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Abstract 

 
IMPROVING HYDROLOGIC PREDICTION FOR LARGE URBAN AREAS THROUGH 

STOCHASTIC ANALYSIS OF SCALE-DEPENDENT RUNOFF RESPONSE, 

ADVANCED SENSING AND HIGH-RESOLUTION MODELING 

 

Amir Norouzi, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dong-Jun Seo 

 

Due to urbanization and climate change, large urban areas such as the Dallas-

Fort Worth Metroplex (DFW) area is vulnerable not only to river flooding but also flash 

flooding. Due to the nonstationarities involved, projecting how the changes in land cover 

and climate may modify flood frequency in large urban areas is a challenge. Part I of this 

work develops a simple spatial stochastic model for rainfall-to-areal runoff in urban areas, 

evaluates climatological mean and variance of mean areal runoff (MAR) over a range of 

catchment scales, translates them into runoff frequency as a proxy for flood frequency, 

and assesses its sensitivity to precipitation, imperviousness and soil, and their changes. 

The results show that the variability of MAR in urban areas depends significantly on the 

catchment scale and magnitude of precipitation, and that precipitation, soil, and land 

cover all exert influences of varying relative importance in shaping the frequency of MAR, 

and hence flood frequency, for different sizes of urban areas. The findings indicate that, 

due to large sensitivity of frequency of MAR to multiple hydrometeorological and 

physiographic factors, estimation of flood frequency for urban catchments is inherently 

more uncertain, and the approach developed in this work may be useful in developing 
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bounds for flood frequencies in urban areas under nonstationary conditions arising from 

climate change and urbanization. 

High-resolution hydrologic and hydraulic models are necessary to provide 

location- and time-specific warnings in densely populated areas. Due to the errors in 

precipitation input, and model parameters, structures and states, however, increasing the 

nominal resolution of the models may not improve the accuracy of the model output. Part 

II of this work tests the current limits of high-resolution hydrologic modeling for real-time 

forecasting by assessing the sensitivity of streamflow and soil moisture simulations in 

urban catchments to the spatial resolution of the rainfall input and the a priori model 

parameters. The hydrologic model used is the National Weather Service (NWS) 

Hydrology Laboratory’s Research Distributed Hydrologic Model (HLRDHM) applied at 

spatial resolutions of 250 m to 2 km for precipitation and 250 m to 4 km for the a priori 

model parameters. The precipitation input used are the Collaborative Adaptive Sensing of 

the Atmosphere (CASA) and the Multisensor Precipitation Estimator (MPE) products 

available at 500 m and 1 min, and 4 km and 1 hr spatiotemporal resolutions, respectively. 

The streamflow simulation results were evaluated for two urban catchments of 3.4 to 14.4 

km2 in Arlington and Grand Prairie, TX. The streamflow observations used in the 

evaluation were obtained from water level measurements via the rating curves derived 

from 1-D steady-state non-uniform hydraulic model. The soil moisture simulation results 

were evaluated for three locations in Arlington where observations are available at depths 

of 0.05, 0.10, 0.25, 0.50 and 1.00 m. The soil moisture observations were obtained from 

three Time Domain Transmissometry (TDT) and Time Domain Reflectometry (TDR) 

sensors newly deployed for this work. The results show that the use of high-resolution 

QPE improves streamflow simulation significantly, but that, once the resolution of QPE is 

increased to the scale of the catchment, no clear relationships are found between the 
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simulation accuracy and the resolution of the QPE or hydrologic modeling, presumably 

because the errors in QPE and models mask the relationships. The soil moisture results 

suggest that there are disparate infiltration processes at work within a small area in 

Arlington, and that, while the near-surface simulation of soil moisture is generally skillful, 

the Sacramento soil moisture accounting model – heat transfer version (SAC-HT) in 

HLRDHM has difficulty in simulating the vertical dynamics of soil moisture. The findings 

point to real-time updating of model states to reduce uncertainties in initial soil moisture 

conditions, and the need for a dense observing network to improve understanding and to 

assess the impact at the catchment scale. 

Continuing urbanization will continue to alter the hydrologic response of urban 

catchments in the DFW area and elsewhere. To assess the impact of recent land cover 

changes in the study area and to predict what may occur in the future, streamflow and 

soil moisture were simulated using HLRDHM at 250 m and 5 min resolution with the 

National Land Cover Data of 2001, 2006 and 2011 for five urban catchments in Arlington 

and Grand Prairie, TX. The analysis indicates that imperviousness increased by about 15 

percent in the DFW area between 2001 and 2011. The findings indicate that, in terms of 

peak flow, time-to-peak and runoff volume, small events are more sensitive to changes in 

impervious cover than large events, increase in peak flow is more pronounced for 

catchments with larger increase in impervious cover, increase in peak flow is also 

impacted by changes in antecedent soil moisture due to increased impervious cover, 

runoff volume is not significantly impacted by changes in impervious cover, and changes 

in time-to-peak relative to the response time of the catchment is impacted by the location 

of the land cover changes relative to the outlet and the time-to-peak itself. In particular, 

the Johnson Creek Catchment in Arlington (~40 km2), which has a time-to-peak of only 

40 min, shows larger sensitivity in time-to-peak to land cover changes due presumably to 
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the proximity of the area of increased land cover to the catchment outlet. For further 

evaluation, however, dense observation networks for streamflow and soil moisture, such 

as the Arlington Urban Hydrology Testbed currently under development, are necessary in 

addition to the CASA network of X-band polarimetric radars for high-resolution 

quantitative precipitation information (QPI). 
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Chapter 1 Introduction 

 
Increasing urbanization due to population growth and increasing frequency and 

amount of heavy-to-extreme precipitation expected from climate change put urban areas 

in a vulnerable position. Compared to rural catchments, urban catchments are usually 

smaller and have larger impervious areas (Bruni et al., 2015) and, consequently, the 

response times are shorter (Javier et al., 2007; ten Veldhuis et al., 2014; Bruni et al., 

2015; and, Rafieeinasab et al., 2015a). To observe and predict fast-occurring flash 

flooding in small areas, it is necessary to sense and model at high spatiotemporal 

resolutions. For high-resolution observation and modeling of large urban areas, the use 

of weather radar and distributed hydrologic modeling is a natural progression. 

Quantitative precipitation estimates (QPEs) from radar, however, are subject to various 

sources of error. Also, high-resolution distributed modeling is subject to nonlinear growth 

of error due to errors in QPE and in model initial conditions (IC), parameters and 

structures. For example, to reduce parametric uncertainty, expensive calibration efforts 

are often necessary (Moradkhani and Sorooshian, 2008, Shi et al., 2014). For distributed 

models, calibration is a particularly daunting challenge due to large dimensionality. To 

avoid or minimize calibration, much effort has recently been made to derive skillful “a 

priori” parameters from the physiographic properties, such as soil, land cover and land 

use, of the area being modeled (Koren et al., 2000; Koren et al., 2003; Anderson et al., 

2006; and Zhang et al., 2011). Recent advances in in-situ and remote sensing have 

increased researchers’ and engineers’ knowledge of soil (Robinson et al., 2008; 

Vereecken et al., 2014), land cover and land use (Homer et al., 2012; Homer et al., 

2015). Using high-resolution physiographic data, one may derive a priori model 
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parameters at a high resolution and hence allow high-resolution hydrologic modeling for 

flash flood forecasting in large urban areas. 

Currently, in support of CASAWX 

(http://www.nctcog.org/ep/Special_Projects/CASAWX/) UTA runs the National Weather 

Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HLRDHM, 

Koren et al. 2004) in real time and generate hydrologic products for the Dallas-Fort Worth 

(DFW) Metroplex area, the 4th most populous metropolitan areas in the US (Habibi et al., 

2016). HLRDHM uses rainfall data at 500 - 1 min resolution from the network of 

Collaborative Adaptive Sensing of Atmosphere (CASA) radars. The DFW operation of 

HLRDHM uses the Sacramento model (SAC, Burnash 1995) for soil moisture accounting 

and the kinematic wave model (Chow et al. 1988) for hillslope and channel routing. The 

SAC parameters are available for the conterminous US (CONUS) from NWS at a 4 km 

resolution (NWS 2009). In the initial DFW operation of HLRDHM, the 4 km-resolution a 

priori SAC parameters were used. The only exception was the percent impervious area, 

or PCTIM, which was derived at a 500 m resolution from the GIS layers representing 

impervious cover (Rafieeinasab et al., 2015a; Habibi et al., 2016). The ill effects of using 

coarse-resolution a priori parameters may be seen in the runoff accumulation map shown 

in Figure  1-1; note the blocky patterns stemming from coarse-resolution soil moisture 

simulation. 

While there are large areas of high imperviousness throughout the DFW area, 

collectively the pervious areas are much larger than the impervious areas. As such, soil 

moisture is an important factor in runoff generation as well as in the urban water cycle. 

Soil moisture, however, is rarely observed in reality and there hence exists a large need 

for soil moisture sensing in urban areas not only to evaluate the performance of high-
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resolution hydrologic model but also to understand the runoff generation process in built 

environments. 

 

Figure  1-1 3-hr runoff accumulation in the cities of Fort Worth, Arlington and Grand 

Prairie for a rainfall event on 5/17/2015 

 
The main objectives of this work are: 

1. Advance the knowledge and understanding of the sources of variability in 

areal runoff in large urban areas and their dependence on catchment scale. 

With urbanization and climate change, many areas in the US and abroad face 

increasing threats of flash flooding. Due to nonstationarities arising from changes 

in land cover and climate, however, it is not readily possible to project how such 

changes may modify flood frequency. In this work, we formulate a simple spatial 

stochastic model for rainfall-to-areal runoff in urban areas, evaluate climatological 

mean and variance of mean areal runoff (MAR) over a range of catchment scale, 

translate them into runoff frequency, which is used as a proxy for flood 

frequency, and assess its sensitivity to precipitation, imperviousness and soil, 
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and their changes as a function of catchment scale and magnitude of 

precipitation.  

 
2. Advance the knowledge and understanding of the runoff generation 

processes in urban areas. Soil moisture is rarely observed in the study area. 

The infiltration and hence the runoff generation processes are not well 

understood. While most hydrologic models assume some combination of 

infiltration and saturation excess mechanisms for runoff generation, they have 

not been verified in the study area based on in-situ sensing. 

 
3. Advance the knowledge and understanding of the performance of high-

resolution hydrologic modeling in a large urban area and its sensitivity to 

the spatial resolution of the model parameters and rainfall input. While the 

need for high-resolution modeling in urban areas is clear, it is not very clear 

whether increasing (nominal) resolution increases accuracy given the current 

level of advances in hydrologic-hydraulic modeling and QPE. This work targets 

objective assessment of the sensitivity of the quality of model simulation of 

streamflow and soil moisture to the resolutions of model parameters and rainfall 

input. 

 
4. Advance the knowledge and understanding of the impact of land cover 

changes on hydrologic response of catchments. While there has been 

significant increase in imperviousness in the study area in recent years, the 

impact of land cover changes on streamflow response has not been 

quantitatively assessed in flood-prone catchments of Arlington and Grand Prairie 

in DFW. 
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This research seeks to address the following questions: 

1. What factors determine flood risks in urban areas of different sizes? 

2. How do infiltration processes vary in different parts of the urban areas in DFW? 

3. What are the limits of high-resolution hydrologic modeling in large urban areas? 

4. How do land cover changes impact the hydrologic response of urban 

catchments? 

To address the 1st question, stochastic analysis of scale-dependent runoff response in 

urban areas of varying sizes was used. To address the 2nd question, in-situ soil moisture 

sensors were deployed and observations were made. To address the 3rd question, high-

resolution model parameters were derived and used in high-resolution hydrologic 

modeling for large urban areas. For the 4th question, a simulation study was carried out to 

assess the impact of land cover changes on streamflow response.  

 
New contributions of this research are as follows: 

1. Advanced understanding of the factors shaping flood frequency in urban areas of 

varying size, 

2. Development of a new approach for urban flood frequency analysis under 

urbanization and climate change, 

3. Advanced understanding of runoff generation processes in urban catchments 

based on soil moisture observations, 

4. Advanced understanding of the sensitivity of high-resolution streamflow and soil 

moisture simulations to spatial resolution of model parameters and rainfall input, 

5. Assessment of the impact of land cover changes on streamflow for urban 

catchments in Arlington and Grand Prairie. 

 
Figure  1-2 depicts the organization and flow of this dissertation. 
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Figure  1-2 Schematic of the structure of the dissertation 

 
This dissertation is organized as follows. Chapter 2 describes the scale-

dependent sensitivity of frequency of mean areal runoff in urban areas. Chapter 3 

describes the background for high-resolution streamflow and soil moisture simulations 

and the impact of land cover changes on hydrologic response of urban catchments. 

Chapter 4 describes the methodology for the derivation of a priori model parameters at 

higher resolutions, the sensitivity analysis of streamflow and soil moisture simulations to 

the spatial resolution of the model parameters and the rainfall input, and assessment of 

the impact of land cover changes on the streamflow simulation in urban areas. Chapter 5 

describes the study area and data used. Chapter 6 describes advanced sensing. Chapter 

7 and chapter 8 describe high-resolution hydrologic modeling and evaluation of results, 

respectively. Chapter 9 describes the impact of land cover changes on streamflow 

response in urban areas. Chapter 10 provides the conclusions and future research 

commendations.  
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Chapter 2 Scale-dependent sensitivity of frequency of mean areal runoff in urban 

areas 

 
2.1 Introduction 

Due to nonstationarities arising from urbanization and climate change, assessing 

flood risks in large urban areas is a large challenge. In such areas, flood frequency 

analysis, as traditionally practiced (Chow et al., 1988; Stedinger et al., 1993), is unlikely 

to properly represent the future risk as a consequence of the aforementioned 

nonstationarities. One way to address the above situation is to design and carry out 

stochastic simulation experiments in which plausible realizations of precipitation and 

other fields are generated and input into hydrologic and, as necessary, hydraulic models, 

and obtain derived distributions of the variables of interest numerically (Mejía and 

Moglen, 2010; Zhang and Shuster, 2015). Such an approach, however, is 

computationally too expensive to be practical due to large degrees of freedom associated 

with hydroclimatic-hydrometeorological-hydrologic-hydraulic systems. In this work, an 

analytical framework to assess how intermittency of precipitation, inner variability of 

precipitation, imperviousness of land cover, and variability of soil may jointly shape the 

statistical characteristics of climatological areal runoff as a function of catchment size, 

and how their changes may alter scale-dependent variability of areal runoff, and hence 

flash flooding risks associated with climate change and urbanization is proposed. 

Specifically, we seek to advance understanding of scale-dependent relationships 

between the variability of mean areal runoff (MAR) and the above four sources of 

variability in which MAR would serve as a proxy for peak flow. The specific questions to 

be addressed include: 1) What are the relative contributions of the four sources of 

variability to variability of MAR? 2) How does the characteristic spatial scale of each of 
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the four sources of variability impact the scale-dependent variability of MAR? 3) How do 

imperviousness, its spatial variability, and its variations in different parts of a large urban 

area (from mostly pervious to mostly impervious) modify the variability of MAR?, and 4) 

How does spatial variability in soil in pervious areas modify the above relationships? 

The range of spatial scales considered in this work corresponds to the areal 

extent of most cities in the US (see Figure  2-1), i.e., below 40×40 km2. The study area in 

this work is the Dallas-Fort Worth Metroplex (DFW) which is part of the so-called flash 

flood alley that stretches from Central to North Texas (Zahran et al., 2008). The Cities of 

Dallas, Fort Worth, Arlington and Grand Prairie which stretch the middle of DFW have 

areas of 999.3 (31.6×31.6), 904.4 (30.1×30.1), 258.2 (16.7×16.7), 210.0 (14.5×14.5) km2, 

respectively, and they are hence representative of the US cities in terms of areal extent. 

Collectively, the 4 cities have an area of about 2,371.9 (48.7×48.7) km2 which 

approximately form the upper limit of the US cities (Figure  2-1). 

 

Figure  2-1 Areal extent of most cities in the US 
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2.2 Approach  

A very simple spatial stochastic model for areal runoff is formulated, which 

accounts for inner variability and intermittency of precipitation, imperviousness of urban 

land cover and soil conditions in pervious areas, evaluate the first two statistical moments 

of areal runoff, and derive the areal runoff frequency curves as a proxy for flood 

frequency curves under assumed distributional models for point precipitation and areal 

runoff. To that end, the time-integrated surface runoff is expressed over some fixed 

duration at some location u in the area of interest A as follows: 

)}(1){()()()()()( intint uIuIuRuIuIuPuR impperimpsfc     (2-1) 

In the above, Rsfc(u) denotes the surface runoff at location u (mm), P(u) denotes the 

precipitation at u (mm), and Iint(u) and Iimp(u) denote the indicator variables for 

intermittency of precipitation given it is precipitating somewhere in A and imperviousness 

of land cover at location u, respectively, and )(uRper denotes the runoff at the impervious 

location u. The first and second terms in Eq.(2-1) hence represent runoff at impervious 

and pervious location u, respectively. The indicator variables, Iint(u) and Iimp(u), in Eq.(2-1) 

are defined as: 



 


otherwise

AAAuif
ui

pp

0

{},1
)(int       (2-2) 



 


otherwise

AAuif
ui

imp
imp

0

1
)(        (2-3) 

where iint(u) and iimp(u) denote the experimental values of 0 or 1 that the indicator random 

variables, Iint(u) and Iimp(u), may take on, respectively, Ap denotes the non-null 

precipitation area within the area of interest, A, and Aimp denotes the impervious area 

within A. 
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To model surface runoff at some pervious location u, )(uRper , the Curve 

Number (CN) Method (USDA, 1986) is used. The CN method is attractive for simplicity 

while capturing the essential nonlinear relationships between rainfall and runoff. Also, its 

widespread use allows relatively straightforward practical interpretation of the results in 

this work. In the developments to follow, it is assumed that the initial abstraction, Ia(u), 

and the water holding capacity, S(u), are spatially uniform for computational tractability. 

Later, this assumption is relaxed. With the CN method, surface runoff at some pervious 

location u is given by: 


















)()(

)()()(

)}()({
)(

)()(0

)( 2

uIuPif
uSuIuP

uIuP
uR

uIuPif

uR
a

a

a

a

per   (2-4) 

where )(uRper denotes the runoff at some pervious location u (mm), )(uP denotes the 

precipitation at u (mm), )(uIa denotes that initial abstraction at u (mm) given by 

Ia(u)=αS(u), 0<α<1, and )(uS denotes the potential maximum retention at u after runoff 

begins (mm), and R(u) denotes the positive runoff at pervious location u (mm). With 

Eq.(2-4), Eq. (2-1) may be rewritten as: 

)}(1){()()()()()( }{int uIuIuRuIuIuPuR impimpsfc      (2-5) 

where the indicator random variable, )(}{ uI  , is defined as: 









)()(1

)()(0
)(}{ uIuPif

uIuPif
ui

a

a
        (2-6) 

Using the above model for surface runoff, mean and variance of mean MAR is 

evaluated. Similar analyses of scale-dependent variability of mean areal precipitation 

(MAP) and MAR, but without impervious cover, were described in Seo and Smith (1996a, 
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1996b) using the coefficient of variation (CV) as a representative measure of variability of 

MAR over a range of catchment size. In this work, it is assumed that point precipitation 

follows lognormal, Weibull and gamma distributions. Given mean and variance of MAR 

resulting from the distribution model for precipitation, it is assumed that MAR shares the 

same distribution and assess the impact of different sources of variability in Eq.(2-1) on 

exceedance probability of MAR. 

 
2.3 Evaluation of moments of MAR 

In this section, it is described how the mean and variance of MAR of Eq.(2-1) is 

evaluated. 

