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Abstract 

MOLECULARLY ENGINEERED SURFACES FOR EARLY CANCER DIAGNOSIS 

Mohammad Raziul Hasan, PhD 

The University of Texas at Arlington, 2017 

Supervising Professor: Samir M. Iqbal 

Early detection of cancer can have immediate and significant impact on effective 

treatments for cancer patients and better disease prognosis. In the early stage of cancer, 

symptoms are initially expressed at molecular and cellular scales. Identification and 

capture of cancer cells can greatly advance cancer research. This research work is aimed 

to introduce novel biosensors and technologies for early cancer detection. We developed 

a one-step method to create nanotextured polymer substrates and showed the effect of 

surface nanotexture on cancer cell adhesion and cell surface interactions. The 

nanotextured surface was functionalized with an antibody to selectively capture cancer 

cells from a cell mixture. Nanotextured PDMS showed higher cell adhesion strength and 

enhanced cell capture. We also demonstrated a reversible sealed modular device 

approach to integrate nanotextured substrates into microfluidics for cell capture 

applications. The modular approach simplified cell capture workflow, provided easy 

assembly, and enabled a user-friendly method to access cells for post-capture analysis. 

We also observed that cancer cells showed distinct morphology on biofunctionalized 

surfaces. We developed a technique to quantify cell gestures using dynamic morphology 

from time-lapse optical micrographs of cells on functionalized surface. We used a 

supervised machine learning method to develop an automated system to identify cancer 

cells from their gestures. The system offered rapid, efficient, and novel identification of 

brain cancer cells and can be extended to classify many other types of tumor cells. Both 

of these detection mechanisms were based on the expression of protein biomarkers on 
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the cell surface. A nanopore sensor is a unique platform for detecting protein biomarkers 

from ionic current signatures. The underlying mechanism of protein translocation through 

the nanopore is very difficult to understand from outside. We constructed a molecular 

dynamics model to simulate protein translocation through a nanopore to reveal the 

interatomic interactions and investigate the deformation mechanisms of thrombin inside a 

nanopore due to externally applied electric fields. We investigated the structural integrity 

of protein and its deformation dynamics inside a nanopore. The development of this 

technique has advanced nanopore research by providing insights about molecular level 

information to complement macroscopic measurements in the laboratory.  
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Chapter 1 

1. Introduction 

Cancer is the second most fatal disease in the world [1]. It is the uncontrolled 

growth of abnormal cells in the body. Cancer cells can penetrate adjacent tissue and travel 

through the bloodstream to spread to other organs in the body. This spreading mechanism 

of cancer makes it extremely challenging to treat. Every year, billions of dollars are spent 

for cancer treatment and millions of people still die of cancer. Existing treatment methods 

of cancer include chemotherapy, radiation therapy, and surgical procedures. But the 

success of these approaches is limited because, in most of the cases, cancer is detected 

when it has progressed to an advanced stage. The treatment of cancer is much more 

effective if the disease is detected at an early stage. Unfortunately, an economic point-of-

care cancer detection device is still missing. A fast and sensitive method to capture and 

identify cancer cells would be a great step toward early detection. An effective diagnostic 

method should be inexpensive, user-friendly, portable, and convenient to use. The focus 

of this dissertation work is developing devices and technologies for early detection of 

cancer. Three projects were undertaken to understand the working mechanism of cancer 

biomarkers and cells, developing new technologies to detect cancer at an early stage, and 

designing new devices to isolate cancer cells for effective diagnosis. 

1.1. Structure of Dissertation 

This dissertation is divided into 6 chapters. The breakdown of chapters is given 

below: 

1.1.1. Introduction (Chapter 1) 

This chapter provides the motivation and a short summary of the research work 

done in this dissertation. 
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1.1.2. Background and Review (Chapter 2) 

Chapter 2 reviews origin of cancer and possible detection methods. It gives an 

overview of the research work done in this field and the challenges that prevail.  

1.1.3. One-Step Fabrication of Flexible Nanotextured PDMS as a Substrate for 

Selective Cell Capture (Chapter 3) 

Detection of metastatic tumor cells is important for early diagnosis and staging of 

cancer. However, such cells are very few in number at the onset of disease and thus very 

difficult to detect from blood or biopsy samples. Different functionalized surfaces have 

been explored and demonstrated to capture cancer cells. Introduction of nanoscale 

textures on the surfaces enhance the efficiency of cancer cell detection. Conventional 

methods to achieve nanotexture require access to specialized nanofabrication equipment 

within a dedicated cleanroom environment. This chapter presents a technique to create 

flexible polydimethylsiloxane (PDMS) surfaces using a molding approach that can be 

performed in a standard laboratory environment. A one-step reversible integration of 

nanotextured PDMS into a microfluidic platform is also demonstrated. The chapter 

includes characterization of nanotextured PDMS, investigation of nanotexture on cancer 

cell adhesion strength, and its application to selectively capture cancer cells.  

1.1.4. Classification of Cancer Cells using Computational Analysis of Dynamic 

Morphology (Chapter 4) 

It is known that cancer cells, and especially metastatic tumor cells, show very 

distinctive morphological behavior compared to their healthy counterparts on aptamer 

functionalized surfaces. The ability to quickly analyze the data and quantify the cell 

morphology for an instant real-time feedback can certainly contribute to early cancer 

diagnosis. This chapter describes a supervised machine learning approach for 

identification and classification of cancer cell gestures for early diagnosis. The 
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morphologically distinct behaviors were quantified from time-lapse optical micrographs of 

cancer and healthy cells on aptamer-functionalized glass surfaces. Different classifier 

models were trained with the sample dataset to predict cancer cells from their gestures.  

1.1.5. Molecular Dynamics Study of Protein Deformation in Solid-State Nanopores 

(Chapter 5) 

Electrophoretic translocation through solid-state nanopores is a promising 

technique for identification of specific proteins and protein complexes. In a typical protein 

detection experiment, an external electric field is applied across the nanopore and the 

ionic current is measured while the molecule passes through the pore. It is very important 

that the protein retains its structure and functionality under applied electric field and 

experimental conditions. This chapter presents a theoretical assessment of protein 

deformation in a nanopore experiment due to applied electric field. Nanoscale molecular 

dynamics (NAMD) simulations were done to investigate the deformation of a protein during 

translocation through a silicon nitride nanopore. The experimental conditions were 

simulated to perform quantitative analysis of the variation of a thrombin’s 3D structure due 

to an externally applied electric field without any mechanical forces. The conformal 

changes, the stretching of protein structure, and the contribution of protein deformation in 

ionic current were studied.  

1.1.6. Future Works (Chapter 6) 

In this chapter, scopes of future works that can complement/supplement the 

current research are discussed.  
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Chapter 2 

2. Background and Review 

2.1. Cancer Statistics 

Cancer is one of the leading causes of death worldwide. According to International 

Agency for Research on Cancer (IARC), approximately eight million people die every year 

because of cancer [1]. By 2022, the projected number of people to be diagnosed with 

some sort of cancer is eighteen million [2]. In 2015, the number of new cancer cases was 

approximately 16 million in the USA only. Even in this twenty-first century with all the 

advanced medical solutions in America, about 600,000 cancer patients could not survive 

death. Figure 2.1 compares the mortality rate per hundred thousand people in the USA in 

the year 1950 and 2017 categorized by some common diseases such as cardiovascular 

disease, cerebrovascular disease, influenza, pneumonia, and cancer [3, 4].  

 

Figure 2.1. Change in mortality rate in the USA per 100,000 population in the year 1950 

and 2015 [3, 4]. 

The harsh truth is that the mortality rate for cancer has not been improved in the 

past six decades compared to the significant reduction in mortality rates of other diseases. 

