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ABSTRACT 

A Thermal Inertia Approach to Precision Irrigation using Unmanned Aerial Vehicles Coupled 

with High-Resolution Multispectral Imagery  

 

Kevin James Wienhold, M.Sc. 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Nick Z. Fang 

 

Soil moisture is a critical variable in the optimization of irrigation scheduling in water 

resources management. Despite using tens to hundreds of thousands of gallons of water each day, 

many golf courses rely on a sparse network of point measurements to estimate irrigation 

requirements for turfgrass management. This study describes a novel system known as Precision 

Irrigation Soil Moisture Mapper (PrISMM) in which an unmanned aerial vehicle equipped with 

multispectral sensors is used to estimate volumetric water content (VWC) at a golf course using a 

thermal inertia approach. PrISMM consists of three central components, including (1) high-

resolution thermal and optical remotely-sensed data, (2) site-specific soil analysis, and (3) surface 

energy balance modeling. The objective is to evaluate the feasibility of spatially-variable irrigation 

management for a golf course in north central Texas using PrISMM. Multispectral data are collected 

during the fall of 2017 in the visible, near infrared and longwave infrared (thermal) spectrum using 

a UAV capable of rapid and safe deployment for daily time-series estimates. Each data set consists 

of two flights collected on the same day, including a morning and midday flight. Diurnal temperature 

variations were then related to ground heat flux to derive thermal inertia. Using thermal and physical 

soil properties, thermal inertia estimates are converted to daily VWC estimates with a resolution of 

8.6 cm. The accuracy of PrISMM is quantified using ground truthing with a time domain 
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reflectometry soil moisture sensor. The model produces good estimates for VWC with an average 

coefficient of correlation of (r) = 0.89 and coefficient of determination of (R2) = 0.79. Findings from 

this study indicate that PrISMM offers superior spatial and temporal resolution compared to in situ 

methods and may be implemented to precisely irrigate urban landscapes, thus saving millions of 

gallons of water annually.  
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Chapter 1  

Introduction and Literature Review 

In recent decades, increasing rates of urbanization and population growth have intensified 

pressure on managers of freshwater resources to satisfy demand for a diverse group of users. Today, 

half of the global population lives in urban cities which is projected to increase to two-thirds by the 

year 2050 (United Nations 2014). These pressures are magnified in arid and semi-arid regions where 

scarcity and high water demand prevail, such as north central Texas. Pressures on water supply will 

be further exacerbated in many regions from impacts of climate change, resulting in higher summer 

temperatures, prolonged periods of drought, and lower catchment water yields (Brookes et al. 2010; 

Ficklin et al. 2012; Liu et al. 2013). In order to cope with these issues and meet growing demand, 

many urban centers are moving away from traditional means of water supply and towards integrated 

water management systems, including large-scale water projects such as the Integrated Pipeline 

(IPL) project in Texas (Tijerina et al. 2016), water reuse and conservation methods, and managing 

water demand itself (Chung et al. 2009). The development or augmentation of water supply systems, 

however, requires long-term planning and significant monetary investments and may not be feasible 

in regions where freshwater is already over-allocated. Many governmental and regulatory agencies 

have therefore shifted emphasis towards water conservation and demand management which tends 

to be significantly cheaper and more responsive to the uncertainties of climate change (Boland 

1997). 

Water conservation and demand management are essential strategies in arid and semi-arid 

regions where irrigation dominates the usage of freshwater by rural and urban users alike. The Texas 

Water Development Board (TWDB) Water Use Survey reported in 2015 that irrigation by public 

and industrial water systems accounted for approximately 51 percent of water use in the state of 

Texas, totaling an estimated 5.22 million mega liters (ML) (4.23 million ac-ft) (2017). The largest 
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categorical user of water in Texas is irrigated agriculture followed by urban-municipal uses with 

landscape irrigation as its largest sub-user. Turfgrass is the central component of many urban-

municipal landscapes, found in parks, athletic fields, residential, institutional, and commercial lawns 

and golf courses in particular. Cabrera et al. (2013) estimated that for 2010, golf courses occupied 

465 sq. km throughout Texas with a total annual water usage of 0.449 ML (0.364 million ac-ft). 

When combined with golf courses, low-end estimates for landscapes constitute 46.6% of the total 

water use within the urban/municipal sector, accounting for 12.6% of the total annual demand for 

all activities in Texas during 2010 (Cabrera et al. 2013). Turfgrass has therefore been a major focus 

of urban water-use efficiency and irrigation studies for several decades (Fenstermaker-Shaulis et al. 

1997; Trenholm et al. 2000; Wu and Bauer 2012).  

The immense expenditure of freshwater on urban landscaping implies an opportunity for 

significant cost and water savings through more efficient irrigation delivery systems. Many 

approaches to improving efficiency have been proposed and implemented, ranging from potential 

evapotranspiration-based irrigation scheduling, water capture and reuse, “xeriscaping”, or, 

landscaping which reduces the need for supplemental irrigation water, and in situ soil moisture 

sensors for time-based irrigation control (Bogena et al. 2007; St. Hilaire et al. 2008). This study also 

explores the use of soil moisture (SM) as a decision variable for irrigation management; however, 

instead of using in situ sensors, SM is remotely-sensed with the aid of an unmanned aerial vehicle 

(UAV). Although in situ sensors are a more direct measurement, estimates are fixed and limited in 

location and therefore cannot represent the spatial variability of SM. UAVs on the other hand can 

achieve excellent data density and continuity and may be operated in most visual meteorological 

conditions (VMC). A primary goal of this research is to replace point estimates with daily, 

continuous, surface soil moisture (SSM) estimates for an actual golf course with the objective of 

reducing over-watering and preventing under-watering through precision irrigation. 
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This study describes a novel system known as Precision Irrigation Soil Moisture Mapper 

(PrISMM) in which high-resolution, SSM estimates are derived from thermal inertia methods 

utilizing a UAV as a thermal and optical remote sensing platform. To the author’s knowledge, 

novelty of this research exists in the following concepts not yet documented in the literature: (1) the 

application of a UAV for the detection of SSM for turfgrass management; (2) the application of 

UAVs for golf course irrigation management; and (3) the application of the thermal inertia method 

for the detection of soil moisture using UAV remotely-sensed data. The purpose of this research is 

to evaluate the feasibility of spatially-variable irrigation management for a golf course in north 

central Texas using PrISMM. If proven feasible, UAV-derived SSM maps will then drive a time-

based irrigation system, delineated into irrigation management zones. Findings from this study 

indicate that PrISMM offers superior spatial and temporal resolution compared to in situ methods 

and may be implemented to precisely irrigate urban landscapes, thus saving hundreds-of-thousands 

of gallons of water annually. 

This chapter is organized as follows: Section 1.1 presents the basic principles of irrigation 

requirements based on soil moisture content. Section 1.2 presents an overview of in situ sensor 

technology. Section 1.3 provides a history and overview of general remote sensing techniques for 

soil moisture estimation and a review of previous studies. Methods are collated and summarized 

into four groups, including (1) microwave remote sensing, (2) optical remote sensing, (3) 

temperature index remote sensing, and (4) thermal inertia remote sensing. This section also 

discusses the physical principles, advantages and disadvantages of these methods. Section 1.4 

discusses the utilities and advantages of unmanned aerial vehicles in remote sensing along with a 

review of previous studies in the applications of hydrology and agricultural management. 
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1.1. Soil and Irrigation  

Soil moisture (SM) is a critical variable in the optimization of irrigation scheduling in water 

resources management. In order to keep turfgrass healthy and playable for the game of golf, the 

volumetric water content (VWC) of the soil must be used to help determine irrigation requirements 

based with respect to several factors. Soil texture for instance determines important properties such 

as permanent wilting point (the minimum soil moisture content in which a plant can extract water), 

field capacity (the soil moisture content remaining after a saturated column of soil is drained by 

gravity) and plant available water (the difference between field capacity and permanent wilting 

point). The depth of the root zone determines the frequency of required irrigation –with deeper roots 

requiring less frequent irrigation. The evapotranspiration rate determines how much water will be 

lost from the soil through evaporation and transpiration and must be calculated from local 

meteorological data. The evapotranspiration rate will further be impacted by the length of grass, 

where frequent mowing can actually promote greater water use efficiency. The amount of organic 

matter in the soil can increase the plant available water, especially in sandy soils where porosity is 

high. Organic matter mixed into clay soils also breaks up soil colloids, allowing better percolation. 

The soil bulk density which can be increased by compaction and decreased by cultivation influences 

the infiltration rate of the soil, hence the amount of generated runoff. Thus, when soil becomes 

compacted, higher amounts of runoff and less percolation occurs. In contrast, cultivation reduces 

runoff by increasing percolation. 

1.2. In Situ Sensing of Soil Moisture 

Soil moisture (SM) is also highly variable in both time and space which often renders it a 

major source of uncertainty in the hydrologic sciences (Wang and Qu, 2009). Despite high-

variability and uncertainty, many golf courses rely on a sparse network of point measurements to 

estimate the spatial distribution of water availability at the turfgrass root zone. The spatio-temporal 

variability of SM is in turn influenced by many factors including soil composition, vegetation cover, 
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climate, the depth of groundwater and topography. Unfortunately, the only means of directly 

measuring the VWC of soils is by using the gravimetric method to first determine gravimetric water 

content (GWC), or, the mass of water per mass of dry soil. It is measured by first weighing a soil 

sample, then oven-drying the sample to remove all water content, then re-weighing the dried mass. 

Despite its accuracy and simplicity, the gravimetric method is also time-consuming and destructive 

and therefore cannot account for the temporal variability of SM. All other methods for determining 

VWC are indirect measurements in which a secondary property is measured to infer VWC through 

calibration using GWC. Today, many in situ methods for estimating VWC exist and should be 

selected based on the objective of the measurement (Topp 2003).  

Neutron thermalization probes were among the first instruments used for VWC field 

measurements. Here, a small radioactive material is stored in the instrument which releases high-

energy epithermal neutrons into the soil. Some of the emitted neutrons interact with hydrogen atoms 

in which they are slowed down, referred to as thermal neutrons. The probe then detects the amount 

of thermalized neutrons which are directly related to the concentration of hydrogen atoms in water, 

and hence, VWC of the soil. The advantages of neutron probes include a large radius of influence 

(10 to 20 cm) which compensates for high spatial variability of SM and a decreased sensitivity to 

soil salinity and temperature. Due to the radioactive source, radiation certification is required which 

prohibits the device from being left unsupervised in the field, preventing the possibility of a 

continuous record of VWC. A relatively new system called Cosmos compares the number of 

incoming, naturally occurring epithermal neutrons from the atmosphere against the number reflected 

by the soil to estimate SM over a wide footprint (Shuttleworth et al. 2010); this system, however, is 

prohibitively expensive.  

The Dual Needle Heat Pulse (DNHP) technique exploits the theory that the heat storing 

ability of soil is strongly related to VWC. One needle emits heat while the other needle measures 
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heat.  The maximum temperature rise over a given time period is used to calculate heat capacity 

which through calibration can be converted to VWC. The placement of the needles in the soil is 

crucial however, and a deflection of as little as 1 mm can cause a 6 percent reduction in accuracy 

(Kluitenberg et al. 1995). Accuracy is also susceptible to temperature gradients in the soil. The 

sensitivity of needle deflection combined with a very small volume of influence renders this 

technique unusable for many soils and applications. The DNHP technique, however, is used in this 

study in a laboratory setting to determine soil physical parameters such as thermal conductivity and 

specific heat.  