 
2.3.1 Evaluation of mean of MAR 

Climatological mean of MAR over A in which it is precipitating somewhere is 

given by: 

duduuIuIuIuRuIuIuPE
A

duuIduuR
A

E

AimpimpA

AsfcA

]0)(|)}(1){()({)()()([
1

]0)(|)(
1

[

int}{int

int











 (2-7) 

where the conditioning event, }0)({ int  duuI
A

, states that it is precipitating 

somewhere within A. Assuming homogeneity within A and independence between 

precipitation and imperviousness, Eq.(2-7) may be rewritten as: 
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 (2-8) 

In the above, )(umCP  denotes the mean of positive point precipitation at location u, 

)(
int

umCI  denotes the probability of precipitation (PoP) at location u given that it is 

precipitating somewhere in A, mIimp denotes the fractional impervious area within A, 

)(umCR  denotes the mean positive runoff at location u given that it is precipitating 

somewhere in A, and )(}{ umCI   denotes the PoP exceeding Ia(u) given that it is 

precipitating somewhere in A. If precipitation climatology is homogeneous, )(umCR  and 

)(}{ umCI   are location-invariant which reduces Eq.(2-8) to: 

}{int )1(]0)(|)(
1

[
int CICRIimpCICPIimpAsfcA

mmmmmmduuIduuR
A

E   (2-9) 

where CPm , 
intCIm , CRm  and }{CIm  denote the constant conditional (on occurrence of 

precipitation) mean precipitation, PoP (or, equivalently, fractional coverage), mean 

positive runoff and PoP exceeding the threshold, Ia(u), respectively. In this work, it is 
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assumed that the probability distribution of point precipitation, P(u) for P(u)>0, follows 

lognormal, Weibull or gamma. Then, the mean positive runoff, CRm , in Eq.(2-9) under 

known S(u) and Ia(u) is given by: 

uuuPuI
au

au
RaCR dppf

uSuIP

uIP
LuIuPuREum

a

)(
)()(

)}({
)]()(|)([)( )()(

2
1 




 
   (2-10) 

In the above, )()( uuP pf  denotes the marginal probability density function (PDF) of P(u) 

and the normalizing probability, LR, is given by:  

uuI uuPR dppfL
a




)( )( )(        (2-11) 

In Eq.(2-9), the PoP at some point within A given that it is precipitating 

somewhere therein, 
intCIm , is given by: 

]0)(Pr[1

]0)(Pr[
]0)(|0)(Pr[)(

int

intint 



 duuI

uP
duuIuPum

A

ACI
  (2-12) 

In the above, ]0)(Pr[ int  duuI
A

may be estimated numerically via, e.g., indicator 

kriging given the PoP at point scale and indicator correlation structure (Solow, 1986; Seo 

et al., 2000). Similarly, the conditional PoP exceeding Ia(u) at some point within A, 

)(}{ umCI  , is given by: 

]0)(Pr[1

)]()(Pr[
]0)(|)(Pr[)(

int

int}{





 duuI

uIuP
duuIIuPum

A

a

AaCI 
  (2-13) 

2.3.2 Evaluation of second moment of MAR 

To evaluate the second moment of areal runoff: 
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  (2-14) 

In the above, the indicator variable, Iper(u), is the same as 1-Iimp(u) and is defined 

as: 



 


otherwise

AAuif
ui

per
per

0

1
)(        (2-15) 

where Aper denotes the pervious area in A and is equal to 
C
impA  where the superscript C 

denotes complement. Eq.(2-14) decomposes the uncentered variance of mean areal 

runoff into contributions from runoff over the impervious area, runoff over the pervious 

area and the cross term, and allows assessment of the impact on variability of MAR of 

intermittency of precipitation, precipitation amount and its variability within the 

precipitation area, imperviousness and its spatial variability, initial abstraction, Ia(u), and 

water holding capacity of the soil, S(u), and its variability, where Ia(u) and S(u) are 

assumed for now to be spatially uniform. Descriptions of how the terms in the integrand 

of Eq. (2-14) may be specified are as follows. 
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Under the assumption that precipitation and imperviousness are second-order 

homogeneity in A, the uncentered covariance terms in Eq.(2-14) may be modelled as 

follows (see also Seo and Smith, 1996a, 1996b; Seo, 1998; Zhang et al., 2015). The 

uncentered spatial covariance of positive precipitation may be modeled as: 

22
intintint |)(|]0)(,1)(,1)(|)()([ CPCPCPAII mvuduuIviuivPuPE      (2-16) 

where 
2
CP , |)(| vuCP   and CPm  denote the variance, spatial correlation function and 

mean of positive precipitation, respectively. The uncentered indicator covariance for 

precipitation intermittency may be modeled as (Seo and Smith, 1991): 

}|)(|)1{(]0)(|)()([ intintintintintintint CICICICIA
mvummduuIvIuIE     (2-17) 

where intCIm  and |)(|int vuCI   denote the PoP at point scale and spatial indicator 

correlation function of occurrence of precipitation, respectively. The statistics in Eqs.(2-

16) and (2-17) may be estimated empirically using radar-based precipitation data 

unconditionally or conditionally on significant precipitation events (see the Precipitation 

Modeling Section). The uncentered indicator covariance for imperviousness may be 

modeled analogously as: 

}|)(|)1{()]()([ IimpIimpIimpIimpimpimp mvummvIuIE      (2-18) 

where Iimpm  and |)(| vuIimp   denote fractional imperviousness and spatial indicator 

correlation function of occurrence of imperviousness, respectively. 

The cross term, ]0)(,1)(,1)(|)()([ int}{int   duuIviuivRuPE
AII  , in 

Eq.(2-14) may be evaluated numerically from:  
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In the above, ),()(),( vuvPuP PPf  denotes the bivariate PDF of P(u) and P(v), and 

the normalizing probability, LPR, is given by: 
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dpPfL        (2-20) 

Similarly, ]0)(,1)(,1)(|)()([ int}{}{   duuIviuivRuRE
A in Eq.(2-14) may 

be evaluated numerically by: 
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In the above, the normalizing probability, LRR, is given by: 
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In Eq.(7-14), 
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In Eq.(7-14), )]()([ vIuIE perimp  may be specified using )]()([ vIuIE impimp  via: 

|)}(|1){1()}](1){([)]()([ vummvIuIEvIuIE IimpIimpIimpimpimpperimp    (2-24) 

In Eq.(2-14), ]0)(|)()([ int}{}{  duuIvIuIE
AII   may be evaluated using the 

bivariate probability model for positive P(u) and P(v): 
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 (2-25) 

In the above, ]0)(,0)(|)()(),()(Pr[  vPuPvIvPuIuP aa may be 

evaluated numerically (see Eq.(2-22)). In Eq.(2-14), )]()([ vIuIE perper  may be specified 

by )]()([ vIuIE impimp  assuming that imperviousness is homogeneous in A: 

|)}](|1{1)[1(

)}](1)}{(1[{)]()([

vumm

vIuIEvIuIE

IimpIimpIimp

impimpperper






    (2-26) 

As noted above, lognormal, Weibull and gamma probability distributions were 

used for point precipitation. Multiple models exist for bivariate Weibull and gamma 

distributions whose marginal distributions collapse to their respective univariate 

distributions. In this work, the Nagao and Kadoya Model 1 (Nagao and Kadoya, 1970; 

Iliopoulos et al., 2005) was used for bivariate gamma distribution which is based on the 5-

parameter model of (Izawa, 1953). For bivariate Weibull distribution, the mixture-type 

model of Lu and Bhattacharyya (1990) and Johnson (1999) were used. For details on the 

lognormal, Weibull and gamma distributions used, the reader is referred to Appendices E, 

F and G, respectively. For numerical integration, the multidimensional integration library, 

CUBA (Hahn, 2007) was used, which offers a choice of four independent routines for 
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multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. Based on 

comparative evaluation of accuracy and computational cost, Vegas was selected for all 

numerical integration performed in this work. 

 
2.4 Spatial variability of soil 

In the development above, it was assumed that S(u) (and hence Ia(u)) are 

spatially uniform. Here S(u) is allowed to vary randomly in space with prescribed second-

order statistics with Ia(u)=αS(u) where 0<α<1. Under second-order homogeneity, the 

conditional mean of MAR is obtained (see Eq.(2-9)): 

)())(())(())(()1(
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
 (2-27) 

where ))(()( uSf uS  denotes the PDF of S(u), and ))(( uSmCR  and ))((}{ uSmCI   denote 

that they are functions of the water holding capacity of soil. Similarly, using Eq.(2-14), the 

uncentered second-order moment of MAR is obtained: 
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  (2-28) 

where ))(),(()(),( vSuSf vSuS  denotes the bivariate PDF of S(u) and S(v), and ))(,( uSuR  

and ))(,(}{ uSuI   signify that they are functions of u and S(u). Unfortunately, the explicit 

numerical evaluation of Eq.(2-28) is computationally extremely expensive. Instead, Su 

may be used, with a realization of the spatial random field of S(u) with known second-

order statistics, to evaluate the resulting quadruple integral. The above steps need to be 
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repeated multiple times using different realizations, and calculating the ensemble mean 

as an approximation of Eq.(2-28). In this work, it is assumed that S(u) is distributed 

lognormally with known mean, variance and spatial correlation structure. To generate 

lognormal random fields, the Turning Bands Method (TBM, Mantoglou and Wilson, 1982) 

was used to first generate normally-distributed random fields with known mean, variance 

and exponential spatial correlation, which were then exponential-transformed. Note that, 

if there is no variability in S(u), Eqs.(2-27) and (2-28) are reduced to Eqs.(2-9) and (2-14), 

respectively. From the above developments, one may evaluate CV of MAR as a function 

of the catchment area and assess the impact of precipitation intermittency and its spatial 

variability, precipitation amount and its variability and spatial variability with the 

precipitation area, imperviousness and its spatial variability, initial abstraction, and the 

water holding capacity of the soil and its spatial variability. 

 
2.5 Study area and data used 

The study area is the 160×160 km2, or 40×40 HRAP, domain that encompasses 

DFW in North Central Texas. The radar-based QPE used in this study is the historical 

MPE (Seo et al., 2000) products obtained from the West Gulf River Forecast Center 

(WGRFC). They are on the Hydrologic Rainfall Analysis Project (HRAP) grid (Greene and 

Hudlow, 1982) which is about 4 km a side in mid-latitudes. The MPE data used are from 

1998 through 2014 (17 yrs). The focus of this work is on urban flash flooding. The 

National Weather Service (NWS) defines flash flood as a flood caused by heavy or 

excessive rainfall in a short period of time, generally less than 6 hours. In DFW, even 

relatively large urban catchments have time-to-peaks well under 6 hours (Rafieeinasab et 

al., 2015). As such, this work consider the accumulation periods of 3 and 6 hours in this 

work. These accumulation periods were of particular relevance to extreme flooding that 
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occurred in the area in May and June of 2015 due to record-breaking rainfall. While the 

maximum daily rainfall during this period had a return period of less than 100 years, the 

maximum 3- and 6-hr rainfall had return periods exceeding 200 and 300 years, 

respectively. 

To assess the impact of the controlling factors and their variations to runoff 

frequency with respect to flash flood-causing heavy-to-extreme precipitation events, three 

subsets of precipitation events were considered in this study: 1) all 3- or 6-hourly MPE 

fields that report precipitation somewhere within the 40×40 HRAP domain, 2) all 3- or 6-

hourly MPE fields that report maximum precipitation of 50.8 mm or larger somewhere 

within the domain, and 3) all 3- or 6-hourly MPE fields that report annual maximum 

precipitation within the domain; the above are referred to as Subsets 1, 2 and 3, 

respectively. The 2nd choice above is based on the comments by the city emergency and 

stormwater managers that, in general, storm events that produce 50.8 mm or more 

precipitation are responsible for flash flooding in this area. Table  2-1 shows the summary 

statistics associated with the precipitation events in the 3 subsets above. The subset of 

annual maximum precipitation is of particular interest as it is generally associated with 

high-impact flooding events. In this period, the annual maximum precipitation ranges from 

63.9 to 238 mm for 3-hr precipitation and from 66.8 to 285.5 mm for 6-hr precipitation. 

Large variability exists in the annual maximum-bearing precipitation fields. For 3-hr 

precipitation over the 40×40 HRAP area, mIint ranges from 0.15 to 1, mpc ranges from 

5.3 to 20.4 mm, and cvcp ranges from 0.70 to 2.50. For 6-hr precipitation over the same 

area, mIint ranges from 0.16 to 1, mpc ranges from 6.3 to 30.6 mm, and cvcp ranges 

from 0.57 to 2.64. 

 

 



 

21 
 

Table  2-1 Summary statistics of 3- and 6-hr point precipitation 

Subset Conditioning event 

Summary statistics 

mIint mpc (mm) cvcp 

1 Max. 6-hr precip. > 0 
0.31 

[0.21,0.40] 
5.50 

[4.13,6.86] 
1.70 

[1.59,1.95] 

2 Max. 6-hr precip. > 50.8 (mm) 
0.71 

[0.55,0.88] 
14.24 

[10.16,18.50] 
1.12 

[0.91,1.55] 

3 Max. 6-hr precip.=annual max. 
0.78 

[0.49,1.00] 
20.6 

[12.5,29.8] 
1.30 

[0.75,1.57] 

N/A Max. 3-hr precip. > 0 
0.27 

[0.17,0.36] 
3.90 

[2.82,5.00] 
1.77 

[1.63,2.00] 

N/A Max. 3-hr precip. > 50.8 (mm) 
0.63 

[0.49,0.86] 
11.40 

[8.15,14.20] 
1.18 

[0.89,1.48] 

N/A Max. 3-hr precip.=annual max. 
0.69 

[0.61,0.99] 
13.36 

[5.53,19.08] 
1.55 

[0.96,2.28] 

 

The impervious cover used in this work is estimated from the GIS layers obtained 

from the Cities of Arlington, Dallas, Fort Worth and Grand Prairie that contribute to 

imperviousness. All available contributing layers, such as building footprints, roads and 

parking lots, were combined and the percent impervious cover, defined as the 

percentage of the impervious area within a grid box, was calculated for each pixel 

ranging from 1/16 HRAP (~250 m) to 1/2 HRAP (~2 km). For further details, the reader is 

referred to Rafieeinasab et al., (2015a). Figure  7-4-a shows the resulting imperviousness 

map at 1/16 HRAP resolution. Note the very large spatial variability across the 4-cities 

area which is also captured in the histogram of imperviousness fraction at 1 km resolution 

(see Figure  2-2 ).  
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Figure  2-2 Histogram of imperviousness fraction at 1 km resolution 

 
Because the GIS layers used in this work do not account for all sources of 

imperviousness, Figure  7-4a may be an underestimate. To check for possible 

biasedness, Figure  7-4a was also compared with the impervious maps derived from the 

National Land Cover Database (NLCD, Homer et al., 2012) of 2001, 2006 and 2011 

(Figure  7-4b, c and d). The results over the 4-cities area indicate that the two estimates 

are consistent, and that there is about 15% increase in imperviousness in the 4-cities 

area between 2001 and 2011. Figure  2-3 shows the uncentered spatial correlograms of 

imperviousness fraction along 8 different directions over the 4-cities area. They indicated 

a correlation length of ranging from 0.1 to 2 km for imperviousness fraction. 

The water holding capacity of soil used in the CN Method (USDA, 1986) was 

obtained from the observed CN statistics for Dallas and Fort Worth (McLendon, 2002). 

For Dallas, the average CN is 79.5 with a standard deviation of 7.2. Fort Worth, the 

average CN is 70.3 with a standard deviation of 3.4. Assuming that both CN and S are 

lognormally distributed, S+10=1000/CN was used to obtain the mean and standard 

deviation of S of 2.68 and 1.15 (in), respectively, for Dallas and 4.26 and 0.69 (in), 
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respectively, for Fort Worth. McLendon (2002) reports that the above observed CNs are 

significantly smaller than the CNs of 84.5 and 85.6 for Dallas and Fort Worth, 

respectively, estimated under the antecedent moisture condition (AMC) II from Landsat 

data (McLendon, 2002). Assuming that both CN and S are lognormally distributed, mean 

and standard deviation of S via S+10=1000/CN may be estimated. For the observed CN, 

the resulting mean and standard deviation of S are 47.0 and 10.41 (m), respectively, for 

Dallas, and 43.2 and 11.17 (m) for Fort Worth, respectively. To consider dry and wet 

antecedent conditions, CN I (wet) and CN III (dry) were estimated. Note that, because 

impervious areas were accounted for explicitly in the formulation, it is not necessary to 

consider CNs for urban areas separately. For the average CN II for Dallas and Fort 

Worth, mean and standard deviation of S are 1.77 and 0.43, respectively. For the 

corresponding CN III (dry) for Dallas and Fort Worth, the mean and standard deviation of 

S are 0.78 and 0.36, respectively. For the corresponding CN I (wet), the mean and 

standard deviation are 4.2 and 0.62, respectively. 

 

Figure  2-3 Indicator spatial correlograms of imperviousness along 8 different directions 

over the 4-cities area 
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2.6 Precipitation modeling 

Evaluation of Eqs. (2-8) and (2-14) requires modeling probability distribution of 

precipitation. In this work, rather than pursuing a single model that may work best for all 

subsets of the precipitation events summarized in Table  2-1, multiple distributions were 

considered that may provide reasonable models for different subsets, and assess 

variations among the different models. To model marginal distribution of 3- and 6-hr 

precipitation at an HRAP grid box within the study area, two-parameter distributions only 

for parsimony were considered. The results indicate that the gamma distribution is 

generally the best for Subset 1 (see Table  2-1) but, for Subsets 2 and 3, the Weibull 

distribution is generally better, and that, for cases with most extreme precipitation 

amounts, the lognormal distribution is more appropriate. Figure  2-4 shows an example of 

a Weibull fit for a case in Subset 3 for which the Maximum Likelihood and Bayesian 

Estimation of Univariate Probability Distributions were used, FAmle (Aucoin, 2015).  

While there exists large sampling uncertainty due to small sample size, the fit is 

reasonable. For bivariate gamma and Weibull distributions, multiple models are available. 

For bivariate gamma distribution, the Nagao and Kadoya Model 1 (NKM1, Nagao and 

Kadoya, 1970; Iliopoulos et al., 2005) were used which is based on the 5-parameter 

model of Izawa, 1953. For details, the reader is referred to Appendix E. For bivariate 

Weibull distribution, the mixture-type model of Lu and Bhattacharyya (1990) and Johnson 

(1999) were used. For details, the reader is referred to Appendix D. For details on 

modeling of bivariate lognormal distribution, the reader is referred to Appendix C. 
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Figure  2-4 Weibull fit for a case in Subset 3 

 
Spatial variability of 3- and 6-hr precipitation is modeled using correlation models 

for intermittency and inner variability (Seo and Smith, 1996a) for the subsets of events in 

Table  2-1. In the table, the bracketed numbers represent the minimum and maximum 

values for the variable in question among the 12 monthly estimates. To model spatial 

variability, the three widely used semi-variogram models, namely, exponential, Gaussian 

and spherical (Journel and Huijbregts, 1978) were used shown below in Eqs.(2-29), (2-

30) and (7-31), respectively: 

0),/exp()()( 0  hrhccch       (2-29) 

0},)/(exp{)()( 2
0  hrhccch      (2-30) 
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0},)/(5.0)/(5.1){()( 3
00  hrhrhccch     (2-31) 

where c, c0, h and r denote the sill, nugget effect, lag distance and range, respectively. 

The modeling results for each month indicate that the exponential model provides the 

best fit for the indicator correlation function, |)(|int vuCI  , for all months and for all 

subsets. The exponential model also provides a good fit for the conditional correlation 

function, |)(| vuCP  , for most cases but, for a number of cases, the Gaussian or the 

spherical model is better. Table  2-5 shows examples of the correlation modeling results 

for 6-hr precipitation fields that are associated with annual maxima. Note that, for these 

examples, the indicator and conditional correlation functions are best fitted by the 

spherical and Gaussian models, respectively.  

Table  2-2 summarizes the results in which the scale parameters were multiplied 

in the Gaussian and spherical models by 2/  and 3/8, respectively, to convert them 

to the equivalent settings of the scale parameter (i.e., range) in the exponential model. As 

in Table  2-1, the bracketed numbers in Table  2-2 represent the minimum and maximum 

values among the 12 monthly estimates of the variable in question. Table  2-1 and 

Table  2-2 show that the statistics of 3-hr precipitation largely overlap with those of 6-hr 

precipitation. For example, the statistics for 3-hr precipitation containing annual maximum 

are comparable to those of 6-hourly precipitation. As such, analysis were only carried out 

based on 6-hr precipitation. 
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Figure  2-5 Spatial (left) and indicator (right) correlograms for 6-hr precipitation fields 

associated with annual maxima, and fitted gaussian and spherical models, respectively 

 

Table  2-2 Parameters for exponential model for spatial correlation for precipitation 

intermittency and inner variability 

Subset 
Intermittency Inner variability 

Nugget effect scaleIint (km) Nugget effect scalepc (km) 

1 
0.10 

[0.08,0.15] 
73.5 

[53.2,94.0] 
0.00 

[0.00,0.01] 
70.5 

[28.3,114.8] 

2 
0.11 

[0.07,0.17] 
68.4 

[27.2,122.3] 
0.00 

[0.00,0.07] 
50.2 

[32.9,67.7] 

3 
0.12 

[0.03,0.19] 
51.6 

[16.5,128.8] 
0.05 

[0.01,0.07] 
30.8 

[19.0,75.4] 
 

2.7 Sensitivity analysis 

The scale-dependent sensitivity of climatological mean areal runoff to the 

following factors were assessed under the assumption of constant water holding capacity 

of soil and initial abstraction: water holding capacity of soil (denoted as “SS”), initially 

abstracted fraction of SS (denoted as “alpha”), PoP or climatological mean fractional 

coverage (denoted as “mIint”), spatial correlation scale of intermittency (denoted as 
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“scaleIint”), climatological mean of precipitation conditional on occurrence of precipitation 

(denoted as “mcp”), climatological CV of precipitation conditional on occurrence of 

precipitation (denoted as “cvpc”), spatial correlation scale of inner variability (denoted as 

“scalepc”), mean fractional impervious cover (denoted as “mIimp”) and spatial correlation 

scale of fractional impervious cover (denoted as “scaleIimp”). Table  2-3 summarizes the 

settings for soil and imperviousness variables.  

