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Abstract 

 
REGION BASED CONVOLUTIONAL NEURAL NETWORKS FOR OBJECT DETECTION 

AND RECOGNITION IN ADAS APPLICATION 

 

Sachit Kaul, MS  

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Kamesh Subbarao 

Object Detection and Recognition using Computer Vision has been a very 

interesting and a challenging field of study from past three decades. Recent 

advancements in Deep Learning and as well as increase in computational power has 

reignited the interest of researchers in this field in last decade. 

Implementing Machine Learning and Computer Vision techniques in scene 

classification and object localization particularly for automated driving purpose has been 

a topic of discussion in last half decade and we have seen some brilliant advancements 

in recent times as self-driving cars are becoming a reality. In this thesis we focus on 

Region based Convolutional Neural Networks (R-CNN) for object recognition and 

localizing for enabling Automated Driving Assistance Systems (ADAS). R-CNN combines 

two ideas: (1) one can apply high-capacity Convolutional Networks (CNN) to bottom-up 

region proposals in order to localize and segment objects and (2) when labelling data is 

scarce, supervised pre-training for an auxiliary task, followed by domain-specific-fine-

tuning, boosts performance significantly. 

In this thesis, inspired by the RCNN framework we describe an object detection 

and segmentation system that uses a multilayer convolutional network which computes 
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highly discriminative, yet invariant features to classify image regions and outputs those 

regions as detected bounding boxes for specifically a driving scenario to detect objects 

which are generally on road such as traffic signs, cars, pedestrians etc.  

We also discuss different types of region based convolutional networks such as 

RCNN, Fast RCNN and Faster RCNN, describe their architecture and perform a time 

study to determine which of them leads to real-time object detection for a driving scenario 

when implemented on a regular PC architecture. 

Further we discuss how we can use such R-CNN for determining the distance of 

objects on road such as Cars, Traffic Signs, Pedestrians from a sensor (camera) 

mounted on the vehicle which shows how Computer Vision and Machine Learning 

techniques are useful in automated braking systems (ABS) and in perception algorithms 

such as Simultaneous Localization and Mapping (SLAM).   
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Chapter 1  

INTRODUCTION 
 

Implementing Machine Learning and Computer Vision techniques in scene 

classification and object localization particularly for automated driving purpose has been 

a topic of discussion for a long time. As the automobile sector is now moving very fast 

towards developing advanced driver assistance systems (ADAS) and autonomous 

vehicles there have been certain advances in deep learning architectures and also the 

hardware required for the same.  

Deep Learning algorithms have been in existence from a very long time but 

object detection time, availability of training data and best training practices are still 

debated widely. In this thesis we create a Neural Network for its implementation in real-

time object detection and localization in a driving scene.  

We address above mentioned problems by comparing different Convolutional 

Neural Network (CNN) architectures fine-tuned for a particular task; In our case a driving 

scenario. We begin with summarizing some prior work in this direction, and then we focus 

specifically on Region based Convolutional Neural Network (R-CNN) family  

First, we start with elaborating about the CNN architecture which is specifically 

designed for object detection and classification in an image input. We also discuss 

certain CNN architectures developed over last decade. We address the problem of 

detection time, training data availability by applying a high-capacity Convolutional 

Networks (CNN) to generate region proposals in order to localize and segment objects.  

As training data is scarce, we use a supervised pre-trained CNN (AlexNet), which is 

trained for an auxiliary task, followed by a domain-specific-fine-tuning i.e. for object 

detection and localization in a driving scenario in our problem which helps to boost the 

performance of the resulting CNN significantly. 
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Second, we discuss in detail about the R-CNN family, provide their architectural 

details, fine tune each of them for object detection and localization in a driving scenario 

and then compare them and discuss their advantages, disadvantages on the basis of 

detection time, network complexity and training time. 

Finally, after concluding which R-CNN framework is suitable for real-time object 

detection and localization in an image we move further to implement our R-CNN for depth 

estimation task. We start with discussing in brief, the techniques which are used for 

perceiving depth information, explain why stereo vision is a reliable and robust way for 

depth perception. Further, we talk in detail about concepts used in stereo vision and how 

we combine it with our R-CNN for perception of depth information. 
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Chapter 2 

LITERATURE REVIEW 

 
Deep Convolutional Networks for Object Detection: Convolutional Neural 

Networks (CNN) saw their usage initially in handwritten character recognition in 1990s 

but fell out of fashion due to use of support vector machines. In 2012 Krizhevsky et al. [4] 

reignited the interest in CNN by showing a substantial improvement in image 

classification accuracy on the ImageNet large scale visual recognition challenge (ILSVRC 

[5] [6]) Their success resulted from training a large CNN on 1.2 million labeled images, 

together with a few changes on CNN from the 1990s (e.g., max(x,0) “ReLU” non-

linearities, “dropout” regularization, and a fast GPU implementation). 

There are certain other methodologies to use Convolutional networks concurrent 

to the RCNN’s discussed in this thesis such as Szegedy et al. [7] model object detection 

posed as a regression problem. In an image window, they use a CNN to predict 

foreground pixels over a coarse grid for the whole object as well as the object’s top, 

bottom, left and right halves. A grouping process then converts the predicted masks into 

detected bounding boxes. Szegedy et al. train their model from a random initialization on 

PASCAL visual object classes (VOC) 2012 training and evaluation and get a mean 

average precision (mAP) of 30.5 percent on VOC 2007 test. In comparison, an R-CNN 

using the same network architecture gets a mAP of 58.5 percent, but uses supervised 

ImageNet pre-training. 