The time domain reflectometry (TDR) methods used in this study measure the travel time 

of an electromagnetic pulse traveling down a pair of stainless steel guide rods inserted into the soil, 

and then traveling back up the rods to a reference node. The speed of the wave in the soil is a function 

of the bulk dielectric permittivity (ε) of the soil matrix. When an electromagnetic field is formed 

between two oppositely charged electrodes, a dielectric material known as a capacitor will 

temporarily store the EM field. The dielectric constant is defined as the ability to store charge. Air 

has a dielectric permittivity (charge storing ability) of 1, organic matter between 1 – 5, soil minerals 

between 2 – 5, ice around 5 and water around 80. A dry soil containing only minerals, organic 

materials and air will have a dielectric permittivity between 2 – 3 while fully-saturated soils have a 

dielectric permittivity around 40. Since the composition of soils is relatively constant in the field, 

the only parameters that vary significantly with time are air and water content, thus allowing VWC 

to be inferred. The total dielectric of soil is composed of individual constituents with weighting 

fractions that add to unity: 

 (1-1) 
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where ε is dielectric permittivity, b is a constant of approximately 0.5, and subscripts t, m, a, om, i 

and w represent total, mineral soil, air, organic matter, ice, and water. The equation can then be 

rearranged for water content: 

.
.

. . . .

.   
(1-2) 

Because the dielectric constant of water (ε = 80) is significantly greater than that of air (ε = 1) and 

soil solids (ε = 3 to 7), TDR sensors can exploit this relationship to consistently provide reasonably 

accurate measurements of VWC for many soils (Nadler, 1991; Jacobsen et al. 1993; Ponizovsky et 

al. 1999; Yu et al. 2015). 

1.3. Remote Sensing of Soil Moisture 

SM is a critical link between water and energy exchanges within the hydrosphere, 

atmosphere and biosphere (Zhang et al. 2014). Recognizing this importance, remote sensing of SM 

began in the 1950s in which point estimates were determined using empirical techniques combined 

with instruments such as colorimeters and spectrophotometers (Brook 1952; Kojima 1958). 

Spatiotemporal estimates for SM emerged with applications in satellite sensor technology offering 

global coverage. The first estimations of SM using satellite data began appearing in the literature in 

the mid-1970s with the advent of Landsat 1 (Pohn et al. 1974; Kahle 1976; Price, 1977). Remote 

sensing of SM estimation is typically divided into three categories: (1) microwave remote sensing, 

including active and passive; (2) optical and thermal remote sensing; and (3) synergistic methods 

using combined methods of microwave, optical and/or thermal technology. The next three sub-

sections will focus on several of these methods, including microwave methods, optical methods, 

temperature index methods and thermal inertia methods. 
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1.3.1. Microwave Methods 

In the 1970s, the launch of the Nimbus 5 made possible the estimation of SM from a 

microwave spectrometer (Schmugge 1977).  Passive and active satellite microwave sensors have 

since become the most commonly used technologies for SM estimation (Coppo et al. 1990; Jackson 

1993; Li et al. 2002). Both passive and active sensors relate backscatter coefficients determined by 

the dielectric constants of water and soil particles to SM using empirical models (Zribi et al. 2013; 

Baghdadi et al. 2011) and physical models (Santi et al. 2013; Cho et al. 2015a; Jonard et al. 2015). 

Observation satellites such as the European Space Agency’s Soil Moisture and Ocean Salinity 

(SMOS) and the Advanced Scatterometer (ASCAT) provide a time-series of SM estimates with 

global coverage. NASA’s Soil Moisture Active Passive (SMAP) utilizes an L-band radiometer (V, 

H, and 3rd and 4th Stokes parameter polarizations) and the now defunct L-band radar (VV, HH, and 

HV polarizations) which estimates global water flux at the earth’s surface (top 5-cm) (NASA 

2017a). The primary limitation of these satellite observations is the spatial resolution, which is 

usually measured on the order of square kilometers. Several other satellites offer very-high spatial 

resolutions (1-5 m), including DEIMOS, DMC, PLEIADES and WorldView2, but lack frequent 

observations.  

1.3.2. Optical Methods 

The relationship between SM and soil spectral reflectance was first documented in the 

experimental work of Ångström (1925). Extensive laboratory experiments have since been 

conducted, inferring soil moisture content (SMC) from spectral measurements for many different 

soil types. These laboratory studies reveal that as SMC increases, reflectance values in the solar 

domain (0.4 – 2.5 µm) decrease, leading to a darkening effect (Jackson et al. 1976; Dalal 1986). 

Bowers et al. used spectrophotometry to estimate SM for three different textured soils, noting a 

linear relation between the absorbance at 1.9 µm and SMC (1972). Bach et al. observed the spectral 

response of soils with varying degrees of SMC and determined that the darkening effect was a 
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function of the reflectance of dry soil particles and the refractive index of water (1994).  Lobell et 

al. developed an exponential model to describe the relationship of soil reflectance and SMC, noting 

that the shortwave-infrared (SWIR) region was the most responsive, thus offering greater SMC 

predictive skill than the visible (VIS) and near-infrared (NIR) regions (2002). Liu et al. examined 

eighteen soils during the drying process with a spectroradiometer, noting non-linearities associated 

with absorption amplitude of wavelengths with the strongest SMC correlation in the 1.622 µm 

waveband (2010).  

Optical remote sensing techniques are now widely applied to airborne and satellite data, 

estimating SMC for a wide range of conditions (Muller and Décamps 2001; Zeng et al. 2004). These 

methods can be divided into two categories but are typically used in concert: (1) the spectral 

reflectance method, and (2) the vegetation index method. The spectral reflectance method measures 

absorption amplitude of wavelengths located in water absorption bands to develop empirical and 

semi-empirical relationships with SMC (Fabre et al. 2015). Selected portions of the electromagnetic 

spectrum are plotted against the reflectance values of an object to reveal unique spectral signatures. 

Li et al. for example utilized Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 

Operational Land Imager (OLI) to extract volumetric surface SMC at the field scale (30 m) for rice 

paddies using VIS, NIR and SWIR bands with a correlation coefficient of 0.78 (2016).  

One challenge with these techniques is the tendency for atmospheric conditions to reduce 

and degrade (sometimes drastically) soil reflectance signatures. To overcome this deficiency, optical 

remote sensing methods are usually combined with vegetation indices and thermal methods. Here, 

aerial and satellite imagery using radiometrically-calibrated sensors capture electromagnetic 

radiation in the visible, i.e., red, green and blue bands (VIS), near infrared (NIR), shortwave infrared 

(SWIR), and thermal infrared (TIR) ranges. Electromagnetic energy is then decomposed into 

discrete bands and recombined to display different features of land and water surfaces. Vegetation 
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indices, such as the normalized difference vegetation index (NDVI) and the vegetation condition 

index (VCI) are used to enhance SM estimates by detecting water stress in green plants. Vegetation 

indices operate on the principle that live green plants are evolved to strongly absorb solar radiation 

in the visible spectrum while the cell structure of their leaves strongly reflect the solar radiation not 

used in photosynthesis, i.e., NIR. The equation for NDVI for example is given as the difference of 

reflectance values between the NIR and red bands, divided by the summation of NIR and red:   

 
   (1-3) 

where reflectance is usually represented by a digital number (DN) between 0 – 255.  A high NDVI 

value for example is associated with healthy vegetation which in turn indicates low water stress 

(NASA 2017b). VCI accounts for short-term water-related NDVI fluctuations from long-term 

ecosystem changes by considering multi-year NDVI values (Kogan, 1995):  

 
   (1-4) 

where NDVImin and NDVImax are the seasonal minimum and maximum NDVI values, respectively.  

NDVI, VCI and other similar indices can be directly related to vegetation growth and drought 

conditions which is then used to indirectly estimate SMC.  

The main shortcoming with vegetation index methods is the temporal delay between SM 

deficiency or abnormal reduction in rainfall and the response of the vegetation, leading some 

researchers to refer to vegetation indices as after-effects (Qin et al. 2008). Thus, NDVI is more 

appropriate for monitoring trends and long-term drought as opposed to frequent time-series 

estimates for SMC. Vegetation indices are also sensitive to cloud cover and solar zenith and azimuth 

angles which depend on vegetation canopy architecture and leaf angle distribution (Kimes et al. 

1985; Sellers 1985), requiring extensive radiometric calibration and ground truthing. Despite these 
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shortcomings, there remains a growing interest in developing these capabilities. While reflected 

visible and near infrared radiation interacts with only the topmost layer, the wide availability of 

multi- and hyperspectral-equipped satellites render this method more operational than microwave. 

Another advantage of optical remote sensing is the ease of use: the United States Geological Survey 

(USGS) and National Aeronautical Space Administration (NASA) offer VIS, NIR, SWIR and TIR 

data free-of-charge with global coverage and fine spatial resolutions. Indeed, future satellite 

launches are planned which will increase the availability and frequency of hyperspectral products 

with missions such as the Italian Space Agency’s PRecursore IperSpettrale della Missione 

Applicativa (PRISMA) and the Space Agency of the German Aerospace Center’s Environmental 

Mapping and Analysis Program (EnMAP).  

1.3.3. Temperature Index Methods 

Thermal remote sensing provides a unique advantage over optical techniques in that 

longwave radiation reflected as heat is comprised of thermal energy extending several layers below 

the surface to varying depths. For instance, near surface layers can experience alternate heating and 

cooling to depths of 50 to 100 cm during a single day while the mean seasonal temperature of 

bedrock may extend to depths of 10 m or more (Sabins 1997). Temperature inequities arise naturally 

in accordance with the physical properties of soil stratum through the mechanisms of solar radiation 

and heat transfer. SM partitions solar radiation into latent and sensible heat at the earth’s surface 

(Vereecken et al. 2014) and can therefore linked to land surface temperature (LST) through surface 

energy balance modeling. Under the assumption of energy balance, LST is defined as the 

temperature of the earth’s surface (for bare soils) or the temperature of the vegetation canopy (for 

densely-vegetated regions). Significant differences in thermal properties of water and soil make it 

possible to infer accurate SM estimates when soil composition, vegetation type and temporal 

meteorological conditions are known.  
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Thermal remote sensing methods are usually divided into two categories: (1) the 

temperature index method, and (2) the thermal inertia method (Zhang and Zhou, 2016). Thermal 

index methods relate LST to SMC through empirical equations. Here, temperature is related to the 

moisture content of soils, revealing areas of relative coolness when water evaporates (2007). As 

vegetation undergoes water stress, evapotranspiration decreases, followed by a measurable rise in 

the temperature of the vegetation canopy. Alternatively, when SMC is abundant, evapotranspiration 

increases and there is subsequent and measurable decrease in the vegetation canopy. Kogan 

introduced the concept of the temperature condition index (TCI) to estimate vegetation stress caused 

by temperature and excessive wetness (1995). Similar to VCI, multi-year, seasonal minimum and 

maximum temperature values are used to monitor drought conditions: 

 
   (1-5) 

where Tmin and Tmax are minimum and maximum observed temperatures, respectively. Here, a high 

TCI value in the middle of a season should indicate unfavorable conditions most akin to drought. 

