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Abstract 

 
A MICROMECHNICS APPROACH TO PREDICTING THE ONSET YIELDING 

ENVELOPE OF PARTICULATE COMPOSITE MATERIALS  

 

Behrooz Karimi, Ph.D 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Seiichi Nomura 

Composite materials fail for various reasons and extensive research has been 

conducted both experimentally and theoretically. However, theoretical prediction of 

composite failure by yielding seems scarce. Adding reinforcing elements to matrix 

significantly affects the structural behavior of composite materials. The inserted particles 

on one hand obstruct the progress of cracks and on the other hand cause stress 

concentration on the interface of the particle-matrix and eventually influence the ultimate 

strength of the material. In this research, we study the interface stresses and strength in 

particulate reinforced composites under uniform mechanical and thermal loading. We 

theoretically obtain failure envelopes for particulate reinforced composites. This is 

achieved by estimating the stress field in the matrix phase around a spheroidal particle in 

an unbounded matrix phase along with the self-consistent approximation that determines 

the effective elastic modulus of the composite. The failure envelopes are calculated on 

the basis of the maximum von Mises stress as a function of the applied far-field stresses 

or heat flow. We also discuss the effect of the particle volume fractions and the particle to 

matrix stiffness ratios on the interface stresses and ultimate yielding strength. Parametric 

analysis enables us to predict these envelopes for various loading conditions, volume 

fractions and particle to matrix stiffness ratios. 
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Chapter 1  

Introduction 

Particulate composite materials are becoming increasingly advantageous in 

manufacturing products for military and everyday applications. Composite materials are 

now utilized in many application fields ranging from sporting to automobile to military and 

aerospace industries. Composites are available in many forms but they always consist of 

two main elements: the matrix and reinforcing elements with different mechanical  and 

thermal properties from the matrix. The reinforcing elements could be particles, short 

fibers or continuous fibers which have different diameters and length to diameter ratios. 

The continuous fibers are either parallel or woven together in the matrix phase. 

Table 1-1 Example of matrix and particles used in industry 

Matrix Aluminum, steel, magnesium 

Particle 𝐴𝑙2𝑂3, 𝐴𝑙𝑢𝑚𝑖𝑛𝑎 

𝐵4𝐶, 𝐵𝑜𝑟𝑜𝑛 − 𝐶𝑎𝑟𝑏𝑖𝑑𝑒 

𝑆𝑖𝐶, 𝑠𝑖𝑙𝑖𝑐𝑜𝑛 𝑐𝑎𝑟𝑏𝑖𝑑𝑒 

 

Due to the inhomogeneous and anisotropic nature of composite materials, it is 

difficult to predict their strength prior to manufacturing and testing. The characteristics of 

composite materials having short fibers are different from the one consisting of 

continuous fibers. The behavior of a composite material made from parallel fibers is 

different from the one made from woven form of the same fiber. A change in the volume 

fraction of the reinforcing element will also change the composite materials behavior and 

properties. One of the known advantages of composite materials with continuous fibers is 

the ability to tailor the composite materials properties to meet a specific need. The 

variability of the fiber volume fractions, ply orientations, stacking sequence and other 
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parameters brings flexibility in the product design. The same variability of composite 

materials that makes it useful, also makes it difficult to specify its characteristics without 

expensive testing. 

  The well-developed theories for evaluating the strength of composite materials 

are mainly for composite laminates. Lamination theory is well formulated by Tsai and Wu 

[1] and developed more in other works such as Christensen [2], Tsai and Hahn [3] and 

Ashbee [4]. The lamination theory studies the behavior of composites under applied 

loading in a macroscopic view, i.e. the response of each ply in a laminate is considered 

altogether and the fiber-matrix interaction is not considered. Since the stress and strain 

fields inside the ply are not calculated, the only way to determine the onset strain of ply 

failure is to perform tests and could not be calculated from the matrix and fiber material 

characteristics.  

The micromechanics approach is an alternative way of studying composite 

materials. This approach tries to determine the strain and stress fields within the fiber and 

matrix material. It can describe the interaction among the matrix and fibers. In this 

approach, the type of reinforcing elements could be continuous, spherical, platelet and 

chopped fibers. Researchers have studied these cases and predicted their behavior. 

Argon [5], Benveniste and Aboudi [6], Mikata and Taya [7], Taya and Chou [8] as well as 

Nomura and Oshima [9] have researched a variety of short fiber and spherically 

reinforced composites and studied the mechanical characteristics of composite materials 

as well as the strain and stress fields inside the matrix and reinforcing elements.  

The stiffness of particulate composites has been studied extensively [10]. The 

presence of particles inside the matrix material disturbs the stress field. Therefore, they 

affect the effective properties of the composite materials as a whole. The effective 

properties are used to predict the mechanical performance of the composite materials. 
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These effective property estimations could be categorized into two main forms of the 

upper and lower bounds or the effective property approximation based on the 

microstructure details of the composite materials. Using the variational principle, Hashin 

and Shtrikman [11] evaluated the upper and lower bounds for the effective properties of 

multiphase linear elastic materials. Nemat-Naser [12] extended Hashin’s approach to 

multiphase elastic-plastic materials. The effective property approach tries to evaluate the 

effective properties of the composite materials exactly. This approach is based on 

consideration of a representative volume element (RVE) for the homogenization purpose. 

Budiansky [13] developed a self-consistent (S-C) method scheme. Mori and Tanaka [14] 

extended the S-C approach. These approaches are based on a single inclusion in an 

unbounded matrix. Other approaches have considered the interaction among the 

inclusions such as the three-phase model by Christensen and Lo [15]. Also 

computational methods such as FEM have been utilized in evaluating the effective 

properties of composite materials. Zhang and Wu [16] examined the effect of inclusion 

connectivity on the effective properties. They showed that the inclusion volume fractions 

and connectivity affect the effective properties significantly. These approaches have been 

developed in order to account for the inclusion interactions more accurately. The concept 

of unit cells could also be used. Each unit cell contains a finite number of inclusions and 

is repeated periodically. This approach gives better description of microstructure details 

of the composite materials. Paley and Aboudi [17] studied the repeating unit cells through 

developing the generalized method of cells.  

Javier [18] claims that since damage is a local phenomenon, therefore using the 

average theorems and homogenization techniques is not effective. Damage causes local 

deformation gradient fields and the average methods are unable to capture the effects 

from local phenomena. Also using the periodic micro-field approaches is not useful 



 

15 

because they assume damage also periodically progresses throughout the material while 

in practice that is not the case. Therefore, he proposed the study of microstructure effect 

on the damage using the finite element method. Sozhamannan [19] used SEM images to 

find the microstructure of a specific specimen and used FEM to model the fracture 

process of the particulate reinforced metal matrix composite. He realized that the 

clustering nature of the particles determines the failure type of the composite materials.  

 Dong [20] did some experiments to realize the effect of particle size on fracture 

and debonding. He used a body center cubic system to analyze the elastic energy of the 

damaged cells. He predicted the tensile strength of the specimens. Kusch [21] used a 

series solution to get the stress concentration at periodic configuration of particles in 

transversely isotropic matrix. His results show that the particle volume fraction has a 

significant effect on the stress concentration around the particles.  

One of the purposes of micromechanics of composites is to evaluate the 

macroscopic composite properties through incorporating microstructural elements. Two 

major approaches are generally considered, the first is to use homogenization techniques 

to describe the behavior of a representative volume element and the second is to use a 

periodic micro-field approach to describe the behavior of a unit cell. Both methods have 

high computational costs and do not give analytical expressions for the stress fields and 

composite strength. Birman [22] conducted research on the strength of particulate 

polymers. He used the analytical stress distribution around spherical particles and 

extended it using the Mori-Tanaka homogenization approach [23] to get the stress 

concentrations around the particle, then he used the von Mises and maximum principal 

stress values to compare the strength of polymers against the matrix yielding and particle 

to matrix debonding strength. 
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The micromechanics description of composite materials under applied loading 

has been carried out using computational and closed form analytical approaches. The 

finite element method is the dominant computational approach. The closed form 

mathematical approaches are based on the work of Eshelby [24].  

Allowable combined state of stress applied on a composite material has not been 

investigated yet using the equivalent inclusion approach. This dissertation presents the 

failure envelope prediction of particulate composite materials using a micromechanics 

approach. The assumptions made are: 

1. The maximum von Mises stress occurs in the matrix adjacent to the fibers. 

2. The von Mises failure criterion governs the matrix failure. 

3. The fiber shape is ellipsoidal. 

4. The composite material is homogeneous as a whole. 

5. The reinforcing particles are very small relative to a unit volume of composite 

materials. 

Considering these assumptions in the formulation, we determine the strength of 

composite materials based on the strength of the matrix and fiber material and other 

varying parameters of the composite.  We account for the anisotropic properties of the 

composite in the formulation. The developed model herein allows predicting the strength 

of a variety of composites using the constituent’s mechanical properties without a need 

for expensive tests.  

In order to reach the objective of this study, we must find the stress field at the 

interface of the matrix and fiber in terms of the properties of the matrix and fiber materials 

as well as the applied loading. Chapter 2 describes the analysis procedure and solution 

approach. First the composite material is replaced with an equivalent medium having the 

effective properties of the composite material. After we evaluate the stress inside a 
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particle embedded in the composite material using Eshelby’s method and continuity of 

the traction and displacement at the particle-matrix interface, then we obtain the stress 

outside the particle. Using the stress outside the particle where the maximum von Mises 

stress happens, we obtained and plotted the failure envelopes. We investigated and 

plotted the effect of various parameters on the stress field and the failure envelopes. 

Chapter 3 deals with the thermo-elastic field of a two phase material. We obtain 

the stress field inside and outside a particle embedded in an isotropic matrix under 

thermal heat flow at the far-field. Then using the von Mises failure criterion, we obtain and 

present the failure envelopes due to thermal stresses for popular composite materials 

used in industry. 

Chapter 4 summarizes the dissertation as a whole and elaborates on the 

important results obtained in this study. Also it presents some ideas for continuation of 

this research.  
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Chapter 2  

Mechanical Analysis 

 

The interaction among neighboring reinforcing elements makes the process of 

deriving the stress field inside the matrix almost impossible to implement. The self-

consistent (S-C) approximation is used to replace the composite aggregate with an 

equivalent homogeneous material which possesses the stiffness properties of the 

composite. This way an isolated reinforcing element embedded in an equivalent medium 

to the composite materials could be studied. The interaction among adjacent particles is 

reflected in the response of the combined materials.  

The self-consistent (S-C) method is a homogenization approach. Similar to the 

experimental testing specimen scales, a microscopic volume element is considered as a 

representative of the entire material. The Representative Volume Element (RVE) is 

utilized in the homogenization of the material properties to describe the macroscopic 

properties of composite materials. The evaluated properties should be independent of the 

location of the volume element. As it will be described more thoroughly in the next 

following paragraphs, the matrix is replaced with a medium having the S-C approximated 

properties. Hooke’s law takes the following form in the replaced material: 

〈𝜎𝑖𝑗〉 = 𝐶�̅�𝑗𝑘𝑙〈𝜖𝑘𝑙〉 (2.1) 

where 〈𝜎𝑖𝑗〉 and 〈𝜖𝑘𝑙〉 are the average stress and strain, respectively and 𝐶�̅�𝑗𝑘𝑙 represents 

the effective composite material properties. 

 There are various homogenization approaches and it is worthwhile to briefly 

explain the differences among these approaches qualitatively, without thorough 

consideration [25].  
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The Voigt and Reuss approximation is the simplest form of homogenization. The 

Voigt method assumes that in the representative volume element, the strain is constant 

and Reuss assumes that the stress is constant which leads to the following relations for 

the effective elastic stiffness 𝐶̅ : 

𝐶�̅�𝑜𝑖𝑔𝑡 = ∑ 𝑣𝛼𝐶𝛼

𝛼

 (2.2) 

 

𝐶�̅�𝑒𝑢𝑠𝑠
−1

= ∑ 𝑣𝛼𝐶𝛼
−1

𝛼

 (2.3) 

where 𝑣𝛼 and 𝐶𝛼 are the volume fraction and elasticity tensor of the 𝛼-th phase of the 

composite material, respectively. The Voight approximation is also referred to as the rule 

of mixture. These methods violate the requirements such as local equilibrium at phase 

boundaries but provide the upper and lower bounds for the effective properties.  