Scalability and Speed: In recent years Object detection techniques have evolved 

over the last decade due largely to the use of low level image features, such as scale-

invariant feature transform (SIFT) [2] and histogram of oriented gradients (HOG) [3], in 

sophisticated Machine Learning frameworks [1] which increases the accuracy. These 
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features are often combined with support vector machine (SVM) algorithm and we have 

seen their implementation in many object detection tasks such as pedestrian detection. 

In addition to being accurate, it’s important for object detection systems to scale 

well with the increase in number of object categories. Methods such as Discriminatively 

trained part based models (DPM) [8] scale to thousands of object categories. For 

example, in Dean et al. [9] hashtable lookups are used instead of exact filter convolutions 

in DPM. Their results show that with this technique it’s possible to run 10k DPM detectors 

in about 5 minutes per image on a desktop workstation. However, there is a tradeoff. 

when a large number of DPM detectors compete, the approximate hashing approach 

causes a substantial loss in detection accuracy. R-CNNs, in contrast, scale very well with 

the number of object classes to detect because nearly all computation is shared between 

all object categories.  

 Despite the scaling behavior, an R-CNN can take 10 to 45 seconds per image on 

a GPU, depending on the network used, since each region is passed through the network 

independently [1]. There has been recent work to reduce training and detection time 

while increasing the accuracy and simplifying the training process Fast RCNN [10] is one 

of them which has higher detection quality (mAP) than R-CNN and other being SPPnet in 

which training is single-stage, using a multi-task loss. Training in SPPnet can update all 

network layers and no disk storage is required for feature caching. Another method is 

Faster RCNN [11] In this work, a Region Proposal Network (RPN) is introduced that 

shares full-image convolutional features with the detection network, thus enabling nearly 

cost-free region proposals. An RPN is a fully convolutional network that simultaneously 

predicts object bounds and objectness scores at each position.  

 Localization Methods: Sliding-window detectors have been a dominant approach 

in object detection. This approach traces back to early face detectors [12] and continued 
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with HOG based pedestrian detection [13] and DPM based generic object detection [8]. 

An alternative was introduced to compute a pool of likely overlapping regions each 

serving as a candidate object and then to filter these candidates. The “selective search” 

algorithm of van de Sande et al. [14] popularized the multiple segmentation approach for 

object detection by showing strong results on PASCAL object detection. RCNN approach 

was inspired by the success of selective search. Object proposal generation is now an 

active research area, for an in-depth survey of region proposal we can refer to Hosang et 

al. [15] which provides an evaluation of recent methods. 

 Depth Estimation: Depth information can be perceived using many techniques 

such as Laser Ranging, Structured Light and Stereo Vision  

 Perception of depth information from time-of-flight (ToF) or structured light 

sensor is considered an active sensor, unlike a stereo vision camera which is a passive 

sensor. Devices of this type such as the Microsoft Kinect are cheap hence seeing usage 

widely. However, these active sensors suffer from certain characteristic problems [31] 

They are subject to errors such as noise and ambiguity, which are due to the sensor that 

is used and also, they are subject to non-systematic errors such as scattering and motion 

blur.  

According to the comparative analyses performed by Foix et al. [32], Kim et al. 

[33], and Zhang et al. [34], ToF devices perform satisfactorily only up to a maximum 

distance of approximately 5–7 meters and are too sensitive to be used in outdoor 

environments, especially in very bright areas. Because of these limitations of ToF 

sensors, stereo vision sensors are more reliable and robust; they are capable of 

producing high-resolution disparity maps and are suitable for both indoor and outdoor 

environments [35]. 
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Stereo vision addresses the problem of reconstruction of the three-dimensional 

coordinates of points for depth estimation. A stereo vision system consists of a stereo 

camera, namely, two cameras placed horizontally (i.e., one on the left and the other on 

the right). The two images captured simultaneously by these cameras are then 

processed for the recovery of visual depth information [27].  

Determination of disparity is one of big challenges faced in stereo vision 

Intuitively, a disparity map represents corresponding pixels that are horizontally shifted 

between the left image and right image. New methods and techniques for solving this 

problem are developed every year and exhibit a trend toward improvement in accuracy 

and time consumption. 

As the number of pixels in images increase number of calculations required 

increase for disparity map processing. This phenomenon causes the matching problem to 

be computationally complex [36]. The improvements in computational complexity 

achieved with recent advances in hardware technology have led to advancement of 

research in the stereo vision field. Thus, the main motivation for hardware-based 

implementation is to achieve real time processing [37]. In real-time stereo vision 

applications, such as autonomous driving, 3D gaming, and autonomous robotic 

navigation, fast but accurate depth estimations are required [38]. Additional processing 

hardware is therefore necessary to improve the processing speed. 
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Chapter 3 

INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS 

 

Convolutional Neural Networks (CNN) are very similar to ordinary Neural 

Networks which were inspired by biological processes. They are made up of neurons that 

have learnable weights and biases. Each neuron receives some inputs, performs a dot 

product and optionally follows it with a non-linearity. CNN architectures make the explicit 

assumption that the inputs are images, which allows us to encode certain properties into 

the architecture which makes the forward function more efficient to implement and vastly 

reduce the number of parameters in the network.  

In this section, we will discuss about the CNN Architecture, certain famous CNN 

architectures and their details. We propose a method for object detection using deep 

convolutional networks, especially for detection of common objects present on Road (Car 

Pedestrians, Traffic Signs etc.). Our approach is simple, by transferring the rich feature 

hierarchies of CNN learned by large scale image dataset to a specific task in our case 

objects on a Road. 

3.1 Architecture 

Convolutional Neural Networks take advantage of the fact that they are 

specifically designed for image inputs. In CNN’s neurons are arranged in a three-

dimensional way i.e. Width, Height and Depth which constrains their architecture in more 

sensible way. 
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Figure.3.1 Regular 3 Layer Neural Network Vs Convolutional Neural Network [24]. 