When TCI is used as the sole indicator of SM, however, the predictive skill is typically poor. In 

order to improve TCI-derived drought assessments by accounting for precipitation, Kogan 

combined VCI and TCI by introducing weighting factors:  

/ 0.70	 0.30	     (1-6) 

 where weighting factors are determined experimentally. Kogan reported that V/TCI was a better 

indicator for drought assessment than either TCI or VCI used separately. Similar methods combined 

with machine learning have been used elsewhere to estimate VWC with good results (Hassan-

Esfahani et al, 2015). 
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Idso et al. developed the crop water stress index (CWSI) based on canopy-air temperature 

differences and air vapor pressure deficits for quantifying water stress (1981):  

 
   (1-7) 

where (Tc - Ta) is the difference between the vegetation canopy temperature and air temperature, (Tc 

- Ta)max is the canopy-vegetation difference for the maximum daily crop water stress before 

irrigation, i.e., the lower boundary condition for potential transpiration, and (Tc -Ta)min is the upper 

boundary condition for no plant transpiration conditions. Alderfasi et al. developed a baseline 

equation to calculate CWSI for water stress monitoring and irrigation scheduling of wheat with 

promising results (2000). The normalized difference temperature index (NDTI) was developed by 

McVicar et al. which calculates potential water availability by taking the ratio of actual 

evapotranspiration (ETa) to potential evapotranspiration (ETp) (2007). The index utilizes a dual 

surface energy balance model in which vegetation and soil are treated as independent sources of 

heat flux. Extreme LSTs are obtained from aerodynamic impedance models and are treated as 

boundary conditions to remove the effect of seasonal variability of SM. Extensive forcing data such 

as leaf area index (LAI), humidity, vapor pressure, wind speed and solar radiation, however, render 

this method problematic when meteorological ground observations are spatially sparse.  

1.3.4. Thermal Inertia Methods 

Thermal inertia is an important property which represents a material’s ability to resist 

changes to ambient temperature variation. Carslaw and Jaeger formulated the definition of thermal 

inertial by solving the heat flow equation for a material subject to periodic heating (1959):  

  (1-8) 
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where P (J m-2 K-1 s-1/2) is the thermal inertia, λ (W m-1 K-1) is the thermal conductivity, ρb (kg m-3) 

is the bulk density and C (J kg-1 K-1) is the specific heat capacity. As it relates to soils, soil thermal 

inertia (STI) is a measure of the daytime rise in temperature of the surface layer in which water 

content is implicit in each term (λ, ρb, C). In general, the presence of moisture in porous media such 

as soils increases STI due to the higher specific heat of water (Verstraeten et al. 2006). The principles 

of thermal inertia are applied to remote sensing by developing a relationship between diurnal 

temperature variations of land surfaces and ground heat flux [Eq. 2-6]. Corresponding changes in 

the earth’s surface temperature can be modeled using the conservation of energy:  

  (1-9) 

where Rn (W m-2) is net radiation resulting from incoming solar radiation, atmospheric radiation and 

earth emitted radiation, H is sensible heat flux, LE is the latent heat flux and G is ground heat flux. 

Here, land surface temperature (LST) is recorded twice daily, typically day/night, sunrise/sunset or 

a similar variant while ground heat flux is estimated from physical or empirical relationships with 

net radiation (Eq. 2-7). When the thermal and physical properties of near surface soils are known, 

thermal inertia can be used to infer the spatial variability of SM.  

Thermal inertia studies using satellite remotely-sensed imagery begin appearing in the 

literature in the 1970s with the launch of Landsat 1 (Watson 1971; Pohn et al. 1974; Kahle 1976; 

Price 1977). The theory of thermal inertia finds its origins with the work of Jaeger who recognized 

that remotely-sensed TIR imagery can be used to quantitatively estimate the heat storing capacity 

of the moon’s surface (1953). Jaeger solved the one-dimensional thermal diffusion equation of a 

uniform half-space (a region bounded by a plane on its upper side and extending downward to 

infinity) with constant thermal properties (1953): 
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, ,
 

(1-10) 

where T is the temperature at depth z (m) below the surface at time t (s) relative to solar noon and 

D ( λ ρb
-1 C-1) is the thermal diffusivity of the half-space. Watson solved the diffusion equation by 

imposing surface boundary conditions as the energy balance between incoming solar and sky 

radiation, outgoing ground radiation, and conduction into the ground (1975): 

	 ,
| 	 

(1-11) 

where εs	is	the	surface	emissivity,	σ	 5.67	 	10 8	W⋅m 2⋅K 4 	is	the	Stefan‐Boltzmann	constant	

and	I		is	absorbed	incoming	radiation.		

By the late 1970s and early 1980s, the importance of SM was widely recognized as one of 

several governing parameters in surface energy balance modeling in thermal inertia studies (Carlson 

et al. 1981; Carlson, 1986; Watson, 1982). Kahle (1977) and Watson (1982) proposed physical 

analytical solutions to the estimation of STI with one-dimensional periodic heat conduction 

equations. Kahle attempted to modify these methods for larger regions, noting uncertainties arising 

from the difficulty of estimating soil physical parameters at the regional scale (1977). Price assumed 

a linear relationship between latent and sensible heat and LST and calculated STI from absorbed 

solar energy by including terms for atmospheric transmissivity (τsw) and surface albedo (α) (1977):  

2	 	τ 1 	 cos

/ 1 √2
/
	

 
            (1-12) 

where φ (rad) is the solar constant, ϑ1 (rad) is solar declination, ω (rad s-1) is the frequency of diurnal 

variation and C1 is the first term of a Fourier series analysis on surface temperature (T). Here, STI 

is estimated from thermal satellite measurements and atmospheric forcing data to infer otherwise 

unknown surface characteristics, thus eliminating the need for extensive ground auxiliary data. The 
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model is complicated, however, by uncertainties in the earth’s atmosphere, including energy re-

radiated into the atmosphere by moisture, reduction of transmittance by aerosols and molecular 

constituents, and nonlinearities in the resistance factor relating surface temperate and humidity to 

sensible and latent heat flux (Price, 1977). Idso et al. proposed a simple thermal inertia method using 

ground heat flux determined with empirical equations and twice the amplitude of LST variation. 

The major disadvantage of the model is that it requires the daily minimum and maximum LSTs from 

TIR imagery, hence, limiting the operability of the model due to infrequent satellite overpasses 

(1976). Xue and Cracknell (1995) approached the problem of TIR satellite imagery acquired during 

overpass times not coincident with the minimum and maximum LSTs by proposing correction 

factors in accordance with the sinusoidal behavior of daily surface temperature variation (1995). 

Maltese et al. demonstrated that these cosine correction factors are unnecessary when diurnal 

temperature variation is measured in reference to solar noon (2013).  

Price proposed the dimensionless apparent thermal inertia (ATI) index which is the ratio 

of shortwave radiation absorption to the diurnal temperature variation:  

1000
1

1: 30	 . . 2: 30 . .
 

            (1-13) 

where 1000π is a scaling factor used to force the data to fall between the range of 0 – 255 to match 

other 8-bit satellite products. The primary advantage of ATI is that it can be derived solely from 

remote sensing data, thus eliminating the need for ground based observations. Due to its ease-of-

use and broad operability, ATI has been used extensively in many remote sensing studies over 

widely varying regions. Yang et al. quantitatively estimated SMC applying ATI over ten 

experimental plots with different vegetation covers and soil water contents, finding good agreement 

for soils containing vegetation cover with an NDVI value of 0.35 or less (2012). Verstraeten et al. 

estimated SMC from METEOSAT imagery using ATI and a simple two-layer water balance 
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equation and validated using TDR measurements (2006). Veroustraete et al. performed SM 

estimation for soil profiles of 1 m for the province of Xinjiang using ATI combined with soil type 

classifications and MODIS data (2011). They concluded that ATI is suitable for the estimation of 

SMC in arid to semi-arid regions. Indeed, ATI shows promise for bare or lightly vegetated soils but 

the simplifying assumptions regarding surface energy balance and soil physical parameters adds to 

model uncertainty warranting additional caution with its use. 

New generations of lightweight sensors have enabled the collection of high resolution, 

multi- and hyper-spectral imagery using small aircraft with applications in SM detection using 

thermal inertia methods. Minacapilli et al. derived thermal inertia estimates with a resolution of 4 

m using an 11-band passive remote sensor attached to a low flying airplane. Here, the spatial 

distribution of P is used to estimate VWC by inverting Eq. 2-6 with good results. Maltese et al. used 

identical sensors as Minacapilli et al., achieving a standard error of ∼0.01 using a three temperature 

approach phase correction to thermal inertia (3 m resolution) for the upper soil layer (2013). The 

authors further demonstrated that SMC can be linearly related to ground heat flux and surface 

temperature for lightly vegetated surfaces. Soliman et al. used an airborne thermal camera to study 

relationships between SM, mechanical resistance and thermal inertia (0.6 m resolution) for a 

vineyard with grass-covered soil and a standing grape canopy (2013). They found that despite the 

complex heating and cooling patterns of the vineyard, significant correlations exist between SM, 

mechanical resistance and thermal inertia.  

In this paper, a thermal inertia approach is taken. By utilizing UAVs as a thermal and 

optical remote sensing platform, many of challenges associated with thermal and optical remote 

sensing (e.g., low spatial and temporal resolution) can be avoided (see Section 1.3).  
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Table 1-1 Comparison of remote sensing methods for estimation of soil moisture. 

Category Method Advantages Disadvantages Example Studies 

Microwave Passive High temporal resolutions, 
accurate SMC estimates 
over bare soil, not limited 
by cloud cover or time of 
day. 

Low spatial resolutions, 
SMC estimates impaired 
by vegetation and surface 
roughness. 

Choudhury et al. (1979), 
Ulaby et al. (1986), 
Schmugge & Jackson 
(1997). 

     
 Active Medium spatial resolutions, 

not limited by cloud cover 
or time of day. 

Low temporal resolutions, 
SMC estimates impaired 
by vegetation and surface 
roughness. 

Pierdicca et al. (2012), Al-
Yari et al. (2014), 
Vereecken et al. (2014), 
Cho et al. (2015b). 

     
Optical Reflectance-

based  
High spatial resolutions, 
wide availability of 
satellites, hyperspectral 
technology promising, 
easily adapted to UAVs. 

No surface penetration; 
Poor SMC correlation 
with dense vegetation, 
unable to penetrate cloud 
cover, not applicable at 
night. 

Muller and Décamps 
(2001), Zeng et al. (2004), 
Fabre et al. (2015), Li et 
al. (2016). 

     
 Vegetation 

Index 
High spatial resolutions, 
wide availability of 
satellites, hyperspectral 
technology promising, 
easily adapted to UAVs for 
on-demand data collection. 

Time lag between water 
stress and vegetation 
response, unable to 
penetrate cloud cover, not 
applicable at night. 

Muller and Décamps 
(2001), Zeng et al. (2004), 
Fabre et al. (2015). 

     
Thermal Temperature 

Index  
High spatial resolutions, 
wide availability of 
satellites, easily adapted to 
UAVs for on-demand data 
collection. 

Poor SMC correlation 
with dense vegetation, 
unable to penetrate cloud 
cover, empirically-based. 

Idso et al. (1981), Kogan 
(1995), Alderfasi et al. 
(2000), McVicar et al. 
(2007). 

     
 Thermal 

Inertia  
High spatial resolutions, 
wide availability of 
satellites, clear physical 
meaning, easily adapted to 
UAVs for on-demand data 
collection. 

Poor SMC correlation 
with dense vegetation, 
unable to penetrate cloud 
cover, sensitive to 
atmospheric conditions. 

