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ABSTRACT

Massive MIMO Performance Analysis and Radar Sensor Networks-Based Target

Detection

Ganlin Zhao, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Qilian Liang

In this dissertation, we apply massive multiple-input-multiple-output (MIMO)

performance analysis and radar target detection based on radar sensor networks(RSN).

In recent years, massive MIMO draws great interest for wireless communication re-

searchers. As a highly scalable technology for 5G networks, massive MIMO will meet

the increasing demand for wireless throughput. Also, radar target detection is also an

important topic for military and civilian applications. Improving detection accuracy

when target is embedded in strong background clutter is a challenging task.

In Chapter 2, we investigate scaling law of theoretical transmission capacity

limit in an uplink multi-user MIMO system. In 5G network base station densification

and massive MIMO are both important techlogogies which explore the spatial reuse

and diversity to increase the total network spectrum efficiency. We apply scaling law

to conduct the asymptotic analysis on how the outage capacity scales with number

of users, base stations and base station antennas.

In Chapter 3, we investigate shadow fading impact on a multi-user massive

MIMO system. By deploying a large antenna array on the base station, the random
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channel vectors between users and base station antennas become pairwise orthogonal.

This important property of massive MIMO makes small scale fading effect asymp-

totically vanish while large scale fading still remains. Based on this fact, we analyze

the uplink achievable rate and cell coverage area under outage constraint considering

log-normal shadow fading effect for both single-cell and multi-cell scenarios.

In Chapter 4, we propose an Empirical Mode Decomposition (EMD) based

approach to Ultra Wide Band (UWB) radar for sense-through-foliage target detection.

When the radar signal quality is good, the EMD based target detection approach

performs well by comparing to the no target case. When the radar signal quality is

poor and a single radar echo fails to detect the target, we firstly apply RSN and Rake

structure to combine radar echoes from different radar cluster-members and then the

EMD based method could successfully carry out the target detection.

In Chapter 5, we propose a target detection and classification approach using

Hidden Markov Models (HMMs). Hidden Markov Model is used as an classifier to

distinguish between the presence of target in a background clutter and the pure clut-

ter response. Sense-through-foliage target detection and Sense-through-Wall human

detection are conducted using real world Ultra Wide Band (UWB) data. Experiment

results show HMM based method provides good detection and false alarm rate for

poor quality radar echoes in position 1 in the sense-through-foliage target detection

scenario. Sense-through-wall human experiment results shows Hidden Markov Model

based method could successfully detect stationary human target behind different types

of walls.
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CHAPTER 1

Introduction

In the past few years, the fourth generation (4G) mobile communications sys-

tems have been deployed and used worldwide. With the explosive increasing number

of wireless devices, the growing demand for higher data rate cannot be accommodated

by 4G. Therefore, the fifth generation (5G) mobile communication systems, which are

expected to be introduced by 2020, have attracted a great deal of research attention

from both academia and industry.

As one of the most promising candidate technique for the 5G wireless net-

work, massive MIMO or large-scale antenna systems has drawn significant research

interests[1] [2] [3]. The concept of massive MIMO was first proposed in [3], where the

asymptotic performance of noncooperative cellular systems was analyzed when the

number of base station antennas is unlimited. It was shown in [3] that by employ-

ing simple linear signal processing, i.e., maximal ratio transmission (MRT) for the

forward links and maximal ratio combining (MRC) for the reverse links, the effects

of uncorrelated noise and small-scale fading are eliminated, and the transmit power

can be made arbitrary small. In [4], the authors compared the two most prominent

linear precoders, conjugate beamforming and zero-forcing (ZF), with respect to net

spectral-efficiency and radiated energy-efficiency. In [5], the performance of multi-

cellular MIMO systems was investigated when the number of base-station antennas

was not extremely large compared to the number of users. The transmit power scaling

laws and lower capacity bounds in the uplink massive MIMO systems were derived

in [6], which showed that the power could be made inversely proportional to N in
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the perfect channel state information (CSI) scenario and
√
N in the imperfect CSI

scenario, where N denotes the number of base station antennas. In [7], the authors

investigated how massive MIMO performs in channels measured in real propagation

environments and showed that the measured channels can achieve performance close

to that in independent and identically distributed (i.i.d.) Rayleigh channels, so the

theoretical advantages of massive MIMO can also be harvested in real channels.

Channel hardening effect as one important property occurs in massive MIMO

channels, small scaling fading effect eventually average out. As the channel matrix

H increases, the off-diagonal terms of the HHH matrix become increasingly less

important compared to the diagonal terms. However, large scale fading effect still

remains and the randomness in the large scale fading still has significant impact on

system outage. The study on this impact of Massive MIMO is still open to date.

To meet 1000 traffic volume increment in 5G mobile communication systems,

besides the technologies such as massive MIMO to improve the spectrum efficiency

and millimeter wave communications to extend the transmission bandwidth, a larger

number of small cells have to be densely deployed for 5G cellular networks. As a con-

sequence, the base station densification is emerging as one of core characteristics for

5G cellular networks[8]. The capacity scaling law was firstly proposed to investigate

large network performance with the scaling system parameters. To investigate the

Massive MIMO performance in a densified network, scaling provides good asymptotic

analysis insight.

Radar target detection is an important topic in both military and civilian re-

search. Through foliage target detection plays and important role in modern war-

fare since the foliage environment provides good cover for military equipments such

as tanks and artilleries. However, due to the non-stationary and impulsive nature
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of foliage clutter the target detection task is not easy as in an stationary environ-

ment. Hilbert-Huang transformation (HHT) first proposed by N.E.Huang [9] is an

algorithm mostly suited for non-linear and non-stationary signal analysis. The first

phase of HHT is called empirical mode decomposition(EMD) which decomposes non-

stationary signals as different mono-component oscillatory mode. Therefore, EMD

may provide some insights considering the special characteristic of through foliage

target detection task.

Hidden Markov Model (HMM) is a statistical model widely used in many pat-

tern recognition problems. Radar target detection is essentially a binary classification

task. To apply HMMs for radar target detection, HMMs represent target and clut-

ter are trained. Testing radar signals are used to calculate likelihood under different

pre-trained models and classified as the category (target or non-target) with higher

likelihood.
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CHAPTER 2

Uplink Outage Throughput Capacity Scaling Law of Massive MIMO Systems

2.1 Introduction

Massive MIMO technology appears as the result of increasing demand for wire-

less throughput. Current wireless broadband standard like long-term evolution (LTE)

allows up to eight antennas at the base station. With more transmitting/receiving

antennas equipped, more degrees of freedom can be obtained by the propagation

channel either for multiplexing or diversity gain. In this case, Massive MIMO could

break the limitation of number of equipped antennas on the base station side. Large

antenna array with physically smaller antennas is installed on the base station. The

magnitude of number of antennas could be more than one hundred. In [5], how much

antennas would be sufficient for Massive MIMO is studied. Massive MIMO system is

comprehensively studied in [6] and [10].

Throughput capacity is the key element to analyze the performance of net-

works. Channel capacity, indicates how much data could be reliably transmitted over

communication channel, eventually depends on what channel model applies. For ex-

ample, the capacity of AWGN channel is essentially different from fading channels.

For AWGN channel, transmitter could send out data at a positive rate while having

desired very small error probability. Fading channel can’t guarantee to achieve this

as long as the probability that channel in deep fading is non-zero. In slow fading

scenario, outage capacity is always considered as it assumes that at a given rate R

at which transmitter encodes data, whatever coding scheme used, the error probabil-

ity cannot made be arbitrarily small. In other words, reliable communication occurs
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when the random channel gain is strong enough to support the desired rate R. Oth-

erwise, outage happens when capacity drops below R in deep fading situation. For

fast fading scenario, channel cannot remain constant over symbol coherent period.

Since codeword span over several coherent period, we can use block-fading model

that consider several parallel sub-channels fade independently. The capacity can be

assigned with positive value by coding over a large number of coherence time intervals

in order to average independent fades of channels [11].

Capacity scaling law, firstly used in ad-hoc networks, is an asymptotic analysis

method to investigate a large network performance with certain increasing system

parameters, for example, the number of nodes, relays and infrustrutures.A lot of

research works has been done. Gupta and Kumar [12] initiatively studied scaling

law of a random ad-hoc wireless networks. When nodes are randomly placed in the

network and they randomly choose a destination, the per-node capacity is shown to

be Θ( W√
n logn

) as the number of nodes n tends to infinity, where n is the number of

nodes and W (the same below) is the transmitting rate each node is capable of using

a fixed range. In [13], with b base stations and n nodes settings, the author proves

that in order to achieve infrastructure gain, b should grow at least faster than
√

n
logn

and the maximum throughput scales as Θ(bW ) which increases linearly with the

number of base stations. The scaling law of data transmission limit of hybrid wireless

networks is studied in [14]. Squared cell model is assumed with b base stations

and n wireless nodes and fading environment is considered. The per-node outage

throughput capacity over Nakagami-m fading channel scales as O

(
log[
(
ε

1
m

) b
n n
b
]W1

)

under ad-hoc mode and Θ
(
b
n

log
(
ε

1
m
n
b

)
W2

)
under infrastructure mode, where W1 is

the bandwidth shared by ad-hoc transmission and uplink infrastructure transmission

and W2 is bandwidth assigned for downlink infrastructure transmission.
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With the tremendous growing number of mobile users in the next generation

wireless networks, the base station densification[8] is proposed by implementing more

base stations to reuse the time frequency resources which could benefit the whole

network throughput. Massive MIMO technology also explores the spatial diversity

to increase the spectrum efficiency. Therefore, applying capacity scaling law to study

the system with increasing number of users, base stations and number of antennas

is an intrinsically useful. In this paper, we focus on studying how the uplink outage

capacity scales with number of base stations b, number of users n, as well as large

number of antennas M on the base station and we derive the outage capacity in

closed-form expression.

2.2 Network Modeling

The following network model is considered throughout this chapter:

1. The network consists of n users and b base stations.

2. The whole network is considered as in a unit circle area and evenly divided

into b circular cells with cell radius c. We assume gaps between cells can be

neglected so all cells occupies the whole area.

3. Each cell contains only one base station in the center. There exists K users

uniformly distributed along the cell radius in each cell. The user distance to

base station is denoted as rk ∈ [c0, c], where c0 denotes the radius of an exclusive

region around base station.

4. We assume all base stations are wired interconnected to form an infrastructure

with unlimited bandwidth. Base stations neither consume nor generate data

and they only serve as traffic relays compared to nodes.

5. For the purpose of studying the scaling law of number of base stations and users

in the network, b = O( n
logn

) is assumed that b increases at a slower rate than

6



n. Study [13] shows that in a probabilistic routing strategy, a node chooses

between infrastructure and ad-hoc mode according to some probability. For ex-

ample, if b grows slower than
√

n
logn

, the maximum throughput capacity behaves

asymptotically same as pure ad-hoc networks which means no real benefit for

using infrastructure. If b grows faster than
√

n
logn

, maximum capacity increases

linearly with number of base stations b. Therefore, investment on base station

should be at least
√

n
logn

to achieve infrastructure capacity gain. In this case,

our assumption should be enough to have infrastructure gain.

6. Multi-user MIMO is preferred in this work compared to Point-to-Point MIMO

for its significant simplification of the terminal device. Each user terminal is

assumed to have only one antenna.

7. The base station located in each cell has an array of M antennas. The antennas

are sufficient to simultaneously serve all K users in the cell. The number of

antennas greatly exceeds the number of terminals M � K.

8. In uplink transmission, the following model are assumed per channel use[10]:

xu =
√
ρuGqu + wu (2.1)

Where qu is a K × 1 vector cosists of QAM symbols transmitted by K users,

xu is the antenna array received vector of size M × 1. wu is a M × 1 vector

of received noise whose entries are independent and identical distributed (i.i.d.)

complex Gaussian random variables with zero mean and unit variance. ρu is

proportional to SNR. Each terminal is constrained to have an expected power

of one,

E{|quk|2} = 1, k = 1, ..., K.