 

In the above figure, In left: A regular 3-layer Neural Network. Right: A ConvNet 

arranges its neurons in three dimensions (width, height, depth), as visualized in one of 

the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output 

volume of neuron activations. I this figure the red input layer holds the image, so its width 

and height would be the dimensions of the image and the depth would be 3 (Red, Green, 

Blue channels). 

 

3.1.1 Convolution Layer 

The Convolution layer is the core building block of a Convolutional Neural 

Network that does most of the computational heavy lifting. The CONV layer’s parameters 

consist of a set of learnable filters. Every filter is small spatially (along width and height), 

but extends through the full depth of the input volume.  

For example, a typical filter on a first layer of a ConvNet might have size 5x5x3 

(i.e. 5 pixels width and height, and 3 because images have depth 3, the color 

channels). During the forward pass, we slide (more precisely, convolve) each filter across 

the width and height of the input volume and compute dot products between the entries 

of the filter and the input at any position. As we slide the filter over the width and height of 

the input volume we will produce a 2-dimensional activation map that gives the 
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responses of that filter at every spatial position.  Intuitively, the network will learn filters 

that activate when they see some type of visual feature such as an edge of some 

orientation or a blotch of some color on the first layer, or eventually entire honeycomb or 

wheel-like patterns on higher layers of the network 

Spatial Arrangement of Convolution Layer 

Three hyper-parameters control the size of the output volume: the depth, 

stride and zero-padding. 

1. Depth of the output volume is a hyper-parameter: it corresponds to the 

number of filters which are used for learning to look for something different in the input. 

For example, if the first Convolutional Layer takes as input the raw image, then different 

neurons along the depth dimension may activate in presence of various orientations, 

edges, or blobs of color. A set of neurons that are all looking at the same region of the 

input as a depth column will be referred. 

2. Stride is specified with which we slide the filter. When the stride is 1 then the 

filters move one pixel at a time. When the stride is 2 (or uncommonly 3 or more, though 

this is rare in practice) then the filters jump 2 pixels at a time as we slide them around. 

This will produce smaller output volumes spatially. 

3. Sometimes it will be convenient to pad the input volume with zeros around the 

border. The size of this zero-padding is a hyperparameter. Zero padding allows us to 

control the spatial size of the output volumes. 

The convolution layer can be summarized as, 

• Accepts a volume of size 𝑊1 ×  𝐻1 × 𝐷1. 

• Requires four hyper-parameters: 

• Number of filters 𝐾, 

• their spatial extent 𝐹, 
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• the stride 𝑆, 

• the amount of zero padding 𝑃. 

• Produces a volume of size 𝑊2 ×  𝐻2 × 𝐷2 where: 

• 𝑊2 = (𝑊1 − 𝐹 + 2𝑃)/𝑆 + 1 

• 𝐻2 = (𝐻1 − 𝐹 + 2𝑃)/𝑆 + 1  (i.e. width and height are computed equally by 

symmetry) 

• 𝐷2 = 𝐾 

• With parameter sharing, it introduces 𝐹 × 𝐹 × 𝐷1 weights per filter, for a total of 

(𝐹 × 𝐹 × 𝐷1) × 𝐾 weights and K biases. 

• In the output volume, the d-th depth slice (of size 𝑊2 × 𝐻2) is the result of 

performing a valid convolution of the d-th filter over the input volume with a stride 

of 𝑆, and then offset by d-th bias. 

A common setting of the hyperparameters is 𝐹 = 3, 𝑆 = 1, 𝑃 = 1. However, there are 

common conventions and rules of thumb that motivate these hyper-parameters [24].  

 

3.1.2 Pooling Layer      

It is common to periodically insert a Pooling layer in-between successive 

Convolution layers in a CNN architecture. Its function is to progressively reduce the 

spatial size of the representation to reduce the amount of parameters and computation in 

the network, and hence to also control overfitting.  

The Pooling Layer operates independently on every depth slice of the input and 

resizes it spatially, using the MAX operation. The most common form is a pooling layer 

with filters of size 2 × 2 applied with a stride of 2 down samples every depth slice in the 

input by 2 along both width and height, discarding 75% of the activations. Every MAX 
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operation would in this case be taking a max over 4 numbers (little 2 × 2 region in some 

depth slice). The depth dimension remains unchanged. 

Pooling Layer can be summarized as, 

• Accepts a volume of size 𝑊1 ×  𝐻1 × 𝐷1. 

• Requires two hyper-parameters: 

• their spatial extent 𝐹, 

• the stride 𝑆, 

• Produces a volume of size 𝑊2 ×  𝐻2 × 𝐷2 where: 

• 𝑊2 = (𝑊1 − 𝐹)/𝑆 + 1 

• 𝐻2 = (𝐻1 − 𝐹)/𝑆 + 1 

• 𝐷2 = 𝐷1 

• Introduces zero parameters since it computes a fixed function of the input, note 

that it is not common to use zero-padding for Pooling layers, it is worth noting 

that there are only two commonly seen variations of the max pooling layer found 

in practice: 

    1.A pooling layer with 𝐹 = 3, 𝑆 = 2  (also called overlapping pooling). 

    2.And more commonly 𝐹 = 2, 𝑆 = 2. 

 Pooling sizes with larger receptive fields are too destructive [24]. 

  

3.1.3 Normalization Layer 

Many types of normalization layers have been proposed for use in Convolutional 

Net architectures, sometimes with the intentions of implementing inhibition schemes 

observed in the biological brain. However, these layers have since fallen out of favor 

because in practice their contribution has been shown to be minimal, if any [24].  
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3.1.4 Fully-Connected Layer 

Neurons in a fully connected layer have full connections to all activations in the 

previous layer, as seen in regular Neural Networks. Their activations can hence be 

computed with a matrix multiplication followed by a bias offset.  