Pohn et al. (1974), Kahle 
(1976), Price (1977), 
Carlson et al. (1981), 
Watson, (1982), 
Minacapilli et al. 2009, 
Maltese et al. (2013). 

     
 
 

    

1.4. Unmanned Aerial Vehicles 

 
Only fifteen years after the Wright brother’s historic flight in 1903, the first UAV was 

invented: the Kettering Bug flying bomb (Valavanis and Kontitsis 2007). Today, UAVs serve as 

research, reconnaissance, and surveying platforms, often outperforming their manned aircraft 

counterparts in terms of efficiency, affordability and operational flexibility. In the last decade, 

UAVs have made possible the acquisition of very-high resolution remote sensing data that would 
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otherwise be cost-prohibitive and time-consuming if using traditional methods. Such platforms have 

consistently proven to match the standards of direct measurements while offering greater density 

and continuity of data (Turner et al. 2012). Technical advances leading to cost and size reductions 

in equipment such as of global positioning systems (GPS), inertial measurement units (IMU), 

inertial navigation systems (INS) and real time kinematics (RTK), provide not only centimeter-level 

positioning and accuracy but advanced auto-piloting, pre-defined flight routes and waypoint 

navigation (Agüera-Vega 2017).  

UAVs coupled with improvements in structure from motion (SfM) photogrammetry, 

multispectral sensors and Light Detection and Ranging (LiDAR) technology have found recent and 

widespread applications in modern days. With the release of the Federal Aviation Administration’s 

(FAA) Small Unmanned Aircraft Regulations released under Part 107 of the Federal Aviation 

Regulations in August of 2017, the usage of UAVs for civil and commercial use has continued to 

grow exponentially. According to a recent study, the integration of UAVs into the national airspace 

is estimated to add $82 billion to the US economy between 2015 and 2025 with 100,000 new jobs 

created by 2025. UAVs are currently being used in many industries such as wildfire mapping, 

agricultural monitoring, disaster management, law enforcement, weather monitoring, environmental 

monitoring and oil and gas exploration (Jenkins and Vasigh 2013). Current applications in civil 

engineering include the quantification of channel bathymetry using through-water photogrammetry 

(Shintani and Fonstad 2017), the detection of inundated areas in urban landscapes (Feng 2015), 

traffic monitoring and management (Kanistras et al. 2014), and channel morphology and 

hydrodynamic modeling (Tamminga 2014). 

UAVs equipped with multispectral sensors represent an emerging technology capable of 

detecting and estimating SSM for irrigation and crop management (Hassan-Esfahani et al. 2015). 

Most remotely-sensed SM products are derived from satellite imagery and consist of a resolution 
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too course for precision irrigation, i.e., on the order of square kilometers. Alternatively, UAVs offer 

significant improvements for remote sensing at smaller scales (~ 1 km2) including sub-decimeter 

resolution. By acquiring visible and near infrared (VIS-NIR) and thermal infrared (TIR) imagery 

with high resolution sensors from low altitudes, radiometric distortions arising from atmospheric 

effects are often negligible. This is especially important in regions dominated by cloud cover, which 

optical and thermal observations from satellites fail to penetrate. Furthermore, the relative ease and 

low cost of deploying UAVs for data acquisition ensures ideal overpass times.  

Many UAV studies for agricultural management and monitoring vegetation status and 

health appear in the literature starting in the 2000s. Applications include measuring shrub biomass 

(Quilter and Anderson 2001), monitoring rangeland conditions (Hardin and Jackson 2005), 

classifying rangeland vegetation (Laliberte and Rango 2011), and vineyard management (Primicerio 

et al. 2012). Agricultural studies utilize vegetation indices from multispectral imagery, including 

applications in crop management and stress detection (Berni et al. 2009), estimating yield and crop 

biomass (Swain et al. 2010), and monitoring nitrogen status from fertilization experiments (Hunt 

2005). Different crop types examined using UAV data include corn (Hunt 2005), wheat (Hunt et al. 

2010), rice (Swain et al. 2007), and turfgrass (Xiang and Tian 2011; Zhang and Kovacs 2012).  

To date, very few studies using UAVs for the estimation of SM have been conducted. 

Hassan-Esfahani et al. estimated spatial root zone SMC in an agricultural field using artificial neural 

networks combined with VIS-NIR and TIR high-resolution imagery. Data mining was applied to 

several indices, including NDVI, VCI, enhanced vegetation index (EVI), vegetation health index 

(VHI) and TCI, with good model predictive skill (R2 = 0.94) (2015; 2017). Gonzalez-Dugo et al. 

determined the spatial variability of water status and irrigation needs for a pistachio farm using 

CWSI based on tree canopy temperature (2014). Hoffman et al. used thermal UAV data to determine 

the spatial variability of heat flux over a barley field and estimate evaporation using a two-source 
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energy balance modeling scheme (2016). To the author’s best knowledge, a thermal inertia approach 

for the estimation of SM has never been attempted with UAVs. The author is thus motivated to 

develop a novel approach for the estimation of high-resolution, contiguous volumetric water content 

(VWC) using remote sensing techniques to be validated with in situ measurements. The UAV 

platform used in this study, MavAir One, is a powerful remote sensing octocopter equipped with 

thermal and optical sensors. MavAir One is shown over the study area, Meadowbrook Park Golf 

Course, during one of its missions in Figure 1-1. 

  

Figure 1-1 MavAir One over Meadowbrook Park Golf Course, Arlington, TX. 
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Chapter 2  

Approach/Methodology 

The author hypothesizes that a multispectral remote sensing platform mounted to an 

unmanned aerial vehicle (UAV) can be used to capture daily aerial imagery for a given soil type and 

vegetation cover to estimate SSM. The presence or absence of SSM will produce unique spectral 

signatures which can be related to the VWC. When combined with vegetation indices, such as 

NDVI, and a knowledge of soil physical properties (soil type, bulk density, texture, thermal 

conductivity, etc.), a thermal inertia approach may be used. The predictive skill of the model can be 

validated with in situ measurements of VWC within the study area. If the method proves feasible, 

the UAV-derived VWC estimates may be used for spatially-distributed irrigation management. In 

order to develop this approach, several objectives are satisfied: (1) to select a study area for data 

collection, monitoring, and validation; (2) to obtain daily, high-resolution, multispectral imagery of 

the study area; (3) to collect daily field measurements of VWC for model validation; (4) to develop 

a novel computer script to solve for VWC using multispectral imagery, local meteorology and 

measured physical parameters; (5) to quantify the accuracy of the model using a linear least squares 

approach. 

2.1. Methodology 

The Precision Irrigation Soil Moisture Mapper (PrISMM) model consists of three central 

components, including (1) site-specific soil analysis, (2) high-resolution thermal and optical 

remotely-sensed data, and (3) surface energy balance modeling. In this study, diurnal temperature 

variations are related to ground heat flux to derive thermal inertia which is then used to solve for 

volumetric water content (VWC). Thermal inertia can be defined as (Carslaw and Jaeger 1959): 
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 (2-1) 

where P (J m-2 K-1 s-1/2) is the thermal inertia, λ (W m-1 K-1) is the soil thermal conductivity, ρb (kg 

m-3) is the actual soil bulk density (including water) and C (J kg-1 K-1) is the soil heat capacity that 

is expressed as (van Wijk and de Vries 1963): 

 (2-2) 

where ρbd (kg m-3) is the dry bulk density of soil, ρw (~ 998 kg m-3) is the density of water at room 

temperature, Cs (J kg-1 K-1) and Cw (4,184 J kg-1 K-1) are the heat capacities of the solid and liquid 

phases, respectively. Though C and λ are influenced by many factors, including dry bulk density, 

mineral composition, porosity and temperature, these factors remain relatively constant in the field. 

On the other hand, θ which is strongly related to C and λ can vary considerably. For this reason, 

much effort has been invested to formulate C(θ) and λ(θ) relationships with physical models (van 

Wijk and de Vries 1963; Johansen 1975; Lu et al. 2007) as well as empirical models (Kersten 1949).  

Johansen (1975) provided accurate predictions of λ for a wide range of soils by introducing 

the concept of a normalized thermal conductivity, referred to as the Kersten number (Ke). The 

empirical model is given by:  

 (2-3) 

where λsat and λdry (W m-1 K-1) are the thermal conductivities of saturated and air-dry soils, 

respectively. The Kersten number is an empirical parameter which is a function of relative water 

content, Sr. Lu et al. (2007) found excellent agreement between measured and estimated λ values 

using the following expression for Ke:  

exp 1   (2-4) 
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where δ = 1.33 is a shape parameter and Sr is the ratio between the actual soil water content, θ (m3 

m-3), and the saturated soil water content, θs (m3 m-3). The soil-texture dependent parameter, γ = 0.96 

(-), is determined by the sand fraction (fs) as given by Lu et al. (2007):  

0.96 0.40
0.27 0.40  

 (2-5) 

 Idso et al. (1976) and Menenti (1984) proposed similar remote sensing methods to derive 

thermal inertia estimates from surface heat flux and surface temperature variation using the 

following relationship: 

2∆

∆ √
 

 (2-6) 

where ∆T (K) is the difference between the minimum and maximum daily surface temperature, ω 

(rad s-1) is the angular velocity of the earth’s rotation assuming a 24 h period (i.e., 2π/86,400 s)  and 

∆G (W m-2) is the amplitude of the sinusoidally-varying ground heat flux during this period. Because 

the initial G is approximately 0 W m-2 at the early morning and hence negligible, ΔG is calculated 

as the magnitude of G at midday. G is typically estimated as a fraction of net radiation and some 

function of vegetation indices such as NDVI or leaf area index (LAI), albedo and/or surface 

temperature. There are many empirical equations available for estimating G for vegetated surfaces 

and are largely selected based on user experience. Several equations were tried in this study 

(Bastiaanssen 2000; Allen et al. 2007; Cuenca et al. 2013; Singh et al. 2008) with the best results 

obtained from Santanello and Friedl, based on diurnal patterns from SHAW simulations (2003): 

cos 2
10,800

 
  (2-7) 
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where t (s) is the time of data capture relative to solar noon. A (-) represents the maximum value of 

G/Rn while B (s) is used to adjust the diurnal phase amplitude of G/Rn, defined respectively as 

(Hoffman et al, 2016):  

0.0074	 0.088   (2-8) 

1729	 65,013   (2-9) 

For simplicity, the calculation of net radiation was based on the methods used by 

Minacapilli et al. which proved to yield good results (2009). The full equation for Rn is defined as 

the sum of both incoming and outgoing short- (solar) and long- (thermal) wave radiation at the 

surface assuming steady state conditions (Melesse 2004): 

↓ ∝ ↓ ↓ ↑ 1 ↓ (2-10) 

where RS↓ (W m-2) is incoming shortwave radiation, ∝ is the combined soil and vegetation albedo,	

εs	 is	 the	 surface	 emissivity, RL↓ (W m-2) is absorbed incoming longwave radiation and RL↑ is 

outgoing longwave radiation. Here, the soil/vegetation albedo is defined as the fraction of incident 

solar energy reflected by the surface which in turn is a function of the fraction of turfgrass and soil 

surface wetness. An approximate value for albedo is calculated for each as follows (Liang, 2004):  

≃ 								 1, 2, … ,  
(2-11) 

where ri is the surface spectral reflectance for narrow bands and wi are the weighting factors 

determined from the following equation (Menenti, 1984): 

∑
						 	 1, 2, … ,  

(2-12) 
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 where Ei
0 is the extraterrestrial solar irradiance for each narrow band, determined at the 

time of flight using a down-welling light sensor installed on the UAV. While not representative of 

the entire shortwave spectrum, the calculated albedo values for the turfgrass appeared to be 

reasonable (0.26 – 0.28), showing good agreement with grass albedo values (0.24 – 0.26) reported 

by Campbell and Norman (1998).  