7



G is M × K propagation channel matrix, which is composed of small-scale

fading and large scale fading factors:

G = HD
1/2
β (2.2)

In the equation above, Matrix H accounts for small-scale fading whose dimen-

sion is M × K. Each entry is the complex small-scale fading coefficient (for

example, fading coefficient follows Rayleigh or Rician distribution) between the

Kth user terminal and the Mth antenna on base station. Matrix D
1/2
β is a

K×K diagonal matrix. The diagonal entries of D
1/2
β are normalized large-scale

fading coefficients related to the antenna array and Kth user terminal.

2.3 Preliminaries

2.3.1 The Number of Nodes Per Cell

As number of base stations b = O( n
logn

) and number of users n → ∞, there

exists K = Θ(n
b
) nodes within each cell. The cell radius is bounded by c = O(1

b
).

Proof: Let event A denote a Bernoulli event that a particular node i, 1 ≤ i ≤ n,

will fall into a particular cell of area πc2. Because nodes are uniformly distributed

in the network, it is clear that probability of event A is PA = n/b
n

= 1
b
. Therefore,

the number of nodes, K, has a binomial distribution with parameters (PA, n). Using

Chernoff bound, we have

Pr(K > k1
n

b
) ≤ E{exp(K)}

exp(k1n
b

)

where k1 is a constant. Since E{exp(K)} = (1+(e−1)PA)n ≤ exp[(e−1)n
b
] (because

1 + x ≤ exp(x)), we arrive at

Pr(K > k1
n

b
) ≤ exp

{
− n

b
[k1 − (e− 1)]

}
.
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As long as k1 > e − 1, we know by the union bound that Pr(some cells have

more than k1n
b

nodes) converges to zero as n tends to infinity.

Similarly,

Pr(K < k2
n

b
) ≤ E{exp(−K)}

exp(−k2n
b

)

where k2 is also a constant. Since E{exp(−K)} = (1+(e−1−1)PA)n ≤ exp[(e−1−1)n
b
],

we obtain

Pr(K < k2
n

b
) ≤ exp

{
− n

b
[(1− e−1)− k2]

}
.

As long as k2 < 1− e−1, we know by the union bound that Pr(some cells have

less than k2n
b

nodes) converges to zero as n tends to infinity. Hence, it is concluded

that each cell contains Θ(n
b
) nodes and we complete the proof.

2.3.2 Fenton-Wilkinson Method

The summation of several independent log-normal random variables can be ap-

proximated by another log-normal random variable with appropriately chosen parameters[15],

I =

NI∑

k=1

10Ωk(dBm)/10 ≈ 10Z(dBm)/10 = Î (2.3)

where Ωk(dBm) are Gaussian random variables with means µΩk(dBm)
and variances

σ2
Ωk

, Z(dBm) is a Gaussian random variable with mean µZ(dBm)
and variance σ2

Z , so that,

Ωk = 10Ωk(dBm)/10

Z = 10ZdBm/10

where Ωk and Z are the log-normal random variables. The problem is to determine

µZ(dBm)
and σ2

Z in terms of µΩk(dBm)
and σ2

Ωk
.

The mean µZ(dBm)
and variance σ2

Z can be obtained by matching the first two

moments of the approximation Î. For space limitation, we omit the proof of the

derivation.
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µẐ =
σ2

Ω̂
− σ2

Ẑ

2
+ ln

(
NI∑

k=1

e
µΩ̂k

)
(2.4)

σ2
Ẑ

= ln



(
eσ

2
Ω̂ − 1

) ∑NI
k=1 e

2µΩ̂k

(∑NI
k=1 e

µΩ̂k

)2 + 1


 (2.5)

Note that nature logarithms are used here for convenient purpose.

Ωk = 10Ωk(dBm)/10 = eξΩk(dBm) = eΩ̂k

where ξ = (ln 10)/10 = 0.23026 and Ω̂k = ξΩk(dBm). Also µΩ̂k
= ξµΩk(dBm)

and

σ2
Ω̂k

= ξ2σ2
Ωk

. The same applies to Z where Ẑ = ξZ(dBm). Since standard deviation

of log-normal shadowing is largely independent of the radio path length, identical

variances are often assumed that for Ω̂k, k = 1, ..., NI , σ
2
Ω̂k

= σ2
Ω̂

. Finally,

µZ(dBm)
= ξ−1µẐ (2.6)

σ2
Z = ξ−2σ2

Ẑ
(2.7)

2.4 Scaling Law of Uplink Outage Throughput Capacity

In this section, we focus on investigation of uplink Massive MIMO performance

in terms of outage capacity. With very large antenna array on the base station, a lot

of things become different from the traditional MIMO system point of view.

One of the key characters that base station antennas greatly exceeds the number

of user terminals is called favorable propagation[16]. The vector value based prop-

agation matrix are asymptotically orthogonal as M � K. The propagation matrix

G is described in equation (2.2) which contains both small scale fading matrix H

and large scale fading diagonal matrix D
1/2
β . Each column-vector of H correlates to

small scale fading between the kth terminal and the M base station antennas. When

10



M � K, column-vectors in matrix H become long and are asymptotically pairwise

orthogonal according to random matrix theory[5]. The propagation matrix thus can

be written as:

(
GHG

M

)

M�K
= D

1/2
β

(
HHH

M

)

M�K
D

1/2
β ≈ Dβ (2.8)

From equation (2.8) we can observe that long propagation matrix makes small

scale fading effect greatly mitigated under favorable propagation while large scale

fading coefficient dominates.

The sum rate capacity of uplink MU-MIMO can be obtained [11] assuming base

station has perfect instantaneous channel state information:

Csum ul = log2 det
(
IK + ρuG

HG
)

(2.9)

by applying favorable propagation
(
GHG

)
M�K ≈MDβ, we get

Csum ulM�K ≈ log2 det (IK +MρuDβ) (2.10)

Dβ is a diagonal matrix that Dβ = diag{β1, β2, ..., βK}, equation (11) can be rewritten

as:

Csum ulM�K =
K∑

k=1

log2 (1 +Mρuβk) (2.11)

Equation (12) indicates that the sum-rate could be represented as individual

rate correlated to each terminal. This yields an simplification of linear decoding

process by using matched-filter at the BS.

We already observe that large-scale fading is a dominant factor in capacity

equation. To further derive the outage capacity of the uplink channel, we assume

each large-scale fading coefficient βk has the following expression[17]:

βk = φr−αk ζk (2.12)
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Where φ is a constant related to the antenna gain and carrier frequency, rk is the

distance between the base station and kth terminal. α is the path loss exponent. ζk

is the log-normal shadowing with 10 log10 ζk ∼ N (0, σ2
k). Thus we apply this path

loss and shadowing model to equation (12),

Csum ulM�K =
K∑

k=1

log2

(
1 +Mρuφd

−α
k ζk

)
(2.13)

We assume that all user terminal devices transmit at a sum rate R bit/s/Hz,

the related outage probability is

Pout = Pr

{
K∑

k=1

log2

(
1 +Mρuφd

−α
k ζk

)
< R

}
(2.14)

To solve the equation above, we then explore the outage capacity both in high

SNR and low SNR scenarios.

2.4.1 Low SNR

At low SNR, we employing ln (1 + x) ≈ x and obtain the following,

Pout = Pr

{
loge2Mρuφ

K∑

k=1

(
d−αk ζk

)
< R

}
(2.15)

Since ζk is log-normal distributed with 10 log10 ζk ∼ N (0, σ2
k), we could derive

d−αk ζk is also log-normal distributed with 10 log10

(
d−αk ζk

)
∼ N (µk, σ

2
k) where µk =

10 log d−αk .

We assume users in the cell suffers independent shadow fading. Applying

Fenton-Wilkinson method we approximate the summation of log-normal distributed

random variables d−αk ζk with a new log-normal random variable, say χ that 10 log10 χ ∼

N (µχ, σ
2
χ). The new parameter of χ is chosen by,

µχ = ξ−1

(
ξ2

2

(
σ2
k − σ2

χ

)
+ ln

(
K∑

k=1

r−αk

))
(2.16)
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σ2
χ = ξ−2 ln



(
eξ

2σ2
k − 1

) ∑K
k=1 r

−2α
k(∑K

k=1 r
−α
k

)2 + 1


 (2.17)

Then the outage probability is,

Pout = Pr {loge2Mρuφχ < R}

= Pr

{
χ <

R

loge2Mρuφ

}
(2.18)

The cumulative distribution function(CDF) of the log-normal distributed ran-

dom variable χ is given by

F (x) =
1

2
erfc

(
− lnx− µχ

σχ
√

2

)
(2.19)

where erfc(x) is the complementary error function.

With the CDF of χ, we have the following

Pout = F (T )

=
1

2
erfc

(
− lnT − µχ

σχ
√

2

)
, T =

R

loge2Mρuφ
(2.20)

Unfortunately there’s no closed form expression of erfc(x) in terms of elemen-

tary functions. According to [18], an tight exponential upper bounds and a pure

exponential approximation for the complementary error function are derived

erfc(x) ≤ 1

2
e−2x2

+
1

2
e−x

2 ≤ e−x
2

, x > 0 (2.21)

erfc(x) ≈ 1

6
e−x

2

+
1

2
e−

4
3
x2

, x > 0 (2.22)

Applying the approximation of equation(2.21), we got

Pout =
1

2

(
1

6
T ′ +

1

2
(T ′)

4
3

)
, (2.23)

where

T ′ = e
−
(
− lnT−µχ

σχ
√

2

)2

(2.24)
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The outage capacity is obtained by solving Pout = ε. However, solving the non-

linear equation by applying newton’s method does not turn out to obtain physically

meaningful root. Therefore, we try to approximate the complementary error function

using the tight upper bound (2.21) to get a linear equation.

Pout ≤
1

2

(
1

2
(T ′)

2
+

1

2
T ′
)

= ε (2.25)

where

T ′ =

√
1 + 16ε− 1

2
(2.26)

Equation (2.26) is satisfied when ε < 1
2

Combining (2.24) and (2.26) we got

Cε = loge2Mρuφexp

{
µχ − σχ

√
2 ln

(
2√

1 + 16ε− 1

)}
(2.27)

From equation (2.27) we can see that the capacity is related to µχ and σχ which

are defined in (2.16) and (2.17).

With uniform distributed users in each cell, the distance rk between the kth

user in one cell and the base station has the following probability density function:

frk,θ(rk, θ) =





rk
πc2
, 0 6 rk 6 c, 0 6 θ 6 2π

0, otherwise

By applying the weak law of large numbers to the summation term of the

numerator and denominator in equation (2.17) we are able to obtain the following:

K∑

k=1

r−2α
k = KE

{
r−2α
k

}

= K

∫ c

c0

∫ 0

2π

r1−α
k

πc2
drkdθ

=
K(c

2(1−α)
0 − c2(1−α))

c2(α− 1)
,
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and

(
K∑

k=1

r−αk

)2

= K2E2
{
r−αk
}

=
4K2(c2−α

0 − c2−α)2

c4(α− 2)2
.

Then equation (2.18) can be rewritten as:

σ2
χ = ξ−2 ln

((
eξ

2σ2
k − 1

) c2

4K(α− 1)c2
0

+ 1

)
. (2.28)

Based on the number of users K is bounded by Θ(n
b
) and cell radius c is bounded

by O(
√

1
b
) as the number of base stations increases, after some arithmetic manipula-

tions by dropping the terms in equation(2.28) which are not scaling with n and b, we

can obtain that σ2
χ = O(log 1

n
). Also, apply the same procedure to equation(2.17) we

can obtain that µχ = O(log n).

Then based on equation(2.28) we make the conclusion that the transmission

rate under low SNR for Massive MIMO uplink is:

Rlow
ul = O

(
Mne

−
√

log( 1
n)δε
)

bit/s/Hz (2.29)

Where δε = 2 ln
(

2√
1+16ε−1

)
.