The advancement in science and technology have led to tremendous progress in the field 
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of medical research but unfortunately, that was not enough for cancer. But the situation is 

changing now. New research is emerging with innovative approaches to solve this grand 

challenge. Different fields of expertise are being combined together to come up with 

unique solutions to this problem.  

2.2. Origin of Cancer and Carcinogenesis 

Carcinogenesis is the process through which normal cells evolve into cancerous 

cells. The change occurs both in genetic and phenotypic expressions of cell. The reason 

can be attributed to many known and unknown factors starting from personal habits, 

outside environment, accumulation of different defects, and mutation in DNA. In 1908, 

Ellerman and Bang reported an infectious virus for leukemia [5]. In later years, several 

other oncoviruses were discovered containing cancer-causing genomes [6-8]. These 

genomes can infect healthy cells by integrating the viral nucleic acids (DNA, RNA) into the 

host chromosome.  

Normal cells go through cell division, proliferation, and cell death in a periodic 

manner. This periodic cell death is called apoptosis. The balance between cell growth and 

apoptosis is disturbed in the case of cancer. Activation of pro-oncogenes and deactivation 

of cancer suppressor genes cause a normal cell to transform into cancer with uncontrolled 

growth [9, 10]. Inheriting a germ-line copy of such damaged gene may also increase the 

possibility of cancer as explained by the two-hit hypothesis (Figure 2.2) [11]. Other 

physical factors, such as exposure to harmful radiation may also cause genetic changes 

and lead to cancer. Exposure to radioactive materials can also increase the chances of 

mutation in genes [12].  
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Figure 2.2. Two-hit tumor formation in both hereditary and non-hereditary retinoblastoma. 

(a) All retinoblasts are one-hit clones in hereditary retinoblastoma. (b) A 'one-hit' clone 

acts as a precursor to the tumor in non-hereditary retinoblastomas. Reprinted with 

permission [11]. 

2.3. Cancer Metastasis and Early Detection 

Metastasis is the process how cancer spread in a body. Metastasis is the reason 

that makes cancer so dangerous. When a tumor forms in one particular organ of a body 

(also known as the primary site), cancer cells lose the ability to control cell differentiation 

and start to show malignant proliferation [13]. Integrins play an important role in cancer 

metastasis. Integrins are adhesion molecules present on cancer cell membrane that 

promote tumor cell attachment, migration, and invasion. Due to the mutation in integrin, 

cancer cells become invasive and enter host vasculature by local invasion. Thus, these 

cells are transferred to remote organ through the bloodstream and develop a secondary 

metastatic colony with the help of angiogenesis [14]. That is how cancer infiltrates other 

organs. Figure 2.3 illustrates the steps of tumor invasion and metastasis process [15]. 

There are two major steps involved in cancer metastasis. First, the cancer cells adhere to 
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extracellular matrix to survive and proliferate. Then, the cells penetrate the basement 

membrane and enter the bloodstream also known as intravasation. Usually, there are no 

symptoms seen on the outside to realize cancer metastasis. In most of the cases when a 

patient is diagnosed with cancer, unfortunately, it’s too late to save the patient. So, the 

effective way to fight cancer is to detect cancer at an early stage.  

 

Figure 2.3. The process of cancer metastasis. (a) Metastatic cancer cells break free from 

the primary tumor and migrate to the vasculature. (b) Then the cancer cells keep flowing 

in the bloodstream until they find a metastasis-supporting site to colonize. (c) Platelets 

attack cancer cells in the bloodstream and protect them from the immune system. (d) Upon 

interaction with the secondary organ, cancer cells adapt to the local environment and 

proliferate in the secondary site. Reprinted with permission [15].  

Early detection of cancer brings several advantages. Not only the survival rate is 

high if cancer is diagnosed early (Figure 2.4), but also the cost of treatment reduces 

significantly (Figure 2.5) [16, 17]. Being able to detect cancer at an early stage also allows 

the doctor to offer customized treatment to cancer patient which eventually favors quick 
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and complete recovery. Several methods have been reported to detect cancer cells from 

blood samples.  

 

Figure 2.4. Five-year survival rate of cancer patients diagnosed at different stages of 

cancer. The survival rate decreases significantly as the disease progress to advanced 

stages [16].  

 

Figure 2.5. Breast Cancer treatment cost after one and two years of diagnosis. The 

treatment cost is higher for advanced stages of cancer. The cost of treatment also gets 

higher when it is diagnosed late [17].  

Another important factor is to selectively capture cancer cells from blood samples 

in order to perform post-capture diagnosis. An effective post-capture analysis may lead to 
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faster diagnosis and accurate treatment. Needless to say that the detection method needs 

to be fast and sensitive for early stage of cancer. 

2.4. Cancer Biomarkers and EGFR 

There are certain proteins on cell membrane known as receptors. Epidermal 

Growth Factor Receptor (EGFR) is one of them. EGFR is responsible for cell signaling 

and cell proliferation. It is also responsible for stimulation of transport, activation of 

glycolysis, DNA, RNA, and protein synthesis [18]. It is reported that there are about 40,000 

to 100,000 EGFR on a healthy cell membrane [19]. But the number of EGFR per cell tend 

to go high when a cell becomes tumorous. Many cancer cells including breast cancer, lung 

cancer, brain cancer, renal, and bladder cancer are reported to overexpress EGFR on the 

cell surface [20-22]. Naturally, this overexpression of EGFR can be used as an indicating 

factor in cancer which is why this is often used for selective detection of cancer. A surface 

protein that is used for cancer detection is called a biomarker. The number of EGFR 

biomarkers in cancer cells can be 10 to 100 times higher compared to a healthy 

counterpart depending on the type of cancer [23]. Hence, it is a popular choice for 

detection and therapy of several types of cancer. However, there are other biomarkers 

that can be used for cell detection. Table 2.1 includes a list of biomarkers present in 

different types of cancer cells.  
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Table 2.1. List of biomarkers overexpressed in different cancer. EGFR is a common 

biomarker for most of the cancers.  

Disease Biomarker 

Breast Cancer CEA, HER-2, EGFR 

Cervical Cancer Human Pappiloma Virus, EGFR 

Lung Cancer EGFR, KRAS, BRAF 

Bladder Cancer EGFR, HSP27, Annexin 

Ovarian Cancer EGFR, Haptaglobin α, CA-125 

Esophageal Cancer EGFR, Periplakin 

 

2.5. Biomarker Detection Molecules  

Two types of molecules are widely used to detect biomarkers based on their affinity 

interactions: (i) Antibody and (ii) Aptamer. 

2.5.1. Antibody 

Antibodies are proteins produced by the immune system. They bind to foreign 

objects and help to eliminate them from the system. Antibodies are widely used for 

imaging, detection, and therapeutic application of biomolecules. The most common type 

is the monoclonal antibody (mAb) which is produced by in vitro hybridization of immune 

cells and myeloma cells.  Figure 2.6 shows a schematic of how monoclonal antibodies are 

produced in mouse [24]. A similar method is used to produce a large number of pure and 

specific antibodies for cancer diagnosis. Antibodies have been widely used in ELISA, flow 

cytometry, immunohistopathology, western blotting, and immunofluorescence imaging 

[25, 26]. Antibodies are also used for affinity-based cancer cell capture, isolation, and 

selective drug delivery applications [27].  
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Figure 2.6. Schematic representation of the production of monoclonal antibodies through 

hybridization method. (a) Immunization of mice with antigen stimulates immune cells 

which produce antibodies that recognize the antigen. (b) Immune cells are isolated. (c) 

Antibody-producing cells are fused with tumor cells to generate immortalized hybridoma 

cells. (d) Antibody-secreting hybridoma cells are screened and amplified by clonal 

expansion. (e) Extraction of monoclonal antibodies. Reprinted with permission [24]. 