In the absence of solar radiation flux density measuring devices such as net radiometers 

and pyranometers, it has been suggested that under clear sky conditions, solar and sky radiances can 

be satisfactorily approximated using equations based on solar azimuth, zenith and astronomical 

distance (Watson, 1982). We assume that the incoming radiation is uniform over the entire golf 

course. The calculation for RS↓ assuming clear sky conditions becomes (Xu 2014): 

↓
cos

 
(2-13) 

where Gsc (1,367 W/m2) is the solar constant, φ (rad) is the angle of solar incidence, d (AU) is the 

relative earth-sun distance in astronomical units which varies between 0.9833 AU (3–5 January) 

and 1.0167 AU (3–7 July) (Sun et al. 2013). An approximate expression is used to calculate d based 

on the Julian day of the year (Achard and D’Souza 1994):  

1 0.01672 cos 0.9856 4  
(2-14) 

with cosine in radians. The clear sky transmissivity, τsw (-), or fraction of extra-terrestrial solar 

radiation reaching the earth’s surface under cloudless conditions, is computed as a function of 

elevation (Hingray et al. 2014): 

0.75 0.00002	  (2-15) 
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where z (m) is the ground elevation of the golf course determined from a digital elevation model 

(DEM) with reference to above sea level (ASL). RL↓ and RL↑ are estimated as follows: 

↓ 	  (2-16) 

↑ 	  (2-17) 

where εa	 ‐ 	is	the	atmospheric	emissivity	which	assumes	an	exponential	atmospheric	profile	

for	temperature,	pressure	and	humidity,	σ	 5.67	 	10 8	W⋅m 2⋅K 4 	is	the	Stefan‐Boltzmann	

constant	and	Ta	 K 	is	the	near surface air temperature.	εa	and	εs	are given by Brutsaert (1975) and 

Bastiaanssen et al. (1998), respectively:  

1.24
.

 
   (2-18) 

1.009 0.047 ln 0
1.009											 																								 0

 
   (2-19) 

where Ta (K) is the near surface air temperature and ea (mb) is the actual vapor pressure given by 

(Chow et al, 2013): 

6.11	exp	
17.27	
237.3

 
   (2-20) 

where Td (°C) is the dew point temperature.  

In this study, thermal inertia is solved for twice using two distinct data sets and then using 

a θ retrieval process similar to that first proposed by Minacapilli et al. (2009). The first solution of 

thermal inertia is provided by Eqs. 2-1, 2-2, 2-3 and 2-4, which are solved simultaneously for 

incremental values of θ using real soil physical parameters obtained from soil samples. We refer to 

this thermal inertia parameter as P. The incremental values of θ –as the independent variables in 

the solution of P– are stored in matrix form by soil group. The second set of thermal inertia values 

are derived from remotely-sensed imagery and surface energy balance modeling (Eqs. 2-6 – 2-15) 
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with the solutions stored as rasters in the GIS environment. We refer to the remotely-sensed (thus 

spatially-distributed) estimation of thermal inertia as Prs. Matching is later performed between the 

matrix and the rasters (P and Prs, respectively) by retrieving the corresponding θ value from the 

matrix for every raster pixel of Prs, resulting in a spatially-distributed map of θ. We herein refer to 

the remotely-sensed estimations of volumetric water content as θrs to distinguish from volumetric 

water content measured with a TDR soil moisture sensor (θTDR). The general workflow of the 

PrISMM methodology is displayed in Figure 2-1 with computational steps summarized in Table 

2-1.  

 

Figure 2-1 Precision Irrigation Soil Moisture Mapper (PriSMM) Methodology. 
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Table 2-1 Computational steps in PrISMM methodology. 

Step Symbol Name Unit Equation 

1. P thermal inertia J m
-2

 K
-1

 s
-1/2

P = (λ ρ
b
C)

-1/2
 

1. λ soil thermal conductivity W m
-1

 K
-1

 λ = K
e
(λ

sat 
- λ

dry
) 

1. K
e
 Kersten number - K

e
 = exp{γ[1 - (θ/θ

s
)

γ - δ
]} 

1. ρ
b
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The remotely-sensed estimates of volumetric water content (θrs) are validated using actual 

volumetric water content values from a TDR soil moisture sensor (θTDR) for both calibration and 

quantifying the model accuracy. The data collection process is described in the following sections 

along with a description of the study area and results from site-specific soil analysis. 

 

2.2. Study Area 

This study was conducted during the fall of 2017 (October 12 – October 30) at 

Meadowbrook Park Golf Course (Meadowbrook) in Arlington, north central Texas, USA (Figure 

2-2). Meadowbrook is located one mile east of downtown Arlington in Meadowbrook Park. This 9-

hole course which opened in 1924 is the oldest in Arlington. The study area consists of small greens 

and narrow fairways lined with pecan trees, covering an area of approximately 0.09 km2. 

Meadowbrook is characterized by gently sloping topography that abuts Johnson Creek on the 

western edge. The golf course is owned and operated by the City of Arlington (City). The site was 

selected due the City’s continued commitment to water-conserving practices, its proximity to the 

University of Texas at Arlington (UTA), and a relatively undisturbed soil profile due to minimal 

land modifications over the intervening decades. Meadowbrook lies within the northern edge of 

Arlington Municipal Airport’s Class D airspace with all flights conducted in accordance with FAA 

Part 107. 

Meadowbrook consumes approximately 45 – 57 million liters (12 – 15 million gallons) of 

water annually. In an effort to all-but-eliminate the reliance on Arlington municipal water for 

irrigation, the City purchased and began installation of a water well in 2013 which taps the Paluxy 

aquifer. The groundwater is pumped and stored on-site in a holding pond whereby a pumping station 

draws water into the course’s irrigation system which is distributed through 162 sprinkler heads. 

Prior to this study, irrigation was conducted at the superintendent’s discretion and with the aid of 
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Texas ET Network (TexasET), provided by Texas A&M AgriLife Extension - Irrigation Technology 

Program. The primary disadvantage of TexasET, which uses the standard Penman-Monteith, is that 

it provides point estimates for potential evapotranspiration (ET0) based on a sparse network of 

weather stations. This leads to a uniform irrigation depth which results in some areas receiving more 

water than required while other areas, especially topographic high points, do not receive enough. It 

is hypothesized that the spatially-distributed application of irrigation water could reduce total water 

use while maintaining healthy and playable turfs. To achieve this goal of spatially-distributed 

irrigation management, the radius of influence of each sprinkler head is used to delineate the golf 

course into several irrigation management zones in which sprinklers may be operated independently 

as required. 

 

Figure 2-2 Location of study area in north central Texas. 
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2.3. Soil Analysis 

The thermal inertia approach was used in this investigation which requires detailed soil 

characterization of the site. A series of in situ and laboratory experiments was therefore conducted 

to determine soil physical properties of the study area (soil type, texture, mineral composition, bulk 

density and thermal properties). This opportunity was also used to perform site-specific calibration 

on a FieldScout TDR 300 soil moisture meter (TDR) using gravimetric sampling. ArcGIS was used 

to generate ten randomly-placed sample points within the boundaries of the study area for sample 

collection. The sample locations were wetted to different degrees, followed by a period reading from 

the TDR using 7.6 cm rods with 3.3 cm spacing. The soil column was then extracted using a 25 cm 

long core sampler with an inner sleeve diameter of 15 cm. The samples were sealed in plastic bags 

and placed on ice for laboratory analysis. The sand-cone method was also used to determine the 

volume and bulk density of the soil samples (ASTM 2007). 

Site-specific calibration was performed for the TDR by developing a relation between the 

TDR sensor’s period readings against actual VWC. Immediately after returning from the field, the 

soil cores were removed from the plastic bags, weighed on a precision scale, and oven dried at 

105°C for 48 hours. The samples are then reweighed to determine GWC: 

	 (2-21) 

where mwet is the mass of the bulk sample and mdry is the mass of the dry sample. The VWC of the 

sample (θv) is the volume of the water divided by the total volume of the sample (VT) but is similarly 

calculated from GWC: 

 (2-22) 

where ρw (998 kg/m3) is the density of water at 20°C and ρbd (kg/m3) is the dry bulk density given 

by: 
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  (2.23) 

where the mean measured value of ρbd is 1,260 kg m-3. Measured period readings were next plotted 

against the corresponding θv calculations from equation 2-22 for regression analysis to produce the 

following equation: 

0.0002	 0.3105 (2.24) 

where θ is the calibrated soil volumetric water content (m3 m-3) and Γ is the period (µs). A fully-

saturated sample (not included in regression) was used to determine the saturated soil water content, 

θs (0.57). The calibrated TDR results are provided in Figure 2-3. 

 

Figure 2-3 Calibration graph for FieldScout TDR 300 soil moisture sensor for loamy sand. 
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Textural analysis was also performed using the sieve and hydrometer method (Gee and 

Bauder 1986). Per USDA classification, the texture of the surface soil horizon is composed of loamy 

sand (NRCS 1986) with a mass fraction of sand, silt and clay of 0.85, 0.05, 0.10 g g-1, respectively. 

The soil textural triangle confirms that the predominant soil type at Meadowbrook is loamy sand 

(Figure 2-4). A KD2 Pro equipped with a TR-1 thermal conductivity/resistivity sensor was used to 

determine the mean values for λsat (0.896 W m-1 K-1) and λdry (0.220 W m-1 K-1). A SH-1 dual-needle 

thermal diffusivity and specific heat sensor was used to measure the mean value of CS (975 J kg-1 

K-1). The soil parameters were then used to carry out the calculations in Step C of the PriSMM 

methodology as shown in Figure 2-1.  

 

Figure 2-4 Soil textural triangle and textural classes (Source: USDA—National Resources 

Conservation Service). 
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2.4. UAV Platform 

In order to derive θrs, an unmanned aerial vehicle (UAV) equipped with multispectral 

sensors is utilized. The UAV platform used in this study, MavAir One, is a powerful remote sensing 

octocopter with a 24-pound maximum takeoff weight and payload including a multispectral sensor 

array. MavAir One’s custom spectral bands were modeled after RapidEye satellites to provide 

critical calibration/validation data for global downscaling with applications in agriculture, forestry, 

oil and gas exploration, mining and water resources management. MavAir One is also equipped with 

a high-resolution thermal camera used for water-energy balance modeling. MavAir One’s advanced 

flight computer is integrated with three GPS units and two IMUs for the greatest accuracy and 

positioning. The flight computer is controlled by either a 2.4 GHz handheld transmitter or laptop. 