 

Table  2-3 Settings for soil and imperviousness variables 

Levels  SS (in) alpha mIimp scaleIimp 
(km) 

1 0.8 0.05 0.1 0.125 
2 1.3 0.10 0.2 0.25 
3 1.8 0.15 0.3 0.5 
4 3.0 0.20 0.4 1 
5 4.2 0.25 0.5 2 

 

Table  2-4 through Table  2-6 summarize the settings of the precipitation-related 

variables and their ranges considered for the three subsets of precipitation events.  

 

Table  2-4 Settings for precipitation variables for Subset 1 

Level mIint 
scaleIint 

(km) 
mpc 
(mm) 

cvpc 
scalepc 

(km) 
1 0.20 54 4.1 1.60 28.0 
2 0.25 64 4.8 1.65 63.5 
3 0.30 74 5.5 1.70 71.0 
4 0.35 84 6.2 1.85 93.0 
5 0.40 94 6.9 2.00 115.0 

 

The settings are chosen to be representative of the conditions that an urban area 

of varying sizes in different parts of DFW may experience during the course of a year. 

The settings for SS are based on McLendon (2002) and The middle setting of 45.7 (mm) 

corresponds approximately to the mean value of the AMC II estimates for Dallas and Fort 
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Worth, the maximum of 101.60 (mm) corresponds approximately the AMC II estimate for 

drier Fort Worth (see the Spatial Variability of Soil Section). The settings for alpha bracket 

the default of 0.20 with minimum and maximum of 0.05 and 0.25. In an urban 

environment, one may expect reduced initial abstraction due to reduced interception. As 

such, it is possible that the above range may be higher than the actual range of initial 

abstraction. 

 

Table  2-5 Settings for precipitation variables for Subset 2 

Level mIint 
scaleIint 

(km) 
mpc cvpc 

scalepc 
(km) 

1 0.56 30 10.0 0.75 30 
2 0.64 50 12.0 1.03 40 
3 0.72 70 14.0 1.30 50 
4 0.80 95 16.0 1.45 60 
5 0.88 120 18.0 1.60 70 

 

Table  2-6 Settings for precipitation variables for Subset 3 

Level mIint 
scaleIint 

(km) 
mpc cvpc 

scalepc 
(km) 

1 0.50 16. 13.0 0.80 20 
2 0.65 34. 17.0 1.05 25 
3 0.80 52. 21.0 1.30 30 
4 0.90 91. 25.0 1.45 55 
5 1 130. 29.0 1.60 80 

 

The settings for the precipitation-related parameters are based on the summary 

statistics shown in Table  2-1 and Table  2-2. Note that, as the maximum precipitation 

amount increases from Subset 1 to Subset 3, PoP, or mIint, increases. It is a reflection of 

the fact that, when it is precipitating heavily, it is more likely to rain at any given location 

within the analysis domain than when it is precipitating less. The tables also indicate that, 

as the maximum precipitation amount increases, the correlation scales of both 

intermittency and inner variability tend to decrease (Seo, 1996). The settings for mean 
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impervious fraction, mIimp, are based on Figure  7-4a, which has a mean of about 0.3. 

The minimum and maximum settings for mIimp, are chosen based on mean impervious 

fraction over different 10×10 km2 areas within the 4-cities area, which ranges from 0.1 to 

0.5. 

 
2.8 Results 

The scale-dependent variability, as measured by CV, of climatological MAR for 

each of the 9 variables examined: SS, alpha, scaleIint, scalepc, scaleIimp, mpc, cvpc, 

mIint, and mIimp is presented. To assess the sensitivity of climatological variability of 

MAR to variations in each of the 9 variables, five curves of CV vs. catchment scale were 

plotted based on the five settings shown in Table  2-4, Table  2-5 and Table  2-6 for 

Subsets 1, 2 and 3, respectively. In these plots, the variable in question is varied over the 

5 different settings while all other variables are held fixed at the middle settings (i.e., 

Level 3 in Tables 4 through 6). Accordingly, each plot shows the sensitivity of scale-

dependent variability of climatological MAR to changes in each of the 9 variables. Given 

the same subset of precipitation events (see Table  2-1), the pattern of dependence on 

catchment scale and its sensitivity to changes in the 9 variables are generally similar 

among the 3 distributional models considered, i.e., lognormal, Weibull and gamma. As 

such, only the representative results are shown.  

Figure  2-6 shows the CV vs. the catchment scale for the 9 variables for Subset 1, 

i.e., the analysis is conditioned on the event that it is precipitating somewhere within the 

6-hr precipitation field over the 40×40 HRAP domain regardless of the amount (see 

Figure  7-4a). The distribution model used in Figure  2-6 is bivariate gamma (see Appendix 

E). Small oscillations seen in Figure  2-6 are due to sampling errors associated with 

Monte Carlo integration. Figure  2-6 shows that the scale dependence of climatological 
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CV of MAR varies from variable to variable, and that, for most cases, the variability peaks 

at catchment scales of 20×20 to 50×50 km2 for Subset 1. It is readily seen that variations 

in mIimp, scalepc and cvpc produce the largest changes in variability of climatological 

MAR, followed by SS, mIint and scaleIint. Increasing mIimp significantly reduces 

variability of climatological MAR but increases the catchment size at which the variability 

peaks (Figure  2-6c). Increasing mIint, on the other hand, decreases both the variability 

and the catchment size of peak variability (Figure  2-6d). Figure  2-6f shows that 

increasing scaleIimp increases the variability at very small catchment scales, and that, 

the larger scaleIimp is, the larger, albeit marginally, the range of catchment scales being 

impacted. Note that the above pattern of slightly increased CV near the origin due to 

scaleIimp is seen in all cases in Figure  2-6 increasing scaleIint reduces the variability and 

slightly increases the catchment scale of peak variability (Figure  2-6g). The above 

observations suggest that, in addition to mean imperviousness, the spatial variability of 

imperviousness plays a role in shaping the scale-dependent variability of climatological 

MAR for small urban areas. Figure  2-6h indicates that scalepc has a large influence on 

both the magnitude of variability and the catchment scale of peak variability, and that 

increasing scalepc increases both. 
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Figure  2-6 CV vs. the catchment scale for the 9 variables for Subset 1 
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Figure  2-7 is the same as Figure  2-6 but for Subset 3, i.e., the analysis is 

conditioned on those 6-hr precipitation fields that contain annual maximum precipitation 

within the analysis domain. The distribution model used for precipitation is bivariate 

Weibull (see Appendix D). The results for Subset 2 are similar and are not shown. For 

both Subsets 2 and 3, the CV generally decreases monotonically as the catchment scale 

increases. Between Subsets 2 and 3, the rate of decrease in CV is somewhat faster for 

Subset 3. The distinctly different pattern of scale dependence for Subsets 2 and 3 vs. 

Subset 1 stems from the fact that the former are associated with much larger PoP (see 

Table  2-1); because it is already precipitating over most of the analysis domain, there is 

little room for intermittency of precipitation to exert influence whereas, for the same 

reason, inner variability, i.e., the variability of precipitation within the precipitating area, 

can exert large influence. Figure  2-7 indicates that variations in cvpc, mIimp and scalepc 

exert the largest influences on the magnitude of variability of MAR, followed by mIint, and 

that the sensitivity is generally larger over smaller catchment scales for all variables. It is 

worth noting in Figure  2-7i that the largest variability due to variations in SS occurs not at 

the maximum setting of SS but at an intermediate level at all catchment scales, 

suggesting a nonlinear response of scale-dependent variability of climatological MAR to 

variations in soil water holding capacity. For Subset 2, i.e., the analysis is conditioned on 

6-hr precipitation fields in each of which the maximum amount exceeds 50.8 mm, the 

above nonlinear response is more pronounced as SS plays a larger role due to reduced 

precipitation amounts in comparison with Subset 3. 
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Figure  2-7 CV vs. the catchment scale for the 9 variables for Subset 3 
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The results above assume constant SS. To assess the impact of spatially-varying 

SS, Eq.(7-28) was numerically evaluated by generating a random field of SS with known 

second-order statistics, evaluating mean and variance of MAR, i.e., Eqs. (7-8) and (7-14), 

respectively, under spatially-varying SS (and hence alpha), and repeating the above 

steps multiple times to obtain ensemble mean and variance. Due to computational cost, 

the above runs were made only for a limited range of correlation scales for SS. The mean 

and standard deviation of SS used were 45.70 and 11.17 (mm), respectively, which 

correspond to the average statistics for Dallas and Fort Worth (McLendon, 2002) (see the 

Study Area and Data Used Section). Figure  2-8 shows the result for CV for correlation 

scale of 4 km for SS based on an 8-member ensemble. Note that the spatially-varying SS 

significantly increases CV across all ranges of catchment scale and slightly flattens the 

CV-vs.-catchment scale relationship compared to the spatially uniform SS. Additional 

research is needed to reduce the computational cost and hence to examine the impact of 

spatially varying SS more systematically. 

 

Figure  2-8 CV of mean areal runoff vs. catchment scale for SS. Also shown are those for 

spatially-varying SS with correlation scales of 4 and 32 km 
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With the above analyses alone, it is difficult to assess how the combination of 

scale dependence of variability of climatological MAR and its sensitivity to variations in 

the 9 variables may modify flood frequency curves. To allow such assessment, here it is 

examined how the scale dependence and sensitivity may shape MAR frequency. Without 

observations or a combination of observations and simulations of runoff and peak flow, it 

is not possible to directly relate MAR frequency with flood frequency. One may expect, 

however, frequency and scale dependence of MAR to shape those of peak flow, given 

that peak flow is generally a monotonically increasing function of runoff volume (see, e.g., 

Bradley and Potter, 1992), and that CV of runoff volume is the same as that of MAR. 

Toward that end, it is assumed that MAR has the same marginal distribution as 

precipitation, i.e., gamma, Weibull and lognormal, and produce exceedance probability 

plots of MAR at various catchment scales. The above distributional assumption amounts 

to assuming that areal runoff volume shares the same probability distribution as point 

precipitation. To test this assumption, additional research is needed. Only a limited set of 

results exists in the literature on distributions of sums of gamma, Weibull and lognormal 

random variables (see Nadarajah, 2008 and references therein). Moschopoulos (1985) 

derived the PDF of a sum of independent gamma random variables. Alouini et al., (2001) 

extended the above result for correlated gamma random variables. Many researchers 

approximated sums of independent lognormal random variables with lognormal 

(Nadarajah, 2008). Pratesi et al., 2006, e.g., approximated a linearly weighted sum of 

correlated lognormal random variables with lognormal. For sums of Weibull random 

variables, no results or approximations currently exist.  

Figure  2-9 shows the exceedance probability plots of MAR at catchment scale of 

20×20 km2 for Subset 2 (i.e., the analysis is conditioned on 6-hr precipitation fields with a 

maximum of 50.8 mm or larger) based on Weibull distribution.  
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Figure  2-9 Exceedance probability plots of MAR at catchment scale of 20×20 km2 for 

Subset 2 based on Weibull distribution 
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The results based on gamma and lognormal distributions are qualitatively similar 

but have smaller and larger MAR at the same level exceedance probability at the right-tail 

end and larger and smaller MAR over the mid-ranges relative to those based on Weibull 

distribution (see Figure  2-10).  

 

Figure  2-10 Exceedance probability plots of MAR at catchment scale of 20×20 km2 for 

Subset 2 based on Weibull, lognormal and gamma distributions 

 

Figure  2-9 indicates that the variations in exceedance probability of MAR vary 

from variable to variable, and that, for Subset 2, variations in cvpc and mpc result in 

largest variations in exceedance probability, followed by SS and mIimp. Note also that 

the variations in mpc and SS produce similar variations in exceedance probability but in 

opposite directions. Figure  2-9 points out the challenges associated with determining 

flood frequencies in urban areas where variations in precipitation, soil and impervious 

cover lead to very significant variations of varying characteristics in exceedance 

probabilities of MAR. 
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While Figure  2-9 allows assessment of changes in MAR frequency due to 

variations in the 9 variables considered, it is difficult to identify and characterize their 

dependence on the catchment scale. To summarize the MAR frequency as a function of 

catchment scale and magnitude of precipitation events, the influence factor, FI, was 

defined and calculated as the area encompassed by the lower- and upper-bounding 

exceedance probability curves in Figure  2-9 in which the difference in probability is 

weighted according to the magnitude of MAR: 





0

)}()({ dxxFxFxF LR
I        (2-32) 

where x denotes MAR, FR(x) and FL(x) denote the right- and left-bounding CDFs, 

respectively. The weighted averaging based on the magnitude of MAR in Eq.(2-32) is 

motivated by the importance of extreme events. The interpretation of Eq.(2-32) is that, 

the larger the influence factor, FI, is, the more sensitive the MAR frequency is to the 

variations in the variable. Figure  2-11a through Figure  2-11c show the resulting plots for 

Subsets 1, 2 and 3 based on gamma, Weibull and lognormal distributions, respectively. 

The above choices for different distributions for different subsets are based on the 

observation (see the Precipitation Modeling Section) that gamma, Weibull and lognormal 

distributions are most appropriate for Subsets 1, 2 and 3, respectively. Because MAR 

and hence FI depend on the catchment scale, in Figure  2-11 the relative magnitude of FI, 

rather than the absolute magnitude, for each Subset is of most interest. In the figure, the 

colors, brown, green and blue denote the large, medium and small influences. The figure 

indicates that, for precipitation events of all magnitudes (i.e., Subset 1), the variations in 

mpc, mImp and SS exert the largest influence on exceedance probability, followed by 

cvpc. The figure also indicates that the influences are very scale-dependent; variations in 

mpc, mIimp and SS result in large variations in MAR frequency over catchment areas up 
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to 40×40 km2 but result in much smaller variations in MAR frequency for larger areas. 

Note that the above upper range of scale of increased FI corresponds approximately to 

the areal extent of the 4 Cities in DFW (48.7×48.7 km2).  

 

 

Figure  2-11 Influence factor for the 9 variables vs. catchment scale for Subset 1 based on 

a) gamma distribution, b) Weibull distribution and c) lognormal distribution 

 
For precipitation events in which maximum point rainfall exceeds 50.8 mm (i.e., 

Subset 2), mpc, cvpc, SS and mIimp are the most influential, of which mpc and cvpc 

extend their influence beyond the catchment scale of 40×40 km2. For precipitation events 

associated with annual maximum precipitation (i.e., Subset 3), mpc is by far the most 

influential, followed by cvpc, SS and, to a lesser degree, mIimp. As was the case for 

Subset 2, mpc exerts dominant influence well beyond the catchment scale of 40×40 km2 
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for Subset 3. The above summary results indicate that, over the range of spatial scales of 

most cities in the US, precipitation, impervious cover and soil all exert significant 

influences in shaping the MAR frequency. The findings above suggest that, in addition to 

accurate high-resolution quantitative precipitation information (QPI), accurate high-

resolution modeling of soil properties, soil moisture dynamics and land cover conditions 

are also necessary to capture the large and scale-dependent variability in areal runoff in 

urban areas, in particular, for small catchments. The findings above also suggest that, 

given the large sensitivity of MAR frequency to multiple factors, accurate estimation of 

flood frequency for urban catchments is inherently more difficult and subject to large 

uncertainties. As such, particular care is necessary in projecting changes in flood 

frequency in urban areas due to, e.g., urbanization and climate change. The approaches 

developed in this work may be useful in enveloping flood frequencies in urban areas 

under such nonstationary conditions (e.g., Villarini et al., 2009). 

 
2.9 Conclusions and future recommendations 

With urbanization and climate change, many areas in the US and elsewhere face 

increasing threats from flash flooding. Due to nonstationarities arising from changes in 

land cover and climate, however, it is not readily possible to project how such changes 

may modify flood frequency. In this work, a very simple spatial stochastic model for 

rainfall-to-areal runoff in urban areas is formulated, evaluating climatological mean and 

variance of mean areal runoff (MAR) over a range of spatial scales, translating them into 

MAR frequency, and assessing its sensitivity to precipitation, imperviousness and soil, 

and their changes. The precipitation durations considered are 3 and 6 hours which are 

most relevant to flash flooding. The probability distributions used for point precipitation 
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include lognormal, Weibull and gamma. The rainfall-runoff model used is the Curve 

Number (CN) Method. 

It was found that, given the same magnitude of precipitation events, the pattern 

of dependence of MAR on catchment scale and its sensitivity to changes in the 9 

variables considered, i.e., intermittency of precipitation (scaleIint), precipitation amount 

(mpc) and its variability (cvpc) and spatial variability (mIint, scalepc), impervious cover 

(mIimp) and its spatial variability (scaleIimp), water holding capacity of soil (SS) and its 

spatial variability, and initial abstraction (alpha), are generally similar among the 3 

distributional models considered, i.e., lognormal, Weibull and gamma. For precipitation 

events of all magnitudes, it was found that the scale dependence of climatological CV of 

MAR varies from variable to variable, that, for most cases, the variability peaks at 

catchment scales of 20x20 to 50x50 km2, and that variations in mIimp, scalepc and cvpc 

produce the largest changes in variability of climatological MAR, followed by SS, mIint 

and scaleIint. For very heavy to extreme precipitation events, it was found that 1) the CV 

generally decreases monotonically as the catchment scale increases; 2), between very 

heavy and extreme events, the rate of decrease in CV is somewhat faster for the latter; 3) 

the distinctly different pattern of scale dependence between very heavy-to-extreme 

events and all events stems from the fact that the former are associated with much larger 

probability of precipitation (PoP), that variations in cvpc, mIimp and scalepc exert the 

largest influences on the magnitude of variability of MAR, followed by mIint, and that the 

sensitivity is generally larger over smaller catchment scales for all variables. It was found 

that the spatially-varying SS significantly increases CV across all ranges of catchment 

scale and slightly flattens the CV-vs.-catchment scale relationship compared to the 

spatially uniform SS. Further research is necessary, however, to reduce computational 

cost and hence to assess the impact of spatially variability in SS more systematically. 
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The above findings indicate that, over the range of spatial scales of most cities in the US, 

precipitation, impervious cover and soil all exert significant influences in shaping the MAR 

frequency, that, in addition to accurate high-resolution quantitative precipitation 

information (QPI), accurate high-resolution modeling of soil properties, soil moisture 

dynamics and land cover conditions are necessary to capture the large and scale-

dependent variability in areal runoff in urban areas, in particular, for small catchments.  

Although total impervious area (TIA) was used to represent imperviousness of 

urban area in this study, directly connected impervious areas (DCIA) could be a more 

realistic indicator for flooding in the future study (e.g, Lee and Heaney, 2003; Seo et al., 

2013). The findings also suggest that, given large sensitivity of MAR frequency to multiple 

hydroclimatological, hydrometeorological, physiographic and hydrologic factors, accurate 

estimation of flood frequency for urban catchments is inherently more difficult and subject 

to large uncertainties, and that particular care is hence needed in projecting changes in 

flood frequency in urban areas due to, e.g., urbanization and climate change. The 

approaches developed in this work may be useful in enveloping flood frequencies in 

urban areas under such nonstationary conditions. 

The results indicate that to be able to predict streamflow accurately in large 

urban areas, soil properties, soil moisture dynamics, impervious cover, and precipitation 

need to be observed and modeled accurately.  
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Chapter 3 Literature review 

 
This section includes a review of literature relevant to the stated objectives. 

Topics covered include a summary of high-resolution streamflow and soil moisture 

simulations and the impact of land cover changes on hydrologic response of urban 

catchments.  

 
3.1 High-resolution hydrologic modeling 

High-resolution hydrologic models have been widely used for streamflow 

simulation for different purposes. The River Forecast Centers of NWS implemented the 

NWS Hydrologic Laboratory’s Distributed Hydrologic Model to forecast streamflow in 

basin outlets (Koren et al., 2003; Jones et al., 2009). High-resolution hydrologic modeling 

has also been used for streamflow simulation and flash flood forecasting in urban areas 

(Javier et al., 2007; Fares et al., 2014; ten Veldhuis et al., 2014; Bruni et al., 2015; 

Ochoa-Rodriguez et al., 2015; and Rafieeinasab et al., 2015a).  

High-resolution rainfall data is needed for streamflow simulation in urban areas. 

Many researchers have assessed the sensitivity of high-resolution hydrologic models to 

the spatial and temporal resolution of rainfall data in urban areas. Gires et al. (2011) used 

a semi-distributed model for streamflow simulation of a 900 ha urban area located in 

Cranbrook, UK and recommended using high temporal and spatial rainfall resolution (at 

least 1 km × 1 km × 5 min). Gires et al. (2014) carried out a similar study with a fully-

distributed model in Paris, and obtained similar results; however, the fully distributed 

model showed more sensitivity to the spatial and temporal resolution of the input rainfall 

than the semi-hydrologic model. Based on a research carried out in Mediterranean urban 

areas, the spatiotemporal resolution of rainfall for urban catchments of the order of 1000 
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ha is about 3 km and 5 min. For urban catchments of the order of 100 ha, it becomes a 

resolution of about 2 km and 3 min and (Berne et al., 2004).  

