SELF-TRANSPORT OF LIQUID DROPS THROUGH A FUNCTIONAL MESH FOR REMOVING SWEAT AWAY FROM SKIN

by

MANASVIKUMAR OZA

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON
December 2016
Acknowledgements

Words cannot be framed to convey my deepest gratitude and respect for my thesis advisor and committee chair, Professor Cheng Luo. His expertise in the field Micro/ Nano system, excellent guidance, patience motivated me to become an independent researcher and I am grateful for providing me with an excellent environment for doing research. Till this date, I have never seen a hardworking person like him and he is my biggest inspiration and he has always inspired me with innovative thoughts. I want to thank my thesis committee member Dr. Hyejin Moon and Dr. Zhen Xue Han, who dedicated their time to be on the committee and to guide me. I have been amazingly fortunate enough to work with you all.

I would also like to acknowledge the support of my colleagues Mr. Manjarik Mrinal, Mr. Mithun Ramanuj, Mr. Xiang Wang and all other colleagues during the progress of my thesis. I want to thank family for their endless love and for constantly motivating me to bring the best out of me. I want to thank my all friends and my roommates, who were with me through thick and thin.

Finally, I would like to dedicate this thesis to my father, Mr. Manharbhai and my mother, Mrs. Mandakini for their endless patience, motivation, and the countless sacrifices they made for providing me the best educational opportunities and this work was not possible without their constant love and encouragement.

December 2016
Abstract

SELF-TRANSPORT OF LIQUID DROPS THROUGH A FUNCTIONAL MESH FOR
REMOVING SWEAT AWAY FROM SKIN

Manasvikumar Oza, MS

The University of Texas at Arlington, 2016

Supervising Professor: Cheng Luo

In this work, a functional mesh is developed to transport liquid drops from one side
of the mesh to the other. A theoretical model is established, which has been used to obtain
three design criteria. Based on these design criteria, functional meshes have been
generated and tested with commercially available sponge attached to the mesh. Finally,
such a mesh is demonstrated to be effective to remove sweat from human skin. As an
application of this research, the concept of this functional mesh solves existing problems
with a sport wear. The current sport wear is capable of absorbing sweat, but not transporting
it away from the skin. This concept can also be used at the surface of contact of prosthetic
parts and body parts. i.e. Joints at artificial arm or artificial legs, as mesh can transfer sweat
from the skin to the outer surface of a sport wear or joint of prosthetic part, keeping the
interface between the wear and skin dry.
# Table of Contents

Acknowledgements...........................................................................................................iii
Abstract............................................................................................................................... iv
List of Illustrations ............................................................................................................... vi
Chapter 1 Introduction ....................................................................................................... 1
Chapter 2 Theoretical Background and Modeling .......................................................... 4
  2.1 Two requirements about a desired mesh................................................................. 4
  2.2 Design according to the first requirement .............................................................. 4
  2.3 Design according to the second requirement......................................................... 8
Chapter 3 Experimental Design and Methods ............................................................... 11
  3.1 Contact angles of mesh fiber.................................................................................. 11
  3.2 Mesh selection ....................................................................................................... 13
  3.3 Experimental Setups ............................................................................................. 13
Chapter 4. Experimental Results ..................................................................................... 15
  4.1 Comparison and testing of the coating over a mesh.............................................. 15
  4.2 Six types of experimental test ............................................................................... 17
Chapter 5 Summary and Conclusions ........................................................................... 22
Future work ....................................................................................................................... 23
References......................................................................................................................... 24
Biographical Information ................................................................................................. 27
List of Illustrations

Figure 2-1. Schematics (side view) of (a) initial configuration, in which a liquid drop is placed on the bottom side of a mesh, (b) final configuration, in which the drop transports to the top side of the mesh, and (c) another possible final configuration (not to scale). ................................................................. 9

Figure 2-2 Schematic (side view) of the lower air/water interface between two fibers in the final configuration, when the bottom portion is (a) lyophobic, or (b) lyophilic (not to scale). ................................................................. 10