A Micasense RedEdgeTM  camera supplies spectral data on five discrete narrow bands, 

including blue (ρ1), green (ρ2), red (ρ3), red edge (ρ4), and NIR (ρ5) with an image array of 1280 x 

960 pixels (Micasense 2015). Derived multi-band orthomosaics are used to develop vegetation 

indices such as NDVI. The RedEdgeTM reflectance values are radiometrically calibrated to ensure 

that time-series data accurately reflect changes in vegetation as opposed to changes in lighting 

conditions. To overcome variations in ambient light occurring day-to-day and also during flight, 

two instruments are employed: (1) a calibrated reflectance panel (CRP) and (2) a down-welling light 

sensor (DLS). Immediately before and immediately after each flight, an image of the CRP is 

captured on all five RedEdgeTM bands in which the albedo of the target is known. The DLS is 

installed on the top of the aircraft and points upward towards the sky.  For each camera triggering 

event, solar irradiance (W m-2) is instantaneously recorded and embedded within the metadata of 

each band. Both the CRP and DLS are then used in post-processing to correct for changing 

illuminations during flight. (Micasense 2015). Corrections are based on solar irradiance and sensor 

properties (gain/bias settings for each band). Before mosaicking, all images are transformed to a 
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theoretically common illumination condition, therefore reducing variations in reflectance or 

brightness for maximum accuracy and repeatability. 

A FLIR Vue Pro R provides non-contact, calibrated, radiometric measurements to derive 

temperature estimates for each pixel. The thermal imager is an uncooled VOx micro-bolometer 

which detects longwave infrared energy in the 7.5–13.0 µm thermal spectral range with an image 

array of 640 x 512 pixels. Surface temperatures are automatically computed using a fixed emissivity 

of unity. Raw sensor data are recorded as grayscale bands and stored in uncompressed 14-bit TIFF 

format. Surface temperature was also measured using a handheld Fluke ST2 thermal infrared gun 

with ±1% accuracy. The gun was pointed at a 45° angle to the surface at a distance of 1 m, resulting 

in a ground footprint of approximately 0.25 m2. IR gun measurements were used to calibrate/validate 

the airborne TIR images, assuming a linear relationship between thermal brightness and land surface 

temperature for both morning and midday flights. Images are imported into Pix4D Mapper Pro 

where raw thermal values are converted to absolute temperature. MavAir One sensor specifications 

are shown in Table 2-2 UAV advanced remote sensors with specifications.  

Table 2-2 UAV advanced remote sensors with specifications. 

Sensor Resolution Name Symbol Bandwidth Wavelength (µm) 

Sony α6000 6000 x 4000 Blue - Broad 0.45-0.52 

 6000 x 4000 Green -  0.52-0.60 

 6000 x 4000 Red -  0.63-0.69 

Micasense RedEdgeTM 1280 x 960 Blue ρ1 Narrow 0.465-0.485 

 1280 x 960 Green ρ2  0.550-0.570 

 1280 x 960 Red ρ3  0.663-0.673 

 1280 x 960 Red Edge ρ4  0.712-0.722 

 1280 x 960 Near Infrared ρ5  0.820-0.860 

FLIR Vue Pro R 640 x 512 Thermal ρ6 Broad 7.5-13.5 

 



 

37 

All camera shutters are integrated with MavAir One’s onboard GPS and IMU and record 

latitude, longitude, elevation and orientation (pitch, yaw and roll) of the aircraft for every camera 

trigger event in a process known as geotagging. The images are later aligned and processed to 

generate orthophotomaps for each spectral data set which are georeferenced in NAD83 (HARN) / 

Texas North Central (ft US). When the multispectral maps are imported into a Geographic 

Information System (GIS), the various spectral ranges, or bands, can be resampled and overlaid into 

composite orthophotomaps and analyzed for spectral signatures associated with thermal inertia and 

volumetric water content. The remotely-sensed products include the following orthomosaics: (1) 

VIS-NIR (2) TIR, (3) NDVI, (4) α, (5) εs, (6) G, P, and θrs. 

2.5. Data Collection 

UAV data were collected twice per day during the fall of 2017 (12 October—30 October) 

on 6 days. Each data set consists of two flights collected on the same day, including a morning flight 

and a midday flight. In this study, flights are conducted 30 minutes prior to official sunrise when 

surface heat fluxes are negligible, thus serving as a starting point for optical and thermal imagery 

collected later the same day (within 1 h of solar noon). A total of 12 flights were conducted resulting 

in 6 sets of input data for the PriSMM model. All flights were automated through waypoint 

navigation software using the same flight plan for all missions, thus eliminating variability in 

altitude and coverage. Takeoffs and landings were performed manually using a transmitter while 

automated waypoint navigation was conducted using a laptop and a 2.4 GHz Bluetooth datalink, 

consisting of an air and ground end for wireless transmissions. Mission altitude was 70 m above 

ground level (AGL) with a forward speed of 7 m s-1. Vertical and horizontal overlap of photos was 

80 percent. Ground sampling distance of the RedEdgeTM and FLIR Vue Pro R were 4.6 cm and 8.6 

cm, respectively. Table 2-3 summarizes the UAV flights and atmospheric conditions.  
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Table 2-3 Meteorological conditions for each flying day. 

Date 
Solar Noon 

CDT 
Temp 

°C 
Dew Pt. 

°C 
φ 

rad 
Humidity 

Visibility 
km 

Wind Speed 
kts 

Sky 

10/12/2017 13:14 28.1 12.5 0.866 40% > 10 5 Clear 

10/17/2017 13:13 23.9 12.2 0.833 38% > 10 8 Clear 

10/18/2017 13:13 25.6 6.7 0.827 37% > 10 11 Clear 

10/28/2017 13:12 22.8 7.2 0.784 18% > 10 8 Clear 

10/29/2017 13:12 23.0 3.3 0.723 14% > 10 12 Clear 

10/30/2017 13:12 22.2 33.8 0.760 28% > 10 3 Clear 
 

 

Immediately following each midday flight, intensive ground truthing was performed over 

the study area using a FieldScout TDR 300 (TDR) soil moisture meter. The TDR was selected for 

its ability to quickly and reliably provide accurate VWC estimates for surface soil layers (Brevik 

2012). TDR readings by day ranged from 55 to 518 per data set. For the first TDR survey on October 

12, readings are relatively uniform, with single readings collected every fifteen paces. Due the 

highly-variable nature of soil moisture distribution, samples were later collected in clusters of three 

to twelve (3 × 3 m plots) for the remaining five collection dates. In this way, stronger patterns of 

VWC variability should emerge with anomalies or outliers more easily identified. The TDR includes 

a data logger and GPS which records geo-referenced period readings in the logger’s storage file 

system. Figure 2-5 displays the combined ground truthing for all six events, totaling 1,300 TDR 

readings. Six sets of ground truthing data were imported into ArcGIS as point features for PrISMM 

model validation.  
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Figure 2-5 Spatial distribution of soil moisture samples from FieldScout TDR 300. 
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Chapter 3  

Results  

Combining high resolution thermal and multispectral orthophotomaps with surface energy 

balance modeling and soil physical parameters produces spatially-distributed volumetric water 

content maps which reveal irrigation patterns that cannot be detected using traditional in situ or 

remote sensing methods. The PrISMM model is executed for data collected on six days during the 

fall of 2017 in which predicted (remotely-sensed) estimates of volumetric water content (θrs) are 

compared against actual (measured with TDR sensor) values of volumetric water content (θTDR). 

Spatially-distributed raster data sets of land surface temperature (Ts), normalized difference 

vegetation index (NDVI), albedo (grass and soil combined) (α), surface emissivity (εs), net radiation 

(Rnet), ground heat flux (G), thermal inertia (P) and θrs are attained for each flying day with 

resolutions of 8.6 cm (Figure 3-1). PrISMM soil moisture maps are displayed against measured 

VWC in Figure A-1 throughFigure A-6 of Appendix-1.  

 

Figure 3-1 Raster layers generated using PrISMM methodology for October 25, 2017: (from left to 

right); Ts, NDVI, α, εs, G, P, and θrs. 
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Because the objective is to determine irrigation requirements for the golf course, an image 

processing algorithm is applied to each raster data set to remove all non-soil/grass features such as 

trees, concrete, a pond, built structures, golf carts and patrons of the golf course. In this way, 

averages for spatially-distributed calculated parameters exclusively represent the intended feature–

turfgrass, as shown in Table 3-1. As this study was conducted in the mid-fall, the maximum solar 

zeniths steadily decreased from 49.6° to 43.3° causing some areas of turfgrass to be perpetually 

covered in shadows from tall trees. These shadowed regions are reflected in the model as false wet 

zones and are thus removed in pre-processing to prevent systematic bias. 

Table 3-1 Average spatially-distributed calculated parameters for each flying day. 

Date 

*Ts 
(° C) 

NDVI 
( - ) 

εs 
( - ) 

α 
( - ) 

G 
(W m-2) 

P 
(J m-2 K-1 s-1/2) 

Θrs 
(m3 m-3) 

10/12/2017 27.58 0.61 0.99 0.26 48.16 1332.72 28.47 

10/17/2017 26.49 0.61 0.98 0.26 39.05 1354.03 29.59 

10/18/2017 28.96 0.60 0.99 0.27 38.75 1383.56 31.17 

10/25/2017 27.34 0.59 0.98 0.27 40.07 1332.91 28.48 

10/29/2017 24.84 0.59 0.98 0.28 47.51 1319.83 27.80 

10/30/2017 24.69 0.59 0.98 0.28 62.02 1308.76 27.23 

* Temperature recorded during midday flight (approximately solar noon).  

For the calculation of ΔTs, Atmospheric corrections to the TIR imagery were applied with 

a built-in radio-transfer model within the FLIR hardware. As reported by Hoffman et al. (2016), the 

image processing software was unable to mosaic the early morning TIR images due to the relative 

homogeneity of surface temperatures throughout the golf course. To successfully orthorectify a set 

of photos, the software must first identify key points. Using the camera location, orientation and 

camera properties such as resolution and focal length, the software projects a line from the camera 

through the key point and repeats for all overlapping photos in the process of triangulation. Because 

key points for TIR imagery are composed of temperature estimates as pixels, the relatively uniform 

temperature field at early morning prevented sufficient key point density from being established. 
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Similar to Hoffman et al., the mean temperature of the turfgrass was used for the initial surface 

temperature, which was established from individual TIR images captured at an elevation of 70 m. 

Calibrated thermal orthophotomaps derived from early-morning and midday TIR imagery resulted 

in ΔTs values ranging from 5.1 to 21.6 °C with the smallest changes associated with ponded water 

and the highest associated with dry soils.  

Observed solar radiation data was provided by the National Weather Service (NWS) of 

Fort Worth, with the weather station located approximately 22 km WNW of Meadowbrook. 

Observed values were compared with calculated for the time at solar noon for validation purposes 

using equations 2-13 through 2-15. For the data sets occurring on October 12th, 17th and 18th, the 

calculated values of Rs↓ yielded excellent agreement (±1%) with the observed (see Figure A-7 of 

Appendix A). For the dates of October 25th, 29th and 30th, however, equations 2-13 through 2-15 

over-predicted Rs↓ by as much as 22%. The departure of the calculated from the observed values is 

likely a consequence of an atmospheric scattering parameter not accounted for by the clear sky 

transmissivity equation, 2-15. For this study, the NWS values were used to determine net radiation, 

however, it is recommended that a four-component net radiometer or pyranometer be installed at 

the site for the greatest possible accuracy. 

As previously noted, ground truthing was accomplished using a calibrated TDR soil 

moisture sensor. Georeferenced period readings were collected immediately after each midday 

flight, ranging from 55 to 518 readings per data set, with 1,300 readings in total. For the first TDR 

survey on October 12, readings are relatively uniform, with single readings collected every fifteen 

paces. Due to the highly-variable nature of soil moisture distribution, samples were later collected 

in clusters of three to twelve (3 × 3 m plots) for the remaining five collection dates. Some wet and 

dry spots were present in each data set due to deficiencies in the irrigation sprinkler system which 

served as quality controls/boundary conditions for the PrISMM model.  
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Soil descriptions were also recorded during TDR surveys in which four soil classes were 

identified by sight and texture, including (a) loamy sand, (b) sand, (c) sandy loam, and (d) silty clay 

loam. All recorded observations were imported into the ArcGIS environment to delineate and refine 

the existing SSURGO soil distributions, as shown in Figure 3-2.  