2.5.2. Aptamer 

Aptamers are chemically synthesized DNA/RNA molecules that conformally bind 

to specific target molecules. They can be single or double stranded chain of oligonucleic 

acids or peptide molecules. Aptamers are also commonly used for detection of proteins, 

biomolecules and cancer biomarkers [28, 29]. Aptamers are produced by a method called 

the systematic evolution of ligands by exponential enrichment (SELEX) [30]. Figure 2.7 

shows a schematic of the SELEX process. Briefly, a target cell is introduced into a nucleic 

acid pool containing various types of DNA/RNA. Then the positively selected molecules 

are separated and amplified by polymerase chain reaction (PCR) method. In the next 
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cycle, the selection is performed from the positively selected nucleic acids. This cycle is 

repeated several times until a few highly selective molecules are found.  

 

Figure 2.7. Schematic representation of DNA aptamer selection using SELEX. DNA 

sequences having specific recognition to target cells are evolved to enrich the selection 

pools. The enriched pools are cloned and the positive clones are sequenced to identify 

individual aptamers. Reprinted with permission [30]. 

The advantages of aptamer over antibody really depend on the type of 

applications. Aptamers are smaller in size and have a smaller footprint which makes it 

easier to pack them at a high concentration on a surface. In addition, aptamers are 

chemical stable. On the other hand, antibodies are widely used because it is easy to 

conjugate antibody with other molecules. Also, antibodies are not subjected to nuclease 

degradation. Table 2.2 compares a few benefits of these biomarker detection molecules. 
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Table 2.2 Comparison of antibody and aptamer. 

Aptamer Antibody 

Smaller in size Comparatively larger 

Highly selective Comparatively low selective 

In vitro production In vivo production 

More difficult to conjugate Easy to conjugate 

Chemically stable Require strict environment for 

reaction and stability  

 

2.6. Cancer Detection Devices 

Several cancer cell detection devices have been developed to capture and isolate 

cells from blood and tissue samples. The devices can be categorized into three sections 

in terms of the detection scheme: (i) physical or mechanical property-based detection, (ii) 

biochemical interaction-based detection, and (iii) image-based detection. The physical 

property-based detection methods are comparatively faster. On the other side, the 

biological property-based detection methods offer more selectivity. Image-based detection 

methods have the advantage of automation capability.  

2.6.1. Mechanical Sorting 

Usually, cancer cells have different physical properties such as size, elasticity, and 

deformability. Different types of cancer cell lines derived from brain, lung, breast, prostate, 

and liver have been studied and isolated based on these physical characteristics. 

ScreenCell developed a technique named “Isolation by Size of Epithelial Tumor cells 

(ISET)” using a microporous membrane [31]. The detection scheme is based on the fact 

that certain tumor cells are larger in size than the blood cells. In this method, a porous 

sieve is used to filter out the small cells from large ones. Larger cancer cells remain on 
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one side of the membrane and the smaller blood cells such as erythrocytes (RBC) and 

leukocytes (WBC) falls through the membrane pores. Figure 2.8 shows an illustration of 

the size-based isolation scheme. The advantage of such method lies in their simplicity. 

Several other works have been developed to filter cancer cells based on similar working 

principle [32-34]. In most of the cases, nanofabrication tools are used to fabricate 

microporous filters and a microfluidic channel is often used to guide the flow of samples. 

 

Figure 2.8. Schematic representation of size-based cancer cell isolation methods. (a) 

Microporous membrane isolating larger tumor cells (purple) from red blood cells (red). (b) 

A microfluidic device to sort cancer cells using gradual filtration method. A schematic of 

the gradual filtration process is shown at the bottom left. Series of micropost structures 

fabricated in PDMS to block large cancer cells from passing through (right).  

Another approach to isolate cancer cells from blood cells is to probe their elastic 

property. It is reported that when a cell becomes cancerous, the stiffness and the elasticity 

of the cell membrane changes [35, 36]. Several micropore-based methods have been 
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developed to probe the deformability of cells to isolate them. The method also has the 

advantage of single-cell analysis. The working principle is very straightforward. The cells 

are allowed to deform by applying an external force through mechanical constriction or 

hydrodynamic pinching (Figure 2.9). Then the deformation is measured and analyzed to 

distinguish different cells. In a micropore device, a membrane is fabricated and a small 

pore is drilled in that membrane. The diameter of the pore is usually slightly smaller than 

the diameter of the target cells. The device is immersed in an ionic solution and cells are 

allowed to pass from one side of the membrane to the other with the help of a pump. An 

external electric field is applied to measure the ionic current through the pore. When a cell 

passes through the pore, it creates a drop in the ionic current. Thus, each cell translocation 

event is registered as an ionic current signature as shown in Figure 2.9.  

A similar concept is applied in case of hydrodynamic pinching devices. Here, a 

hydrodynamic stress is applied on the cells from two sides using sheath flows and a high-

speed camera takes snapshots of the deformed cells as they pass through a narrow 

channel. The deformation of each cell is calculated by image processing and the number 

of target cells is quantified. These single-cell analysis devices are good for sensitive and 

high throughput detection of cancer cells.  
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Figure 2.9. (a) Working principle of a micropore sensor to isolate cancer cells from blood 

cells by ionic current signature. (i) Base ionic current measurement (red signal) for open 

pore. (ii) An ionic current drop is registered when the pore is blocked by the cell. (iii) A 

complete cell translocation is recorded as an electrical current fingerprint. (b) Schematic 

representation of hydrodynamic stretching of single cell to measure cell deformability. A 

narrow stream of sample cells is formed in a microfluidic channel using sheath flow. The 

sheath fluids hydrodynamically focus the cell in the middle of the channel. The cell gets 

deformed by the shear from two sides known as ‘hydrodynamic pinching’. A high-speed 

camera takes snapshot of the deformed cell and then the deformability is calculated by 

image analysis. Cells having different size and deformability appears as different clusters 

in the scatter plot [37, 38]. 

Cancer cells can also be separated from blood samples based on cell mass or 

inertia. The most common approach is the centrifugation technique. In this method, a 
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mixture of cells with different mass is placed in a tube. The tube is spun at high speed in 

a centrifuge. After centrifugation, heavier cells settle at the bottom and comparatively 

lighter cells keep floating (Figure 2.10 a). A similar principle is utilized in spiral microfluidics 

and vortex-based label-free cell isolation devices. These methods are called inertia-based 

separation. In a spiral microfluidic channel, cells are flown from the center of the device to 

the outward direction (Figure 2.10 b). Due to the curved geometry of the microfluidic 

channel, the cells experience a combination of inertial lift and drag forces. This causes a 

lateral separation of the cells having different mass while they flow through the channel. 

Heavy cells tend to flow near the channel wall with the smaller radius of curvature (inner 

wall) and the lighter cells flow near the outer wall of the channel [39]. In some cases, the 

walls of the spiral channel can be slanted to achieve better separation capability. Warkiani 

et al. demonstrated a slanted spiral microfluidic device for label-free isolation of breast 

cancer cells from blood samples [40, 41]. Dino Di Carlo and his team developed Vortex 

microfluidic technology based on inertial focusing for label-free isolation of prostate 

circulating tumor cells [42, 43]. A schematic representation is shown in Figure 2.10c. In 

this device, a straight channel with series of rectangular extended regions are used to 

create local vortex flows to temporarily trap heavy cells. Figure 2.10 summarizes different 

inertia-based cell separation devices.  
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Figure 2.10. Schematic representation of cell density-based isolation methods. (a) 

Centrifugation method to separate heavy cells from lighter ones. Heavy cells form a palette 

at the bottom of the tube because of the large centrifugal force generated in the centrifuge. 