Figure 3-1 (a) receding angle of untreated mesh fiber, (b) advancing angle of untreated mesh fiber ................................................................. 11

Figure 3-2 (a) receding angle of TiO$_2$ coated mesh fiber, (b) advancing angle of TiO$_2$ coated mesh fiber ................................................................. 12

Figure 3-3 Stainless steel mesh coated with TiO$_2$ (a) top surface of the mesh, (b) bottom surface of the mesh ................................................................. 12

Figure 3-4 (a) 660- mesh, (b) 304- mesh, (c) 140- mesh, (d) 84- mesh ......................... 13

Figure 3-5 Six experimental setups with (a) shooting of water drops from a syringe needle, (b) using a moving base, (c) sponge attached on the top side of a functional mesh, (d) vertically shooting of water drops from the needle, (e) using vertical moving base, (f) water drop put on the skin absorbing with the functional mesh .................................................................................. 14

Figure 4-1 Water drops on: (a) uncoated140-mesh, (b) uncoated 660-mesh, (c) 140-mesh whose both sides were coated with TiO$_2$, (d) 660-mesh whose both sides were coated with TiO$_2$, and (e) 140 - mesh, whose top side was coated with TiO$_2$ .................................................................................. 16

Figure 4-2 140-micron mesh (a) one side coated with TiO$_2$ (b) both side coated with TiO$_2$ .................................................................................. 16
Figure 4-3 Continuous shooting of water drops from the syringe needle to one side TiO$_2$ coated 140 mesh

Figure 4-4 (a) water drop on base moving towards the 140 mesh, (b) water drops getting contact with the mesh as base moving upward, (c) drops transferring to other side as base, (d) bigger water drops form on the top surface

Figure 4-5 (a) small water drops were supplied from a syringe needle to 140-mesh, whose top side was covered with TiO$_2$, (b) the drops transported to the top side of the mesh, (c) a big drop slid towards a sponge over the mesh, and (d) the sponge absorbed the large drop that was formed on the top of the mesh

Figure 4-6 (a) shooting water drop from the horizontal syringe needle on vertical mesh, (b,c) forming bigger water drops on the mesh from continues shooting, (d) bigger drops started moving downwards due to gravity force

Figure 4-7 (a) water drop on vertical base moving towards the 140 mesh, (b) water drops getting contact with the mesh as drops delivered one by one, (c) bigger drops started moving on other side of the mesh, (d) because of the gravity, drops started moving down.

Figure 4-8 Three water drops were put on skin.
Chapter 1 Introduction

One of the most natural phenomena, the water flows towards gravity which implies a scientific principle, i.e., the gravitational potential energy of water is instinctively be converted into kinetic energy. Practically water can be continuously lifted against gravity only with external driving factors, such as the transpiration of giant plants, negative pressure supplied by a sectorial proboscis of butterflies and open-close motion of the shorebirds mouthpart with a capillary ratchet [1].

Taking an interest in self-transport water, in 1992, a self-propelling millimeter-scale uphill run of water drops was achieved on the functional silicon wafer with a wettability gradient [2], which can be attributed to the asymmetrical Laplace pressure. Other methods for water drop movement like wettability gradient [3], geometrical shape, [4] and other external stimuli [5] are also topic of interest for researchers.

Recently, a group of researchers succeeded to create a superhydrophobic pump which can transfer water continuously and spontaneously even in the opposite direction of gravity. For the pump to work continuously, they kept some water in the tube initially. The superhydrophobic pump was constructed by the copper mesh and polymer tube with contact angle of 90°. The copper mesh was covered with superhydrophobic material. Here, the concept of self-transporting water is dependent on the capillarity of the upper tube. Copper fiber Superhydrophobic mesh can transfer the water to the tube and hold it in the tube till certain height. The maximum ascending height is depends on wettability of the mesh, drop diameter and inner diameter of the tube [6].

