
DISTRIBUTED ON-DEMAND INTEGRITY MONITORING OF LEGACY

APPLICATIONS AND RELIABLE ANALYSIS OF MIXED-MODE

USER-KERNEL LEVEL ROOTKITS

by

SHABNAM ABOUGHADAREH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015



Copyright c© by Shabnam Aboughadareh 2015

All Rights Reserved



To my love, Mehdi Azarmi, and my family for their huge love, support and

encouragement.



ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to my advisor Prof.

Christoph Csallner for his huge support and his profound knowledge. Christoph has

all the qualities that a world-class computer scientist must have. His trustworthiness

makes him an ideal mentor and a true friend. I should give him credit for my success

in receiving a best paper award as well as getting several job offers from top technology

companies. Without Christoph’s support, none of these successes would have been

possible.

Beside my advisor, I thank the rest of my PhD dissertation committee, Prof.

Matthew Wright, Prof. Donggang Liu and Prof. Jeff Lei. I took a course with

Prof. Matthew Wright. His class was helpful to extend my knowledge in the area

of computer security. Moreover, I really appreciate his useful comments which made

me a better computer security researcher and also a better person. Thank you Matt

for all your kind support. I would like to thank Donggang for dedicating his time to

review some of my presentation slides and offering useful tips for an effective scientific

presentation. Also, I thank Prof. Jeff for his insightful comments for my PhD proposal

which helped me to improve my research work.

I sincerely thank Dr. Bahram Khalili, the graduate advisor at the CSE De-

partment of University of Texas, Arlington. Bahram kindly shares his industrial and

academic experiences with students to help them thrive in their research work and

their future career. I cannot repay all he has done. I try to use his insight in my

career as well as I can.

iv



Dr. Matthew Elder hired me as a research intern at Symantec Research Labs

(SRL). He was always available to help and his encouragements made me learn a lot.

Thank you Matt for all you have done for me. I thank Dr. Nathan Evans and Dr.

Azzedine Benameur, the principal researchers at SRL for their insightful comments as

well as Martin Schulman, the technical director at Symantec, for his support during

my internship.

I would like to thank Prof. Ramez Elmasri, Prof. Gautam Das, Prof. Manfred

Huber, David Levine and Prof. Chengkai Li for all I learned from them during my

PhD course work. Thank you Prof. Babak Sadeghiyan at Amirkabir University of

Technology for the computer security foundation I got from you. Thank you Prof.

Hossein Pedram, Bahman Pourvatan and Prof. Saeed Shiry at Amirkabir University

of Technology for your encouragements.

Thank you Laleh Ghandehari, Mehra Nouroz Borazjany, Soheil Shafiee, Ish-

tiaque Hussain, Mainul Islam, Jing Xu, Tuan Anh Nguyen, Azade Nazi, Abolfazl

Asudeh, Zahra Ghorban Oghli and Hossein Atashi my labmates, classmates and

friends. Also, I would like to say thank you to the staff at CSE Department of

University of Texas, Arlington, Sherri Gotcher, Pamela Mcbride, Camille Costabile

and Irie Bito.

I am grateful to my family for their huge love and support. I sincerely thank

my parents Mansoureh (Suri) Yaghini and Homayoun Aboughadareh and my brother

Reza Aboughadareh. Thank you Batoul Rabbi Yar, Minoo Yaghini, Mahboubeh

Yaghini, Jacob Yaghni, Joseph Yaghini, Batoul Ghorbian and Khosro Azarmi.

Finally, I would like to express my gratitude to my love, Mehdi Azarmi. Mehdi’s

talent, kindness, patience, hard work and enthusiasm have been always inspiring for

me.

December 1, 2015

v



ABSTRACT

DISTRIBUTED ON-DEMAND INTEGRITY MONITORING OF LEGACY

APPLICATIONS AND RELIABLE ANALYSIS OF MIXED-MODE

USER-KERNEL LEVEL ROOTKITS

Shabnam Aboughadareh, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Christoph Csallner

The increasing number of malicious programs has become a serious threat. The

growth of malware samples has led computer security researchers to design and de-

velop automatic malware detection and analysis tools. At the same time, malware

writers attempt to develop more sophisticated malware that makes detection and

analysis hard or impossible. In my dissertation I explore the problems of current

malware detection and analysis techniques by providing the proof-of-concept imple-

mentation of malware samples that cannot be detected or fully analyzed by current

techniques. My dissertation identifies three problems in the current solutions.

First, regarding the limitations of monitoring the integrity of legacy programs

such as expensive cost of migrating to modern and more secure platforms, code injec-

tion rootkit attacks on legacy applications are hard to detect. Second, the complex

malware codes manipulate or intercept the malware analysis components which re-

side on their execution domain (user-mode and kernel-mode).Third, a mixed-mode
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malware, which contains interdependent user-mode and kernel-mode components,

misleads or foils single-domain analysis techniques.

To address the first problem, I propose TDOIM (Tiny Distributed On-Demand

Integrity Monitor). TDOIM is a client-server scheme that periodically monitors ap-

plications to detect the malicious behavior injected by an attack. Specifically, it

periodically compares the runtime state of all instances of the legacy application. If

some instances start to diverge from the rest, this is an indication that the diverg-

ing instances may have been manipulated by malware. In other words, the server

periodically infers and updates a white-list directly from the monitored application

instances and checks all clients against this dynamic white-list. TDOIM installs a

tiny client-side agent on legacy platforms with minimum attack surface and it does

not require recompilation or restart of the monitored legacy application.

In order to address the problems of the current malware analysis techniques,

I present the first mixed-mode automatic malware analysis platform called SEMU

(Secure Emulator). SEMU is a binary analysis framework that 1) it operates outside

the operating system and thereby outside the domain of user-mode and kernel-mode

malware. 2) it deploys a novel mixed-mode monitoring of malware operations that

is effective against sophisticated user-kernel level rootkit samples and kernel-mode

exploits.
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CHAPTER 1

INTRODUCTION

Malware poses significant challenges to modern society. Among others, malware

can take control of a victim system and perform arbitrary actions such as logging

individual keystrokes to steal online banking passwords as wells as changing operating

system’s critical codes and data structures to remain undetected for years.

These challenges are real and affect many people. For instance, a survey con-

ducted in January 2011 found that one third of the 2,089 U.S. online households

surveyed had been victims of malware in the previous year [1]. The survey estimated

that in the previous year malware cost U.S. consumers overall USD 2.3 billion.

The motivation of this dissertation is to address some of the problems in the

state-of-the-art malware detection and analysis techniques. In the following, I discuss

the motivation of TDOIM and SEMU research works, my proposed malware detection

and analysis approaches for resolving some of the problems of the current techniques.

1.1 Malware Detection Techniques and Motivation of TDOIM Approach

Detecting code-injection rootkit attacks that are conducted with new malware is

notoriously hard. Such attacks may be launched by zero-day attacks or other avenues

and are generally not detected by current antivirus approaches. New malware may

inject malicious behavior into a trusted application, may be persistent on the infected

system over long periods of time, and may manipulate the infected system in ways

that make it very hard to be detected. Recent examples of code-injection rootkit

attacks include Stuxnet, Duqu, and Flame [2, 3, 4]. Detecting such attacks is hard,
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even if an administrator has great flexibility in preparing the system for malware

attacks [5].

Administrators of legacy applications, however, are more constrained, which

poses the following five additional key challenges for detecting such attacks. (1) First,

legacy applications are usually kept around because they deliver high value. As a

baseline, a security solution for such a legacy application should thus have a minimal

attack surface, to not expose the application to additional threats. (2) Second, if such

a high-value legacy application gets infected, the response should be immediate, to

minimize negative consequences.

Sometimes an infection of a high-value legacy application is suspected but can-

not be established with existing tools. (3) Then it is often important to be able to

install an additional malware detection system on demand, even after the application

may have been infected, and ideally without having to restart the possibly infected

application. (4) Fourth, legacy applications are often not well maintained. Their

source code may have been lost and it may no longer be clear which version of the

application has been installed on which machines.

Finally (5), a legacy application is often tightly integrated with legacy platforms

and operating systems. Such platform dependencies may make it prohibitively expen-

sive to migrate such an application to the modern platforms that are often assumed

by anti-malware research. Example assumptions include certain hardware such as

secure crypto co-processors (e.g., TPM) and hardware extensions for virtualization

(e.g., intel VT-x or AMD-V) as well as modern virtualized operating system stacks.

High-value legacy applications are used widely in all industries (including health

care, banking, transportation, and national security). Attacks with new malware can

be costly for any application. For example, an attack may eventually lead to a data

breach, which in 2014 cost an affected company in the U.S. on average over one
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million dollars [6]. Given that legacy applications are often high-value and detecting

malware attacks is more challenging in legacy applications, effective new-malware

detection approaches for legacy applications are urgently needed.

Existing approaches are not effective as they do not meet all five challenges.

For example, a widely accepted best practice for detecting code-injecting rootkits in

legacy applications is running host-based third-party antivirus tools and they are in

wide use [7, 8]. However this straightforward approach does not address challenge (1).

Current antivirus tools are essentially large and complex high-privilege extensions of

the operating system that is running the protected application. Such an extension

dramatically increases the malware attack surface—many attacks on antivirus tools

have been described [9, 10, 11, 12].

Also, (challenge 2), it may take weeks before a current antivirus tool detects a

new malware attack, since most antivirus tools work by comparing application files

to a blacklist of known malware signatures. For a new malware attack it takes time

for antivirus vendors to discover the malware, distill it into signatures, and push the

signatures to the blacklist of the protected hosts. For example, in a 2007 study on

some 8k malware samples, young (less than one week old) malware samples went

undetected at a rate from over 20% to over 60%, depending on the tool vendor [13].

A 2014 study had similar results, e.g., antivirus tools could still not reliably identify

malware samples that were several months old [14].

Cloud-based antivirus approaches address challenge (1) [13, 15, 16, 17]. But

they do not fully address challenge (2), because they remain blacklist-based, which

may leave high value legacy applications exposed to new malware attacks for weeks.

To support legacy applications, extensions of host-based antivirus tools catalog

the files of all applications into a whitelist [18, 8]. However this approach does not
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meet challenges (1) or (3), as it still has a large attack surface and may add to the

whitelist malware that is already on the host.

Other anti-malware work also does not adequately support legacy applications,

since it places strong assumptions on the monitored applications and therefore strug-

gles with challenges (3), (4), and (5). For example, recent techniques assume virtu-

alization [19, 20, 21, 22, 23, 24], certain VMs [19], or special hardware such as TPM

or PCI add-in cards [25, 26, 27, 28, 29, 30].

To address all five challenges of detecting new code-injection malware attacks,

I propose a Tiny Distributed On-demand Integrity Monitor (TDOIM), an approach

that works well with legacy applications. At a high level, my approach is a client-

server scheme that periodically monitors applications to detect the malicious behavior

injected by an attack. Specifically, I periodically compare the runtime state of all

instances of the legacy application. If some instances start to diverge from the rest,

this is an indication that the diverging instances may have been manipulated by

malware. In other words, the server periodically infers and updates a white-list

directly from the monitored application instances and checks all clients against this

dynamic white-list.

Specifically, on each platform running the legacy application dissertation in-

stall a tiny client-side agent. I keep the agent’s functionality minimal to minimize

the attack surface added to the machines running the application (requirement 1).

This agent does not require special hardware or virtualization, which together with

its minimal functionality allows deployment on a wide variety of legacy platforms

(requirement 5). This client-side agent can be installed on a platform during a mal-

ware attack and does not require recompilation or restart of the monitored legacy

application (requirement 3).
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Each client-side agent periodically computes hash values of the memory allo-

cated for kernel, application, and device drivers and sends the hashes to the server-

component. The server detects outliers only within the group of reported hashes and

thereby does not require any prior knowledge about original binaries, file signatures,

blacklists, or whitelist (requirement 4). More importantly, the server detects poten-

tial malware attacks immediately and does not have to wait until a third party has

released corresponding malware signatures (requirement 2).

The voting-based scheme works because a malware attack usually spreads rel-

atively slowly across the various locations running the monitored application. While

the malware has only infected a minority of the monitored application instances, the

voting scheme can detect the malware infection as outliers.

To evaluate TDOIM, I implemented TDOIM for Linux and conducted several

small experiments. For the experiments I used different user-mode and kernel-mode

rootkits that perform code injection, hooking, and in-line patching to infect legacy

applications. In the experiments TDOIM could always pinpoint the compromised

systems and the infected memory regions in these systems. In the experiments the

runtime overhead on the client machines was moderate. The amount of false positives

was relatively low for kernel modules (4% of the modules’ pages) and zero for the OS

kernel and user-space applications.

To summarize, this dissertation makes the following major contributions.

• This dissertation describes a set of five key challenges faced when detecting

rootkits in legacy applications.

• The dissertation describes TDOIM, an approach for detecting user-mode and

kernel-mode rootkits in legacy applications. TDOIM has a tiny footprint and

therefore small attack surface on the monitored machines and enables online

rootkit detection.
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• To evaluate TDOIM, the dissertation describes a prototype implementation of

TDOIM for recent versions of Linux.

• The dissertation provides an initial empirical evaluation of TDOIM on several

user and kernel mode rootkits, where with moderate overhead and a relatively

low false positive rate TDOIM achieved a 100% rootkit detection rate.

1.2 Malware Analysis Techniques and Motivation of SEMU Approach

Malware analysis has been studied widely, using many real-world malware sam-

ples. However I am not aware of existing work that exposes malware analysis to

mixed-mode malware. Mixed-mode malware is a type of malware that (a) has inter-

dependent user- and kernel-mode components and (b) may actively attack or subvert

malware analysis components. I say that malware components are interdependent if

the second component performs its main malicious payload only if the kernel manip-

ulation of the first component succeeds.

Given the big impact malware has, it is important for malware analysts to ana-

lyze malware and develop countermeasures. For such malware analysis, an important

technique is to monitor the execution of actual malware with state-of-the-art dynamic

malware analysis tools such as those based on TEMU [31], Anubis [32], and Ether [33].

Monitoring malware executions allows malware analysts to reverse-engineer and un-

derstand the subtle details of how a concrete malware instance functions. Analysts

can leverage such understanding when designing and deploying malware countermea-

sures. Such countermeasures can ultimately protect a wide range of computers from

both the specific malware analyzed and from similar, derived classes of malware [32].

Current dynamic malware analyses [31, 33, 32, 34, 35] are not effective for

analyzing mixed-mode malware. The reason is that existing malware analysis tools

suffer from one or both of the following shortcomings.
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(1) First, many current analysis techniques place analysis components in the

domain in which the malware is executing and thereby expose the analysis to malware

manipulations. These approaches are referred to as inside-the-box, inside-the-guest,

on in-guest. For example, popular analysis platforms such as TEMU and Anubis

run the malware in a virtual machine. To inspect the state of the malware and the

VM, such malware analyses often place some virtual machine introspection (VMI)

components inside the VM, which exposes VMI and thereby the entire analysis to

malware manipulation.