(b) Spiral microfluidics for cell sorting. Reprinted with permission [44]. A mixture of cells is 

flown in a spiral microfluidic channel from the center to the outward direction. The inset 

shows the cross-section of the channel with flow patch. Cancer cells and blood cells are 

collected from outlet-1 and outlet-2, respectively. (c) Label-free enumeration of cancer 

cells in an inertia microfluidic device. Reprinted with permission [45]. Cell samples are pre-

filtered in the channel (inset-1). The velocity profile of the flow pushes the cells toward the 

side of the channel (inset-2). The heavier tumor cells (purple) gets trapped in the vortex 

region and smaller blood cells continue to flow through the channel (inset-3). 

The main advantage of these physical property-based cell isolation devices is 

being a label-free technique. The samples do not have to be tagged with any other 

molecules. It does not require any pre-processing of samples. The viability of cells is also 

good since they do not have to be tagged with any other molecules. However, in many 
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cases, the physical difference between cancer and healthy cells are not always obvious 

and mechanical methods may not be the best approach to identify cancer cells [46]. These 

methods can provide information about the presence of tumor cells but cannot always 

identify the type of cancer cells. In order to understand the specifics of cancer cells, we 

need to exploit their immunochemical properties. 

2.6.2. Affinity-based Detection Devices 

Cancer cells can be detected from the protein expression on the cell membrane 

too. The presence of certain types of biomolecules and their number on the cell surface 

can indicate whether the cell is cancerous or not. These biomolecules are called 

biomarkers. Compared to the physical attribute-based detection, biomarker-based 

detection provides much more information about the type of cancer cell, the stage of 

cancer progression and the immune response of the cells to certain drugs. As discussed 

before, the most important element to identify cancer biomarkers is antibody and 

aptamers. Different types of particles (fluorescent or magnetic) are selectively attached to 

cancer cells and then the cells are characterized using fluorescence imaging or magnetic 

sorting.  

The most common method to isolate cancer cells using fluorescence particle is 

called Fluorescence Activated Cell Sorting (FACS) [47]. In this method, cells are pre-

tagged with fluorescent dye. In most cases, a primary antibody is attached to the cell 

surface receptors and then a secondary antibody conjugated with a fluorescent particle is 

attached to the primary antibody. A laser excites the fluorescent molecules on the cell 

surface while they are traveling in a continuous flow and a detector picks up the optical 

signal. The intensity of fluorescence and scattered light are then analyzed to sort the cells. 

Figure 2.11 shows a schematic of FACS.  
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Figure 2.11. Schematic illustration of FACS. Fluorescent antibodies are selectively 

attached to sample cell mixture. Individual cells are scanned by a laser. Multiple sensors 

capture scattered and fluorescent light. A computing system analyzes the color spectra 

and deflects the cells into separate collection tubes using a charged deflection plate.  

A similar approach is adapted for magnetic particle-based sorting. Magnetic 

nanoparticles are selectively attached to the cell surface via antibody and then an external 

magnetic field is applied to sort the cells based on their particle expression. A schematic 

is shown in Figure 2.12.  

 

 



21 
 

 

Figure 2.12. Schematic illustration of magnetically activated cell sorting (MACS). Magnetic 

particles (yellow) selectively attach to cancer cells via antibody (green). An external 

magnetic field attracts the magnetic particle coated cells towards the cell container wall 

while the rest of the cells are flushing out. The inset shows a schematic of the magnetic 

particle attachment via antibodies.  

Due to the advancement in lab-on-a-chip technologies, these cell detection 

methods are being implemented in microfluidic platforms. Kruger et al. developed a 

microfluidic device to sort fluorescently activated cells [48].  Pamme et al. isolated human 

cervical cancer (HeLa) cells with magnetic particles [49]. Hoshino et al. reported the 

isolation of human colon and breast cancer cells with antibody-conjugated magnetic 

nanoparticle in a microchip device [50]. Recently, Myklatun et al. successfully demonstrate 

a microfluidic device isolating intrinsically magnetic cells [51]. The versatility of microfluidic 

technology also makes it possible to combine multiple detection approaches into a single 

device. Toner et al. developed a CTC-iChip device by combining two cell separation 

methods into one device (Figure 2.13). A size-based preliminary sorting was followed by 

magnetophoresis for separation of CTCs from WBCs, RBCs, and platelets [52]. 
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Figure 2.13. A microfluidic chip combining hydrodynamic cell sorting, inertial focusing and 

magnetically operated sorting. Hydrodynamic sorting section isolates larger cells (WBCs 

and magnetic particle coated CTCs) from RBCs, platelets and other blood components. 

Then the external magnetic field deflects magnetic particle coated CTCs from WBCs. 

Reprinted with permission [52]. 

Cancer cell surface biomarkers are also used to capture cells on a surface. 

Different capture molecules (aptamers or antibodies) are immobilized on the device 

surface and then cells are introduced into the device, typically in a microfluidic chamber. 

Target cells with overexpression of biomarkers are attached to the surface immobilized 

capture molecules and the rest of the samples are washed away. A schematic illustration 

is shown in Figure 2.14. 

 

Figure 2.14. Schematic representation of cancer cell capture on an antibody-

functionalized surface. (a) Antibody immobilization on the surface. (b) Cells interacting 

with the functionalized surface. (c) Cancer cells captured on the surface immobilized 

antibodies. 
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The advantage of affinity-based detection methods is that it not only allows 

selective cell enrichment but also captures all the target samples in one place. This is 

suitable for imaging and post-capture analysis. The microfluidic platform also provides 

portability. One limitation of the surface capture devices is that these devices work well 

with cells having an overexpression of biomarkers on the surface. Otherwise, the 

sensitivity of the device is limited to the number of biomarkers available on the cell 

membrane that the surface immobilized antibodies can attach to. To address that, several 

surface engineering techniques have been implemented to enhance the cell to surface 

interaction. Toner et al. developed a micropost device to isolate cancer cells from blood 

samples [53]. Other microfluidic devices incorporating microstructures like fishbone 

patterns, cylindrical posts, and triangular pillars have also been reported to isolate 

circulating tumor cells from blood samples [54-56] (Figure 2.15). These structures 

modulate the fluid flow inside the device and increase cell surface interactions in order to 

capture the cells on the functionalized surfaces.  
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Figure 2.15. Affinity-based microfluidic devices to isolate circulating tumor cells. (a) 

Schematic of a CTC-microchip device micropost arrays [53]. The device is sealed with the 

manifold with adhesive tapes. (b) Cancer cell captured on anti-EpCAM functionalized 

silicon micropost in the CTC-chip device; inset shows a magnified view of the captured 

cell (red). (c) Herringbone-chip containing fishbone patterned structure inside channel 

ceiling [54]. The channel is functionalized with antibodies. The herringbone grooves 

generate chaotic microvortices inside the channel to increase interaction with cells. (d) 

Flow visualization inside HB-chip. (e) Microfluidic Cluster-Chip for cancer cell detection 

[56]. SEM micrographs show multiple rows of shifted triangular pillars creating consecutive 

cluster traps for CTCs; scale bar = 60 μm. (f) High-magnification image of Cluster-Chip 

with a CTC cluster captured in the device; scale bar = 60 μm. Reprinted with permission. 

Although these devices show improved performance in terms of cell isolation 

capability, these are difficult to fabricate. To enhance the cell surface interactions, 

nanotexturing have emerged in the field of microfluidic cell capture devices. Several 

researchers have introduced nanotexture in the devices to enhance the cell capture 

performance. The presence of patterned topography or nanotexture on the surface 

increases surface area and interactions with the target samples.  
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2.7. Nanotextured Substrates for Cancer Detection 

We see nanotexture everywhere in nature. Nanotexture controls the wettability, 

adhesion, structural color, and chemical functions of a surface. Nanotexture is seen in 

human body too and it plays a role in cancer metastasis. The nanotexture in the basement 

membrane helps to anchor cancer cells through cell adhesion molecules and facilitate cell 

growth [57]. This has drawn much attention for cancer cell adhesion and cell enrichment 

applications. Nanotextured substrates have been fabricated and chemically modified to 

capture and isolate tumor cells [58, 59].  