Another fascinating phenomenon focusing on the self-transportation of a liquid is with the micropatterns. Three dimensional liquid flows can be transported on a micropatterned superhydrophobic textile (MST) platform. Specifically, the MST system uses the surface tension encouraged Laplace pressure to enable the liquid motion along
the hydrophilic material, in addition to the capillarity present in the fibrous structure. The fabrication of MST is simply accomplished by stitching hydrophilic cotton into a superhydrophobic fabric substrate, from which well-controlled wetting patterns are established for interfacial microfluidic operations [7]. The three-dimensional flow patterns can gather small drops in one place and make bigger drop which can be removed easily.

Some of the researchers used polydimethylsiloxane (PDMA) membrane as a base of absorbing or transporting liquid. They have used micropores of the PDMA to govern capillary action. In this research, they have made a thin soft Janus PDMS film with opposing porous and nonporous faces was fabricated and tested for qualities applicable to improve current bandages, such as porosity, stretch ability, and water wettability [8]. They made a dressing material that can replace a bandage and can be used for wound care and drug delivery applications. This dressing has two parts, first one is in contact with wound surface which is primary dressing while secondary dressings cover the primary dressing to support and hold it in place [9].

Getting motivation from these researches, a capillary action can be used as the fundamental principle. Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, or even in opposition to external forces. It occurs because of intermolecular forces between the liquid and surrounding solid surfaces. The combination of surface tension and adhesive forces between the liquid and container wall act to propel the liquid [10].

For this research, a stainless-steel mesh is used which is commercially available and bought from TWP Inc. A superhydrophilic coating is used to make one side of the mesh more hydrophilic. The micropores propel water drops while different wetting regions of the mesh force the water drops to move to the top surface of the mesh and hold it there. Titanium oxide (TiO₂) is used as a superhydrophilic coating purchased from
Sigma-Aldrich Co. LLC, whose contact angle is $0^\circ$ [11]. TiO$_2$ is biocompatible material, and it can be used as a super hydrophilic coating material [12]. Accordingly, it is adopted as the coating material. The bottom portions of the meshes are not treated, and remain hydrophobic.
Chapter 2 Theoretical Background and Modeling

2.1 Two requirements about a desired mesh

Microchannels and micropillars are often applied as structures to enhance surface hydrophobicity or hydrophilicity [13,14,17-27]. In our case, a mesh consists of micropores. There are two requirements about a functional mesh. First, when a liquid drop is located on the bottom side of the mesh (fig. 2-1a), this mesh should enable the drop to self-transport to the top side of the mesh (fig. 2-1b). Second, after the transport, the bottom of the drop should be suspended between mesh fibers, but not below the bottom side of the mesh.

2.2 Design according to the first requirement

A two-dimensional model is established here to design the mesh according to these two requirements. Obviously, when these two sides have the same wetting properties, due to symmetry in geometry and wetting, it is impossible for a liquid drop to self-transport from the bottom to the top side of the mesh. Also, it is known that a liquid drop prefers to move from a less wetting region to a more wetting area.

Next, we consider the first requirement. That is, we first consider whether a liquid drop would change its configuration from Figure 2-1a to Figure 2-1b. As illustrated in Figure 2-1a, let $A_1A_2A_3$ denote the cross-sectional profile of the air/liquid interface at the drop bottom, while use $B_1B_2B_3B_4$ to represent the profiles of the drop top. Assume that the height of an interface is less than its capillary length, which is 2.7 mm for water. Accordingly, the gravity effect on the drop can be neglected [17,18], and liquid pressure thus has a uniform distribution along the interface. Furthermore, $A_1A_2A_3$, $B_1B_2$, and $B_3B_4$ can be approximated as circular arcs [20].
Use $\theta_1$ and $\theta_2$ to be equilibrium contact angles on the bottom and top portions of a mesh fiber. The top portion refers to part of the top half surface of the fiber, while the bottom the rest of the fiber surface (fig. 2-1a). In our design, $\theta_2$ is less than $90^\circ$, while $\theta_1 > \theta_2$. That is, the top portion of the mesh is lyophilic, and the bottom less lyophilic (fig. 2-1a). If the sidewalls of the fiber are smooth, then $\theta_1$ and $\theta_2$ are intrinsic contact angles. Otherwise, they are apparent contact angles. Let $\gamma$ represent surface tension of liquid. Set $p_a$ and $p_w$ to be atmospheric pressure and pressure inside the liquid drop, respectively. $(p_w - p_a)$ is so-called Laplace pressure. According to Young-Laplace equation [27], $p_a$ is related to $\gamma$ by