(2) Second, many approaches focus on a single domain, either kernel-mode or

user-mode, but fail to fully capture malware that operates in both modes [33, 36].

For example, Ether leverages hardware virtualization extension to operate outside-

the-guest but focuses only on user-mode analysis. Ether relies on the integrity of the

kernel when inspecting the system state and malware behavior. However, mixed-mode

malware manipulates the OS kernel and thereby foils such single-mode analysis.

To address the limitations of the existing techniques and analyze mixed-mode

malware effectively, I propose a novel dynamic malware analysis tool called SEMU (Se-

cure EMUlator). SEMU operates both outside-the-guest and across kernel and user

modes. In my experiments I also found that SEMU’s overhead was in line with

closely related existing tools, i.e., Ether and TEMU. While my current SEMU im-

plementation is for Windows, my analysis approach could also be implemented for

other operating systems such as Linux. To summarize, the SEMU approach makes

the following major contributions.

• I describe and provide practical implementations of several mixed-mode mal-

ware samples. Mixed-mode malware cannot be fully analyzed with current

state-of-the-art dynamic malware analysis tools such as those built on TEMU,

Anubis, and Ether.
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• I present SEMU, a whole-system outside-the-guest dynamic malware analysis

tool that can effectively analyze mixed-mode malware. For example, SEMU

detects and analyzes kernel exploits that cannot be analyzed by current kernel-

mode analysis approaches.

• I provide the first empirical evaluation of the runtime characteristics of a whole-

system outside-the-guest dynamic malware analysis tool such as SEMU.

1.3 Dissertation Overview

In the remainder of this dissertation, I explore current well-known malware anal-

ysis and detection approaches and their limitations in chapter 2. I discuss TDOIM,

the malware detection approach in chapter 3, 4, 5 and 6. I describe SEMU approach,

its design and implementation and proof-of-concept implementations of mixed-mode

malware samples, in chapter 7, 8, 9, 10 and 11. Finally in chapter 12, I conclude

the dissertation.
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CHAPTER 2

BACKGROUND

This chapter provides necessary background information on memory manage-

ment and memory layout techniques that are common across many platforms and

operating systems, how rootkits take advantage of these existing detection techniques

and how current malware analysis are designed.

2.1 Memory Management and Memory Layout

While details differ among the various platforms and operating systems, there

are two broad categories of memory address space, kernel and user. Most widely used

operating systems are monolithic and thus the kernel and its extensions have full

access to the same address space. Each user-mode application has its own address

space and cannot directly access the memory of other applications or the kernel.

Code and its data exist in two main forms, on disk in files and loaded in main

memory. The compiler typically places both code and data in a number of segments or

sections. While the terms have well-defined meanings that differ across platforms, in

this dissertation I use segment and section interchangeably to refer to a chunk of either

code or data either on disk or in main memory. For each segment the compiler can set

access rights (read, write, and execute), which most operating systems enforce via the

platform’s memory management hardware support. For example, code is typically

placed in executable non-writable segments and constant data values are typically

placed in non-executable non-writable segments.
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On most platforms, each application is allocated in a contiguous block of virtual

memory, which the platform maps to a possibly non-contiguous set of pages in physical

(main) memory. While each machine running a given application may place a given

page at a different physical address, the page’s virtual address is fixed at load-time

and therefore identical across machines. A program can run with only some of its

pages in physical memory, the remaining pages are swapped out to secondary storage,

such as a disk. Kernel addresses are often an exception, as several operating systems

such as Linux make sure that their kernel code and read-only data segments are both

in contiguous chunks of physical memory and never swapped out.

Most platforms have mechanisms for dynamic code loading, e.g., to support a

device the user plugged in at runtime or to handle various input values. This code is

loaded into an existing address space and adds additional code and data segments.

Common examples in the kernel are kernel-level device drivers. In user-mode, many

platforms have mechanisms to dynamically load code libraries.

2.2 Code-Injecting Rootkits

Rootkit traditionally meant software that is used in an initial attack to elevate

a user to root access on a victim system. However in the current literature rootkit

refers to software that an attacker uses after gaining the desired level of access through

some other attack such as a zero-day exploit. In this new definition, which I use in

this dissertation, a rootkit uses the existing level of access to create a more persistent

backdoor to retain access in the long term and possibly hides itself and malicious

payloads from anti-malware tools.

Many rootkits work by injecting code into the victim system [37, 38]. To inject

code, rootkits use their high OS privilege level to overwrite code segments on disk

or in main memory or load additional (malicious) code segments (e.g., as a dynami-
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cally linked library) and change read-only data segments (i.e., that contain function

pointers) to link to them. A rootkit may inject code at any level, i.e., in the kernel,

in kernel extensions such as device drivers, and in user-mode applications.

Since code-injecting rootkits are common and hard to detect in legacy appli-

cations, this dissertation focuses on detecting rootkits in systems running legacy ap-

plications. Since buffer overflow attacks have received a lot of attention, I explicitly

distinguish them from code-injecting rootkits. A buffer overflow typically overwrites

parts of the call stack and then may cause control-flow to jump to this new material

in the stack, which may also jump to some more material in the heap. However in

this dissertation I focus on rootkits that inject code into code segments.

2.3 Attack Surface of Current Anti-malware Approaches

Many current anti-malware tools have a large attack surface and thus are vulner-

able to many attack vectors [9, 10, 11, 12]. Due to their large number and complexity,

in this section I do not attempt to enumerate all such attack vectors. Instead I list a

few of the attack vectors that are common in existing tools but are absent in TDOIM.

An example functionality is that current antivirus tools store application white-

lists and malware black-lists on each monitored client. (1) First, such list stores can

be manipulated on disk or in memory. (2) Second, the process of adding new elements

to the lists can be intercepted or subverted, at the source server, during transmission,

or at the client-side antivirus tool destination. (3) Finally, retrieving elements from

the lists can be intercepted.

In addition to these direct attack vectors, there are also the following well-known

indirect attacks. Since each such functionality is implemented in code, existing anti-

malware tools contain a lot of code, which presents many opportunities for code

vulnerabilities and zero-day exploits. The functionality is also spread across many
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places such as disk, memory, and registry, with their own attack vectors. To access

such system resources, current anti-malware tools use a large number of OS APIs,

such as system calls, which can be manipulated [39].

2.4 Malware Analysis Tools

Some in-guest Fully outside 

User 

Kernel 

Kernel+User 

Ether 

SEMU 
TEMU 

(Panorama)  

Anubis 
 (TTAnalyze) 

d-Anubis 

Y = What 

X =  
Where 

Figure 2.1. Two dimensions of dynamic malware analysis: Scope (y-axis) and whether
an analysis places some of its components inside-the-guest (x-axis)..

I can classify dynamic malware analyses along two dimensions. Figure 2.1 shows

on the x-axis whether an analysis places some of its components inside the guest OS.

Having components inside-the-guest makes an analysis vulnerable to malware attacks.

The y-axis captures the scope of the malware analysis. SEMU is the only analysis

that combines a kernel+user scope with being fully outside-the-guest.

2.4.1 Virtual Machine and Introspection

Malware may corrupt the OS it is running on and may in turn corrupt other

programs running on the OS, including malware analyses. To retain control of the

machine, malware is thus typically run on a (guest) OS that is installed on a hardware
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emulator or virtual machine (VM) [40, 31, 33]. The VM runs on another OS called the

host OS. A VM also enables an analyst to inspect all interactions between malware

and guest OS.

To be useful, a VM-based malware analysis tool has to query the current

VM state. This state is readily available in a low-level form, i.e., in terms of reg-

ister values and main memory bytes. But a malware analysis tool is typically written

in terms of higher-level OS abstractions such as threads and processes. This gap

between the readily available low-level hardware state and the desired high-level op-

erating system state is called the semantic gap [41].

Virtual machine introspection (VMI) bridges the semantic gap, by reconstruct-

ing high-level OS information from low-level hardware state [42]. Without bridging

the semantic gap, even basic analysis tasks such as logging the execution trace of a

malware sample become very hard if not impossible.

2.4.2 Inside- vs. Outside-the-Guest VMI

Since malware may corrupt anything within its reach, it is useful to determine if

a VM-based malware analysis places any of its components inside the guest OS. This

classification notably differs from the more common classification of where the ma-

jority of the malware analysis components reside. While TEMU and Anubis are often

described as outside-the-guest [43], they place at least some of their VMI components

inside-the-guest.

Figure 2.2 gives an overview of state-of-the-art tools including TEMU [31] and

Anubis [32] that both place a custom kernel-mode VMI driver inside the guest OS.

Such a driver is outside the malware’s reach if the malware is restricted to user-

mode. The existing drivers differ in how they pass OS state to the analysis. The

TEMU driver writes to a predefined I/O port. The Anubis driver reports to a user-
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Figure 2.2. Architecture comparison. Not shown is malware’s main payload attacking
the guest OS. Hw-Ext = Hardware virtualization extension. .

mode application, which communicates with the analysis component over a virtual

network. The Anubis extension dAnubis [44] patches the kernel functions that load

kernel-mode modules. The patched functions then notify dAnubis when kernel-mode

malware is loaded.

Ether [33] performs outside-the-guest VMI by relying on a processor-specific

hardware virtualization extension (Intel VT-x [45]). The hardware extension allows

Ether to run in a privileged hypervisor mode. Certain events in the monitored VM

such as some exceptions trigger the hypervisor mode and return control to Ether. For

example, to log an instruction, Ether sets a trap flag before the instruction to force

a debug exception that returns control to Ether.

While outside-the-guest VMI protects Ether from some malware attacks, rely-

ing on hardware virtualization extensions has two drawbacks. First, for a fine-grained
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analysis that logs every instruction, Ether has to install a trap flag before every in-

struction and handle the resulting debug exceptions. This single-step mode slows

down execution by three orders of magnitude [46]. Second, Ether requires that the

underlying processor supports hardware virtualization extensions, but many proces-

sors do not meet this requirement.

Besides well-known analysis tools I described, there are several VM-based ap-

proaches that focus on malware and rootkit detection or protection [47, 48, 49, 20, 50,

51, 52, 19, 53]. However none of these existing tool can monitor and log the execution

of kind of mixed-mode malware or kernel exploits described in this document.

2.4.3 Scope: Single-Domain vs. Whole-System

Many analyses capture either user-mode or kernel-mode malware activities,

but not both. Such a single-mode focus is insufficient for fully analyzing mixed-mode

malware.

An example whole-system analysis is Panorama. It is a part of BitBlaze [31]

and uses TEMU for performing whole-system taint analysis [54]. But as TEMU,

Panorama performs some VMI tasks inside the guest OS. Panorama and similar

approaches track the information flow of sensitive data such as keystrokes and network

packets to detect and analyze malware [55, 21, 56, 57, 58]. But mixed-mode malware

may not have such data flows and thus cannot be fully analyzed by such approaches.

An example user-only analysis is Ether. It assumes the integrity of kernel data

(i.e., the system call table) and control-flow. A mixed- mode malware can drop a

kernel-mode malware that manipulates the system call table and mislead Ether’s

analysis.

An example kernel-only analysis is the Anubis extension dAnubis [44]. It is

notified whenever malware is loaded into kernel memory. But being single-mode,
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dAnubis may miss attacks from user-space. For example, user-mode malware can

access the kernel via zero-day exploits, such as bugs in standard device drivers. In such

cases a malicious payload executes with kernel privileges without loading a kernel-

mode module.
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CHAPTER 3

TDOIM APPROACH AND DESIGN

This chapter gives an overview of the main assumptions behind TDOIM and

its resulting architecture. For example, TDOIM monitors efficiently code that can be

loaded dynamically and get partially swapped out.

3.1 Assumptions and Threat Model

I assume that the adversary attempts to compromise a legacy application. A

legacy application may run on a user’s system in user-mode, kernel-mode, or both.

A user system is the operating system (OS) and all applications running on the OS.

The OS may run directly on hardware, in a virtual machine (VM) instance, or in a

container [59].

I also assume that many instances of a legacy application are running at the

same time. For example, this assumption is met by a large distributed application

that contains many instances of the same legacy application (perhaps running in data

centers or on the cloud) or by many users running instances of the same stand-alone

application on their respective machines. A malware attack is carried out by executing

a malicious payload on one or more machines running a given legacy application.

As common in rootkit-type attacks, I assume the adversary has full access to

the whole attacked machine, including the file system and all memory address spaces.

The adversary may exploit this access and continuously hack a victim machine’s

operating system and the legacy application running on the machine. As part of such
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an attack, the attacker injects code for both malicious payloads and to change the

OS in order to hide the payload.

The adversary may carry out the attack by manipulating binaries on the disk,

by infecting loaded images in memory, or both. For code injection into the different

kinds of software running on the victim’s machine, a concrete attack may include a

combination of the following common rootkit techniques [39].

• For injecting code into the kernel, the adversary may obtain a higher privilege

level (such as root access) and inject the malicious payload by patching the bi-

naries on disk, hooking the system call table, or patching (overwriting) internal

operating system code sections and read-only data sections in memory.

• For injecting code into kernel extensions, the adversary may similarly patch the

binaries on disk or manipulate the code section or read-only data section of

legitimate device drivers or kernel-mode services in memory.

• Finally, for user-mode applications, the adversary may patch a binary on the

disk or inject a malicious library in the address space of a running legitimate

user-mode process or service, by manipulating the code section in memory.

TDOIM relies on a hash function for hashing memory values with relatively

few collisions. That is, I assume that two memory regions with different contents will

produce different hash values with very high probability. An attacker could carefully

craft a manipulation such that both the original and the manipulated memory yield

the same hash value. But by using a good hash function this would be hard.

TDOIM also works best if there are relatively few variants of a given legacy

application. Specifically, I assume that the legacy applications are relatively homoge-

nous in terms of their application version and how each version has been compiled.

This is often the case, as developers tend to use the same compiler for longer periods

of time and only a few versions of a given legacy applications are in wide use.
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3.2 TDOIM Architecture Overview

Since the TDOIM client component resides in the address space of the OS

that runs the legacy application, there is a risk that a rootkit attacks the TDOIM

client. To minimize this risk, the TDOIM client has a tiny feature set and therefore a

tiny attack surface. Important TDOIM features that related monitoring approaches

include on the client TDOIM therefore places on its back-end server component.
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Figure 3.1. Example configuration of TDOIM monitoring four instances of a legacy
application. .

Figure 3.1 gives a high-level overview of TDOIM’s architecture, using an exam-

ple setup of a legacy application that runs on four machines, which may be virtualized.

Each of the four machines has installed a TDOIM client component, i.e., the TDOIM
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agent. The TDOIM agent is a kernel-mode module that over a network connection

sends at short random intervals to the TDOIM back-end server its machine’s config-

uration. The configuration includes its processor name, OS version, compiler, and a

hash of all code segments and all read-only data segments of all processes.

The TDOIM back-end is a user-mode application that resides outside the mon-

itored system, e.g., on a remote host. Based on the configuration data received from

clients, the TDOIM back-end divides the user systems into groups. Within a group,

each member has the same combination of architecture, OS version, and compiler.

Within each group, TDOIM compares the hashes of the various applications to detect

outliers.

