guessed 

temperature distribution along the solid-liquid interface. To understand the nature 

of convergence of this iterative process, two problems – one of internal flow, and 

another of external flow – are solved using the iterative technique. For the internal 

flow problem, hydrodynamically developed flow of air entering at a uniform 

temperature and fluid velocity of 0.5 m/s through a 0.065 m long annular cylinder 

with annulus diameter of 0.0026 m is considered.  

Figure 5.3. (a) Temperature distribution along the inner wall as a function of 
number of iterations for the internal flow problem, (b) Temperature distribution 

along the solid-fluid interface as a function of number of iterations for the 
external flow problem. 

 
For the external flow problem, flow over a 0.03 m thick plate at fluid velocity of 

0.01 m/s is considered. Internal heat generation of 6 W and 30 W is considered 

within the solid domain for the internal and external flow cases respectively. Heat 

transfer coefficient of 100 W/m2·K and 50 W/m2·K is considered along all other 

surfaces for the internal and external flow cases respectively. Axial and radial 

thermal conductivity values of 30.0 and 0.2 W/m·K are assumed for the solid in the 
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internal flow case. This models thermal conduction in systems like Li-ion cells, 

where thermal conduction is known to be highly anisotropic [22]. For external flow 

problem, an isotropic slab with thermal conductivity of 0.2W/m·K is considered. 

Figures 5.3(a) and 5.3(b) plot the temperature distributions at the start of successive 

iterations along the solid-liquid interface for the internal flow and external flow 

problems. The initial assumed wall temperature is also shown. Figures 5.3(a) & 

5.3(b) show excellent convergence of the temperature distribution within 4-5 

iterations, even when the temperature distribution assumed initially is not accurate. 

In case of the internal flow problem, the accuracy of the temperature 

solution further depends on the number of eigenvalues considered for the infinite 

series solution represented by equation (118). Figure 5.4 plots the temperature 

distribution at the solid-liquid interface for the internal flow problem as a function 

of the number of eigenvalues considered. It is found that using around 8-10 

eigenvalues is sufficient, and the solution does not change significantly by 

considering additional eigenvalues. 
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Figure 5.4. Temperature distribution as function of eigenvalues considered in the 
internal flow solution. 

 
 

 

Figure 5.5. (a) Comparison of temperature plot inside the solid computed using 
the iterative model for internal flow problem with finite element simulation 

results, (b) Comparison of wall heat flow computed using the iterative model for 
external flow problem with finite element simulation results. 

  
The analytical solutions derived for internal and external flow using the 

methodology described in section 2 are also compared against finite-element 
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simulation results for validation. The finite-element simulations are carried out in 

ANSYS. Sufficient grid refinement is carried out to ensure grid independence of 

results. Figure 5.5(a) plots the temperature rise at mid height along the radius for 

the internal flow problem, using the iterative analytical model, as well as finite-

element simulations. There is excellent agreement between the two. Similarly, 

Figure 5.5(b) shows good agreement for wall heat flux for the external flow 

problem between the analytical model and finite-element simulation results.  

Figure 5.6. (a) Solid temperature as a function of radius at mid-height for different 
air speeds in the internal flow problem, (b) Wall temperature distribution in the 

external flow problem for different air speeds 
 

Figures 5.6(a) and 5.6(b) plot the temperature distributions in the solid body 

for internal and external flow cases respectively for a number of inlet fluid 

velocities. As expected, in each case, the iterative model discussed in Section 5.2 

and 5.3 predicts a strong reduction in peak temperature as the fluid velocity 

increases. While the wall temperature continues to reduce as the fluid velocity is 

increased, this effect of fluid velocity on the solid temperature distribution is most 
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prominent at the wall, particularly for the effect saturates in regions closer to the 

outer wall, where the effect of the coolant flow is not so prominent. 

Figure 5.7. Wall temperature distribution in the external flow problem for 
different precooling temperatures at 0.1 m/s coolant speed. 

 

Figure 5.7 presents results for the effect of precooling the inlet fluid in the 

external flow problem for a fluid velocity of 0.1m/s. It is found that reducing the 

inlet flow temperature reduces the wall temperature distribution, plotted in Figure 

5.7 as a function of length along the cylinder. However, the effect is not very 

significant. For example, even for a precooling of -15 K, the model computations 

predict a peak temperature drop of only 5 K at most. 

Figure 5.8(a) examines the wall heat flux from the heat-generating solid into 

the cooling fluid as a function of the coordinate along the flow, plotted for a number 

of fluid flow speeds. In each case, the wall heat flux is positive for nearly the entire 
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length, except for a small region towards the end. In this region, the sign of the heat 

flux reverses, and heat flows back from the fluid into the solid. This interesting 

phenomenon occurs because as the fluid traverses the length of the solid, it 

progressively gets hotter, so that beyond a certain critical length, the heat flow 

direction reverses, and the fluid actually starts heating up the solid. This interesting 

behavior is seen at all fluid speeds. 

In Figure 5.8(b), the wall heat flux is plotted along the length of the plate 

at fluid velocity of 0.1m/s at different precool temperatures. It is evident that 

precooling reduces the length over which reversal of heat flow occurs. Precooling 

may not affect the peak temperature of the plate significantly but may reduce or 

eliminate the local heating of the plate near the end region.  

Figure 5.8. (a) Wall heat flux distribution in the external flow problem for 
different air speeds for no precooling, (b) Wall heat flux distribution in the 

external flow problem for different precooling temperatures at 0.1 m/s coolant 
speed. 

 
As shown in figure 5.9(a), the location of heat flux reversal moves further 

downstream as the fluid velocity increases. On the other hand, the magnitude of 

the reversed heat flux also increases with increase in fluid velocity. Therefore, 
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figure 5.9(a) alone is not sufficient in knowing whether the overall reversed heat 

decreases with increase in fluid velocity. 

Figure 5.9. Variation of the heated length in external flow as a function of air 
speed, (b) Variation of total reversed heat in external flow problem as a function 

of air speed. 
 

In figure 5.9(b), total reversed heat flow is plotted against fluid velocity by 

integrating the reversed heat flux over the heated length. The total reversed heat 

increases with increase in velocity up to a certain velocity, after which it starts going 

down. These plots may be useful in deciding the appropriate fluid velocity, and 

whether precooling may be helpful in the case of cooling a heat-generating solid 

with external flow. 
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CHAPTER 6  

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CORE 
COOLING OF LI-ION CELLS USING HEAT PIPES 
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Abstract 

While Li-ion cells offer excellent energy conversion and storage capabilities for 

multiple applications, including electric vehicles, heat removal from Li-ion cells 

remains a serious technological challenge that directly limits performance, and 

poses serious safety and reliability concerns. Due to poor thermal conductivity of 

Li-ion cells, traditional cooling methods like air cooling on the cell surface do not 

effectively access and cool the core. This may lead to large core temperatures and 

thermal imbalance within the cell. This paper investigates the cooling of Li-ion 

cells using an annular channel through the axis of the cell. Air flow through this 

channel and insertion of a heat pipe are both shown to result in effective cooling 

and temperature reduction of the cell core. A similar effect is observed when a thin 

metal rod is used instead of a heat pipe. Experimental measurements are found to 

be in good agreement with finite-element simulations. Experiments demonstrate 

that a heat pipe successfully prevents overheating in case of sudden increase in heat 

generation due to malfunction such as cell shorting. This paper illustrates 

fundamental thermal-electrochemical trade-offs in the design of cell cooling. These 

results may facilitate the development of novel and effective cooling techniques for 

Li-ion cells.  

Keywords: Lithium-ion Cells; Thermal Runaway; Convective Cooling; Heat Pipe; 

Thermal Management. 
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6.1 Experimental Approach 

6.1.1. Fabrication of annular thermal test cell 

Electrochemical heat generation rate in a Li-ion cell varies as a function of 

the depth of discharge [25], and is difficult to measure directly [39]. Moreover, it 

is also not straightforward to measure temperature inside a Li-ion cell because a Li-

ion cell is a hermetically sealed system, and drilling a hole to insert a thermocouple 

will disrupt the electrochemical function of the cell. As an alternative, a thermal 

test cell capable of precise, well-controlled heat generation through Joule heating 

and internal temperature measurement through embedded thermocouples is 

fabricated.  

 

Figure 6.1. Annular thermal test cell fabrication process. 
 

This allows precise thermal measurements at well-controlled and 

measurable heat generation rates corresponding to discharge at various C-rates 

without the added uncertainty due to the electrochemistry of an actual Li-ion cell. 

The thermal test cell is designed and fabricated to be the same dimensions as a 
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26650 cell, and the constituent materials are chosen in order to closely match the 

thermal transport properties of an actual Li-ion cell [22, 42].  