$$p_w = \gamma \left( \frac{1}{R_1} + \frac{1}{R_2} \right) + p_a,$$

(1)

where $\frac{1}{R_1}$ and $\frac{1}{R_2}$ denote two principal curvatures of the air/liquid interface, and $R_1$ and $R_2$ are the radii of the two principal curvatures, respectively. In practice, after a liquid drop is placed on the back side of a micropore-formed surface, the bottom profile of the drop has a spherical shape. Since this profile bends towards the air, its two principal curvatures are positive. Let $p_{w1}$ denote liquid pressure at $A_1A_2A_3$. Accordingly, by Eq. (1), $p_{w1}$ is larger than $p_a$.

The fibers will be chosen to have small radii. Consequently, due to the initial speed of the liquid drop when it is put on the mesh, $B_1B_2B_3B_4$ will reach the top portions of the fibers. Set $p_{w2}$ to be liquid pressure at $B_1B_2$ and $B_3B_4$. Since the top portions are lyophilic, these interfaces bend towards the drop (fig. 2-1a). Hence, their principal
curvatures are negative. Subsequently, by Eq. (1), \( p_{w2} \) is less than \( p_a \). Thus, we have \(( p_{w1} - p_{w2} ) > 0 \). This pressure difference should drive the liquid to further move up to the top side of the mesh (fig. 2-1b).

In the final configuration (fig. 2-1b), let \( b_1b_2b_3 \) denote the cross-sectional profile of the air/liquid interface on the drop top, while use \( a_1a_2a_3a_4 \) to represent the profiles on the bottom side. \( a_1a_2a_3a_4 \) is located below the top portions of the fibers. Set \( h \) to be the distance between \( b_1 \) and \( b_3 \). Let \( h \) denote the deflection of \( a_1a_2 \) at its middle point. It is also the maximum deflection of \( a_1a_2 \). Another possible final configuration is given in figure 2-1c, in which \( a_1a_2a_3a_4 \) is located on the top portions. In this configuration, since \( b_1b_2b_3 \) and \( a_1a_2a_3a_4 \) bends towards air and drop, respectively, \( p_{w1} \) and \( p_{w2} \) are less and greater than \( p_a \), separately. Accordingly, we have \(( p_{w1} - p_{w2} ) < 0 \). Hence, the liquid drop is not stationary in the corresponding configuration. Subsequently, \( a_1a_2a_3a_4 \) has to move downwards, changing to the configuration shown in figure 2-1b. In addition, we desire to make \( a_1a_2a_3a_4 \) move upwards as much as possible such that more liquid is transported to the top side of the mesh. Hence, the lyophilic portion is not extended to the bottom portion of a fiber, and the configuration shown in figure 2-1b is the desired one.

Furthermore, we determine the coverage of the lyophilic coating, as well as the location of \( a_1a_2a_3a_4 \) in the final configuration. Let \( o \) denote the center of a fiber (fig. 2-2a). Set \( l \) to be the space between two neighboring fibers, and let \( r \) denote the radius of the fiber. Without loss of generality, let’s focus on \( a_1a_2 \). The same analysis will be applied to \( a_3a_4 \) as well. Set \( \varphi \) to be the angle formed by \( oa_1 \) and vertical line (fig. 2-2a), and

\[ 0 < \varphi < 360^\circ \]. Then, we have [20]
\[ p_{w1} = \frac{-2\gamma \sin (\theta_1 + \varphi)}{(l + r - r \sin \varphi)} + p_0. \]  \hspace{1cm} (2)