TDOIM takes steps to make this communication efficient. For example, by

default a TDOIM agent only transmits a single hash (of all hashes) to its backend.

Only if the back-end flags a hash as an outlier, the back-end requests more detailed

hash values of the various applications to investigate why the hash of all hash values

diverged.

TDOIM-like monitoring tools are susceptible to scrubbing attacks, in which a

memory resident malware predicts monitoring time and attempts to conceal it’s trace

in memory at the time the monitoring agent computes a memory hash [27]. To

address such attacks, TDOIM obtains its memory hashes in random intervals, which

are by default 30–90 seconds. To further address the threat of scrubbing attacks

and to reduce the TDOIM client’s attack surface, TDOIM places its random interval

generator on its back-end component.

3.3 Use-Case Scenarios

TDOIM has two main use-cases, which differ in the type of legacy applications

monitored and their owners. (A) In the first use-case, an administrator is responsible
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for a large number of instances of a legacy application, possibly distributed over

several data centers. The admin may suspect that some of these instances are being

attacked by malware. So the admin installs the client-side kernel agent on each

machine, e.g., by remotely installing it as a device driver or other kernel extension.

Upon installation the TDOIM agent will take periodic memory hashes and send them

back to the TDOIM server component. The server component detects outliers, which

may trigger the admin to either inspect the outliers more closely for possible malware

infection or to shut down the outlier instances for further analysis.

The second use-case (B) differs in that an end-user may suspect a malware

infection on her machine and install the TDOIM client module locally on her machine.

TDOIM will then compare her hash values with those produced by other end-users

running the same legacy application. This use-case has stronger privacy requirements

for transmitting hashed memory regions to the server and a lower tolerance for false

warnings, as the end-user can only inspect a single instance more closely for possible

malware infection.

Both use-cases have in common that upon completion the TDOIM client com-

ponent can be uninstalled from the affected client machines. Neither installation nor

uninstallation require recompilation or restart of the monitored application.

3.4 Monitoring Partially Swapped-Out Memory Segments

When characterizing a program’s code and read-only data segments as a hash

value, it is important to determine which parts of the code and read-only data segment

to include in the hash. Since at any time some pages of the program’s segments may

be swapped out to disk, the brute force solution would be to first swap all segments

back into main memory and then compute the hash values. However this approach

would be very inefficient, as each swap can be time intensive and displace pages other
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processes may need, triggering further system slowdown. Furthermore, pages on disk

are less interesting as they are currently not in use, by neither the application nor

the rootkit.

To compute hash values efficiently, previous work such as SVV therefore just

computes the hash value of those pages that are currently in physical memory [60].

However this approach may produce false positives, as on different machines different

pages may be swapped out to disk. This results in different hash values even if the

underlying memory contents have not been manipulated.

To distinguish swapped-out pages from manipulated pages efficiently, TDOIM

uses the following multi-level hashing scheme. TDOIM first locates all the pages of

a given program’s code and read-only data sections that are currently in physical

memory and therefore not swapped out. TDOIM then computes the hash of each of

these pages and associates each hash value with the page’s virtual address. Further

TDOIM computes the hash of these hash values. In an initial comparison, the TDOIM

back-end compares these “hash of hashes”. If they diverge, the back-end compares

all component hash values.

Figure 3.2 shows an example of hashing the N pages in virtual address range A

to B. On the left, SVV computes a single hash of all the pages that are currently in

physical memory. On the right, TDOIM first computes the hash of hashes Hash T of

the pages currently in physical memory. If the Hash T values differ, TDOIM compares

the hashes of all pages in physical memory (within A to B) across different systems.

In addition to removing the false warnings of SVV-type approaches, TDOIM’s hash of

hashes technique can therefore also pinpoint the pages that have been manipulated,

if any.
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Figure 3.2. Single-hash of available pages (left) vs. hash of hashes (Hash T) plus
individual page hashes Hash#1 to Hash#N (right). .

3.5 Monitoring Dynamically Loaded Code

At any given time two instances of an application may differ in the libraries they

have loaded. This may happen when the two instances solve different tasks, each of

which may require its own libraries. So if I would map an entire application to a

single hash value, this again would lead to false warnings, as different libraries lead to

different hash values. For example, the two applications instances in Figure 3.3 have

not been manipulated. But they yield different hash values (Hash T1 6= Hash T2),

as only one of them has loaded the benign lib2.so dynamic library.

While the Figure 3.3 problem could be resolved with the Section 3.4 two-level

hashing technique, dynamically loaded code may also be placed at different virtual

addresses across instances. For example, if one instance has loaded L1 before L2, but

another instance has loaded L1 after L2, then the libraries are likely placed at different

virtual addresses. In this case both the hash of hashes value and the page-level hashes

of the two instances would differ, even though there is no rootkit manipulation.
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Figure 3.3. Two application instances yield different “hash of hashes” values (Hash T1
6= Hash T2), as only one has loaded the benign lib2.so dynamic library..

To distinguish such cases from rootkit attacks, TDOIM associates each page

hash with the name of the segment the page belongs to. TDOIM also computes one

hash per segment. This way, TDOIM can quickly compare segments across machines

and locate manipulated pages, even if different libraries are loaded or they have been

loaded in different orders. For example, the two application instances in Figure 3.3

have different hash of hashes (Hash T1 6= Hash T2). TDOIM thus compares the seg-

ments’ hashes (.text, libc.so, ld.so, benign lib1.so, and benign lib2.so) and identifies

benign lib2.so as an outlier.

Figure 3.3 is also an example of a false warning, since in this example be-

nign lib2.so is a benign library. However a real-world TDOIM setup has likely more

instances than the two shown in Figure 3.3. Such a benign library is therefore typ-

ically running on a larger number of application instances. Since rootkits typically

spread relatively slowly across machines, TDOIM has a time window in which a

rootkit is only present on a relatively small number of machines. Thus TDOIM uses

a configurable threshold value (by default 10%). An occurrence above the threshold
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indicates a benign library, whereas a below-threshold occurrence indicates a rootkit

infection.

3.6 TDOIM Agent’s Attack Surface

The TDOIM client-side component is designed to have a minimal feature set

and therefore a minimal attack surface. Specifically, TDOIM’s client-side agent calls

APIs and macros only to access and hash memory, manipulate strings, communicate

via the network, and perform OS-level synchronization.

As a concrete example of TDOIM agent’s small footprint, Appendix A lists

all OS functions called by TDOIM’s prototype implementation for recent versions of

Linux.

3.7 TDOIM’s Server Component

At a high level the server’s main tasks are communicating with TDOIM’s client-

side agents and dealing with the hashes it receives from these clients. To keep the

attack surface of TDOIM’s clients as small as possible, the server also takes on such

tasks as keeping track of all participating machines, initiating client-server communi-

cation, and deciding random communication intervals.

After sending a request to its clients, the server waits for a configurable duration

for client responses (5 seconds by default). If the server only receives partial (or no)

hashes from some clients, it sends another request to these systems. If a client does

not respond to server requests for a long time (e.g., 10 requests), the server produces

an alert. This alert indicates that the client is shut down, has a network problem, or

is possibly under malware attack.
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For each participating client, the server aims to maintain at least two hash

values, the current and the previous one. So after the defined time interval has

passed, the server compares the hashes it has received.
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CHAPTER 4

TDOIM IMPLEMENTATION

To evaluate TDOIM, I have implemented its main components as prototypes

for the Linux platform. This section describes key implementation details that allow

an initial empirical evaluation.

The goal of this implementation is not to provide a highly efficient and secure

large scale distributed software. So the prototype implementation is missing advanced

features such as failure recovery, security and authentication, high availability, scal-

ability and performance management. As an example, my implementation does not

actively prevent denial of service attacks on the server component. Addressing these

issues is part of future work.

4.1 TDOIM’s Client-Side Agent

The TDOIM agent is a kernel module and therefore has full access to the user

system’s memory. When the agent starts executing it creates a single-threaded work-

queue [61] that listens to a predefined port and operates based on the commands it

receives from the TDOIM back-end.

4.2 Obtaining Virtual Address Ranges in the Agent

To obtain the virtual address range of Linux kernel code and read-only data,

existing rootkit detection and protection tools consult the Linux kernel’s symbol

table [20, 62], which is stored in the system.map file. As usual, for each kernel
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function and variable the symbol table maps between name and address. However

this approach does not work if the kernel uses run-time address randomization [63, 64].

Instead, memory dumping tools traverse the I/O memory resources to find the

kernel code’s physical address range [65]. The Linux kernel keeps track of the I/O

operations that occur within the address range of physical resources such as RAM.

For the OS the RAM’s child resources include kernel code, data, and uninitialized

data sections (bss). However this approach does not work for the kernel’s read-only

data.

To obtain the virtual address range of Linux kernel code and read-only data,

even under run-time address randomization, TDOIM calls the well-known kallsyms

function. The kallsyms function extracts all symbols (e.g., functions and variables)

from the kernel and is therefore commonly used by Linux debuggers. The resulting

file maps between symbol address and name. For instance, a developer can use this

file to extract the entry point address of an internal kernel function within the OS’s

virtual address space.

In most Linux distributions kallsyms is available. The TDOIM agent thus calls

kallsyms to extract the address of the symbols that mark the start and end addresses

of the kernel code and read-only data segments ( stext, etext, start rodata,

and end rodata).

Outside the kernel, TDOIM extracts code and read-only data address ranges

by traversing the kernel’s data structures in the kernel’s heap. For example, the Linux

kernel maintains linked lists of all processes (task struct) and drivers (module struct)

and TDOIM interprets them to find the required virtual address ranges.

Specifically, TDOIM traverses the above heap structures to identify each seg-

ment or virtual memory area (VMA) of the kernel, each kernel module, and each

user-mode process. Figure 4.1 shows an the memory layout of the APP1 example
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VM#1 : APP1 (.text)

VM#2: APP1 (.data)

…

VM#J: benign_lib1 (.data)

VM#I: benign_lib1 (.text)

…

VM#X: malware_lib (.text)

…
Malware VMA with executable flag

Figure 4.1. Address space of the APP1 example application, including the APP1
executable and several dynamically loaded libraries. .

process, which contains several VMAs. TDOIM checks if a VMA is flagged as exe-

cutable, which indicates a code segment.

4.3 De-Relocating Virtual Addresses for Hashing

Kernel modules and shared libraries can be loaded in any order and therefore at

different addresses in a virtual address space. Within such code the compiler thus has

to express some addresses relative to an assumed base address. To address this issue,

recent user-level libraries mostly use position independent code (PIC). PIC adds a

level of indirection and replaces addresses in the code segment with a lookup of the

actual virtual target address. The lookup is placed in the (writable) data segment

and is therefore not hashed by TDOIM. If a library is compiled to PIC it will therefore

yield the same TDOIM hash value regardless of where it is loaded.

29



Instead of position independent code, kernel modules and legacy user-level li-

braries use the traditional technique of load-time relocation. When loading such code

the operating system fixes the code’s base address and replaces (“relocates”) each

relative virtual address with the then-known absolute virtual target address. After

relocation, the same library or kernel module may therefore contain different (abso-

lute) virtual addresses on different machines, which would yield different hash values

for the same piece of code.

A straightforward solution to this problem would be to find all such addresses

in kernel modules and legacy shared libraries and replace them with zero. While this

approach would ensure equal hash values for different relocations, it may also produce

false negatives if a rootkit only manipulates such addresses.

To address this problem, TDOIM “de-relocates” addresses for hashing. For this

task TDOIM leverages the segments’ virtual address ranges obtained in Section 4.2.

TDOIM replaces each absolute virtual address that points to a library with the cor-

responding relative virtual address. Specifically, for each absolute virtual address,

TDOIM determines the library and memory segment the address points to and sub-

tracts from the address the segment’s base address, thus yielding the de-relocated

address.

To find addresses in a library, TDOIM customizes the Distorm disassembler [66],

which supports 32-bit and 64-bit Intel processors. Distorm provides convenient access

to opcodes and operands via its decomposer feature. While Distorm contains some

Linux header files that can only be used in user space it is written in POSIX C

(without using OS-dependent APIs). I could thus remove user-mode specific header

files from Distorm and use it in TDOIM’s kernel agent.
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4.4 Hashing Physical Memory

With the virtual addresses de-relocated, hashing the physical Linux kernel mem-

ory pages is straightforward as the kernel makes sure that its code and read-only data

are in contiguous physical addresses and are never swapped out. So the TDOIM agent

takes the virtual address ranges obtained in Section 4.2 and maps them to physical

addresses via standard kernel APIs.

Outside the kernel, however, obtaining the physical addresses is more interest-

ing. Regarding the addressing limit in X86, 32 bit architectures, not all memory-

resident pages of user-mode and kernel-mode applications (HIGH MEMORY pages)

are mapped [61] into virtual address space. That means there is no virtual address

dedicated for unused pages of applications. However, since these pages are not used

by any application, these pages are maintained in page cache as candidates for swap-

ping to disk for the cases in which the number of pages in physical memory exceeds

a particular limit. To solve this issue and obtain the hashes of all pages belonging to

an application, TDOIM reads those pages directly from the page cache.

The current implementation uses the MD5 hashing algorithm. MD5’s trade-offs

are well-known, it is fast but has a non-zero chance of hash collisions [67]. Picking

instead a stronger hash-function such as SHA-2 or SHA-3 would lower the chance of

such hash collisions.

4.5 Sending Hashes to the Back-end

Each TDOIM agent has a unique TDOIM identifier. In the current implemen-

tation this identifier is fixed and assigned before the TDOIM agent is installed. The

TDOIM agent produces one message to send the hashes to the back-end application.

Every message contains the user system’s TDOIM identifier and the names of kernel,
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kernel extensions, and applications, followed by their respective 16 byte MD5 hashes.

TDOIM names the hashes of the kernel “kernel code” and “kernel data”.

As mentioned earlier, TDOIM sends the hashes of loaded libraries or injected

code separately from the code segments of user-mode applications. Thus, after in-

cluding the hash of text segment of a process, TDOIM writes names and hashes of

loaded libraries or injected codes.

4.6 TDOIM’s Back-End Application

In the current prototype implementation, the back-end is a C++ user-mode

application that contains STL data structures to maintain the information about

each user system and the hashes of OS and applications. For each user machine

that is booted and connected to the network, the back-end creates an object called

MA INFO. The MA INFO contains a member as a dedicated name to user machine

and the data structures that maintain the name and hashes of OS, user-mode and

kernel-mode applications.

In the current prototype implementation all communication is performed via

UDP. This is however just an implementation choice and could be replaced with other

protocols. To communicate with clients, the server uses non-blocking sockets.
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CHAPTER 5

TDOIM EVALUATION

In this chapter, I provide some research questions and conduct several experi-

ments to evaluate the effectiveness of TDOIM approach for rootkit detection.

5.1 Research Questions

To evaluate TDOIM, I ask if TDOIM presents a promising path toward online

rootkit detection in legacy applications. This question has two main facets, runtime

overhead and true vs. false positives. While also interesting, true and false negatives

are less relevant than true and false positives, since rootkit detection is heuristic in

nature and TDOIM can be combined with other rootkit detection approaches. I

therefore investigate the following three research questions (RQ), expectations (E),

and hypotheses (H).