From equation (2.29) we can see that in low SNR scenario, uplink outage ca-

pacity scales linearly with number of base stations M , which means that increasing

number of antennas will always be helpful. We also observed that the outage capac-

ity has no relation with number of base stations b in this case. Fig.2.1 shows uplink

outage capacity with different M settings when outage probability ε = 0.001.

2.4.2 High SNR

In high SNR scenario, we approximate log(1 + x) = log(x) to equation (2.14),
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Figure 2.1. Uplink outage throughput capacity under low SNR scenario (ε = 0.001).

Pout = Pr

{
K∑

k=1

log2

(
Mρuφd

−α
k ζk

)
< R

}
(2.30)

From the previous section we have seen that ζk is log-normal distributed with

10 log10 (ζk) ∼ N (0, σ2
k). We define another random variable L = log2Mρuφd

−α
k ζk

that L ∼ N (µL, σ
2
L) and

µL = log2(Mρuφd
−α
k ) (2.31)

σ2
L = (

σk
10 log10 2

)2 (2.32)

The summation of independent normal distributed random variables is also normal

distributed. We denote the summation as L̂ =
∑K

k=1 L, L̂ ∼ N (µL̂, σL̂2). Based on
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the assumption that users are uniform distributed within each cell and apply the law

of large numbers we can obtain the mean µL̂ as

µL̂ =
K∑

k=1

log2(Mρuφr
−α
k )

= KE
{

log2(Mρuφr
−α
k )
}

= K

∫ c

c0

∫ 0

2π

log2(Mρuφr
−α
k )

rk
πc2

drkdθ

=
K

2c2
loge2[(c2 − c2

0)(2 lnMρuφ+ α)− 2α(c2 ln c− c2
0 ln c0)], (2.33)

and

σ2
L̂

= Kσ2
L.

= K(
σk

10 log10 2
)2. (2.34)

Then we can rewrite equation (3.30)

Pout = Pr

{
K∑

k=1

L < R

}

= Pr
{
L̂ < R

}

=
1

2
erfc

(
−R− µL̂
σL̂
√

2

)
= ε (2.35)

Apply approximation (2.21)

Cε = µL̂ − σL̂

√
2 ln

(
2√

1 + 16ε− 1

)
, ε <

1

2
(2.36)

Applying the scaling law to (2.34) and (2.35), we can get µL̂ = O(n
b

log(Mb))

and σL̂ = O(
√

n
b
) So the transmission rate under high SNR for Massive MIMO uplink

is:

Rhigh
ul = O

(
n

b
log(Mb)−

√
n

b
δε

)
bit/s/Hz (2.37)
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Figure 2.2. Uplink outage throughput capacity under high SNR scenario (ε = 0.001).

Where δε = 2 ln
(

2√
1+16ε−1

)
.

Under high SNR scenario, the uplink outage throughput capacity yields loga-

rithmic increase with number of base station antennas M . From Figure 2.2 we can

see that increasing M from 50 to 100 only has half capacity gain when increasing M

from 25 to 50, which means that at high SNR we are getting less benefit from adding

more antennas.

2.5 Conclusions

In this chapter, we derived the theoretical uplink outage throughput capacity

of a multi-user Massive MIMO system. Under favorable propagation condition, small

scale fading is averaged out according to asymptotic orthogonality of the propagation

matrix with increased base station antenna M . Large scale fading on throughput ca-

pacity is examined for both high SNR and low SNR case. Close-form outage through-

put capacity is derived. We proved that at low SNR, the infrastructure mode uplink
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outage capacity is O

(
Mne

−
√

log( 1
n)δε
)

bit/s/Hz. At high SNR, the infrastructure

uplink outage capacity is O
(
n
b

log(Mb)−
√

n
b
δε
)

bit/s/Hz. Increasing number of

antennas at low SNR scenario yields better capacity gain compared to high SNR

case.
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CHAPTER 3

Outage Analysis of Uplink Massive MIMO System

3.1 Introduction

Massive MIMO firstly proposed in[3], serves as a key technology to meet the fast

growth of data demand of 5G networks. MIMO technology could bring more degree

of freedom of the propagation channel in terms of multiplexing gain or diversity

gain. As a break through of long-term evolution(LTE) standard which allows at

most eight antennas on the base station, massive MIMO deploys hundreds of base

station antennas simultaneously serve tens of users[10]. Traditionally, for multiple

collocated antenna placement, a minimum separation of half wavelength between any

two antennas are required in order to mitigate the coupling effect. With a large

number of antennas, the antenna array could occupy much larger area on the base

station. In millimeter wave communications, with above 30GHz spectrum and shorter

wavelength. antennas can be placed closer to each other which facilitates massive

MIMO implementation.

As a promising technology for the upcoming 5G networks, massive MIMO has

drawn intensive research interests[3][5][6][10]. In [3], as number of basestation anten-

nas goes large, linear precoding and decoding are shown to be optimal and intra-cell

interference and uncorrelated noise disappears. In [5], the performance of multi-cell

MIMO system is studied with a large but finite number of antennas. In [19], the

optimal number of users are investigated considering pilot allocation. In [6], spectral

and energy efficiency of uplink massive MIMO system are compared under different

detection methods, tradeoff between energy and spectral efficiency are also studied.
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As a result, uplink transmit power could be made arbitrarily small which is significant

for saving user terminal battery life. Further, with a large number of antennas, the

channel vectors between users and base station are very long and pairwise orthogonal.

This effect averages out small scale fading by using simple linear signal processing

method [3]. However, the large scale fading still remains. The large scale fading essen-

tially contains random variation of shadow fading imposed on the distant-dependent

path loss. Shadow fading is mainly caused by obstructions and other propagation ef-

fects. Especially in urban area, buildings and other blockages result in higher shadow

fading than open area.

It is important for engineers to statistically model shadow fading for system

design. Based on this fact, question about how the randomness in shadow fading

could effect massive MIMO performance arise. In [20], large scale fading effect of

massive MIMO are analyzed under gamma distributed shadow fading and the aver-

age asymptotic ergodic rate are derived considering both perfect CSI and imperfect

CSI. To tackle with this problem from the outage perspective, we assume log-normal

distributed shadow fading and make analysis based on the asymptotic achievable rate

for a given outage probability. Next, we use cell coverage area as another metric to

evaluate the average cell performance.

3.2 System Model

In this work, we consider an uplink multiuser massive MIMO system. The base

station located in a cell has an array of M antennas simultaneously serves K single

antenna user terminals. The number of base station antennas greatly exceeds the

number of terminals M � K. In uplink transmission, the M × 1 received signal

vector at the base station is:

y =
√
ρGx + w (3.1)
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Where x is a K × 1 signal vector transmitted by K users. w is a M × 1 vector

of received noise whose entries are i.i.d. complex Gaussian random variables with

zero mean and unit variance. ρ is a measure of transmit signal-to-noise ratio. G

is the M ×K propagation channel matrix between users and base station, which is

composed of small-scale fading and large scale fading factors:

G = HD1/2 (3.2)

In the equation above, Matrix H accounts for small-scale fading whose dimension is

M ×K. Each element of H is zero mean i.i.d small-scale fading coefficient between

the kth user terminal and the mth antenna on base station. Matrix D1/2 is a K ×K

diagonal matrix whose elements are large-scale fading coefficients β
1/2
k of the kth user

terminal to the base station.

In this work, we model the large scale fading coefficient as follows[17]:

βk = φr−αk ζk (3.3)

Where φ is a constant related to the antenna gain and carrier frequency, rk is

the distance between the base station and kth terminal. α is the path loss exponent.

ζk is the log-normal shadowing with ζk ∼ 10 log10N (0, σ2
k). The probability density

function of lognormal random variable is:

f(x) =
10 log e

σ
√

2πx
e−

(10 log x−µ)2

2σ2 (3.4)

We also assume disk shape cell with radius c that users in each cell are uniformly

distributed and base station is at the cell center. The distance distribution from user

to cell center is:

fr,θ(r, θ) =





r
πc2
, 0 6 r 6 c, 0 6 θ 6 2π

0, otherwise
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3.3 Single-Cell Uplink Outage Analysis

In this section, we study the performance of uplink massive MIMO system of

single cell case. Both perfect CSI and imperfect CSI are evaluated.

3.3.1 Perfect CSI

With perfect CSI assumption, the base station knows channel matrix G. We

assume base station applies MRC detection. The received signal in (3.1) at the base

station can be separated by multiplying GH , we can obtain:

r = GHy

=
√
ρGHGx + GHw (3.5)

The propagation matrix G described in equation (3.2) contains both small scale

fading matrix H and large scale fading diagonal matrix D1/2. We denote hk as the

kth column-vector of H. When the number of antennas M is large and M � K,

the column vectors h1,h2, ...,hk becomes long and pairwise orthogonal according to

random matrix theory. For rayleigh fading, the following results are obtained based

on [16]:

1

M
||hk||2 a.s.−−→ E{|hik|2} = 1

1

M
hHk hi

a.s.−−→ 0, k 6= i (3.6)

where
a.s.−−→ denotes almost sure convergence. Based on (3.6) we have,

GHG = D1/2HHHD1/2 ≈MD (3.7)

The received signal at base station can be simplified as,
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r ≈ √ρMDx + GHw (3.8)

From (3.8) we can observe that each user can get a SNR of Mρβk. Therefore,

the asymptotic achievable rate of the kth user is

RP
k = log2(1 +Mρβk)

= log2(1 +Mρφr−αk ζk) (3.9)

Due to the asymptotic orthogonality of channel matrix with large M , the maxi-

mum achievable rate of each user does not include small scale fading while large scale

fading still exists. Conditioned on user location, suppose each user encodes data at

the rate of R, then the system is said to be in outage if RP
k < R[11]. The related

outage probability is

Pout = Pr{log2(1 +Mρφr−αk ζk) < R} (3.10)

= Pr{ζk <
2R − 1

Mρφr−αk
} (3.11)

Since ζk is a log-normal random variable represents shadow fading that 10 log10 ζk ∼

N (0, σ2
k), we can rewrite equation(3.11) as

Pout = 1−Q




10 log 2R−1
Mρφr−αk

σk


 (3.12)

Where Q(·) is the Q-function.

We define the maximum achievable rate RP
k,ε of the kth user as the outage

probability Pout is less than a given threshold ε[14]. By solving Pout = ε, RP
k,ε can be

expressed as

RP
k,ε = log2(1 +Mρφr−αk 100.1σkQ

−1(1−ε)) (3.13)
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Another metric could be used to evaluate the average cell performance under a

given outage constraint is the cell coverage area[21]. For uplink transmission with a

given minimum SNR requirement pm, if the received signal power at the base station

for a given user exceeds pm, we say the user at this location is in the coverage area.

Note that the outage probability Pout from (3.12) is derived under the rate constraint

RP
k < R. We now denote Pcov as the probability that the received power at the base

station for a user satisfies the minimum SNR requirement:

Pcov = Pr{SNRk > pm}

= Pr{Mρφr−αk ζk > pm}

= Pr{ζk >
pm

Mρφr−αk
}

= Q

(
10 log pm

Mρφr−αk

σk

)
(3.14)

According to [21], the cell coverage area is defined as the average percentage of

locations where the users at these locations satisfied the minimum SNR requirement.

Considering users are uniformly distributed within the cell, the probability of cell

coverage area with cell radius c can be calculated as

CP =

∫ 2π

0

∫ c

0

Pcov
r

πc2
drdθ

=
2

c2

∫ c

0

Q

(
10 log pm

Mρφr−αk

σk

)
rdrdθ. (3.15)

Calculating the integral in (3.15) yields

CP = Q(A) + exp[2(
1− AB
B2

)]Q(
2

B
− A), (3.16)

where

A =
10 log pmcα

Mρφ

σk
, B =

10α log e

σk
. (3.17)
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3.3.2 Imperfect CSI

Practically, base station needs to estimate the channel matrix G by using up-

link pilots send from user terminals. During the uplink coherent interval, each user

transmit τ pilot symbols where τ ≥ K. Therefore, we denote K×τ matrix Ψ as trans-

mitted pilot matrix that the kth row vector of Ψ corresponds to the pilot sequence

assigned for the kth user. Assuming pilot sequences sent by users are orthogonal we

have ΨΨH = IK . The uplink pilot transmission power is set to τρ. Therefore, the

base station receives a M × τ pilot matrix from M antennas

Y =
√
τρGΨ + N, (3.18)

where N represents the M × τ noise matrix whose elements are i.i.d. CN (0,1).