Set \( \varphi_0 \) and \( \varphi_1 \) to be the values of \( \varphi \) when \( p_{w1} \) equals \( p_0 \) and its maximum value, respectively. Use \( c_0 \) and \( c_1 \) to represent the corresponding points on the perimeter of the fiber (Fig. 2a). It follows from Eq. (2) that

\[ \varphi_0 = 180^\circ - \theta_1, \]  \hspace{1cm} (3)

\[ \varphi_1 = 270^\circ - \theta_1. \]  \hspace{1cm} (4)

Let \( p_{w1\text{max}} \) denote the maximum value of \( p_{w1} \). By Eq. (2), we get

\[ p_{w1\text{max}} = \frac{2\gamma}{(l + r + r \cos \theta_1)} + p_0. \]  \hspace{1cm} (5)

According to the value of \( \theta_1 \), there exist two cases.

Case I: \( \theta_1 \) is larger than \( 90^\circ \), i.e., the bottom portion is lyophobic (fig. 2-2a). In this case, by Eqs. (3) and (4), \( c_1 \) is located on the bottom half of the fiber, while \( c_0 \) is on the top half (fig. 2-2a). Let \( c_2 \) represent the lowest point on the perimeter. The corresponding value of \( \varphi \) at this point is \( 180^\circ \). As \( \varphi \) changes from \( 180^\circ \) to \( \varphi_1 \), i.e., when \( a_1 \) moves from \( c_2 \) to \( c_1 \) during the process that a liquid drop transports from the bottom to the top side of the mesh, \( p_{w1} \) increases from \( \left( \frac{2\gamma \sin \theta_1}{l + r} + p_0 \right) \) to the maximum value of \( \left( \frac{2\gamma}{l + r + r \cos \theta_1} + p_0 \right) \). As \( \varphi \) further varies from \( \varphi_1 \) to \( \varphi_0 \), i.e., when \( a_1 \) further moves from \( c_1 \) to \( c_0 \), \( p_{w1} \) decreases from \( \left( \frac{2\gamma}{l + r + r \cos \theta_1} + p_0 \right) \) to \( p_0 \).

Meanwhile, we have
\[ p_{w2} = \frac{2\gamma \sin \theta}{l_1} + p_0, \quad (6) \]

Where, \( \theta \) is the apparent contact angle that \( b_1b_2b_3 \) forms with the mesh surface. Since the top portion of the mesh is lyophilic, \( \theta \) should be less than \( \theta_2 \) [13]. Also, by Eqs. (5) and (6), \( p_{w2} \) is smaller than \( p_{w1\text{max}} \), but larger than \( p_0 \). Furthermore, noting that \( h > (l+r) \) and that \( \theta < \theta_1 \), \( p_{w2} \) is smaller than \( \left( \frac{2\gamma \sin \theta_1}{l+r} + p_0 \right) \). Accordingly, \( a_1 \) should eventually be stationary at a point between \( c_0 \) and \( c_1 \) (fig. 2-2a). At the corresponding position, \( p_{w1} \) equals \( p_{w2} \). Consequently, only the part of the fiber surface that is located above \( c_0 \) is set to be lyophilic.

Case II: \( \theta_1 \) is less than \( 90^\circ \), i.e., the bottom portion is also lyophilic (fig. 2-2b). In this case, by Eqs. (3) and (4), \( c_0 \) and \( c_1 \) are located on the two sides of \( c_2 \) (fig. 2-2b). As \( \varphi \) changes from \( 180^\circ \) to \( \varphi_0 \), \( p_{w1} \) decreases from \( \left( \frac{2\gamma \sin \theta_1}{l+r} + p_0 \right) \) to \( p_0 \). Since \( p_{w2} \) is still smaller than \( \left( \frac{2\gamma \sin \theta_1}{l+r} + p_0 \right) \), \( a_1 \) should eventually be stationary at a point between \( c_0 \) and \( c_2 \) (fig. 2-2b). At the corresponding position, \( p_{w1} \) equals \( p_{w2} \). As in Case I, only the part of the fiber surface that is located above \( c_0 \) is set to be more lyophilic.