• RQ1: Does its runtime overhead preclude TDOIM from detecting rootkits online

in legacy applications?

– E1: I do not expect TDOIM to be applicable for all legacy application

settings. A key reason is that TDOIM performs a relatively expensive

analysis to compare kernel addresses across clients that may differ due to

their code load order and their OS’s address space layout randomization.

– H1: TDOIM can be useful in legacy application settings in which client

machines still have significant available computational resources.

• RQ2: Does its false positive rate preclude TDOIM from being used in produc-

tion?
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Table 5.1. Rootkit subjects run either in user (u) or kernel (k) mode; KV = Linux
kernel version; CPU = 32 vs. 64 bit; Loc = main memory (m) vs. disk (d).

Rootkit KV CPU Loc Attack
LD PRELOAD u 3/2.6 32/64 m Exchange libraries
Jynxkit u 2.6 32 m Exchange libraries
Patch dynamic loader u 2.6 32 d Inject code
Attach to process u 2.6 32 m Divert execution
Syscall hooking k 3 64 m Change kernel data
Suterusu k 3 64 m Change kernel code

– E2: Since disassembly of x86 binaries is undecidable and likely to produce

erroneous results, I cannot expect zero false positives.

– H2: TDOIM’s false positive rate is typically greater than zero but on

average can remain below 10%.

• RQ3: Can TDOIM detect common types of kernel and user level rootkit at-

tacks?

– E3: I expect TDOIM to detect common types of kernel and user level

rootkits online in legacy applications.

– H3: TDOIM can detect common types of kernel and user level rootkits

online in legacy applications.

5.2 Subjects: Kernel and User Level Rootkits

Table 5.1 lists the rootkits used in the experiments. They are a mix of third-

party samples and my own development. The rootkits operate both in user and

kernel mode and manipulate both disk contents and main memory. The rootkits

perform a variety of attacks—they exchange libraries, inject code, divert execution,

and change both kernel code and data. Following is a high-level description of each

rootkit, together with how TDOIM is expected to detect it.
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5.2.1 Exchanging Libraries via LD PRELOAD

In this approach the rootkit exchanges the program’s libraries with alternative,

malicious libraries, for example, to divert the system calls issued by a user-mode

application. To make a system call, the application would normally call a function in

the C standard library libc. However this rootkit can divert some or all such function

calls to a malicious library that is loaded in the application’s process.

To divert function calls, the rootkit changes the order in which a process loads

libraries. To change the load order, the rootkit sets the LD PRELOAD environment

variable of a new process. Linux loads the libraries listed in LD PRELOAD before

all other libraries, even before libc. As an example implementation of this rootkit, in

this experiment I set LD PRELOAD to divert the execution of the open file system

call to a malicious open file function implemented in my injected library. I expect

TDOIM to detect this rootkit by comparing the hash code of two program instances,

which will differ due to the different loaded libraries.

I evaluate the effectiveness of TDOIM for rootkit detection using the following

scenarios. First, the open file API is replaced by a new open file function which

returns NULL when it is called by the standard Linux (user-level) cat application.

Second, if a file scanner application (e.g, an anti-virus) attempts to open a malicious

file which malware has dropped in a victim system, the new fake open file function

returns NULL. Otherwise, it invokes the original open file in libc. Therefore, malware

can prevent the file scanner from opening the malicious file for scanning.

5.2.2 Jynxkit: Exchanging libraries via ld.so.preload

In addition to the process-specific LD PRELOAD environment variable of Sec-

tion 5.2.1, Linux also checks the contents of the /etc/ld.so.preload file for user-level
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libraries that should be loaded before libc. Manipulating this file therefore changes

the library load order of all future user-mode processes.

In this experiment I run the third-party Jynxkit rootkit. Jynxkit adds its mali-

cious ld poison.so library to ld.so.preload and thereby diverts several system calls in-

cluding open, opendir, fdopendir, readdir, unlink, xstat, fxstat, and lxstat. Jynxkit

remains undetected by several common anti-rootkit tools, because they only detect

library injection attacks via LD PRELOAD.

5.2.3 Patching the Standard User-Mode Program Loader

To influence how the OS starts all future user-mode program executions, the

ld.so.preload approach of Section 5.2.2 leaves the OS binaries intact. But a rootkit can

also directly rewrite on disk the binary file of the OS’s standard ld-linux.so dynamic

user-mode program loader.

A proof-of-concept implementation of this approach is available [68]. This

rootkit adds malicious shell-code to the loader binary on disk. This patched loader

sets the entry point of a to-be-loaded program to some malicious code. The loader

also adds code that after the malicious code execution transfers execution to the pro-

gram’s originally intended benign entry point. I obtained the rootkit’s source code

and use it to inject code into the cat application.

5.2.4 InjectSO: Diverting Process Execution

The previous attacks of Sections 5.2.1 to 5.2.3 manipulated future processes.

Instead, this attack uses an OS’s standard support for debuggers to attach to a

process that is already executing and divert the processes’s execution [69]. This

type of attack typically diverts execution to the OS’s loader and dynamically loads a
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malicious library. The attack then changes some of the program’s function pointers

to divert function calls to the just injected malicious library.

Since Linux does not provide much library support for this kind of rootkit,

implementing this attack is harder on Linux than on Windows. However I obtained

the source code of the InjectSO rootkit prototype implementation. I thus injected

into the address space of a running standard Linux cat application a malicious library

that prints a message in the terminal.

In this type of attack, TDOIM notices that the cat instances running on different

machines produce different hash values. The different hash values point to cat’s code

segment, which differs across machines due to the rootkit.

5.2.5 Hooking the System Call Table

A common rootkit technique first locates kernel data structures such as the

system call table that point to important system functions. By changing the pointers,

attackers can divert or “hijack” system calls to malicious code. In other words, these

rootkits hijack the kernel execution without changing any kernel code.

In this experiment I used the implementation of the Linux syscall hooker [70]

to divert system calls. For this rootkit I expect TDOIM to detect a difference in the

kernels’ read-only data segments.

5.2.6 In-line Function Patching with Suterusu

While the Section 5.2.5 rootkit changes kernel control-flow without changing

any code, a rootkit can of course also directly change the kernel code to change its

control-flow. For example, in in-line patching a rootkit may overwrite a function’s

prologue with a jump to malicious code and thereby divert kernel execution [39].
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I evaluate the effectiveness of TDOIM against the proof-of-concept Linux kernel

in-line patching rootkit Suterusu [71]. I expect TDOIM to notice a changed hash value

of the code segment that contains the patched function.

5.3 Experiments

To explore the research questions I conducted a few small experiments. While

limited, these small experiments provide interesting preliminary insights into the re-

search questions. Specifically, I set up a testbed of 20 user systems and installed a

TDOIM agent in each user system. These 20 user systems communicated with one

TDOIM server instance.

For the scope of this dissertation I assume high-speed connections between

server and clients, as it is typically found within a local machine. While this choice

does not capture many legacy application installation scenarios, it is still valuable as

a baseline for future experiments and approximates the setup of some legacy appli-

cations.

I further focus the experiments on a baseline via the following experimental

choices. First, I run the same version of each application and each kernel module

on each client. Second, for these experiments I do not explore situations in which

applications dynamically load a large number of libraries during the experiments. On

the other hand I do not prevent applications from loading libraries.

All components were hosted on the same physical machine. Each user system

ran on an Ubuntu Linux VMWare VM with kernel versions 2.6 or 3, 32-bit or 64-

bit Intel processor, and 515 MB RAM. The TDOIM server ran on a 64-bit Ubuntu

VMWare VM with a version 3 kernel and 4 GB RAM. The host system was Debian

Linux running on a 2.33 GHz Xeon machine with 32 GB RAM.
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Table 5.2. Breakdown of TDOIM’s average runtime overhead; Loc = TDOIM client
(c) vs. server (s).

TDOIM activity Target Loc Slowdown (%)

Hash user-mode app c 8
Hash kernel code/data c 3
Hash + de-relocate kernel modules c 20
Compare hashes 20 VMs s 15
Log MA INFO 20 VMs s 42

The server and each client used their Ubuntu OS in its default installation and

configuration. This meant that runnning in each OS were 100 user-mode applications

and 41 kernel modules.

For each rootkit detection experiment, I divided the 20 user systems into two

groups. Within each group, each user system has an identical configuration, i.e., the

same hardware and OS configuration. For each experiment I further infected between

one and three VMs with a given rootkit.

5.3.1 RQ1: TDOIM’s Runtime Overhead

To evaluate the performance of the TDOIM agent, I measure how much time

it takes to compute the page hashes of user-mode applications and kernel data and

code. For kernel modules, I measure the overhead of page hashing and de-relocation.

To evaluate the performance of the TDOIM back-end application, I calculate

the overhead of comparing hashes of the kernel and 141 applications (100 user-mode

applications and 41 kernel modules) over 20 virtual machines. Also, I customize the

back-end application to produce the log of hashes for each virtual machine and I

measure the overhead of the log producing task.

Table 5.2 summarizes the measurements. The table contains two kinds of slow-

down numbers. The server (s) slowdown measurements represent a given task’s slow-
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down of the TDOIM server component. The client (c) measurements are slowdown

of the monitored application.

As a baseline for the server measurement, the biggest overhead (42% slowdown)

was logging the hashes received from the clients to disk. This task is only turned on

when debugging the TDOIM server component. Comparing the hash values resulted

in a 15% slowdown. On the client side, the sum of all TDOIM tasks lead to a

slowdown of 31% of the monitored client application. While this is a non-negligible

slowdown, it is still feasible for many application scenarios. The TDOIM prototype

implementation could also be further optimized, possibly leading to smaller slowdown

numbers.

5.3.2 RQ2: TDOIM’s False Positives

To explore research questions RQ2 and RQ3 I carefully analyzed each TDOIM-

produced alert. Specifically, I dumped the pages that yielded different hash values on

different clients. I then manually analyzed the pages to determine if different hash

values were caused by a rootkit.

A false positive occurs when TDOIM produces an alert about different hash

values from two or more client agents that are not caused by a rootkit manipulation.

Such false positives could occur for different reasons, such as errors in my TDOIM

prototype implementation. For the experiments I expect these false positives to stem

from the insufficient reverse engineering of memory addresses in client side kernel

modules.

Indeed, during the experiments all of TDOIM’s false positives came from kernel

modules. Recall that kernel modules are relatively challenging to handle due to the

OS’s address space layout randomization and possibly different module load order.
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Table 5.3. The 7 kernel modules that produced false alerts and their number of pages;
FH = false hashes; FP = false positives.

Kernel module Pages FH FP (%)

e1000 22 3 13.6
vmwgfx 18 2 11.1
ttm 11 1 9.0
drm 33 1 3.0
bluetooth 55 3 5.4
rfcomm 9 1 11.1
psmouse 16 2 12.5

All 41 modules 314 13 4.1

Of the 41 kernel modules running in the standard 64 bit Ubuntu 12.04 LTS

installation, I received in the experiments false positives on 7 kernel modules. These

false positives are summarized in Table 5.3. For example, the e1000 kernel uses

22 pages for its code and read-only data sections. The size of each page is 4kB.

TDOIM received conflicting hashes and thus false warnings on 3 of these 22 pages,

which corresponds to a 13.6% ratio. Across all 314 pages of the 41 kernel modules,

false warnings occurred in 13 pages or 4.1% of pages.

5.3.3 RQ3: TDOIM’s Rootkit Detection Performance

Besides false positives, the experiments also produced many true positives. That

is, in each experiment, TDOIM successfully pinpointed the VM, application, and page

that were infected by a rootkit, both at the user and kernel level.
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CHAPTER 6

TDOIM LIMITATIONS AND DISCUSSION

In this chapter I examine the limits of my current threat model (and therefore

of TDOIM) and discuss how these limits could be addressed in future work.

6.1 Stack: Return-Oriented Programming (ROP)

Not covered by the threat model are stack manipulations. A well-known ex-

ample stack manipulation is return-oriented programming (ROP), in which attackers

hijack the application control flow without code injection [72, 73]. A ROP attack

instead overwrites an application’s stack.

Detecting ROP attacks with TDOIM would require monitoring and comparing

the execution control-flow of applications across different machines, which is part of

the future work. Moreover, several other approaches mitigate ROP attacks by mon-

itoring the control flow or via compiler-level approaches for building less vulnerable

binaries [74, 75].

6.2 Kernel Heap: Attacks on Dynamic Data Structures

Also not covered by the threat model are manipulations of dynamic data struc-

tures in the kernel’s heap such as direct kernel object manipulation (DKOM). The

most common DKOM attack is manipulation of the linked lists the kernel uses to

keep track of kernel modules and processes, to hide the presence of malware in the

victim system.
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While TDOIM does not detect such heap manipulations, many real-world at-

tacks use DKOM only to hide their presence. In addition, such attacks rely on

rootkits covered by the threat model to attack applications. TDOIM can thus detect

such combined attacks, even if their traces are hidden via DKOM.

6.3 Potential Attacks on TDOIM

Similar to related tools, if malware is aware of the TDOIM agent on the victim

systems, malware can attack the TDOIM agent or intercept its network communi-

cation with the back-end. Standard approaches could be added to protect TDOIM

from such attacks such as binary obfuscation, hiding the TDOIM agent, or hiding its

network communication.

On user systems that have TPM, I could also extend TDOIM to run securely

even during a malware attack. Such an extension could be built using Flicker [76].
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CHAPTER 7

MIXED-MODE MALWARE AND SEMU ANALYSIS REQUIREMENTS

At a high level, mixed-mode malware runs in two phases. (1) In phase one,

a (typically kernel-mode) malware component modifies a part of the OS kernel, i.e.,

kernel code, kernel data, or both. (2) In phase two, a (typically user-mode) malware

component executes the main malicious payload. There are three key ideas behind

these phases.

The first key idea is that the payload reads modified kernel data or invokes

modified kernel code. The semantics of the executed payload is thus determined by

the success of the phase 1 kernel manipulation attempt.

The second key idea is that a malware analysis can only observe the main

malicious payload behavior if the phase 1 kernel modification attempt succeeds. If

the phase 1 attempt did not succeed, then the phase-2 payload may amount to benign

behavior or a different malicious behavior.

The third key idea is that the phase-1 kernel modification may also lead current

malware analysis tools to incomplete or inaccurate analysis results. Mixed-mode

malware thereby effectively prevents malware analysis with current tools.

As other malware, mixed-mode malware has various implementation options.

Phase-1 can be carried out by a kernel-mode component that has been deployed by

either a user-mode component or by a user-mode dropper application. But it may

also be triggered from a user-mode component via a zero-day kernel exploit which

manipulates kernel structures. Similarly, phase 2 is typically carried out by a user-
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mode component, as it is more convenient for malware writers. But phase 2 could

also be implemented by a kernel-mode component.

More formally, the state of the kernel at time T consists of code CT and data DT .