Different types of nature-inspired nanotextured patterns have been explored to 

control surface properties. It has been well researched that nanotexture controls the 

surface hydrophobicity, the optical properties, surface charge, and energy. For example, 

the hydrophobic surface of lotus leaves was understood to be the effect of surface texture. 

Similar structures have been explored to control the wettability of surfaces [60]. 

Understanding the nanotexture present on the wings of dragonflies and butterflies enabled 

researchers to fabricate anti-reflective surfaces to increase the efficiency of photovoltaic 

devices [61, 62]. Recently, the convex and concave patterns on rose petals have been 

mimicked on a PDMS surface to increase the efficiency of tumor cell capture [63].  
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Figure 2.16. Effect of nanotexture in nature. (a) Water droplet floating on a hydrophobic 

surface of lotus leave due to its surface texture. (b) The nanotexture on transparent 

dragonfly wing controls transmission of light. (c) The nanotexture on moth eye is 

responsible for photon absorption. (d) A rose petal and the convex topography on the 

surface. The inset shows the SEM micrograph of surface texture [60-63]. Reprinted with 

permission. 

The role of nanotexture in cell capture applications has been demonstrated by 

several research groups. Han et al. showed enhancement in human leukemia cell capture 

on a nanoparticle deposited surface [64]. Zhang et al. used electrospinning technique to 

create a TiO2 nanofiber-based cell capture assay [65]. Yoon and his team deposited 

graphene nanosheets on a silicon substrate for sensitive capture of breast cancer cells 

[66]. There are other methods to create nanotexture. Basically, the methods of fabricating 

a nanotextured surface can be categorized into two sections (i) bottom-up and (ii) top-

down. The above-mentioned methods are all part of bottom-up approaches which includes 

deposition of particles or materials on the surface. On the other hand, the top-down 

approaches involve the removal of materials from the surface to create a pattern. This 

method often includes some type of dry or wet etch, surface grinding, and chemical 

polishing process. Fabrication of nanowire substrate with deep reactive ion etching (DRIE) 

[67], etching of silicon substrate to create nanodot and nanopillar structures [68, 69], and 
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reactive ion etch (RIE) of glass substrate are a few examples of top-down fabrication 

method [57, 70]. Figure 2.17 includes different types of nanotextured surface used for cell 

capture application. 

 

Figure 2.17. Methods of fabricating nanotextured surfaces. (a) Schematic of bottom-up 

approach where materials are deposited on a substrate to make a nanotextured surface. 

Examples include: (b) Deposited ZnO nanoparticle to study osteoblast cancer cells [71], 

(c) TiO2 nanofiber deposited on a silicon substrate with electrospinning method to create 

CTC capture assay [65], and (d) Chemically deposited graphene-oxide for CTC isolation 

[66]. (e) Schematic representation of top-down approach that involves removal of the 

substrate with wet and dry etching methods. Examples include: (f) Reactive ion etched 

quartz silicon nanowire structure [67], (g) Silicon nanopillars array [69], and (h) 

Sandblasted glass with nanotexture on the surface [70]. Reprinted with permission. 

Each of these fabrication methods has their own advantage and disadvantages. In 

most of these methods, it requires specialized tools and laboratory environment to 

fabricate the nanotexture. The type of materials that can be processed in nanofabrication 

tools is also limited due to compatibility issues. Some tools are also very expensive to 

maintain and operate. Integration of these nanotextured materials into microfluidics brings 

another challenge. The integration process often involves an irreversible permanent 

bonding to maintain a good seal which poses a problem to access cells and perform post-

capture analysis. Researchers have been continuously trying to come up with a fast and 
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easy process to create nanotextured substrates and integrate that into microfluidic chips 

for cell studies. The selection of material is also important for microfluidic integration. In 

the past decades, PDMS has been a widely accepted material for nanotexture and 

microfluidic device fabrication. PDMS is a silicone-based flexible polymer which can be 

used to replicate patterns and structures from a solid mold. The process is called ‘soft 

lithography’.  

2.8. Soft Lithography for Microfluidic Device Fabrication 

Soft lithography is a technique for fabricating or replicating structures using 

elastomeric stamps and molds [72]. The most common material used for replicating 

structures in a moldable polymer is polydimethylsiloxane (PDMS). The process of 

fabricating features from a conformable mask is called ‘replica molding’. Figure 2.18 

illustrates the replica molding process. A solid surface called master contains the inverted 

shape of the desired pattern (Figure 2.18(a)). Then PDMS is mixed with a curing agent in 

a specific ratio to make a polymer paste. The ratio of PDMS to curing agent controls the 

stiffness of the final polymer. A higher portion of curing agent will make the PDMS stiffer 

after curing. The mixture is degassed to get rid of any air bubbles. Then the poured PDMS 

mixture is heated at 150C for 10 minutes (Figure 2.18 b). This hardens the polymer and 

it can be peeled off from the surface (Figure 2.18 c).  
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Figure 2.18. Replica molding process. (a) A solid surface with the inverted pattern called 

‘master’. (b) PDMS mixture (PDMS and curing agent) is poured on master and then 

thermally cured. (c) The thermally-cured solid PDMS is peeled off from the master. (d) 

PDMS is oxygen-plasma bonded with a flat glass surface for microfluidic devices.  

Replica molding is commonly used in making microfluidic channels, creating 

micron and sub-micron structures from textured surfaces, and for contact printing 

applications. There are certain advantages of using PDMS for replica molding. PDMS is 

cheap, chemically inert, and biocompatible which makes it convenient to use in 

bioengineering applications. PDMS also has good chemical and thermal stability. It is 

permeable to gas and optically transparent down to 280 nm wavelength of light. In many 

microfluidic applications, PDMS is irreversibly sealed to a glass surface with oxygen 

plasma treatment. Recently, PDMS surfaces are chemically modified to explore cell 

capture applications.  

2.9. Imaging-based Cancer Diagnosis 

The state of the art techniques for imaging-based cancer diagnosis includes 

computerized tomography (CT) scan, magnetic resonance imaging (MRI), mammogram, 

ultrasound, and X-ray imaging [73]. Even though these tools can non-invasively detect 

tumors in many patients, the detection ability is depended on the size and density of the 

tumor tissue. Moreover, these methods are not very effective for early diagnosis of cancer 
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since the number of diseased cells is extremely low at that stage and the sensitivity of 

these tools is not in cellular scale. Recently, researchers are investigating new imaging 

tools like positron emission tomography (PET) imaging to acquire molecular scale 

information from tumor samples [74]. Selective attachment of nanoparticles and magnetic 

particles through monoclonal antibodies are being explored to enhance the detection 

capability of these existing methods [75-77]. However, in many cases, patients are 

exposed to radiation and imaging agents which lead to other complications if the patient 

has any illness or a medical condition like pregnancy, allergy or is prone to side effects.  

Another approach to detecting cancer is to directly image cells collected from 

biopsy samples. Only an optical image may not capture enough information to distinguish 

cancer cells. That’s why cells are often tagged with fluorescent markers. Different 

fluorescent markers are available to stain cell nucleus, actin fibers, and chromosomes, 

and other components in the cytoplasm. These fluorescent images can be compared with 

known target samples and used for cancer detection. One such common approach is 

called fluorescent in situ hybridization (FISH). Recently FISH imaging was used to develop 

an automated cancer detection platform [78, 79]. The advantage imaging-based approach 

is that it can be automated with a pre-programmed microscope and computer system. 

Several research groups have developed automated cancer classification tools from 

fluorescently labeled tissue samples [80, 81]. Many image analysis software such as 

CellProfiler, CellXpress, and CellCognition are also available to analyze different cell 

phenotypes [82-84]. 