 
 

Two thermal test cells with inner diameter of 2mm and 6mm are fabricated. 

A steel tube is first cut to approximately 110 mm in length. The outer surface of the 

tube is insulated with Kapton tape to prevent short circuiting. Next, a 25 µm thick 

stainless steel foil is cut 1000 mm long and approximately 62.5 mm wide. One side 

of this foil is insulated with Kapton tape to prevent the foil from short circuiting 

itself. Two 16 gauge wires are soldered to opposite ends of the foil for connecting 

to a power source. Seven T-type thermocouples are then placed at increasing 

distances from one another along the foil (Figure 6.1a). The foil is then wrapped 

around the steel tube as tightly as possible in order to increase total heater length 

and hence electrical resistance. Once tightly wound, the roll is secured with tape 

(Figure 6.1b). The tube and metal sheet roll are then placed inside the casing of the 

cell, and a thermocouple is also attached to the inside a 26650 cell casing (Figure 

6.1c). The cell is filled with poly-dimethylsiloxane (PDMS), which is a thermally-

curable polymer that fills up air voids within the test cell. Also, an additional ninth 

thermocouple is placed within the small layer of PDMS in between the foil and 

casing. All wires are threaded through a cap that is then inserted at the open end of 

the cell. PDMS inside the cell is cured at room temperature over a 24 hour period. 

Since uncured PDMS is very viscous, in order to fully remove air bubbles, PDMS 

is topped off and self-cured once more.  
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Figure 1d shows a top view image of the thermal test cell before sealing the 

top cap, showing the tightly wound metal heater coil and wires leading to the 

embedded thermocouples. The room temperature resistance of the heater coil is 

found to be 0.23 Ohms and 0.27 Ohms respectively for the heaters for the 6mm and 

2mm hole diameter test cells, which was measured in a four-wire configuration due 

to the small value of the resistance. Resistance is found to be largely independent 

of temperature in the temperature range of interest due to the low temperature 

coefficient of resistance of the heater material. 

6.1.2. Thermal property measurement of thermal test cell 

Experiments are carried out to measure the key thermal transport properties 

of the thermal test cell, to ensure that these values are close to that of a Li-ion cell 

[22, 42]. Due to the spirally wound nature of the thermal test cell, similar to a 26650 

Li-ion cell, a strong thermal conductivity anisotropy is expected, with radial 

thermal conductivity being much lower than the axial thermal conductivity. As a 

result, it is important to measure and characterize this rate-determining thermal 

property. This measurement is carried out by inserting a cartridge heater into the 

metal tubing of the test cell as shown in Figure 6.2. A T-type thermocouple is also 

placed on the outer surface of the test cell. The cartridge heater spans the entire 

length of the cell, ensuring uniform heating. The test cell is oriented horizontally in 

order to minimize heat loss through conduction from the axial ends.  A heating 

current of 58 mA is passed through the heater using a Keithley sourcemeter 2401, 

resulting in 1.21 W Joule heating. Temperature measured by the outside 

thermocouple as well as those embedded in the thermal test cell are logged at 2Hz 
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frequency using a National Instruments DAQ 9213. Experiments are carried out in 

two different ambient conditions, until steady-state conditions are reached, defined 

as less than a 0.5 °C temperature change over 600 seconds. Steady-state 

temperature data are then analyzed and compared with a one dimensional model 

for heat flow through an annular radial geometry with heat flux at the inner radius 

to determine the radial thermal conductivity of the thermal test cell. 

 
Figure 6.2. (a) Picture of radial thermal conductivity measurement setup, (b) 

Schematic of heater and thermocouple locations for kr measurement. 

 

Heat capacity of the test cell is determined by the mass-weighted average 

of the components used in fabricating the cell as follows: 
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where m and Cp refer to mass and heat capacity respectively, and the 

summations take place over all constituent materials. 

 Unlike thermal conductivity, heat capacity is a scalar quantity which at this 

lengthscale is given accurately by the mass-weighted average of heat capacities of 

constituent materials [90]. All materials used in fabricating the test cell are 

standard, with well-known thermal properties.  

6.1.3. Experimental setup for thermal measurements 

Experiments are carried out to investigate the thermal effectiveness of 

annular cooling of the thermal test cell. In the first set of experiments, the effect of 

coolant air passing through the annular tube is investigated. The cell is suspended 

in a low speed wind tunnel by connecting flexible piping on either end of the metal 

tube inserted into the test cell. Flow rate and pressure of air flow through the cell 

are controlled and measured using a ball valve, flowmeter and pressure gauge are 

also utilized to control and measure flow rate and pressure. The pressure gauge used 

is an Ashcroft 1226 commercial pressure gauge which has an accuracy of ±3% of 

its/ full scale that is 100kPa. Two different flow meters by King instrument 

company are used. One of them has a range of 6CFH-60SCFH (standard cubic feet 

per hour). The resolution of this flowmeter is 2 SCHFH and the accuracy is ± 3.6 

SCFH. The other flow meter has a range of 0.8 SCFM-8.2SCFM (standard cubic 

feet per minute), the resolution 0.2 SCFM and an accuracy of ±0.328SCFM. The 

volumetrically uniform heat is generated inside the cell by passing a heating current 

through the rolled metal foil in the test cell. A GPD-4303S programmable 

multichannel sourcemeter is used for this purpose. The sourcemeter has a current 
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range of 0-3A and voltage range of 0-30V. It has an accuracy of ± (0.2% of the set 

value+3mA). T-type thermocouples with an accuracy of 1 °C are embedded in the 

test cell are connected to a National Instruments DAQ 9213 for data acquisition. A 

number of experiments are carried out at various air flow rates, including a baseline 

experiment without any air flow. This experimental setup also enables the 

characterization of external cooling of the cell, where the airflow is directed over 

the cell instead of through the cell. 

 
 

Figure 6.3. Pictures of experimental setup: (a) Wind tunnel experimental setup for 
studying heat pipe-based cooling, (b) Thermal test cell with heat pipe inserted in 

the annular region. 
 

In the second set of experiments, passive cooling of the cell is investigated. 

A heat pipe is inserted into the metal tubing such that it can acquire heat from the 

entire length of the cell. Two Copper heat pipes of 2mm and 6mm diameter are 

used in these experiments. Each heat pipe is 10 cm in length. A test cell with a 2mm 

heat pipe is shown in Figure 6.3(a). The test cell is suspended from the top wall of 

the wind tunnel in such a way that the condenser end of heat pipe that allows heat 

loss to the ambient protrudes out of the wind tunnel (Figure 6.3(b)). A STANLEY 

High Velocity Blower Fan Model 655704 is placed outside the wind tunnel 

convects heat away from the condenser tip of the heat pipe. The airspeed from this 
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air blower is measured using an Extech mini thermo-anemometer. The anemometer 

can measure air speed from 0.5 to 28m/s with a resolution of 0.1m/s. The accuracy 

of the air speed measured is ± (3% reading + 0.2m/s). The air speed obtained from 

the blower is in the range of 0- 8.4 m/s. For further investigation of this approach, 

experiments are also carried out where the heat pipe is replaced by a copper rod of 

the same size. 

The test cell is subjected to internal heat generation through Joule heating. 

Measurements are carried out in two ambient conditions – natural convection where 

the condenser tip of the heat pipe cools off by itself, and forced convection where 

an external air flow occurs over the heat pipe tip. In the latter case, the physical 

isolation of the test cell from the air flow ensures that the external air flow cools 

the heat pipe tip, and not the cell directly.  

6.2 Finite-element simulations 

A finite element model is developed in ANSYS CFX [91] to model the 

experiments. The geometry of experimental test cells is modeled. The thermal 

conductivity of the cell is treated as anisotropic, with a radial thermal conductivity 

value of kr=0.25 W/mK, obtained from measurements as discussed in section 6.1.3 

The value of uniform heat generation applied in the volume of the cell is taken to 

match experimental conditions. Appropriate fluid domains were also created for 

both the cooling cases. The geometry is meshed with over 1 million nodes, and grid 

independence checks are carried out. 

For heat pipe based passive cooling, the heat pipe geometry is designed such 

that similar to experimental conditions, one end protrudes out of the test cell and 
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other end stays within. A fluid domain is created to simulate air flow over the heat 

pipe in the case of forced convection. Inlet air velocity is assigned at one of the 

sides of the fluid domain to represent the air blower supplying cooling air stream 

over the heat pipe tip. Similar to air cooling simulations, convective heat transfer 

coefficient of 10 W/m2K is assigned to outer surfaces of the test cell, which is a 

typical value for natural convection conditions [41]. The effective thermal 

conductivity of the heat pipe is assumed to be 5000 W/mK. While the operation of 

a heat pipe is considerably complicated, involving fluid flow, phase change, etc., 

these phenomena result in a very high effective thermal conductivity that has often 

been used to simplify the modeling of a heat pipe [92]. 