 

Figure 3-2 Refined soil classification map from field survey 

Loamy sand is the predominant soil type and is present throughout the site. Sandy loam is 

much less common and is characterized by a dark gray color with a sandy texture, found near the 
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outer edges of the golf course. Silty clay loam is found at topographic high points throughout the 

course, possibly indicating that it was locally excavated and redistributed to appropriate the topology 

of the course. For instance, the main strip of silty clay loam in the northern region of the map 

distinctly separates two fairways. All putting greens and tee boxes are built on sand characterized 

by high porosity and infiltration rates. Updated soil classifications were then used to fine-tune the 

model calibration. 

The maintenance standards of the golf course require mowing every three to six days 

leading to a grass length of 3 to 10 mm, depending on the stage within the growing season. Due to 

the relatively small size of the golf course, the tee boxes, fairways and roughs were all mowed to 

the same length. For this study, grass was assumed to be homogenous in terms of density and 

distribution. This assumption allowed for the application of a constant attenuation factor for 

modeling mechanical resistance with respect to the surface temperature of the soil.  

Goodness-of-fit statistics were computed to evaluate the degree of association between the 

actual versus predicted values of VWC, including the coefficient of correlation (r), coefficient of 

determination (R2), root mean square error (RMSE) and mean absolute error (MAE), summarized 

in Table 3-2.  

Table 3-2 Actual vs. predicted goodness-of-fit statistics. 

Date # of TDR Measurements r R2 RMSE MAE 

10/12/2017 194 0.8281 0.6858 0.0414 0.0331 

10/17/2017 100 0.8856 0.7843 0.0522 0.0427 

10/18/2017 116 0.9088 0.8260 0.0557 0.0416 

10/25/2017 55 0.8924 0.7963 0.0536 0.0449 

10/29/2017 518 0.8691 0.7553 0.0351 0.0261 

10/30/2017 317 0.8174 0.6681 0.0357 0.0267 

Total 1300 0.8863 0.7855 0.0408 0.0308 
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For R2 values, the minimum (0.67) and maximum (0.83) values were obtained on October 

30th and October 18th, respectively. The mean R2 value for all six dates was 0.79. For RMSE values 

(m3 m-3), the minimum (0.04) and maximum (0.06) values were obtained on October 29th and 

October 18th, respectively. The mean RMSE for all six dates was 0.04. For MAE values (m3 m-3), 

the minimum (0.03) and maximum (0.04) values were obtained on October 29th and October 18th, 

respectively. The mean MAE for all six dates was 0.03. Figure 3-3 illustrates a one-by-one scatter 

plot of the actual versus predicted VWC values for all six dates combined with one-by-one scatter 

plots of the actual versus predicted VWC values for the six individual dates appearing Figure A-8 

of Appendix A. Overall, the results indicate that the PrISMM model has the ability to estimate VWC 

with good accuracy. Model performance is discussed in greater detail in Section 3.1 with 

recommendations for operational use discussed in Section 3.2. 

 
Figure 3-3 Scatter plot of actual vs. predicted Volumetric Water Content (m3 m-3) for October 12 

through October 30, 2017. 
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c. 
 

d.
 

 
Figure 3-4 Mean volumetric water content (m3 m-3) by soil type: (a) loamy sand, (b) sandy loam, 

(c) sand, and (d) silty clay loam. 
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The goodness-of-fit statistics were also separated by soil groups for comparison (Table 

3-3). The highest R2 value was associated with silty clay loam (0.81), followed by loamy sand (0.77), 

sandy loam (0.86) and sand (0.57). The markedly reduced performance in predicting VWC for sand 

could be associated with a number of factors. First, the relatively high rate of infiltration of sand 

means that the VWC will remain less constant. Due to the lag between the time of the midday flight 

and the time which the TDR reading is taken, actual SMC may fluctuate. The variability of SM is 

also increased for sand, as observed during TDR readings. Due to the importance of the putting 

greens, it is important to preserve their integrity. As such, soil cores were not removed during site-

specific soil analysis with the physical and thermal properties estimated instead. It is believed that 

accuracy of VWC prediction could be increased by performing the soil analysis for the sands and 

also reducing the time between the collection of the remotely-sensed data and the TDR readings. A 

future study will take these aspects of sand into account. 

 
Table 3-3 Actual vs. predicted goodness-of-fit statistics by soil group. 

Date # of TDR Measurements r R2 RMSE 

Sand 122 0.7564 0.5721 0.0447 

Loamy Sand 841 0.8782 0.7712 0.0415 

Sandy Loam 15 0.8639 0.7463 0.0555 

Silty Clay Loam 322 0.8973 0.8052 0.0361 

 
 
 

3.1. Discussion 

Residual histograms of the actual versus predicted VWC for the six different dates are 

shown in Appendix A in Figure A-9 with a combined histogram of residuals shown in Figure 3-5. 

As shown in Figure 3-5, the combined residuals are centered on the origin and do not indicate 

significant systematic errors. Statistics for the residuals are summarized in Table 3-4 with the 

number of TDR readings for each collection event. 
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Figure 3-5 Histogram of actual vs. predicted Volumetric Water Content (m3 m-3) for October 12 

through October 30, 2017. 

 

Analysis of the mean residuals does not reveal any significant case of model bias as both 

negative and non-negative values are close to zero. For all six events, the minimum and maximum 

residual (m3 m-3) was -0.17 and 0.17 (range of 0.34), respectively, both occurring on October 18th. 

It was originally hypothesized that as the sample population of TDR measurements increased, the 

overall range of residuals would also increase, implying that the largest range of residuals should 

have occurred on October 29th (529 readings). At least for the data sets below, no immediate 

connection can be made between the number of TDR readings and model errors, suggesting that 

approximately 100 evenly-distributed or clustered (3 × 3 m) TDR measurements should be sufficient 

for validation of the PrISMM model.  
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Table 3-4 Residual statistics. 

Date # of TDR Measurements Min Max Range Mean Median Std. Dev. 

10/12/2017 194 -0.0891 0.1082 0.1973 -0.0019 0.2835 0.0415 

10/17/2017 100 -0.0976 0.1225 0.2201 0.0239 0.0255 0.0467 

10/18/2017 116 -0.166 0.1741 0.3401 0.0203 0.0188 0.0521 

10/25/2017 55 0.1371 0.0847 0.2218 -0.0147 -0.0250 0.0520 

10/29/2017 518 -0.0956 0.1391 0.2347 0.0101 0.0075 0.0337 

10/30/2017 317 -0.0936 0.1042 0.1978 0.0117 0.0078 0.0338 

Total 1300 -0.1660 0.1741 0.3401 0.0097 0.0075 0.0397 

 

A residual plot of the six combined dates is provided in Figure 3-6 while residual plots for 

individual dates are provided in Figure A-10 of Appendix A. 

 
Figure 3-6 Residuals of actual vs. predicted volumetric water content (m3 m-3). 

 
Residuals for the combined dates are normally distributed for actual VWC (m3 m-3) values 

greater than 0.17; however, for actual values below 0.17, the PrISMM model tends to overestimate 

VWC. The difficulty in estimating thermal inertia for low moisture contents has been documented 

elsewhere (Tarnawski and Leong 2000; Lu et al. 2007; Minacapilli et al. 2009). Minacapilli et al. 

for instance reported more scattered predictions of VWC below 0.15 m3 m-3. This phenomenon is 

attributed to the relationship between the soil thermal conductivity (λ) and soil water content (θ), 

implicit in equations 2-1 through 2-4. For lower moisture contents, water molecules are more tightly 
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bound to soil particles; as θ increases in the dry domain, the water film continues to build on the 

particle surface, accompanied by a considerably smaller increase in λ (Lu et al. 2007). As the film 

continues to thicken, the water forms a bridge between soil particles and λ begins to increase rapidly. 

For mid-values of moisture content (0.17 – 0.50 m3 m-3 in this study), the λ(θ) relationship is 

assumed to be linear. As the soil approaches saturation, however, the λ(θ) relationship becomes 

largely dependent on the displacement of air by water in which θ continues to increase with a more 

gradual increase in thermal conductivity; thus, the λ(θ) relationship tends to resemble an s-curve. In 

terms of operability of the PrISMM model, the difficulty in estimating θ (m3 m-3) for particularly 

low and high values is not considered to be problematic. The PrISMM model accurately detects the 

thresholds for θrs ≤ 0.17 and θrs ≥ 0.50 and flags these pixels as excessively dry or excessively wet, 

respectively. As later discussed in Section 3.2, precision irrigation management decisions are 

determined for the θrs domain within 20% of field capacity, or, approximately 0.17 to 0.54 m3 m-3. 

Due to the general tendency of soil moisture to decrease throughout the day, the residuals 

are also plotted against the time in which the TDR readings are taken. It is hypothesized that as the 

time between θrs and θTDR increases, the magnitude of residuals will increase. The data set on 

October 29th, 2017 contained the largest lag time (1.7 – 4.27 h) between the remotely-sensed data 

and ground truthing data due to the large number of TDR readings (518). Figure 3-7 shows the 

predicted minus actual VWC versus time between θrs and θTDR for October 29th, 2017. For this event, 

no significant trends in VWC estimate errors and lag time are present. In order to more fully 

understand the relationship of these errors with lag time, an in situ TDR sensor may be installed on 

site to quantify the temporal aspects of VWC. Again, 100 TDR readings should be sufficient in 

quantifying the accuracy of the PrISMM model; therefore, provided that TDR readings are collected 

immediately after the midday flight, these lag errors are not expected to be significant. 
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Figure 3-7 Predicted minus actual VWC (m3 m-3) versus time between θrs and θTDR, October 29th, 

2017. 

 

In order to test the response of remotely-sensed estimates of θrs to individual irrigation 

and/or rain events, the PrISMM modeling domain was delineated into irrigation management zones 

to compute zonal statistics for each zone. The current irrigation system at Meadowbrook consists of 

86 stations with two sprinkler heads each for a total of 162 sprinkler heads. Although stations may 

be operated independently, irrigation at Meadowbrook is currently divided into three irrigation 

management zones, i.e., (a) greens, (b) tee boxes and (c) fairways and roughs. This means, for 

example, that if VWC is insufficient for a stretch of fairway, all fairways and roughs will be irrigated 

the following night for equal time intervals. Similarly, if the entire lower half of the golf course is 

considered too dry but the top half satisfactory, the entire golf course will be irrigated the following 

night, albeit using independent time intervals per management zone. Figure 3-8 Irrigation 

management zones by grass type: (a) green, (b) tee box, (c) fairway, and (d) roughs.Figure 3-8 

displays the current irrigation management zones by grass type: (a) green, (b) tee box, (c) fairway, 

and (d) roughs. 
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Figure 3-8 Irrigation management zones by grass type: (a) green, (b) tee box, (c) fairway, and (d) 

roughs. 
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The average θrs (%) values for each irrigation management zone are depicted in bar charts 

by date in Figure 3-9. For zones in which irrigation is conducted within the previous 12 h, the bars 

are marked as either irrigated by sprinkler head or watered by hand (hand watering is usually 

performed during daylight hours by visually identifying dry areas). Rainfall events were recorded 

at Arlington Municipal Airport (KGKY) which included Oct. 10 (0.13 in), Oct. 15 (0.01 in), Oct. 