The next approach is called dilute distribution. This method assumes that the 

particles are so far from each other that their interaction to each other and with the 

boundaries of the RVE could be neglected. In this case, each particle is considered in an 

unbounded matrix phase under the applied far-field strain or stress. This case is 

equivalent to assuming that the same applied far-field strains, 𝜖∞, are applied to the RVE 

embedding only one particle. The formulation of the effective stiffness in dilute distribution 

condition is explicitly expressed as: 

𝐶̅ = 𝐶𝑀 + 𝜈𝑓(𝐶𝑓 − 𝐶𝑀) (𝐼 + 𝑆𝑀(𝐶𝑀)−1(𝐶𝑓 − 𝐶𝑀))
−1

 
(2.4) 

The superscripts, f and M, represent the fiber (particle) and matrix, respectively. The 

quantity, 𝐶̅, is the effective elasticity tensor of the composite material. The tensor, 𝑆𝑀, is 

the Eshelby tensor evaluated using the matrix material properties. The tenosr, 𝐼, is an 

identity tensor. 
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More advanced methods are the Mori-Tanaka and self-consistent (S-C) methods. 

The Mori-Tanaka method is similar to the dilute distribution approach with one distinction. 

This method assumes that the RVE which contains one particle is under the average 

matrix strain, 〈𝜖〉𝑀, at the boundary while the dilute distribution model RVE was under the 

strain applied at the far-field, 𝜖∞. Based on this assumption, the effective elastic stiffness 

is evaluated and expressed as  

𝐶̅ = 𝐶𝑀 + 𝜈𝑓(𝐶𝑓 − 𝐶𝑀) (𝐼 + 𝜈𝑀𝑆𝑀(𝐶𝑀)−1(𝐶𝑓 − 𝐶𝑀))
−1

 
(2.5) 

where 𝜈𝑀 is the volume fraction of the matrix. 

The self-consistent method assumes a very different condition. Just like the dilute 

distribution method, the applied far-field strain 𝜖∞ is also applied to the RVE with the 

distinction that the particle is embedded in a medium with the effective properties of the 

composite material. In this study, we adopted the self-consistent approach and therefore 

we will explain it more thoroughly than the other approaches. In the following, the S-C 

approximation is derived. 

Hooke’s law between the average strain and stress defines the effective elasticity 

tensor as follows:  

〈𝜎𝑖𝑗〉 = 𝐶�̅�𝑗𝑘𝑙〈𝜖𝑘𝑙〉 (2.6) 

where 〈𝜎𝑖𝑗〉 and 〈𝜖𝑘𝑙〉 are the average stress and strain which are equal to the applied 

stress and strain at the far-field.  

The local Hooke’s law also must be valid and is expressed as follows: 

𝜎𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙(𝑥) 𝜖𝑘𝑙(𝑥) (2.7) 

Taking average of both sides of Eq. (2.7) and combining with Eq. (2.6) gives  

𝐶�̅�𝑗𝑘𝑙   〈𝜖𝑘𝑙〉 = 〈𝐶𝑖𝑗𝑘𝑙  𝜖𝑘𝑙〉 (2.8) 
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Since the solution to the linear elastic boundary value problem is unique, 

therefore, the strain field inside the RVE is a linear function of the loading parameter, 𝜖𝑖𝑗
∞, 

as follows: 

𝜖𝑖𝑗(𝑥) = 𝐴𝑖𝑗𝑘𝑙(𝑥) 𝜖𝑘𝑙
∞ (2.9) 

The quantity, 𝐴𝑖𝑗𝑘𝑙(𝑥), is called the influence tensor and relates the local strain field, 

𝜖𝑖𝑗(𝑥), to the applied strain at the far-field, 𝜖𝑘𝑙
∞. Inserting Eq. (2.9) into Eq. (2.8) and 

expanding the resulting relation gives the following expression: 

𝐶�̅�𝑗𝑘𝑙   〈𝜖𝑘𝑙〉 = 〈𝐶𝑖𝑗𝑘𝑙  𝐴𝑘𝑙𝑚𝑛〉 𝜖𝑚𝑛
∞  (2.10) 

Based on the average theorem for infinitesimal strain in incompressible material 

under constant strain 𝜖𝑖𝑗
∞, we have: 

〈𝜖𝑖𝑗〉 = 𝜖𝑖𝑗
∞ (2.11) 

The derivation of Eq. (2.11) is as follows: suppose that an RVE is subjected to prescribed 

displacement boundary condition. On the boundary we have: 

𝑢𝑖
0 = 휀𝑖𝑗

∞𝑥𝑗 (2.12) 

where  𝑢𝑖
0 is the displacement on the surface of the boundary. Taking the average of the 

strain over the volume of the RVE gives: 

〈𝜖𝑖𝑗〉𝑉 =
1

𝑉
 ∫ 𝜖𝑖𝑗  𝑑𝑉

 

𝑉

=
1

2𝑉
 ∫ (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 𝑑𝑉

 

𝑉

=
1

2𝑉
 ∮ (𝑢𝑖

0𝑛𝑗

 

𝜕𝑉

+ 𝑢𝑗
0𝑛𝑖)𝑑𝑆 

(2.13) 

Therefore, substituting Eq. (2.12) into Eq. (2.13) results in: 

〈𝜖𝑖𝑗〉𝑉 =
1

2𝑉
  ∮ (휀𝑖𝑘

∞𝑥𝑘𝑛𝑗
 

𝜕𝑉
+ 휀𝑗𝑘

∞𝑥𝑘𝑛𝑖)𝑑𝑆 =
1

2𝑉
  ∫ (휀𝑖𝑘

∞𝛿𝑘𝑗 + 휀𝑗𝑘
∞𝛿𝑘𝑖) 𝑑𝑉

 

𝑉
=휀𝑖𝑗

∞ (2.14) 

Therefore, Eq. (2.11) is proved and is used in the following analysis.  Combining Eq. 

(2.11) with Eq. (2.10) gives the following relation:  

𝐶�̅�𝑗𝑚𝑛   = 〈𝐶𝑖𝑗𝑘𝑙 𝐴𝑘𝑙𝑚𝑛〉 (2.15) 
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For piecewise constant elastic properties of the material phases, the above 

relation is simplified to  

𝐶�̅�𝑗𝑘𝑙   = ∑ 𝜈𝛼𝐶𝛼𝐴𝛼

𝛼

 (2.16) 

Also taking the average of both sides of Eq. (2.9) over the volume of phase 𝛼 and the 

whole RVE gives the following two relations: 

〈𝜖〉𝛼 = 〈𝐴 〉𝛼 𝜖∞ (2.17) 

〈𝜖〉 = 〈𝐴 〉 𝜖∞ (2.18) 

Using Eqs. (2.17) and (2.18), we derive the following relation: 

〈𝐴 〉 = 1 = ∑ 𝜈𝛼〈𝐴 〉𝛼

𝛼

 (2.19) 

Therefore, in two phase composite materials, only the influence tensor for one of the 

phases is necessary. Combining Eqs. (2.16) and (2.19) leads to the following relation for 

the effective properties of the composite material: 

𝐶̅ = 𝐶𝑀 + 𝜈𝑓(𝐶𝑓 − 𝐶𝑀) 𝐴_𝑓𝐶̅ (2.20) 

where 𝐴𝑓 is the influence tensor of the particles or fibers. In case of ellipsoidal particles, 

the influence tensor is evaluated using the Eshelby tensor as follows: 

𝐴_𝑓𝐶̅ = (𝐼 + 𝑆̅(𝐶̅)−1(𝐶𝑓 − 𝐶̅))
−1

 
(2.21) 

The Eshelby tensor, 𝑆̅, is evaluated using the effective properties of the composite 

material. Equation (2.20) is a set of nonlinear equations in which the only unknowns are 

elements of the effective stiffness, 𝐶̅. The solution to Eq. (2.20) for 𝐶̅ can be obtained 

numerically by iteration. This formulation followed a general approach and could be used 

for transversely isotropic fibers and matrix.  

The Eshelby tensor is required to solve for the S-C approximated properties of 

the composite material. The concept and formulation of the Eshelby method will be 
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explained more thoroughly in the next section but the final formulation for evaluating the 

Eshelby tensor is printed here. Having a transversely isotropic material as the matrix 

phase, the Eshelby tensor, 𝑆𝑖𝑘𝑚𝑛, takes the following form [26] 

𝑆𝑖𝑘𝑚𝑛 =
1

8𝜋
𝐶𝑗𝑙𝑚𝑛(𝐴𝑖𝑘𝑗𝑙 + 𝐴𝑘𝑖𝑗𝑙) 

(2.22) 

where 𝐶𝑗𝑙𝑚𝑛 is the elastic stiffness tensor of the transversely isotropic matrix. Non-zero 

components of 𝐴𝑖𝑘𝑗𝑙 are expressed as [27]: 

𝐶11 = 𝑑 (2.23) 

𝐶11 − 𝐶12

2
= 𝑒 

(2.24) 

𝐶44 = 𝑓 (2.25) 

𝐶13 + 𝐶44 = 𝑔 (2.26) 

𝐶33 = ℎ (2.27) 

 

𝐴1111 =
𝜋

2
∫ Δ(1 − 𝑥2) ((𝑓(1 − 𝑥2) + ℎ𝜌2𝑥2)((3𝑒 + 𝑑)(1 − 𝑥2)

1

0

+ 4𝑓𝜌2𝑥2) − 𝑔2𝜌2𝑥2(1 − 𝑥2)) 𝑑𝑥 

(2.28) 

𝐴2222 = 𝐴1111 (2.29) 

𝐴2211 = 𝐴1122 (2.30) 

𝐴1122 =
𝜋

2
∫ Δ(1 − 𝑥2)2(𝑔2𝜌2𝑥2 − (𝑑 − 𝑒)(𝑓(1 − 𝑥2) + ℎ𝜌2𝑥2))𝑑𝑥

1

0

 

(2.31) 

𝐴3333 = 4𝜋 ∫ Δ𝜌2𝑥2(𝑑(1 − 𝑥2) + 𝑓𝜌2𝑥2)(𝑒(1 − 𝑥2) + 𝑓𝜌2𝑥2)𝑑𝑥

1

0

 

(2.32) 
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𝐴1212 = 𝐴2121 =
𝜋

2
∫ Δ(1

1

0

− 𝑥2) ((𝑓(1 − 𝑥2) + ℎ𝜌2𝑥2)((𝑒 + 3𝑑)(1 − 𝑥2)

+ 4𝑓𝜌2𝑥2) − 3𝑔2𝜌2𝑥2(1 − 𝑥2)) 𝑑𝑥 

(2.33) 

𝐴1313 = 𝐴2323 = 2𝜋 ∫ Δ𝜌2𝑥2 (((𝑑 + 𝑒)(1 − 𝑥2) + 2𝑓𝜌2𝑥2)(𝑓(1 − 𝑥2)

1

0

+ ℎ𝜌2𝑥2) − 𝑔2𝜌2𝑥2(1 − 𝑥2))𝑑𝑥 

(2.34) 

𝐴3131 = 𝐴3232 = 2𝜋 ∫ Δ(1

1

0

− 𝑥2)((𝑑(1 − 𝑥2) + 𝑓𝜌2𝑥2)(𝑒(1 − 𝑥2) + 𝑓𝜌2𝑥2))𝑑𝑥 

(2.35) 

𝐴1133 = 𝐴2233 = −2𝜋 ∫ Δg𝜌2𝑥2(1 − 𝑥2)(𝑒(1 − 𝑥2) + 𝑓𝜌2𝑥2)𝑑𝑥

1

0

 

(2.36) 

 

Δ−1 = (𝑒(1 − 𝑥2) +  𝑓𝜌2𝑥2)((𝑑(1 − 𝑥2) + 𝑓𝜌2𝑥2)(𝑓(1 − 𝑥2) + ℎ𝜌2𝑥2)

− 𝑔2𝜌2𝑥2(1 − 𝑥2)) 

(2.37) 

So using the components of 𝐴𝑖𝑗𝑘𝑙 and Eq. (2.22), the Eshelby tensor is obtained. 

The expressions for 𝐴𝑖𝑗𝑘𝑙 are to be numerically evaluated and, to the knowledge of the 

author, explicit symbolic relations are not possible. 