Bruni et al. (2015) used a semi-distributed hydrologic model with high-resolution 

rainfall data and analyzed the relationship between spatial and temporal resolution of 

rainfall input, and storm and catchment sizes. The results showed that the modeling 

outputs are highly sensitive to high-resolution rainfall variability, and that this will increase 

once the rainfall inputs are aggregated to coarse resolution. 

Ochoa-Rodriguez et al. (2015) investigated the impact of rainfall input resolution 

on the outputs of detailed hydrodynamic models of seven urban catchments in Northwest 

Europe. The native spatiotemporal resolution of the nine selected storm events for 

analysis was 100 m and 1 min. Then, 15 different combinations of coarser spatial and 

temporal resolutions, up to 3000 m and 10 min, were generated. These estimates were 

then applied to the operational semi-distributed hydrodynamic models of the urban 

catchments, all of which were of similar size (between 3 and 8 km2) but had different 

morphological, hydrological, and hydraulic characteristics. Three main features were 

observed in the results: (1) the impact of rainfall input resolution decreases rapidly as the 

catchment drainage area increases; (2) in general, variations in temporal resolution of 

rainfall inputs affect hydrodynamic modelling results more strongly than variations in 

spatial resolution; and (3) there is a strong interaction between the spatial and temporal 

resolutions of rainfall input estimates. 

Rafieeinasab et al. (2015a) assessed the sensitivity of streamflow simulation in 

urban catchments to the spatiotemporal resolution of precipitation input and hydrologic 

modeling in order to identify the resolution at which the simulation errors may be minimal, 

given the quality of the precipitation input, the hydrologic models used, and the response 

time of the catchment. The hydrologic modeling system used was the National Weather 
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Service (NWS) Hydrology Laboratory’s Research Distributed Hydrologic Model 

(HLRDHM) applied at spatiotemporal resolutions ranging from 250 m to 2 km and from 1 

min to 1 hr, applied to the cities of Fort Worth, Arlington and Grand Prairie in DFW. The 

high-resolution precipitation input was from the DFW Demonstration Network of the 

Collaborative Adaptive Sensing of the Atmosphere (CASA) radars. For comparison, the 

NWS Multisensor Precipitation Estimator (MPE) product, which is available at a 4-km 1-h 

resolution, was also used. The streamflow simulation results were evaluated for five 

urban catchments ranging in size from 3.4 to 54.6 km2 and from about 45 min to 3 hrs in 

time-to-peak in the cities of Fort Worth, Arlington and Grand Prairie. The results indicated 

that a spatiotemporal resolution of 500 m and 15 min or more is a good choice for 

streamflow prediction. 

Soil moisture is one of the most important state variables (in space and time) of 

the water cycle, controlling a wide range of hydrological processes (Western et al., 2004; 

Pandey and Pandey, 2010; Romano 20014; and Vereecken et al., 2014). Soil moisture 

plays an important role in determining the partitioning of the precipitation in runoff, 

infiltration, and groundwater recharge (Seiler and Gat, 2004). Therefore, observation of 

soil moisture in space and time is crucial in water resources management. In-situ soil 

moisture measurement using Time Domain Reflectometry (TDR) has been reported in 

many studies as one of the most accurate methods (Romano, 2014). However, while 

TDR sensors can measure the soil moisture content in limited locations, they cannot 

represent the spatial variability of soil moisture for an area.  

Using a distributed hydrological model is a viable alternative for the estimation of 

soil moisture in space and time, and has been used successfully by many researchers to 

simulate and evaluate soil moisture. Smith et al. (1994) used Soil Hydrologic Model 

(SHM) for the soil moisture simulation. The results captured the general trend of the field 
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measurement values. Crawford et al. (2000) compared soil moisture observations of 38 

Oklahoma Mesonet sites (Brock et al., 1995) with simulations obtained with the Soil 

Hydrology Model (SHM). Blyth (2002) enforced the 5 km × 5 km gridded network of 

observed meteorological data across the UK to two soil moisture prediction models, i.e., 

MORECS (Met Office Rainfall and Evaporation Calculation Scheme) and MOSES (Met 

Office Surface Exchange Scheme) and compared the simulated and observed soil 

moistures. Frankenberger et al. (1999) used the Soil Moisture Routing model, a daily 

water balance model, and simulated soil moisture. The comparison between simulated 

and observed soil moisture showed a similar trend, with errors on the order of the 

standard error of measurements. Mehta et al. (2004) simulated soil moisture content in 

two rural watersheds by using the Soil Moisture Routing model and reported good 

agreement between simulated and observed soil moisture. Zhang et al. (2006) integrated 

the Moderate Resolution Imaging Spectrometer (MODIS) vegetation data into a simple 

model for the spatially distributed simulation of soil water content and evapotranspiration, 

and used TDR soil moisture observation for the validation. Sheikh et al. (2009) simulated 

soil moisture content in the CATSOP experimental catchment with a spatially distributed 

daily basis hydrological model, called Bridge Event And Continuous Hydrological 

(BEACH). Brimelow et al. (2010) validated soil moisture simulations from the Canadian 

prairie agrometeorological (PAMII) model and assessed the sensitivity of the model to 

uncertainties in soil hydraulic parameters.  

Koren et al. (2006) evaluated the performance of the Sacramento Soil Moisture 

Accounting model with a new heat transfer component (SAC-HT), using runoff and soil 

moisture from 75 basins, with watershed areas varying from 20 km2 to 15,000 km2. The 

results showed that the modified Sacramento model, driven by a priori parameters, 
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performed reasonably well and allowed explicit estimation of soil moisture at desired 

layers.  

Koren et al. (2008) used the Sacramento Soil Moisture Accounting model with a 

new heat transfer component (SAC-HT) to simulate soil moisture content of more than 20 

watersheds of sizes ranging from 200 to 4000 km2 in the Oklahoma Mesonet, and 

calibrated the model using the spatially-averaged soil moisture content of these 

watersheds.  

Tavakoli and Smedt (2012) tested the ability of the Water and Energy Transfer in 

Soil, Plant and Atmosphere (WetSpa) model to simulate soil moisture. Comparing the 

simulated soil moisture with the observations, it was shown that the performance of the 

model to simulate soil moisture is promising. 

 
3.2 Impact of urbanization on streamflow simulation 

Increasing population and migration towards urban areas lead to land cover 

changes and an increase of impervious areas. Increasing impervious surfaces in urban 

areas has considerable impacts on the hydrological response of the urban catchments. 

Dams et al. (2013) grouped the impact of the expansion of impervious areas due to 

urbanization on the hydrological response of urban catchments into three categories:     

(i) increased surface runoff, (ii) increased flow velocities due to decreased surface 

roughness, and (iii) increased peak flow magnitudes and flood probability. Researchers 

developed different approaches to assess the impact of land cover changes in urban 

areas on hydrological responses.  

Rose and Peters (2001) analyzed the streamflow characteristics of highly 

urbanized, less-urbanized, and non-urbanized watersheds from 1958 to 1996. They 

found that annual runoff coefficients for the urban streams were not significantly greater 
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than for the less-urbanized watersheds. However, for the 25 largest stormflows, the peak 

flows for urbanized watershed were 30% to 100% greater than peak flows for the other 

streams. The storm recession period for the urban stream was 1–2 days less than that for 

the other streams. Burns et al. (2005) used the hydrograph analysis technique to study 

the effects of impervious areas on runoff generation in three small headwater catchments 

that represented a range of suburban developments (high-density residential, medium-

density residential and undeveloped). Using data from 27 storms, they showed that peak 

magnitudes increased and recession time decreased with increasing development, but 

lags in peak arrival and peak discharge/mean discharge were greatest in the medium-

density residential catchment, which contains a wetland in which storm runoff is retained 

before entering the stream. Using five land cover scenarios, Chu et al. (2013) studied the 

potential effects of varying degrees of urban expansion on the frequency of discharge, 

velocity, and water depth using the physically-based watershed model, MIKE-SHE, and 

the 1D-hydrodynamic river model, MIKE-11. Results indicated that the frequency of low 

flow events decreased as urban expansion increased, while the frequency of average 

and high-flow events increased as urbanization increased. Ali et al. (2011) combined an 

empirical land use change model and an event scale with a rainfall-runoff model to 

quantify the impacts of potential land use change on the storm-runoff generation. The 

results indicated that future land use is projected to increase the total runoff between 51.6 

and 100.0%, as well as the peak discharge between 45.4 and 83.3%, and that the 

magnitude of the peak discharge increment relates to the expansion rate of a built-up 

area.  

Such studies suggest incorporating land cover changes data of urban areas in 

distributed hydrological modeling. However, including land cover changes data in 

distributed hydrologic models remains complicated due to the variability of land covers in 
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urban areas in space and time. Recent studies showed that using remote sensing data is 

more appropriate and more cost effective for providing spatially-consistent values for land 

cover changes in urban areas.  

Chormanski et al. (2008) examined different methods for estimating the impact of 

impervious surface cover on the prediction of peak discharges, as determined by a fully 

distributed rainfall-runoff model (WetSpa). The study showed that detailed information on 

the spatial distribution of impervious surfaces, as obtained from remotely-sensed data, 

produces substantially different estimates of peak discharges than traditional approaches 

based on expert judgment of average imperviousness for different types of urban land 

use.  

Du et al. (2012) combined a distributed hydrologic model and a dynamic land use 

model to examine the effects of urbanization on annual runoff and flood events. The 

Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) was used to 

calculate runoff generation and the integrated Markov Chain and Cellular. Landsat 

Thematic Mapper (TM) images from 1988, 1994 and 2006, Enhanced Thematic Mapper 

Plus (ETM+) images from 2001 and 2003, and a China–Brazil Earth Resources Satellite 

(CBERS) image from 2009 were used to obtain historical land use maps. The simulation 

results of the HEC-HMS model for the various urbanization scenarios indicate that annual 

runoff, daily peak flow, and flood volume have increased to different degrees due to 

urban expansion during the study period (1988–2009) and that they will continue to 

increase as urban areas increase in the future.  

Verbeiren et al. (2013) used Landsat and SPOT imagery to generate a time 

series of five medium-resolution urban masks and corresponding sub-pixel impervious 

surfaces to assess urban dynamics in urban catchments and the related impact on 

hydrology, using physically based rainfall-runoff model WetSpa. The results revealed:    
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(i) the importance of detailed information on the impervious surface proportion for 

hydrological simulations in urbanized catchments, (ii) the steady urban growth in the 

Tolka Basin between 1988 and 2006 which had a considerable impact on peak 

discharges, and (iii) the hydrological response is quicker as a result of urbanization.  

Miller et al. (2014) investigated changes in storm runoff resulting from the 

transformation of previously rural landscapes into peri-urban areas. Two adjacent 

catchments (∼5 km2) were monitored during 2011 and 2012, providing continuous 

records of rainfall, runoff, and actual evaporation. One catchment was highly urbanized, 

and the other was a recently developed peri-urban area containing two distinct areas of 

drainage: one with mixed natural and storm drainage pathways and the other entirely of 

storm drainage. Historical levels of urbanization and impervious cover were mapped from 

the 1960s to the 2010s, based on digitized historical topographic maps, and were 

combined with a hydrological model to enable backcasting of the present day storm 

runoff response to that of the catchments in their earlier states. Comparisons with 

changes in storm runoff response in the more urban areas suggest that the relative 

increase in peak flows and reduction in flood duration and response time of a catchment 

are greatest at low levels of urbanization and that the introduction of storm water 

conveyance systems significantly increases the flashiness of storm runoff above that 

attributed to the impervious area alone. 

Gumindoga et al. (2014) used Landsat Thematic Mapper (TM) images for the 

years 1986, 1994 and 2008 and generated the land cover maps for two medium-sized 

catchments in Zimbabwe. The generated land cover maps were used for the assessment 

of hydrological impacts of land cover changes in these two catchments. The rainfall-

runoff model used was TOPMODEL. The results of land cover classification showed that 

the urbanization increased by more than 600% in one catchment and more than 200% in 
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another one from 1980 to 2010. The TOPMODEL simulation results indicated that 

streamflow increased 84.8% and 73.6%, respectively in these two catchments.  

 
Based on the literature review, the following gaps have been identified:  

1. Runoff generation processes in urban areas are not fully understood. 

Whereas the runoff generation processes in the natural environment are 

generally well understood, those in the built environment are not. The runoff 

generation process in natural environments is typically divided into saturation 

excess and infiltration excess. Using soil moisture observations obtained from 

soil moisture sensors at different locations in large urban areas can resolve the 

runoff generation process in those areas.  

 
2. While the need for high-resolution modeling in urban areas is clear, it is not 

clear whether increasing (nominal) resolution increases accuracy, given 

the current level of advances in hydrologic-hydraulic modeling and 

quantitative precipitation estimation (QPE). In the DFW area, most of the 

catchments are smaller than 1 HRAP cell, and the time-to-peak is less than 1 

hour. Therefore, being able to observe and predict flash flooding at higher 

resolution is important to providing location-specific warnings. High-resolution 

distributed modeling is subject to nonlinear growth of error due to errors in QPE 

and in model parameters, structures, and initial conditions. As such, there is a 

practical limit to the resolution of modeling, given the quality of the QPE products 

available.  

 
3. Impact of land cover changes on streamflow response has not been 

investigated in flooding-prone catchments of urban areas based on high-
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resolution hydrologic modeling. Population growth in urban areas increased 

the imperviousness in urban areas. It is expected that the trend of population 

growth and migration towards urban areas leads to an increase of impervious 

areas. Increasing impervious covers impacts hydrologic response of the 

catchments and may reduce the time-to-peak and increase the runoff volume 

and peak flow of the catchments. The impact of land cover changes and 

increasing impervious covers in urban areas has not been investigated using 

high-resolution land cover data and high-resolution model parameters, and high-

resolution radar-based rainfall products. 
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Chapter 4 Methodology 

 
This chapter describes the methodology for derivation of a priori model 

parameters at higher resolutions. The sensitivity analysis of streamflow and soil moisture 

simulations to the spatial resolution of the model parameters and the rainfall input, and 

assessment of the impact of land cover changes on the streamflow simulation in urban 

areas are also discussed.  

 
4.1 Derivation of a priori model parameters at higher resolutions 

The NWS distributed hydrologic modeling system, Hydrology Laboratory 

Research Distributed Hydrologic Model (HLRDHM), was used for streamflow and soil 

moisture simulations. HLRDHM uses the Sacramento soil moisture accounting model 

(SAC-SMA, Burnash et al., 1973) for soil moisture accounting (i.e., rainfall-runoff), and 

kinematic-wave routing (Koren et al., 2004) for channel and hillslope routing. HLRDHM is 

a grid-based model with a default spatial resolution of 4 km × 4 km, which corresponds to 

the Hydrologic Rainfall Analysis Project grid (HRAP, Greene and Hudlow 1982). 

Currently, 11 a priori model parameters, based on soil and land cover data, are available 

for CONUS at 1 HRAP resolution (Anderson et al., 2006; Zhang et al., 2011). The 11 a 

priori SAC-SMA parameters at higher resolutions of 1/2, 1/4, 1/8 and 1/16 HRAP were 

derived in the study area, and then used in the streamflow and soil moisture simulations. 

To derive the high-resolution soil and land cover-based a priori SAC-SMA parameters, 

the automated model of OHD/NWS (Office of Hydrologic Development), developed for 

the derivation of the a priori SAC parameters at 1 HRAP resolution (Zhang et al., 2011) 

was modified and used. The soil data and the land cover data used were from the Soil 

Survey Geographic (SSURGO) database and the National Land Cover Database 

(NLCD), respectively. Three sets of a priori SAC-SMA parameters at higher resolutions 
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were derived by using NLCD 2001, 2006, and 2011. In addition to 11 a priori SAC 

parameters, the percent of impervious area (PCTIM), which is another gridded a priori 

SAC-SMA parameter, was derived at resolutions of 1, 1/2, 1/4, 1/8 and 1/16 HRAP in the 

study area and used in high-resolution hydrologic modeling. PCTIM was derived from 

NLCD 2001, 2006 and 2011 and GIS layers of impervious areas available in the study 

area.  

 
4.2 Sensitivity analysis of streamflow and soil moisture simulations to spatial resolution 

of a priori model parameters and rainfall input 

After derivation of the a priori SAC-SMA parameters at 1/2, 1/4, 1/8, and 1/16 

HRAP resolutions, the sensitivity analyses of the spatial resolution of the model 

parameters and the spatial resolution of two radar-based rainfall data were carried out. 

The two radar-based rainfall data were the Multisensor Precipitation Estimator (MPE) and 

Collaborative Adaptive Sensing of Atmosphere (CASA), with the temporal and spatial 

resolution of 1 h and 4 km and 1 min and 500 m, respectively.  

The model was run with 40 different combinations of rainfall input and a priori 

SAC-SMA parameters. The combinations of a priori SAC parameters and rainfall input for 

streamflow and soil moisture simulations are as follows:  

 Simulate streamflow at the outlets of urban catchments in the DFW area 

using CASA and MPE data of 2015 at 1/2, 1/4, 1/8, and 1/16 HRAP 

resolution and a priori SAC-SMA parameters at 1, 1/2, 1/4, 1/8, and 1/16 

HRAP resolutions.  

 Simulate soil moisture content at the location of three soil moisture sensors 

within the DFW area at 5 different depths (i.e. 0.05, 0.10, 0.25, 0.50, and 

1.00 m), using CASA and MPE data of 2015 at 1/2, 1/4, 1/8, and 1/16 
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HRAP resolution and a priori model parameters at 1, 1/2, 1/4, 1/8, and 1/16 

HRAP resolutions.  

Table  4-1 shows the combination of the rainfall data (MPE and CASA) and a 

priori SAC-SMA parameters at different resolutions for soil moisture and streamflow 

simulations.  

 
Table  4-1 Combination of the rainfall data (MPE and CASA) and a priori SAC-SMA 

parameters at different resolutions for soil moisture and streamflow simulations 

No. 

Resolution of 

SAC-SMA 

parameters 

(HRAP) 

Resolution of 

Rainfall data 

(HRAP) 

No. 

Resolution of 

SAC-SMA 

parameters 

(HRAP) 

Resolution of 

Rainfall data 

(HRAP) 

1 1 

1/2 

11 1 

1/8 

2 1/2 12 1/2 

3 1/4 13 1/4 

4 1/8 14 1/8 

5 1/16 15 1/16 

6 1 

1/4 

16 1 

1/16 

7 1/2 17 1/2 

8 1/4 18 1/4 

9 1/8 19 1/8 

10 1/16 20 1/16 

 
The temporal resolution was fixed at 5 min, which corresponded to the highest 

temporal soil moisture observations at all depths (i.e. 0.05, 0.10, 0.25, 0.50, and 1.00 m) 

in three different locations within the study area. SAC-SMA has five state variables which 

were initialized with intermediate parameters. These parameters are: 1) Upper Zone 

Tension Water Content (UZTWC), 2) Upper Zone Free Water Content (UZFWC), 3) 

Lower Zone Tension Water Content (LZTWC), 4) Lower Zone Free Supplemental 



 

57 
 

Content (LZFSC) and 5) Lower Zone Free Primary Content (LZFPC). The duration of the 

simulation was one year (from 1/1/2015 to 12/31/2015). 

 
4.3 Impact of land cover changes on the streamflow simulation 

HLRDHM was used at 1/16 HRAP resolution to simulate streamflow at the 

outlets of five urban catchments in Arlington and Grand Prairie, TX, for 2015. The a priori 

SAC-SMA parameters derived from the SSURGO database and NLCD 2001, 2006 and 

2011 were used. The model states were initialized with intermediate initial condition, and 

the temporal resolution was fixed at 5 minutes.  
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Chapter 5 Study area and data used 

 
In this section, the study area and the data used are described. The data 

consisted of water level data, grain size distribution of river beds, land use and land cover 

data, soil data, and elevation data.  

 
5.1 Study area 

The study area encompassed the cities of Fort Worth, Arlington, Grand Prairie, 

and Dallas in the Dallas-Fort Worth (DFW) Metroplex in North Texas, approximately 400 

km north of the Gulf of Mexico (Figure  5-1). The entire study area and its population (as 

of 2012) were 1,378 km2 and 2,591,313, respectively. The topography can be described 

as rolling hills, ranging between 150 to 245 m (NWS 2015). 

 
Figure  5-1 Model domain encompassing the Cities of Fort Worth, Arlington, Grand Prairie 

and Dallas in North Texas 
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5.2 Water level 

Water level observations were made available from the cities of Fort Worth, 

Arlington and Grand Prairie through the High Water Warning System (HWWS) every 15 

minutes. The raw water level observations have been recently available from 

http://70.128.162.107:81/datawise/webview/dataAPI/index.php. The water level sensors 

used in the HWWS are the pressure transducer type. The water level sensors in Arlington 

and Grand Prairie monitor the variations of the water levels in creeks; however, the water 

level sensors of Fort Worth monitor the variations of water levels in the lakes and streets 

once the streets are inundated during rainfall events. The 15-min water level 

observations made possible by the Grand Prairie sensors have been successfully used in 

validating streamflow simulations (Rafieeinasab et al., 2015a) following conversion to 

streamflow via rating curves derived from 1-D steady state non-uniform hydraulic 

modeling (Kean and Smith 2005, 2010; Norouzi et al., 2015).  