The MMSE estimate of G is

Ĝ =
1√
τρ

YΨHD̃ (3.19)

where D̃ , ( 1
τρ

D−1 + IK)−1. The error matrix of estimation is defined as

∆ , Ĝ −G. Due to the property of MMSE estimator, Ĝ and ∆ are independent

and each element of the kth column of ∆ are random variables with zero mean and

variance βk
τρβk+1

. Therefore, by using the estimated channel ĜH for MRC detection,

the received signal vector at the base station is:

r̂ = ĜH
(√

τρĜx−√τρ∆x + w
)
, (3.20)

Based on [6], the lower bound of achievable rate for the kth user using MRC

can be expressed as:

RIP
k = log2

(
1 +

τρ2(M − 1)β2
k

ρ(τρβk + 1)
∑K

i=1,i 6=k βi + (τ + 1)ρβk + 1

)
(3.21)
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When M →∞, the asymptotic achievable rate of kth user is:

RIP
k = log2(1 + τMρ2βk

2) (3.22)

= log2(1 + τMρ2φ2r−2α
k ζ2

k) (3.23)

Notice that the rate expression depends on squares of the large scale fading

coefficient compared to the perfect CSI case. Since ζk is a lognormal random variable,

we denote ζ̂k = ζ2
k that ζ̂k ∼ 10 log10N (0, 4σ2

k). Similar to (3.13), the maximum

achievable rate RIP
k,ε of the kth user under outage probability constraint ε is

RIP
k,ε = log2(1 + τMρ2φ2r−2α

k 100.2σkQ
−1(1−ε)). (3.24)

Also the cell coverage area with imperfect CSI has the following expression

CIP = Q(Â) + exp[2(
1− ÂB̂
B̂2

)]Q(
2

B̂
− Â), (3.25)

where

Â =
5 log pmc2α

τMρ2φ2

σk
, B̂ =

10α log e

σk
. (3.26)

3.4 Multi-Cell Uplink Outage Analysis

In a multi-cell environment, consider a frequency reuse factor a, a set of L Cells

share same frequency band also the same set of orthogonal pilots. During the uplink

training phase, the base station in cell j receives pilot signals from both the intended

user k and other cell users in the same frequency band. The other cell users reusing

the same pilot sequence interfere with the transmission of kth user terminal to its

own base station in cell j. This phenomenon is called pilot contamination[3]. Base

station estimates the contaminated channel and treat it as the true channel, causing

the subsequent detection compromised. It is show by[3], as the number of base station
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Figure 3.1. user k in cell j receives interference from another user in cell l reuse the
same pilot signal.

antennas approaches to infinity, the small scale fading and uncorrelated noise vanished

due to favorable propagation. The only interference caused by the pilot contamination

limits the signal-to-interference ratio (SIR) for a multi-cell massive MIMO system.

From the result obtained by [3], as M → ∞ and using MRC detection, the effective

SIR of kth user terminal in jth cell can be expressed as

SIR =
β2
jkj∑NI

l 6=j β
2
jkl

. (3.27)

Where βjkj indicates the large scale fading coefficient from the kth user in jth

cell to its own base station, βjkl is the large scale fading coefficient from kth interfering

user in lth cell to the base station in jth cell and NI is the number of interference cells.

Note that since the noise are average out, the multi-cell massive MIMO system is in

the interference limited regime. Therefore SIR is abbreviated for SINR for clarity.

The SIR equation shows that both the large scale fading coefficients of intended signal

and interference signals are proportional to their squares caused by MRC processing.

Plug in (3.3) into the above equation, the SIR can be written as

SIR =
r−2α
jkj ζ

2
jkj∑NI

l 6=j d
−2α
jkl ζ

2
jkl

. (3.28)
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Where rjkj represents the distance of kth uplink user to its base station in cell

j and djkl represents the distance of kth interference user from lth cell to the base

station in cell j. Since we assume users are uniform distributed in each cell. Denote

rkl as the distance of kth interference user in cell l to its own base station, we use

(rkl, θkl) represents the interferer’s polar coordinate. djkl in the denominator of SIR

expression can be calculated as

djkl =
√
r2
kl − 2sinθklrklD +D2 (3.29)

D represents the reuse distance from the base station in the cell of interest to the

first tier interfering cell center that D =
√

3ac. In order to make outage analysis of the

asymptotic rate of the kth user, we need to obtain the distribution of SIR. Conditioned

on user location, we can observe that the denominator of SIR expression equals to a

summation of independent lognormal random variables ζ2
jkl ∼ 10 log10N (2µjkl, 4σ

2
jkl).

The interferers are assumed to be statistically identical[22] such that

µjkl = µI = 0, l = 1, 2, 3, ..., NI (3.30)

σjkl = σI , l = 1, 2, 3, ..., NI (3.31)

The above assumption holds when the interferers have the same distance djkl = dI

to the base station in the jth cell of interest. Here we let ζ̃jkl = ζ2
jkl that ζ̃jkl ∼

10 log10N (2µI , 4σ
2
I ). Generally there’s no closed form formula for the summation of

log-normal random variables. However, it can be approximated by another log-normal

random variable with chosen parameters which is known as the Fenton-Wilkinson

Method[15]. Here we use Fenton’s method for simplicity. We denote the approxima-

tion as

ΩI =

NI∑

l=1

ζ̃jkl. (3.32)
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Where ΩI ∼ 10 log10N (µΩI , σ
2
ΩI

). Applying Fenton’s method, the mean µΩI

and variance σΩI can be expressed as

µΩI =
κ
(
4σ2

jkl − σ2
ΩI

)

2
+

1

κ
ln

(
NI∑

l=1

e2κµjkl

)
,

(3.33)

σ2
ΩI

= κ−2 ln



(
e4κ2σ2

jkl − 1
) ∑NI

l=1 e
4κµjkl

(∑NI
l=1 e

2κµjkl

)2 + 1


 .

(3.34)

where κ = (ln 10)/10. Plug in (3.30) (3.31) and NI = 6 considering the first

tier co-channel interferer, equation (3.33) (3.34) can be further simplified to

µΩI =
1

2κ
ln

63e4k2σ2
I

e4k2σ2
I + 5

,

(3.35)

σ2
ΩI

= κ−2 ln

(
e4κ2σ2

I + 5

6

)
.

(3.36)

Since the numerator of SIR is also a lognormal random variable with ζ̃jkj = ζ2
jkj,

ζ̃jkj ∼ lnN (2µjkj, 4σ
2
jkj). Therefore, the numerator divided by the denominator is also

a lognormal random variable that Z =
ζ̃jkj
ΩI

. We have

Z ∼ 10 log10N (µZ , σ
2
Z) (3.37)
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where µZ = −µΩI and σ2
Z = 4σ2

jkj − σ2
ΩI

.

Define ratio γ = dI
rjkj

, the SIR in (3.28) can be rewritten as

SIR = γ2αZ (3.38)

For a multi-cell uplink massive MIMO system, the maximum achievable rate

RMul
k,j,ε of the kth user in jth cell under outage probability constraint ε is

RMul
k,j,ε = log2(1 + γ2α100.1(σZQ−1(1−ε)+µZ)) (3.39)

The cell coverage area of a multi-cell massive MIMO user is then

CMul = Q(Ã) + exp[2(
1− ÃB̃
B̃2

)]Q(
2

B̃
− Ã), (3.40)

where

Ã =
10 log

(
( c
dI

)2αpm

)
− µZ

σZ
, B̃ =

20α log e

σZ
(3.41)

3.5 Numerical results

In this section, we use numerical results to evaluate the uplink massive MIMO

system performance affected by shadow fading. We assume cell radius c = 800. The

path loss exponent α is set to 3.71. Equal transmit power of each user are assumed

and the received SNR at 600m away from the transmitter is set to be 10dB. We

assume K = 7 uplink users and the pilot length τ is set equal to K. The number of

antennas M is set to be 200. The antenna gain φ is normalized to 1.

Firstly we study the performance of the single-cell system. Fig.3.2 shows the

achievable rate of a user located 600m away from base station under outage constraint

ε = 0.01. With perfect CSI and imperfect CSI, the achievable rate drops gradually as

the parameter σ, known as the dB spread, of log-normal distributed shadow fading
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Figure 3.2. Single-cell achievable rate of user K under outage probability constraint
ε = 0.01 with perfect CSI and imperfect CSI..

increases. From the curve we can observe that the imperfect CSI case suffers more

performance degradation than perfect CSI. For example, increasing σ from 4dB to

5dB brings a rate loss of 18% for perfect CSI and 30% for imperfect CSI. Fig.3.3 shows

that, with a minimum SNR requirement pm = 6dB, cell coverage ratio decreases for

both perfect CSI and imperfect CSI cases but the one with imperfect CSI decreases

slightly faster.

Fig.3.4 plots the cell coverage ratio for multi-cell uplink massive MIMO system

with different frequency reuse factor a = 1 and a = 3. We can observe from the curve

that with a larger frequency reuse factor, the coverage ratio significantly improved.

This is due to the fact that interferers from other cells reusing the same pilot sequence

are pushed further away from the target cell and the combining effect of path loss

and shadow fading contributed to the interference is reduced. With a more aggressive

frequency reuse, the coverage ratio has a prominent drop before σ reaches 7 and then

decrease slowly when σ is large.
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Figure 3.3. Single-cell coverage ratio with perfect CSI and imperfect CSI. Minimum
received SNR requirement pm = 6dB and cell radius c = 800..
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Figure 3.4. Multi-cell coverage ratio with frequency reuse factor a = 1 and a = 3.
Minimum received SNR requirement pm = 6dB and cell radius c = 800..

3.6 Conclusions

In this paper, we make outage analysis of a multi-user uplink massive MIMO

system. As the number of base station antennas goes large, small scale fading effect
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vanishes and only large scale fading remains. Due to the randomness of log-normal

distributed shadow fading, we derived the achievable rate and cell coverage area ratio

under certain outage constraint for both single-cell and multi-cell scenarios. From

the numerical result analysis, we conclude that shadow fading has significant impact

on the performance in terms of the rate and coverage ratio metrics. For single-cell

system, imperfect CSI caused by channel estimation error suffers more from shadow

fading effect. Shadow fading also degrades the performance of multi-cell system with

aggressive frequency reuse factor.
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CHAPTER 4

An EMD based Sense-through-Foliage Target Detection Approach with UWB

Radar Sensor Networks

4.1 Introduction

Target detection and identification in a strong background clutter is a signifi-

cant topic of civilian and military research and applications. For example, in modern

warfare, forest provides good cover of enemy military targets such as tanks, artillery

and other weapon caches. Therefore, sense-through-foliage target detection is impor-

tant for eliminating potential hostile enemy activities. However, the non-stationary

nature of foliage environment, for example, doppler shift caused by tree leaves and

branches blowing in the wind makes the target detection difficult. Despite of the

dynamic and impulsive nature of background foliage clutter, it was also shown to

be a rich scattering environment that multi-path propagation effects could dominate

received echoes containing both target and clutter information[23].

In this paper, our goal is to make the target appear from the background foliage

clutter based on our knowledge in signal processing and sensor networks using UWB

radar. Compare to other types of signals used on foliage target detection study,

such as waveforms used in UHF and VHF bands [24] to analyze attenuation and

backscatter statistics of foliage and Millimeter-Wave radar [25] [26] used to detect

target underneath foliage-cover, UWB radar operates at a relatively lower frequency

band between 100MHz and 3GHz with a large fractional bandwidth greater than

20 percent. With such characteristics UWB radar is more suited for short distance
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application. However, the good penetration ability also high range resolutions make

UWB radar has more advantage than narrow band signals in terms of target detection.