 

2.1 The equivalent inclusion 

Now that the matrix properties are replaced with the S-C approximated properties 

of the composite material, it is time to evaluate the stress inside the particles. The idea of 

equivalent inclusion will be described here. Eshelby introduced this concept, which states 

that the mechanical response of an unbounded elastic medium with an embedded 
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eigenstrain under an applied loading is identical to the behavior of an unbounded elastic 

medium embedding an inhomogeneity. Modeling composite materials is divided into 

several steps, describing the response of an inhomogeneity inside an unbounded elastic 

medium is the first step to proceed. The required equations to calculate the eigenstrain 

are described here. The stress field within and outside the particle will be expressed in 

terms of the eigenstrain expressions. 

The concept which Eshelby studied is that of an unbounded elastic matrix phase 

containing an ellipsoidal region with an eigenstrain within it. The eigenstrains are termed 

stress free strains in the literature [28].  Hooke’s law governs the stress-strain relation 

inside the matrix remote from the pre-strained volume.  

𝜎𝑖𝑗
∞ = 𝐶�̅�𝑗𝑘𝑙𝜖𝑘𝑙

∞ (2.38) 

where the quantity, 𝐶�̅�𝑗𝑘𝑙, is the elastic stiffness of the equivalent matrix, 𝜎𝑖𝑗
∞ is the far-field  

stress, 𝜖𝑘𝑙
∞ is the far-field strain and subscripts “k” and “l” are repeated indices in the 

Einstein notation. 

The eigenstrain inside the matrix disturbs the strain and stress field which are 

represented by 𝜖𝑖𝑗
𝑑  and 𝜎𝑖𝑗

𝑑, respectively. The stress field around the pre-strained region 

due to the applied far-field stress, 𝜎𝑖𝑗
∞, is as follows: 

𝜎𝑖𝑗
∞ + 𝜎𝑖𝑗

𝑑 = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙
∞ + 𝜖𝑘𝑙

𝑑 ) (2.39) 

where the quantity, 𝜖𝑘𝑙
∞, is the far-field strain and 𝜖𝑖𝑗

𝑑  is the disturbed strain. The stress 

field within the inclusion is  

𝜎𝑖𝑗
∞ + 𝜎𝑖𝑗

𝑑 = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙
∞ + 𝜖𝑘𝑙

𝑑 − 𝜖𝑘𝑙
∗ ) (2.40) 

where the tensor,𝜖𝑘𝑙
∗ , is the eigenstrain. Eshelby showed that the strain disturbance, 𝜖𝑖𝑗

𝑑 , 

could be obtained in terms of the eigenstrain and a quantity known as the Eshelby tensor: 

𝜖𝑖𝑗
𝑑 = 𝑆�̅�𝑗𝑘𝑙𝜖𝑘𝑙

∗  (2.41) 
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The Eshelby tensor, 𝑆�̅�𝑗𝑘𝑙, is in terms of the shape of the inclusion and the 

surrounding medium properties. The Eshelby tensor for an ellipsoidal inclusion is 

formulated in the literature and is well-known. An ellipsoid could describe a number of 

common reinforcing elements such as short fibers, long fibers of circular cross section 

and spherical shapes.  

The objective is to formulate the stress field around a particle inside a matrix with 

different material properties from the matrix in terms of the Eshelby tensor and material 

properties of the phases. The equivalent inclusion method attempts to find an inclusion 

with a proper eigenstrain inside a matrix which as a whole would respond to the applied 

far-field loading exactly the same way as an actual inhomogeneity inside the matrix 

would. To find such an eigenstrain, the stresses in the actual inclusion are equated to 

those in a region of matrix embedding the eigenstrain, 𝜖𝑘𝑙
∗ , as follows: 

𝐶𝑖𝑗𝑘𝑙
𝑓

(𝜖𝑘𝑙
∞ + 𝜖𝑖𝑗

𝑑 ) = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙
∞ + 𝜖𝑘𝑙

𝑑 − 𝜖𝑘𝑙
∗ ) (2.42) 

The quantities, 𝐶𝑖𝑗𝑘𝑙
𝑓

 and 𝐶�̅�𝑗𝑘𝑙 , are the elasticity tensors of the actual 

inhomogeneity and S-C approximation of the composite material properties, respectively. 

Substituting the strain disturbance given in Eq. (2.41) into the above expression gives the 

following: 

𝐶𝑖𝑗𝑘𝑙
𝑓 (𝜖𝑘𝑙

∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛
∗ ) = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙

∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛
∗ − 𝜖𝑘𝑙

∗ ) (2.43) 

In the equation above, the effective material properties of the matrix, 𝐶�̅�𝑗𝑘𝑙 , the 

material properties of the actual inhomogeneity, 𝐶𝑖𝑗𝑘𝑙
𝑓

, the far-field strain, 𝜖𝑘𝑙
∞, and the 

Eshelby tensor are known. Therefore, it results in a system of linear equations which 

provides the eigenstrain, 𝜖𝑚𝑛
∗ .  Consequently, the eigenstrain values will be expressed in 

terms of the aforementioned known parameters. The explicit form of the eigenstrain in 
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transversely isotropic matrix is very complex and could not be printed here. In later 

sections, the eigenstrain for the special case of isotropic material is shown. 

Having evaluated the eigenstrain, 𝜖𝑘𝑙
∗ , we obtain the stress and strain fields inside 

the particles in terms of the eigenstrain as: 

𝜖𝑘𝑙
𝑖𝑛 = 𝜖𝑘𝑙

∞ + 𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛
∗  (2.44) 

𝜎𝑖𝑗
𝑖𝑛 = 𝐶𝑖𝑗𝑘𝑙

𝑓 (𝜖𝑘𝑙
∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛

∗ ) (2.45) 

2.2 Stress outside the particle 

To calculate the stress outside the particles based on the stress inside the 

particles, we utilize the continuity conditions for the traction and displacement across the 

particle-matrix interface; that is [29], 

[[ 𝑢𝑖
𝑑  ]] = 𝑢i

out − 𝑢i
in = 0 (2.46) 

The jump in stress field is formulated as follows: 

𝜎𝑖𝑗
𝑜𝑢𝑡 = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙

∞ + 𝜖𝑘𝑙
𝑑 ) = 𝜎𝑖𝑗

∞ + 𝜎𝑖𝑗
𝑑 (2.47) 

𝜎𝑖𝑗
𝑖𝑛 = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙

∞ + 𝜖𝑘𝑙
𝑑 − 𝜖𝑘𝑙

∗ ) = 𝜎𝑖𝑗
∞ + 𝜎𝑖𝑗

𝑑 − 𝜎𝑖𝑗
∗  (2.48) 

Subtracting Eq. (2.48) from Eq. (2.47) results in:  

[[ 𝜎𝑖𝑗  ]] = [[𝜎𝑖𝑗
𝑑]] + 𝜎𝑖𝑗

∗  (2.49) 

The bracketed quantity [[ 𝑓 ]] is the jump of field “f” from inside of the particle to the 

outside where “f” can be displacement, 𝑢𝑖, stress, 𝜎𝑖𝑗, and strain, 𝜖𝑖𝑗. The quantities, 𝑢i
out 

and 𝑢i
in, are the displacements outside and inside the particle-matrix interface, 

respectively. The quantity, 𝑢𝑖
𝑐, is the disturbed displacement, 𝑛𝑖 is the outward unit vector 

normal to the surface of the particle. The quantity, 𝜎𝑖𝑗
∗  and 𝜎𝑖𝑗

𝑑, are the eigenstress inside 

the inclusion and the disturbed stress, respectively. In this context eigenstress is defined 

as, 𝜎𝑖𝑗
∗ = 𝐶�̅�𝑗𝑘𝑙  𝜖𝑘𝑙

∗ . 

: 
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Multiplying Eq. (2.49) by the unit normal vector 𝑛𝑖, results in: 

[[ 𝜎𝑖𝑗  𝑛𝑖]] = [[𝜎𝑖𝑗
𝑑]] 𝑛𝑖 + 𝜎𝑖𝑗

∗ 𝑛𝑖 
(2.50) 

the vector, [[ 𝜎𝑖𝑗  𝑛𝑖]], is the jump of the traction on the interface which is equated to zero 

as follows: 

[[𝜎𝑖𝑗
𝑑 ]] 𝑛𝑖 = −𝜎𝑖𝑗

∗ 𝑛𝑖 
(2.51) 

The strain is discontinuous at the particle-matrix interface. The directional 

differentiation of the displacement along the tangent of the interface must be continuous, 

therefore, the jump of the displacement derivative must be in the direction of the normal 

to the interface. The following relation describes the jump parameter of the displacement 

across the interface: 

[[𝑢𝑖,𝑗
𝑑  𝑡𝑖]] = 0 (2.52) 

[[𝑢𝑖,𝑗
𝑑 ]] = 𝑢𝑖,𝑗

𝑜𝑢𝑡 − 𝑢𝑖,𝑗
𝑖𝑛 = 𝜆𝑖𝑛𝑗 (2.53) 

where 𝑡𝑖 is the vector tangent to the particle-matrix interface. 

[[𝜖𝑖𝑗
𝑑  ]] = [[

 𝑢𝑘,𝑙
𝑑 + 𝑢𝑙,𝑘

𝑑

2
 ]] 

(2.54) 

The quantity, 𝐶𝑖𝑗𝑘𝑙
𝑚 , has minor symmetry, therefore, 𝐶𝑖𝑗𝑘𝑙

𝑚 𝑢𝑘,𝑙
𝑐 = 𝐶𝑖𝑗𝑘𝑙

𝑚 𝑢𝑙,𝑘
𝑐 . Using the 

minor symmetry of the matrix stiffness along with Eqs. (2.51) and (2.54) gives the 

following relation: 

[[𝜎𝑖𝑗
𝑑 ]] = 𝐶�̅�𝑗𝑘𝑙  [[ 𝑢𝑘,𝑙

𝑑 ]]  (2.55) 

Combining Eqs. (2.51), (2.52) and (2.55) gives: 

[[𝜎𝑖𝑗
𝑑 ]] 𝑛𝑖 =  𝐶�̅�𝑗𝑘𝑙𝜆𝑘 𝑛𝑙  𝑛𝑖 = −𝜎𝑖𝑗

∗ 𝑛𝑖 
(2.56) 

where 𝜆𝑖 is the magnitude of the jump. Equation (2.56) is a set of 3 linear equations in 

which 𝜆𝑘 is to be determined. In general anisotropic cases, obtaining the explicit relation 
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for the jump parameter, 𝜆𝑘, leads to a very long relation, therefore, the resulted relation is 

not printed here. 

Combining Eqs. (2.49) and (2.56) gives the following relation for the stress jump 

across the interface. 

[[𝜎𝑖𝑗]] = [[𝜎𝑖𝑗
𝑑]] + 𝜎𝑖𝑗

∗ = 𝜎𝑖𝑗
∗ − 𝐶�̅�𝑗𝑘𝑙𝜆𝑘  𝑛𝑙 

(2.57) 

Having solved for the jump parameter, the stress outside the particle is evaluated 

using Eq. (2.57) as follows: 

𝜎𝑖𝑗
𝑜𝑢𝑡 = 𝜎𝑖𝑗

𝑖𝑛 + 𝜎𝑖𝑗
∗ + [[𝜎𝑖𝑗

𝑑]] = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙
∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛

∗ ) − 𝐶�̅�𝑗𝑘𝑙𝜆𝑘  𝑛𝑙 
(2.58) 

2.3 Special case: isotropic material and spherical particles 

In case of isotropic material properties, the S-C approximation of the composite 

material properties could be evaluated in a more straightforward approach than the one 

described in the previous section. Consider spherical particles inside an unbounded 

isotropic matrix phase. Since the particles are spherical, the effective properties of the 

composite material would also be isotropic, therefore, only two parameters are necessary 

to determine the effective elasticity tensor of the composite material. Under uniform shear 

stress at the far-field, 𝜎12
∞, Hooke’s law states  

𝜎12
∞ = 2�̅�𝜖12

∞  (2.59) 

where the quantity, 𝜎12
∞, is the applied far-field shear stress, 𝜖12

∞  is the resulting shear 

strain in the homogeneous material and �̅� is the effective shear modulus of the composite 

material. Based on the equivalent inclusion equation, the stress inside the particle is 

equated to the stress inside the effective material properties embedding an eigenstrain 

𝜖12
∗ . 