Phase 1 performs operation M to manipulate the original kernel code CO and data DO,

yielding CN and DN , or M(CO, DO) = (CN , DN). If the manipulation succeeds then

CN is the manipulated code CM and DN is the manipulated data DM . In the new

system state, phase 2 executes a sequence of operations U , which invoke CN and read

DN . The main malicious payload behavior, operation P, is the sequence of commands

executed with successfully manipulated kernel data and code, U(CM , DM).

U(CN , DN) =


operation P if CN = CM ∧DN = DM

operation X otherwise;X 6= P

Optionally, operation M may also attack an inside-the-guest VMI component

of a malware analysis A. In this case the analysis produces an incomplete, incorrect,

or misleading report if M succeeded. Since the malicious payload is only observable

if M succeeds, analysis A is not effective for analyzing such mixed-mode malware.

In the following I describe concrete mixed-mode malware examples that cannot

be analyzed by current malware analyses. We present these examples in a minimal

style for ease of exposition. The examples are minimal in the sense that each example

exploits one weakness of one kind of current malware analysis technique. However

these examples could be combined into integrated, comprehensive malware attacks

that cannot be fully analyzed by several or all current malware analysis techniques.

7.1 Misleading User-Only Analysis

This section describes how mixed-mode malware can mislead user-only analysis,

regardless of where the analysis performs VMI. These techniques thus affect both in-

guest VMI such as Anubis and outside-the-guest VMI such as Ether. The high-level
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idea is to modify those guest OS kernel entities in phase 1 that the phase 2 malicious

payload uses. Since kernel modifications are outside the scope of a user-focused

analysis, the analysis misses the true semantics of the malicious payload.

… 
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Mal.exe KTHREAD  
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Syscall 
lookup 
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… 

Figure 7.1. Example malware misleading Ether’s user-only VMI; box = data;
oval = function; solid arrow = attack; dashed arrow = original pointer; bold dashed
arrow = manipulated pointer; gray = corrupted; P = system call A parameter values;
P’ = system call B parameter values. .

Figure 7.1 shows the main steps of misleading user-only analyses such as Anubis

or Ether. (1) First the user-mode malware Mal.exe installs a rootkit (a kernel-mode

component). The rootkit creates a fake system call table that contains pointers to

itself instead of to the standard operating system services. (2) Then the rootkit
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overwrites the pointer (within the KTHREAD object of Mal.exe) the operating system

uses to find the address of the system call table with the address of the fake system

call table.

(3) Each time Mal.exe calls system call A the operating system will now (4) fol-

low the pointer to the fake system call table. (5) The OS thereby directs the control-

flow to the rootkit instead of the original OS service. (6) The rootkit adjusts the

input parameters to system call B and invokes the corresponding OS services. (7) Af-

ter executing the invoked system service, the rootkit adjusts the return values to the

original system call and (8) returns the results to the user-mode malware component.

Since a user-only analysis logs system calls at the interface between user- and

kernel-mode, it will log the system calls as they are issued by Mal.exe. If the kernel

modification succeeds, the analysis will log a sequence of system calls that differs from

the actually executed system calls.

If the kernel modification does not succeed then an analysis tool cannot observe

the main malicious payload, as the system call table will not point to the malware-

created one. The commands executed by Mal.exe thus lead to system calls that differ

from the malicious payload.

7.2 Misleading Kernel-Only Analysis

This section describes how a mixed-mode malware sample cannot be fully an-

alyzed by a kernel-only analysis, regardless of where it performs VMI. The malware

sample thus affects both in-guest and outside-the-guest VMI. We are not aware of

any current outside-the-guest VMI kernel-only analysis systems. But dAnubis is a

well-known in-guest VMI kernel-only system [77].

The Stuxnet example malware does not load any malicious kernel-level code and

is thus not tracked by a kernel-level analysis tool such as dAnubis. Instead, Stuxnet
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Figure 7.2. Stuxnet kernel exploit; box = data; oval = function; white = original;
gray = corrupted..

runs in user-mode. To obtain administrator access to the victim system, it executes

some instructions (shellcode) with kernel privilege. This attack uses a vulnerability in

the Win32k.sys driver of Windows XP and Windows 2000. Win32K.sys is the driver

that manages the graphical user interface environment, e.g., by dispatching keyboard

and mouse inputs to applications. A Windows user-mode application can create a

custom keyboard layout file and activate it via the LoadKeyboardLayout API.

To hijack the kernel execution, Stuxnet passes a malformed keyboard layout

file as an input argument to a system call. Stuxnet exploits that the kernel does not

check the bounds of an array index that is provided in an user-generated keyboard

layout file.
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For finding the virtual key that corresponds to a keystroke, Win32k.sys obtains

an index into an array from the active keyboard layout file. Win32k.sys gets the

address at the given index and executes the function at this address. The attack

crafts a keyboard layout file that contains an out-of-bounds index such as 5, which

points to C. When interpreted as a function pointer, C points within the range of the

malware’s user-mode address space, which effectively yields control to the malware.

Figure 7.2 summarizes the main steps. (1) The user-mode malware loads a

crafted keyboard layout file by invoking LoadKeyboardLayout. (2) Then it allocates

memory at address C and loads a malicious shellcode into this address. (3) To trigger

the vulnerability, it invokes the SendInput API, which synthesizes keystrokes and

triggers Win32k.sys to use the crafted layout file for extracting the virtual key for

the requested keystrokes. (4) Therefore Win32k.sys reads the value C as the function

address and (5) executes the malicious shellcode at location C with kernel privilege.

To summarize, if the kernel modification succeeds the malware executes code

at C with kernel privileges, untracked by dAnubis. If the kernel modification does not

succeed to provide administrator access for malware code, malware cannot execute

its malicious payload.

7.3 Misleading Inside-the-guest VMI

This section describes how mixed-mode malware can defeat inside-the-guest

VMI, regardless of the scope of the malware analysis. This approach can thus mislead

user-only techniques such as Anubis, kernel-only techniques such as dAnubis, and

whole-system techniques such as those based on TEMU.

Figure 7.3 shows an example malware that can mislead in-guest VMI techniques

such as TEMU’s Module Notifier VMI driver. In Figure 7.3 the main malicious pay-

load is to call service A with certain parameters (step 3). The malware Mal.exe
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triggers this payload only if the previous kernel manipulation attempt in step 2 suc-

ceeds. But step 2 also breaks TEMU’s VMI scheme and thereby renders TEMU

ineffective.

An analyst therefore has two options. She can allow step 2 to trigger the

malicious payload, but this renders TEMU ineffective. The other option is to prevent

the step 2 manipulation, but this prevents the main malicious payload from executing.

In more detail, Dropper.exe first drops the “Function Modifier” rootkit (step 1).

This rootkit manipulates TEMU’s VMI infrastructure (step 2). The rootkit checks the

system call table and internal OS functions and unhooks and unpatches the functions

TEMU uses. Then the rootkit manipulates these functions so they return false results

to TEMU’s VMI driver.

Specifically, the rootkit unhooks the internal OS function MmLoadSystemImage

(Mm1), which TEMU hooks to detect driver loading by malware. The rootkit also

unhooks the OS function ZwQuerySystemInformation (Zw1) of the system call table,

which TEMU uses to retrieve driver module information. The rootkit then hooks Zw1

to point to an alternative malicious implementation Zw1’.

In step 3, the Dropper creates a new process for Mal.exe, which calls Zw1. If the

phase-1 manipulation of step 2 does not succeed, then this results in a notification to

TEMU, but no call to service A. If step 2 succeeds, then this call by Mal.exe results

in the malicious payload and misleading TEMU’s VMI.

7.4 Analysis Requirements

From the threat model and example mixed-mode malware attacks I can infer the

following three requirements for effective analysis of mixed-mode malware. (1) The

analysis must run outside the malware scope. For mixed-mode malware this means

that the malware analysis cannot have any component such as VMI in the guest OS.
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(2) A precise and comprehensive model of both kernel data and kernel code. This

is a common malware analysis requirement. Without such a model an analysis tool

cannot generate a precise and comprehensive log of potentially malicious activities.

(3) Log potentially malicious activities regardless of where they occur. This means

monitoring and logging both kernel-mode and user-mode activities. Such logging

requires identifying which instructions in user- and kernel-mode are run on behalf a

malware component, for example, when the OS performs a requested system call.
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CHAPTER 8

SEMU APPROACH

This chapter describes SEMU’s high-level design concepts. SEMU follows ear-

lier approaches such as TEMU in that it uses virtualization. However SEMU places

all analysis components outside the guest OS and its analysis covers both user-mode

and kernel-mode malware codes. SEMU’s concepts can be implemented in various

ways. To evaluate SEMU I implemented it on top of QEMU. However the concepts

are general and could be re-implemented using other virtualization techniques, such

as various software-based virtual machines or via hardware virtualization extensions.
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Figure 8.1. SEMU architecture and main execution phases: Pre-malware-execution
phase (left) and the malware execution and post-execution log-analysis phases (right).
.
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Figure 8.1 gives a high-level overview of SEMU’s architecture and main execu-

tion phases. SEMU consists of the following four major components. (1) First, SEMU

has a reverse-engineered model of the guest OS. (2) Second, SEMU’s pre-execution

phase copies key OS level elements from the guest OS into SEMU’s shadow mem-

ory (Figure 8.1 left). The right part of Figure 8.1 shows the remaining components.

(3) Malware execution and monitoring keeps SEMU’s shadow memory in sync with

the guest OS and creates a precise log of malware activities. (4) The last component

is a post-execution log-analysis.

SEMU logs and keeps track of both user and kernel events. These events in-

clude system calls, I/O control (IOCTL), calls to functions exported by dynamic-link

libraries (DLLs), and kernel-mode function calls. Such a comprehensive log captures

information flow across the kernel-user divide, such as user-mode code calling a system

call and kernel code branching into user-space code.

Before the VM executes a guest instruction, SEMU decides whether to log the

instruction. When making this decision, SEMU consults a precise and comprehen-

sive memory model of the guest OS. This model is SEMU’s shadow memory, which

includes address ranges of code and data as well as individual data values.

SEMU builds and maintains its shadow memory from outside the guest OS

and thus outside malware’s reach. SEMU builds its initial shadow memory version

by traversing the guest OS memory before malware execution. SEMU interprets

the guest OS memory by consulting its reverse-engineered model of the Windows OS

that includes symbol information (e.g., the layout of all kernel data structures) and

the addresses of kernel functions. During analysis SEMU keeps its shadow memory

updated by keeping track of events in the guest OS that change the kernel data. Such

events include the creation and deletion of kernel objects and writes of kernel object

fields.
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8.1 Reverse-engineered OS Model: PDB

SEMU performs VMI by interpreting the guest OS memory from outside the

guest. To parse the current guest OS memory, SEMU leverages the memory layout

information provided in PDB (program database) files [78]. SEMU uses this approach

because PDB data cover a wide range of kernel data structures in a wide range

of Windows operating systems. While there has been promising recent work on

synthesizing outside-the-guest VMI tools automatically [41, 62, 79], these synthesized

VMI tools do not cover all the kernel data structures that are needed for malware

analysis [41, Section 3A]. In future work I plan to explore integrating such synthesized

VMI tools into the PDB-based approach.

To extract the precise behavior of the malware, SEMU needs to know where

important member fields of OS objects and data structures are. For instance, to

detect the Figure 7.1 malware attempt of changing the system call table, SEMU has

to detect a manipulation of the system call table pointer within the KTHREAD object.

SEMU thus tracks the manipulation of KTHREAD objects including field writes. These

data structure layouts are documented as PDB symbols, together with the name and

offset address of internal kernel-mode functions of the OS and drivers.

The format of data structures and other symbols differs across Windows ver-

sions. To build an accurate model, the VMI plug-in first resolves the guest OS and

device driver version numbers. Then SEMU downloads the corresponding PDB sym-

bols from Microsoft servers.

SEMU differs from the OS reverse engineering of current tools such as Volatil-

ity 1 and Virt-ICE [80]. Volatility is an off-line forensic analysis tool that does not

monitor or log malware actions in kernel- and user-mode. Virt-ICE is an interac-

1http://code.google.com/p/volatility/
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tive debugger but does not monitor kernel manipulations and thus it is not effective

against mixed-mode malware.

8.2 Pre-Execution: Create Shadow Memory

Directly before malware execution starts, SEMU initializes its shadow memory

by copying guest OS code information and data into its shadow memory (Figure 8.1

left). SEMU performs this pre-execution phase before every execution of the malware,

as the guest OS state may change between subsequent malware executions.

Algorithm 1: Main steps of the pre-execution phase.

1 On init event()

2 begin
3 trusted code = phyAddr(kBase, kPE, drvBase, drvPE);
4 fMap = resolve(PDB, kBase, kPE, drvBase, drvPE);
5 dMap = resolve(kpcr pointer);
6 current proc = get cr3 from kprocess(kpcr pointer);

7 end

Algorithm 1 summarizes the pre-execution phase. The algorithm basically ini-

tializes the following four key data structures. First, SEMU infers the address range

of each trusted kernel code component and stores it in trusted code. This includes

ntoskrnl.exe, Win32k.sys, and other basic device drivers such as tcpip.sys and disk.sys.

Subsequent phases use these address ranges to distinguish trusted from non-trusted

kernel code. This step is important as monolithic operating systems such as Win-

dows and Linux operate large amounts of code and drivers in kernel-mode, without

address-space separation to isolate the kernel from possibly malicious code.
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Second, SEMU creates fMap, a detailed list of functions within each trusted

code component. For each function, fMap contains its name and its entry point

address and name of the trusted code it belongs to.

Third, SEMU creates dMap, a detailed structure of key OS objects. dMap

contains the name, address range and field values of many OS-level objects. Finally,

SEMU stores the set of process objects also in current proc.

SEMU retrieves these guest OS data by traversing the large number of OS ob-

jects that are reachable through the x86/x64 segmentation registers FS (x86), GS

(x64). SEMU interprets the guest OS memory using its OS model reverse-engineered

from PDB symbols. When in kernel-mode, the FS/GS register points to a kernel-mode

data structure called kernel processor control region (KPCR). KPCR gives access to base

addresses and PE2 information of both kernel components (kBase, kPE) and drivers

(drvBase, drvPE).

Via KPCR, SEMU retrieves information about both dynamic and static kernel

addresses. A static address does not change during normal OS execution. Example

static addresses include the interrupt table IDT, the system call table SSDT, and

the global descriptor table GDT. Dynamic addresses may change during normal OS

execution. Examples include OS process objects in the OS heap managed by the

kernel’s object manager such as ETHREAD and EPROCESS [78].

A special case of dynamic objects is the list of current processes current proc.

Via KPCR, SEMU extracts the base address of the page directory for each running

process from the KPROCESS object’s DirectoryTableBase field. Subsequent phases

use this process list to track malware processes.

When executing an instruction in user-mode, the FS/GS register points to a

thread environment block (TEB) user-mode data structure. A TEB contains informa-

2http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
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tion about the currently running thread and points to a process environment block

(PEB). SEMU uses the PEB to resolve user-level information about the current process.