 

6.3 Results and Discussion 

6.3.1. Thermal property measurement results:  

Thermal conductivity in the radial direction is a key thermal transport 

property of a Li-ion cell [22,35]. Due to the poor thermal properties of separator 

[93] and multiple thermal contact resistances in the rolled nature of the thermal test 

cell, similar to a Li-ion cell [48], the radial thermal conductivity kr is expected to 

be much smaller than the axial component kz, and hence likely to be the rate-

determining thermal parameter. Experiments are carried out to determine the value 

of kr as described in section 6.1.2. Considering an annular cylinder being heated on 

the inner surface and convectively cooled on the outer surface, the steady-state 

temperature distribution within the cylinder is given by  
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where kr is the radial thermal conductivity and h is the convective heat transfer 

coefficient on the outside surface. ''q is the heat flux at the inner surface. R1 and R2 

are inner and outer radii respectively. Note that in this case, temperature is not a 

function of the axial dimension z, since the cartridge heater supplies heat all along 

the z-axis. From equation (120), the temperature difference between the inner and 

outer surfaces is given by 
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Equation (121) shows that the steady-state temperature difference between 

thermocouples mounted on the inner and outer surfaces can be used to determine 

the radial thermal conductivity, since ''q , R1 and R2 are well-known. 

Experiments are carried out in two different ambient conditions – free 

convective cooling of the thermal test cell, and forced convective cooling due to a 

stream of cooling air directed at the test cell. The measured temperature distribution 

within the cell is plotted in Figure 6.4 for both cases. The temperature difference 

∆T between the innermost and outermost thermocouples results in consistent 

determination of kr from both experiments. As expected, the measured temperature 

difference ∆T is nearly the same in both ambient conditions, resulting in thermal 

conductivity values of 0.25 W/mK and 0.26 W/mK in free and forced convection 

respectively. These values are very close to the radial thermal conductivity of a 

26650 Li-ion cell [22].  
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Further, equation (120) is used to determine the radial locations of the 

thermocouples by fitting the expected radial temperature distribution through the 

experimental data. This precisely determines the locations of the embedded 

thermocouples as shown in Figure 6.4. For reference, the approximate 

thermocouple locations based on a top-view picture of the rolled thermal test cell  

Figure 6.4. Measured T vs r and analytical model fit for radial thermal 
conductivity measurement at two different convective conditions. 

 

prior to sealing the cell cap are also shown. In most cases, the experimentally 

determined locations are close to the approximate locations. While the 

thermocouples were distributed approximately uniformly during the rolling and 

assembly process of the test cell, some movement is likely, and these experiments 

help determine the precise locations of the thermocouples. 

  



 110 

Once kr has been determined, temperature measurement from the outer-most 

thermocouple can also be used to determine the value of the convective heat transfer 

coefficient h using equation (120). This value is found to be 15 W/m2K and 591 

W/m2K for natural and forced convection respectively, both of which are well 

within the range of these convective cooling regimes [41]. 

Figure 6.5. T vs. r for a number of kz values, showing weak dependence on axial 

thermal conductivity. 

 

Compared to kr, the axial thermal conductivity kz does not play a significant 

role in determining the thermal characteristics of the test cell, since kz is typically 

much larger due to the availability of a high thermal conductivity pathway for axial 

heat transfer. Figure 6.5 plots the temperature distribution inside a cell for a fixed 

heat generation rate and convective cooling conditions for a number of kz values 

based on a recently reported analytical thermal model of an annular geometry [65]. 
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This plot shows that the temperature distribution is largely insensitive to kz. A value 

of kz=30 W/mK is assumed based on past measurements [22]. 

Note that in addition to a close match in kr between the thermal test cell and 

a 26650 Li-ion cell, the specific heat and mass density are also found to match 

closely. The specific heat of the test cell, determined using a weighted average of 

its constituent materials is found to be 777 J/kgK, which is also close to a recently 

reported measurement of 749 J/kgK [42]. The mass density of the test cell is found 

to be 2093 kg/m3, which is close to the value of 2285 kg/m3 for a 26650 cell. 

Overall, the thermal mass of the thermal test cell is 56 J/K, compared to 59 J/K for 

a 26650 Li-ion cell.  

6.4.2. Internal cooling 

A set of experiments are carried out to investigate the effect of internal flow 

through the annular tube of the thermal test cell on temperature distribution in the 

test cell. Data is obtained for cells with 2mm and 6mm diameter inner tubes.  

Figure 6.6. Temperature distribution within the cell for baseline and several 
internal flowrates for (a) 2mm cell, (b) 6mm cell. 

 

Figures 6.6(a) and (b) present the measured temperature distribution for 

2mm and 6mm cells respectively for a fixed heat generation rate, but with different 
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coolant flowrates. The presence of even a small coolant flowrate is shown to result 

in significant temperature reduction in comparison with the baseline case of no 

cooling. Specifically, the thermocouple closest to the core of the cell experiences 

the greatest temperature reduction – nearly 22 °C reduction with 1415 cm3/s air 

flow, and the peak temperature rise shifts outwards within the cell. In comparison, 

temperature in the outer regions of the cell that are farthest from the coolant flow 

also reduces, but not as dramatically. The effect of the coolant flow saturates 

somewhat with increasing flowrate, most likely because thermal conduction within 

the cell begins to dominate the overall thermal transport process. For example, there 

is not much further reduction in temperature between 472 and 1415 cm3/s 

measurements. This saturation effect is shown clearly in Figure 6.7, which plots the 

peak temperature rise as a function of coolant flowrate for both 2mm and 6mm 

thermal test cells. Figure 6.7 shows that the thermal characteristics of the 2mm and 

6mm cells with internal coolant flow are very similar to each other. All these 

experiments are carried out by passing a current of 1.5A through the heater coil in 

the thermal test cell. 
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Figure 6.7. Maximum cell temperature as a function of internal flowrate for 2mm 

and 6mm cells. 
 
6.4.3. Heat pipe and metal rod cooling  

 
 

Figure 6.8. Temperature distribution within the cell for baseline, heat pipe and 
copper rod in two different convective conditions for (a) 2 mm and (b) 6 mm cell. 
 

Results from experiments with embedded heat pipes are summarized in 

Figure 6.8, where the measured temperature distribution within the cell is plotted 

for a baseline case as well as with 2 mm (Figure 6.8a) and 6 mm (Figure 6.8b) heat 
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pipes. Two ambient conditions around the tip of the heat pipe are considered – one 

where the tip of the heat pipe loses heat simply by natural convection, and one 

where air flow over the top of the heat pipe (Figure 6.3) results in greater heat loss 

due to forced convective cooling. In addition to heat pipes, Figures 6.8(a) and 6.8(b) 

also show experimental data when a plain copper rod of the same size as the heat 

pipe is used instead. Data show significant reduction in temperature of the thermal 

test cell due to thermal transport from the core of the cell to the heat pipe. There is 

a reduction of 3 °C and 17 °C in peak temperature compared to baseline for natural 

and forced convection on the heat pipe respectively for the 6 mm case. These data 

show that while some temperature reduction is to be expected by simply embedding 

the heat pipe, an even greater benefit can be obtained when the tip of the heat pipe 

is cooled by forced convection. This is along expected lines, since forced 

convection ensures effective rejection of heat from the tip of the heat pipe into the 

ambient. In the absence of forced convection, heat flows from the cell into the heat 

pipe, but is severely impeded in transferring to the ambient, thereby reducing the 

overall heat transfer effectiveness of the heat pipe. The reduction in temperature 

within the cell for 6 mm and 2 mm heat pipes are summarized in Figure 6.9. Unlike 

flow-based cooling discussed in section 6.4.2, where thermal test cells with 2mm 

and 6mm inner tubes had similar thermal performance, in this case, there is greater 

temperature reduction when using a 6 mm heat pipe compared to a 2 mm heat pipe. 

However, a 6mm heat pipe occupies greater volume inside the cell, and thus may 

result in reduced capacity compared to the 2mm heat pipe cell. Data presented here 
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helps quantify such thermal-electrochemical trade-offs in the thermal management 

of a Li-ion cell.  

Figure 6.9. Comparison of thermal performance of 2 mm and 6 mm heat 

pipes. 

 

Data presented in Figures 6.8(a) and 6.8(b) indicate that a cooling effect 

similar to a heat pipe may be obtained by simply using a copper rod instead of a 

heat pipe. In each case, the measured temperature distribution with a copper rod is 

very close to that with a heat pipe of the same size. Theoretically, this occurs 

because the thermal conductance through the metal rod is already so high that 

further increase in thermal conductance brought about by two-phase cooling within 

the heat pipe has negligible impact on the temperature field which is now dominated 

by thermal conduction within the cell and convection from the heat pipe or metal 

rod to the ambient. Note that a metal rod is expected to be of much lower cost, since 

it does not require a hollow tube and the incorporation of various heat pipe 
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components such as heat pipe fluid, wicking structure, etc. While 2 mm diameter 

copper rod can be obtained very easily and at low cost, a 2 mm diameter heat pipe 

be prohibitively expensive. 