𝜎12
∞ + 𝜎12

𝑑 = 2�̅�(𝜖12
∞ + 𝜖12

𝑑 − 𝜖12
∗ ) = 2𝜇𝑓(𝜖12

∞ + 𝜖12
𝑑 ) (2.60) 
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where 𝜇𝑓 is the shear modulus of the particle. The disturbed part of the shear strain, 𝜖12
𝑑 , 

is as follows: 

𝜖12
𝑑 = 2𝑆1̅212 𝜖12

∗  (2.61) 

The quantity, 𝑆1̅212, is an element in the Eshelby tensor. Substituting Eq. (2.61) into Eq. 

(2.60) and solving for 𝜖12
∗  yields:  

𝜖12
∗ = (�̅� − 𝜇𝑓)

𝜖12
∞

�̅� + 2𝑆1̅212(𝜇𝑓 − �̅�)
 

(2.62) 

Manipulating Eq. (2.62) to get the strain and stress field inside the particles gives 

the following two relations: 

𝜖12
∞ + 𝜖12

𝑑 = �̅�
𝜖12

∞

�̅� + 2𝑆1̅212(𝜇𝑓 − �̅�)
 

(2.63) 

𝜎12
∞ + 𝜎12

𝑑 = 2𝜇𝑓�̅�
𝜖12

∞

�̅� + 2𝑆1̅212(𝜇𝑓 − �̅�)
 

(2.64) 

The stress and strain fields inside the fibers are uniform, therefore, their average 

are equal to their uniform value. The relation between the average strain, 〈𝜖12〉, and 

stress, 〈𝜎12〉, of the composite and its phases are as follows: 

〈𝜖12〉 = 𝜈𝑀〈𝜖12〉𝑀 + 𝜈𝑓〈𝜖12〉𝑓 = 𝜈𝑀〈𝜖12〉𝑀 +
�̅�

�̅� + 2𝑆1̅212(𝜇𝑓 − �̅�)
 𝜖12

∞  
(2.65) 

〈𝜎12〉 = 𝜈𝑀〈𝜎12〉𝑀 + 𝜈𝑓〈𝜎12〉𝑓 = 𝜈𝑀〈𝜎12〉𝑀 +
 𝜇𝑓�̅�

�̅� + 2𝑆1̅212(𝜇𝑓 − �̅�)
 2𝜖12

∞  
(2.66) 

 

The quantities, 〈𝜖12〉𝑀 and 〈𝜖12〉𝑓, are the average strain in the matrix and particles, 

respectively and 〈𝜎12〉𝑀 and 〈𝜎12〉𝑓 are the average stress in the matrix and particles, 

respectively. Using Hooke’s law in the matrix leads to 

〈𝜎12〉𝑀 = 2 𝜇𝑀 〈𝜖12〉𝑀 (2.67) 
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Based on the average theorem for infinitesimal strain in incompressible material 

under constant strain, 𝜖𝑖𝑗
∞, the average strain and stress over the whole composite 

material is equal to the applied stress and strain at the far-field, i,e. 

〈𝜎12〉 = 𝜎12
∞ (2.68) 

〈𝜖12〉 = 𝜖12
∞  (2.69) 

Substituting Eqs. (2.67), (2.68) and (2.69) into Eqs. (2.65) and (2.66), and solving 

for 〈𝜎12〉 as a function of 〈𝜖12〉  results in 

〈𝜎12〉 = 𝜇𝑀〈2𝜖12〉 + ∑ 𝜈𝑓(𝜇𝑓 − 𝜇𝑀)

𝑛

𝑓=1

�̅�

�̅� + 2𝑆1̅212(𝜇𝑓 − �̅�)
〈2𝜖12〉 

(2.70) 

and using the relation 〈𝜎12〉 = �̅� 〈2𝜖12〉, it follows: 

�̅� = 𝜇𝑀 + ∑
𝜈𝑓(𝜇𝑓 − 𝜇𝑀)�̅�

[�̅� + 2𝑆1̅212(𝜇𝑓 − 𝜇𝑀)]

𝑛

𝑓=1

 
(2.71) 

Repeating the same procedure for 𝜎11, gives the effective bulk modulus as 

follows: 

�̅� = 𝜅𝑀 + ∑
𝜈𝑓(𝜅𝑓 − 𝜅𝑀)�̅�

[�̅� +
1
3

𝑆�̅�𝑖𝑗𝑗(𝜅𝑓 − �̅�)]

𝑛

𝑓=1

 
(2.72) 

The relations for the Eshelby tensor elements 𝑆�̅�𝑖𝑗𝑗 and  𝑆1̅212 are as follows: 

𝑆1̅212 =
3(�̅� + 2�̅�)

5(3�̅� + 4�̅�)
 

(2.73) 

𝑆�̅�𝑖𝑗𝑗 =
9�̅�

3�̅� + 4�̅�
 

(2.74) 

Therefore, the above relations represent a set of nonlinear equations which may be 

solved simultaneously to find the values of �̅�, �̅� and �̅� for given 𝜇𝑓, 𝜅𝑓 and 𝜈𝑓.  

Homogeneously distributed spherical particles in an isotropic matrix yields an 

isotropic composite material. Therefore, the Eshelby tensor takes a simpler form than the 
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general form that was expressed in the previous section. The Eshelby tensor for a 

spherical particle in an isotropic material is as follows: 

𝑆�̅�𝑗𝑘𝑙 =
5 �̅� − 1

15(1 − �̅�)
𝛿𝑖𝑗𝛿𝑘𝑙 +

4 − 5�̅�

15(1 − �̅�)
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑙𝛿𝑗𝑘) 

(2.75) 

where �̅�, is the S-C approximation of the composite material Poisson ratio. Isotropic 

material properties in terms of Lamé’s parameters 𝜆 and 𝜇 in indicial notation is 

expressed as follows: 

𝐶�̅�𝑗𝑘𝑙 = 𝜆̅𝛿𝑖𝑗𝛿𝑘𝑙 + �̅�(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (2.76) 

Considering isotropic material properties for the matrix and inhomogeneity and 

also spherical particles, the eigenstrain is evaluated using the expression derived in the 

previous section which is printed below as well:. 

𝐶𝑖𝑗𝑘𝑙
𝑓 (𝜖𝑘𝑙

∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛
∗ ) = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙

∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛
∗ − 𝜖𝑘𝑙

∗ ) (2.77) 

Substituting the S-C approximation of the composite material properties and the 

Eshelby tensor derived from the effective properties into Eq. (2.77) leads to the following 

concise expression for eigenstrain 𝜖𝑖𝑗
∗ . 

𝐴 = (3�̅� + 4μ̅)15�̅�(3𝜅𝑓 + 4μ̅)(μ̅ − μ𝑓)ϵ𝑖𝑗
∞ (2.78) 

𝐵 = (3�̅� + 4μ̅)(−4�̅�μ̅(2μ̅ + 3μ𝑓) + �̅�2(9μ̅ + 6μ𝑓) + �̅�(−24𝜅𝑓μ̅ − 12μ̅2

+ 9𝜅𝑓μ𝑓 + 32μ̅μ𝑓)) 

(2.79) 

𝜖𝑖𝑗
∗ =

𝐴 ϵ𝑖𝑗
∞ + 𝐵 𝛿𝑖𝑗ϵ𝑛𝑛

∞

3�̅�(3𝜅𝑓 + 4μ̅)(9�̅�μ̅ + 8μ̅2 + 6�̅�μ𝑓 + 12μ̅μ𝑓)
 

(2.80) 

where the quantities ,�̅� and μ̅, are the S-C approximation of the bulk modulus and shear 

modulus of the composite material, respectively. Also the quantities, 𝜅𝑓 and μ𝑓, are the 

bulk modulus and shear modulus of the particles, respectively. The repeated indices are 

to be summed over. The above expressions show that the eigenstrain is uniform inside 
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the inhomogeneity. The strain and stress inside the particle are expressed in terms of the 

eigenstrain as: 

𝜖𝑘𝑙
𝑖𝑛 = 𝜖𝑘𝑙

∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛
∗  (2.81) 

𝜎𝑖𝑗
𝑖𝑛 = 𝐶𝑖𝑗𝑘𝑙

𝑓 (𝜖𝑘𝑙
∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛

∗ ) (2.82) 

Substituting Eqs. (2.75) and (2.76) into Eqs. (2.81) and (2.82) gives the explicit 

form of the stress and strain inside the spherical particles as 

            To calculate the stress outside the particles based on the stress inside the 

particles, we evaluate the jump parameter through solving Eq. (2.56) which is printed 

bellow: 

𝐶�̅�𝑗𝑘𝑙𝜆𝑘 𝑛𝑙  𝑛𝑖 = −𝜎𝑖𝑗
∗ 𝑛𝑖 (2.85) 

Using the explicit expression for isotropic material properties and eigenstrain, Eq. 

(2.80), in Eq. (2.85) and solving the resulted set of linear equations gives the jump 

parameter as follows: 

𝐴 = 10(3�̅� + �̅�)(3𝜅𝑓 + 4�̅�)(�̅� − 𝜇𝑓) (2.85) 

𝐵 = −10(3�̅� + 4�̅�)(3𝜅𝑓 + 4�̅�)(�̅� − 𝜇𝑓) (2.86) 

𝐶 = −27�̅�2�̅� + 27�̅�𝜅𝑓�̅� − 24�̅��̅�2 + 54𝜅𝑓�̅�2 + 40�̅�3 − 18�̅�2𝜇𝑓 + 18�̅�𝜅𝑓𝜇𝑓

− 36�̅��̅�𝜇𝑓 + 6𝜅𝑓�̅�𝜇𝑓 − 40�̅�2𝜇𝑓 

(2.87) 

𝜖𝑘𝑙
𝑖𝑛 =

(3�̅� + 4μ̅)(5μ̅(3𝜅𝑓 + 4μ̅)ϵ𝑘𝑙
∞ + (�̅�(3μ̅ + 2μ𝑓) + μ̅(−5�̅� − 4μ̅ + 4μ𝑓))𝛿𝑘𝑙ϵ𝑛𝑛

∞ )

(3𝜅𝑓 + 4μ̅)(9�̅�μ̅ + 8μ̅2 + 6�̅�μ𝑓 + 12μ̅μ𝑓)
 

(2.83) 

 

𝜎𝑖𝑗
𝑖𝑛

=
(3�̅� + 4μ̅)(30μ̅(3𝜅𝑓 + 4μ̅)μ𝑓ϵ𝑖𝑗

∞)

3(3𝜅𝑓 + 4μ̅)(9�̅�μ̅ + 8μ̅2 + 6�̅�μ𝑓 + 12μ̅μ𝑓)

+
(3�̅� + 4μ̅) (9�̅�𝜅𝑓(3μ̅ + 2μ𝑓) + 2μ̅(−20μ̅μ𝑓 + 3𝜅𝑓(4μ̅ + μ𝑓))) 𝛿𝑖𝑗ϵ𝑛𝑛

∞

3(3𝜅𝑓 + 4μ̅)(9�̅�μ̅ + 8μ̅2 + 6�̅�μ𝑓 + 12μ̅μ𝑓)
 

(2.84) 
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𝐷 = (3𝜅𝑓 + 4�̅�)(�̅�(9�̅� + 8�̅�) + 6(�̅� + 2�̅�)𝜇𝑓) (2.88) 

𝜆𝑗 =
𝐴 𝑛𝑗𝑛𝑚𝑛𝑙𝜖𝑙𝑚

∞ + 𝐵 𝑛𝑚𝜖𝑗𝑚
∞ + 𝐶 𝑛𝑗𝜖𝑚𝑚

∞

𝐷
 

      (2.89) 

where repeating indices are to be summed over. The quantities, �̅� and �̅�, are the effective 

bulk and shear modulus of the composite material which were expressed in Eqs. (2.71) 

and (2.72). The quantities, 𝜅𝑓 and 𝜇𝑓, are the bulk and shear modulus of the particles, 

respectively. Having solved for the jump parameter, the stress field outside the particles 

is evaluated using Eq. (2.58) which is printed bellow as well: 

𝜎𝑖𝑗
𝑜𝑢𝑡 = 𝐶�̅�𝑗𝑘𝑙(𝜖𝑘𝑙

∞ + 𝑆�̅�𝑙𝑚𝑛 𝜖𝑚𝑛
∗ ) − 𝐶�̅�𝑗𝑘𝑙𝜆𝑘  𝑛𝑙 (2.90) 