 
 

Fig.3.2 Representation of Layers of Convolutional Neural Network [24]. 

 

3.2 Famous Convolutional Neural Network Architectures. 

There are several architectures in the field of Convolutional Networks. The most 

common are the following. 

1. LeNet. The first successful applications of Convolutional Networks were developed by 

Yann LeCun in 1990’s. Of these, the best known is the LeNet architecture that was used 

to read zip codes, digits, etc. 

2. AlexNet. The first work that popularized Convolutional Networks in Computer Vision 

was the AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. The 

AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and significantly 
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outperformed the second runner-up (top 5 error of 16% compared to runner-up with 26% 

error). The Network had a very similar architecture to LeNet, but was deeper, bigger, and 

featured Convolutional Layers stacked on top of each other (previously it was common to 

only have a single CONV layer always immediately followed by a POOL layer). 

3. ZF Net. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler 

and Rob Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an 

improvement on AlexNet by tweaking the architecture hyperparameters, in particular by 

expanding the size of the middle convolutional layers and making the stride and filter size 

on the first layer smaller. 

4. GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network from Szegedy et 

al. [16] from Google. Its main contribution was the development of an Inception 

Module that dramatically reduced the number of parameters in the network (4M, 

compared to AlexNet with 60M). Additionally, this paper uses Average Pooling instead of 

Fully Connected layers at the top of the ConvNet, eliminating a large amount of 

parameters that do not seem to matter much.  

5. VGGNet. The runner-up in ILSVRC 2014 was the network from Karen Simonyan and 

Andrew Zisserman that became known as the VGGNet Its main contribution was in 

showing that the depth of the network is a critical component for good performance. Their 

final best network contains 16 CONV/FC layers and, appealingly, features an extremely 

homogeneous architecture that only performs 3x3 convolutions and 2x2 pooling from the 

beginning to the end.  

6. ResNet. Residual Network developed by Kaiming He et al. was the winner of ILSVRC 

2015. It features special skip connections and a heavy use of batch normalization. The 

architecture is also missing fully connected layers at the end of the network.  
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Chapter 4 

TRANSFER LEARNING 
 

In our research, we started with AlexNet which was mentioned briefly in previous 

chapter. AlexNet was developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton 

and was submitted to the ImageNet ILSVRC challenge in 2012 and it significantly 

outperformed the second runner-up (top 5 error of 16% compared to runner-up with 26% 

error). It was trained to classify 1.2 million images for ILSRVC challenge. AlexNet has 60 

million parameters and 650,000 neurons, consists of five convolutional layers, some of 

which are followed by max-pooling layers, and three fully-connected layers with a final 

1000-way softmax. 

In this chapter we discuss about the AlexNet architecture, its features which 

encouraged us to use as the CNN base for performing transfer learning and then we 

discuss about transferring the rich feature hierarchies of AlexNet learned by large image 

dataset to our specific task of road object detection. 

 

4.1 AlexNet Architecture 

  AlexNet contains eight learned layers five convolutional and three fully-

connected. Below, we describe some of the novel or unusual features of AlexNet.  

4.1.1 ReLU Nonlinearity 

 Instead of using the standard way to model a neuron’s output i.e. 𝑓 as a function 

of its input 𝑥 with 𝑓(𝑥) = tanh (𝑥) or 𝑓(𝑥) = (1 + 𝑒−𝑥)−1 they used 𝑓(𝑥) = max (0, 𝑥), as in 

terms of training time with gradient descent saturating nonlinearities are much slower 

than the non-saturating nonlinearity. 
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 Following Nair and Hinton [17], they refer to neurons with this nonlinearity as 

Rectified Linear Units (ReLUs). Deep convolutional neural networks with ReLUs train 

several times faster than their equivalents with 𝑡𝑎𝑛ℎ units [19].  

 

 

      Figure 3.1 Training error rate vs Epochs [19]   
 

 

This is demonstrated in Figure 3.1, which shows A four-layer convolutional neural 

network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times 

faster than an equivalent network with 𝑡𝑎𝑛ℎ neurons (dashed line). The learning rates for 

each network were chosen independently to make training as fast as possible. No 

regularization of any kind was employed. The magnitude of the effect demonstrated here 

varies with network architecture. Networks with ReLUs consistently learn several times 

faster than equivalents with saturating neurons [19]. 
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4.1.2 Training on Multiple GPU’s 

A single GPU has memory constraints, which limits the maximum size of the 

networks that can be trained on it. Therefore, in AlexNet the net is spread across two 

GPUs. Current GPUs are particularly well-suited to cross-GPU parallelization, as they 

can read from and write to one another’s memory directly, without going through host 

machine memory.  

The employed parallelization scheme essentially puts half of the kernels (or 

neurons) on each GPU, with one additional trick: the GPUs communicate only in certain 

layers. For example, the kernels of layer 3 take input from all kernel maps in layer 2. 

However, kernels in layer 4 take input only from those kernel maps in layer 3 which 

reside on the same GPU.  

The resultant architecture is somewhat like that of the “columnar” CNN employed 

by Cire¸san et al. [18], except that AlexNet columns are not independent. This scheme 

reduces AlexNet’s top-1 and top-5 error rates by 1.7% and 1.2%, respectively, as 

compared with a net with half as many kernels in each convolutional layer trained on one 

GPU. The two-GPU net takes slightly less time to train than the one-GPU net [4]. 

 

4.1.3 Localization Response Normalization. 

 ReLUs have the property that they do not require input normalization to prevent 

them from saturating. If at least some training examples produce a positive input to a 

ReLU, learning will happen in that neuron.  

However, the following local normalization scheme aids generalization. 