Some previous works related to sense-through-foliage target detection using

UWB radar have been conducted. In [27], DCT based approach is proposed to detect

target through foliage. [28] proposed differential and STFT based sense-through-

foliage approach. Meanwhile, some information theory based methods using mutual

information [29] and relative entropy [30] [31] are applied in this topic. Also intensive

studies can be found in literature[32][33][34][35][36][37][38]. Due to the characteris-

tic of foliage which makes it difficult to use conventional time-frequency analysis to

extract features of radar echoes, we are inspired by Empirical Mode Decomposition

(EMD) for it has been widely used to analyze non-stationary and nonlinear signals.

EMD decomposes multi-component signals into several frequency components know

as intrinsic mode functions (IMFs) and a trend function (residue) through a sifting

process [39]. Some research works have employed EMD method to analyze radar

target signal corrupted by sea clutter[40]. In [41] and [42], EMD based method are

also applied to sense through wall human target detection which could be treated

as an opposite scenario of sense-through-foliage since the human target has micro

doppler shift due to breadth and heart beat while the background clutter (wall) is

stationary. Also in [43] EMD is shown to act as a dyadic filter bank in stochastic

situations involving broadband noise.

The rest of this chapter is organized as follows: In Section II, we introduce

the measurement and data collection used in the paper. In Section III, we propose

the EMD based sense-through-foliage target detection approach with good signal

quality. In Section IV, the combined RAKE structure and sense-through-foliage target

detection is discussed when the signal has poor quality. In Section V, we draw the

conclusion.
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4.2 Data measurement and collection settings

In this work, the experimental sense-through foliage data is from Air Force

Research Lab[44]. The foliage penetration measurement effort began in late summer

and continued through early winter. Late summer foliage involved in the measurement

has decreased water content due to the limited rainfall. Here we use the data measured

in November which involved late fall and winter largely defoliated but dense foliage.

The experiment was constructed on a seven-ton man lift with a total lifting

capacity of 450 kg. The principle pieces of equipment secured on the lift are: Barth

pulser, Tektronix model 7740B oscilloscope, dual antenna mounting stand, two an-

tennas, rack system, IBM laptop, HP signal generator, custom RF switch and power

supply and Weather shield (small hut). Throughout this work, a Barth pulse source

(Barth Electronics, Inc. model 732 GL) was used. The pulse generator uses a coaxial

reed switch to discharge a charge line for a very fast rise time pulse outputs. The

model 732 pulse generator provides pulses of less than 50 picoseconds rise time, with

amplitude from 150 V to greater than 2 KV into any load impedance through a 50

ohm coaxial line. The generator is capable of producing pulses with a minimum width

of 750 ps and a maximum of 1 microsecond. This output pulse width is determined

by charge line length for rectangular pulses, or by capacitors for 1/e decay pulses.

The target is a trihedral shape metal reflector placed at 600 ft round trip distance

from UWB bistatic antennas as show in Fig.4.1.

For the data used in this paper, each data collection contains 16,000 samples

with a 50 picosecond sample interval for a total time duration of 0.8 microseconds at

a rate of approximately 20 Hz. We considered two sets of data from this experiment.

Initially, the Barth pulse source was operated at low amplitude and 35 pulses reflected

signal were averaged for each collection. Significant pulse-to-pulse variability was

noted for these collections. This collection is referred as ”poor” signal quality data.
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Figure 4.1. A trihedral metal target placed at 300 feet from the lift.

Later, good signal quality data were collected using higher amplitude pulses and 100

pulses reflected signals were averaged for each collection. This collection is referred

as ”good” signal quality data.

4.3 Empirical Mode Decomposition and Hilbert Transform

Empirical Mode Decomposition was introduced as part of Hilbert-Huang Trans-

form(HHT) for non-stationary and non-linear signal time-frequency analysis[9]. The

main idea of EMD is to decompose the given multi-component signal into a series of

finite intrinsic oscillatory basic functions and a residue through the sifting process.

These mono-component basic functions are called intrinsic mode functions (IMF)

which satisfy two conditions: (1) the number of extrema (local maximum or local

minimum) and the number of zero crossings are either equal or differ at most by one;

(2) the average of the envelope defined by the local maxima and the envelope defined

by the local minima is zero at all points [9].
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Compared to other other time-frequency analysis techniques like Short-Time

Fourier Transform (STFT) and wavelet transform, The EMD algorithm is not only

a fully data-driven but also adaptive method. The STFT usually requires a suitable

window size selection to match with the special frequency content of the signal which

is not known a priori. The wavelet transform performance is greatly affected by the

types of basic wavelet function employed [45]. Unlike these methods, the EMD does

not require a priori basis functions and decompose the signal based on its intrinsic

properties. The sifting process used in EMD of a given signal x(t) is described as

follows:

1. Identify all the extrema (local maxima and minima) of x(t).

2. Interpolate the local maxima using cubic spline line to obtain the upper envelope

denote as eupper(t). Repeat the same procedure for local minima to obtain the

lower envelope elower(t).

3. Calculate the mean of upper and lower envelope m1(t) = (eupper(t)−elower(t))/2.

4. Calculate the difference between x(t) and m1(t) as h1(t) = x(t)−m1(t).

5. Examine if h1(t) satisfy the two criteria of IMF. If it does not treat h1(t) as

the original signal x(t) and repeat step1 - step4. Denote the the mean of upper

and lower envelopes constructed from the extrema from h1(t) as m11(t). Then

the difference between h1(t) and m11(t) is given as h11(t) = h1(t) − m11(t).

Repeat this process k times until h1k(t) = h1(k−1) − m1k(t) meets the IMF

criteria. Then the first IMF is extracted from the signal and designated as

c1(t) = h1k(t). However, to guarantee the extracted IMFs has enough physical

meaning, a Cauchy type stop criterion is introduced to stop the sifting process

by limiting the standard deviation computed from two consecutive sifting results

as the following[46]:
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SD =
T∑

t=0

[∣∣h1(k−1)(t)− h1k(t)
∣∣2

h2
1(k−1)

(t)

]
(4.1)

Typical value for SD can be set between 0.2 and 0.3 [46].

6. Subtract c1(t) from the the rest of signal x(t), the residue r1(t) = x(t)− c1(t) is

treated as signal x(t) and repeat step1 - step5 n times to extract the rest IMFs

from c2(t) to cn(t).

r2(t) = r1(t)− c2(t)

...

...

rn(t) = rn−1(t)− cn(t)

The sifting process ends until no IMF can be obtained from the residue rn(t)

which means that rn(t) becomes a monotonic function. Therefore the original

signal can be represented by all the extracted IMFs and the residue as:

x(t) =
n∑

i=1

cj(t) + rn(t) (4.2)

Since the extracted intrinsic mode functions can be seen as monocomponent sig-

nals, it is straightforward to compute the Hilbert transform for each IMF to construct

analytical signal which has meaningful instantaneous frequency. The ĉj(t) denotes the

complex conjugate of the real valued signal cj(t) can be determined as:

ĉj(t) = H[x(t)] =
1

π
p.v.

∫ −∞

∞

x(τ)

t− τ dτ, (4.3)

Where p.v. indicates the Cauchy principal value. The analytical signal obtained from

each IMF is then defined as:

sj(t) = cj(t) + iĉj(t) = aj(t)e
iθj(t), (4.4)
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where

aj(t) =
√
c2
j + ĉj

2, (4.5)

θj(t) = arctan(
ĉj
cj

). (4.6)

aj(t) denotes the instantaneous amplitude and θj(t) is denotes the phase func-

tion. The instantaneous frequency is:

ωj =
dθ

dt
(4.7)

After performing the Hilbert transform for each IMF component, the original

signal can be expressed as the real part of the following:

x(t) = <
{

n∑

j=1

aj(t)e
[i
∫
ωj(t)dt]

}
(4.8)

Then we are able to calculate the Hilbert spectrum H(ω, t) as the frequency-

time distribution of the amplitude.

4.4 Sense-through-foliage target detection with good signal quality using EMD ap-

proach

In Fig.4.2, we plot the two collections of data with good signal quality. Fig.4.2(a)

shows the ones without target on range and Fig.4.2(b) shows the received echoes with

target appears around sample 13,900. To gain a more clear view, we provide the ex-

panded views of Fig.4.2 from sample 13,001 to 15,000 as plotted in Fig.4.3(a) without

target and Fig.4.3(b) with target respectively. Since the Fig.4.3(a) has no target on

range, it can be treated as the pure background clutter response. Therefore, It is

intuitively to calculate the echo difference between Fig.4.3(a) and Fig.4.3(b) which is

the result shown in Fig.4.3(c). From Fig.4.3(c) we can observe that target appears at

around sample 14,000. However, practically it is impossible for us to obtain both col-
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Figure 4.2. Measurement with very good signal quality and 100 pulses average. (a)
No target on range, (b) with target on range (target appears at around sample 13,900)
.

lection of data(Fig.4.3(a) and Fig.4.3(b)) simultaneously. We can only detect target

based on only one of them(Fig.4.3(a) or Fig.4.3(b)).

The real world data usually tends to be non-stationary in nature. Motivated

by this, we apply the EMD algorithm to our two collections of data to see if any

useful information about the target can be extracted. Since the EMD is an iterative

algorithm which is time consuming, in this paper, by comparing the results using

different stopping criteria, we confine the each sifting process to 10 iterations and

the obtained result is good enough to conduct target detection task. After applying
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Figure 4.3. Measurement with very good signal quality and 100 pulses average. (a)
Expanded view of traces (with target) from samples 13,001 to 15,000. (b) Expanded
view of traces (without target) from samples 13,001 to 15,000. (c) Echo differences
between (a) and (b).
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Figure 4.4. EMD results with good signal quality. (a) Original signal and IMF1-4 with
no target on range, (b) Original signal and IMF1-4 with target on range (Observed
target signature in IMF1 at around sample 13,900).

EMD for samples provided in Fig.4.3(a) and Fig.4.3(b), we plot the first three order

IMFs extracted from the sifting process in Fig.4.4.

Observe in Fig.4.4(b) which is the EMD result of echoes with target, the first

IMF which contains the highest frequency component of original signal has a higher

amplitude oscillation at around sample 14,000 compared to other sample locations.

Due to the fact that the foliage clutter is very impulsive and behaves like Gaussian

distributed noise [27] in the frequency domain, it is impossible to separate target and
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noise in each IMF which means each IMF contains both information about target

and foliage clutter. However, in the first IMF sample locations other than sample

around 13,900 have low amplitude fluctuation and behaves like Gaussian noise. We

can conclude that the high energy oscillation around sample 13,900 in IMF1 is the

signature of the target and this also imply higher signal to clutter ratio (SCR) in high

frequency. We also plot the IMFs extracted from the signal without target as shown

in Fig.4.4(a) that in the first IMF we didn’t notice any obvious change in all samples

and this can represent the foliage clutter feature. This also proved our conclusion by

comparing the two figures. Fig.4.5 is the Hilbert Spectrum of the original signal.
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Figure 4.5. Hilbert spectrum of original signal.

4.5 Sense-through-foliage target detection with poor signal quality using RSN and

EMD approach

As mentioned in Section II, when the Barth pulse source was operated at low

amplitude, the sample values are not obtained based on sufficient pulse response

averaging (averaged over 35 pulses for each collection) and this results in poor re-

turn signal quality. We plot the two collections of data with poor signal quality in
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Figure 4.6. Measurement with poor signal quality and 35 pulses average. (a) Ex-
panded view of traces (no target) from sample 13,001 to 15,000. (b) Expanded view
of traces (with target) from sample 13,001 to 15,000. (c) The differences between (a)
and (b). .