2.3 Design according to the second requirement

Noting that the liquid pressures at \( a_1a_2 \) and \( b_1b_2b_3 \) are equal, according to Eq. (4) of [20], we have

\[ h = \frac{1}{2}(R - \sqrt{R^2 - l^2}), \quad (7) \]
where $R$ denotes radius of $b_1b_2b_3$. $R$ can be increased by reducing $\theta$ through the introduction of a small $\theta_2$. When $\theta_2 \to 0^\circ$, we have $\theta \to 0^\circ$. Accordingly, $R \to \infty$.

This result has two implications. First, by Eq. (7), $h \to 0$. Thus, $a_1a_2$ should not deflect beyond the bottom side of the mesh in either case considered in Sub-section 2.2. That is, the second requirement is satisfied in both cases. Second, by Eq. (1), both $p_{w1}$ and $p_{w2}$ equal $p_0$. Thus, $a_1$ is located at $c_0$ in either case.

Based on the analysis of Sub-sections 2.2 and 2.3, three design criteria are obtained. First, the coating on the top portion of the mesh should be highly lyophilic. Second, the bottom portion of the mesh should be less lyophilic. Third and finally, both fiber diameters and pore sizes should be much smaller than a drop size such that a liquid drop could easily reach the top portion of the fiber from the bottom side of the mesh.

![Figure 2-1](image.png)

Figure 2-1. Schematics (side view) of (a) initial configuration, in which a liquid drop is placed on the bottom side of a mesh, (b) final configuration, in which the drop transports to the top side of the mesh, and (c) another possible final configuration (not to scale).
Figure 2-2 Schematic (side view) of the lower air/water interface between two fibers in the final configuration, when the bottom portion is (a) lyophobic, or (b) lyophilic (not to scale).
Chapter 3 Experimental Design and Methods

3.1 Contact angles of mesh fiber

Receding and advancing contact angles were measured using a similar approach as shown in figure 3-1, a mesh fiber was inserted into water. When the fiber was stationary inside water, an equilibrium contact angle of water on the fiber was observed through an optical microscope. The pictures of air/water interfaces were subsequently taken using Manistee software of the ScopeTek Company. The contact angles of these interfaces with the fiber surface were then determined using MB-Ruler software of the Dance Patterns Company. The receding and advancing angles of the air/water interface on the mesh fiber were measured by slightly moving the fiber up and down in the solution. In this work, three measurements were taken for each contact angle with an error of 2°. The mean values of the contact angles are given in figure 3-1 and figure 3-2 that were measured on representative samples.

Figure 3-1 (a) receding angle of untreated mesh fiber, (b) advancing angle of untreated mesh fiber
These experiments show that untreated mesh has hydrophilic surface, and have a receding and advancing angle of $48^0$ and $97^0$, respectively. While TiO$_2$ coated mesh has superhydrophilic surface, and have a receding and advancing contact angle of $32^0$ and $34^0$, respectively.

In this research TiO$_2$ (Titanium oxide) was used as a super hydrophilic coating. Solution of TiO$_2$ Nano powder and methanol with the ratio of 1.5 gm in 20 ml, respectively is coated on the mesh using a fine mist spray. According to the design criteria given in section 2.2 and 2.3, top sides of the meshes are covered with TiO$_2$ coating, while the bottom portions of the meshes kept untreated.
3.2 Mesh selection

Four kinds of the stainless-steel mesh were tested to choose best one of them with the same type of coating. They have pore sizes of 84, 140, 304 and 660 µm, respectively and fiber diameter of 20, 100, 310 and 430 µm, respectively. For simplicity, thereafter, they are referred to as 84-, 140-, 304- and 660-meshes. These meshes had hydrophilic surface on bottom side and superhydrophilic surface on top side.

From the experiments, Pore size with equal to or less than 140 µm works good. Thus, for the further experiments I decided to use a mesh with pore size of 140 µm.