20 (0.01 in), and Oct. 22 (0.92 in). There are two sets of consecutive dates including Oct. 17th – 18th 

and Oct. 29th – 30th.  

a. 
 

b.
 

c. 
 

d.
 

  Irrigated within previous 12-hrs;           Hand-watered within previous 12-hrs 

Figure 3-9 Mean volumetric water content (m3 m-3) by grass type and date: (a) greens, (b) tee 

boxes, (c) fairway, and (d) rough. 
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The response of θrs to rainfall was not evident for the selected dates, most likely due to the 

large gap between observed rainfall and data collection and the relatively small precipitation 

amounts. Due to the high infiltration rates of the greens and tee boxes (sand + organics) and higher 

standards for playability and vigor, the frequency of irrigation is significantly higher than for other 

surfaces. One observable response includes the slight decrease in VWC (%) of the greens from Oct. 

29th – Oct. 30th where VWC remains relatively constant for the other surfaces. This is likely due to 

the lower intensity and precision (hence less water) of hand watering. For all four playing surfaces, 

VWC increases from Oct. 17th – 18th which is consistent with the irrigation pattern. Tee boxes are 

slightly higher in moisture content than greens despite the green’s more frequent irrigation. This is 

likely due to the smaller sand fraction in the tee boxes which is by design. The roughs are also 

slightly higher in VWC than the fairways of which both surfaces are irrigated simultaneously. This 

is likely due to the tendency of ponded water to collect in the roughs. It is expected that as the 

number of consecutive data sets increase, and with more irrigation variability, stronger correlations 

between the response of θrs to rainfall and irrigation patterns will emerge. 

3.2. Recommendations for Operational Use 

The overall objective in the irrigation of turfgrass is to maintain plant available water (the 

difference between field capacity and permanent wilting point) at or above 50% for the longest 

duration with minimal loss from drainage or runoff (Murphy 2002). In order for PrISMM to drive a 

time-based irrigation system, irrigation management zones must be delineated by soil texture and 

rooting depth. The derived VWC maps are used to determine the percentage of plant available water 

(in/ft) at the time of the midday flight. It should be noted that optimal growth and plant health is 

typically observed between 50 to 80% of plant available water with severe symptoms of drought 

becoming apparent at 20% (Murphy 2002). Table 3-5 summarizes estimated plant available water 

values adjusted for organic content for the four soil groups at  Meadowbrook. Plant available water 

is expressed in both the VWC percent and also in inches per foot of soil depth.  
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Table 3-5 Plant available water adjusted for organic content (adapted from Murphy 2002). 

Texture 
Field Capacity 

(%) 
Permanent Wilting Point 

(%) 
Plant Available Water 

(%) 
Plant Available Water 

(in/ft) 

Sand 15 5 10 0.5 

Loamy sand 19 5 12 1.0 

Sandy loam 25 8 17 1.5 

Silty clay loam 45 22 23 2.5 

 

The concept of carrying capacity of the soil (the time required by the turf to deplete 50% 

of the plant available water) is introduced to relate plant available water with daily 

evapotranspiration rates using the following equation (Murphy 2002):  

	 	
	

             (3-1) 

Table 3-6 is constructed from the above equation to provide the carrying capacity of the 

four soil groups and corresponding rooting depths (measured during soil analysis, Section 2.3) at 

Meadowbrook along with typical evapotranspiration rates for north central Texas in the month of 

October (TexasET 2017). The next phase of this research will aim to develop time-based spatially-

distributed irrigation maps from PrISMM θrs maps, weather forecasts and retrieved estimates of 

evapotranspiration. 

As mentioned in Section 3.1., the PrISMM model accurately detects thresholds for θrs ≤ 

0.17. These pixels are flagged and scheduled for irrigation using the full time interval for each day 

until the values return to within 20% of field capacity. The PrISMM model similarly flags pixels for 

θrs ≥ 0.50 which are removed from irrigation scheduling until the values return to within 20% of the 

field capacity. For values within 20% of field capacity, or, approximately a VWC of 17 – 54% 

depending on soil type, values are converted to percent plant available water in accordance with the 
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corresponding soil texture. The daily evapotranspiration rate (TexasET Network) and rooting depth 

(appx. 2.6 in) are used to determine the carrying capacity, i.e., the number of days for the plant 

available water to become 50% depleted. Irrigation is then scheduled in a manner as to restore plant 

available water (in/ft) to a level that will guarantee that plant available water shall remain at or 

above 50% until the next irrigation and/or rainfall event. 

Table 3-6 Carrying capacity of soils for various evapotranspiration rates and rooting depths1. 

Soil Type Evapotranspiration 
Effective rooting depth (in) 

2.0 3.0 4.0 5.0 

  inches/day Time (days) to deplete 50% of available water 

Sand 0.05 1.7 2.5 3.3 4.2 

  0.10 0.8 1.3 1.7 2.1 

  0.15 0.6 0.8 1.1 1.4 

Loamy sand 0.05 3.3 5.0 6.7 8.3 

  0.10 1.7 2.5 3.3 4.2 

  0.15 1.1 1.7 2.2 2.8 

Sandy loam 0.05 5.0 7.5 10.0 12.5 

  0.10 2.5 3.8 5.0 6.3 

  0.15 1.7 2.5 3.3 4.2 

Silty clay loam 0.05 8.3 12.5 16.7 20.8 

  0.10 4.2 6.3 8.3 10.4 

  0.15 2.8 4.2 5.6 6.9 
1 Based on depletion of 50% of the available water. 

In the case of Meadowbrook, the PrISMM maps helped to identify areas that were 

chronically dry, including long stretches of fairway (Figure A-1 through Figure A-6) where 

compaction is intensified by frequent golf cart and foot traffic, causing more runoff to be generated 

and moisture to be rapidly lost. In order to improve infiltration in the well-irrigated, though 

chronically dry zones, the precipitation rate of the sprinkler heads should be reduced to promote 

infiltration. The duration may also be reduced while performing a second or third irrigation event 

later the same night. Chronically wet areas consisted of topographic lows where runoff was 

temporarily stored as ponded water. This is indicative of excessive precipitation rates within the 
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surrounding area. Precipitation rates should subsequently be reduced while simultaneously 

increasing the duration so that the precipitation depth remains the same. Also of note, the putting 

greens –which have a high infiltration rate– must be irrigated nearly every day in the spring, summer 

and fall in the absence of sufficient rainfall. This results in chronic wet spots on the edges of the 

greens where the sandy soil rapidly transitions to loamy sand. This could be addressed by installing 

plastic liners under the putting greens to prevent excessive infiltration and thus reduce the amount 

of irrigation water required.  
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Chapter 4 Conclusion 

 
4.1. Conclusion and Future Work 

This study presented the application of a novel remote sensing system known as Precision 

Irrigation Soil Moisture Mapper (PrISMM) for deriving soil moisture estimates to determine 

watering requirements for urban landscapes. PrISMM was implemented at a golf course in 

Arlington, Texas to demonstrate the feasibility of precision irrigation based on spatially-distributed 

VWC estimates as the primary decision variable. High-resolution, multispectral imagery acquired 

using an unmanned aerial vehicle (UAV), combined with site-specific soil analysis and surface 

energy balance modeling serve as the main components for a thermal inertia approach to the 

estimation of volumetric water content (VWC). Diurnal temperature variations, measured with a 

thermal camera, are related to ground heat flux to derive the thermal inertia estimates. Remotely-

sensed estimates of thermal inertia were then used for VWC retrieval based on actual soil physical 

parameters with a resolution of 8.6 cm.  

The accuracy of PrISMM was quantified using ground truthing data from a time domain 

reflectometry (TDR) soil moisture sensor. Goodness-of-fit statistics of actual versus predicted VWC 

indicate good model accuracy: (r: 0.89, R2: 0.79, RMSE: 0.04, MAE: 0.03). It was further discussed 

how PrISMM data may be combined with daily evapotranspiration rates and weather forecasts to 

determine the duration and frequency of irrigation requirements based on irrigation management 

zones. Advantages of using the PrISMM model over traditional methods for irrigation water 

management decisions include: 

 Timely and accurate, spatially-distributed soil moisture estimates; 

 A wide range of operating conditions with easy and flexible use; 
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 A model with a clear physical meaning;  

 The identification of deficiencies in irrigation systems by detecting chronic wet and 

dry spots; 

 Provision of continuous, high resolution estimates which are simply impossible to 

obtain using in situ sensors;  

 Excellent density and continuity of data, covering ~0.1 km2 in 30 minutes (compared 

to 1.5 hours for 100 TDR readings;  

 The allowance of operation of independent sprinkler heads with specified durations 

and frequencies. 

One weakness of the model is that the current methodology cannot take into account 

heterogeneity or thermographic anomalies in subsoils. These regions may cause non-uniform 

heating. It is also currently unknown how PrISMM will perform in cloudy or overcast conditions. 

Because the surface energy balance model assumes a cloudless sky, a four-component net 

radiometer will be installed on site to evaluate the model performance in a wider range of 

atmospheric conditions. Also unclear is how PrISMM will perform during winter months when days 

are shorter and the effective root zone is deeper. In particular, it is unclear how the system will be 

impacted by frost and the dormancy of grass. The next phase of this research will aim to resolve 

these issues as well as develop time-based spatially-distributed irrigation maps from PrISMM θrs 

maps, weather forecasts and evapotranspiration rates. For the present, however, all findings indicate 

that PrISMM offers superior spatial and temporal resolution compared to in situ methods and may 

be implemented to precisely irrigate urban landscapes, thus saving millions of gallons of water 

annually. 
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APPENDIX A 
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Figure A-1 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) versus Time Domain 

Reflectometry measurements: October 12, 2017. 
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Figure A-2 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) versus Time Domain 

Reflectometry measurements: October 17, 2017. 
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Figure A-3 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) versus Time Domain 

Reflectometry measurements: October 18, 2017. 



 

64 

 

Figure A-4 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) versus Time Domain 

Reflectometry measurements: October 25, 2017. 



 

65 

 

Figure A-5 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) versus Time Domain 

Reflectometry measurements: October 29, 2017. 
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Figure A-6 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) versus Time Domain 

Reflectometry measurements: October 30, 2017. 
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a. 

        

b. 
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e. 

        

f. 

        

Figure A-7 Incoming solar radiation (calculated versus observed) at solar noon: (a) October 12; (b) 

October 17; (c) October 18; (d) October 25; (e) October 29; (f) October 30, 2017. 
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d. 
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e. 

 
 
 

f. 

 
 

Figure A-8 Scatter plots of actual vs. predicted Volumetric Water Content (m3 m-3): (a) October 12; (b) 

October 17; (c) October 18; (d) October 25; (e) October 29; (f) October 30, 2017. 
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Figure A-9 Histograms of actual vs. predicted Volumetric Water Content (m3 m-3): (a) October 12; 

(b) October 17; (c) October 18; (d) October 25; (e) October 29; (f) October 30, 2017. 
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d. 

 

e. 

 

f. 

 

Figure A-10 PrISMM soil moisture map (Volumetric Water Content (m3 m-3)) vs. Time Domain 

Reflectometry measurements: (a) October 12; (b) October 17; (c) October 18; (d) October 25; (e) October 

29; (f) October 30, 2017. 
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