Apart from using static cell images for cell identification, analyzing cellular behavior 

and responses in different microenvironment can also provide significant information 

about cellular malfunctions. Cell migration and dynamic morphology are two important 

phenomena that provide insights about cancer formation. Cell migration is an important 
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biological process for development of nervous system, inflammatory response, and wound 

healing [85, 86]. It plays a vital role in cancer metastasis and proliferation. The cell 

migration mechanism is shown in Figure 2.19 [87]. Generally, cell migration occurs in three 

steps (i) protrusion (ii) translocation and (iii) detachment. The lamellipodia and filopodia in 

the cell membrane create a protrusion by actin polymerization with a combination of 

Brownian ratchet and cortical expansion mechanism. Once the protrusion adheres to the 

substrate, the cell body translocates forward through myosin interactions with actin 

filaments. The balance between two major acting forces directs the movement, (i) forward 

driving adhesion traction force and (ii) rearward pulling actin filament contraction force. 

Eventually, the cell translocates forward because the traction force is greater than the 

contraction force. Finally, the rear cell body detaches from the substrate by myosin-

mediated actin filament contraction.  

 

Figure 2.19. Illustration of different forces involved in cell migration. There are three major 

steps: protrusion, translocation and detachment. The protrusion of lamellipodia or filopodia 

starts by the force generated by actin polymerization. Translocation may occur by myosin 

interactions with actin filaments at the rear end. Finally, cell detaches from the rear which 

is accelerated by myosin-mediated actin filament contraction pulling on adhesion 

complexes. Reprinted with permission. 

The dynamic behavior and motility of cell are stimulated by the genetic mutation. 

This is very important for cancer cells. Due to its increased growth rate and proliferation, 

cancer cells show enhanced activity and movement. This favors cell migration too. The 
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activity of cells on a surface can be modulated by bio-modification of the surface. We 

investigated this phenomenon in our research and used machine learning-based 

classification to distinguish cancer cells from healthy ones. 

2.10. Machine Learning for Cancer Detection  

Machine Learning (ML) is the branch of artificial intelligence of getting computers 

to learn from past examples and to act without being explicitly programmed. In the past 

decade, machine learning has been used in self-driving cars, practical speech recognition 

systems, customized web search, and to understand the human genome. It allows 

computers to detect hard-to-discern patterns from large and complex datasets using 

various statistical, probabilistic, and optimization algorithms. Cancer has been 

characterized a heterogeneous disease consisting of numerous subtypes. The 

characteristics of each type of cancer at different stages of the disease are slightly different 

from one another. Therefore, machine learning methods have become a popular tool for 

researchers to model the progression and treatment of cancerous conditions [88, 89]. 

Large-scale patient-data are being analyzed to accurately predict future outcomes of a 

cancer type and offer customized medicine by analyzing DNA sequence, protein and gene 

expressions.  

2.11. Nanopore and Molecular Dynamic Simulation for Label-free Detection of 

Protein  

Nanopore technology has been advanced substantially due to its advantages for 

single molecule detection and characterization capabilities. Nanopore sensors have been 

used for rapid sequencing of DNA, detection of proteins and metal ions, and protein 

transportation studies [90-93].   
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2.11.1. Fabrication of Nanopore 

Earlier, biological pores such as alpha-hemolysin were used for nanopore 

experiments. Later, solid-state pores became more popular due to their mechanical and 

chemical stability. Advancement of nanofabrication tools made it easier to fabricate solid-

state nanopores and also to modify the pore diameter, thickness, and the material of the 

membrane. Figure 2.20 shows a simple schematic of solid-state nanopore fabrication in a 

silicon nitride membrane. Other materials such as Al2O3, SiO2, and graphene have also 

been used for nanopore fabrication for different purposes. Basically, a thin film is grown 

or deposited on the silicon wafer. Then the substrate (silicon) is etched from the back side 

to create a free-standing membrane. Finally, a small pore is drilled with high energy ion or 

electron beam. Focused ion beam (FIB) and Transmission electron microscope (TEM) are 

most commonly used for nanopore drilling. However, the pore can be fabricated using 

high-resolution photolithography for higher throughput. The inner wall of the nanopore can 

also be coated with biomolecules to study protein interactions. 
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Figure 2.20. Schematic flow of nanopore fabrication. (a) A cross-section of a silicon chip. 

(b) Silicon nitride deposition on both sides on the silicon chip. (c) Photoresist coating on 

one the backside silicon nitride. (d) An etch window is patterned in the photoresist layer 

using photolithography. (e) The patterned window is transferred to silicon nitride hard 

mask using dry etch. (f) Silicon is anisotropically etched with wet etchant 

(tetramethylammonium hydroxide, TMAH) through the etch window. The crystallographic 

orientation of silicon creates a slanted sidewall. (g) TEM drilling of the silicon nitride 

membrane. (h) and TEM micrograph of a 20 nm diameter nanopore.  

2.11.2. Working Principle of Nanopore 

The working principle of protein detection using nanopore is very straightforward. 

A biological or solid-state nanopore is immersed in an ionic solution. An external electric 

field is applied and protein molecules are passed through the nanopore. The translocation 

of protein molecules and any interactions with the pore wall is then captured in the ionic 

current profile measured by the external patch clamp system. The velocity of the protein 

depends on the charge of the protein, the electric field applied in the system, and protein-

pore interactions. The charge of the protein depends on the isoelectric point of the protein 

and the pH of the ionic solution. Thus, the size of the pore, the strength of the electric field, 
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the concentration and pH of the ionic solution, and the surface coating on the inner pore 

wall can play important roles in protein transport studies. Figure 2.21 shows a 

demonstration of label-free protein detection using solid-state nanopore at different pH.  

 

Figure 2.21. Protein translocation through nanopore [94]. Bovine serum albumin, BSA was 

passed through the nanopore in an ionic buffer with pH 5 (labeled A) and pH 3 (labeled B) 

at 50 mV. (C) Time-resolved current signal of BSA (black and green) and avidin (red and 

blue) at pH 3 (black and red) and pH 6 (green and blue), respectively. Reprinted with 

permission. 

2.11.3. Molecular Dynamics Simulation of Nanopore 

Proteins play crucial roles in carrier transport, molecular motors, cellular structural 

support etc. Several nanopore-based protein studies have been conducted through 

different experiments. However, some information such as the interatomic interactions of 

protein and the nanopore cannot be measured with experimental setups. The 
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translocation dynamics, and also the structural stability of the confined protein inside 

nanopore cannot be calculated from laboratory experiments. Molecular Dynamic (MD) 

simulation can predict these events that take place inside the nanopore. Computer 

simulations can be used for better understanding of molecular assemblies and 

interactions. MD simulation is suitable for analyzing the dynamic properties of the transport 

mechanism, time-dependent responses, and flow-based experiments.  

The foundation of MD simulation is built on Newton’s third law. An MD simulation 

actually predicts the position of every atom in a molecule by analyzing all the forces acting 

between any atom-pairs. First, a model of the system is built with atomic-scale precision. 

The position of the atoms and the energy is estimated using Newtonian and quantum 

mechanical calculations. Then the next state of the molecule is calculated based on the 

state of all the atoms in the system at the previous step. An MD simulation has the 

advantage to calculate atomic interaction in small timescale. Figure 2.22 shows a basic 

flowchart of the calculation steps for an MD simulation. 

 

Figure 2.22. Flowchart of a molecular dynamic simulation calculation. 
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2.11.4. Molecular Dynamics Simulation Software 

Two software is popularly used for MD simulations (i) Nanoscale Molecular 

Dynamics (NAMD) and (ii) Visual Molecular Dynamics (VMD). NAMD is used for parallel 

programming to simulate large bio-molecular systems. The program uses CHARM++ 

models specially developed for nucleic acids, peptides, and protein simulations to 

calculate interatomic forces. VMD is used for visualization of simulated biomolecules and 

structural analysis.  
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Chapter 3 

3. One-Step Fabrication of Flexible Nanotextured PDMS as a Substrate for Selective Cell 

Capture  

3.1. Introduction 

Advances in nanofabrication techniques including chemical and reactive ion 

etching, nano-embossing, chemical vapor deposition, and electrospinning have enabled 

the creation of surfaces with nanoscale topography (e.g. nanotexture) [57, 58, 61, 65, 95, 

96]. These engineered surfaces have provided unique opportunities to imitate the 

physiological nanotexture found in vivo and explore biomimetic cell-surface interactions. 