PEB also indirectly points to the InloadOrderModuleList list of the loaded

dynamic-link libraries (DLLs) within a process memory. SEMU identifies each of

these DLLs by the LDR MODULE, which includes information about its corresponding

DLL such as the base (start) address of a DLL in the process address space. By using

the base address of a DLL and extracting the offsets of its functions from the export

table in the PE header, SEMU finds the entry point addresses of library functions in

the process memory.

8.3 Whole-System Malware Analysis

When the malware executes, SEMU monitors and logs key events in both user-

and kernel-mode. That is, unlike the user-only tracing common in current tools such

as TEMU, Anubis, CWsandbox, and Ether, SEMU monitors and logs control flow in

the kernel whenever the processor switches to the kernel to serve a malware’s request.

SEMU thereby discovers system call swapping attacks such as Figure 7.1.

To perform whole-system malware analysis the analysis plug-in distinguishes

user-mode from kernel-mode malware code. Address-space separation in user-mode

makes it easy to identify the user-mode malware instructions. But in kernel-mode I

need to monitor and log instruction execution in the following two cases: (1) First,

whenever the processor switches to kernel-mode to execute the request of user-mode

malware (e.g., to perform a system call); and (2) Second, when an untrusted kernel

instruction (injected kernel code or dropped driver module) executes.

Algorithm 2 summarizes how the analysis plug-in enables whole-system moni-

toring and logging. In line 2 the analysis plug-in checks the processor mode and the

value of the CR3 register. (The CR3 value is the base address of the page directory
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Algorithm 2: Whole-system tracing of malware operations.

1 begin
2 if CS ∈ User and CR3 ∈ malware proc CR3 then
3 return trace user;
4 end
5 if CS ∈ Kernel then
6 if phy addr (current instruction) 6∈ trusted code then
7 return trace kernel;
8 else
9 kthread = current user thread (kpcr pointer);

10 if kthread ∈ malware proc then
11 return trace kernel;
12 end

13 end

14 end
15 return dont trace;

16 end

for the currently running process.) If the processor performs an instruction from user

space and the CR3 value belongs to a stored list of page directory base addresses of

the malware process and new processes that the malware has created, the analysis

plug-in enables user-mode tracing. Otherwise, if the processor works in kernel-mode,

the analysis plug-in enables tracing if the current instruction is untrusted (line 6) or

the current KTHREAD object belongs to a user-mode malware thread (line 10).

When tracing is enabled, SEMU provides two main logging options. The low-

level logging option logs each instruction. The high-level option uses the data stored

in the shadow memory to provide a high-level summary in terms of the names and

addresses of both the invoked functions and the accessed data objects. In user-mode,

the resulting log includes library calls, system calls, and IOCTLs. In kernel mode, the

resulting log includes, besides others, the kernel code and data manipulation whenever

an untrusted code attempts to modify a memory location that is included in the
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shadow memory. SEMU thereby detects and logs function pointer hooking attacks

and kernel data manipulations such as DKOM (Direct Kernel Object Manipulation).

For the Figure 7.1 example, SEMU logs any malware system calls from user-

mode in step 1, operations performed by the rootkit in steps 1 and 2, the malware’s

service A system call in step 3, and the rootkit’s execution of service B in step 6.

During malware execution, SEMU keeps its shadow memory in sync with the

guest OS. This is done by the VMI plug-in, which tracks the execution of kernel

functions that load new code or create, modify, or delete objects. SEMU then re-

flects such operations in its shadow memory. The VMI plug-in updates the shadow

memory by adding the addresses of newly created objects and removing the ad-

dresses of deleted objects from the dMap. For this purpose the VMI plug-in moni-

tors changes in the OBJECT DIRECTORY structure after execution of several OS func-

tions that allocate and deallocate memory in the kernel, such as RtlAllocateHeap,

ExAllocatePoolWithTag, ExFreePoolWithTag, and RtlFreeHeap. When malware

overwrites trusted code, SEMU similarly removes the overwritten code range from

trusted code.

8.3.1 Malware Logging

Table 8.1. Kernel execution trace format; EP = entry point; Addr = address;
C = caller; T = target; M = module; D = data; F = member field; Inst = cur-
rent instruction.

Description

E EP addr+name, M name
C C addr+name, T addr+name, T M name, M name
W Inst addr, D addr+name, F name, M name
R Inst addr, D addr+name, F name, M name
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Table 8.1 shows the format of the trace file the analysis plug-in collects from the

kernel during malware execution. SEMU creates this log with information from its

shadow memory, such as addresses and names of functions and objects. E represents

the execution of a function. Whenever a function executes, the analysis plug-in logs

its entry point address and its name (if the VMI plug-in has resolved the name).

Since there is no resolved name for the functions that execute within kernel-mode

malware, the analysis plug-in only writes the address and the name of the malware’s

kernel-mode module or U (untrusted code) for dropped drivers and injected codes.

For each executed control transfer (C) to an address I have in the shadow

memory, the analysis plug-in writes the caller’s address and the module name as well

as the target’s address and the module name. The analysis plug-in traces accesses

(W=write and R=read) within the address range of a kernel object as follows. SEMU

logs all direct writes of kernel data performed by untrusted code. SEMU logs the name

of kernel data and its overwritten field members. SEMU also monitors writes of kernel

data by the memory management functions that malware invokes.

The analysis plug-in also tags manipulated data structures. Whenever a read

operation occurs within a manipulated kernel data structure, SEMU logs which kernel

functions are affected by manipulated kernel data.

8.4 Post-Execution: Log Analysis

In the final step of mixed-mode analysis SEMU’s trace analyzer produces a

human readable report. The report contains name and address of modified kernel

data as well as the internal OS functions that execute after user-mode requests and

the functions that referred to manipulated OS objects.

SEMU contains a trace analyzer application that performs post-execution op-

erations. The post-execution aggregates the collected log, for example, matching
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system calls from user-mode with operations invoked by kernel-mode malware. For

instance, in the Figure 7.1 example, SEMU matches the A call with the invocation

of B, which reveals the malware’s redirection of the system call A to the service B.

To extract the effect of kernel data manipulations in malware behavior, the trace

analyzer compares the traces of malware operations both in presence and absence of

kernel data protection. For this purpose, whenever a malware sample starts execution,

SEMU takes a snapshot of the VM at the original entry point (OEP) of the program.

Then it uses this snapshot to run the sample twice. For the first run, the analysis

plug-in protects kernel data from manipulations of untrusted codes. In the second

round, the plug-in allows the write operations of untrusted code within the kernel

data addresses. Then, it compares the two execution logs and reports the differences.

8.5 Implementation in QEMU

At a high-level, SEMU uses a plug-in architecture. SEMU’s functionality is

packaged in components that plug into a VM such as QEMU. This approach de-

couples SEMU’s analysis from the underlying virtual machine, which provides two

main advantages. First, SEMU plug-ins can be loaded and unloaded dynamically at

runtime to suite the analyst’s needs. Second, all the analysis code that is specific to

the guest OS or specific to a certain OS version is encapsulated within plug-ins. This

architecture makes it relatively easy to support additional versions of the guest OS

or a different guest OS such as Linux.

The two main SEMU plug-ins are the VMI plug-in and the analysis plug-in.

Execution reaches these plug-ins via callback functions. The VM calls these callback

functions before processing certain events such as guest OS system calls, switch-

ing from user-mode to kernel-mode, context switches, and kernel heap accesses. In

QEMU, memory access operations can be monitored by analyzing the semantics of
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x86 instructions. For example, I monitor mov instructions as they can change the

value of a memory region. The x86 language has a vast number of read and write

operations. However I can express the analysis very compactly in terms of QEMU’s

built-in write operation abstractions. QEMU then maps the analysis to all concrete

x86 write operations.

Virtual addresses are easy to infer from physical addresses. SEMU therefore

stores all addresses as physical addresses, which makes it easy to detect cases in which

malware exploits the fact that two different virtual addresses may map to the same

physical address. SEMU currently utilizes QEMU’s built-in functions for converting

virtual addresses into physical addresses.

To monitor read and write operations I customize softmmu codes in QEMU.

QEMU uses softmmu in order to convert the physical addresses of the guest system

to virtual addresses of the host system. This conversion is needed for each read and

write. By hooking into QEMU’s softmmu functions SEMU extracts the guest OS

address being read or written by the current instruction.

To store the kernel data in the shadow memory, the current SEMU implemen-

tation uses the kernel data structure layout definitions of ReactOS3. ReactOS is an

open-source re-implementation of Windows. But the SEMU code uses these ReactOS

layouts only for ease of implementation. That is, I could easily generate these layouts

from the PDB files and will do so for future SEMU versions.

3http://www.reactos.org

63



CHAPTER 9

MIXED-MODE MALWARE SAMPLES

This chapter describes several samples of mixed-mode malware. These samples

serve to evaluate existing and future malware analysis tools.

9.1 Misleading User-Only VMI

This sample implements the Figure 7.1 motivating example attack that evades

analysis by Ether. The sample misleads Ether-style user-only VMI by modifying the

semantics of the system calls invoked by the malware, which leads tools such as Ether

to log system calls that are different from the system calls actually executed by the

malware.

The sample has a user-mode component and a kernel-mode component. The

user-mode component Mal.exe is based on the SDBOT malware. I customized SD-

BOT source code to install our kernel-mode component (Figure 7.1, step 1) and to

make system calls (Figure 7.1, step 3) after the kernel-mode component has modified

the kernel.

Our kernel-mode component (also called rootkit) is a kernel-mode driver pack-

aged as a resource file that changes the semantics of kernel system services. Our

rootkit changes the semantics of the DeleteFile and TerminateProcess system

calls.However a different implementation of our rootkit could easily change other sys-

tem calls.

When the current user-mode thread such as Mal.exe requests a service, the OS

follows the ServiceTable pointer of the current thread’s user-mode KTHREAD object
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to find the address of the requested service (Figure 7.1, step 4). To change system call

semantics, our rootkit manipulates the ServiceTable pointer in the KTHREAD object

of the user-mode Mal.exe process.

For console applications, ServiceTable points to the system calls exposed by

OS image ntoskrnl.exe, via the system call table SSDT. That is, the OS initializes

the ServiceTable pointer once via the internal (non-exported) KeInitializeThread

function to point to the SSDT table.

Our kernel-mode component is somewhat similar to earlier rootkits that operate

in isolation, without a cooperating user-mode component. These earlier rootkits set

the ServiceTable pointer of various threads to the address of a fake SSDT table to

hide the presence of malware processes [81]. Beyond hiding processes, I manipulate

system call semantics to redirect subsequent system calls of Mal.exe in a way that

evades current malware analyses.

9.2 MDL System Call Semantic Modification

This sample differs from Figure 7.1 in that it does not manipulate kernel objects

directly. Instead this sample uses OS memory management functions to access and

modify the system call table.

Figure 9.1 illustrates the kernel-mode component of of this sample. By using

standard functions for memory operations, the rootkit creates a Memory Descriptor

List (MDL)1. A MDL enables the rootkit to map the addresses of the SSDT table and

overwrite its system call pointers.

In the example of Figure 9.1 the rootkit has overwritten the original pointers

for system services A and B with the addresses of the A’ and B’ functions. A’ and

B’ are provided by the rootkit. These rootkit functions check the currently running

1http://msdn.microsoft.com/en-us/library/windows/hardware/ff565421(v=vs.85).aspx
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process and swap system calls A and B only if the current process is the malware

process Mal.exe.

Similar to Figure 7.1 this malware can mislead system call tracing. Similar to

the sample of Section 9.1 we swap the system calls for DeleteFile with CreateFile

and TerminateProcess with CreateProcess. The rootkit adjusts input parameters

(and return values) in functions A’ and B’.

9.3 User-Level Acts on DKOM Attack

This mixed-mode malware sample consists of a user-mode component and a

kernel-mode component. The kernel-mode component is based on the kernel-mode

component of the FU rootkit, which uses Direct Kernel Object Manipulation (DKOM).

The FU rootkit also has a user-mode component but I replace this component

as it only acts as a UI that sends commands to the kernel-mode FU component.

Similar to FU, our user-mode component first installs the kernel-mode component,
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i.e., a kernel-mode driver. Our user-mode component then waits for the kernel-mode

component to use DKOM to hide both malware components. The user-mode compo-

nent then checks if its own process has been hidden successfully and then adapts its

subsequent behavior accordingly.

Our kernel-mode component performs DKOM by attempting to hide both

malware components by unlinking the corresponding EPROCESS and DRIVER OBJECT

kernel-level objects in the list of running processes and drivers. Then the user-mode

malware component enumerates the current running processes in the victim systems

to check if the object hiding attempt succeeded. If the user-mode process is still in the

list of running processes the user-mode component injects its payload as a shellcode

into the SVCHOST program and terminates. Otherwise the user-mode component

continues the execution of its malicious payload.

9.4 User-Level Acts on DKSM Attack

This sample differs from the one in Section 9.3 by replacing DKOM with

DKSM [82]. This sample uses Direct Kernel Structure Manipulation (DKSM) to

swap the image name and process id of the malware process with one of the running

processes.

In the Windows operating system, the process id PID and the image name

ImagFileName are member fields of the EPROCESS process object. To swap the PID

and ImageFileName of the malware process with a running process, the kernel-mode

rootkit accesses the list of process objects by calling the PsGetCurrentProcess func-

tion. The kernel-mode component can traverse the process list using the flink field.

Since a kernel-mode driver such as our kernel-mode component can write all kernel

memory it is then easy to swap the process id and process name of the malware

process with another process.
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Similar to the Section 9.3 DKOM sample, if process manipulation does not

succeed, malware injects its payload into a victim process in user-mode. Otherwise,

the user-mode malware continues execution as a standalone executable.

9.5 Stuxnet’s Kernel Exploit

We used the Stuxnet-based example exploit (CVE-2010-2743) of Figure 7.2

and added a shell-code that performs a privilege escalation attack. The shell-code

escalates the privilege level of the malware process, by swapping the token fields of

the SYSTEM and malware process.

Specifically, the shell-code traverses the list of EPROCESS objects of the cur-

rent running processes, searches for the SYSTEM process, and stores the SYSTEM

EPROCESS token field. It then swaps this token field with the token field of the

malware process.

Such a modification makes the malware process execute with administrator

privileges. The malware can thus freely invoke a range of Windows APIs that are

not allowed for non-privileged users. SEMU effectively detects the execution of the

shell-code as an untrusted code running in kernel-mode and logs the modification of

the token field.

9.6 User-Level Malware Acts on User-Mode Unhooking of Mapped Kernel SSDT

This malware is similar to the Stuxnet sample of Section 9.5 in that it also does

not have a kernel-level component. Instead this malware sample has two user-mode

components. The first user-mode component performs the tasks of a kernel-mode

component, by writing directly into the physical memory pages of the OS kernel.

Such memory mapping techniques are commonly used by malware [83]. Although all
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malware components reside in user-mode, to analyze this malware sample, a malware

analysis tool has to keep track of both kernel-space and user-space memory.