In addition to reduced peak temperature, the presence of the heat pipe or 

metal rod improves temperature uniformity within the thermal test cell. As shown 

in Figures 6.8(a) and 6.8(b), the temperature distribution is much flatter for both 

2mm and 6mm cases compared to respective baselines, particularly when forced 

convection cooling is present.  

Both heat pipe and metal rod, when embedded in the core of the cell as 

shown here provide a low thermal resistance path for heat generated in the cell to 

dissipate to the ambient. Despite a heat pipe being significantly more expensive 

than a metal rod, results presented here show that the thermal effect is similar in the 

two cases. In addition, while the 6 mm heat pipe shows better thermal performance 

than a 2 mm heat pipe, the 6 mm heat pipe occupies more space inside the cell, and 

thus may cause greater reduction in cell capacity for the same outer cell volume 

(around 20% reduction vs. 2% reduction based on volume). 

Table 6.1. Comparison of experimental measurements and simulation results for 
temperature rise in °C in various cooling cases. 

 

 
No 

Cooling 

Air Cooling Heat Pipe or Cu Rod 
157 

cm3/s 
236 

cm3/s 
472 

cm3/s 
Natural 

Convection 
Forced 

Convection 
Experimental 
Measurement 

52.4 33.6 31.4 30.2 52.1 36.7 

Simulation 
Result 

53.5 33.0 30.9 30.1 48.8 38.3 
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Table 6.1 shows a comparison of experimentally measured temperature rise 

at the inner-most thermocouple in the cell with finite element simulation results. 

Results for a number of cooling conditions are listed, including the baseline case, 

air cooling cases and forced and natural convection cases for a heat pipe. There is 

good agreement between experiments measurements and simulations in each case. 

Note that similar to experiments, the simulations results predict that thermal 

performance of heat pipe and metal rod are close to each other. This is because in 

each case, thermal transport becomes limited by convection at the tip due to the 

comparatively lower thermal resistance within the heat pipe or metal rod. This may 

be an important consideration in the design of a thermal management technique for 

a Li-ion cell.  
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6.4.5. Effect of heat pipe cooling on anomalous heat generation 

 
  

Figure 6.10. Comparison of thermal performance without and with heat pipe 
during an anomalous heat generation event, showing preventing of overheating by 

the heat pipe. 
 

Experiments are also carried out to demonstrate the effect of the embedded 

heat pipe on the transient thermal response of the cell in realistic conditions. The 

cell is first subjected to a fixed heat generation rate, which is then increased four-

folds. This may be representative of a situation where the cell experiences an 

anomalous increase in heat generation rate due to a malfunction such as an internal 

short. The thermal response of the cell is very critical in this situation, since thermal 

runaway may occur if the cell temperature exceeds a certain threshold. The 

presence of an embedded heat pipe may be able to prevent such a situation by 

directly removing the additional heat being generated in the core of the cell to the 
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ambient. In order to quantify this, experiments are carried out without and with the 

embedded heat pipe. Results are summarized in Figure 6.10, where the measured 

peak temperature is plotted as a function of time for both cases. Variation in the 

cell power with time is shown in the inset, and the time at which anomalous heat 

generation commences is indicated. When no heat pipe is present, the peak 

temperature in the cell starts increasing sharply as soon as the increased power is 

applied to the cell. The cell temperature rapidly reaches the threshold of 55 °C, at 

which point the experiment is terminated for safety of the cell. On the other hand, 

when a heat pipe is present, the temperature of the cell increases at a much lower 

rate, and eventually reaches a steady-state without exceeding the safety threshold. 

This shows that the heat pipe successfully prevents overheating of the cell, whereas 

without the heat pipe, the cell temperature rapidly reaches a threshold where it may 

be at risk of thermal runaway. This experiment highlights the potential thermal 

benefit of the presence of an embedded heat pipe in ensuring the safety of a cell 

during an anomalous heat generation event. 
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CHAPTER 7  

EXPERIMENTAL AND THEORETICAL ANALYSIS OF A METHOD TO 
PREDICT THERMAL RUNAWAY IN LI-ION CELLS 
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Abstract 

Thermal runaway is a well-known safety concern in Li-ion cells. Methods to predict 

and prevent thermal runaway are critically needed for enhanced safety and 

performance. While much work has been done on understanding the kinetics of 

various heat generation processes during thermal runaway, relatively lesser work 

exists on understanding how heat removal from the cell influences thermal 

runaway. Through a unified analysis of heat generation and heat removal, this paper 

derives and experimentally validates a non-dimensional parameter whose value 

governs whether or not thermal runaway will occur in a Li-ion cell. The parameter 

comprises contributions from thermal transport within and outside the cell, as well 

as the temperature dependence of heat generation rate. Experimental data using a 

26650 thermal test cell are in good agreement with the model, and demonstrate the 

dependence of thermal runaway on various thermal transport and heat generation 

parameters. This parameter is used to predict the thermal design space in which the 

cell will or will not experience thermal runaway. By combining all thermal 

processes contributing to thermal runaway in a single parameter, this work 

contributes towards a unified understanding of thermal runaway, and provides the 

fundamental basis for design tools for safe, high-performance Li-ion batteries.  

 

Keywords: Lithium Ion Battery, Safety, Thermal Runaway, Battery Cooling, 

Thermal Modeling. 
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7.1 Mathematical Modeling 

Consider a cylindrical Li-ion cell of radius R, radial thermal conductivity kr, heat 

capacity Cp and mass density ρ. The cell experiences a temperature-dependent 

internal heat generation rate Q(T), and is being cooled at the outside surface with a 

convective heat transfer h due to a mechanism such as coolant flow. The interest is 

in determining the parameter space within which the cell will not undergo thermal 

runaway, i.e. the cell temperature does not become unbounded. In this case, the 

governing energy equation for the temperature rise T(r,t) in the cell is given by 
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Equations (122)-(124) can be solved to determine if there is a set of conditions 

that will prevent thermal runaway by ensuring a bounded solution for T at all times. 

To do so, a Taylor series expansion of Q(T) is first carried out about a temperature 

T=T0, and second order and higher terms are neglected. This results in  
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where 
dT

dQ
=β is the slope of Q(T). 
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In order to solve equation (125), it is noted that the heat generation term can 

be split linearly into two components, (Q(T0)-βT0) and βT. The first component is a 

constant quantity, which from thermal conduction theory [66] is known to result in 

a steady state with a bounded temperature field. However, the second heat 

generation component βT increases with temperature, and may lead to an 

unbounded temperature. Solving only for T2(r,t), which represents the temperature 

rise due to the second component of heat generation, it can be shown using the 

technique of separation of variables [66] that 
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where J0 is the Bessel function of the first kind of order 0, Cn are constant 

coefficients, and µn are non-dimensional eigenvalues given by the roots of the 

equation 

 ( ) ( ) 0xxJxJBi 10 =−⋅      (127) 

where 
rk

hR
Bi = is the Biot number. Note that Cn in equation (126) are obtained 

using orthogonality and the initial condition of the temperature field.  

The temperature solution in equation (126) may be either bounded or 

unbounded depending on the sign of the term within the exponential function in 

equation (126). This term remains bounded if 
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for each n=1,2,3.. 
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Since the values of µn increase with n, it is sufficient to require that the first 

eigenvalue µ1 satisfies equation (128). This condition can be written in terms of a 

single non-dimensional parameter as 

 1
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rk
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TRN   (129) 

Thus, a fundamental, non-dimensional parameter has been derived, which we 

denote as the Thermal Runaway Number (TRN), whose value must be less than one 

in order to prevent thermal runaway. Since this derivation is based on Taylor series 

expansion of Q(T) at a specific temperature T0, therefore equation (129) must be 

satisfied over the entire temperature range of operation to ensure that thermal 

runaway does not occur throughout.  

The non-dimensional parameter TRN in equation (129) is a combination of 

properties of thermal transport within the cell (kr), thermal transport from the cell 

surface to the outside (µ1) and the kinetics of heat generation (β), as well as the cell 

geometry (R). These parameters combined in the manner shown in equation (129) 

determine whether thermal runaway occurs or not. Li-ion cell design and run-time 

thermal management must be carried out to either reduce the numerator or increase 

the denominator or both in equation (129).  