Response normalization reduces AlexNet’s top-1 and top-5 error rates by 1.4% and 1.2%  
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𝑏𝑥,𝑦
𝑖 = 𝑎𝑥,𝑦

𝑖 /(𝑘 + 𝛼 ∑ (𝑎𝑥,𝑦
𝑗

)2

min (𝑁−1,𝑖+
𝑛
2

)

𝑗=max (0,𝑖−
𝑛
2

)

)𝛽 

where, 𝑏𝑥,𝑦
𝑖  is Response-normalized activity and 𝑎𝑥,𝑦

𝑖  is the activity of a neuron computed 

by applying kernel 𝑖 at position (𝑥, 𝑦) and then applying the ReLU nonlinearity [4]. 

 

4.1.4 Overlapping Pooling 

Traditional local pooling commonly employed in CNNs is when we set 𝑠 = 𝑧 but, 

if we set 𝑠 < 𝑧, we obtain overlapping pooling. This is what is used throughout AlexNet 

network, with 𝑠 = 2 and 𝑧 = 3. This scheme reduces the top-1 and top-5 error rates by 

0.4% and 0.3%, respectively, as compared with the non-overlapping scheme 𝑠 = 2;𝑧 = 2, 

which produces output of equivalent dimensions.  

 

4.1.5 Overall Architecture. 

The AlexNet contains eight layers with weights; the first five are convolutional 

and the remaining three are fully connected. The output of the last fully-connected layer 

is fed to a 1000-way softmax which produces a distribution over the 1000 class labels [4].  

The kernels of the second, fourth, and fifth convolutional layers are connected 

only to those kernel maps in the previous layer which reside on the same GPU. The 

kernels of the third convolutional layer are connected to all kernel maps in the second 

layer. The neurons in the fully connected layers are connected to all neurons in the 

previous layer.  

Response-normalization layers follow the first and second convolutional layers. 

Max-pooling layers, of the kind described in Section 4.1.4, follow both response-

normalization layers as well as the fifth convolutional layer. The ReLU non-linearity is 
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applied to the output of every convolutional and fully-connected layer. The first 

convolutional layer filters the 224 × 224 × 3 input image with 96 kernels of size 11 × 11 ×

3 with a stride of 4 pixels (this is the distance between the receptive field centers of 

neighboring [4]. Pictorial representation of AlexNet is shown in the following figure 3.2 

 

Figure 4.2. AlexNet Final Architecture [4]. 

 

4.2 Fine-tuning AlexNet for Road Objects Detection. 

Transfer learning is a workflow that is commonly used in deep learning 

applications. In transfer learning, a network trained on a large collection of images, such 

as ImageNet [5], is used as the starting point to solve a particular detection task. In our 

case we used AlexNet discussed in section 4.1 and fine-tuned it to detect Road objects.   

The advantage of using this approach is that the pre-trained network (AlexNet) 

has already learned a rich set of image features that are applicable to a wide range of 

images. This learning is transferable to the new task by fine-tuning the network.  

Also transfer learning has an advantage that the number of images required for 

training and the training time is reduced; both of them being important constraints for this 

thesis.  
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In our approach first, we load a pretrained AlexNet and then this pre-trained 

AlexNet is fine-tuned for detection of Objects on road. We used the AlexNet as a CNN 

base to create a Region based Convolutional Neural Network for object detection. 

Detailed explanation of the process and RCNN architecture is given in the following 

chapter. 
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Chapter 5 

REGION-BASED METHODS FOR OBJECT DETECTION 

 

In this chapter we will talk about the Region based methods for object detection. 

In particular, R-CNN (Regional CNN), the original application of CNNs to this problem, 

along with its descendants Fast R-CNN, and Faster R-CNN.  

In classification, there’s generally an image with a single object as the focus and 

the task is to say what that image is. But when we look at the world around us, we carry 

out far more complex tasks. We see complicated sights with multiple overlapping objects, 

and different backgrounds and we not only classify these different objects but also 

identify their boundaries, differences, and relations to one another. The goal of a Region 

based CNN is to take an image input to detected and localize the object in the image [1].  

We implemented all three above mentioned architectures for object detection and 

localization for a driving scenario to detect cars, pedestrians and traffic signs etc. and 

performed a time study to conclude which of the three architectures can be used as a 

detector for a real-world driving scenario for detection of objects present on road. 

We will also discuss their architecture and describe how they perform the task of 

object detection and localization given the input image. 

 

5.1 R-CNN  

R-CNN was first introduced by Ross Girshick, Jeff Donahue, Trevor Darrell and 

Jitendra Malik [1] in 2014. Region based Convolutional Network(R-CNN) combines two 

ideas: (1) one can apply high-capacity Convolutional Networks (CNN’S) to bottom-up 

region proposals in order to localize and segment objects and (2) When labelling data is 
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scarce, supervised pretraining for an auxiliary task, followed by domain-specific-fine-

tuning, boosts performance significantly [1]. 

 They combined region proposals with CNNs and called the resulting model an 

R-CNN or Region-based Convolutional Network. 

 

5.1.1 R-CNN Architecture. 

In R-CNN we input an image and then using the basic feature detection 

techniques such as edge detection etc. we get Region Proposals Also referred as 

Regions of interest. This process is also known as selective search [14].  

 

Figure 5.1 R-CNN Architecture [1] 

 

In the next step after these region proposals are extracted these wrapped image 

regions go through a trained CNN in our implementation AlexNet and then on the final 

layer the classification is done Using a Support Vector Machine (SVM) classifier which 

classifies whether this is an object and if so what. Pictorial representation of above 

process is shown in Figure 5.2. 
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Figure 5.2 Procedure for Object detection and Localization in R-CNN [1]. 

 
5.1.2 Implementation of R-CNN for Road Object Detection. 

We implemented the R-CNN architecture with AlexNet as base CNN to classify 

region proposals. We provided 5969 labelled images with label categories as Bus, Cars, 

Pedestrians, and Traffic Signs. Labelling was done with help of MATLAB R2017b Ground 

Truth Labeler application. 