UTA will deploy additional sonar-type water level sensors at multiple locations 

within the study area to observe and collect water level data in the creeks. For this 

purpose, 20 locations in Fort Worth, 2 locations close to downtown Dallas, and 7 

locations in Arlington have been proposed. Figure  5-2 shows the prospective locations for 

the water level sensors deployment. The observed water level data from the sonar-type 

water level sensors, along with the water level observations from the pressure transducer 

types, will be used to monitor the variations of water levels in the creeks, particularly 

during rainfall events, and to validate the streamflow simulations.  
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Figure  5-2 Prospective locations for water level sensor deployment (red dots) throughout 

the study area 

 
5.3 Grain size distribution of river beds 

The grain size distribution of channel beds, obtained from the cities of Grand 

Prairie and Fort Worth, will be used to determine D84 and the relative roughness of the 

beds (Table  5-1).  

Table  5-1 D84 at different locations within the study area 

D84 (mm) Location  

15.0 Arbor Creek, Grand Prairie, TX 

15.0 Cotton Wood Creek, Grand Prairie, TX 

20.0 Warrior Creek, Grand Prairie, TX 

30.0 Fish Creek, Grand Prairie, TX 

50.0 Royal Creek (downstream), Fort Worth, TX 

60.0 Royal Creek (upstream), Fort Worth, TX 
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5.4 Land cover 

The National Land Cover Database 2011, 2006, and 2001 (NLCD 2011, NLCD 

2006 and NLCD 2001) were used in this research. NLCD 2001, 2006, and 2011 were 

produced by the Multi-Resolution Land Characteristics (MRLC) consortium to provide a 

land cover database with a spatial resolution of 30 m across the United States (Homer et 

al., 2015) in 20 land cover classifications (Table  5-2). Figure  5-3 shows the NLCD 2011, 

with 15 distinct classifications over the study area.  

 

Table  5-2 National Land Cover Data 2011 (NLCD 2011) Classes 

No. Class Code Classification description  

1 Water 11 Open Water 

 12 Perennial Ice/Snow 

2 Developed 21 Open Space 

  22 Low Intensity 

  23 Medium Intensity 

  24 High Intensity 
3 Barren 31 Barren Land(Rock/Sand/Clay) 
4 Forest 41 Deciduous Forest 

  42 Evergreen Forest 

  43 Mixed Forest 

5 Shrubland 51 Dwarf Scrub 

  52 Shrub/Scrub 

6 Herbaceous 71 Grassland/Herbaceous 

  72 Sedge/Herbaceous 

  73 Lichens 

  74 Moss 

7 Planted/Cultivated 81 Pasture/Hay 

  82 Cultivated Crops 

8 Wetlands 90 Woody Wetlands 

  95 Emergent Herbaceous 
Wetlands 
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Figure  5-3 National Land Cover Data 2011 (NLCD 2011) with 15 distinctive classes over 

the study area 

5.5 Impervious cover 

To derive the percent of impervious area maps, four sources of datasets (i.e. GIS 

layers of impervious areas, NLCD 2001, NLCD 2006 and NLCD 2011) were used. The 

GIS layers of impervious areas were obtained from the cities of Fort Worth, Arlington, 

Grand Prairie and Dallas, and the percent of impervious area maps were derived from 

them, as shown in Table  5-3 (Rafieeinasab et al., 2015a).  

 
Table  5-3 GIS layers from the cities of Fort Worth, Arlington, Grand Prairie and Dallas 

used for the estimation of impervious area 

Map Layer 
Fort 

Worth 
Arlington 

Grand 
Prairie 

Dallas 

Building footprint √ √ √ √ 
Impervious cover of commercial √ - √ √ 
Pavements √ √ - √ 
Centerline of sidewalk √ - - √ 
Centerline of streets - - √ √ 
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5.6 Soil 

The Soil Survey Geographic (SSURGO) database was used to obtain the soil 

texture information for the study area. The SSURGO database was collected by the 

National Cooperative Soil Survey for the United States, based on field observations and 

laboratory tests (Natural Resources Conservation Service Soils, 2015). The soil polygons 

defined in the SSURGO data range in size from about 10 to 20 km2 (Zhang et al., 2011). 

 
5.7 Elevation 

The 0.7 m-resolution LiDAR data obtained from the Texas Natural Resources 

Information System (TNRIS 2015) was used to derive the Digital Elevation Model (DEM) 

and to delineate the river cross sections at different locations around the study area. 
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Chapter 6 Advanced sensing  

 
In this chapter, three real-time radar-based QPE products available in the study 

area, rain gauge data and soil moisture data will be described. Rain gauge data will be 

used to evaluate the available QPEs, QPEs will be used in high-resolution hydrologic 

modeling and soil moisture data will be used for investigation of runoff generation 

processes in the study area and for evaluation of high-resolution hydrologic modeling.  

 
6.1 Precipitation 

6.1.1 Radar 

In the DFW area, there are currently three real-time radar-based QPE products 

available: the MPE (Seo et al., 2010, Kitzmiller et al., 2011), Q2 (Next Generation QPE, 

Zhang et al., 2011) and CASA (Chandrasekar and Cifelli 2012). To date, a network of five 

CASA X-band radars, referred to as the DFW Demonstration Network, has been 

deployed in the area. The five CASA X-band radars are located in Addison, Arlington, 

Cleburne, Denton, and Midlothian. Figure  6-1 shows the coverage of XUTA and the city 

limits of Fort Worth, Arlington, Grand Prairie, and Dallas. The nearest WSR-88D, KFWS, 

is located in Burleson, TX, shown as the red triangle in the figure.  

All three QPE products were considered in this research, as well as the multi-

QPE fusion products (Rafieeinasab et al., 2015a), which provide the highest-resolution 

rainfall estimates and are more accurate than the ingredient QPEs at their native 

resolutions. Table  6-1 shows the spatiotemporal resolution of the radar-based QPE 

products. 
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Figure  6-1 Coverage area of XUTA 

 
Table  6-1 Spatiotemporal resolution of the available QPE products in the study area 

QPE product 
Temporal 
resolution 

Spatial 
resolution 

MPE 60 min 4 km × 4 km 
Q2 5 min 1 km × 1 km 

CASA 1 min 500 m × 500 m 
Multi-QPE fusion 15 min 1 km × 1 km 

 
6.1.2 Rain gauges 

Rainfall observations are available from the cities of Fort Worth, Arlington and 

Grand Prairie. The above cities have been operating High Water Warning Systems 

(HWWS) at 19, 5, and 21 locations throughout the cities since 2007, 2013, and 2009, 

respectively (Figure  6-2a). Thirty-nine additional ones have been recently installed. 

Rainfall observations are available every 15 minutes through the tipping bucket rain 

gauges used in HWWS.  
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Figure  6-2 Location of High Water Warning Systems (HWWS) throughout the cities of 

Fort Worth, Arlington and Grand Prairie (left) and the location of UTA tipping bucket rain 

gauges throughout the city of Fort Worth (right) 

 
The University of Texas at Arlington (UTA) deployed nine tipping bucket rain 

gauges throughout the city of Fort Worth. UTA rain gauges were deployed as close as 

possible to the HWWSs, so that the distance between the UTA rain gauges and the 

HWWS varied from 110 m to 1150 m (Figure  6-2b). The resolution of the tipping bucket 

rain gauges is 1 mm/tip, and the resolution of the HWWS rain gauges is 0.254 mm/tip.  

 
6.1.3 Evaluation of available QPEs in the DFW area 

For evaluation of the available radar-based QPEs in the DFW area, 15-minute 

rainfall observations from 20 rain gauges in Grand Prairie were used. To check the 

quality of rain gauge data, the scatter, quantile-quantile plot, and double-mass plots of 

rainfall observations between each rain gauge and its closest neighbor were examined. 

The results indicated the rain gauge data from the City of Grand Prairie is viable.  
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QPEs were validated after conducting quality control for the rainfall observations. 

The common period among all three QPEs was only 7 months in 2013. The results of the 

validation showed that: 1) Q2 has the least bias in mean, most biased in variability, and is 

more skillful for larger amounts, 2) MPE is the most skillful for smaller amounts and has 

significantly reduced skill for larger amounts, and 3) CASA is the most skillful overall, 

particularly for larger amounts. Figure  6-3 shows the scatterplots between available 

QPEs in the DFW area and 15-min rain gauge observations.  

 
 

Figure  6-3 Scatterplots between available QPEs in the DFW area and 15-min rain gauge 

observations 

 
6.2 Soil moisture 

Since soil moisture is highly variable in space and time (Vereecken et al., 2014), 

it is necessary to observe it at a high temporal frequency and in a large number of 

locations to evaluate model simulations. Several methods exist for in-situ measurement 

of soil moisture. They may be grouped into direct and indirect methods (Romano, 2014). 

The direct methods measure the soil moisture at the point of interest. The indirect 

methods measure those properties of soil such as electrical constant, conductivity, or 

neutron-scattering effects that are highly correlated with soil water content (Romano, 

2014).  
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The most widely used direct method is the gravimetric method (Blonquist Jr. et 

al., 2006; Romano, 2014). Gravimetric soil water content measurement is a destructive 

method that requires 24 hr of oven drying. It appears that the soil moisture content in the 

field changes within the 24 hr of oven drying. Continuous observation of the soil moisture 

content, using the gravimetric soil water content measurement at multiple locations and 

at different depths in specified time intervals, is not feasible. For the evaluation of high-

resolution hydrologic modeling, continuous soil moisture observations at multiple 

locations and at different depths within the study area are needed. 

Using the Time Domain Reflectometery (TDR) and Time Domain 

Transmissomtery (TDT) sensors is recognized as one of the best methods for in-situ soil 

moisture measurement (Blonquist Jr. et al., 2006; Robinson et al., 2008). A TDR sensor 

measures the dielectric constant and electrical conductivity of soil by propagating 

electromagnetic signals along the probes placed at different depths of the soil column (Yu 

et al., 2004; Blonquist Jr. et al., 2006; and Romano, 2014). The two soil properties of 

dielectric constant and electrical conductivity are then related to soil water content. The 

main advantages of TDTs and TDRs are: 1) superior accuracy to within 1 or 2% of 

volumetric water content, 2) minimal calibration requirements, and 3) lack of radiation 

hazards associated with neutron probe or gamma-attenuation techniques, 4) high 

temporal resolution, and 5) measurements that are simple to obtain (Jones et al. 2002).  

To observe the soil moisture content in the study area, three locations were 

selected in the Johnson Creek Catchment (Figure  6-4) for deployment of two TDTs and 

one TDR soil moisture sensor. The distance between the two locations was 

approximately 1.3 km. To observe the variations of the soil moisture by depth, five soil 

moisture sensors (SMS) were deployed at each of the selected locations in August 2015, 

at depths of 0.05, 0.10, 0.25, 0.50, and 1.00 m from the soil surface. The SMSs were 
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placed near a creek or a channel to enable understanding of the runoff generation 

process in a large urban area (Figure  6-4). 

SMS1 (CELB) is located at (32.7281, -97.1245) near a man-made channel 

(Figure  6-4). The topography of this location is flat, and based on NLCD 2011 

(Figure  5-3), the land cover of this location is categorized as developed, open space, 

which is an area with a mixture of some constructed materials, but mostly vegetation in 

the form of lawn grasses (see Table 5-2). Based on lab test analysis, the soil type at this 

location is sand clay-silty sand (SC-SM).  

SMS2 (Bridge), is located at (32.7272, -97.1127) by the Timber Brook Creek 

(Figure  6-4). The slope of the land at this location is steep toward the Timber Brook 

Creek. Based on NLCD 2011 (Figure  5-3), the land cover of this location is categorized 

as developed, low intensity, which is an area with a mixture of constructed materials and 

vegetation. Based on lab test analysis, the soil type at this location is sand clay (SC). 

SMS3 (Cemetery) is located at (32.7272, -97.1127) by the Johnson Creek 

(Figure  6-4). The slope of the land at this location is flat, similar to the CELB. Based on 

NLCD 2011 (Figure  5-3) the land cover of this location is categorized as developed, open 

space. Based on lab test analysis, the soil type at this location is sand clay (SC). 
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Figure  6-4 Locations of the three deployed soil moisture sensors (SMS) within the 

Johnson Creek Catchment 

 
6.2.1 Evaluation of soil moisture sensors’ performance 

The performance of the soil moisture sensors at three locations (CELB, Bridge 

and Cemetery) at the first three depths was verified. To do this, the soil moisture content 

obtained from the sensors was compared with that obtained from the lab test (Table  6-2). 

The relative difference between the gravimetric and in-situ soil moisture content at the 

three locations was smaller than 7%.  

(CELB) 

(Bridge) 

(Cemetery) 
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Table  6-2 In-situ and lab test soil moisture content measurements at the locations of the 

soil moisture sensors within the study area at 0.05, 0.10, and 0.25 m 

Depth 

(m) 

Soil moisture content 

at CELB 

Soil moisture content at 

Bridge 

Soil moisture content 

at Cemetery 

lab  In-situ lab  In-situ lab  In-situ 

0.05 35.56 35.54 16.83 15.76 23.93 22.31 

0.1 35.46 35.14 13.42 12.68 25.74 23.99 

0.25 33.35 34.75 16.84 15.79 28.73 26.95 

 
6.3 Model simulation of soil moisture 

The model used for the soil moisture simulation was the Sacramento soil 

moisture accounting model (SAC, Burnash et al., 1973) with heat transfer, or the SAC-

HT. SAC-HT is an extension of the SAC model. The Sacramento soil moisture 

accounting model (SAC-SMA), uses conceptual water storage at a soil column and 

converts the conceptual water storage to a soil moisture state via a physically-based 

heat-moisture transfer model.  

 
6.3.1 Comparisons of soil parameters: SAC-HT vs. lab test vs. field tests 

Before using SAC-HT for soil moisture simulation at the location of soil moisture 

sensors, three parameters of SAC-HT were evaluated (i.e., porosity, saturated hydraulic 

conductivity, and permanent wilting point). For evaluation of porosity and permanent 

wilting point, the lab test was performed at three locations. For evaluation of saturated 

hydraulic conductivity, the results of the lab test and infiltration test were used and 

compared to the saturated hydraulic conductivity used by SAC-HT. Table  6-3 shows the 

infiltration test results and the lab test results for the saturated hydraulic conductivity at 

three locations. The table shows that the lab test result for saturated hydraulic 
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conductivity at the CELB location was approximately 10 times smaller than that of the 

SAC-HT; however, the saturated hydraulic conductivity from the lab test was very close 

to the SAC-HT.  

 
Table  6-3 Saturated hydraulic conductivity (m/s) obtained from infiltration test, lab test, 

and soil texture map at the location of soil moisture sensors 

Location Infiltration test Lab test SAC-HT 

CELB 7.60×10-5 3.47×10-6 3.46×10-5 

Bridge 4.95×10-6 2.25×10-6 1.27×10-6 

Cemetery 1.09×10-6 1.20×10-6 1.27×10-6 

 
Table  6-4 summarizes the lab test results for the permanent wilting point and 

porosity and those used by SAC-HT. The lab test result for the permanent wilting point 

was significantly different than the permanent wilting point used by the SAC-HT at the 

CELB location. The main reason for this significant difference is based on field 

observations. The soil at the CELB is backfill soil and was imported to the CELB site from 

other locations.  

 
Table  6-4 Porosity and permanent wilting point at the location of soil moisture sensors 

obtained from the lab test and soil texture map  

Location 
Porosity Permanent Wilting Point 

Lab test SAC-HT Lab test SAC-HT 

CELB 0.493 0.42 0.238 0.09 

Bridge 0.42 0.46 0.270 0.28 

Cemetery 0.502 0.46 0.225 0.28 
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6.3.2 Observed and simulated soil moisture at the Bridge location 

Figure  6-5 shows the time series of observed and simulated soil moisture content 

at the Bridge location at five depths from Aug 24, 2015 to Dec 31, 2015. For the soil 

moisture simulation, MPE data at 1/8HRAP was used. The resolution of the a priori 

model parameters was 1/8HRAP. The comparison between simulated and observed soil 

moisture showed that the result was under-simulation in the lower zone and over-

simulation in the upper zone. The soil moisture observations indicated high ground water 

level at this location.  

To understand the runoff generation process based on the observed soil 

moisture, the observed and simulated soil moisture profile associated with the 

10/22/2015 to 10/25/2015 rainfall event was analyzed (Figure  6-6). The total MPE rainfall 

for this event was 195 mm. Analysis of the observed and simulated soil moisture 

indicated that while the model response was similar to infiltration excess, the observed 

response was similar to saturation excess. The observed soil moisture profile also 

showed that TDR measurements are not stable at depths greater than 25 cm.  
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Figure  6-5 Time series of simulated and observed soil moisture content at the Bridge location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution Simulated soil moisture is depicted in blue and observed soil 

moisture in red.  
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Figure  6-6 Simulated and observed soil moisture profile at the Bridge location for 

10/22/2015 to 10/25/2015 rainfall event (observed (blue), MPE-forced rainfall (green) and 

CASA-forced rainfall (red)) 
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6.3.3 Observed and simulated soil moisture at CELB location 

Figure  6-7 shows the time series of observed and simulated soil moisture content 

at CELB location at five depths from Aug 19, 2015 to Dec 31, 2015. This figure shows the 

simulated soil moisture based on MPE data and a priori model parameters at 1/8 HRAP 

resolution. The comparison between simulated and observed soil moisture shows that 

the result is under-simulation at all depths. Also, the model soil moisture was significantly 

biased. The soil moisture observations indicate that after the rainfall event of Oct 22, 

2015, the soil was consistently close to saturated condition, and with a small rainfall, the 

soil reached fully saturated condition.  

The analysis of the simulated and observed soil moisture profile associated with 

the rainfall events of Oct. 22, 2015 to Oct. 25, 2015 (Figure  6-8) indicates that while the 

model soil’s moisture response to initial rainfall was similar to infiltration excess, the 

observed soil moisture quickly reached near saturation at all depths and remained nearly 

saturated. At this location, infiltration was dominated by suction pressure. While there is a 

departure between model simulation and observation, model soil moisture in the lower 

zone approaches the observed after a few days. This departure would under-simulate 

runoff at this location.  
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Figure  6-7 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/8 HRAP resolution 

and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture is depicted in blue and observed soil moisture in red. 
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Figure  6-8 Simulated and observed soil moisture profile at CELB location for 10/22/2015 

to 10/25/2015 rainfall event (observed (blue), MPE-forced rainfall (green) and CASA-

forced rainfall (red)) 
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6.3.4 Observed and simulated soil moisture at Cemetery location 

Similar to the Bridge and CELB locations, MPE data and a priori model 

parameters at 1/8 HRAP resolution were used for the soil moisture simulation at the 

Cemetery location. Figure  6-9 shows the time series of simulated and observed soil 

moisture at five depths at the Cemetery location from Aug. 19, 2015 to Dec. 31, 2015. 

The comparison between simulated and observed soil moisture shows over-simulation at 

all depths, and the model soil moisture had a large bias. The model soil moisture had a 

lag in the lower depths. The lag can be seen clearly in the Oct. 22, 2015 rainfall event. 

The rate of decrease in the observed soil moisture was faster than in the simulated soil 

moisture in the upper layers; however, this rate was approximately the same in the lower 

layers.  

The analysis of the simulated and observed soil moisture profile associated with 

the rainfall events of Oct. 22, 2015 to Oct. 25, 2015 (Figure  6-10) indicates that while 

observed soil moisture shows a clear wetting front following infiltration excess, model soil 

moisture quickly increases to near saturation at all depths. The model soil moisture 

profile approached the observed only after the leading edge reached a depth of 100 cm 

after nearly 2 days, which would result in model over-simulation of runoff.  
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Figure  6-9 Time series of simulated and observed soil moisture content at the Cemetery location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red.
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Figure  6-10 Simulated and observed soil moisture profile at the Cemetery location for 

10/22/2015 to 10/25/2015 rainfall event (observed (blue), MPE-forced rainfall (green), 

and CASA-forced rainfall (red))  
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Chapter 7 Hydrologic and hydraulic models used 

 
In this chapter, the hydrologic model and hydraulic model used in this work are 

described. The hydrologic model was used for streamflow and soil moisture content 

simulation and the hydraulic model was applied for the derivation of stage–discharge 

relation (rating curve) in 5 catchment outlets within the study area  

 
7.1 Hydrologic model 

The NWS distributed hydrologic modeling system, Hydrology Laboratory 

Research Distributed Hydrologic Model (HLRDHM), was used for hydrologic modeling. 