For this sample I assume that the system call table (SSDT) has been hooked

by a malware analysis tool. Our malware sample thus writes into kernel memory to

perform DKOM and unhook the SSDT.

Our first user-mode malware component writes to kernel memory by calling the

Windows Native API cite[84], which is implemented in ntdll.dll. The Native API gives

access to the physical pages of the SSDT table in the kernel, i.e., via the NtOpenSection

and NtMapViewOfSection functions. Our second user-mode malware component then

operates based on the success of the attempted SSDT DKOM manipulation.

Disk ntoskrnl.exe 

ntoskrnl.exe image 

Memory  
(Kernel-mode) 

1. Load original ntoskrnl 

kernel physical page 

proc 1 

proc 2 

2 . Map  
kernel  
physical  
memory  

3. Fix hooked  
SSDT using 

original loaded  
image  4. Unhooking  

successful? 

Y 

N 

Memory  
(User-mode) 

ntoskrnl.exe 

Figure 9.2. Unhooking system call table by a user-mode malware..

Figure 9.2 summarizes the attack procedure. As a first step, (1) the malware

loads the file of the OS (ntoskrnl.exe) from disk into its user-level memory. This

enables the malware to obtain the system service indices from the original SSDT
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table, which has not yet been hooked by other programs such as a malware analysis

or anti-virus software. In step (2), using Native API functions, the malware maps

kernel memory to its own address space. In step (3) the malware compares the

current SSDT with the original unhooked SSDT and fixes the current SSDT in the

kernel memory based on the original unhooked SSDT loaded from disk. Based on the

success of unhooking the system call table, the malware executes either “proc 1” or

“proc 2”.

If a malware analysis tool such as a sandbox for user-mode malware analysis

depends on SSDT hooking for malware analysis then the malware exposes two different

behaviors, depending on the success of the attempted kernel manipulation. First, if

the malware analysis tool protects the SSDT table from being overwritten by malware

it can only analyze “proc 1”. Second, if the user-mode malware unhooks the SSDT

successfully then the analysis tool is ineffective for monitoring the rest of the malware

execution.

When tracing such a sample with SEMU, I run the sample twice. In the first

run I allow the malware to access and overwrite the kernel. In the second run, I

prevent the kernel from being overwritten, either directly by malware or indirectly

by OS functions invoked by malware. This enables SEMU to analyze both malware

behaviors (proc1 and proc2).
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CHAPTER 10

SEMU EVALUATION

To evaluate the SEMU approach of analyzing mixed-mode malware I ask the

following two research questions.

• RQ1: Can SEMU analyze mixed-mode malware that cannot be fully analyzed

by current state-of-the-art approaches?

• RQ2: Is the SEMU execution time competitive with current state-of-the-art

approaches?

To answer these two research questions I first implemented SEMU on top of QEMU

as described in Section 8.5. I then compared the SEMU implementation with the two

tools that are both closely related to SEMU and are fully available for experimenta-

tion, i.e., tools that provide access to their source code. These two tools were TEMU

version 1.0 and the latest available Ether release (version 0.1).

10.1 Analyzing Mixed-Mode Malware (RQ1)

For RQ1, I implemented variations of the motivating examples and analyzed

them on TEMU, Ether, and SEMU. I conducted these malware analysis experiments

on a Debian Wheezy host system running on a 2.9 G.Hz Intel Core i7-3520M processor

machine. The guest OS was Windows XP SP3 with 1 GB RAM 32 bit.

The six malware samples are written in C/C++. Table 10.1 lists the size of each

malware sample in lines of code (LOC). The slowdown numbers in the last column

are the overhead SEMU imposes for monitoring the system and writing the system
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Table 10.1. Results of analyzing six mixed-mode malware samples. Via OS functions
denotes if the malware manipulates kernel entities directly or by calling OS functions;
# = section describing the malware.

# Description Affected Object Via OS functions Kernel LOC User LOC Slow-down

9.1 Modify system calls KTHREAD no 370 1,684 35.3
9.2 Modify system calls (MDL) SSDT yes 417 1,684 38.7
9.3 DKOM object hiding EPROCESS, DRIVER OBJECT no 96 451 28.2
9.4 DKSM renaming EPROCESS no 111 451 20.6
9.5 Privilege escalation EPROCESS no 0 149 25.2
9.6 User-mode unhook SSDT yes 0 710 29.1

log during malware sample execution. I compare SEMU’s overhead with the overhead

of competing malware analysis approaches in the following Section 10.2.

The samples perform attacks including DKOM, DKSM [82], and hooking, by

manipulating OS objects or data structures such as SSDT, KTHREAD, EPROCESS, and

DRIVER OBJECT. In this comparison SEMU was the only tool that could log all the

events that are necessary for analyzing these attacks.

10.2 Malware Analysis Execution Time (RQ2)

For RQ2, I compared the total execution times of TEMU and SEMU in Ta-

ble 10.2 and of Ether and SEMU in Table 10.3. To summarize, SEMU was faster

than TEMU but slower than Ether. The TEMU/SEMU difference can be explained

by the newer QEMU version used by SEMU. The Ether/SEMU difference is due to

Ether using hardware extensions. However SEMU also works if these extensions are

not available.

10.2.1 SEMU vs. TEMU’s Inside-the-Guest VMI

This section compares the performance of SEMU with the closely related TEMU.

SEMU and TEMU are built on the same QEMU VM architecture. TEMU uses

QEMU v0.9 whereas SEMU uses the newer QEMU v0.14. While the QEMU versions
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differ slightly, I do not expect a big performance difference from these different QEMU

versions.

The main conceptual difference between SEMU and TEMU is the placement

of VMI components (partially in-guest in TEMU vs. outside-the-guest in SEMU).

The main goal of the evaluation in this section is thus to determine if this change of

VMI architecture has a large negative impact on the malware analysis overhead. A

malware analyst may be concerned that the switch from in-guest VMI in TEMU to

outside-the-guest VMI in SEMU incurs a prohibitive performance penalty.

Table 10.2. Performance comparison of TEMU’s (T) inside-the-guest VMI vs.
SEMU’s (S) outside-the-guest VMI using a typical, coarse-grained analysis task (sym-
bol extraction); O/H = Overhead; ListDLLs = ListDLLs -d ntdll.dll.

Subject
w/o VMI [s] Coarse [s] % O/H

T S T S T S
PsGetsid 1.68 0.56 3.44 1.09 105 95
Pslist -t 3.19 1.03 4.69 1.31 47 27
Psinfo -s 5.76 2.88 9.79 4.78 70 66
Coreinfo 1.70 0.65 3.75 1.07 121 63
ListDLLs 3.20 2.58 5.01 3.75 57 45

To compare the performance of in-guest with outside-the-guest VMI, I picked

a typical, coarse-grained analysis task (symbol extraction), and applied it on five

standard programs. Table 10.2 lists both the programs and the analysis times of

TEMU and SEMU. The performance numbers show that SEMU did not incur an

additional overhead over TEMU.

To make this comparison, I re-implemented the TEMU symbol extraction fea-

ture in SEMU, but placed it outside-the-guest with the rest of SEMU. TEMU extracts

the names of processes, modules, and exported symbols from a running Windows sys-
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tem. In other words, it keeps track of which processes have which modules loaded at

which address, and it enumerates the exported symbols from each module.

To perform the comparison, I execute a Windows batch file in the guest OS

that automatically executes and terminates the benchmark applications. The batch

file records the application start and termination time stamps.

The guest system in the experiment is Windows XP SP 3 with 512MB allocated

RAM. The first column of Table 10.2 lists benchmark applications from the Sysinter-

nals utilities1. The second and third columns are average run-time of the applications

in TEMU and SEMU when the guest system runs in its normal state—without VMI.

The next two columns are the average application run-times when VMI is active and

extracts symbols. The last two columns show the overhead of in-guest VMI in TEMU

against the outside-the-guest VMI in SEMU. SEMU exhibited both an overall lower

runtime and a lower relative VMI overhead.

10.2.2 SEMU vs. Ether’s Single-Domain Analysis

This section compares SEMU’s performance with the closely related Ether.

Both tools place their analysis components (such as VMI) outside the guest OS.

SEMU differs from Ether in two key aspects. First, while SEMU is implemented

on a software virtual machine, Ether leverages hardware extensions. I expect this

difference to lead to higher performance in Ether. Second, Ether focuses on a single

analysis domain, whereas SEMU covers both kernel-mode and user-mode. I expect

this difference to further favor Ether over SEMU in terms of performance.

I conducted this experiment to determine if SEMU’s performance remains within

the same order of magnitude as the hardware-accelerated Ether. While hardware ac-

celeration is often useful, not every hardware platform offers such acceleration. So it

1http://technet.microsoft.com/en-us/sysinternals
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is important to have a an alternative such as SEMU that does not have the hardware

constraints of Ether but still provides reasonable performance.

Table 10.3. Fine-grained VMI: Instruction tracing in Ether and SEMU (S). Timezone
is Timezone /g.

Subject
w/o VMI [s] fine VMI [s] Slowdown
Ether S Ether S Ether S

Efsinfo 0.63 2.42 20.54 21.39 32 8
Timezone 0.05 0.79 4.41 13.03 87 16
Whoami 0.03 0.72 4.49 19.83 149 27
UPX 0.32 9.00 45.58 322.60 141 35
RAR a 0.15 3.07 45.16 302.93 300 98

To compare the performance of SEMU to the hardware-accelerated Ether, I

picked a typical fine-grained VMI task, i.e., logging each instruction, and applied it

on the five standard programs listed in Table 10.3. The programs are Windows XP

tools and the command-line version of the popular packing and archiving tools UPX

and RAR. This experiment was conducted on a Debian Lenny domain-0 OS running

on a 2.33 GHz Xeon machine with 32 GB RAM with a 1 GB RAM 32 bit Windows XP

SP2 guest OS.

Table 10.3 also lists the analysis times of SEMU and Ether. SEMU maintains

a reasonable performance when compared to the hardware-accelerated Ether.

I expect SEMU’s performance to improve in future versions, as I have not

yet optimized SEMU for speed. For example, SEMU does not yet leverage QEMU

accelerators such as KQEMU [85] or KVM [86].
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CHAPTER 11

SEMU LIMITATIONS AND DISCUSSION

In the following, I discuss the points of improvement for SEMU.

11.1 Run-time Patching Support

In the experiments I mainly focused on analysis of the mixed-mode malware

samples that attack kernel data. However, in known rootkit samples, attackers employ

run-time patching technique that is overwriting (hooking) internal OS functions which

may not be accessible by function pointers within kernel data. The target in most

of such attacks is a function that reveals some information about the presence of

malicious codes in victim systems. The patched kernel function may not be executed

during analysis of a sample but it runs within kernel context to serve other programs

requests (i.e., antivirus) by providing inaccurate information about system state (i.e.,

hiding an existence of a thread). SEMU is able to detect and log traditional run-time

patching attacks by monitoring write operation of untrusted code within the addresses

in the shadow memory. However, in case of a mixed-mode malware attack, a patched

function may execute during malware execution. Thus, for tracking a patched code

execution, I need to update the shadow memory and remove the addresses which

malware have modified by malware from the function map. I study the usage of

run-time patching technique in mixed-mode malware and its analysis as the future

work.
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11.2 Taint Analysis Capability

In current implementation, for understanding malware behavior, I used combi-

nation of fine-grained (tracking write operations) and coarse-grained (function calls

monitoring) to analyze the mixed-mode samples. For in-dept analysis I need to equip

SEMU with taint analysis capability which enable us to track effects of sensitive in-

formation such as network input or function parameters in whole system information

flow and mixed-mode malware execution. For instance, a malware sample can be

written in a way that different input parameters for an API lead to execution of

two different kernel-mode functions. Therefore, for in-depth analysis of the behavior

adjustment feature in mixed-mode malware, I aim to apply taint analysis techniques.

11.3 Security Applications

In this dissertation, I used SEMU for malware analysis. As a future work,

my goal is to customize current framework as a suite for other security applications

such as rootkit detection, prevention and removal. For such purposes, in order to

build an accurate reverse-engineered model of the guest OS, I may need to develop a

technique that detects the presence of a malicious program in the guest system an also

distinguish the clean state of a guest OS from the state that has been manipulated

by an unwanted program.

11.4 Analysis Speedup.

In building the current prototype, I did not employ any technique to speed

up the binary translation overhead in QEMU. However, since the analysis approach

does not require any specific configuration from the virtualization software, by usage

of accelerators (i.e., KQEMU [87]) or hardware virtualization technology such as
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KVM [86] or Xen, I will be able reduce the analysis overhead. By building the

prototype on top on QEMU, I were able to evaluate the effectiveness of the outside-

the-guest VMI over in-guest VMI used in TEMU. At time of the experiment, TEMU

was the only available tool that provided more semantic information from the guest

OS.

11.5 Handling Anti-emulation Attacks

Malware authors attempt to evade analysis in virtual machines by writing the

codes that crash or behave differently in presence of virtual hardware. These at-

tacks mainly rely on inherent differences between virtualized hardware and real ma-

chines [88]. SEMU is not effective against such attacks. However, there are several

approaches in the literature that have been previously proposed some techniques to

mitigate such attacks [43, 88].

11.6 Execution Paths Coverage

Although the dynamic analysis techniques are powerful to extract malware be-

havior, they suffer from some limitations. One of the main limitations of the dynamic

analysis is code coverage. That is, not all the code paths may execute when a piece

of malware runs. Moreover, malware writers can embed a large loops of junk instruc-

tions into their codes in order to slowdown or foil the analysis. Thus, regarding such

limitations, getting a complete log of all malicious activities of a mixed-mode malware

still remains an open problem for this study. However, researchers in previous works

provided some techniques to get better code coverage [56, 89].
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11.7 Defending Against Obfuscated Malware.

Malware writers take advantage of obfuscation techniques such as packers or

self-modifying codes to defeat malware analysis. Several countermeasures have been

discussed in prior studies [90, 33, 91]. Current version of SEMU does not support

obfuscated code analysis.
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CHAPTER 12

CONCLUSION

In this dissertation, I explore the limitations of current malware detection and

analysis techniques. In order to address the problems of the current techniques, I

propose TDOIM and SEMU.

TDetecting rootkits in legacy applications poses several challenges in practice.

Existing anti-malware techniques do not fully meet all these challenges. To bridge

this gap, this paper introduced a Tiny Distributed On-demand Integrity Monitor for

legacy applications (TDOIM). With a tiny footprint and therefore attack surface on

the monitored machines TDOIM enables instant rootkit detection for legacy appli-

cations. Unlike existing techniques, TDOIM also also does not require virtualization

stacks or special hardware. To evalute TDOIM, I implemented TDOIM for recent

versions of Linux. In our experiments on several user and kernel mode rootkits,

TDOIM achieved with moderate overhead and a relatively low false positive rate a

100% rootkit detection rate.