Fig.4.6(a) without target, Fig.4.6(b) with target on range and Fig.4.6(c) the differ-

ence between two data collections. From Fig.4.6(c) we are not able to tell whether

there’s the target. Also, in Fig.4.7(a) and Fig.4.7(b) we draw the extracted IMFs re-

sults using EMD approach from these two data collections. From the high frequency
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IMFs we are not able to observe any noticeable target signature. However, significant

pulse-to-pulse variability is observed in the UWB radar receive echoes. This motivate

us to explore the spatial and time diversity using Radar Sensor Networks (RSN).
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Figure 4.7. EMD results with poor signal quality. (a) Original signal and IMF1-4
with no target on range, (b) Original signal and IMF1-4 with target on range. .

In this case, we propose to use a RAKE structure to handle poor signal quality

target detection problem. RAKE structure is an effective diversity combining method

due to the fact that uncorrelated radar measurements could experience different fading

levels. Echoes from different cluster-member radars are combined by the cluster head.
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We consider two different diversity combing schemes to implement Rake structures:

equal gain combing and maximum ratio combining. The equal gain combined signal

can be formulated as the following:

xeq(n) =
1

M

M∑

i=1

xi(n). (4.9)

Here M is the number of radar echoes used in the combining.

The maximum ratio combing scheme uses a weighted average wi determined by

the power of each echo xi(n) (n is the sample index),

Ei = var(xi(n)) + [mean(xi(n))]2, (4.10)

where

wi =
Ei∑M
i=1Ei

. (4.11)

The maximum ratio combined signal has following form:

xmrc(n) =
M∑

i=1

wixi(n) (4.12)

After the diversity combing EMD is applied to the combined signal. We plot

the IMFs extracted from two cases in Fig.4.9(a) (without target) and Fig.4.9(b) (with

target). In Fig.4.9(b), from first IMF with highest frequency component, we cannot

tell if there’s a target. However, in the second IMF with second highest frequency, we

observed a high amplitude oscillation around sample 14,000. Also in Fig.4.9(a) which

represents the IMFs of foliage clutter we do not observe anything in the first two

IMFs. Therefore, we conclude this high amplitude oscillation in IMF2 is the target

signature. This observation also in accordance with the result of target detection of

good quality signal.
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Figure 4.8. Block diagram of RAKE struture.

In our database, totally 70 radar echoes can be used to construct the Rake struc-

ture receiver. We further investigates the RAKE structure performance at different

combing levels. For example, we randomly choose M = 10, M = 20 and M = 30

radar echoes in the database and 10,000 Monte Carlo simulations are performed at

each combing level. Fig.4.10 shows the probability of detection with different thresh-

olds for equal gain combing and maximum ration combing scheme. From the figure

we can see that the maximum ratio combing method outperforms equal gain comb-

ing method at each combing level. Using more radars also improves the detection

accuracy.

4.6 Conclusions

In this paper, we proposed an EMD based approach for sense-through-foliage

target detection. After extracted IMFs from the original signal through sifting pro-

cess, we are able to observe target signature in the first IMF which represents the

highest frequency component when the signal quality is good. When the signal qual-

ity is poor and a single collection of radar echo cannot carryout target detection, a
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Figure 4.9. EMD results with poor signal quality after RAKE structure combing. (a)
Original signal and IMF1-4 with no target on range, (b) Original signal and IMF1-4
with target on range. (Observed target signature in IMF2 at around sample 14,000).
.

RAKE structure in RSN using cluster-head radar by combining echoes from differ-

ent cluster-member radars is used for preprocessing before applying EMD algorithm.

From the second extracted IMF we are able to find similar target signature as the

one appears in good quality signal. From the observation we also conclude that the

signal-to-clutter ratio (SCR) in this sense-through-foliage scheme is significant in high

frequency components of the original signal.
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CHAPTER 5

UWB Radar Target Detection using Hidden Markov Models

5.1 Introduction

In this chapter we propose a target detection and classification approach using

Hidden Markov Models (HMMs). Hidden Markov Model is used as an classifier to

distinguish between the presence of target in a background clutter and the pure clut-

ter response. Two sets of features including common descriptive statistic features and

radar signal features are extracted. Features have less correlation to each other are

selected based on the feature covariance matrix and feed them into Hidden Markov

Model for training. Sense-through-foliage target detection and Sense-through-Wall

human detection are conducted using real world Ultra Wide Band (UWB) data. Ex-

periment results show HMM based method provides good detection and false alarm

rate for poor quality radar echoes in position 1 in the sense-through-foliage target de-

tection scenario. Sense-through-wall human experiment results shows Hidden Markov

Model based method could successfully detect stationary human targets using 2 states

HMMs, but with a lower detection accuracy distinguish between stationary human

and human with hand motion. Parameters are also investigated for HMMs to opti-

mally model UWB radar signals.

Radar target detection is an important technique in remote sensing research

and homeland security applications. The returned echoes from unwanted objects

(known as clutter) such as ground, sea, trees, buildings and atmospheric turbulences

and can often made the real target fade into the environment and complicates the

detection task. For example, clutter echoes can contain much more power than target

52



echoes and threshold based detection method may result in high false alarms rate.

In practical situations, warfighters on the battleground are always facing unknown

non-line-of-sight enemy threats from covers. Law enforcement and rescue missions are

confronted with situation to identify life signals behind walls and ruins. Therefore,

increasing target detection accuracy is of great importance for these applications.

In this work, we deal with both sense-through-foliage and sense-through-wall

target detection problems. Considering the non-stationary nature of foliage environ-

ment, doppler spread induced by clutter motion and multi-path clutter backscattering

can degrade detection performance. We further consider a more challenging situation

that data collected from radar sensors is not perfect, for example, poor quality echo

signal. Sense-through-wall human detection relies on capturing doppler shift caused

by micro motion ( e.g. human breath and chest movement) and movement[51]. How-

ever, irregular contour of human bodies made themselves not perfect radar signal

reflectors. Good signal reflectors like metallic objects return signals usually have

dominant path.

UWB radar is characterized by a large instantaneous fractional energy band-

width and waveforms formed by pulses with very short duration[52]. Good penetra-

tion ability and high range resolutions make UWB radar a good candidate for target

detection behind clutter.

Hidden Markov model as a dynamic bayesian network (DBN) is a statistical

model used to model temporal data and especially have great success on like speech

recognition[53] [54], text classification [55] [56], machine translation[57] and other

pattern recognition applications[58] [59] [60]. Recently, Hidden Markov Model based

method have been applied to variant pattern recognition problems including radar

target detection, classification and tracking problems since radar signal is essentially

temporal. Hidden Markov Model models a stochastic process with a sequence of
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observations produced by a underlying unobserved states transitions. The states are

”Hidden” and follows a Markov process. Compared to deterministic model, Hidden

Markov Model has rich mathematical foundation and model the signal as a parametric

random process. The parameters of such random process can be precisely estimated

using well-defined algorithms. In this paper, we propose to use Hidden Markov Model

based method for UWB radar target detection by constructing HMMs for target

and non-target case. The results presented by this paper provides validation and

performance evaluation of using such method for radar target detection. The testing

data are real world collected UWB radar data and experiment result shows that

Hidden Markov Model is a good candidate for UWB radar target detection task.

Furthermore, HMM parameters are studied for optimally model UWB radar signals.

The rest of this chapter is organized as follows: In Section II, we introduce

the background knowledge of Hidden Markov Models. In Section III, we propose the

HMM based target detection approach. In Section IV, we provide experiment results

obtained by two sets of UWB testing data. In Section V, we draw the conclusion.

5.2 Introduction to Hidden Markov Model

Hidden Markov Model(HMM) was firstly introduced in the late 1960s and have

gained increasing popularity for a wide rage of applications. By characterizing the

statistical properties of the signal model, HMMs can be used to model both station-

ary or non-stationary random process. Generally, an HMM consists of two random

processes. The first process has dimension of time which is essentially a first order

Markov chain with N finite states defined by

S = {S1, S2, ..., SN} (5.1)
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In the second random process, each state produces an observation result which is

directly visible. However, the states are ”Hidden” and not observable. In other

words, we cannot directly tell the exact state where the observation occurs. The T

observation symbols per state is

O = {O1, O2, ..., OT} (5.2)

A basic HMM is characterized by three sets of parameters, we use qt represents the

state of system and vt represents the observation symbols at time t:

1. Initial state probability distribution matrix π = {πi}, where each element πi =

P (q1 = Si), 1 ≤ i ≤ N is the probability that the system is in state i at initial

time t = 1.

2. State transition probability distribution matrix A = {aij}, where aij = P (qt =

Sj | qt−1 = Si), 1 ≤ i, j ≤ N is the probability that the system is in state j at

time t given that the system is in state i at time t− 1.

3. Observation symbol probability distribution matrix B = {bj(t)}, where bj(t) =

P (vt = Ot | qt = Sj), 1 ≤ j ≤ N, 1 ≤ t ≤ T is the probability that the output

observation symbol is Ot given the system is in state j at time t.

The notation λ = {A,B, π} denotes a complete parameter set of HMM. In

addition, if the observation symbol probability density function is discrete, a HMM

is called Discrete Hidden Markov Model. Otherwise, it is called Continuous Hid-

den Markov Model. For continuous case, the states transition probability density

functions are typically represented as a form of Gaussian mixtures[61][62][63][64].

HMM has been proven useful to solve real world problems, which can be cate-

gorized into three basic categories[53]:

1. Evaluation. Compute the probability of an observation sequence P (O | λ) given

a model λ = (A,B, π). One possible solution for calculating P (O | λ) is by
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summing the joint distribution P (O,Q | λ) over every possible state sequences

based on Bayesian method,

P (O | λ) =
∑

Q

P (O,Q | λ)P (Q | λ) (5.3)

=
T∏

t=1

P (Ot | qt, λ)
T∏

t=1

P (qt | qt−1, λ) (5.4)

=
∑

q1,q2,...qT

πq1bq1(O1)aq1q2bq2(O2)...aqT−1qT bqT (OT ) (5.5)

This brute force computing method involves the order of 2TNT calculations

which is not practical to satisfy real application demand[65]. Fortunately, an

alternative approach called forward algorithm can efficiently compute P (O | λ)

with much lower complexity of O(N2T ). Defining forward probability αt(j)

as the probability of being in state j after observing first t partial observation

symbols O1, O2, ...Ot:

αt(j) = P (O1, O2, ...Ot, qt = Sj | λ) (5.6)

αt(j) can be solved using an inductive fashion in three steps:

(a) Initialization:

α1(j) = πjbj(O1) 1 ≤ j ≤ N (5.7)

(b) Recursion:

αt(j) =
N∑

i=1

αt−1(i)aijbj(Ot) 1 ≤ j ≤ N, 1 ≤ t ≤ T (5.8)

(c) Termination:

P (O | λ) =
N∑

i=1

αT (i) (5.9)
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2. Decoding. Find an optimal hidden state sequence S associate with an observa-

tion sequence O given a model λ = (A,B, π). There are several criteria to define

the ”optimal” sequence. The most widely used criteria is find the state sequence

that maximize the P (Q,O | λ) by employing the Viterbi Algorithm[66].