Substituting the isotropic material property relation, Eq. (2.76), and the relation 

for 𝜆𝑖 , Eq. (2.89), into Eq. (2.90) gives the following explicit relation for stress outside the 

particle 𝜎𝑜𝑟
𝑜𝑢𝑡 as: 

𝐴 = 30�̅�(3𝜅𝑓 + 4�̅�)(�̅� − 𝜇𝑓) (2.91) 

𝐵 = 270�̅�𝜅�̅�2 + 360�̅��̅�3 + 360𝜅𝑓�̅�3 + 480�̅�4 (2.92) 

𝐶 = −162�̅�2�̅�2 + 162�̅�𝜅𝑓�̅�2 − 144�̅��̅�3 + 324𝜅𝑓�̅�3 + 240�̅�4 − 108�̅�2�̅�𝜇𝑓

+ 108�̅�𝜅𝑓�̅�𝜇𝑓 − 216�̅��̅�2𝜇𝑓 + 36𝜅𝑓�̅�2𝜇𝑓 − 240�̅�3𝜇𝑓 

(2.93) 

𝐷 = 81�̅�2𝜅𝑓�̅� + 162�̅�2�̅�2 + 18�̅�𝜅𝑓�̅�2 + 144�̅��̅�3 − 228𝜅𝑓�̅�3 − 240�̅�4

+ 54�̅�2𝜅𝑓𝜇𝑓 + 108�̅�2�̅�𝜇𝑓 − 18κe𝜅𝑓�̅�𝜇𝑓 + 96�̅��̅�2𝜇𝑓

− 12𝜅𝑓�̅�2𝜇𝑓 + 80�̅�3𝜇𝑓 

(2.94) 

𝐸 = 81�̅�𝜅𝑓�̅� + 108�̅��̅�2 + 72𝜅𝑓�̅�2 + 96�̅�3 + 54�̅�𝜅𝑓𝜇𝑓 + 72�̅��̅�𝜇𝑓 + 108𝜅𝑓�̅�𝜇𝑓

+ 144�̅�2𝜇𝑓 

(2.95) 
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𝜎𝑜𝑟
𝑜𝑢𝑡 =

𝐴 (2𝑛𝑗𝑛𝑘𝑛𝑜𝑛𝑟𝜖𝑗𝑘
∞(3�̅� + �̅�) + 𝑛𝑗𝑛𝑘𝛿𝑟𝑜𝜖𝑗𝑘

∞(−3�̅� + 2�̅�))

𝐸

−
𝐴(𝑛𝑗𝑛𝑟𝜖𝑗𝑜

∞ + 𝑛𝑗𝑛𝑜𝜖𝑗𝑟
∞)(3�̅� + 4�̅�)

𝐸

+
+𝐵𝜖𝑜𝑟

∞ + (C𝑛𝑜𝑛𝑟 +  D𝛿𝑟𝑜)𝜖𝑗𝑗
∞

𝐸
 

(96) 

This relation provides the stress field on the interface, inside the matrix in terms of the 

applied strain at the far-field, the effective properties of the composite material and the 

properties of the particles. In case the applied far-field loading is in stress form, the strain 

relation at the far-field is expressed in terms of the applied stress explicitly as follows: 

𝜖𝑖𝑗
∞ =

9�̅�𝜎𝑖𝑗
∞ + (−3�̅� + 2�̅�)𝛿𝑖𝑗𝜎𝑛𝑛

∞

18�̅��̅�
 

(2.97) 

2.4 Failure criterion 

In the foregoing, the stress fields inside and outside a particle were determined in 

terms of the applied far-field loading, the particle geometry and the S-C approximation of 

the composite material properties. To determine the maximum allowable far-field loading, 

the obtained local stresses are substituted into the von Mises failure criterion. This 

provides the necessary formula to obtain the failure envelopes of the composite materials 

in various loading scenarios. 

The stresses at the interface are now formulated in terms of the matrix 

properties, the reinforcing element properties and reinforcement volume fraction as well 

as the applied loading. We substitute the interface stresses in a failure criterion and 

evaluate the maximum allowable applied far-field loading. The von Mises failure criterion 

will be used because it embeds the quadratic form and coupling characteristics of 

composite failure criterion. The von Mises relation is as follows:  
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𝜎𝑣𝑀𝑖𝑠𝑒𝑠 = √
3

2
𝜎𝑖𝑗

′ 𝜎𝑖𝑗
′  

(2.98) 

where 𝜎𝑖𝑗
′  is the deviatoric part of the stress. Substituting the deviatoric stress relations 

outside the particles into Eq. (2.98) gives the von Mises stress field on the surface of the 

particles in terms of the applied loading at the far-field .  

Equation (2.98) gives the von Mises stress field on the interface and is to be 

maximized. The resulting expression is very complex and could not be expressed 

analytically for the locus of maximum. The location where the maximum von Mises stress 

happens is a function of the applied loading, therefore, we evaluated the maximum 

location for various loading scenarios separately. Each point on a 2-D failure envelope 

graph corresponds to a loading scenario that consist of loading in the first direction 𝜎1
∞, 

and the ratio between the loading in the second direction to the loading in the first 

direction, 𝜌 = 𝜎2
∞/𝜎1

∞. We first divide the space into 200 points which consist of 200 pairs 

of ratio, 𝜌, and loading in first direction, 𝜎1
∞. The ratio, 𝜌, ranges from -1 to 1. We set 𝜎1

∞ 

equal to 1 and solve the resulting expression for the magnitude of the maximum von 

Mises stress numerically. Then based on the maximum value and yielding strength, we 

scale the loading in first direction to get the allowable loading at the far-field. 

 

2.5 Results 

 
This chapter presents the results from the previously developed relations 

between the applied far-filed mechanical loading and allowable local stresses for the 

matrix material. The material properties used in the following results are chosen from 

Tables (2-1) and (2-2). The isotropic material properties are for the isotropic results and 

the transversely isotropic material properties are for the transversely isotropic results 
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wherever applicable. In the special cases of rigid particles and cavity, only the matrix 

properties are applicable. 

Table 2-1 Isotropic fiber and matrix properties 

Isotropic material 𝐸 (GPa) 𝜈 

Fiber 140 0.33 

Matrix 70 0.33 

 

Table 2-2 Transversely isotropic fiber and matrix properties 

Transversely isotropic 

material  

𝐸1  𝐸3  𝜈12 𝜈13 𝐺13 

Fiber 26 130 0.3 0.3 10 

Matrix 2.6 5.2 0.3 0.3 1 

 

The results from the Eshelby approach are compared to the results from a series 

solution in Figs. (2-1) and (2-2). The graphs show very good agreement between these 

two approaches. The examples considered are two extreme cases of cavity and rigid 

particles inside an unbounded matrix phase, while the matrix is transversely isotropic. 

Figure (2-1) depicts the stress in the “z” direction along the equator of a cavity 

embedded in a transversely isotropic matrix where the stress concentration is the 

highest. The results from current study are compared to the results from Kusch [21]. 

Kusch used a series solution to the inhomogeneity problem. As expected, these results 

are in close agreement. The results are drawn for two different anisotropy parameter 

(𝐸3/𝐸1) values, 1 and 10. The graphs show that the anisotropy parameter affects the 
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stress concentration significantly. Increasing this parameter causes higher stress 

concentration values around the particles.  

 

Figure 2-1 Stress 𝜎𝑧 along a cavity surface. 

Figure (2-2), presents the stress field on the equator of a rigid particle embedded 

in a transversely isotropic matrix. These graphs are for two different matrix anisotropy 

parameter, 1 and 10. The results are in very close agreement with the results from the 

series solution conducted by Kusch [21]. The stress concentration for an isotropic matrix 

(anisotropy parameter equal 1) is 1.3. Increasing the anisotropy parameter, raises the 

stress concentration value significantly.  
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Figure 2-2 Stress 𝜎𝑧  along the matrix- particle interface. 

2.5.1 Cavity 

The particle aspect ratio is one of the parameters that is relatively under 

manufacturing control. Since we are studying the spheroid shaped voids, we define the 

aspect ratio, 𝜌, as the ratio of diameter in the first direction to the diameter in the third 

direction. i.e, 𝜌 larger, equal and smaller than unit denote oblate, sphere and prolate, 

respectively. This parameter affects the stress concentration significantly. Before 

proceeding to discuss the results in Figs. (2-3) to (2-5) on an individual basis, it is 

worthwhile to mention that as a general rule if the applied loading is in the third direction, 

increasing the ratio leads to higher values of stress concentration around the void.  

Figures (2-3) and (2-4) present the von Mises stress concentration around a 

spheroid cavity with varying aspect ratios of the cavity. A high aspect ratio makes a 

penny shaped cavity and smaller than 1 aspect ratio simulates a slender needle shaped 

cavity. Pulling a needle shaped cavity does not make much stress concentration but 

pulling on a penny shaped cavity has very large stress concentrations around the edges. 

Figure (2-3) illustrates the von Mises stress concentration around oblate spheroids under 

loading in the third direction. The stress concentration is approximately a linear function 
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of the ratio of the oblate spheroid. As a rule of thumb, in this case the von Mises stress 

concentration is twice the aspect ratio of the oblate spheroid.  

The von Mises stress concentration for the prolate cavity under loading in the 

third direction is illustrated in Fig. (2-4) as a function of the aspect ratio, 𝜌. The von Mises 

stress concentration is equal to 3 for the sphere. This value decreases with decreasing 

the prolate aspect ratio.  

The von Mises stress concentration around three cavities with aspect ratios 

equal to 0.2, 1 and 5 is illustrated in Fig. (2-5). Since the stresses in these cases have a 

radial symmetry property, only a portion of the stress is shown. The location of the stress 

concentration for all of the cavities is on the equator and the lowest stress is located 

close to the poles of the cavities.  
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Figure 2-3  Effect of oblate shaped cavity aspect ratio on the maximum von Mises 

stress under 𝜎∞
𝑧 . 
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Figure 2-4   Effect of prolate shaped cavity aspect ratio on the maximum von Mises 

stress under 𝜎∞
𝑧 . 
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Figure 2-5  The von Mises stress distribution along the equator of a cavity under 𝜎∞

𝑧 . 

 

2.5.2 Rigid particle 

In the forgoing results, the von Mises stress concentration around  a cavity 

embedded in a matrix material was illustrated and discussed. Here we discuss the von 

Mises stress concentration around a rigid particle which is the opposite extreme case of a 

cavity. The results are interesting and are worth investigation.  

Figure (2-6) shows a non-monotonic behavior of the von Mises stress 

concentration as a function of the rigid particle aspect ratio under loading in the third 

direction. According to this graph, increasing the aspect ratio of the rigid particle from 1 to 

20 first causes reduction in the stress concentration with the minimum value at around 𝜌 

equal to 5. After this minimum value, increasing the ratio of the particle shape increases 

the von Mises stress concentration. The figures in this section are for very stiff particles, 



 

44 

but in later sections the stress concentration for varying stiffness of the particles will be 

studied. When the particles have prolate shape, i.e. their aspect ratio is less than 1, the 

behavior is different from the case where we had cavities of the same shape. The von 

Mises stress concentration in case of rigid particles is much higher than the case for 

cavities. Also decreasing the aspect ratio has an inverse effect on the von Mises stress 

concentration. In this graph, the matrix Poisson ratio is equal to 0.3. The Poisson ratio 

affects the value of the von Mises stress concentration but does not change the overall 

graph’s behavior. 

Figure (2-8) shows the distribution of the von Mises stress on the particle’s 

meridian line which is located at 𝜃 = 𝑐𝑜𝑛𝑠𝑡. Angles  ∅ = −𝜋/2  and ∅ = 𝜋/2 correspond 

to the poles of the particles. According to this graph, the maximum von Mises stress is 

located at ∅ = 𝜋/4, halfway between the poles and equator. The maximum von Mises 

stress value is located around the equator for oblate particles and close to the poles 

around prolate particles. Also these graphs are in agreement with the previous 

interpretation stating that prolate rigid particles cause more stress concentration than 

oblate rigid particles.  
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Figure 2-6 The maximum von Mises stress around oblate shaped rigid particles inside an 

unbounded isotropic material under 𝜎∞
𝑧 . 
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Figure 2-7 The maximum von Mises stress around prolate shaped rigid particles inside 

an unbounded isotropic material under 𝜎∞
𝑧 . 
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Figure 2-8 The von Mises stress distribution along the equator of a sphere, oblate and 

prolate shaped rigid particle in an unbounded isotropic matrix material under 𝜎∞
𝑧 . 