![Figure 3-4](image)

Figure 3-4 (a) 660- mesh, (b) 304- mesh, (c) 140- mesh, (d) 84- mesh

3.3 Experimental Setups

Five types of tests were conducted on mesh and after that the same mesh was tested on the skin. In the first two types of experiment, water was supplied, using a syringe needle (fig. 3-5a) and a moving base (fig. 3-5b), respectively. The third type had a similar setup as the first (fig. 3-5c). The only difference was that a sponge was attached to the top side of the mesh. In the fourth and fifth types of experiments mesh was placed
vertically and like second and third experiment water drops were supplied from horizontal needle (fig. 3-5d) and a vertical moving base (fig. 3-5e), respectively. Finally, in the sixth type, mesh was used to remove water drops from skin.

Figure 3-5 Six experimental setups with (a) shooting of water drops from a syringe needle, (b) using a moving base, (c) sponge attached on the top side of a functional mesh, (d) vertically shooting of water drops from the needle, (e) using vertical moving base, (f) water drop put on the skin absorbing with the functional mesh.
Chapter 4. Experimental Results

4.1 Comparison and testing of the coating over a mesh

In these experiment tests, syringe needle was used to supply continuous water drops. For the sake of comparison two types of meshes with the pore size of 140 µm and 660 µm are used. Here for the first and second test, 140- mesh (fig. 4-1a) and 660-mesh (fig. 4-1a) were used. Both the meshes were left untreated. These meshes can't hold the water drops because of the same wetting property on both sides of the mesh. Third test was done with the 140- mesh. This mesh was coated with TiO$_2$ on both side of the mesh. This mesh can hold the water drops and spread it over the mesh surface because of its hydrophilic wetting property (fig. 4-1 c), but later it continues shooting of the water drops from the syringe needle, bigger water drop started forming on bottom surface of the mesh which deflect beyond the bottom surface of the mesh.

Next test was same as last one but with the 660- mesh. Both sides of mesh were coated with TiO$_2$ (fig. 4-1 d). Due to the bigger fiber diameter, water drop is not able to get much contact surface. So, this mesh is not able to hold the water drops on it. 140- mesh was used in last and fifth test and coated with the TiO$_2$ on top side of the mesh. This mesh works great because it fulfills the requirement which is derived in the theory, top side of the mesh coated with TiO$_2$ which makes top surface more hydrophilic (fig. 4-1 e), which can hold the water drops on top surface the mesh.

After the comparison (fig. 4-2) of 140-micron mesh, one with TiO$_2$ coated on the top side (fig. 4-2a) and another is both the side coated with TiO$_2$ (fig. 4-2b), it is clear that first one is better, which is needed for certain application. So, 140-micron pore sized mesh coated with TiO$_2$ on the top side was used for the further experimental tests.
Figure 4-1 Water drops on: (a) uncoated 140-mesh, (b) uncoated 660-mesh, (c) 140-mesh whose both sides were coated with TiO$_2$, (d) 660-mesh whose both sides were coated with TiO$_2$, and (e) 140-mesh, whose top side was coated with TiO$_2$.

Figure 4-2 140-micron mesh (a) one side coated with TiO$_2$ (b) both side coated with TiO$_2$. 
4.2 Six types of experimental test

First two tests were conducted to check if the mesh could hold the continuous water drops or not. First and second experiment setups were used for first two test with 140- mesh coated with TiO$_2$ on the top. In the first test (fig.4-3) syringe needle was used for continues shooting of water drop on the bottom surface of the mesh, while for the second test (fig.4-4), a cylinder base was used for continues delivery of the water drops. An average water drop volume from the syringe is 23 μl while, volume of the water drop which moving base supplied to the mesh is 26 μl. Continues drops from syringe were absorbed and hold on top surface (fig.4-3 b) which makes a big water drop (fig. 4-3 c) on the top surface. In the test with the moving base, it is moving up (fig 4-4 b) and down (fig 4-4 c) to get contact between water drop on base and bottom surface of the mesh, similar to first experiment big water drop form on the top surface of the mesh (fig 4-4 d).