3. Learning. Estimate model parameters λ = (A,B, π) to maximize the proba-

bility of given observation sequence P (O | λ). To find the optimal parameters

of the HMM associate with the observation sequence is difficult and there”s no

way to analytically find the optimal estimation. However, P (O | λ) can be lo-

cally maximized using the Baum-Welch algorithm[67] [68]to efficiently find the

maximum likelihood estimation of model parameters. Baum-Welch algorithm

is essentially a special case of the Expectation-Maximization algorithm using

iterative estimation approach given a initial guess of the probabilities. In each it-

eration a better estimation are computed to guarantee that P (O | λ̂) > P (O | λ)

until the algorithm converges. To describe the Baum-Welch algorithm, we firstly

needs to define a backward probability βt(i) as the probability of given the

system being in state j at time t after observing partial observation symbols

Ot+1, Ot+2, ...OT from t+ 1 to the end:

βt(i) = P (Ot+1, Ot+2, ...OT | qt = Si, λ) (5.10)

Similar to the forward probability, βt(i) can also be computed inductively:

(a) Initialization:

βT (i) = 1 1 ≤ i ≤ N (5.11)

(b) Recursion:

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j) 1 ≤ j ≤ N, 1 ≤ t ≤ T (5.12)
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Before estimation of parameter A and B, a probability ξt(i, j) is defined as the

probability of being in state i at time t and state j at time t+1, given the observation

and the model:

ξt(i, j) = P (qt = Si, qt+1 = Sj | O, λ) (5.13)

and can be computed using forward and backward probabilities as:

ξt(i, j) =
P (qt = Si, qt+1 = Sj, O | λ)

P (O | λ)
(5.14)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(5.15)

Another probability γt(j) is also defined as the probability being in state Sj at

time t given the observation and model:

γt(j) = P (qt = Sj | O, λ) (5.16)

which can be computed as

γt(j) =
P (qt = Sj, O | λ)

P (O | λ)
(5.17)

=
αt(j)βt(j)∑N
j=1 αt(j)βt(j)

(5.18)

The EM algorithm can be used to reestimate the model parameter A and B

after initialization. Each iteration can be divided in to E-step(Expectation) and M-

step(Maximization):

E-step:

1. Recursively compute αt(j) and βt(j)

2. Compute ξt(i, j) and γt(j)

M-step:

Reestimate aij and bij

1.

âij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑N
k=1 ξt(i, k)

(5.19)
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2.

b̂j(vk) =

∑T
t=1,s.t.Ot=vk

γt(j)∑T
t=1 γt(j)

(5.20)

5.3 Hidden Markov Model Based UWB Radar Target Detection

In our work, our task is to detect target in background clutter using UWB

radar echoes. To tackle with this problem using Hidden Markov Model based method,

Baum-Welch algorithm is firstly used to train different HMMs for both target and

no target respectively. Then the testing sequences can be feed into each HMM to

obtain a likelihood for each model. The decision of whether target is present or not is

based on which model the testing sequence scores a higher likelihood. The detection

method is shown in Fig.5.1.

Feature	
Extraction

Feature	
Selection

HMM	model

Training 
Sequence

Feature 
Vector 

Baum-Welch 
Algorithm Testing

Sequence
Decision

Forward
Algorithm

Figure 5.1. block diagram of HMM based target detection.

5.3.1 Feature Extraction and Selection

To provide effective input sequences for HMM training, we need to extract fea-

tures that can well represent the target signature. Firstly, based on prior knowledge,

a small range of signal around target on-site location should be carefully chosen. The

selected signal is evenly divided into K windows. The number of windows K cor-
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responds to the number of observations described in the last section. The temporal

progression of these individual windowed signal can be seen as the result of hidden

states transitions. Furthermore, in each window, two sets of features using time-

frequency analysis are extracted to form a feature vector. The first set of features are

some common statistics, for example, mean, variance, skewness, kurtosis, entropy,

Dickey-Fuller test etc. Another feature set represents signal characteristics such as

peak to peak ratio, crest factor, energy, RMS, number of abrupt changes, number of

small changes, mean frequency etc. We denote the feature vector of the ith window

as Xi = (X i
1, X

i
2, ..., X

i
L)T where L is the number of extracted features. We normalize

the elements of feature vectors X between [−1, 1] to ensure they have comparable

magnitude in order to guarantee good estimation result. Fig.5.2 shows signals are

divided into windows.

…… 

S(1) S(2)     
……                 

S(K) S(K-1) 

Figure 5.2. signal are evenly divided into K windows and L features are extracted
with respect in each window.
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Usually, the manually picked feature set may not be an efficient presentation

of the radar signals, for example, two or more features could be mutually correlated

resulting possible redundancy in the feature set. The elimination of features redun-

dancy can be done by many different criteria. In this paper, we choose to eliminate

features based on their covariance matrix

Σij = cov(Xi, Xj) =
E[(Xi − µXi)(Xj − µXj)]

σXiσXj
> δ (5.21)

where δ is the threshold. We select l features with less cross correlation to others.

The feature relevance can also be evaluated using mutual information [69].

5.3.2 Model Selection

Hidden Markov Models provide versatile modeling structures. For applications

associate with different physical processs, designing proper HMM topology is crucial

for successful presentation of modeled signal. Most commonly used HMMs are ergodic

and left-right (Bakis) models [70] shown in figure X. The ergodic model has the

property that every state can be reached from other states which means the state

transition matrix A has no zero elements. The left-right model is particularly used to

model signal properties change over time, for example, speech signals. The left-right

model has the assumption that the states transition only occurs from lower order

states to higher order states but not vice versa. To model radar target signals using

HMM, the states transitions reflect radar range profiles of reflected energy and the

progression of the radar echoes may contain information transferred between clutter

and target. Therefore, an ergodic states transition model is more suitable to model

radar signals.
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5.3.3 HMM training and target detection

After selected l features used to represent signal profile in each window, these

feature vectors of different windowed signals X = {X1,X2, ...,XT} can be treated

as distinctive observation sequences for the input of Hidden Markov model training.

To use discrete HMM, the feature vectors need to be quantized as discrete symbols

using certain codebook . However, quantization may cause performance degradation

due to the lost of precision. We implement continuous HMM assuming that the

observation sequences are drawn from a mixture of M l-dimensional multivariate

Gaussian densities. An M -component Gaussian mixture model has the form:

bj(X
t) = P (X t | Sj) (5.22)

=
M∑

m=1

wjmN (µjm,Ujm), (5.23)

1 ≤ j ≤ N, 1 ≤ m ≤M, 1 ≤ t ≤ T (5.24)

where wjm is the weight parameter of the mth mixture. N indicates a multi-

variable Gaussian density function:

N (µ,U) =
1

(2π)l/2|U |1/2 exp

(
−1

2
(X t − µ)TU−1(X t − µ)

)
(5.25)

with l mean vector µjm and l × l covariance matrix Ujm for the mth mixture

in state j. T denotes transpose. The weight parameters cjm has the constraint:

M∑

m=1

wjm = 1, 1 ≤ j ≤ N, 1 ≤ m ≤M (5.26)

Therefore, the a set of parameters λ = {A,wjm,N (µjm,Ujm), π} can be used to

denote a continuous HMM with Gaussian mixture observation matrix. For continuous

HMM, the parameter reestimation formula is given by[53]:
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ˆwjm =

∑T
t=1 γt(j,m)∑T

t=1

∑M
m=1 γt(j,m)

(5.27)

µ̂jm =

∑T
t=1 γt(j,m)Xt

∑T
t=1 γt(j,m)

(5.28)

Ûjm =

∑T
t=1 γt(j,m)(Xt − µjm)(Xt − µjm)T∑T

t=1 γt(j,m)
(5.29)

where γt(j,m) is the probability of being in state j at time t with the mth

mixture component for X t:

γt(j,m) =

(
αt(j)βt(j)∑N
j=1 αt(j)βt(j)

)(
ωjmN (µjm,Ujm)∑M
m=1 ωjmN (µjm,Ujm)

)
(5.30)

5.4 Training Data Set

In this work, experiments are conducted using Hidden Markov Model based

target detection approach on two data sets: sense-through-foliage and sense-through-

wall UWB radar data.

5.4.1 Sense-Through-Foliage Data Measurement

Sense-through foliage UWB data is from Air Force Research Lab[44]. The

foliage penetration data are collected during late fall and winter with dense foliage.

The experiment was constructed on a seven-ton man lift. The principle pieces of

equipment secured on the lift are: Barth pulser, Tektronix model 7740B oscilloscope,

dual antenna mounting stand, two antennas, rack system, IBM laptop, HP signal

generator, custom RF switch and power supply and Weather shield (small hut). The

pulse generator uses a coaxial reed switch to discharge a charge line for a very fast

rise time pulse outputs. The target is a 1.5 meter trihedral metal reflector placed

at 600 ft round trip distance from the base of the lift with the antenna 24 feet from

the ground. Different data were taken from multiple positions with different azimuth
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angels shown in figure X. Each data collection contains 16,000 samples for a total

time duration of 0.8 microseconds at approximate sample rate of 20 Hz. Initially, the

Barth pulse source was operated at low amplitude and 35 pulses reflected signal were

averaged for each collection. This collection is referred as “poor” signal quality data.

Later, good signal quality data were collected using higher amplitude pulses and 100

pulses reflected signals were averaged for each collection. This collection is referred

as“good” signal quality data. In this experiment, we use the poor signal quality data

set for training and testing data. Three different locations data are available for poor

signal quality data. Each position includes 35 radar echoes for both target and no

target cases.

Position 1

Position 2

Position 3

Target

Figure 5.3. Radar echoes are collected from different positions.
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5.4.2 Sense-Through-Wall Data Measurement

Sense-through-wall data is collected using P220 UWB radar with a center fre-

quency of 4.3GHz and 10 dB bandwidth of approximately 2.3GHz. UWB radar

works in monostatic mode where pulse waveforms are transmitted from a single omni-

directional antenna. The received waveform are collected by another omni-directional

antenna port. The measurement were taken from different locations with different

types of walls [72] [73] [74]. Fig.5.4 and Fig.5.5 shows a human target stand behind a

30-cm thick gypsum wall with 6.5 feet to UWB radar on the other side. Fig.5.6 and

Fig.5.7 shows human position behind a 4-cm wooden door at a distance around 7.5

feet from UWB radar. At each location, 100 radar scans are collected with stationary

human target, without human target and human target with hand motion.

Figure 5.4. Location of the Human target on one side side of a thick Gypsum partition
wall.
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Figure 5.5. Location of the UWB radar on another side of a thick Gypsum partition
wall.

5.5 Experimental Results

For sense-through-foliage poor quality signal data, the target appears at around

14,000 sample with a approximate on-site duration of 250 samples. To ensure that

complete target information is included, we select 400 samples around 14,000 used

for Hidden Markov Model training and testing for target and no target case. Then

this 400 samples are evenly divided into different windows. Features are extracted

and 13 features with minimum cross-correlation to other features are selected. The

covariance matrix of selected 13 features are shown below:
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Figure 5.6. Location of the Human target on one side side of a Wooden Door.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13



0.332 0.114 0.239 0.157 −0.090 −0.006 −0.035 0.191 0.003 −0.033 0.170 0.189 −0.012 X1

0.114 0.324 0.234 −0.146 −0.032 −0.003 0.011 −0.028 0.020 −0.007 −0.166 −0.021 0.066 X2

0.239 0.234 0.312 0.006 −0.069 −0.091 −0.012 0.106 0.010 −0.042 0.004 0.110 0.035 X3

0.157 −0.146 0.006 0.329 −0.057 0.007 −0.111 0.201 −0.013 −0.052 0.292 0.193 −0.065 X4

−0.090 −0.032 −0.069 −0.057 0.300 0.026 0.044 −0.207 0.027 0.143 −0.053 −0.185 0.050 X5

−0.006 −0.003 −0.091 0.007 0.026 0.299 −0.007 −0.033 0.007 0.055 0.003 −0.036 −0.009 X6

−0.035 0.011 −0.012 −0.111 0.044 −0.007 0.304 −0.078 0.023 0.123 −0.039 −0.076 0.038 X7

0.191 −0.028 0.106 0.201 −0.207 −0.033 −0.078 0.322 −0.016 −0.148 0.192 0.316 −0.040 X8

0.003 0.020 0.010 −0.013 0.027 0.007 0.023 −0.016 0.374 0.008 −0.020 −0.011 −0.002 X9

−0.033 −0.007 −0.042 −0.052 0.143 0.055 0.123 −0.148 0.008 0.309 −0.007 −0.144 0.019 X10

0.170 −0.166 0.004 0.292 −0.053 0.003 −0.039 0.192 −0.020 −0.007 0.324 0.180 −0.062 X11

0.189 −0.021 0.110 0.193 −0.185 −0.036 −0.076 0.316 −0.011 −0.144 0.180 0.320 −0.038 X12

−0.012 0.066 0.035 −0.065 0.050 −0.009 0.038 −0.040 −0.002 0.019 −0.062 −0.038 0.339 X13

For 35 radar echoes at each location, we use 20 sequences for HMM training and

15 sequences for testing. Finally, all three location data are combined together with

a total of 105 sequences, 60 sequences are used for training and 45 sequences are

used for testing. Baum-Welch algorithm are used to train two HMMs for target

and no target denoted as λTar and λNotar. Fig.5.8 and Fig.5.9 plots the Baum-Wech

67



Figure 5.7. Location of the UWB radar on another side of a Wooden Door.

learning curve of 2 states and 16 states HMMs training respectively, we can observe

the log-likelihood reached a plateau indicates the algorithm converges.