2.5.3 Elastic particle 

 In the foregoing results, the effect of aspect ratio on the stress distribution 

around a cavity and rigid particle as the two extreme cases of particles was investigated. 

Here the effect of particle stiffness on the von Mises stress concentration is studied. To 

study this effect, we plot a graph of the maximum von Mises stress around a prolate, 

oblate and spherical particle with respect to varying particle to matrix stiffness ratios. As 

expected at the stiffness ratio equal to 1, there is no stress concentration around the 

particles because this simulates the homogeneous isotropic material. Increasing the 

particle to matrix stiffness ratio raises the stress concentration of all three kinds of 

particles. This parameter has the maximum effect on the prolate spheroidal particles for 

particles stiffer than the matrix. If the matrix is stiffer than the particles, which happens in 

case of impurities, oblate spheroidal particles are affected by the stiffness ratio most. 
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Figure 2-9  Effect of particle to matrix stiffness, 
𝐸𝑓

𝐸𝑚
, on the maximum von Mises stress 

in sphere, oblate and prolate shaped particles in an unbounded transversely isotropic 

material under 𝜎∞
𝑧 .  

 
The stresses outside the particles were evaluated and analyzed in the previous 

sections. It is worthwhile to study the stresses inside the particles and compare them to 

the stresses outside the particles. Figures (2-11) and (2-14) depict the von Mises stress 

inside the particles and the maximum von Mises stress outside the particles as a function 

of the particle aspect ratio. The stress inside the particles is uniform but the stress 

outside the particles is a function of the location. The stress values are normalized with 

respect to the applied far-field stress. As expected under normal stress at the far-field, 

Figs. (2-11) and (2-12), the particles are the load bearing elements, therefore, the von 

Mises stresses inside the particles are higher than the maximum von Mises stress inside 

the matrix. The minimum value of the stress concentration is located around an oblate 

particle with aspect ratio approximately equal to 2.  
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The other influencing factor to consider is the type of loading applied on the 

composite materials. In the previous results, the applied far-field loading was normal 

stress. Here we examine the effect of the applied shear stress at the far-field. According 

to Figs. (2-13) and (2-14), the stress concentration has a monotonically increasing 

behavior with varying particle aspect ratios. Around oblate particles, the stress 

concentration due to applied shear loading is larger than the stress concentration due to 

applied normal loading. Around prolate particles, the stress concentration under applied 

shear loading is smaller than under normal loading. Figure (2-13) shows that under in-

plane shear loading the maximum von Mises stress on the interface is equal to the 

uniform von Mises stress inside the particle.  

Here a comparison between the stresses inside and outside the particle under 

various loading condition is carried out. Figures (2-11) and (2-12) show that under 

applied normal stress at the far-field, the stresses inside the particles are greater than the 

stresses outside the particle. But the difference is lower than the difference between the 

particles and matrix strength. Therefore, the first yielding is still expected to happen 

inside the matrix rather than the particles. This trend is valid for various particle aspect 

ratios. These graphs show the differences between the normalized von Mises stresses 

inside and outside the particles for particle aspect ratios from 0.1 to 10. Figures (2-13) 

and (2-14) show that the von Mises stress under shear loading inside and outside the 

particles are equal. These graphs have a monotonic behavior and increasing the particle 

aspect ratio, monotonically increases the maximum von Mises stress inside and outside 

the particles. 
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Figure 2-10 Comparison between stress inside and outside the particles in prolate 

shaped isotropic particles under normal stress, 𝜎∞
𝑧 . 

 

 

Figure 2-11 Comparison between stress inside and outside the particles in oblate 

shaped isotropic particles under normal stress, 𝜎∞
𝑧 . 
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Figure 2-12  Comparison between stress inside and outside the particles in oblate 

shaped isotropic particles under shear stress, 𝜏∞
𝑧 . 

 

 

 

Figure 2-13 Comparison between stress inside and outside the particles in prolate 

shaped isotropic particles under shear stress, 𝜏∞
𝑧 . 
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Figure 2-14  Effect of particle to matrix stiffness ratio on the maximum von Mises 

stress around a spherical particle in an unbounded isotropic matrix material under 

normal stress, 𝜎∞
𝑧 . 
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Figure 2-15 Effect of particle to matrix stiffness ratio on the von Mises stress around a 

prolate shaped particle in an unbounded isotropic matrix material under normal stress, 

𝜎∞
𝑧 . 

 

2.5.4 Failure envelope 

The foregoing results were to investigate the effect of various parameters on the 

stress fields inside and outside the particles and the stress concentration. Here we try to 

put all the information into practice and examine the failure envelope for the composite 

materials as a function of the varying parameters such as the loading scenario, the 

particle to matrix stiffness ratio, the particles aspect ratio and also the volume fraction of 

the particles.  

The particle volume fraction is one of the variables that could be tailored to the 

specific needs of the application. This parameter affects the stress distribution and overall 

behavior of the composite materials. Increasing the particle volume fraction generally 

increases the stiffness of the material and lowers the stress concentrations around the 
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particles. There are various forms of failure type among which matrix yielding is under 

study in this research. The matrix yielding is due to the stress concentration around the 

particles, therefore, increasing the particle volume fraction is expected to strengthen the 

composite materials against the matrix yielding failure. To investigate these qualitative 

expectation quantitatively, failure envelopes as a function of the particle volume fraction 

for various types of particle shape is examined below. Figures (2-17) to (2-26) show the 

failure envelopes for various particle shapes as a function of the particle volume fraction. 

The applied stress is normalized with respect to yielding strength of pure matrix, 𝜎𝑀
𝑦
.  

 

2.5.4.1 Isotropic matrix and particles 

Figure (2-17) depicts the failure envelope for composites containing spherical 

particles for three values of particle volume fraction, 5%, 20% and 40%. As expected, 

increasing the particle volume fraction expands the failure envelopes, i.e., increases the 

strength of the composite materials. It is obvious that the yielding strength of the 

composite material is less than the yielding strength of the matrix material. This is due to 

the stress concentration around the particles. The inserted particles decrease the yielding 

strength of the material but matrix yielding is not the ultimate strength of the composite 

material. In later steps of the failure, these particles obstruct the progress of the cracks 

and also they decrease the overall stress distribution inside the matrix which slows down 

the crack developments.  
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Figure 2-16 Failure envelope for a particulate reinforced composite embedding 

spherical reinforcing particles under loading in x-y plane. 

 
In the following graphs, the effect of changing particle aspect ratio on the failure 

envelopes is examined. Figure (2-18) includes three plots for the particle volume fractions 

5%, 20% and 40%. All three graphs show that increasing the volume fraction, expands 

the failure envelopes for various loading scenarios except for a segment corresponding to 

normal tension-normal compression case in which increasing the volume fraction does 

not affect the failure envelopes significantly. 
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Figure 2-17 Failure envelope for a particlulate reinforced composite embedding prolate 

(𝜌 = 0.1) reinforcing particles under loading in the x-y plane. 

In order to compare the effect of particle aspect ratio on the failure envelopes, 

the graphs are put in one plot in Fig. (2-20). The particle aspect ratios 1, 0.1 and 0.01 and 

isotropic matrix material are considered. The graphs are for the volume fraction equal to 

20%. This graph shows that decreasing the particle aspect ratio strengthens the 

composite material in a tension-compression loading scenario but decreases the strength 

in a tension-tension loading scenario, i.e., prolate particles make less stress 

concentration in tension-compression than tension-tension loading condition. 
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Figure 2-18 Effect of particle aspect ratio on the failure envelope of particulate 

reinforced composite materials under loading in the x-y plane.  

The foregoing results were for loading in the x-y plane. Here the loading in the x-

z plane will be examined. The axis, Z, is the axis of transverse isotropy of the composite 

material phases, the particles and matrix. Also it is the main axis of the prolate and oblate 

particles. Figures (2-21) and (2-22) show the failure envelope for three different fiber 

volume fractions, 5%, 10% and 30%. As expected, increasing the fiber volume fraction 

expands the failure envelopes. The composite material is weaker in the z direction . 

Figure (2-22) compares the failure envelopes for various particle aspect ratios. 

Increasing the aspect ratio makes the composite material behave as transversely 

isotropic material. Spheres have less stress concentration than prolate particles in the z 

direction, therefore, composites having sphere particles show more strength.  
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Figure 2-19 Failure envelope for a particulate reinforced composite embedding prolate 

(𝜌 = 0.1) reinforcing particles under loading in the x-z plane. 

 

 

 

 

 

 

 

 

 

 



 

59 

Figure 2-20 Comparison between the failure envelope of particulate reinforced 

composite for various particle aspect ratio under loading in the x-z plane. 

 

2.5.4.2 Transversely isotropic matrix and particle 

Figures (2-23) to (2-25) show the failure envelopes for particulate reinforced 

composites having a transversely isotropic matrix material. Qualitatively, these graphs 

are similar to the previously analyzed graphs for the isotropic matrix material and the 

graphs overall behavior are not a function of the anisotropy of the matrix material. 

Therefore, as expected, these graphs expand with increasing the particle volume 

fractions.  Also Fig. (2-25) depicts the failure envelope in the x-z plane which embodies 

the axis of anisotropy. The composite material is weaker in the z direction due to the 

higher stress concentration values. 

 

Figure 2-21 Failure envelope for transversely isotropic matrix phase reinforced with 

prolate particles under loading in the x-y plane.  
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Figure 2-22 Failure envelope for transversely isotropic matrix phase reinforced with 

particles with various shapes. 
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Figure 2-23 Failure envelope for transversely isotropic matrix phase reinforced with 

prolate particles under loading in the x-z plane.   

Figure (2-26) shows the failure envelopes of particulate composite materials 

under shear loading  for three values of fiber volume fraction, 5%, 10% and 30%. The 

particle aspect ratio is 0.01 which is a prolate sphere. Increasing the volume fraction 

expands the failure envelope graphs under normal stress direction but does not affect the 

strength under shear loading.   

 

Figure 2-24 Failure envelope for transversely isotropic matrix phase reinforced with 

prolate particles under normal-shear loading in the x-y plane.   

 
Figures (2-27) to (2-30) show the effect of the fiber volume fraction and particle 

aspect ratio on the S-C approximation of the stiffness tensor elements 𝐸1, 𝐸3, 𝐺12 and 

𝐺13. These elements are normalized with respect to the same properties of the matrix 

material. Increasing the fiber volume fraction increases the elastic stiffness tensor 

elements. The particle aspect ratio has various effects on the stiffness elements. 

Decreasing the particle aspect ratio increases the 𝐸3 and 𝐺13 elements and decreases 
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the 𝐸1 and 𝐺12 elements of the stiffness tensor. The particle aspect ratio has the lowest 

effect on the shear modulus in the x-z plane and it has the highest effect on the young’s 

modulus in the z direction.   

 

 
Figure 2-25 Effect of particle volume fraction and aspect ratio on the stiffness ratio, 

𝐸1
𝑒𝑓𝑓

𝐸1
𝑚 , of the S-C approximation of the composite material and pure matrix properties.  
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Figure 2-26 Effect of particle volume fraction and aspect ratio on the stiffness ratio, 

𝐸3
𝑒𝑓𝑓

𝐸3
𝑚 , of the S-C approximation of the composite material and pure matrix properties. 

 

 
Figure 2-27 Effect of particle volume fraction and aspect ratio on the shear modulus 

ratio, 
𝐺12

𝑒𝑓𝑓

𝐺12
𝑚 , of the S-C approximation of the composite material and pure matrix 

properties. 
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Figure 2-28 Effect of particle volume fraction and aspect ratio on the stiffness ratio, 

𝐺13
𝑒𝑓𝑓

𝐺13
𝑚 , of the S-C approximation of the composite material and pure matrix properties. 

 

 

 

 
Chapter 3  

Thermal Analysis 

The particles in particulate reinforced composite materials have different thermal 

and elastic properties than the matrix. This causes localized thermal stresses under 

uniform heat flow at the far-field. Problems of such kind involve uncoupled thermo-elastic 

fields. This problem could be solved in two steps, first to obtain the temperature 

distribution, then the temperature field will be substituted into the thermo-elastic field and 

solved for the deformation and strain fields. Having the thermal stress field, the von Mises 

stress formula as a function of the applied far-field stress is obtained and maximized 

numerically to obtain the location where the maximum von Mises stress occurs. This 

stress value adds to the stress concentration due to mechanical loading and cause early 

yielding of the matrix material.  