Over the last decade, the characteristic advantages of nanotextured substrates including 

increased surface areas [97-99], enhanced surface activity [100], and tunable surface 

energies [101] have been leveraged to modulate phenotypic behaviors including cell 

attachment [102-104], viability [105, 106], migration [107], and differentiation [108].  

Nanotextured surfaces are also gaining popularity in cancer cell capture 

applications [59, 109-111]. Taking advantage of increased surface areas, Yoon and 

colleagues introduced antibody-functionalized graphene nano-sheets and demonstrated 

efficient cancer cell capture from lung and breast cancer patient samples [66]. Zhang and 

colleagues demonstrated the application of nanotextured TiO2 for cancer cell capture from 

colorectal and gastric patient samples [65]. Similarly, Wang and colleagues reported the 

use of 3D nanostructured silicon nanopillars for isolation of breast and prostate cancer 

cells [69, 112]. Cancer cell capture on aptamer-functionalized nanotextured surfaces has 

been demonstrated before [99, 113-115]. It has been shown that captured cells can be 

sub-classified as metastatic or non-metastatic by quantifying dynamic membrane ruffling 

behavior via real-time imaging [114, 116]. These observations underscore the important 

role that nanotopographic cues have in guiding cell behavior. Even though the advantages 
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of nanotextured surfaces are becoming increasingly evident for cellular explorations, there 

are practical considerations that must be addressed before these materials can be widely 

fabricated and used by researchers outside the materials science and engineering 

communities.  

Conventional techniques to create nanotextured substrates require cleanroom 

facilities and specialized fabrication equipment [67, 96, 117]; these requirements impose 

a significant entry barrier for researchers that wish to incorporate nanotextured materials 

into their experiments but do not have access to the needed facilities. For cell capture 

experiments, important considerations include (i) precise sample introduction and routing, 

(ii) controlled washing, and (iii) experimental reproducibility. Microfluidic technologies have 

been shown to effectively meet these requirements [53, 54, 56]; however, the leak-proof 

integration of nanotextured substrates with microfluidic channels, coupled with the 

optimization requirements of microfluidic experimental workflows can be challenging to 

implement.  

To simplify nanotextured substrate fabrication and provide a user-friendly solution 

for microfluidic integration, this work presents a one-step molding approach to achieve 

nanotexture on a flexible polymer surface without requiring specialized nanofabrication 

equipment. The nanotextured polymer was then integrated into a magnetically sealed 

microfluidic architecture with a tool-free approach that can be easily implemented in a 

standard laboratory setting. As a proof of concept, nanotextured polymer surfaces were 

functionalized with antibodies targeting epidermal growth factor receptor (EGFR) and 

demonstrated improved A549 lung cancer cell adhesion and enhanced capture on a 

nanotextured surface compared to a functionalized plain polydimethylsiloxane (PDMS) 

surface. This work also reports on cell capture selectivity from a multi-cellular mixture and 

demonstrate an efficient nucleic acid isolation process to support downstream genomic 
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analysis. The overarching goal of this work is to provide an experimental platform that can 

be easily used in studies exploring cell-surface interactions and selective cell capture. 

3.2. Experimental 

3.2.1. PDMS Channel Fabrication 

Standard soft lithography and replica molding techniques were used to fabricate 

PDMS channels (Figure 3.1). Channels (L=10 mm, W=1 mm) were designed in AutoCAD 

(v2007) and printed at high resolution into mylar transparency films (CAD/Art Service Inc.). 

Silicon wafers (100 mm diameter, p-type, single side polished) were spin-coated with SU-

8 100 photoresist (MicroChem) at 3000 rpm to create a 100 m thick SU-8 layer which 

defined the height of the microfluidic channel. Wafers were then soft baked at 65 C for 

10 minutes and 95 C for 30 minutes, cooled, covered with the printed transparency mask, 

and exposed to UV light centered at 365 nm. After post-exposure bake at 65 C for 1 

minute and 95 C for 10 minutes, wafers were immersed in developer solution for 10 

minutes (MicroChem) to remove non-crosslinked photoresist. Wafers were hard baked at 

150 C and allowed to cool. A ring (1.5 mm thickness, 90 mm OD, 80 mm ID) was laser 

cut (Epilog CO2 laser) from a PMMA sheet (McMaster) and affixed to the surface of the 

wafer via pressure sensitive adhesive (3M). The attached PMMA ring was used to control 

the thickness of the PDMS block containing the microfluidic channel features. PDMS pre-

polymer (Sylgard 184, Dow Corning) was mixed thoroughly (10:1 base to catalyst ratio by 

mass) and placed under vacuum to remove entrapped bubbles. The PMMA ring cavity 

was filled with the bubble-free PDMS solution, gently covered with a transparency film, 

then covered with an additional piece of PMMA to ensure a flat surface, and finally cured 

at 75 C for 6 hours. Fully cured PDMS was removed from the mold and cut to size (L=25 

mm, W=10 mm) with a razor blade to fit into the cavity. Fluidic access ports were cored 

into the PDMS using a 2 mm diameter biopsy punch.  
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3.2.2. Replica Molding of Nanotextured and Plain PDMS surfaces 

Flexible PDMS surfaces (nanotextured and plain) were fabricated by replica 

molding. Bubble-free PDMS was prepared as described above and poured onto the 

backside (nanotextured) or polished (plain) side of a silicon wafer. PDMS thickness was 

defined by the same PMMA cavity technique used in microfluidic channel molding 

process. Once the PDMS was cured, it was carefully removed from the wafer surface and 

stored in a dust free environment until use.   

 

Figure 3.1. Workflow of replica molding (a-c). (a) The backside of a silicon wafer is used 

as the master for the nanotextured PDMS. A PMMA cavity is used to control the thickness 

of the PDMS block. (b) PDMS is poured into the PMMA cavity and a transparent mylar 

sheet is used at the top to maintain a flat surface on the other side. (c) Cured nanotextured 

PDMS block is released from the master.  

3.2.3. Surface Texture Quantification and Imaging  

A profilometer (XP200, Ambios Technology) was used to measure the surface 

roughness of the nanotextured and plain PDMS surfaces at room temperature. Scan 

resolution was 1 nm and 200 m lines were scanned on the surface with a stylus force of 

10 mg at 10 m/sec scan speed. The RMS roughness (Rq) was calculated from the profile 

to quantify surface. SEM micrographs of nanotextured and plain PDMS were acquired in 

low vacuum environmental mode on a FEI NOVA nanoSEM. Atomic force microscope 

(AFM) images were acquired in the non-contact mode using NCHR 10M tips to measure 

surface topography (Park XE-70). 
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3.2.4. Surface Area Calculations 

The surface area was calculated by the following method. Four neighboring points 

(z1, z2, z3, z4) with pixel dimension hx and hy along corresponding axes were chosen. An 

additional point was assumed at the center of the rectangle with the mean value of corner 

pixels. Thus, four triangles were formed and the surface area was approximated by 

summing their areas. The area of one of the top triangles and eventually the surface area 

was calculated with the following formula: 

𝐴12 =
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)
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2

 

𝐴 = 𝐴12 + 𝐴23 + 𝐴34 + 𝐴41 

3.2.5. Contact Angle Measurements 

The contact angles on plain and nanotextured PDMS surfaces were measured 

using a goniometer (Ramé-Hart) with a 2 μL droplet of deionized (DI) water. Images were 

captured using DROPimage software with at least five images per surface and at least 

four independent replicate samples for each condition.  