The first eigenvalue µ1 can be determined by solving the transcendental 

equation (127) once Biot number, comprising the cell radius, R, thermal 

conductivity, k, and outside convective heat transfer coefficient, h, is known. µ1 is 

plotted as a function of the Biot number in Supplementary Figure 1. As Bi increases, 

µ1 increases, but eventually saturates. This means that regardless of how strong 
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convective heat transfer outside the cell is, the value of µ1 will at most be 2.403. 

Simply continuing to increase Bi does not necessarily improve the chances of 

preventing thermal runaway.  

Note that equation (129) is derived by assuming the Li-ion cell to be an infinite 

cylinder, which for most cell geometries such as 18650 and 26650 cells is a 

reasonable assumption. If a cylinder of finite height H is modeled instead, equation 

(129) must include additional contributions from the axial eigenvalue as follows: 
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where λ1 is the first axial eigenvalue, determined based on convective 

conditions on the top and bottom surfaces, γ is the thermal conductivity ratio kz/kr, 

and H/R is the aspect ratio. As expected, for large aspect ratio, equation (130) 

reduces to the infinite cylinder result given by equation (129).  

It’s been shown by a theoretical derivation that if Bi<<1, i.e., thermal 

conduction within the cell is neglected and the entire cell is treated as a lumped 

thermal mass, as has been done in Semenov plots in previous papers [37,25], 

equation (129) reduces to the following simpler form: 

 AhV ⋅<β    (131) 

which corresponds to the Semenov analysis presented in the past that treats the 

body as a lumped thermal mass. Equation (131) states simply that to prevent 

thermal runaway, the rate of heat generation must be lower than the rate of heat 

removal. However, this simplified condition is accurate only for a lumped thermal 
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mass because it does not account for thermal transport within the cell. By 

accounting for this, the model presented here generalizes the Semenov analysis, 

and offers a more realistic and accurate prediction of thermal behavior of a Li-ion 

cell. 

The next section discusses experiments carried out on a 26650 thermal test 

cell to experimentally validate the model presented in this section. Results and 

discussion are presented in Section 4. 

7.2 Experiments 

Experimental investigation of the influence of TRN on thermal runaway 

presents several challenges. It is difficult to accurately control and measure heat 

generation rate in a Li-ion cell, particularly one that changes with temperature, as 

required for such experiments. Further, measurement of temperature inside the cell 

is not straightforward [39,42]. As a result, these experiments utilize a thermal test 

cell that mimics heat generation in a Li-ion cell and provides the capability of close 

control of temperature-dependent heat generation rate.  

7.2.1. Fabrication of Thermal Test Cell 

A thermal test cell is designed and built to closely mimic the thermal 

behavior of a 26650 Li-ion cell. The thermal test cell has similar geometry and 

thermal transport properties as a 26650 Li-ion cell. Heat generation in the thermal 

test cell occurs due to Joule heating in a wound resistive metal sheet, which makes 

it possible to measure and change the heat generation rate as a function of 

temperature by varying the heating current. A thin foil of 304 Stainless Steel and 

thickness 0.025 mm is first insulated by adhering Kapton tape on its surface. The 
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foil-Kapton sandwich is rolled around a thin rod to form a cylinder of height 65 

mm and radius 13 mm. Seven T-type thermocouples are placed during the rolling 

process at different radii. Thin metal wires are soldered to the two ends of the foil 

to provide electrical access to the metal foil. The roll is then lowered inside an 

Aluminum casing of the same dimensions as a 26650 Li-ion cell, and the thin rod 

is carefully taken out. The heater and thermocouple wires are routed out of the 

casing. The remaining volume inside the casing is filled with uncured poly-

dimethylsiloxane (PDMS), a commonly used electrically insulating soft polymer, 

followed by curing for 2 hours at 60 °C. PDMS filling is carried out in two steps in 

order to expel all air inside the test cell. Once filled with PDMS and cured, the test 

cell is sealed with an epoxy.  

Measurement of thermal conductivity of the thermal test cell has been 

reported in a recent paper to be 0.25 W/mK [22] using an adiabatic radial heating 

method [22]. This value is close to that of a 26650 Li-ion cell [22,40]. 

7.2.2. Temperature-Dependent Heat Generation in Thermal Test Cell 

Electrochemical processes in a Li-ion cell generate heat at a rate that 

 
Figure 7.1. (a) Picture, and (b) Schematic of the experimental setup. 
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typically increases with temperature due to Arrhenius-type nature of these 

processes [9,13]. In order to obtain a similar temperature dependence of heat 

generation in the thermal test cell, the heating current, supplied by a LabView-

controlled Keithley 2401 sourcemeter is modulated based on temperature 

measurement from the embedded thermocouples. Figure 7.1 shows a picture of the 

experimental setup, and a schematic of information flow between various 

instruments for control of the heat-generation rate. The thermocouple is read every 

one second, and the heating current is changed in order to maintain the heat 

generation rate according to any desired function of temperature.  

It has been shown that the heat generation rate in the test cell remains close 

to the desired profile throughout the experiment, thereby demonstrating the 

capability of inducing a desired, temperature-dependent heat generation rate in the 

thermal test cell. Two specific temperature profiles investigated in this work include 

linearly and exponentially increasing heat generation as functions of temperature. 
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7.3 Results and discussion 

 

Figure 7.2. Core temperature of the thermal test cell measured as a function of 

time for a number of values of β, ranging from 805 W/m3K for the left-most 

(blue) curve to 2685 W/m3K for the rightmost (red) curve. These data show that 

thermal runaway occurs when TRN>1, and is prevented when TRN<1. The value 

of TRN is shown for each curve. Prediction of temperature profile from the 

analytical model in Section 2 is also shown for comparison 

 

Figure 7.2 plots results from temperature measurements on the thermal test 

cell subjected to linearly increasing Q(T), with different values of the slope β. 

Equation (129) predicts that as β increases, the value of TRN will increase, and 

eventually exceed the threshold value of 1, beyond which thermal runaway is 

expected to occur. This effect is clearly seen in Figure 7.2 where the value of TRN 

corresponding to various experiments is shown alongside each curve. For low TRN, 

the cell temperature remains bounded. As TRN increases, the temperature starts to 

increase due to increased heat generation, but still stays bounded. Once TRN 

exceeds 1, however, thermal runaway occurs, with the shape of the temperature 
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curve changing from concave to convex. Experimental data in Figure 7.2 

demonstrate that runaway occurs beyond a threshold value of 1, as expected from 

the model. In addition, Figure 7.2 also shows that in each experiment, there is good 

agreement between experimental data and analytical model over the entire time 

period.  

Figure 7.3. Core temperature of the thermal test cell measured as a function of 
time for fixed β and different convective heat transfer conditions. 

As described in section 7.2, TRN includes contributions from heat 

generation rate (β), thermal conduction within the cell (k) as well as convective heat 

transfer on the outside (h). To investigate this further, experiments are carried out 

at fixed β and k, but with different cooling conditions on the outside surface of the 

cell to vary h. This is accomplished by providing a cooling fan to blow air over the 

fan and varying the cooling air speed. Figure 7.3 plots the temperature of the cell 

as a function of time for these experiments. As the air speed increases, so does h, 

resulting in reduction in the value of TRN according to equation (8). Eventually, as 
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TRN keeps reducing, as predicted by the model, the cell does not enter into thermal 

runaway, shown by the bottom three curves in Figure 7.3. These data further 

validate the theoretical prediction of a threshold value of TRN to induce thermal 

runaway in the cell.  

A set of experiments is then carried out using an Arrhenius-type temperature 

dependence of the heat generation rate, which is more representative of 

physiochemical processes in a Li-ion cell that are responsible for thermal runaway. 

In general, the Arrhenius relationship for heat generation rate in a process is given 

by [94]  
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Where Q0 is the pre-exponential constant, R is the ideal gas constant, and 

Ea is the activation energy. Note that due to the exponential relationship, β, the 

slope of Q is not constant, but increases with increasing temperature.  

Figure 7.4. Experimental measurement of thermal test cell core temperature for 

(a) two different values of activation energy, Ea, (b) two different values of 

convective heat transfer coefficient. Plots also indicate the evolution of TRN with 

time, and show that thermal runaway occurs when TRN exceeds 1. 
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Two experiments are carried out at two different values of Ea. The values 

of Ea are chosen such that the resulting TRN corresponding to one of the Ea values 

crosses over the threshold within a specific temperature window, but not for the 

other. Figure 7.4(a) plots the measured temperature response as a function of time 

for both cases. As temperature increases, the heat generation rate increases 

exponentially, which results in a dynamic value of TRN. The variation in TRN as a 

function of time is also plotted in Figure 7.4(a), which shows that for the higher Ea 

case, TRN always stays under 1, and as a result, the measured temperature remains 

bounded. For the lower Ea case, TRN starts at a low value, but increases rapidly, 

and exceeds the threshold of 1 beyond around 1000s. During the time that TRN 

remains under 1, the temperature profile for this case also appears to remain 

bounded, but, as expected from the theoretical model, once TRN exceeds 1, the 

temperature distribution becomes unbounded, resulting in thermal runaway. There 

is an inflexion in the temperature curve at the time that TRN crosses the threshold 

value of 1. Figure 7.4(b) investigates this further by plotting the temperature profile 

for the lower Ea value at which thermal runaway occurred in the previous 

experiment, but with two different cooling conditions – natural convection and 

forced convection using a fan. Figure 7.4(b) shows that thermal runaway that 

occurred in the previous experiment could be prevented through external cooling, 

which increases the value of h, and hence reduce the value of TRN. Figure 7.4(b) 
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shows that when externally cooled, the value of TRN always stays below 1, thereby 

preventing thermal runaway as predicted by the model presented in section 2.  