 
3.1 S-C approximation of effective thermal conductivity 

The conductivity of composite materials as a whole is approximated using the 

self-consistent (S-C) approach. The phase components of composite materials are 

assumed to be homogeneous and isotropic. The quantities 𝑘𝑚 and 𝑘𝑓 are the constant 

thermal conductivities of the matrix and fibers, respectively. Assume that a two phase 

composite material is subjected to homogeneous heat flux boundary condition as  

lim
𝑟→∞

∇𝑇 = ∇𝑇∞ = 𝜃𝑖  (3.1) 
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The heat flux, �⃗�, in terms of the temperature gradient is defined as follows: 

𝑞𝑓⃗⃗⃗⃗⃗ = −𝑘𝑓∇𝑇 (3.2) 

 

𝑞𝑚⃗⃗ ⃗⃗⃗⃗ = −𝑘𝑚∇𝑇 (3.3) 

 
where “T” denotes the temperature distribution field. The effective thermal conductivity 

must be defined such that 

〈�⃗�〉 = −�̅�〈∇𝑇〉 (3.4) 

 
where �̅� is the S-C approximation of the composite material conductivity. It is well-known 

that for homogeneous material under uniform loading the average temperature gradient 

throughout the composite material is equal to the applied temperature gradient at the far-

field. 

〈∇𝑇〉 = ∇𝑇∞ = 𝜃𝑖 (3.5) 

Therefore, substituting Eq. (3.5) into Eq. (3.4), results in 

〈�⃗�〉 = −�̅�𝜃𝑖 (3.6) 

also since the heat flux, �⃗�,  is piecewise continuous, therefore, 

〈�⃗�〉 = 𝜐𝑓〈�⃗�〉𝑓 + 𝜐𝑚〈�⃗�〉𝑚 (3.7) 

where 〈�⃗�〉𝑓 and 〈�⃗�〉𝑚 are the average heat flux in the fibers and matrix and 𝜐𝑓 and 𝜐𝑚 are 

the volume fraction of the fibers and matrix, respectively. Since each phase is 

homogenous and isotropic  

〈�⃗�〉𝑚 = −𝑘𝑚〈∇𝑇〉𝑚 (3.8) 

〈�⃗�〉𝑓 = −𝑘𝑓〈∇𝑇〉𝑓 (3.9) 

Introducing Eqs. (3.8) and (3.9) into (3.7) yields 
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�̅�𝜃𝑖 = 𝜐𝑓𝑘𝑓〈∇𝑇〉𝑓 + 𝜐𝑚𝑘𝑚〈∇𝑇〉𝑚 (3.10) 

also we have 

𝜃𝑖 = 𝜐𝑓〈∇𝑇〉𝑓 + 𝜐𝑚〈∇𝑇〉𝑚 (3.11) 

 
Elimination of 〈∇𝑇〉𝑚 from Eq. (3.10) and (3.11) yields 

�̅� = 𝑘𝑚 + 𝜐𝑓(𝑘𝑚 − 𝑘𝑓)
〈∇𝑇〉𝑓

𝜃𝑖
 

(3.12) 

This expression shows that the average of the temperature inside the particles is sufficient 

to evaluate the effective thermal conductivity. 

3.2 S-C approximation of effective thermal expansion coefficient 

The effective thermal expansion coefficient must be defined such that 

〈𝜖𝑖𝑗〉𝑇 = �̅�𝛿𝑖𝑗〈𝑇〉 (3.4) 

where �̅� is the effective thermal expansion coefficient. The effective thermal expansion of 

the whole composite is evaluated using the S-C approximation approach. The derivation 

of this parameter was not the main purpose of this study, therefore, we obtained the 

explicit form from the review paper [30]. 

�̅� = 𝛼𝑚(1 − 𝜈𝑓) + 𝜈𝑓𝛼𝑓 + 𝜈𝑓(1 − 𝜈𝑓)(𝛼𝑓

− 𝛼𝑚)
𝜅𝑓 − �̅�

(1 − 𝜈𝑓)�̅� + 𝜈𝑓𝜅
𝑓

+ (
3�̅�𝜅𝑓

4�̅� )

 

(3.13) 

where �̅� and �̅� are the S-C approximation of the composite material bulk and shear 

modulus; which were explained thoroughly in the previous sections. 
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3.3 Temperature distribution 

To obtain the temperature distribution field of a medium under a heat flow at the 

far-field, the Laplace equation must be solved. The Laplace equation and the boundary 

conditions are expressed as [31]: 

∆𝑇 = 0 (3.14) 

lim
𝑟→∞

𝑇 = 𝜃𝑘𝑥𝑘 (3.15) 

 
where 𝜃𝑘 is a constant temperature gradient in the “k” direction. The only possible format 

of the temperature distribution formula considering the heat flow at the far-field  is 

expressed as follows: 

𝑇 = 𝑓(𝑟)𝜃𝑘𝑥𝑘 (3.16) 

 
Substituting Eq. (3.16) into Eq. (3.14) yields  

∆𝑇 = (𝑓′′(𝑟) +
4𝑓′(𝑟)

𝑟
) 𝜃𝑘𝑥𝑘 = 0 

(3.17) 

Solving this differential equation yields 𝑓(𝑟)  as 

𝑓(𝑟) =
𝐶1

𝑟3
+ 𝐶2 

(3.18) 

Therefore, the stress distribution is as follows:  

𝑇𝑓 = (
𝐶1

𝑟3
+ 𝐶2)𝜃𝑘𝑥𝑘 

(3.19) 

𝑇𝑚 = (
𝐶3

𝑟3
+ 𝐶4)𝜃𝑘𝑥𝑘 

(3.20) 
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The constants, 𝐶1, 𝐶2, 𝐶3 and 𝐶4, depend on the boundary conditions at the far-field and 

also at the interface. The quantities, 𝑇𝑓 and 𝑇𝑚, are the temperature distribution inside 

the particles and matrix, respectively. 

Since temperature inside the particles must remain finite, therefore, 𝐶1 vanishes. 

Also at the far-field, the temperature gradient should be equal to 𝜃𝑘, thus 𝐶4 is equal to 1. 

Continuity condition for the temperature and heat flux at the particle-matrix interface 

yields 𝐶2 and 𝐶3. The temperature fields inside the particles and matrix are expressed as 

𝑇𝑓 =
3�̅�

𝑘𝑓 + 2�̅�
𝜃𝑘𝑥𝑘 

(3.21) 

𝑇𝑚 = (−
𝑘𝑓 − �̅�

𝑘𝑓 + 2�̅�
(

𝑎

𝑟
)

3

+ 1) 𝜃𝑘𝑥𝑘 
(3.22) 

 

 
Having the temperature distribution, we could evaluate the S-C approximation of 

the effective conductivities. Substituting Eq. (3.21) into Eq. (3.11) and solving the resulted 

equations yield: 

�̅�

=
1

4
(2𝑘𝑚 − 𝑘𝑓 − 3𝑘𝑚𝜐𝑓 + 3𝑘𝑓𝜐𝑓

+ √−24𝑘𝑚(𝑘𝑚 − 𝑘𝑓)𝜐𝑓 + (𝑘𝑓 − 3𝑘𝑓𝜐𝑓 + 𝑘𝑚(2 + 3𝜐𝑓))
2

) 

(3.23) 

 
3.4 Thermal stresses 

Obtaining the thermal stresses inside the matrix and particles require solving the 

equilibrium equation. The general form of the equilibrium equation inside the matrix and 

particles is expressed as [31] 
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(𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙),𝑗 − (𝐶𝑖𝑗𝑘𝑙𝛼𝛿𝑘𝑙),𝑗
= 0 (3.24) 

where 𝛼 is the thermal expansion coefficient of the material. Substituting the explicit form 

of 𝐶𝑖𝑗𝑘𝑙 into Eq. (3.24) yields a simpler form as follows: 

𝜇𝑢𝑖,𝑗𝑗 + (𝜇 + 𝜆)𝑢𝑗,𝑗𝑖 − (2𝜇 + 3𝜆)𝛼𝑇,𝑖 = 0 (3.25) 

where 𝜇 and 𝜆 are Lamé’s constants. Using Eq. (3.21) and (3.22), the temperature 

gradient of the phases are as follows:  

𝑇,𝑖
𝑓

=
3�̅�

𝑘𝑓 + 2�̅�
𝜃𝑖  

(3.26) 

 

𝑇,𝑖
𝑚 = (1 +

�̅� − 𝑘𝑓

𝑘𝑓 + 2�̅�
(

𝑎

𝑟
)

3

) 𝜃𝑖 −
3(�̅� − 𝑘𝑓)

𝑘𝑓 + 2�̅�
(

𝑎

𝑟
)

3 𝑥𝑘𝜃𝑘𝑥𝑖

𝑟2
 

(3.27) 

Considering the form of the temperature gradients and equilibrium differential 

equation, the valid form of displacement , 𝑢𝑖, is expressed as  

𝑢𝑖 = 𝑓(𝑟) 𝜃𝑖 +
𝑔(𝑟)

𝑟2
𝜃𝑘𝑥𝑘𝑥𝑖 

(3.28) 

where 𝑓(𝑟) and 𝑔(𝑟) are to be determined for both phases separately. Substituting this 

relation into the equilibrium differential equation yields a system of differential equation as 

follow: 

(𝜇𝑓′′(𝑟) +
(𝜆 + 𝜇)𝑓′(𝑟)

𝑟
+

2𝜇𝑓′(𝑟)

𝑟
+

(𝜆 + 𝜇)𝑔′(𝑟)

𝑟
+

2𝑔(𝑟)(𝜆 + 𝜇)

𝑟2 +
2𝜇𝑔(𝑟)

𝑟2 ) 𝜃𝑖

+ (
(𝜆 + 𝜇)𝑓′′(𝑟)

𝑟2 −
(𝜆 + 𝜇)𝑓′(𝑟)

𝑟3 +
(𝜆 + 𝜇)𝑔′′(𝑟)

𝑟2 +
𝜇𝑔′′(𝑟)

𝑟2

+
(𝜆 + 𝜇)𝑔′(𝑟)

𝑟3 +
2𝜇𝑔′(𝑟)

𝑟3 −
4𝑔(𝑟)(𝜆 + 𝜇)

𝑟4 −
6𝜇𝑔(𝑟)

𝑟4 ) 𝑥𝑖𝜃𝑖𝑥𝑘

= (2𝜇 + 3𝜆)𝛼𝑇,𝑖 

(3.29) 
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Solving for 𝑓(𝑟) and 𝑔(𝑟) for the matrix and particles yields some constants to be 

determined. Using the displacement and traction continuity conditions, finite deformation 

inside the particles and vanishing stress at the far-field, the remaining constants are 

obtained. In the case of the particles, the functions are as follow: 

𝑓(𝑟) = 𝑐1 −
𝑐2

3𝑟3
−

𝑐3

𝑟
+

𝑟2

2
𝑐4 +

𝑘𝑚𝑟2𝛼𝑓(12𝜆𝑓
2 + 35𝜆𝑓𝜇𝑓 + 18𝜇𝑓

2)

10(𝑘𝑓 + 2𝑘𝑚)𝜇𝑓(𝜆𝑓 + 2𝜇𝑓)
 

(3.30) 

𝑔(𝑟) =
𝑐2

𝑟3
−

𝜆𝑓 + 𝜇𝑓

𝑟(𝜆𝑓 + 3𝜇𝑓)
𝑐3 −

𝑟2(𝜆𝑓 + 𝜇𝑓)

2(2𝜆𝑓 + 3𝜇𝑓)
𝑐4

+
𝑘𝑚𝑟2𝛼𝑓(12𝜆𝑓

2 + 35𝜆𝑓𝜇𝑓 + 18𝜇𝑓
2)

10(𝑘𝑓 + 2𝑘𝑚)𝜇𝑓(𝜆𝑓 + 2𝜇𝑓)
 

(3.31) 

 

In the case of the matrix, the functions are as follow: 

𝑓(𝑟)

= 𝑑1 −
𝑑2

3𝑟3
−

𝑑3

𝑟
+

𝑟2

2
𝑑4

+
𝛼𝑚(3𝜆𝑚 + 2𝜇𝑚) (5𝑎3𝜆𝑚(𝑘𝑚 − 𝑘𝑓) + 𝑟3(𝑘𝑓 + 2𝑘𝑚)(4𝜆𝑚 + 9𝑘𝑚))