To determine appropriate number of states is important for HMM to efficiently

model the signal structure. However, there’s no simple theoretically correct criteria

to choose the number of HMM states. Increasing the number of states usually yields

higher likelihood but comes with the penalty of increasing the number of parameters

which may complicate the model and lead to overfitting. There are several states

discovery criteria exists in current literature [71]. A commonly used approach is to

comprehensively consider Akaike Information Criteria (AIC) and Beyesian Informa-

tion Criteria (BIC) for states selection:

AIC = −2 ln(L̂) + 2p (5.31)

BIC = −2 ln(L̂) + ln(n)p (5.32)
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Figure 5.8. Baum-Welch training with 2 states HMM.

where ln(L̂) is the log likelihood, n is the number of data points and p is the

number of estimated parameters. For Hidden Markov Model, the number of estimated

parameters includes the elements of initial state distribution matrix π, state transition

matrix A and Gaussian mixture observation matrix parameters wjm,µjm and Ujm.

So p can be calculated as follows:

p = N(N + 1) +M(l2 + l + 1) (5.33)

The second terms of AIC and BIC score are the penalty terms increase with the

number of parameters. Generally lower value of AIC/BIC indicates a good fit. For

HMM, BIC generally has a larger punishment which leads to choosing more parsimo-

nious models. Figure X shows the log likelihood and AIC/BIC scores with increasing

number of states for sense-through-foliage HMM training.

From Fig.5.10 we can observe increasing likelihood with as number of states

goes up. However, we can see prominent BIC score increasing, AIC has not increased

much before the number of states increased to 6 as in Fig.5.11 This indicates a smaller

number of states HMM suits better for radar signal modeling.
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Figure 5.9. Baum-Welch training with 16 states HMM.

Then posterior likelihood of testing sequence Otest are calculated using both

pre-trained models: P1 = P (Otest | λTar) and P2 = P (Otest | λNotar), the decision rule

of whether the testing sequence is target or no target is to compare the likelihood:





P1 > P2 : Target

P1 < P2 : Notarget

The Baum-Welch algorithm requires initialization of model parameter drawn

from uniform distributions which could affect the detection probability. In HMM

training and testing, we use 100 Monte Carlo simulations to average out this random

effect. Table X shows the confusion matrix of sense-through-foliage target detection

results for three different positions and their combinations:

Position 1

No target Target

No target 99.03% 0.07%

Target 11.33% 88.67%
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Figure 5.10. Loglikelihood increase by adding more number of states.

Position 2

No target Target

No target 76% 24%

Target 17.57% 82.43%

Position 3

No target Target

No target 82% 18%

Target 28% 72%

Position 1+2+3

No target Target

No target 90.13% 9.97%

Target 33% 67%

Testing result shows Position 1 gives best probability of detection of 88% with a

false alarm rate of 0.07%. The other two position data yields lower probability of

detection with 82.43% and 72% and false alarm rate 24% and 18% respectively. The
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Figure 5.11. AIC/BIC score.

combination results shows 67% detection rate with 9.97% false alarm rate. Consid-

ering the experiment is conducted using poor signal quality radar echoes with lower

transmitting power, the testing result is reasonable and could be further improved if

signal quality is good. We can also find a lower probability of detection rate as three

different location radar echoes are combined. The reason of performance degradation

is that trihedral reflectors consisted of three electrically conductive surfaces used to

reinforce the backscattered electromagnetic waves as the incoming waveforms from

a certain direction and small variation of transmitting angels could cause low radar

cross section.

Fig.5.12 shows the probability of detection and false alarm rate affected by the

window size. It shows 20 and 25 samples window size gives best detection result and

lowest false alarm rate. Intuitive explanation is that smaller window size means more

observations of a given sequence are produced which provides more reliable estimation

of parameters. However, when the window size is too small (e.g. 10 samples window

size shown in Fig.5.12, the extracted features does not have any statistical significance.
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Figure 5.12. probability of detection and false alarm rate v.s. window size.

Fig.5.13 shows the probability of detection and false alarm rate affected by the

number of states. The result shows gradually decreasing of probability of detection

as the number of states increases. However, false alarm rate slowly increasing and

remains at a comparatively low level even with large number of states. The testing

result also confirms the fact that small number of states are more more suited to

model UWB signal HMMs for target detection task.

Fig.5.14 shows the probability of detection and false alarm rate affected by the

number of Gaussian Mixtures used to approximate observation probability density.

Testing results also shows performance degradation by using more Gaussian Mixtures.

However, probability of detection and false alarm rate remains stable when number

of Gaussian Mixtures goes large.

For sense-through-wall human target detection, we choose to use Gypsum wall

and wooden door data with radar scans of no human and stationary human behind
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Figure 5.13. probability of detection and false alarm rate v.s. number of states.

walls. In order to reduce the clutter, difference between consecutive radar scans are

used as HMM input:

Y =

scan(t)






sample1

sample2

...

sampleN

−

scan(t+ 1)






sample1

sample2

...

sampleN

In the sense-through-human target detection, we use N = 2 states, M = 2

Gaussian mixtures and window size wn = 20 as HMMs parameters. 2 HMMs regard-

ing no human and stationary human are trained for human target detection. Table

5.1 shows 100% probability of detection and 4.17% false alarm rate with human tar-

get behind gypsum walls. Table 5.2 shows 94.87% probability of detection and 6.25%

false alarm rate with human target behind wooden doors.
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Figure 5.14. probability of detection and false alarm rate v.s. number of Gaussian
Mixtures.

Gypsum Wall with 2HMMs
No human Human

No Human 95.83% 4.17%
Human 0% 100%

Table 5.1. Detection result of human target behind gypsum walls

5.6 Conclusion

In this work, we use continuous HMMs to model the UWB radar signals for

target detection. UWB radar signals around target location are windowed and feature

vectors are extracted as distinctive observations sequences for HMMs training and

testing. Sense-through-foliage and sense-through-wall experiments are conducted.

Experimental results show that HMM has good performance in sense-through-foliage

target detection in terms of probability of detection and false alarm rate. For sense-

through-wall scenario, HMMs also show good capability to distinguish radar signals

containing human target and no target. HMMs parameters are also investigated and
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Wooden Door with 2HMMs
No human Human

No Human 93.75% 6.25%
Human 5.12% 94.87%

Table 5.2. Detection result of human target behind wooden doors

results implicate that lower number states HMMs are better for UWB radar signal

modeling and target detection task.
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CHAPTER 6

Conclusions and Future Research

In this chapter, the conclusion of this dissertation is presented and followed by

is the future work.

6.1 Conclusions

This dissertation includes massive MIMO performance analysis in terms of out-

age capacity and two different radar target detection approaches for radar target

detection of UWB radar sensor networks.

Massive MIMO is a promising technology used for 5G networks. In Chapter

2, outage capacity of a single cell massive MIMO system are analyzed using scaling

laws. Capacity scaling law firstly proposed by Gupta and Kumar as an asymptotic

analysis method of large ad-hoc networks with certain increasing system parameters

such as the number of nodes and infrastructures scales with network capacity. For

5G networks, massive MIMO system are implemented with large number of antennas

to serve tens of users in each cell to improve capacity gain. Also base station densi-

fication is another technology aims to increase frequency reuse with smaller cells. In

this system configuration, how capacity scales with increasing number of users, base

stations and number of antennas is worth to look at. Theoretical uplink multi-user

MIMO system are derived. Under favorable propagation condition, small scale fad-

ing is averaged out according to asymptotic orthogonality of the propagation matrix

with increased base station antenna M . Large scale fading on throughput capacity

is examined for both high SNR and low SNR case. Close-form outage throughput
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capacity is derived. We proved that at low SNR, the infrastructure mode uplink

outage capacity is O

(
Mne

−
√

log( 1
n)δε
)

bit/s/Hz. At high SNR, the infrastructure

uplink outage capacity is O
(
n
b

log(Mb)−
√

n
b
δε
)

bit/s/Hz. Increasing number of

antennas at low SNR scenario yields better capacity gain compared to high SNR case.

In Chapter 3, we derived the uplink Massive MIMO capacity using different outage

criteria, e.g. asymptotic outage capacity and cell coverage ratio assuming log-normal

large scale fading for both single-cell and multi-cell scenarios. Numerical result analy-

sis show that shadow fading has significant impact on the performance. For single-cell

system, imperfect CSI caused by channel estimation error suffers more from shadow

fading effect. Performance degradation of multi-cell system are also observed with

aggressive frequency reuse factor as shadow fading parameter increases.

Radar target detection is an important task for military and civil research and

applications. Detection of target under strong background clutter is a challenging

task. Chapter 4 investigates target detection using Empirical Mode Decomposi-

tion(EMD) based detection method. EMD is an data driven algorithm used for

non-stationary signals analysis. In many areas like geophysics, economics, and en-

gineering, EMD shows promising ability for time series analysis. In our work, we

use EMD based approach for sense-through-foliage target detection. This method

successfully detect target and high amplitude pulse are observed in IMF1 when UWB

signal quality is good. When signal quality is poor, a single radar can not detect tar-

get using EMD approach. To improve the detection performance, A rake structure

combined with multiple radar echoes are used to enhance signal to clutter ratio and

from IMF2 of poor quality signal we can easily find similar target signature as the

one in good quality signal scenario. From the experimental result, we also conclude

that target return echo power is more concentrated in high frequency component as

the background clutter is foliage. Machine learning show great success in many re-
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search areas and real life applications recently. Chapter 5, Hidden Markov Model

(HMM) based method are proposed for UWB radar target detection. In this work,

HMMs are trained with extracted features from target and non target radar echoes

for learning and testing. In sense-through-foliage target detection, we use poor qual-

ity signals collected from multiple radar locations for experiment. Results show that

HMM method has 88% detection probability and 0.07% false alarm rate for position

1 data. Performance degrades as receivers has low effective radar cross-sections. In

sense-through-wall human target detection, we observe high detection accuracy and

low false alarm for stationary target. When hand motion involves, HMMs have lower

detection accuracy and 20% to 30% stationary human target signals are misclassified

as the ones with hand motions. We also show that small number of states HMMs

have better performance for UWB radar signal modeling and target detection task.

6.2 Future Research

6.2.1 Target detection based on multi-modality decision fusion

Empirical Mode Decomposition has been widely used in 1D non-stationary and

non-linear signal analysis. However, bidirectional EMD(BEMD) [47] [48] has been

proposed these years for image processing. A 2D-sifting process can be used to de-

compose the image into different modes containing different frequencies of the image.

These different modes show that the texture in each mode varies from fine and coarse.

From different texture features obtained in each mode, the BEMD could be used in

target detection in IR image [49] and sonar image [50] by separation of the target and

background. In order to improve the target detection performance, 2D image data

could be utilized to assist the target detection only using 1D data. EMD method can

be used as an preprocessing method for 1D and 2D data fusion.
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6.2.2 Extending HMM based approach for underwater target detection

In Chapter 5, HMM based target detection method shows good potential for

reliable detector design. In the future, HMM can be applied to multiple UWB radar

target detection and classification tasks. In our work, the detection tasks are basically

focused on metallic and human target under different clutters. Sea clutter is another

notorious environment made target detection difficult. HMM based target detection

method can be applied to underwater environment to model sonar signals for target

detection tasks.
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