HLDRHM, has been used in several research studies and has been reported as one of 

the best distributed hydrologic models for streamflow prediction (Reed et al., 2004; Smith 

et al., 2012). Tang et al., (2007) used HLRDHM for an analysis of sensitivity to the model 

parameters and showed that storage variation, spatial trends in forcing, and cell proximity 

factors control RDHM’s behavior. Yilmaz et al., (2008) evaluated HLRDHM at the 

watershed outlet and showed that diagnostic evaluation has the potential to provide a 

powerful and intuitive basis for deriving consistent estimates of the parameters. van 

Werkhoven (2008) used HLRDHM and demonstrated that the information content of 

streamflow is a dynamic property and that distributed model identification methodologies 

should consider the impact of spatiotemporal rainfall dynamics. Lee et al., (2011) 

assimilated streamflow observations and in-situ soil moisture data into HLRDHM to 

improve streamflow prediction. Fares et al., (2014) evaluated HLRDHM in a tropical 

watershed. They demonstrated that the streamflow prediction improved with finer 

resolution of input data and that HLRDHM is applicable for flood forecasting in tropical 

watersheds. Rafieeinasab et al., (2015a) successfully applied HLRDHM to five urban 

catchments, ranging in size from 3.4 to 54.6 km2, and assessed the sensitivity of 
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streamflow simulation to hydrologic modeling. Koren et al., (2008) used the soil moisture 

observation and improved parameter consistency of HL-RDHM. In addition to the 

research applications, HLRDHM is operational at 13 NWS River Forecast Centers 

(RFCs) to provide daily stage forecasts at over 4,000 points.  

HL-RDHM is a grid-based model with a default spatial resolution of 4 km × 4 km, 

which corresponds to the grid of the Hydrologic Rainfall Analysis Project (HRAP, Greene 

and Hudlow 1982). HL-RDHM uses the Sacramento soil moisture accounting model 

(SAC, Burnash et al., 1973) with heat transfer, or SAC-HT (Koren et al., 2014) for soil 

moisture accounting (i.e., rainfall-runoff), and kinematic-wave routing (Koren et al., 2004) 

for channel and hillslope routing.  

SAC-HT is an extension of the Sacramento Soil Moisture Accounting (SAC-SMA) 

model, and uses the conceptual water storages at a soil column and converts them to soil 

moisture states via a physically-based heat-moisture transfer model (Koren et al., 1999). 

Since SAC-HT and SAC-SMA have the same structure with two additional parameters; 

the parameters of SAC-SMA are valid for SAC-HT (Table  7-1, Anderson et al., 2006; 

Koren et al., 2008).  

SAC-SMA is a lumped conceptual rainfall-runoff model of a soil column. SAC-

SMA divides a soil column into two distinct layers (i.e. upper zone and lower zone), and 

each layer consists of free water and tension water storages. Free water storage is that 

volume of water which can move laterally and/or horizontally in the soil column due to 

gravity, and the tension water storage is that amount of water bound to soil particles that 

can be removed only by evaporation or evapotranspiration. The free water storage in the 

lower zone is partitioned into primary free water storage and supplemental free water 

storage, enabling simulation of the baseflow recessions observed in nature. The primary 
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free water storage provides baseflow over a long period of time, and the supplemental 

free water storage supplements the baseflow during and after a rainfall event.  

 
Table  7-1 SAC-HT model parameters, units and their description 

Parameters Units Description 

UZTWM mm Upper Zone Tension Water Maximum storage 

UZFWM mm Upper Zone Free Water Maximum storage 

LZTWM mm Lower Zone Tension Water Maximum storage 

LZFSM mm Lower Zone Free water Supplementary Maximum storage 

LZFPM mm Lower Zone Free water Primary Maximum storage 

UZK day-1 Upper zone free water withdrawal rate 

LZSK day-1 Lower Zone Supplementary withdrawal rate 

LZPK day-1 Lower Zone Primary withdrawal rate 

ZPERC  Maximum percolation rate under dry condition 

REXP  Percolation equation exponent 

PFREE % percent going directly to lower zone free water 

PCTIM % % permanent impervious area 

ADIMP % % area contributing as impervious when saturated 

RIVA % % area affected by riparian vegetarian, streams and lakes 

SIDE % Ratio of deep percolation from lower layer free water storages 

RSERV % Fraction of lower layer free water not transferable to lower layer 

TBOT °C Climatological annual air temperature 

STXT  Soil texture of the upper layer 

 
In SAC-SMA, partitioning of rainfall into runoff is determined by the upper zone 

storages and the percolation potential of the lower zone storage. Once the upper zone 

tension water is filled, the runoff generation process is controlled by the available water in 

the upper zone free water storage and the deficiency of water in the lower zone free and 

tension water storages. Free water storage in both the lower and upper zones can 

produce runoff, using upper zone and lower zone depletion coefficients. The available 
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water storage in the soil column will then be converted to the soil moisture states of SAC-

HT via the basic heat transfer model (Koren 1999): 

ܿሺߠ, ௖ሻߠ
డ்

డ௧
ൌ ௗ

ௗ௭
ቂܭሺߠ, ௜௖௘ሻߠ

డ்

డ௭
ቃ ൅ ܮߩ డఏ೔೎೐

డ௧
     ( 7-1) 

where c is the volumetric heat capacity, T is soil temperature, K is the thermal 

conductivity of soil, θ is the volumetric soil moisture content, θice is the volumetric ice 

content, ρ is the density of water, z is depth, and t is time. SAC-HT uses the soil texture 

of the upper layer and the climatological annual air temperature parameters.  

 
7.1.1 Derivation of 11 a priori SAC-SMA parameters at higher resolution 

Koren et al., (2000 and 2003) developed a set of relationships to derive 11 a 

priori SAC parameters (highlighted in Table  7-1) from soil properties (i.e. saturated 

moisture content, field capacity, wilting point, saturated hydraulic conductivity, and 

specific yield) and land cover and land cover data. They used the State Soil Geographic 

Database (STATSGO, Miller and White 1998) and assumed uniform land use and land 

cover for the derivation of the 11 a priori SAC parameters. STATSGO is a Geographic 

Information System (GIS)-based soil property dataset with the resolution of 1:250,000. 

Anderson et al., (2006) improved the SAC-SMA a priori parameter estimates by using a 

finer-scale database of soil data, the SSURGO database, and a high-resolution land 

cover and land use database, NLCD. The SSURGO-based and the STASGO-based 

gridded a priori model parameters used in 63 basins across the United States, range 

from 30 km2 to 5224 km2 to simulate the streamflow and soil moisture (Zhang et al., 

2012). Results showed that use of the SSURGO-based parameters can improve soil 

moisture and streamflow simulations more than the use of STATSGO-based parameters. 

The Hydrology Laboratory of the NWS office of Hydrologic Development (NWS/OHD) 

developed an automated approach for deriving gridded a priori SAC-SMA parameters 
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from SSURGO and NLCD datasets based on Koren et al. (2000 and 2003) and Anderson 

et al., (2006) a priori SAC parameters derivation (Zhang et al., 2011).  

The spatial resolution of the gridded a priori SAC-SMA parameters, available for 

the continental US from NWS/OHD, are on the HRAP grid (i.e. 4 km × 4 km, Koren et al., 

2000; Anderson et al., 2006; Zhang et al., 2011; and Zhang et al., 2012). Within a large 

urban area such as the DFW area, the spatial variability of imperviousness may vary 

greatly; consequently, it is expected that the available a priori SAC parameters at the 

resolution of 4 km × 4 km cannot sufficiently represent the variation of the 

imperviousness, and hence the variability of resulting runoff. Moreover, the available a 

priori SAC parameters from the NWS/OHD cannot reflect the land cover and land use 

changes over the years. In order to take into account the variations of the land cover and 

land use changes over the years in the a priori SAC parameters, the automated 

NWS/OHD model of the a priori SAC-SMA parameters derivation was modified, and the 

11 a priori SAC parameters at 1, 1/2, 1/4, 1/8, and 1/16 HRAP resolutions were derived. 

The NLCD 2001, NLCD 2006, and NLCD 2011 were processed along with the SSURGO 

data, and the a priori SAC parameters were derived. It should be noted that with the 

derivation of a priori SAC parameters at higher resolutions, the impact of finer-scale soil 

properties on the a priori SAC parameters is also considered. Figure  7-1 toFigure  7-3 

shows the variation of the Upper Zone Free Water Maximum within the study area, 

derived from SSURGO and NLCDs of 2001, 2006 and 2011. The upper bound of 1/16 

HRAP is based on extensive visual examination of the land cover images in various parts 

of the DFW. It was observed that most large features associated with imperviousness 

may be resolved on a 1/16HRAP grid (Rafieeinasab et al., 2015a).  
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Figure  7-1 UZFWM map within the study area at full HRAP (a), at 1/2HRAP (b), at 

1/4HRAP (c) and at 1/8HRAP (d) resolutions, derived from SSURGO and NLCD 2001 

 

 

Figure  7-2 UZFWM map within the study area at full HRAP (a), at 1/2HRAP (b), at 

1/4HRAP (c) and at 1/8HRAP (d) resolutions, derived from SSURGO and NLCD 2006 
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Figure  7-3 UZFWM map within the study area at full HRAP (a), at 1/2HRAP (b), at 

1/4HRAP (c) and at 1/8HRAP (d) resolutions, derived from SSURGO and NLCD 2011 

 

7.1.2 Derivation of permanent impervious area (PCTIM) 

The Permanent Impervious Area (PCTIM) was derived at higher resolutions 

corresponding to the resolutions of the derived a priori SAC parameters. (PCTIM in SAC 

refers to areas in the watershed that are impervious and are directly connected to the 

channel system; HL-RDH Manual 2012.) Four different sources of land use and land 

cover datasets (i.e. NLCD 2001, NLCD 2006, NLCD 2011 and GIS layers) were used. 

GIS layers, obtained from the Cities of Fort Worth, Arlington, Grand Prairie, and Dallas, 

TX, represent the impervious area within the city boundaries; however, NLCDs covered 

the areas where the impervious GIS layers were not available. All available layers were 

combined, and the percent of impervious cover, defined as the percentage of the 

impervious area within a grid box, was calculated for each pixel, ranging from 1/16 HRAP 

(~250 m) to 1/2 HRAP (~2 km). Because the GIS layers used in this work do not account 

for all the sources of imperviousness, the calculated PCTIM from this source is likely to 
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be an underestimate. Figure  7-4 shows the PCTIM maps within the study area at 

1/16HRAP resolution from different available sources of land cover and land use 

datasets.  

 

 

Figure  7-4 PCTIM map within the study area at 1/16HRAP resolution, derived from GIS 

layers (a), NLCD2001 (b), NLCD2006 (c) and NLCD 2011 (d) 

 
Hillslope and channel routing in HLRDHM is performed using kinematic-wave 

routing (Chow et al., 1988; Koren et al., 2004). HLRDHM routes runoff through the 

natural channels identifiable from the digital elevation model (DEM) by the Cell Outlet 

Tracing with an Area Threshold (COTAT) algorithm (Reed, 2003).Within each cell, fast 

runoff is first routed over conceptual hillslopes, and then the combination of channel 

inflow from hillslope routing, slow (i.e. subsurface or ground) runoff, and inflow from 

upstream cells is routed via channel routing (Koren et al., 2004). A conceptual hillslope 

consists of multiple uniform hillslopes, the number of which depends on the stream 
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channel density specified for the cell. The conceptual channel that transfers water from 

one cell to another usually represents the highest order stream in the cell selected. The 

cell-to-cell connectivity is used to transfer water from upstream to downstream cells and 

to the basin outlets. For hillslope routing, discharge per unit area of hillslope (qh) was 

given by (Koren et al., 2004): 

        ( 7-2) 

where kq denotes the unit transformation coefficient, D denotes the stream channel 

density in km-1, Sh denotes the hillslope slope, nh denotes the hillslope roughness 

coefficient, and h denotes the average depth of water on the hillslope. For channel 

routing, the discharge for each cell, Qc, is a power function of the wetted cross sectional 

area, A: 

ܳ௖ ൌ  ௤೘         (7-3)ܣ௢ݍ

where q0 denotes the specific discharge, i.e., discharge per unit channel cross section 

area, and qm denotes the exponent in the power-law relationship. The specific discharge 

may be evaluated if A and Qc are known. Mean annual flow may be derived from the 

mean average annual runoff data over the continental US available from the United 

States Geological Survey (USGS, Slack and Landwehr 1992). The wetted channel cross 

section, A, may be obtained from A=Q/V where V denotes the mean velocity, which may 

be evaluated using the empirical equation developed by Jobson (1996): 

ܸ ൌ 0.094 ൅ 0.0143 ቀ
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where Da denotes the upstream drainage area calculated by using the flow direction and 

cell size grids, g denotes the gravitational acceleration, and S denotes the channel slope. 

The two kinematic-wave channel routing parameters, q0 and qm, were derived by using 

3/52 h
n

S
Dkq

h

h
qh 
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the above relationships and the National Elevation Dataset (NED) with 30 meter 

resolution from the NHDPlus Version 2 dataset (David et al., 2014).  

 
7.2 Hydraulic model 

Streamflow observations are necessary for calibration and validation of 

hydrologic models used for flash flood forecasting in urban areas. Streamflow at a cross-

section is typically estimated using the stage-discharge relationship or rating curve, 

describing the relationship between the observed streamflows and the corresponding 

water levels. Based on the definition, the rating curve consists of long historical-paired 

measurements of stage and discharge and a fitted curve to the stage-discharge data 

(Rantz, 1982a, 1982b, Kean and Smith 2010). Streamflow measurement is more time 

consuming and expensive than water level measurement, particularly in urban 

watersheds, where the streamflow changes rapidly in rainfall conditions (Garth et al., 

2011 and Nathanson et al., 2012). While water levels are observed in many urban 

streams, estimation of streamflow from them is impossible due to the lack of a stage-

discharge relationship.  

There are different indirect methods for developing the rating curve and 

estimating streamflow from the recorded observed water levels. The most widely-used 

methods to estimate the streamflow when the direct flow measurement is not available 

are the Manning equation and step-backward models, for instance Hydrologic 

Engineering Centers River Analysis System (HEC-RAS, Rantz, 1982b, Brunner 2010). 

These methods are less accurate than the direct streamflow measurements, because 

they are subjected to the uncertainties due to the estimation of the empirical roughness 

coefficient (Kim et al., 1995; Lopez et al., 2007).  
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Kean and Smith (2004, 2005, 2010) proposed a fluid mechanically-based model 

to derive the stage-discharge relationship. The proposed model determines the channel 

roughness from field measurements of channel geometry and dominant bed materials. 

The approach is applicable to geomorphically stable channels and consists of two parts: 

1) procedures for quantifying various contributions to the total flow resistance in the 

channel and 2) a flow model that incorporates the results from the above procedures. 

The technique models streamflow in a channel reach by solving the Saint-Venant 

equation (Chow et al., 1988) for steady non-uniform flow in one dimension. The mass 

and momentum balance equations are given by (Kean and Smith 2005): 

ப୕

ப୶
ൌ 0          ( 7-5) 
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where Q denotes the channel flow, x denotes the direction of flow, ሺݑଶሻ௔௩ denotes the 

square of the downstream velocity averaged over the cross section,ሺτୠሻୟ୴ denotes the 

perimeter-averaged shear stress (N/m2), E denotes the elevation of the water surface 

(m), and R denotes the hydraulic radius (m).The physical roughness of the channel bed 

is related to the particle size of the bed material via zo=0.1D84 (m), where D84 denotes the 

84th percentile of the grain size distribution. The channel roughness is estimated from the 

channel geometry, the physical roughness of the channel bed, banks, and floodplain, and 

the vegetation density on the banks and floodplain. Using the Kean and Smith approach 

to derive the rating curve requires channel and floodplain cross-section data, which can 

be time intensive and laborious to obtain. High-resolution airborne light detection and 

ranging (LiDAR) data has been proposed as an alternate to prescribe the fixed boundary 

conditions (Garth et al., 2011; Nathanson et al., 2012).  
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The Kean and Smith approach was applied to five locations within the study area 

and derived the stage-discharge relation for them. The five selected locations are located 

at the outlet of the catchments, ranging from 54.6 km2 to 3.4 km2 (Figure  7-5). Water level 

observations were available every 15 minutes from the pressure transducer-type water 

level sensor.  

 

Figure  7-5 Selected locations for the rating curve derivation 

 
The historical water level time series were visually examined at the five locations 

selected for rating curve derivation. Figure  7-6 shows the water level time series at the 

outlet of Cottonwood Creek at Carrier (6363).  
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Figure  7-6 Water level time series (01/01/2013-12/18/2013) at the outlet of Cottonwood 

Creek catchment (6363), Grand Prairie, TX 

 
7.2.1 Channel Geometry 

High-resolution (0.7 m) LiDAR data was used to delineate the channel geometry 

of the stream and derive the channel cross sections at the locations of interest 

(Figure  7-7). The derived channel cross sections were transferred to the river flow and 

riverbed variation analysis solver, Flow and Sediment Transport with Morphological 

Evolution of Channels (FastMECH, Nelson and McDonald 1996, Nelson et al., 2003), to 

construct a mesh (Figure  7-8). The resulting mesh was then used to calculate the bed 

slope of the channel, the velocity field for a given cross section, stage, and water surface 

slope using the ray-isovel approach of Kean and Smith (2004).  

 
Table  7-2 Datum, length of the reach, bed slope and the number of mesh in longitudinal 

and traverse direction at each location 

Location Datum (m) 
Length 

(m) 

Bed slope 

(m/m) 

Number of mesh 

Longitudinal Traverse 

6033 147.4 250 0.0008 463 113 

6043 147.73 130 0.0024 271 141 

6103 134.0 130 0.0031 121 101 

6133 140.3 220 0.0024 355 251 

6363 144.75 180 0.0008 370 200 
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Figure  7-7 Plan view of the channels at 6033(a), 6043 (b), 6103 (c), 6133 (d) and 6363 

(e) derived from high-resolution LIDAR data 
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Figure  7-8 Generated mesh using the Flow and Sediment Transport with Morphological 

Evolution of Channels (FastMECH) at (a) 6033, (b) 6043, (c) 6103, (d), 6133, and (e) 

6363 
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7.2.2 Relative bed roughness 

The grain size distribution of channel beds was obtained from the Cities of Grand 

Prairie and Fort Worth to determine D84 and the relative bed roughness, zo (Table  5-1). 

The physical bed roughness (D84) was used for estimation of the relative bed roughness 

at the locations of interest.  

 
7.3 Stage-discharge relation 

7.3.1 Rating curve estimation at the outlet of five selected catchment areas 

The stage-discharge relationships at the water level sensor locations were 

derived by solving Eqs.7-5 and 7-6. Given the prescribed downstream water level, Eq. 7-

6 was solved iteratively to estimate the flow. This procedure was repeated over the 

desired range of water level. It was noted that all available grain size distributions were 

used for the stage-discharge relation derivation at each location. Figure  7-9 shows the 

derived rating curves at 6363 (Figure  7-5), using all available grain size distributions.  

 

 

Figure  7-9 Estimated stage-discharge relation at 6363 using different relative bed 

roughness ranging from 1.00 to 6.00 mm 
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7.3.2 Evaluation of estimated rating curves 

Due to the lack of observed streamflow, the derived rating curves were evaluated 

by the empirical rating curves derived from the observed stage vs. the HL-RDHM-

simulated flow. Streamflow was simulated using the MPE estimates at 1/8-HRAP and 15-

min resolution, in which the 1-HRAP 1-hr MPE estimates were uniformly disaggregated 

onto the 1/8-HRAP grid and into 15-min subintervals. The 15-min subinterval 

corresponded to the sampling interval of stage observations. The following stage-

discharge relationship (Herschy 1993) was then fitted: 

ܳ ൌ ܿ	ሺ݄ ൅ ܽሻ௡         ( 7-7) 

where Q denotes the discharge (m3/s), h denotes the stage (m), c and n denote the 

parameters to be estimated, and a denotes the stage (m) at zero flow. The datum 

correction, a, represents the stage corresponding to zero discharge. To minimize the 

effects of resolution-dependent timing errors in estimating the parameters in Eq. 7-7), 

only the marginal statistics of mean, variance and maximum flow in the curve fitting were 

considered. The two independently-derived rating curves showed good agreement at all 

locations (Figure  7-10 toFigure  7-14), which provides confidence that the fluid 

mechanically-derived rating curves may be used for validation, calibration and real-time 

assimilation.  
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Figure  7-10 Rating curves derived via the Kean and Smith method and HLRDHM at 6033 

 

 

Figure  7-11 Rating curves derived via the Kean and Smith method and HLRDHM at 6043 
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Figure  7-12 Rating curves derived via the Kean and Smith method and HLRDHM at 6103 

 

 

Figure  7-13 Rating curves derived via the Kean and Smith method and HLRDHM at 6133 
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Figure  7-14 Rating curves derived via the Kean and Smith method and HLRDHM at 6363 
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Chapter 8 Evaluation of high-resolution hydrologic modeling 

 
In this chapter, the sensitivity of simulated streamflow and soil moisture to the 

spatial resolution of a priori model parameters and rainfall input is assessed. Streamflow 

and soil moisture simulations were carried out based on Table  4-1. For the assessment, 

mean square error (MSE) decomposition was used. 