30 𝑟 (𝑘𝑓 + 2𝑘𝑚)𝜇𝑚(𝜆𝑚 + 2𝜇𝑚)
 

(3.32) 

𝑔(𝑟)

=
𝑑2

𝑟3
−

(𝜆𝑚 + 𝜇𝑚)

𝑟(𝜆𝑚 + 3𝜇𝑚)
𝑑3 −

𝑟2(𝜆𝑚 + 𝜇𝑚)

2(2𝜆𝑚 + 3𝜇𝑚)
𝑑4

−
𝛼𝑚(3𝜆𝑚 + 2𝜇𝑚) (5𝑎3(𝑘𝑓 − 𝑘𝑚) + 2𝑟3(𝑘𝑓 + 2𝑘𝑚)(𝜆𝑚 + 𝜇𝑚))

30 𝑟 (𝑘𝑓 + 2𝑘𝑚)𝜇𝑚(𝜆𝑚 + 2𝜇𝑚)
 

(3.33) 

 

The resulting stress outside the particle where the stress concentration occurs is 

expressed explicitly as follows: 
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𝐴 = (−15𝑟2𝛼
_
(6𝜆

_
2 + 13𝜆

_

𝜇
_

+ 6𝜇
_

2)(−𝑘
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(3.34) 
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(3.35) 
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(3.36) 
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𝜎𝑖𝑗
𝑜𝑢𝑡 =

𝐴 𝑥𝑗𝜃𝑖 + 𝐵𝑥𝑖𝜃𝑗 + 𝐶 𝑥𝑖𝑥𝑗𝑥𝑝𝜃𝑝 + 𝐷 𝑥𝑝𝜃𝑝𝛿𝑖𝑗

𝐸
 

(3.39) 

 

 

 

 

 

  

 

 

 

 
 

where the over-bar on the parameters denotes the S-C approximation. The tensor, 𝜎𝑖𝑗
𝑜𝑢𝑡  , 

is the stress outside the particles where the stress concentration is the highest.  

Table 3-1 Average properties of usual reinforcing particles 

 𝐴𝑙2𝑂3 𝐵4𝐶 𝑆𝑖𝐶 

Thermal 

Expansion [
𝜇𝑚

𝑚−𝑐
] 

7.5 3.2 4 

Thermal 

Conductivity [W/m-k] 

25 17 120 

Young’s 

modulus [Gpa] 

370 362 410 
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Table 3-2 Average properties of usual metal matrix 

 Aluminum Magnesium Steel 

Thermal 

Expansion [
𝜇𝑚

𝑚−𝑐
] 

23 27 13 

Thermal 

Conductivity  

[W/m-k] 

205 100 40 

Young’s modulus 

[Gpa] 

62 44 200 

 

3.5 Results 

  Under a uniform heat flow at the far-field, particles inside a matrix with different 

thermal properties cause thermal stress concentrations. Based on the foregoing analysis, 

the stress field around a spherical particle is a function of the applied temperature 

gradient, 𝜃𝑖, thermal properties and elastic properties of the composite material phases.  

The von Mises stress distribution around the particles due to the thermal heat 

flow in the z and x direction at the far-field is illustrated in Figs. (3-1) and (3-2). The 

properties of aluminum as the matrix and alumina as the reinforcing particles are chosen 

from Tables (3-1) and (3-2). The temperature gradient is equal to 1 [𝐾/𝑚] at the far-field. 

The stress distribution is a linear function of the thermal heat flow, therefore at higher 

thermal rates, the maximum von Mises stress is considerably large. Therefore, it is 

worthwhile to take a closer look at this phenomenon and effect of various parameters on 

the thermal stresses.  
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Figure 3-1 The von Mises stress distribution around particles in particulate reinforced 

composites under unit thermal heat flow in the z direction. 

 

 

Figure 3-2 The von Mises stress distribution around particles in particulate reinforced 

composites under unit temperature gradient in the x direction. 
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The effect of fiber thermal expansion on the maximum von Mises stress is 

illustrated in Fig. (3-3). The maximum von Mises stress is normalized with respect to the 

temperature gradient at the far-field. The matrix is aluminum with thermal expansion 

equal to 23 [
𝜇𝑚

𝑚−𝑐
]. The fiber thermal expansion changes from 1 to 23. The maximum von 

Mises stress has the lowest value when the fiber thermal expansion coefficient is equal to 

20 [
𝜇𝑚

𝑚−𝑐
] which is lower than the matrix thermal expansion coefficient. This effect is due to 

the difference in conductivity of the two phases.  

 

Figure 3-3 Effect of fiber thermal expansion coefficient on the maximum von Mises 

stress around fibers. 
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Figure 3-4 Effect of fiber thermal conductivity coefficient on the maximum von Mises 

stress around fibers. 

Figure (3-4) depicts the effect of the fiber thermal conductivity on the maximum 

von Mises stress around the particle. Increasing the particle thermal conductivity 

coefficient decreases the maximum von Mises stress. The matrix thermal conductivity is 

equal to 205 [W/m-K]. If the phases have the same thermal conductivity, the temperature 

distribution will be uniform but due to the difference in thermal expansion, there will be 

stress in the medium.  

The thermal conductivity and the thermal expansion coefficients are the two main 

parameters that affect the stress distribution inside a particulate reinforced composite 

under uniform heat flow at the far-field. Due to the symmetry of the geometry and applied 

loading, the failure envelopes are circular in 2-D. Therefore, investigating the effect of 

various parameters on the ultimate heat flow rate that causes yielding of the composite 

materials in terms of the magnitude of heat flow vector, ‖�⃗�‖, is sufficient.  
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Figure (3-5) depicts the ultimate far-field temperature gradient magnitude vs the 

particle volume fraction. The matrix is aluminum and the particles are alumina. The matrix 

yielding strength is 276 [Mpa]. Based on this graph, at a volume fraction equal to 0.05, 

the particulate reinforced composite could withstand approximately 115 [K/m] 

temperature gradient before yielding. Increasing the particle volume fraction, increases 

the ultimate far-field temperature gradient. 

 

Figure 3-5 Ultimate far-field temperature gradient versus particle volume fractions. 

Figure (3-6) illustrates the effect of fiber to matrix thermal expansion coefficient 

ratio on the ultimate far-field temperature gradient on aluminum/alumina particulate 

reinforced composite vs particle volume fraction. The behavior is not monotonic. At the 

lower ratios, increasing the particle volume fraction elevates the level of the ultimate far-

field temperature gradient but at higher ratios, this behavior is reversed, i.e., increasing 
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the particle volume fraction causes a decrease in the ultimate far-field temperature 

gradient. 

 

Figure 3-6 Ultimate far-field temperature gradient versus particle volume fraction for 

various particle to matrix thermal expansion ratios. 

The effect of particle to matrix conductivity ratio on the ultimate far-field 

temperature gradient is illustrated in Fig. (3-7). This graph is for aluminum/alumina 

particulate reinforced composite. The particles conductivity is 25 [W/m-c] and the matrix 

conductivity is 205 [W/m-c]. Increasing the particles conductivity means changing the 

particle which will ultimately change the thermal expansion too. Therefore, studying the 

effect of thermal conductivity alone is not very practical but it is worthwhile to study this 

effect leaving thermal expansion coefficient constant. Increasing the thermal conductivity 

of the particles decreases the thermal stress distribution. This effect will ultimately 

increase the ultimate heat flow. Also, increasing the particle volume fraction 

monotonically increases the ultimate heat flow rate. 
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Figure 3-7 Ultimate far-field temperature gradient rate versus particle volume fraction 

for various particle to matrix conductivity ratios. 
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Chapter 4  

Conclusion 

Particulate composites span a large range of applications. Some everyday 

applications include automotive tires, concrete and dental amalgams. More advanced 

applications include artificial bone and metal cutting tools. Particulate composites are 

designed to satisfy specific performance requirements. Their performance is governed by 

the microstructure, interface, phase properties and fabrication. Among these factors, 

three of them could be analyzed theoretically to better optimize the composite to be more 

cost-effective. Fabrication could also be analyzed and optimized but is not in the scope of 

this dissertation. Therefore, developing theoretical formulation toward predicting the 

performance of these composite materials before manufacturing is highly desirable. An 

important aspect of any material during design phase is their strength under loading. 

Particulate composite materials strength has not been investigated as much as laminated 

composites have.  

This dissertation attempted to step in the right direction toward predicting the 

strength of particulate composite materials using micromechanics of composite materials. 

Micromechanics of composite materials is more complicated compared to 

macromechanics but it brings forward a big advantage. Using micromechanics, the 

strength of the composite materials is predicted using the material and geometric 

properties of the phases which are available. Macromechanics requires various testing of 

each newly designed composite material prior to developing failure formulas.  

The problem of strength of particulate composite materials is very complex, 

therefore simplified assumptions are necessary. It is assumed that the particles and 

matrix interface are perfectly connected, the particles have ellipsoidal shapes and the 

phases are linearly elastic transversely isotropic materials. The approach involves 
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replacing the composite materials containing a particle with the effective properties of the 

composite materials as a whole. The effective properties are obtained using a 

homogenization approach. In this study, we used the self-consistent approach due to its 

ability to simulate well beyond dilute particle distribution. The composite material 

surrounding a particle was replaced with the effective properties, the new problem is the 

same type as Eshelby’s problem. Therefore, using the Eshelby tensor the uniform stress 

field inside the particles was evaluated as a function of the applied thermal or mechanical 

loading. The maximum von Mises stress happens on the particle-matrix interface outside 

the particles. To evaluate the stress field outside the particles, the traction and 

displacement continuity at the interface were utilized. The explicit form of the stress 

relation for specific case of spherical particles inside isotropic matrix is simple and was 

shown. But for a more general case of ellipsoidal particle inside transversely isotropic 

matrix, the explicit relation was too complex and long to show. Maximizing the von Mises 

stress field yields the location of the maximum von Mises stress and its value in terms of 

the applied loading. Substituting this value in the von Mises stress relation yields the 

ultimate thermal/mechanical loading that causes yielding of the matrix material. Through 

this procedure, the failure envelopes for various particulate composite materials were 

obtained. Also the effect of various parameters such as the particle volume fraction, 

particle to matrix stiffness ratio, thermal expansion ratio, thermal conductivity ratio and 

particle shape aspect ratio were studied thoroughly. 

The stress distribution plots around cavity, rigid particle and elastic particles 

contain useful information that could help in understanding how the particle shape affects 

the yielding of the composite materials. The particle shapes are categorized into three 

main types, prolate spheroid, oblate spheroid and spheres. Under loading in the direction 

perpendicular to the isotropy plane, the von Mises stress concentration factor is highest if 
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the cavity is penny shaped. But in the case of rigid particles, the stress concentration 

factor is highest if the particle is needle shaped. The cases of cavity and rigid particles 

are two extreme cases of particles. In the case of having elastic particles, the behavior is 

more similar to rigid particles, i.e, the von Mises stress concentration factor is highest 

around prolate shaped particles.  

The aforementioned information helps to understand the failure envelopes in two 

dimensions. Even though, the developed expressions for the failure criterion is not 

restricted to the biaxial case of loading, but the results were shown in a more customary 

2-D failure envelopes. The 2-D plots of failure envelopes depict the ultimate far-field 

mechanical/thermal loading that would cause yielding of the matrix material. The failure 

envelope plots show that the strength of composite materials in yielding is lower than the 

strength of the pure matrix material. This happens due to the stress concentration around 

the particles. But yielding of the matrix material does not imply the ultimate yielding of the 

composite materials, it indicates the start of failure. The particles have other effects on 

the strength of the material as a whole. They obstruct the progress of cracks and also 

decrease the average stress inside the matrix material. Therefore, the failure process 

must be analyzed beyond yielding of the matrix material. 

One of the shortcomings of the current study is the assumption that the fibers are 

all aligned in the same direction. Even though aligning the particles is not impossible to 

implement in practice, but a study should show their advantage over randomly aligned 

fibers. Therefore, studying the effect of fiber direction with respect to the material 

properties will be very helpful. Also this study investigated the elastic region of matrix 

material and determined the failure through the first point to yield. In practice yielding of 

an area rather than a point flags the failure. Therefore, to better predict the failure the 

analysis must include plastic deformation around the particles as well.  
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