SEMU, is a mixed-mode malware analysis tool that resides outside the operating

system and thereby outside the domain of user-kernel level malware. By monitoring

of critical operations such as kernel data access and control flow of kernel during the

analysis of all types of malware samples, SEMU is effective against the sophisticated

mixed-mode malware which articulates actions in both user and kernel modes. The

dissertation compares both analysis capabilities and overhead of SEMU with TEMU

on Ether malware analysis techniques by performing several experiments on proof-of-

concept implementations of mixed-mode malware as well as real-work rootkis.
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CHAPTER 13

RELATED WORK TO TDOIM

Most closely related to TDOIM are cloud-based antivirus approaches, pioneered

by CloudAV [13, 15, 16, 17]. These approaches reduce the attack surface for malware

on the monitored host, by shifting much of the detection functionality from the host

to a cloud-based server. Cloud-based antivirus is also useful for resource constrained

(e.g., mobile) devices [15, 16, 17]. However cloud-based antivirus approaches still rely

on curated blacklists (challenge 2).

Google’s Camp uses whitelists, blacklists, and a reputation system to determine

if a file downloaded by the web browser is safe [92]. However this approach does not

meet all challenges of legacy applications, as it has a relatively big attack surface

(challenge 1) and is not effective against an ongoing malware infection (challenge 3).

Similar to TDOIM, a rootkit detector built on Pioneer also periodically com-

putes hashes of the kernel code and read-only data and sends these hashes to a

server component. Pioneer does not rely on virtualized OS stacks or special hard-

ware [93, 94, 95, 96, 97]. Instead, Pioneer times its execution and thereby detects

rootkits. However, Pioneer is not well-suited for legacy applications because it re-

quires prior knowledge of the installed software (challenge 4) and makes strong as-

sumptions about machine and communication speed (challenge 5). While these as-

sumptions have been partially relaxed, they do not support legacy applications com-

municating over public networks [94, 95].
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Much progress has been made in end-to-end verification of the entire software

stack [98]. While such approaches are promising, they currently do not scale to legacy

operating systems such as Linux or Windows.

Many other approaches have been proposed for application and OS security

monitoring. These approaches can be broadly classified into three categories—detecting

kernel-level attacks, leveraging virtualized OS stacks or special hardware, and com-

paring memory with disk contents.

In the following, I provide more information about some of the related works

to TDOIM.

13.1 Detecting Attacks on the Kernel

Traditional malware detection approaches focus exclusively on the integrity of

the kernel [99, 21, 20]. As an example approach, when the OS loads a kernel-level

device driver, earlier work performs static symbolic execution on the driver binaries,

to check if the driver matches given patterns of malicious behavior [99]. Another well-

known approach, Nickle, obtains the hash of kernel code and does not allow execution

of any code that does not match this trusted hash [20]. Poker uses Nickle to detect

rootkit execution at runtime and then captures a trace of the rootkit execution [21].

In some sense these approaches generalize the model followed by antivirus tools,

as they compare relevant data against existing white-lists or black-lists. While these

approaches are more general, as they may check for an entire class of attacks [99],

they do not fully address challenge (4).

While necessary, detecting kernel-level attacks is not sufficient for end-to-end

system reliability. For example, by employing user-mode rootkit techniques, attackers

can compromise systems, run malicious payloads, and remain undetected from this

category of integrity checkers. By monitoring both user-mode and kernel-mode ap-
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plications and the whole operating system TDOIM is effective against common user-

and kernel-mode rootkits.

13.2 Leveraging Virtualized OS Stacks or Special Hardware

Several integrity checking techniques such as Tripwire, Nickle, and Vigilare rely

on virtualization (e.g., based on a hypervisor or software-based virtualization) [19,

20, 21, 22, 23] or specific hardware such as TPM or PCI add-in cards [25, 26, 27, 28,

30, 76, 100].

Livewire periodically checks the hashes of important programs and detects at-

tacks by comparing these memory hashes in one system [42]. Such approaches require

prior knowledge of the original file signatures or installation on the clean state of ma-

chines (challenges 3 and 4). Livewire also relies on virtual machine introspection

(VMI). Similarly, ModChecker runs in a privileged VM and inspects the kernel mod-

ules of all other local VMs via VMI [101]. Nickle extends a VM monitor with a

memory shadow copy for each monitored VM and code authentication features [20].

Nickle also has to be installed when a user system is clean of malware and rootkits.

SecVisor is a small hypervisor that protects kernel integrity by monitoring the

execution of the kernel and avoids the execution of untrusted code [19]. SecVisor op-

erates based on customizing the access rights to kernel memory pages at the harware-

level. But using SecVisor requires modifying OS code. Several approaches rely on

multiple VMs with the same OS configuration to detect rootkits [62, 102, 103]. For

example, VMST and Virtuso use VMI to detect rootkit attacks, by comparing the

machine states of a product VM with a security VM.

The problem of slight differences in hashed binaries (yielding different hashes)

has been discussed in the scope of Bind [104]. Bind takes a proactive approach,

by allowing each protected software to be associated with many hashes. However

83



such a proactive association has to be managed, for example, via an assumed trusted

authority. TDOIM takes a reactive approach and manages different hash values via

its server-based voting technique. Bind relies on a secure kernel and TPM.

Fides protects individual software modules. While Fides is very promising for

newly developed software, Fides requires TPM and a custom compiler and thus Fides

does not address legacy applications [105]. Haven would take this a step further and

utilizes new hardware extensions (Intel SGX) to prevent not just malware but also

cloud providers from manipulating user code [106]. While such hardware extensions

may address much of the malware problem in the future they do not cover the large

number of legacy machines.

Copilot runs completely in a PCI-add-in card and checks OS integrity at run-

time [25]. These approaches are thus only effective when a particular hardware or a

virtualization technology is available (challenge 5).

Flicker can execute analysis code securely, even on an infected system, by run-

ning the code in the hardware-protected secure VMM mode of modern machines that

have a TPM crypto co-processor [76]. The integrity measurement architecture (IMA)

is a TPM-based approach to detect if files on a system have been modified acciden-

tally or maliciously [29]. To check the integrity of running applications, it is required

to install IMA on a clean machine with access to original files on disk. In addition to

checking the integrity of static memory contents, ReDAS also checks dynamic mem-

ory areas such as the stack [107]. On the other hand, ReDAS relies on TPM. I plan

to add dynamic memory monitoring in future work.

13.3 Comparing Memory with Disk Contents

File integrity checkers such as Tripwire rely on an accurate comparison of run-

time memory contents with original on-disk binaries [29, 24]. Such a comparison
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requires either that the security tool maintains the original signatures of such files or

the tool is installed on a clean state of the system to ensure that no binary is patched

by malware. In other words, such security tools are not able to detect malware when

they are installed in a compromised machine whose binaries have been modified on

disk (challenge 3).

The system virginity verifier (SVV) is a cross-view based Windows rootkit de-

tection approach that checks if code sections of important system DLLs and system

drivers are the same in memory and in the corresponding executables on disk [60]. A

related cross-view approach to detect rootkits uses outside-the-guest VMI introspec-

tion and compares different system views (e.g., inside vs. outside VMI) [51].
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CHAPTER 14

RELATED WORK TO SEMU

I classify known malware techniques for kernel data manipulation into three

categories. (1) First, in direct manipulation of kernel data an untrusted code directly

modifies kernel data. (2) Second, malware can use memory management OS functions

to map the physical addresses of the kernel data into newly allocated virtual addresses

and manipulate kernel data through OS standard functions (using trusted code for

kernel data manipulation). (3) Third, malware may not inject malicious code into

the kernel. It instead may apply return-oriented programming (ROP) [72] and reuse

OS codes to manipulate kernel data [73].

Tracking function calls in both the kernel and in untrusted code enables SEMU

to analyze the first two types of kernel data attacks. Handling the last category,

return-oriented attacks, is outside the scope of this article. However, since the analysis

plug-in monitors execution of internal OS functions, SEMU can be customized to flag

suspicious kernel data accesses that take place through trusted code execution but

not by invoking standard OS functions that are responsible for initializing, modifying,

or deleting OS objects. In other words, detecting return-oriented rootkits can be

implemented easily in SEMU, by equipping SEMU with kernel control flow integrity

checks and policies for accessing kernel data.

In the following, I discuss some related works to SEMU that I classified them

into different categories.
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14.1 Attacks on Trusted Kernel Code.

A common attack on trusted kernel code is a rootkit that patches or hooks

kernel code at run-time. In this attack the attacker overwrites internal OS functions

that may not be accessible by function pointers within kernel data. The target in

most of these attacks are functions that reveal some information about the presence

of malicious codes in victim systems.

The patched kernel functions may not be executed while analyzing a malware

sample. But the patched function may run in the kernel context to serve other

program requests, for example, to provide inaccurate information about the system

state to antivirus tools [39, 108].

SEMU detects and logs run-time patching by monitoring how untrusted code

writes within shadow memory addresses. After such a write a formerly trusted kernel

function becomes untrusted. Hence SEMU removes the updated function from the

list of trusted kernel functions.

14.2 Evading Virtual Machines.

There is a long history of “arms-races” between malware writers and malware

analysts [109, 110, 88]. Evasive mixed-mode malware is one entry in this arms-race.

However evasive mixed-mode malware differs from prior attempts of beating malware

analysis. Previous evasion techniques mainly exploit properties of the infrastructure

underlying malware analysis tools. That is, earlier techniques exploit the inherent

differences between real hardware and virtual machines. Following are two examples.

(1) Virtual machines such as QEMU typically run slower than real hardware. Malware

can measure its execution time and adjust its behavior accordingly. (2) Several virtual

machines such as QEMU have bugs or implementation shortcomings. For example,
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QEMU currently does not support floating point instructions. By executing such

non-supported instructions, malware can crash inside a virtual machine and therefore

prevent analysis.

However virtual machines are becoming more common and widely used outside

of malware analysis. So evading virtual machines completely may become less attrac-

tive for malware. By not running in virtual machines, a malware may prevent itself

from infecting many systems that do not perform malware analysis.

14.3 Rootkit Analysis Techniques.

There are several recent pieces of work on profiling different behaviors of kernel-

mode malicious codes. K-tracer [55], dAnubis [44], HookFinder [57], PoKeR [21] and

Panorama [54] are example rootkit analysis tools that leverage various techniques

such as taint analysis and system-wide information control flow tracking. These

approaches have kernel-mode components or only focus on kernel-mode malware and

thus are not effective for mixed-mode malware analysis.

14.4 Automatically Generating Outside-the-Guest VMI Tools.

Recent work including Virtuoso and VMST has made progress toward bridging

the semantic gap outside-the-guest automatically. That is, these recent techniques

can automatically generate outside-the-guest VMI tools for a variety of operating

systems. Virtuoso analyzes the sequence of low-level commands executed by a OS-

level introspection program to infer how to gather such data [41]. VMST forwards

kernel data to the original copy of the OS [62, 79]. SEMU currently uses VMI tools

that can be applied to several OS versions by supplying the corresponding PDB

symbols. I plan to adapt these VMI automation ideas in future version of SEMU.
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However both VMST and Virtuoso rely on the integrity of kernel data. These

techniques are therefore currently not sufficient for extracting an accurate semantic

view when the guest OS has been compromised by attacks on kernel data (e.g., via

DKOM) [41, Section 6C].

For in-depth malware analysis VMST and Virtuoso also can only solve a part

of the VMI problem. That is, VMST and Virtuoso do not cover many of the kernel

data that are needed for malware analysis, such as member fields of kernel data [41,

Section 3A]. However such detailed memory data is required, for example, to monitor

the syscall table pointer within the KTHREAD object in Figure 7.1.

14.5 Protecting Against Kernel Exploits.

There have been several recent kernel exploit protection schemes [19, 20, 53,

111]. SEMU uses such a kernel data protection scheme in one round of its analysis to

collect the difference between the compromised and the original kernel state. However

kernel data protection is just one aspect of SEMU and SEMU has several analysis

components that are not found in kernel protection schemes.

SecVisor is a kernel exploit protection approach that uses hardware virtualiza-

tion to prevent unauthorized code from running in the guest OS [19]. SecVisor requires

modifying kernel code and does not support closed-source operating systems.

Nickel monitors the execution of kernel-level instructions in the guest OS and

prevents the execution of unauthorized code such as rootkits [20]. Similar to SEMU,

Nickel maintains a hash map of trusted kernel codes.

Sentry is a hypervisor-based kernel data protection system that monitors the

execution of untrusted kernel-mode applications [53]. Sentry prevents writes of un-

trusted kernel code within the address space of kernel data.
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DeepSafe is a hardware assistant product by McAfee and Intel that resides

beyond the operating system [111]. DeepSafe monitors sensitive memory regions

and CPU registers to prevent advanced stealthy rootkit attacks and detect APTs

(Advanced Persistence Threats).

14.6 Offline and Interactive Analysis Tools.

In-depth binary analysis in virtual machines requires an OS-aware technique

that builds an accurate semantic view of the guest OS. This requirement makes

reverse-engineering of a closed-source OS such as Windows a prominent VMI task.

There are several tools for offline forensic analysis, which construct a reverse-engineered

model of the Windows OS [112, 113, 80]. These tools derive from a given snapshots

of OS memory and data.

An example forensic framework is Volatility [113]. Volatility has been used to

perform VMI on the memory snapshots of virtual machines to detect the presence of

rootkits [114, 115].

These approaches perform VMI after a security incident has occurred. SEMU’s

VMI reverse-engineers the guest system online and records the interactions of the

mixed-mode malware components. Although we presented SEMU as an online anal-

ysis framework, SEMU could also be customized to detect malware footprints offline

in memory dumps of guests systems.

Virt-ICE [80] is an interactive virtualized debugger that provides complete iso-

lation between debugger and the guest OS. Similar to the current SEMU implemen-

tation, Virt-ICE uses the ReactOS source code for outside-the-guest VMI. In the

Virt-ICE architecture the virtual machine communicates with the Virt-ICE client

through a TCP connection. For example, a user sends commands such as ps to re-

turn the list of processes using the Virt-ICE client to the virtualized debugger. While
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Virt-ICE requires user interactions, SEMU is a fully automated malware analysis

tool.
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APPENDIX A

Linux Implementation of Client-Side Agent
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Since TDOIM’s client-side agent has a deliberately small feature set, it is rel-

atively straight-forward to adapt the prototype implementation to older versions of

Linux and other operating systems such as Windows. Following is the detailed list of

APIs and macros the TDOIM client-side agent calls in the prototype implementation

for recent versions of Linux.

A.1 Memory Access

kmalloc, kfree, kmap, kunmap, memcpy, get free page, free page, page cache release,

get user page, get kernel page, down read, get kernel page, phys to virt, read cr3,

pgd present, pmd present, pte present, pmd large, pte pfn, pte offset kernel.

A.1.0.1 Hashing

crypto alloc hash, crypto hash init, crypto hash update, crypto hash final and

crypto free hash,

A.1.0.2 String Manipulation

Standard C library calls for string manipulations such as strncat, strncpy, strlen.

A.1.0.3 Network Access

sock create, bind, sock release, sock sendmsg.

A.1.0.4 Synchronization

spin lock irqsave, spin unlock irqrestore, create singlethread workqueue, flush workqueue,

destroy workqueue, mutex lock, mutex unlock, task lock, task unlock.
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