MSE can be decomposed in three terms as follows (Murphy and Winkler 1987; 

Nelson et al. 2010): 

ܧܵܯ ൌ ∑ ሺ ௡݂ െ
ே
௜ୀଵ ௡ሻଶ݋ ൌ ሺ݉௙ െ ݉௢ሻଶ ൅ ሺߪ௙ െ ௢ሻଶߪ ൅ ௢ሺ1ߪ௙ߪ2 െ  ሻ   ( 8-1)ߩ

where ௡݂ and ݋௡ denote the n-th forecast and verifying observation, respectively; 

N denotes the number of pairs of forecast and verifying observation;	݉௙ and ݉௢ denote 

the mean of forecast and that of verifying observation, respectively; ߪ௙ and ߪ௢ denote the 

standard deviation of forecast and that of verifying observation, respectively; and ߩ 

denotes the correlation between the forecast and the verifying observation. 

For evaluation of the streamflow simulations, the streamflow observations, 

obtained from water level measurements via estimated rating curves, were used. The 

water level data for 2015 area was available from 10/09/2015. To quality control the data, 

the time series of all water level observations from 10/9/2015 to 12/31/2015 were visually 

examined, and two locations in Arlington and Grand Prairie (6043 and 6363, Figure  7-5) 

were selected. For evaluation of the soil moisture simulations, the soil moisture 

observations obtained from the CELB, Bridge, and Cemetery locations (Figure  6-4) were 

used.  

 
8.1 Sensitivity analysis of simulated streamflow  

Figure  8-1 toFigure  8-4 show the MSE decomposition of CASA- and MPE-forced 

simulations at 6043 and 6363. Comparisons between MSE decomposition of CASA-



 

103 
 

forced and MPE-forced simulations at 6043 and 6363 showed, using of CASA QPE 

improved the streamflow simulation at all resolutions of rainfall input and model 

parameters. However, the results did not show a clear relationship between the 

simulation accuracy and the resolutions of rainfall input and model parameters. This was 

due to the errors in QPEs and hydrologic models (rainfall-runoff routing), to which small 

catchments are susceptible. For simulations using CASA-forced rainfall input and model 

parameters, biases in mean and standard deviation are generally smaller for 1/16 HRAP 

resolution than for those of other resolutions (Figure  8-1 and Figure  8-2). However the 

strength of covariation did not change significantly for different resolutions.  

Streamflow simulations forced by MPE showed larger sensitivity to the resolution 

of the rainfall input than to the model parameters. Given the small size of 6043 and 6363 

(3.4 and 14.4 km2, respectively), this may be due to the variations in catchment 

delineation. Among MPE-forced simulations, the 1/16 HRAP resolution showed slightly 

smaller biases in mean and standard deviation and lower strength of covariation than 

those of the other resolutions, except at the resolution of 1/8HRAP for catchment 6363.  
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Figure  8-1 MSE decomposition of CASA-forced streamflow simulation at 6043 
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Figure  8-2 MSE decomposition of MPE-forced streamflow simulation at 6043 
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Figure  8-3 MSE decomposition of CASA-forced streamflow simulation at 6363 
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Figure  8-4 MSE decomposition of MPE-forced streamflow simulation at 6363 
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Comparison of the time series of CASA-forced and MPE-forced streamflow 

simulations with the streamflow observations showed that there was a significant 

difference between the MPE-forced simulation and streamflow observations for the first 

rainfall event within the evaluation period (Oct. 22, 2015, see Appendix B). This may be 

due to the long dry period prior to the rainfall event. Based on MPE-forced simulation, the 

soil reached the saturated condition much faster than the CASA-forced simulation 

(Figure  8-5). The figure also shows that the soil became saturated within a few hours 

after the rain began. While based on CASA-forced simulation, the soil reached the 

saturated condition after nearly one day, when the rainfall was lighter. For other rainfall 

events, due to the soil moisture condition, the observed and simulated streamflows were 

in better agreement.  

 
Figure  8-5 Spatially-averaged soil moisture content in 6363  

 
8.2 Sensitivity analysis of simulated soil moisture 

Figure  8-6 toFigure  8-11 show the MSE decomposition of CASA-forced and 

MPE-forced soil moisture simulations at Bridge, CELB, and Cemetery locations at the 
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depth of 5 cm. The MPE-forced simulation shows smaller biases in mean and standard 

deviation and lower strength of covariation than the CASA-forced simulation at all three 

locations. The simulated soil moisture did not improve with an increase in the a priori 

model parameters and rainfall input; therefore, no clear relationship was seen between 

simulation accuracy and the resolutions. SAC-HT, in general, was not able to simulate 

the soil moisture with accuracy, which may be due to errors in QPEs, model physics, 

and/or lack of soil information.  

Figure  8-6 and Figure  8-7 show that MSE decomposition for rainfall resolution of 

1/2HRAP is larger than the MSE decomposition of rainfall resolution at 1/4, 1/8 and 1/16 

HRAP resolution at the Bridge location. The main reason is presumably due to a large 

difference between the percentage of impervious area at 1/2HRAP resolution and the 

percentage of impervious areas at 1/4, 1/8 and 1/16 HRAP resolutions at this location. 

Based on the impervious cover maps of 1/2, 1/4, 1/8 and 1/16 HRAP resolutions, the 

PCTIMs are 42%, 56%, 57% and 70%, respectively.  
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Figure  8-6 MSE decomposition of CASA-forced soil moisture simulation at Bridge 

location at D = 5 cm 
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Figure  8-7 MSE decomposition of MPE-forced soil moisture simulation at Bridge location 

at D = 5 cm 
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Figure  8-8 MSE decomposition of CASA-forced soil moisture simulation at CELB location 

at D = 5 cm 
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Figure  8-9 MSE decomposition of MPE-forced soil moisture simulation at CELB location 

at D = 5 cm 
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Figure  8-10 MSE decomposition of CASA-forced soil moisture simulation at Cemetery 

location at D = 5 cm 
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Figure  8-11 MSE decomposition of MPE-forced soil moisture simulation at Cemetery 

location at D = 5 cm 
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Chapter 9 Impact of land cover changes on streamflow response 

 
Three sets of a priori SAC parameters, derived from SSURGO data and 

NLCD2001, NLCD2006 and NLCD2011 at 1/16HRAP resolution, were used for the 

streamflow simulation of the modeling domain to investigate the impact of land cover 

changes on streamflow simulation. Using MPE-forced rainfall, the simulated streamflow 

was analyzed for the five urban catchments (Figure  7-5).  

The rainfall events of 2015 were isolated, and the corresponding flood 

hydrograph was extracted for each rainfall event. Three measures, percentage of relative 

difference of simulated peak flow (PRDP); percentage of relative difference of simulated 

runoff volume (PRDV); and percentage of difference of time-to-peak relative to the time-

to-peak of the catchment (PRDT) as a function of total rainfall were considered for the 

assessments. The percentage of relative difference of simulated peak flow, runoff 

volume, and time-to-peak are given by: 

ܲܦܴܲ ൌ
௉௘௔௞	௙௟௢௪೔శభି௉௘௔௞	௙௟௢௪೔

௉௘௔௞	௙௟௢௪೔శభ
ൈ 100      ( 9-1) 

ܸܦܴܲ ൌ ௏௢௟௨௠௘	௙௟௢௪೔శభି௏௢௟௨௠௘	௢௙	௙௟௢௪೔

௏௢௟௨௠௘	௢௙	௙௟௢௪೔శభ
ൈ 100    ( 9-2) 

ܶܦܴܲ ൌ ௧௜௠௘ି௧௢ି௣௘௔௞೔ି௧௜௠௘ି௧௢ି௣௘௔௞೔శభ
௧௜௠௘ି௧௢ି௣௘௔௞

ൈ 100    ( 9-3) 

where i represents the year for which the a priori SAC parameters are available. 

Land cover changes from 2001 to 2011 at these five catchments were analyzed 

prior to assessing the impact of land cover changes on the simulated streamflow.  

 
9.1 Analysis of the PCTIM maps at five subcatchment areas in the modeling domain 

Examination of the 1/16HRAP resolution (Figure  9-1) at the five catchment 

locations showed that the fractional impervious area varied between 0.5% and 98%. 
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Analysis of the percentage of impervious areas for each catchment was carried out by 

using empirical cumulative distribution functions (ECDF) of the percent of impervious 

areas at each catchment (Figure  9-2 toFigure  9-6).  

 

 

Figure  9-1 Percent of impervious area at five catchment areas within the modeling 

domain based on NLCD2001 (a), NLCD2006 (b) and NLCD2011 (c) 
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Figure  9-2 shows that the percent of impervious area varied between 20% to 

80% percent at this catchment. The land cover changed more between 2006 and 2011 

than between 2001 and 2006. Also the figure shows that the land cover changes 

between 2006 and 2011 was larger than land cover changes from 2001 to 2006. 

Figure  9-1 shows that significant land cover changes at 6033 occurred close to the outlet, 

after construction of a sport complex and its parking lots. The land cover changes 

reached 60 percent at this location.  

 

 
 

Figure  9-2 Empirical cumulative probability distribution function (ECDF) of impervious 

fractions in 6033 
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Catchment 6043 is the smallest and most impervious catchment of the selected 

catchments. Figure  9-3 shows that the land cover did not change significantly from 2001 

to 2011 at 6043, because ECDFs based on NLCD2001 and NLCD 2011 are close to one 

another. The largest difference between ECDFs of 2001 and 2011, which is between 60 

to 85 percent (Figure  9-3), occurred close to the outlet (Figure  9-1). 

 

 
 

Figure  9-3 Empirical cumulative probability distribution function (ECDF) of impervious 

fractions in 6043 

 
The spatially-averaged impervious fractions, based on NLCD 2001, NLCD 2006, 

and NLCD 2011 for 6103, are 40.21%, 41.97%, and 45.58%, respectively, showing 

11.8% land cover changes from 2001 to 2011. Figure  9-4 shows that the largest 

difference between land covers of 2001 and 2011 occurred between 0 to 60 percent at 
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6103, and smaller land cover changes can be seen between 60 to 80 percent. Figure  9-1 

shows that most of changes occurred in the midstream and downstream of the 

catchment.  

 
 

Figure  9-4 Empirical cumulative probability distribution function (ECDF) of impervious 

fractions in 6103 

 
Catchment 6133, with 54.6 km2, is the largest of the selected catchments. The 

spatially-averaged impervious area in this catchment based on NLCD 2001, NLCD 2006, 

and NLCD 2011 are 32.9, 35.2 and 38.4 percent respectively. The land cover changes 

from 2001 to 2011 at 6133 were 16.7%. Figure  9-6 shows that the largest land cover 

changes occurred between 0 to 60 percent, and smaller land cover changes occurred 

between 60 to 78 percent, approximately.  



 

121 
 

 

 
 

Figure  9-5 Empirical cumulative probability distribution function (ECDF) of impervious 

fractions in 6133 

 
The spatially-averaged impervious areas at 6363 from NLCD 2001, NLCD 2006, 

and NLCD 2011 are 42.85%, 44.76%, and 47.29%, respectively, showing 10.36% land 

cover changes from 2001 to 2011. Figure  9-6 shows that the largest land cover changes 

occurred between 10 to 60 percent, and smaller land cover changes occurred between 

60 to 78 percent, approximately. Also Figure  9-6 shows that increasing the impervious 

fraction between 25 to 30 percent from 2001 to 2006 were larger than that of 2006 and 

2011.  
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Figure  9-6 Empirical cumulative probability distribution function (ECDF) of impervious 

fractions in 6363 

 
9.2 Impact of land cover changes on peak flow 

After completing the streamflow simulation, by using a priori SAC parameters of 

2001, 2006, and 2011, the rainfall events of 2015 were isolated and the corresponding 

flood hydrographs in the selected catchments were extracted. Time-to-peak, runoff 

volume, and peak flow of the flood hydrographs were then estimated. The number of 

rainfall events and flood hydrographs at 6033, 6043, 6103, 6133, and 6363 were 38, 43, 

41, 40, and 41, respectively.  

The impact of land cover changes on peak flow showed approximately the same 

pattern, but with different magnitudes in five urban catchments (Figure  9-7 toFigure  9-11). 
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The results showed that the impact of land cover changes on peak flow at 6103 and 6133 

was greater than the impact of land cover changes on peak flow at 6033, 6043 and 6363. 

This is due to the significant land cover changes from 2001 to 2011 at 6103and 6133. 

The relative difference of peak flow between 2001 and 2011 for rainfall depths greater 

than 100 mm in five urban catchments was close to zero, indicating that the pervious 

areas in these catchments, for rainfall events greater than 100 mm, saturated and 

performed as impervious areas. Therefore, there was no significant difference between 

peak flows of simulated streamflow based on NLCD 2001, NLCD 2006, and NLCD 2011 

for rainfall events greater than 100 mm.  

Figure  9-7 shows the percent of relative difference of peak flow in 6033. The 

figure shows that the percent of relative difference between peak flows of 2001 and 2006 

is greater than that of 2006 and 2011, which may due to the land cover changes at a 

limited area in 6033. While the land cover changes from 2001 to 2006 is more scattered.  
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Figure  9-7 (a) Percent of Relative Difference of Peak flow (PRDP) of 2006 and 2001, (b) 

PRDP of 2011 and 2006, and (c) PRDP of 2011 and 2001 at 6033 

 
Figure  9-8 shows the percent of relative difference of peak flow at 6043. The 

figure shows that there is no significant difference between PRDP of 2001 and 2006 and 

PRDP of 2006 and 2011, due to small land cover changes between these years. 

Figure  9-8c shows that the peak flows of 2001 are not significantly different with the peak 

flows of 2011, except in a rainfall events, in which the relative difference between peak 

flow of 2001 and 2011 is not more than 15 percent.  
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Figure  9-8 (a) Percent of Relative Difference of Peak flow (PRDP) of 2006 and 2001, (b) 

PRDP of 2011 and 2006, and (c) PRDP of 2011 and 2001 at 6043 

 
Figure  9-9 shows that there is a small difference between the percent of relative 

difference of peak flow of 2001 and 2006 and that of 2006 and 2011, which may be due 

to the similar land cover changes between 2001 and 2006 and 2006 and 2011 

(Figure  9-4). Figure  9-9c shows significant changes between peak flows of 2001 and 

2011, which is due to the significant land cover changes between 2001 and 2011 at 

6103.  
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Figure  9-9 (a) Percent of Relative Difference of Peak flow (PRDP) of 2006 and 2001, (b) 

PRDP of 2011 and 2006, and (c) PRDP of 2011 and 2001at 6103 

 
Significant differences between land cover changes from 2001 and 2011 led to 

significant changes in peak flows from 2001 to 2011 for rainfall events less than 100 mm 

(Figure  9-10). Also the figure shows that for rainfall events greater than 100 mm the 

percent of relative difference of peak flow is close to zero, except for one rainfall event.  
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Figure  9-10 (a) Percent of Relative Difference of Peak flow (PRDP) of 2006 and 2001, (b) 

PRDP of 2011 and 2006, and (c) PRDP of 2011 and 2001at 6133 

 
Figure  9-11 shows that the percent of relative difference of peak flows between 

2001 and 2006 is greater than that of 2006 and 2011 at 6363, which may be due to the 

larger difference between percent of impervious area of 2001 and 2006 and 2006 and 

2011 between 0 to 35 percent (Figure  9-6). Also Figure  9-11 shows that the relative 

difference of peak flow for rainfall events greater than 100 mm is close to zero.  
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Figure  9-11 (a) Percent of Relative Difference of Peak flow (PRDP) of 2006 and 2001, (b) 

PRDP of 2011 and 2006, and (c) PRDP of 2011 and 2001 at 6363 

 
As mentioned earlier, the impact of land cover changes on those peak flows 

associated with rainfall events greater than 100 mm in five urban catchments was close 

to zero. However the rainfall event in 6133 was an exception. This rainfall event occurred 

from Oct. 22, 2015 to Oct. 26, 2015. The total rainfall based on MPE data was greater 

than 200 mm, and the relative difference between peak flows of 2001 and 2011 was 

approximately 35%. This may be due to significant increasing of impervious area, or 

decreasing pervious area, from 2001 to 2011 at 6133. Comparing the spatially-averaged 

soil moisture content, simulated based on NLCD 2001 and NLCD 2011 at depths of 0.05 
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and 0.25 m, showed that prior to the rainfall event, the soil moisture was 0.28. After the 

rain began, the soil moisture, based on NLCD 2011, reached the saturated condition at 

the depth of 0.05 m faster than that based on NLCD 2001 (Figure  9-12). Based on the 

soil texture maps used by SAC-HT, soil texture at 6133 is clay, and its saturated soil 

moisture content is 46 percent. This makes a significant difference between peak flows of 

2001 and 2011 for the Oct. 22, 2015 rainfall event (Figure  9-13).  

 
Figure  9-12 Spatially-averaged soil moisture content at 6133 due to Oct. 22, 2015 rainfall 

event at depths of 0.05 and 0.25 m 
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Figure  9-13 Simulated streamflow due to at 6133 Oct. 22, 2015 rainfall event  

 
For the same rainfall event in other catchments (i.e. 6033, 6043, 6103 and 6363), 

there was no significant difference between peak flow of 2001 and 2011, due to the soil 

moisture content at these catchments.  

 
Figure  9-14 Spatially-averaged soil moisture content at 6033 due to Oct. 22, 2015 rainfall 

event at depths of 0.05 and 0.25 m 

~35%
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Figure  9-14 shows the spatially-averaged soil moisture content at 6033 due to 

Oct. 22, 2015 rainfall events at depths of 0.05 and 0.25 m. Based on the soil moisture 

texture, used by SAC-HT, catchment 6033 located on sandy loam with the saturated soil 

moisture of 42 percent. Although, the soil moisture content based on NLCD 2011 

reached to saturated condition faster than that of based on NLCD 2001, the difference 

between them, particularly at the beginning of the rainfall is not significant. Also the figure 

shows that the soil moisture content at the depth of 0.25 m did not reach to the fully 

saturated condition. Therefore, the difference between peak flow based on NLCD 2001 

and peak flow based on NLCD 2011 is 7 percent (Figure  9-15).  

 
Figure  9-15 Simulated streamflow due to at 6033 Oct. 22, 2015 rainfall event 

 
Figure  9-16 shows the spatially-averaged soil moisture content at 6043 due to 

Oct. 22, 2015 rainfall events at depths of 0.05 and 0.25 m. Based on the soil moisture 

texture, used by SAC-HT, catchment 6033 located on clay with the saturated soil 

moisture of 46 percent. At this location, soil moisture content based on NLCD 2011 

reached to the saturated condition faster than that of based on NLCD 2001; however due 

to the small length of the stream and also small size of the catchment, the difference 

between peak flows of 2001 and 2011 is minor (Figure  9-17).  
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Figure  9-16 Spatially-averaged soil moisture content at 6043 due to Oct. 22, 2015 rainfall 

event at depths of 0.05 and 0.25 m 

 

 
Figure  9-17 Simulated streamflow due to at 6043 Oct. 22, 2015 rainfall event 

 
Figure  9-18 shows the spatially-averaged soil moisture content at 6103 due to 

Oct. 22, 2015 rainfall events at depths of 0.05 and 0.25 m. Based on the soil moisture 

texture, used by SAC-HT, catchment 6033 located on clay with the saturated soil 
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moisture of 46 percent. The figure shows that the simulated soil moisture content based 

on NLCD 2001 and NLCD 2011 reached to the saturated condition at the same time, and 

the difference between them is very small. Therefore, the difference between peak flows 

based on NLCD 2001 and NLCD 2011 is minor. 

 
Figure  9-18 Spatially-averaged soil moisture content at 6103 due to Oct. 22, 2015 rainfall 

event at depths of 0.05 and 0.25 m 

 
Figure  9-19 Simulated streamflow due to at 6103 Oct. 22, 2015 rainfall event 
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Figure  9-20 shows the spatially-averaged soil moisture content at 6363 due to 

Oct. 22, 2015 rainfall events at depths of 0.05 and 0.25 m. Based on the soil moisture 

texture, used by SAC-HT, catchment 6033 located on clay with the saturated soil 

moisture of 46 percent. The figure shows that the simulated soil moisture content based 

on NLCD 2001 and NLCD 2011 reached to the saturated condition at the same time, and 

the difference between them is very small. Therefore, the difference between peak flows 

based on NLCD 2001 and NLCD 2011 is small.  