Using MATLAB R2017B we trained an RCNN which took approximately 30 hours 

to train the network. 

 

5.1.3 Results  

Time Study. 

 We used our trained RCNN to check how much time it takes for accurate 

detection of road objects in each Image and we found out it takes approximately 19 to 40 

seconds to process each image. We also checked if the number of categories of objects 

of interest can also be a factor for detection time, so we created five different RCNN’s 

and performed a time study and the results are as follows. 
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 1 Object of 

Interest 

2 Objects of 

Interest 

2 Different 

Objects of 

Interest 

3 Objects of 

Interest 

RCNN 1 15.586 20.25 20.19 22.03 

RCNN 2 14.565 18.85 19.10 21.30 

RCNN 3 17.432 19.59 18.90 23.35 

RCNN 4 14.4031 19.85 20.25 22.15 

RCNN 5 15.70 19.50 19.04 23.035 

 

Table 5.1. Time study of RCNN’s (Time in seconds) 

  

From the time study we conclude that the number of objects of interest do not 

play much important part in increasing the detection time but the architecture itself takes 

a lot of time for object detection and localization given an input image. We also compared 

our results with the paper “Rich Feature Hierarchies for accurate object detection and 

semantic segmentation” [19] and found out similar pattern in detection time as shown in 

following Figure. 

 We concluded in accordance with [19] the reason for such high detection time is 

generation of region proposals i.e. around 2000 region proposals per Image input and the 

network also takes lot of time to train as It must train three different models separately - 

the CNN to generate image features, the classifier that predicts the class, and the 

regression model to tighten the bounding boxes. 
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                Figure 5.3 Time study Girshik et al. [19] 

5.1.4 Conclusion 

R-CNN works really well but is really quite slow for implementation in real time object 

detection. The reasons being 

1. It requires a forward pass of the CNN (AlexNet) for every single region 

proposal for every single image that’s around 2000 forward passes per 

image.  

2. It must train three different models separately - the CNN to generate image 

features, the classifier that predicts the class, and the regression model to 

tighten the bounding boxes. This makes the pipeline extremely hard to train. 
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5.2 Fast R-CNN 

In 2015, Ross Girshick, the first author of R-CNN [1], solved both these problems and 

the resulting architecture is called as Fast R-CNN [10]. 

In this architecture we input an image and then forward the Image through a CNN 

(AlexNet) which produces a feature map of images from where we get our Region 

proposals. In the next step RoI pooling is done. RoIPool shares the forward pass of a 

CNN for an image across its sub regions. Then, the features in each region are pooled 

(usually using max pooling). Hence taking just one pass of the original image as opposed 

to ~2000 in R-CNN discussed in section 5.1  

Secondly, Fast R-CNN jointly trains the CNN, classifier, and bounding box regressor 

in a single model. Fast R-CNN replaced the SVM classifier with a softmax layer on top of 

the CNN to output a classification. It also added a linear regression layer parallel to the 

softmax layer to output bounding box coordinates. In this way, all the outputs needed 

came from one single network. 

 

 

Figure 5.4 Fast R-CNN Architecture [10]. 
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5.2.2 Implementation of Fast R-CNN for Road Object Detection. 

In similar manner as R-CNN we implemented the Fast R-CNN architecture with 

AlexNet as base CNN to extract region proposals. We provided 5969 labelled images 

with label categories as Bus Cars, Pedestrians, and Traffic Signs. Labelling was done 

with help of MATLAB R2017b Ground Truth Labeler application. 

Using MATLAB R2017B we trained an RCNN which took approximately 28 hours 

to train the network. 

 

5.2.3 Results-Fast R-CNN 

Time study 

We performed the time study for Fast RCNN in the similar manner of RCNN as 

discussed in section 5.1.3. and we compared our results with the paper “Rich Feature 

Hierarchies for accurate object detection and semantic segmentation” [19] and found out 

similar pattern in detection time as shown in Figure 5.7. 

 1 Object of 

Interest 

2 Objects of 

Interest 

2 Different 

Objects of 

Interest 

3 Objects of 

Interest 

Fast RCNN 1 .85 2.01 2.84 3.32 

Fast RCNN 2 1.565 2.90 1.98 2.96 

Fast RCNN 3 1.93 3.55 2.89 2.30 

  Fast RCNN 4 1.61 2.94 3.85 3.15 

Fast RCNN 5 1.87 1.97 2.79 3.38 

 

Table 5.2. Time study of Fast R-CNN (time in seconds) 
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5.2.4 Conclusion 

The time study indicates that the Fast R-CNN are comparatively faster than the 

R-CNN. But if we observe carefully and in accordance with [19] the Runtime of the Fast 

R-CNN is dominated in computation of Region Proposals. To reduce that a new 

approach was proposed which is called Faster R-CNN which has also paved a way for 

Real-time Implementation of Region based methods for object detection. 

 

Few Detection Results of our RCNN and Fast RCNN 

 

  

 

 

 

 

 

 

 

 

Figure.5.5 Detection results (Image source [39], [40], [41], [42])  
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5.3 Faster R-CNN 

In 2015, a team at Microsoft Research composed of Shaoqing Ren, Kaiming He, 

Ross Girshick, and Jian Sun, collectively created Faster R-CNN[11]. 

They rectified the remaining bottleneck in the Fast R-CNN process — the region 

proposer. As we saw, the very first step to detecting the locations of objects is generating 

a bunch of potential bounding boxes or regions of interest to test. In Fast R-CNN, these 

proposals were created using selective search , a fairly slow process that was found to 

be the bottleneck of the overall process. 

 

Figure 5.6 Faster R-CNN Architecture [11]. 