Next test was with the third experimental setup which was same as the first one. Just a difference was a sponge attached to the mesh as a second layer of the mesh (fig. 4-5a). Here mesh absorbed and held the drop on the top surface (fig. 4-5b) until it made the big drop (fig. 4-5c), then after big drop moved towards the sponge which absorbs the water (fig. 4-5d).

Sponge size before absorbing the water was 5 × 30 × 16.10 mm and after maximum water absorption sponge size was 9.20 × 30 ×16.10 mm. Sponge weight before absorbing the water and after maximum water absorption was 0.25 gm and 4.50 gm, respectively. The maximum amount of water absorbed by the sponge was 4.23 ml.
Figure 4-3 Continuous shooting of water drops from the syringe needle to one side TiO$_2$ coated 140- mesh.

Figure 4-4 (a) water drop on base moving towards the 140- mesh, (b) water drops getting contact with the mesh as base moving upward, (c) drops transferring to other side as base, (d) bigger water drops form on the top surface.
Figure 4-5 (a) small water drops were supplied from a syringe needle to 140-mesh, whose top side was covered with TiO₂, (b) the drops transported to the top side of the mesh, (c) a big drop slid towards a sponge over the mesh, and (d) the sponge absorbed the large drop that was formed on the top of the mesh.

In the next two tests, mesh is vertically oriented to check whether water drain down by gravity. For third and fourth tests, horizontal syringe needle (fig. 4-6) and vertical base (fig. 4-7) were used, respectively to supply the water drops. A big water drop was formed on the other side of mesh because of continuous shooting from the horizontal syringe needle and moving base. Due to the gravitational force, a big drop started moving in a direction of the gravity.
Figure 4-6 (a) shooting water drop from the horizontal syringe needle on vertical mesh, (b,c) forming bigger water drops on the mesh from continues shooting, (d) bigger drops started moving downwards due to gravity force.

Figure 4-7 (a) water drop on vertical base moving towards the 140- mesh, (b) water drops getting contact with the mesh as drops delivered one by one, (c) bigger drops started moving on other side of the mesh, (d) because of the gravity, drops started moving down.
Three water drops were placed on a skin to simulate a sweat over a skin, a 140-mesh, whose top side was covered with TiO$_2$, was contact over the drops and the drops were transported to the top side of the mesh and the water drops were removed from the skin using the mesh.

Figure 4-8 Three water drops were put on skin.
Chapter 5 Summary and Conclusions

In this work, we have designed a functional mesh through theoretical and experimental investigations to transport water drops from its bottom side to the top. The top side of the mesh is coated with a highly hydrophilic material, while the bottom is hydrophilic. The pore sizes of 140 µm or less can work for this concept. This functional mesh can be considered as a prototype of the mesh structure in a new sport wear, which is capable of not only absorbing sweat but also transporting it away from the skin.
Future work

- This research can be extended further by testing on textiles and using other superhydrophilic materials.

- Another application can be the use of mesh with sponge on surface of prosthetic parts like artificial arm or artificial leg to remove the sweat from the joint at body part and prosthetic part.
References


Biographical Information

Manasvikumar Oza has received a Bachelor’s of Engineering Degree in Aeronautical Engineering from Sardar Vallabhbhai Patel Institute of Technology, Gujarat Technological University, India in May 2014. During his undergraduate studies, he was involved in various organizations and he was awarded as successful organizer for organizing national level technical events. His project ideas were very intellectual and his project on “CFD analysis for high-lift configuration to capture aerodynamic coefficient” was highly appreciated by professors. His capstone project was “Numerical analysis over variable sweep wing in micro air vehicle” and he published a paper in ITMAE 2014 on this project. He worked as a Mechanical Design Engineer Intern. He has been a Graduate Student in the Mechanical & Aerospace Engineering Department at UT Arlington since January 2015. He joined Dr. Cheng Luo’s group in April 2015 and work with his group on self-transport of liquid drops through a functional mesh for removing sweat away from skin. His interests are majorly, CAD design and simulation, medical devices manufacturing and mechanical design.