Figure 7.5. Colorplot of TRN in the h-k space. The TRN=1 curve that 

separates safe and unsafe regions is also shown. 

 

For a Li-ion cell of a given chemistry and operating at a certain C-rate, there 

are two thermal transport parameters that influence the rate of heat removal from 

the cell – the thermal conductivity k, which governs the thermal conduction process 

within the cell, and convective heat transfer coefficient h, which governs heat 

removal from the cell surface to a coolant through thermal convection. It is 

important to understand how the value of TRN depends on these two parameters. 

Figure 7.5 shows a colorplot of TRN in the h-k space relevant for most practical 

cooling strategies for β=6000 W/m3K. A curve corresponding to TRN=1, which is 

the threshold that separates the safe region (to the top and right of the TRN=1 curve) 

and unsafe region (to the bottom and left of the curve) of this space is also shown. 

This curve provides a useful design guideline for thermal management of Li-ion 
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cells by specifying what values of thermal transport parameters are expected to be 

sufficient to prevent thermal runaway at a given value of β. Further, in case thermal 

runaway is to be expected, this figure shows what parameters need to be changed 

and by how much in order to cross into the safe region of the h-k space shown in 

Figure 7.5. In general, the TRN=1 curve that separates the safe and unsafe regions 

shifts towards the top and right as β increases, leaving lesser and lesser of the h-k 

space in the safe region. For reference, recent measurements have reported the 

radial thermal conductivity of 26650 cells to be in the range of 0.2-0.65 W/mK 

[22,40].  On the h axis, natural convection cooling results in a value of h in the 

range of 10-100 W/m2K [41], while forced convection values for h are larger, 

depending on the nature of coolant fluid and flow speed [41]. 

Figure 7.6. (a) TRN as a function of cell thermal conductivity, k for two 

different values of the convective heat transfer coefficient, h; (b) TRN as a 

function of the convective heat transfer coefficient, h for two different values of 

the cell thermal conductivity, k 

 

Figures 7.6(a) and (b) plot TRN as a function of h and k respectively while 

the other parameter is fixed. Both figures use β=6000 W/m3K. Figure 7.6(a) shows 

that at a fixed k=0.2 W/mK, TRN reduces as h increases, i.e., as the cell is cooled 

more and more aggressively, and dips below the threshold value of 1 at around 

h=233 W/m2K. This transition can be made to occur at a lower h, if the thermal 
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conductivity of the cell could be improved. At k=1 W/mK, Figure 7.6(a) shows that 

a heat transfer coefficient of 45 W/m2K is sufficient to prevent thermal runaway. 

Similarly, Figure 7.6(b) shows that increasing the cell thermal conductivity reduces 

TRN when h is held constant. Both Figures 7.6(a) and 7.6(b) exhibit a saturation 

effect in TRN as either h or k continue to increase. TRN for a cell with too low 

thermal conductivity might not dip below the threshold value of 1 at all regardless 

of how effectively it is cooled on the outside. Note that increasing h requires 

improved heat transfer external to the cell, whereas increasing k requires improving 

material and interfacial thermal resistances within the cell [48]. 

The interplay between h and k for reducing TRN and preventing thermal 

runaway is further illustrated in Supplementary Figure 1, which plots the first root 

µ1 of equation (127) as a function of the Biot number, Bi. As Bi increases, there is 

a sharp increase in µ1, resulting in significant benefit to TRN, but beyond a value of 

around 30, further increase in Bi does not significantly increase µ1. This illustrates 

the inherent limitations in using convective cooling to improve thermal runaway 

performance of the cell, for which k is a constant. Once the heat transfer coefficient 

is somewhat large, its role in preventing thermal runaway saturates, and further 

benefit must come from thermal-friendly cell design, for example by improving 

thermal transport through materials and interfaces inside the cell. 

When carrying out an effective thermal design of the cell to prevent thermal 

runaway, parameters such as cell radius and thermal conductivity of the cell are 

usually fixed, whereas the convective heat transfer coefficient can be increased 

somewhat, for example, by providing additional coolant flow on the outside of the 
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cell. In such a case, it is important to determine hmin, the minimum value of the 

convective heat transfer coefficient that can sustain a given heat generation rate 

without causing thermal runaway. Figure 7.7 plots hmin as a function of β for a 

number of values of the cell thermal conductivity, k. This plot shows that for a given 

value of k, as β increases, the minimum value of h needed to prevent thermal 

runaway increases slowly at first, but then very sharply, eventually becoming too 

large to be practicable. Since mu1 has a theoretical maximum value of 2.405 (see 

Suppl. Fig 3), therefore, for a given R and k, the maximum β that a cell can sustain 

without thermal runaway is given by βmax=5.78·k/R2, which requires very strong 

convective cooling corresponding to a Biot number of around 50 or more. If the 

expected β of a cell is greater than βmax, then, even the best possible external cooling 

may not be effective. 

Figure 7.7. Minimum heat transfer coefficient needed to prevent thermal runaway as a 
function of β for different values of cell thermal conductivity.  
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Finally, the two-dimensional thermal runaway model is utilized to predict 

βmax, the maximum value of β that a cell can sustain as a function of the shape of 

the cell. Figure 7.8 plots βmax as a function of cell radius for fixed total volume, 

corresponding to the volume of a 26650 cell. As R increases, βmax first reduces, but 

then starts increasing after reaching a minima. This non-monotonic behavior occurs 

because for a fixed volume, equation (130) can be rearranged as follows: 
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where V is the volume.  

The first term in equation (133) is inversely proportional to R2, whereas the second 

term is directly proportional to R4, which explains the non-monotonic behavior in 

Figure 7.8. This shows that among all cells of the same volume at given values of 

h and k, the cell of a certain radius sustains the lowest βmax,  

Figure 7.8. Maximum sustainable β as a function of the aspect ratio of a finite-

length, cylindrical cell. 
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and thus has the worst possible thermal runaway behavior at the assumed values of 

h and k. This worst-case radius can be easily obtained by differentiating equation 

(133). For conditions considered here, as shown in Figure 7.8, this minima occurs 

at a radius of around 17 mm, which is quite close to that of the commonly used 

26650 cell. 
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CHAPTER 8  

AN EXPERIMENTALLY VALIDATED NON-LINEAR TRANSIENT 
THERMAL MODEL TO PREDICT THERMAL RUNAWAY IN 

CYLINDRICAL LI-ION CELLS 
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Abstract 

Thermal runaway is a widely investigated safety concern in Li-ion based energy 

storage devices. Model to predict temperature and help prevent thermal runaway is 

critically needed for improved safety as well design considerations. Significant 

amount work has been done on understanding the kinetics of electrochemical 

reactions responsible for heat generation during thermal runaway, the effect of 

those reactions on the core temperature of cell and prediction of thermal runaway 

has not been investigated as much. A Thermal model capable of accounting for 

various heat generation mechanisms and the resulting temperature dependent heat 

generation has been demonstrated. Such a model can prove to be key in improving 

the ability to predict the catastrophic event of thermal runaway in Li-ion cell.   The 

model has been rigorously validated experimentally. Controllable temperature 

dependent heat generation has been obtained by simulating the required 

temperature dependent nature in a thermal test cell. Experimental measurement of 

the temperature has been obtained by varying value of various parameters of heat 

generation. There is good agreement between the experimental data and prediction 

from thermal model for different values of various heat generation parameters.  The 

model is also used to analyze effect of different heat generation terms and heat 

transfer parameters such as thermal conductivity and convective heat transfer 

coefficient on the temperature of the cell. The model has also demonstrated the 

capability to simulate effect of thermal abuse of Li-ion cell. 

Keywords: Lithium Ion Battery, Safety, Thermal Runaway, Battery Cooling, 

Thermal Modeling. 