Similar to Fast R-CNN in this architecture Image input is given to a CNN from which 

we get a convolutional feature map.  
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Then it goes through a Region Proposal Network which is trained with the ground 

truth data to output the Region Proposals. 

Generation of Region proposals 

Faster R-CNN generates these region proposals from CNN features. Faster R-

CNN adds a Fully Convolutional Network on top of the features of the CNN creating 

what’s known as the Region Proposal Network. 

The Region Proposal Network works by passing a sliding window over the CNN 

feature map and at each window, outputting k potential bounding boxes and scores for 

how good each of those boxes is expected to be.  

Intuitively, we know that objects in an image should fit certain common aspect 

ratios and sizes. In such a way, we create k such common aspect ratios we call anchor 

boxes. For each such anchor box, we output one bounding box and score per position in 

the image. 

And finally, the RoI pooling is done to match the Inputs of the CNN and then the image 

goes through the Fully Connected convolution layer.  

 

5.3.2 Implementation of Faster R-CNN for Road Object Detection. 

 Similar to R-CNN and Fast R-CNN we implemented the Fast R-CNN 

architecture with AlexNet as base CNN to train a Region Proposal Network. We provided 

5971 labelled images with label categories as Cars, Pedestrians, and Traffic Signs Bus 

and Traffic Light. Labelling was done with help of MATLAB R2017b Ground Truth Labeler 

application. 

Using MATLAB R2017B we trained an Faster R-CNN which took approximately 

23 hours to train the network. 
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5.3.3 Results- Faster R-CNN 

Time Study 

We performed the time study, but in slightly different manner than we did in 

RCNN and Fast RCNN as we concluded that the number of objects of interest in an 

particular image do not play a major role. We concluded that the approximate detection 

time per image is approximately 0.2 seconds. We then compared our results with Girshik 

et al. [19] and found similar results. The comparative time for detection for the region 

based Methods for object detection is shown in following figure. 

 

 

 

 
 
 

 
 

 

 

 

Figure 5.7 Comparison of Detection Time Per Image for Region Based CNN 

Architectures. Girshik et al. [19] 

 

 

 

 

 

 



 

31 

 

Few Detections of Faster R-CNN 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.5.8 Detection Results Faster R-CNN (Result images source– Self generated data set) 



 

32 

 

5.3.4 Conclusion 

With the help of the time study performed we were able to conclude that the 

Faster R-CNN can be used for real time object detection and localization. We also 

calculated the Mean Average Precision (mAP) of our Faster R-CNN which came out to 

approximately 70% which is satisfactory for the amount of the training data provided.  

 

Fig 5.9 Mean Average Precision (mAP) of our Faster RCNN 

 

We then applied our trained Faster R-CNN to measure the distance of objects in 

our case Cars, Pedestrian, and Traffic Signs etc. from the sensor (camera) mounted on 

the car which shows how object detection using computer vision paves a path towards 

ADAS applications and plays an important role towards vehicle autonomy. 
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Chapter 6 

IMPLEMENTATION OF FASTER R-CNN FOR DEPTH ESTIMATION 

 
6.1 Introduction 

 Stereo Vision, like human eyes is able to calculate distance from to images taken 

from different views. When looking from two different locations the same object will 

appear to be at two different locations which is called as disparity. Then using this 

disparity, the depth information is calculated using the stereo parameters of the camera.  

 

6.2 Stereo Vision. 

 Analysis of video images in stereo has emerged as an important passive method 

for extracting the three-dimensional (3-D) structure of a scene [20]. A simplified stereo 

imaging system is shown in Figure 5.1 and summarized below [21] :  

 

 

Figure 6.1 A Stereo Imaging System [21] 
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• Two cameras with their optical axes parallel and separated by a distance d.  

• The line connecting the camera lens centers is called the baseline.  

• The focal length of both cameras is f. 

• Let the origin O of this system be mid-way between the lens centers. 

• Let the x axis of the 3-D world coordinate system be parallel to the baseline. 

• Consider a point (𝑥, 𝑦, 𝑧)  in 3-D world coordinates on an object. 

• Let the point (𝑥, 𝑦, 𝑧) have image coordinates (𝑥𝑙
′ , 𝑦𝑙

′) in the left plane. 

• Let the point (𝑥, 𝑦, 𝑧) have image coordinates (𝑥𝑟
′  , 𝑦𝑟

′) in the right plane. 

 

The goal of stereo vision in this research is to estimate depth information from a 

pair of stereo images. With two cameras separated by a fixed distance, each camera 

receives a slightly different image of the same scene in the real world. If we can 

successfully determine which feature characteristics in the image form the left camera 

correspond with which in the image from the right camera, and if we know the stereo 

imaging geometry and camera focal length, it is possible to reconstruct the depth 

information. 

 Generally, the major stages involved in the stereo vision are pre-processing of 

images to obtain matching features, recovering the disparity between the images by a 

suitable stereo algorithm, and using geometry to recover the stereo depth. 
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We implemented this technique using following work flow- 

 

Figure 6.2. Depth Estimation Process Work Flow. 

 

6.3 Camera Calibration 

Geometric camera calibration estimates the parameters of a lens and image 

sensor of the camera used to capture an image or a video. These parameters are helpful 

in correction for lens distortion, measurement of object size or determining camera 

location in scene. This enables us to implement machine vision to detect and measure 

objects and in navigation system for robots and 3D scene reconstruction. 
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Figure 6.3 Examples of what you can do after calibrating the camera [25]. 