 
Figure  9-20 Spatially-averaged soil moisture content at 6363 due to Oct. 22, 2015 rainfall 

event at depths of 0.05 and 0.25 m 
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Figure  9-21 Simulated streamflow due to at 6363 Oct. 22, 2015 rainfall event 

 
9.3 Impact of land cover changes on runoff volume 

Figure  9-22 toFigure  9-26 show the relative difference of runoff volume in 2006 

and 2001, 2011 and 2006, and 2011 and 2001 for subcatchments 6033, 6043, 6103, 

6133, and 6363. The relative difference of runoff volume plots showed that increasing 

impervious fractional areas increases the runoff volume. The most significant changes in 

the runoff volume against the land cover changes occurred in subcatchment 6133 

(Figure  9-25), where the relative difference of runoff volume reached approximately 20%. 

In catchments 6103 (Figure  9-24) and 6363 (Figure  9-26), the maximum relative 

difference of peak flow was approximately 15 percent for rainfall events less than 100 

mm, and in 6033 (Figure  9-22) and 6043 (Figure  9-23) this varied between 5 to 10 

percent for rainfall events less than 100 mm. The magnitude of relative difference of 

runoff volume was close to zero for rainfall events greater than 100 mm in five urban 

subcatchments. This showed that rainfall events greater than 100 mm saturate the 

pervious areas in the subcatchments, converting rainfall to runoff. Therefore, the 

difference between the runoff volume based on NLCD 2001 and NLCD 2011 is close to 

zero.  
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Figure  9-22 (a) Percent of Relative Difference of Runoff Volume (PRDV) of 2006 and 

2001, (b) PRDV of 2011 and 2006, and (c) PRDV of 2011 and 2001 at 6033 
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Figure  9-23 (a) Percent of Relative Difference of Runoff Volume (PRDV) of 2006 and 

2001, (b) PRDV of 2011 and 2006, and (c) PRDV of 2011 and 2001 at 6043 
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Figure  9-24 (a) Percent of Relative Difference of Runoff Volume (PRDV) of 2006 and 

2001, (b) PRDV of 2011 and 2006, and (c) PRDV of 2011 and 2001 at 6103 
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Figure  9-25 (a) Percent of Relative Difference of Runoff Volume (PRDV) of 2006 and 

2001, (b) PRDV of 2011 and 2006, and (c) PRDV of 2011 and 2001 at 6133 
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Figure  9-26 (a) Percent of Relative Difference of Runoff Volume (PRDV) of 2006 and 

2001, (b) PRDV of 2011 and 2006, and (c) PRDV of 2011 and 2001 at 6363 

 
9.4 Impact of land cover changes on time-to-peak 

The response time of each subcatchment was required to assess the impact of 

land cover changes on time-to-peak of five urban subcatchments. Rafieeinasab et al. 

(2015a) estimated the time-to-peak of each catchment by using an empirical unit 

hydrograph (UHG). Based on their estimation, the time-to-peak of 6033, 6043, 6103, 

6133, and 6363 were 0.75, 0.75, 3, 2.75, and 1.5 hrs, respectively (Figure  9-27).  
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The impact of land cover changes on time-to-peak varied from catchment to 

catchment (Figure  9-28 toFigure  9-32). The difference of time-to-peak of 2001 and 2011 

relative to the time-to-peak of the five urban catchments for rainfall events greater than 

100 mm was close to zero. In catchment 6043 (Figure  9-28), a few rainfall events were 

less than 100 mm, and the relative difference in time-to-peak was greater than zero, but 

never exceeded 10 percent. The maximum difference in time-to-peak relative to time-to-

peak of the catchment from 2001 to 2011 in 6103 (Figure  9-29), 6133 (Figure  9-30), and 

6363 (Figure  9-30) was 10, 15, and 15 percent, respectively.The impact of land cover 

changes on time-to-peak in catchment 6033 from 2001 to 2011 was remarkably higher 

than for the other four subcatchments.  

 

 

Figure  9-27 Derived empirical unit hydrographs (UHG) of the study catchments 

(Rafieeinasab et al., 2015a) 
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Figure  9-28 (a) Percent of Difference of Time-to-Peak Relative to the Time-to-Peak of the 

catchment (PRDT) of 2006 and 2001, (b) PRDT of 2011 and 2006, and (c) PRDT of 2011 

and 2001 at 6033 
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Figure  9-29 (a) Percent of Difference of Time-to-Peak Relative to the Time-to-Peak of the 

catchment (PRDT) of 2006 and 2001, (b) PRDT of 2011 and 2006, and (c) PRDT of 2011 

and 2001 at 6043 
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Figure  9-30 (a) Percent of Difference of Time-to-Peak Relative to the Time-to-Peak of the 

catchment (PRDT) of 2006 and 2001, (b) PRDT of 2011 and 2006, and (c) PRDT of 2011 

and 2001 at 6103 
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Figure  9-31 (a) Percent of Difference of Time-to-Peak Relative to the Time-to-Peak of the 

catchment (PRDT) of 2006 and 2001, (b) PRDT of 2011 and 2006, and (c) PRDT of 2011 

and 2001 at 6133 

 



 

146 
 

 

Figure  9-32 (a) Percent of Difference of Time-to-Peak Relative to the Time-to-Peak of the 

catchment (PRDT) of 2006 and 2001, (b) PRDT of 2011 and 2006, and (c) PRDT of 2011 

and 2001 at 6363 

 
Figure  9-28 shows that in a rainfall event of less than 50 mm at 6033, the relative 

difference in time-to-peak reached 65 percent of the time-to-peak. This rainfall event 

occurred from Nov. 15 to Nov. 18, 2015. The rainfall map, based on MPE QPE, 

(Figure  9-33) showed that a large part of the rainfall event occurred close to the outlet 

and at a location where the relative difference of land cover changes from 2001 to 2011 

was approximately 58% (encircled in Figure  9-34). Therefore, the time-to-peak of 2011 
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associated to this rainfall event was reduced 30 min relative to the time-to-peak of 2001 

(Figure  9-35).  

Figure  9-33 Total rainfall map based on 

MPE QPE over five urban catchments for 

rainfall event of Nov. 15, 2015 

Figure  9-34 Difference of impervious area 

between 2001 and 2011 

 
 

 
Figure  9-35 Streamflow simulation based on NLCD 2001 and NLCD 2011 at 6033 for 

rainfall event of Nov. 15, 2015 
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Chapter 10 Conclusions and future recommendations 

 
The four primary objectives of this work are to: 1) advance understanding of the 

sources of variability of areal runoff in large urban areas and their dependence on spatial 

scale, 2) advance understanding of the runoff generation processes in urban areas based 

on soil moisture observations, 3) assess the sensitivity of streamflow and soil moisture 

simulations to the spatial resolution of precipitation input and the a priori parameters of 

the hydrologic models in the NWS Hydrology Laboratory Research Distributed Hydrologic 

Model (HLRDHM, Koren et al. 2004), and 4) assess the impact of land cover changes on 

streamflow and soil moisture simulations in large urban areas. The study area of this 

work is the Dallas-Fort Worth (DFW) Metroplex in North Central Texas. 

In Part I of this work, a simple spatial stochastic model was developed for 

translation of rainfall to areal runoff in urban areas, climatological mean and variance of 

mean areal runoff (MAR) were then evaluated over a range of catchment scales and 

translated into runoff frequency as a proxy for flood frequency, and sensitivity of runoff 

frequency to precipitation, imperviousness and soil, and their changes was assessed. 

The results show that the variability of MAR in urban areas depends significantly on the 

catchment scale and magnitude of precipitation, and that precipitation, soil, and land 

cover all exert influences of varying relative importance in shaping the frequency of MAR, 

and hence flood frequency, for different sizes of urban areas. The findings indicate that, 

due to large sensitivity of MAR frequency to multiple hydrometeorological and 

physiographic factors, estimation of flood frequency for urban catchments is inherently 

more uncertain, and that the approach developed in this work may be useful in 

developing bounds for flood frequencies in urban areas under nonstationary conditions 

arising from climate change and urbanization. 
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In Part II of this work, the current limits of high-resolution hydrologic modeling for 

real-time forecasting were tested by assessing the sensitivity of streamflow and soil 

moisture simulations in urban catchments to the spatial resolution of the rainfall input and 

the a priori hydrologic model parameters. The hydrologic model used is HLRDHM which 

uses the Sacramento model (SAC, Burnash et al. 1979) for soil moisture accounting (i.e., 

rainfall-runoff) and kinematic-wave model (Chow et al. 1988) for channel and hillslope 

routing. HLRDHM is a grid-based model with a default spatial resolution of 4 km × 4 km, 

which corresponds to the Hydrologic Rainfall Analysis Project grid (HRAP, Greene and 

Hudlow 1982). SAC has 11 soil- and land cover-related a priori parameters which are 

available at a 1 HRAP resolution for CONUS. In this work, the 11 parameters were 

derived at resolutions of 1/2, 1/4, 1/8, and 1/16 HRAP using the Soil Survey Geographic 

Database (SSURGO) and the National Land Cover Database (NLCD) 2011. HLRDHM 

was then applied at spatial resolutions ranging from 250 m to 2 km for the precipitation 

input and from 250 m to 4 km for the a priori model parameters. The rainfall input used 

were the CASA QPE available at a resolution of 1/8 HRAP and 1 min and the MPE 

product available at a resolution of 1 HRAP and 1 hr. The temporal resolution of the 

model was fixed at 5 min for both. The streamflow observations used for evaluation were 

obtained from the water level measurements available from the City of Grand Prairie via 

the stage-discharge relations estimated from the 1-D steady-state non-uniform fluid 

mechanically-based model of Kean and Smith (2004, 2005, 2010). The water level 

observations are available from Oct 10, 2015, to Dec 31, 2015, for the outlets, 6363 and 

6042 (see Figure  7-5), whose catchment areas are 14.4 and 3.4 km2, respectively. The 

soil moisture simulation results were evaluated at three locations in Arlington where 

observations are available at depths of 0.05, 0.10, 0.25, 0.50 and 1.00 m. The soil 

moisture observations were obtained from three Time Domain Transmissometry (TDT) 
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and Time Domain Reflectometry (TDR) sensors newly deployed for this work. Prior to 

operation, the sensors were tested against gravimetric analysis results. Comparison of in-

situ soil moisture content vs. the lab test results showed that the relative difference 

between the two did not exceed 7% for all three locations. 

The streamflow results show that the use of high-resolution QPE improves 

streamflow simulation significantly, but that, once the resolution of QPE was increased to 

the scale of the catchment, no clear relationships were seen between the simulation 

accuracy and the resolution of the QPE or hydrologic modeling, presumably because the 

errors in QPE and models mask the relationships. The soil moisture results suggest that 

there are disparate infiltration processes at work within the small area in Arlington where 

the 3 sensors are deployed, and that, while the near-surface simulation of soil moisture is 

generally skillful, the heat transfer version of SAC (SAC-HT, Koren et al. 1999, 2006, 

2008, 2014, Anderson et al. 2006) in HLRDHM has difficulty in simulating the vertical 

dynamics of soil moisture. Specifically, the soil moisture observations obtained from Aug. 

18, 2015, to Dec. 31, 2015, indicate that infiltration at the CELB, Bridge, and Cemetery 

locations is largely matric potential-, saturation excess-, and infiltration excess-driven, 

respectively. The findings point to real-time updating of model states to reduce 

uncertainties in the initial soil moisture conditions, and the need for a dense observing 

network to improve understanding of the processes both at point and catchment scales. 

To assess the impact of recent land cover changes in the study area and to 

project what may be expected in the future, in Part III of this work, streamflow and soil 

moisture were simulated using HLRDHM at 250 m and 5 min resolution with the National 

Land Cover Data (NLCD) of 2001, 2006 and 2011 for five urban catchments in Arlington 

and Grand Prairie, TX. The comparison between the derived impervious maps from 

NLCD 2001 and 2011 over Dallas, Grand Prairie, Arlington and Fort Worth indicates that 
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imperviousness increased about 15% in these four cities from 2001 to 2011. The findings 

indicate that, in terms of peak flow, time-to-peak and runoff volume, small events are 

more sensitive to changes in impervious cover than large events, increase in peak flow is 

more pronounced for catchments with larger increase in impervious cover, increase in 

peak flow is also impacted by changes in antecedent soil moisture due to increased 

impervious cover, runoff volume is not significantly impacted by changes in impervious 

cover, and changes in time-to-peak relative to the response time of the catchment is 

impacted by the location of the land cover changes relative to the outlet and the time-to-

peak itself. In particular, the Johnson Creek Catchment in Arlington (~40 km2), which has 

a time-to-peak of only 40 min, shows larger sensitivity in time-to-peak to land cover 

changes due presumably to the proximity of the area of increased land cover to the 

catchment outlet. For further evaluation, in addition to the CASA network of X-band 

polarimetric radars for high-resolution quantitative precipitation information (QPI), dense 

observation networks for streamflow and soil moisture, such as the Arlington Urban 

Hydrology Testbed currently under development, are necessary. 
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Appendix A 

Time series of observed and simulated streamflow at 6363 using CASA and MPE data 
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Figure A- 1 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1 HRAP using MPE QPE 

at 6363 
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Figure A- 2 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/2 HRAP using MPE 

QPE at 6363 



 

155 
 

 
Figure A- 3 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/4 HRAP using MPE 

QPE at 6363 
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Figure A- 4 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/8 HRAP using MPE 

QPE at 6363 
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Figure A- 5 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/16 HRAP using MPE 

QPE at 6363 
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Figure A- 6 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1 HRAP using MPE QPE 

at 6363 
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Figure A- 7 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/2 HRAP using MPE 

QPE at 6363 
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Figure A- 8 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/4 HRAP using MPE 

QPE at 6363 



 

161 
 

 
Figure A- 9 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/8 HRAP using MPE 

QPE at 6363 
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Figure A- 10 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/16 HRAP using MPE 

QPE at 6363 
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Figure A- 11 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1 HRAP using MPE QPE 

at 6363 
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Figure A- 12 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/2 HRAP using MPE 

QPE at 6363 
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Figure A- 13 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/4 HRAP using MPE 

QPE at 6363 
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Figure A- 14 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/8 HRAP using MPE 

QPE at 6363 
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Figure A- 15 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/16 HRAP using MPE 

QPE at 6363 
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Figure A- 16 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1 HRAP using MPE 

QPE at 6363 
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Figure A- 17 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/2 HRAP using MPE 

QPE at 6363 
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Figure A- 18 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/4 HRAP using MPE 

QPE at 6363 
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Figure A- 19 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/8 HRAP using MPE 

QPE at 6363 
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Figure A- 20 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/16 HRAP using MPE 

QPE at 6363 
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Figure A- 21 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1 HRAP using CASA 

QPE at 6363 
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Figure A- 22 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/2 HRAP using CASA 

QPE at 6363 
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Figure A- 23 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/4 HRAP using CASA 

QPE at 6363 
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Figure A- 24 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/8 HRAP using CASA 

QPE at 6363 
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Figure A- 25 Streamflow simulation time series at model resolution of 1/2 HRAP and SAC parameters at 1/16 HRAP using CASA 

QPE at 6363 
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Figure A- 26 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1 HRAP using CASA 

QPE at 6363  
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Figure A- 27 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/2 HRAP using CASA 

QPE at 6363 
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Figure A- 28 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/4 HRAP using CASA 

QPE at 6363 
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Figure A- 29 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/8 HRAP using CASA 

QPE at 6363 
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Figure A- 30 Streamflow simulation time series at model resolution of 1/4 HRAP and SAC parameters at 1/16 HRAP using CASA 

QPE at 6363 
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Figure A- 31 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1 HRAP using CASA 

QPE at 6363 
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Figure A- 32 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/2 HRAP using CASA 

QPE at 6363 
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Figure A- 33 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/4 HRAP using CASA 

QPE at 6363 
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Figure A- 34 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/8 HRAP using CASA 

QPE at 6363 
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Figure A- 35 Streamflow simulation time series at model resolution of 1/8 HRAP and SAC parameters at 1/16 HRAP using CASA 

QPE at 6363 
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Figure A- 36 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1 HRAP using CASA 

QPE at 6363 
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Figure A- 37 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/2 HRAP using CASA 

QPE at 6363 
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Figure A- 38 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/4 HRAP using CASA 

QPE at 6363 
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Figure A- 39 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/8 HRAP using CASA 

QPE at 6363 
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Figure A- 40 Streamflow simulation time series at model resolution of 1/16 HRAP and SAC parameters at 1/16 HRAP using CASA 

QPE at 6363 
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Appendix B 

Time series of observed and simulated soil moisture content at CELB location 
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Figure B- 1 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/2 HRAP resolution 

and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture depicted 

in red. 



 

195 
 

 

Figure B- 2 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/2 HRAP resolution 

and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 3 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/2 HRAP resolution 

and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 4 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/2 HRAP resolution 

and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red.  
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Figure B- 5 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/2 HRAP resolution 

and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 6 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/4 HRAP resolution 

and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 7 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/4 HRAP resolution 

and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 8 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/4 HRAP resolution 

and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 9 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/4 HRAP resolution 

and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture in red. 
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Figure B- 10 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/4 HRAP 

resolution and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 11 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red. 
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Figure B- 12 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 13 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 14 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 15 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/8 HRAP 

resolution and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 16 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/16 HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red. 
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Figure B- 17 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/16 HRAP 

resolution and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 18 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/16 HRAP 

resolution and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 19 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/16 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 20 Time series of simulated and observed soil moisture content at CELB location using MPE data at 1/16 HRAP 

resolution and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 21 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/2HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red. 
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Figure B- 22 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/2HRAP 

resolution and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 23 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/2HRAP 

resolution and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 24 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/2HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 25 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/2HRAP 

resolution and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 26 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/4 HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red. 
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Figure B- 27 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/4 HRAP 

resolution and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 28 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/4 HRAP 

resolution and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 29 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/4 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 30 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/4 HRAP 

resolution and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 



 

224 
 

 
Figure B- 31 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/8 HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red. 
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Figure B- 32 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/8 HRAP 

resolution and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 33 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/8 HRAP 

resolution and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 34 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/8 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 



 

228 
 

 
Figure B- 35 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/8 HRAP 

resolution and a priori SAC parameters at 1/16 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 



 

229 
 

 
Figure B- 36 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/16 HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red. 
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Figure B- 37 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/16 HRAP 

resolution and a priori SAC parameters at 1/2 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 38 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/16 HRAP 

resolution and a priori SAC parameters at 1/4 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 39 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/16 HRAP 

resolution and a priori SAC parameters at 1/8 HRAP resolution. Simulated soil moisture depicted in blue and observed soil 

moisture in red. 
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Figure B- 40 Time series of simulated and observed soil moisture content at CELB location using CASA QPE at 1/16 HRAP 

resolution and a priori SAC parameters at 1 HRAP resolution. Simulated soil moisture depicted in blue and observed soil moisture 

in red.
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Appendix C 

Bivariate Lognormal Distribution 
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The bivariate lognormal probability distribution function (PDF) is given by: 
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where x1 and x2 are the two correlated lognormal random variables, y1 and y2 denote ln x1 

and ln x2, respectively, ρ denotes correlation between y1 and y2, 
1y  and 2y  denote 

E[y1] and E[y2], respectively, and 
1y  and 2y  denote standard deviation of y1 and y2, 

respectively. The standard deviation and mean of y are related to those of x via: 
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where x  denote E[x] and x  denote the mean and standard deviation of x, 

respectively. 

We assume ),(~)( 2
uuLNuP   for P(u)>0. Then, mean and variance of 

ln(P(u)), P(u)>0, are given by (E4) and (E5), respectively, as: 
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Once ]0)(,1)(,1)(|)(),([ intintint   duuIviuivPuPE
AII  is evaluated by 

Eq.(7-16), the correlation coefficient between ln(P(u)) and ln(P(v)), ρuv, may be solved for 

from the following relationship: 
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Appendix D 

Bivariate Weibull Distribution 
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We use the following mixture type whose CDF is given by (Johnson et al., 1999): 
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where X and Y are the correlation Weibull-distributed random variables, and y are the 

experimental values that X and Y take on, respectively, β1 and β2 are the shape 

parameters, and θ1 and θ2 are the scale parameters. Correlation is almost inversely linear 

in δ for β1=β2. The PDF of the above CDF is given by (Johnson et al., 1999): 
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Lu and Bhattacharyya (1990) provides the moments as follows: 
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As in (E3), once Cov[X,Y], E[X], Var[X], E[Y] and Var[Y] are specified δ may be 

solved for using (F5), which then completely prescribes the PDF. 
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Appendix E 

Bivariate Gamma Distribution 
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The bivariate gamma distribution used in this work is the Nagao and Kadoya 

Model 1 (Nagao and Kadoya, 1970; Iliopoulos et al., 2005) which is based on the 5-

parameter model of Izawa, 1953: 
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In the above, λ1 and λ2 denote the rate parameters for x and y, respectively, ν denotes 

the shape parameter, ρ denotes the correlation coefficient, and Iν(·) denotes the modified 

Bessel function of the first kind of order ν defined as: 
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where Γ(·) denotes the gamma function. The marginal PDFs of x is given by: 
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If ν=1, Eq.(F1) reduces to the bivariate exponential function of Downton (1970). 
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