 141 

8.1. Mathematical Modeling 

Consider a cylindrical Li-ion cell of radius R, radial thermal conductivity kr 

and radial thermal diffusivity αr. The cell experiences internal heat generation due 

to Ohmic Joule heating (QJ) and exothermic reactions (Qe), and is being cooled at 

the outside surface with a convective heat transfer coefficient h. The interest is in 

predicting the temperature distribution in the cell as a function of time, and 

specifically, predict whether the cell enters thermal runaway. The mathematical 

modeling of this problem is inherently challenging due to the temperature-

dependent heat generation from the exothermic electrochemical reactions. This 

makes the governing energy equations non-linear. The governing energy equation 

for the temperature rise θ(r,t) in the cell is given by 
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where T and T∞ are absolute temperatures of the cell and ambient respectively. 
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Note that while QJ is a constant, Qe depends on the local absolute 

temperature. In order to solve equations (134)-(137), a piecewise linear 

approximation of Qe(T) based on Taylor series expansion is utilized. The above 

governing equation is then simplified (note that it is not linearly varying heat 

generation yet since beta is temperature dependent – it becomes linear only after 

discretization in time.. see my comment below) as follows:   
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where β(T) is the instantaneous slope of heat generation with respect to 

absolute temperature  

In order to solve equation (139), it is noted that the total heat generation is split 

into two components – Qjoule-heating and β(T)·T. Here the second terms β(T)·T 

captures heat generation due to exothermic electrochemical reactions. The first 

component is due to joule heating which can be considered as a constant with a 

temperature, and from thermal conduction theory [66] would lead to a steady state 

with a bounded temperature field. However, the second heat generation component 

β(T)·T increases with temperature, and may lead to an unbounded temperature. The 

reaction rate of exothermic electrochemical reactions increases exponentially with 

increase in temperature which leads to exponential increase in heat generation with 

temperature in Li-ion cells.  

 )t,r(w)r(s)t,r( ii +=θ   (140) 
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The above solution is for a constant value of βi.  

where J0 is the Bessel function of the first kind of order 0, Cn are constant 

coefficients, and µn are non-dimensional eigenvalues given by the roots of the 

equation 

 ( ) ( ) 010 =−⋅ xxJxJBi   (143) 

where 
rk

hR
Bi = is the Biot number. Note that Cn(βi) in equation (5) are obtained 

using orthogonality and the initial condition of the temperature field for the 

corresponding βi. The above solution is implemented such that the heat 

generation from piecewise linear approximation at a given temperature is within a 

certain tolerance of the actual heat generation values. In order to ensure that, value 

of β is updated to instantaneous slope value as required.  Every time β is changed 

in order to obtain the piecewise linear approximation, coefficients Cn are 

recalculated as given below, 
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The next section discusses experiments carried out on a 26650 thermal test 

cell to experimentally validate the model presented in this section. Results and 

discussion are presented in Section 4. 

8.2. Experiments 

Experimental validation of any analytical thermal model for a Li-ion cell in 

thermal runaway conditions presents several challenges.  Accurate measurement 

and control of heat generation rate and its variation with temperature in real time is 

not straightforward. Heat generation in abuse conditions in a Li-ion cell occurs due 

to a variety of decomposition processes. Even though several papers have estimated 

the reaction kinetics of these processes [8,13,95], the heat generation rates are not 

known exactly, and may vary depending on experimental conditions. Further, 

temperature measurement inside a Li-ion cell during abuse conditions is also not 

straightforward. Most past research on temperature measurement in a Li-ion cell is 

limited to the surface temperature [25,34,96] whereas thermal runaway most likely 

originates the core of the cell where the temperature is the highest.  

In order to overcome these experimental difficulties, a thermal test cell is 

used for model validation. This thermal test cell closely mimics the geometry and 

thermal properties of a 26650 Li-ion cell while enabling the capability of close 
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control of temperature-dependent heat generation rate and temperature 

measurement.  

8.2.1. Fabrication of Thermal Test Cell 

The design and fabrication of a thermal test cell used in this work have been 

described in section 7.2. In brief, the thermal test cell comprises a tightly wound 

roll of thin metal foil in 26650 stainless steel casing. First, a thin metal foil of 

thickness 0.025 mm is insulated by adhering Kapton tape on both sides, and then 

wrapped around a thin rod to form a roll with radius and height very close to that 

of a 26650 Li-ion cell. Seven T-type thermocouples are placed at different lengths 

on the metal foil, which results in thermocouples at different radii after rolling. To 

make electrical connection to the metal foil roll, thin metal wires are soldered to the 

two ends of the metal foil. The roll is then inserted into an Aluminum casing usually 

used for a 26650 Li-ion cell. The thin rod used for rolling is carefully removed from 

the casing. A hole is made in the cap of the casing, through which the heater and 

thermocouple wires are routed out. In order to fill up air voids inside the cell, it is 

filled with uncured poly-dimethylsiloxane (PDMS), a commonly used electrically 

insulating soft polymer. PDMS is then cured for 2 hours at 60 °C. PDMS filling is 

carried out in two steps in order to completely expel out all air inside the cell. 

Finally, the test cell is sealed by putting the cap on and securing it with an epoxy.  

Radial thermal conductivity of a thermal test cell fabricated using this 

process has been reported in a recent paper to be 0.25 W/mK [22], measured using 

an adiabatic radial heating method [22]. This value is close to that of a 26650 Li-

ion cell [22,40].  
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8.2.2. Experiments for Temperature-Dependent Heat Generation in Thermal Test 

Cell 

Experiments are carried out to mimic temperature-dependent heat 

generation in the thermal test cell, similar to what would happen in a Li-ion cell. 

The experimental setup, and the mechanism to simulate temperature dependent heat 

generation behavior is as described in section 7.2. Electrical current is passed 

through the metal foil of the thermal test cell using a Keithley 2401 sourcemeter to 

produce Joule heating. Since the heat generation rate is expected to increase with 

temperature, for example, according to an Arrhenius relationship, the amount of 

current passing through the thermal test cell is increased as the cell temperature 

increases. This is accomplished by temperature measurement through embedded 

thermocouples using a NI cDAQ 9213 data acquisition unit controlled by LabView 

software running on a 64-bit computer, followed by changes in the current sourced 

from the Keithley 2401 sourcemeter, which is also controlled by LabView. The 

software uses the measured temperature as input to determine the required electrical 

current every one second according to any desired Q(T) relationship. Through this 

approach, any desired temperature-dependent heat generation, similar to 

exothermic reactions responsible for thermal runaway in a Li-ion cell, can be 

imposed on the thermal test cell.  
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8.3. Results and discussion 

8.3.1. Experimental Validation 

Figure 8.1 Experimental validation for (a) different activation energy(Ea) values 

(b) different values of heat of reactions (Q0) 

 

 Figures 8.1(a) and (b) present experimental validation of the analytical 

thermal model discussed in Section 8.1. The two key Arrhenius parameters that 

govern temperature dependent heat generation during thermal runaway in a Li-ion 

cell are the activation energy, Ea and pre-exponential constant, Q0. Experiments are 

carried out to measure temperature rise in the thermal test cell for different values 

of both of these parameters and compare against predictions from the analytical 

thermal model. Figure 8.1(a) presents this comparison for different values of 

activation energy Ea while Q0 remains fixed. There is very good agreement between 

measurements and analytical model across multiple values of Ea.  Similarly, Figure 

8.1(b) presents results when Q0 is varied while holding Ea constant.. Similar to 

Figure 8.1(a), there is good agreement across the entire range of variations 

investigated here.  Note that the values of thermal conductivity and heat capacity 

for the analytical model are taken from past measurement on a similar thermal test 

cell to be 0.2 W/mK and 777 J/kgK respectively. A value of 10.5 W/m2K is used 
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for the convective heat transfer coefficient, which is within the limits of typical 

value of this parameter during natural convection.   

8.3.2. Effect of Arrhenius parameters and Joule heating 

Figure 8.2 Computed Temperature for different (a) different activation energy(Ea) 

values (b) different values of heat of reactions (Q0) 

 

The experimentally validated analytical model is used to examine the effect of 

changing Arrhenius parameters Ea and Q0 on temperature rise in a Li-ion cell.. 

Figure 8.2(a) presents predicted temperature rise as a function of time for different 

values of Ea while holding Q0 constant at the value corresponding to SEI 

decomposition reaction [95], which is one of the early decomposition reactions 

responsible for the onset of thermal runaway. Joule heating component of heat 

generation is set to 3W. Figure 8.2(a) shows that even relatively minor changes in 

Ea drastically change the thermal behavior of the cell. There appears to be a 

threshold value of Ea, below which, the cell temperature becomes unbounded and 

thermal runaway occurs. Figure 8.2(a) also shows that Ea also influences when the 

cell goes into thermal runaway. At lower Ea, cell temperature becomes unbounded 

at a much earlier time than at a larger value. The effect of change in Q0 on the 

thermal behavior of the cell is shown in Figure 8.2(b). Unlike Ea, a significant 
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reduction in Q0 is required to change the temperature from becoming unbonded to 

bounded. Further, changes in Q0 do not significantly affect the time taken for the 

cell to enter thermal runaway. 