 

The camera parameters include intrinsic, extrinsic and distortion coefficients. The 

extrinsic parameters represent a rigid transformation from 3-D world coordinate system to 

the 3-D camera’s coordinate system. The intrinsic parameters represent a projective 

transformation from the 3-D camera’s coordinates into the 2-D image coordinates. Let 3D 

world coordinates be [X, Y, Z] and [Xc, Yc, Zc] be the camera co-ordinates and [x, y] be 

the 2D image co-ordinates then the transformation can be represented as shown in 

Figure 5.4.  

 

Figure 6.4 Intrinsic and Extrinsic parameters [25]. 
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 This transformation can be implemented by using images of calibration pattern like a 

checkerboard giving us the camera parameters. 

The camera calibration process is performed using Camera Calibration Toolbox 

in MATLAB R2017b. Multiple sets of images captured from left and right lenses of a 

stereo camera are used to find identify points of correspondence and used to estimate 

the camera parameters. 

 

Figure 6.5 Camera Calibration Session in MATLAB R2017b 

 

6.4 Disparity Mapping 

As mentioned in [26], A system of stereo vision system consists of a stereo 

camera, namely, two cameras placed horizontally (i.e., one on the left and the other on 

the right). The two images captured simultaneously by these cameras are then 

processed for the recovery of visual depth information [27]. Depth information can be 

computed from a pair of stereo images by first computing the distance in pixels between 

the location of a feature in one image and its location in the other image. This gives us a 
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disparity map. It looks a lot like a depth map because pixels with larger disparities are 

closer to the camera, and pixels with smaller disparities are farther from the camera. 

The block matching algorithm uses the local method of using constraints on small 

number of pixels surrounding the pixel of interest. The disparity at a point is estimated by 

comparing a small region about that point with congruent regions extracted from the other 

image. Block matching searches one image for the best corresponding region for a 

template in the other image. In our implementation we used Block matching for 

calculating the disparity. 

 

6.5 Object Detection 

 The object detection is done using the trained Faster R-CNN which was 

discussed in Chapter 5. After the objects of interest are detected by the Faster R-CNN 

we generate a bounding box around it and then we find the centroid of the bounding box 

to calculate the disparity. 

 

6.6 3D Reconstruction and Depth Estimation. 

It is possible to estimate the 3D scene geometry with stereo vision, given only 

two images from the same scene. Rectification simplifies the stereo correspondence 

problem considerably which allows for a straight-forward computation of dense disparity 

maps, which are the basis of dense 3D reconstruction. Every value in the disparity map 

can be re-projected to a 3D point, with respect to camera co-ordinate frame. 

 

When two images are acquired by a stereo camera system, every physical 

point M yields a pair of 2D projections 𝑚1 and 𝑚2 on two images [28]. If we know both the 
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intrinsic and extrinsic parameters of the stereo system, we can reconstruct the 3D 

location of the point M from 𝑚1 and 𝑚2 [29], [30]. 

 

Figure 6.6 Stereo Camera Geometry [28]. 

 

The depth of a point M can be calculated by: 

𝑍 = 𝑓 −
𝑓𝐵

𝑥2 − 𝑥1

 

where 𝐵 is the baseline distance between two cameras and 𝑓 is the focal length of the 

camera. We assume the parallel camera geometry for simplicity. 
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6.7 Results of Depth Estimation. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

            
Figure 6.7. Results of Depth Estimation (Result images source– Self generated data set) 
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Chapter 7 

CONCLUSION 
 

In this work we presented a Faster Region Based Convolutional Neural Network 

(Faster RCNN) architecture that works well for the detection of objects which are present 

on road in a common driving scenario.  

As part of developing and analyzing this approach we provided analysis of many 

architectural choices for the network, discussing best practices for training, and 

demonstrated the importance of fine-tuning, proposal generation and how depth of the 

CNN model effects the detection performance. We also did a comparative time study of 

Region based convolutional networks and concluded which of the region based methods 

for object detection and localization can lead to real-time object detection. We also 

concluded how training data quality and quantity can be a contributor to the networks 

mean average precision (mAP).  

We also implemented our network for the depth estimation problem and saw how 

computer vision can be used to address certain important aspects of SLAM problem.   
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Chapter 8 

FUTURE SCOPE 
 
 

Object Detection and Recognition using Computer Vision for ADAS application 

has been an active area of research in last half decade with continuous innovations in 

both Algorithms for detection and sensor quality and capability. The Region based 

methods now have a successor which was introduced in 2017 called the Mask R-CNN 

which is a step further and does pixel level object segmentation instead of giving a 

bounding box output.  

Furthermore, the ability to extract information beyond image structure from the 

knowledge available freely online, through understanding of the image, as well as the 

associated text is a promising way to build knowledge bases and accelerate the pace of 

visually sentient systems. New learning systems such as NEIL: Never Ending Image 

Learner [22] and LEVAN: Learning Everything about Anything [23] are some of the initial 

attempts in creating such systems more recently. 

Also, there has been large investments in development of ADAS systems using 

computer vision by OEM’S which is accelerating the amount of research done in this 

sector as well as development of suitable hardware (Stereo Cameras) specifically for 

ADAS application 

To conclude Object Detection and Recognition using computer vision is one of 

the most discussed and debated topic in the current decade and there is still a long way 

to go. The time is near when we will be seeing fully Autonomous Vehicles on the road 

and Computer Vision and Machine Learning will be one of the major factors driving that 

technology. 
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Appendix 

 
Ground Truth labelling session in MATLAB R2017b  

 
 

 
 The above figure shows the labelling session in the MATLAB R2017b in which 

we can label the Ground truth data for the Neural Network. We have to manually label 

each and every category which we want train our network for. Though there are certain 

tools which help us to speed up the labelling process, but it is still a very time-consuming 

process  
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Training Data 

 
 
 The labels are exported to the work space using the Ground Truth Labelling 

Application of MATLAB and then it is converted into Training Data on which the Final 

Neural Network is trained   
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Training the Neural Network In MATLAB R2017b 
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