Figure 8.3 Computed Temperature for different joule heating rate 

 

Joule heating is the key contributor to total heat generation in Li-ion cells 

during nominal, non-runaway operation. Since Joule heating is largely temperature-

independent, the corresponding temperature rise is bounded. However, temperature 

rise resulting from Joule heating may activate other electrochemical reactions 

governed by Arrhenius kinetics, for which heat generation rate rises with 

temperature, thereby causing thermal runaway. Threshold temperature for such 

reactions are well known [13, 95]. Figure 8.3 plots temperature rise as a function 

of time for different values of Joule heating based heat generation rate. Ea and Q0 
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values corresponding to SEI decomposition reaction are used. Figure 8.3 shows that 

Joule heating of more than 2.5W causes the cell to enter thermal runaway. This 

happens primarily because at 2.5W or higher, the temperature rise, although 

bounded, is large enough to trigger significant Arrhenius heat generation, which 

increases with increasing temperature, thereby causing thermal runaway.  

Figure 8.4 Computed Temperature for different oven temperature 

 

 

The thermal model can also be utilized to predict temperature during oven 

tests that are commonly used to mimic thermal abuse condition for Li-ion cells and 

study thermal runaway phenomena. Figure 8.4 presents temperature rise as a 

function of time for different ambient temperature under natural convection 

conditions. Heat generation parameters for SEI decomposition, along with 3W 

Joule heating is used. Figure 5 shows that temperature appears to stay bounded until 

about 75 ºC ambient temperature. Beyond around 85 ºC, temperature becomes 
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unbounded, making thermal runaway imminent. The existence of such a sharp 

threshold for the ambient temperature, at which thermal runaway behavior is 

suddenly triggered is consistent with experimental observations [32, 96] 

Figure 8.5 Experimentally measured and theoretically computed temperature of 

thermal test cells with different thermal conductivity 

 

Effect of heat transfer parameters on thermal behavior of a Li-ion cell is 

investigated next. Figure 8.5 presents experimental measurements where 

temperature-dependent heat generation is mimicked in two different thermal test 

cells. These cells, labeled A and B differ slightly in their construction. While cell 

A has PDMS poured in during its fabrication, cell B does not. Consequently, cell B 

has air voids inside the casing, resulting in significantly lower thermal conductivity 

compared to cell A. Figure 8.5, which plots temperature rise as a function of time 

when both cells are subjected to the same temperature-dependent heating, shows 
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dramatically different thermal behavior. While the higher thermal conductivity cell 

reaches a steady state temperature, the lower thermal conductivity cell does not. 

This highlights the critical importance of thermal conductivity of the cell in 

preventing thermal runaway, and is consistent with a recent paper that showed that 

thermal conductivity is one of the parameters that determines the value of the 

Thermal Runaway Number, the value of which governs whether thermal runaway 

occurs or not. The experimentally measured behavior has also been predicted by 

the theoretical model. Since the low thermal conductivity cell, cell B, doesn’t have 

PDMS filling its voids, it has both lower heat capacity and thermal conductivity.  

 Figure 8.6 Effect of heat transfer parameters (a) different thermal conductivity 

values (k) (b) different convective heat transfer coefficient values (h) 

 

Figure 8.6 (a) plots the effect of change in thermal conductivity on 

temperature rise as predicted by the analytical model. Temperature-dependent heat 

generation parameters for SEI decomposition reaction in a Li-ion cell under natural 

convection are used in these computations. This figure shows that a 4X increase in 

thermal conductivity changes the thermal behavior of the cell from being 

unbounded to bounded, thereby avoiding thermal runaway. A smaller increase in 

thermal conductivity may not help completely avoid thermal runaway, but may 
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delay the onset, thereby providing additional time in which steps could be taken to 

bring the cell back to safety.  

Similarly, the effect of convective heat transfer coefficient has also been 

investigated using the thermal model. Using the same heat generation parameters 

as before, Figure 8.6 (b) plots temperature rise as a function of time for different 

values of the convective heat transfer coefficient. This figure shows very strong 

influence of convective heat transfer coefficient on the thermal behavior of the cell. 

For a given thermal conductivity, heat transfer rate is limited by convective heat 

transfer coefficient until the coefficient becomes large enough. A small increase in 

the convection coefficient increases overall heat dissipation capacity of the system, 

which enables the heat dissipation rate to match up to heat generation rate at a 

higher temperature. This results in the change in the thermal behavior of the cell 

from unbounded to bounded. Unlike the case of thermal conductivity, a certain 

minimum increase in convection coefficient leads to prevention of thermal 

runaway, but a smaller increase does not delay the onset of thermal runaway. 

Thermal runaway in Li-ion cells is known to be caused by a cascade of 

exothermic electrochemical reactions that feed into another and ultimately cause 

thermal runaway. Figure 8.7 demonstrates the capability of the analytical model to 

account for complicated coupling between multiple temperature-dependent heat 

generation processes. Figure 8.7 plots temperature rise as a function of time for 

three distinct reactions individually as well as for a situation where all three 

reactions occur. Due to their high activation energies, Reaction B and Reaction C 

do not lead to thermal runaway on their own. 
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Figure 8.7 Temperature computed for individual reactions and the total of 

individual reactions  

 
On the other hand, Reaction A leads to unbounded temperature due to its 

lower activation energy. When the total sum of all three reactions is implemented 

in the thermal model, Reaction A increases the temperature enough to activate 

Reaction B and Reaction C. This results in the temperature becoming unbounded 

earlier than in the case of Reaction A only. This signifies the importance of the 

cascading effect and the capability of the analytical model to account for the effects 

of cascading. 
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CONCLUSIONS 

Chapter 1 and 2 present the analytical steady state and transient models for 

a cylindrical Li-ion cell. These models are capable of accurately predicting the 

temperature inside a cell and are versatile in handling space and time dependent 

heat generation rate. Experimental validation of these models is also provided. 

These models can go beyond their primary function of temperature prediction and 

provide guidelines in design and safe operation of batteries. They also help us to 

understand heat transfer inside a cell and give useful insights, which help in 

directing future research in this field.      

In Chapter 3, an innovative conceptual design for Li-ion cell is analyzed by 

developing an analytical model. The proposed design consists of an axial fluidic 

channel passing through the core of the battery. This would enhance the cooling of 

the cell by effectively cooling its core at the cost of reduced storage capacity. The 

analytical model helps to quantify the gain in terms of reduced temperature rise or 

increased charge/discharge rate, without compromising the safety of the cell and 

compares it with reduction in battery capacity as a function of the channel size. The 

model and the analysis carried out can serve as a guide to design such a cell. 

Chapter 5 provides a framework to solve conjugate heat transfer problems 

analytically. The framework is used to solve two classical heat transfer problems 

of internal and external flow. The results from this proposed method are validated 

using a past well validated method from past studies and finite element solver. An 

interesting result of heat reversal encountered during the analysis is presented and 

discussed, which demonstrates a possible application of this method in optimizing 
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cooling parameters. The robustness of this method is demonstrated by solving both 

internal and external flow problems.  

The thermal management approach proposed and modeled in Chapter 3 has 

been experimentally demonstrated. The experiment and results from the 

experiments has been shown in Chapter 6. Thermal test cells with an annular 

channel have been fabricated. Active cooling by passing air through the channel 

and passive cooling by inserting heat pipe in the channel have been experimentally 

evaluated. Effect of channel size has also been investigated by doing experiments 

on thermal test cells with two different channel sizes. The results show effective 

cooling of the core of the cell and reduced temperature gradient within the cell as 

desired.  

Thermal modeling work in Chapter 1 and 2 has been extended to thermal 

modeling in the presence of temperature dependent heat generation and thermal 

runaway prediction. In Chapter 7, a new non-dimensional has been formulated and 

proposed as a measure of thermal stability of Li-ion cells. The ability of this non-

dimensional to quantify thermal stability and predict thermal runaway has been 

experimentally demonstrated. This non-dimensional has been named Thermal 

Runaway Number (TRN). Various analyses to analyze the effect of parameters such 

as thermal conductivity, convective heat transfer coefficient, dimensions of the cell, 

etc. on the likelihood of thermal runaway has been carried out for possible design 

optimization and outlining required research efforts to improve safety. Thermal 

modeling of a Li-ion cell for any arbitrary temperature dependent heat generation 

has been presented in Chapter 8. The model is used to analyze effect of heat 
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generation and heat transfer parameters in the presence of Arrhenius heat 

generation term. The model has also been demonstrated to computer temperature 

under thermal abuse condition.   
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