3.2.6. Nanotextured PDMS Silanization 

PDMS surfaces were cleaned with isopropyl alcohol (IPA), triple washed with DI 

water, and dried with filtered N2. The surfaces were treated with oxygen plasma (Nordson 

MARCH, AP600 plasma system) for 20 seconds to enhance hydrophilicity then 

immediately immersed into a 4% (v/v) 3-mercaptopropyl trimethoxysilane (MPTS, Sigma-

Aldrich) in 95% ethanol solution for 30 minutes at room temperature on a rocker platform. 

The surfaces were sequentially rinsed with ethanol and DI water then dried with filtered 

N2. The silanization process resulted in surfaces decorated with thiol functional groups. 
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3.2.7. Neutravidin Conjugation and Antibody Attachment  

After thiol functionalization, surfaces were treated with 50 µg/mL maleimide-

activated neutravidin (Thermo) in phosphate buffer saline (PBS) for 1 hour at 37 C. The 

maleimide-activated neutravidin covalently attached to the thiol-functionalized surface 

through the maleimide-thiol coupling at neutral pH. Unreacted neutravidin was removed 

with three PBS washes and the substrates were stored in PBS at 4 C for up to one week 

before use. Biotinylated anti-EGFR antibody (Thermo) was added to the neutravidin-

conjugated PDMS surfaces at a concentration of 20 µg/mL in PBS and incubated at 37 C 

for one hour. Control surfaces were incubated with 20 µg/mL biotinylated antibody which 

was isotype-matched to the primary antibody. Antibody attachment was performed 

immediately before experimentation followed by PBST (PBS with 0.05% Tween-20) wash 

and blocking with 1% (w/ v) bovine serum albumin in PBST for 1 h. 

3.2.8. Reversibly Sealed Easy Access Modular (SEAM) Platform Integration 

PMMA housings (L=45 mm, W=30 mm), McMaster Carr) were designed in 

AutoCAD and cut with a CO2 laser. Individually cut layers (1.5 – 2 mm) were laminated 

together using pressure sensitive adhesive films to create rigid plastic housings containing 

L=25 mm, W=10 mm, H=1.5 mm cavities PDMS pieces containing the microfluidic 

channels (top) and the flexible nanotextured or plain PDMS surfaces (bottom). Laser-cut 

holes at the four corners accommodated cylindrical rare earth magnets (K&J Magnetics, 

2.54 mm diameter, thickness=1.58 mm) which were then glued in place. Rare earth 

magnets were embedded in the PMMA and oriented such that the top and bottom 

housings had opposite magnetic poles facing one another to achieve a simple and self-

aligned latching mechanism. The housings compressed the top PDMS channel against 

the PDMS capture surface and achieved a leak-proof seal (Figure 3.5(b)). Magnetic 

latching allowed the SEAM platform to be easily sealed and resealed as needed. The 
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tubing was connected to the channel using a barbed fitting (McMaster), and a syringe 

pump was used to control fluid flow (Harvard Apparatus). The magnetic latching 

mechanism was sufficient to create a seal that could withstand the maximum possible flow 

rate for our syringe pump (5 mL/min) corresponding a pressure drop of ~ 1.5 psi (100 

mbar).   

3.2.9. Cell Culture 

Human small cell lung cancer cells (A549) were obtained from ATCC and cultured 

in complete RPMI-1640 according to manufacturer’s directions. Human umbilical vein 

endothelial cells (HUVEC) were obtained from Lonza and maintained in EndoGRO culture 

media according to manufacturer’s directions. Cells were seeded at 5,000 cells cm-2 in T-

75 culture flask and were passaged at ~70% confluence. Media was replaced every 24-

48 hours. Prior to experiments, cells were enzymatically disassociated from the culture 

flask, counted with an automated cell counter (Countess-II, Thermo), and diluted to the 

desired concentration in serum-free media.  All cells were used between passages 5 to 

10. 

3.2.10. Cell Capture Experiments 

PDMS surfaces were integrated into the SEAM platform and functionalized with 

anti-EGFR antibody to target EGFR on the surface of A549 cells. Control experiments 

included a biotinylated, non-targeting antibody which was isotype-matched to the anti-

EGFR antibody. A549 cells were labeled with fluorescent dye (CellTracker green, 

CMFDA) at 5 µM concentration for 3 hours prior to experiments to aid in visualization. 

Cells were counted, resuspended in serum-free media, and then incubated in the 

functionalized channels at 200 cells/mm2 seeding density for 20 minutes at 37 C. 

Channels were washed using a syringe pump for 2 minutes to remove unattached cells 

from the surface. The channels were then imaged with a fluorescence microscope 
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(Olympus IX81, with ORCA-Flash 4.0 camera) using Olympus CellSens software and 

counted using ImageJ. 

For specificity experiments, A549 cells and HUVECs were labeled with green 

(CellTracker green, CMFDA) and orange dye (CellTracker orange, CMTMR), respectively, 

at 5 µM concentration for 3 hours. The A549 and HUVECs were combined at a ~1:1 ratio 

in serum-free media. The cell mixture was introduced into the channels at the desired 

density, incubated for 20 minutes, and imaged pre and post wash.  

3.2.11. Threshold Fluid Shear Stress  

A549 cells were captured on a functionalized PDMS surfaces as described above 

and exposed to defined fluid shear stress to assess adhesion strength. Shear stress within 

the capture channel (L = 10 mm, W= 1 mm, H = 0.1 mm) was simulated in COMSOL 

(v5.2a) as a function of flow rate via parametric sweep (50, 100, 150, and 200 µL/min). 

The surface roughness to channel hydraulic diameter ratio, /Dh, was small (0.003) with 

Reynolds number < 10 and therefore effects of nanotexture on shear stress were not 

considered in our model. Cells were exposed to shear stress ranging from 0 to 50 

dyne/cm2 for 1 minute and the number of cells retained in the channel after shear exposure 

was quantified. The data were fit to a 4 parameter sigmoidal curve, and the threshold 

shear stress required to dislodge 50% of captured cells, 50%, was determined for each 

substrate (n > 3 independent experiments for each). Data are reported as average and 

standard deviation of the extracted 50% value from three independent experiments.  

A COMSOL simulation was performed to simulate wall shear stress within the 

microfluidic channel (L = 10 mm, W = 1 mm, H= 0.1 mm) under different flow rates. Results 

are shown in Table 3.1. 
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Table 3.1. Simulated wall shear-stress as a function of flow rate 

Flow rate (l/min) Shear stress (dyne/cm2) 

10 0.77 

50 3.87 

100 7.74 

200 15.47 

 

3.2.12. Four-parameter Curve Fitting  

The following equation was used in 4-parameter sigmoidal fit.  

𝑦 = 𝐴 +
𝐵 − 𝐴

1 + (
10𝐶

𝑥
)

𝐷 

Where, x and y are the independent and dependent variable; the 4 fitting-

parameters are, A = Final asymptote, B = Initial asymptote, C = Point of inflation, and D = 

Slope. 

The reduced chi-squared value was used to compare the goodness of fit.  

𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑐ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 


2 =
2


, 

𝑐ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒, 2 = ∑
(𝑂𝑖 − 𝐶𝑖)2

𝑖
2

, 

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚,  = 𝑛 − 𝑚 

Where,  = degree of freedom, n = number of observations, m = number of fitted 

parameters,  = variance, O = Observations, C = Calculated data. 
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3.2.13. Cell Adhesion Improvement and Cell Capture Enhancement Calculation 

The threshold shear stress required to dislodge 50% of captured cells, was 

denoted as 50%. Then 50% was calculated for both nanotextured (50%, nanotextured) and plane 

PDMS (50%, plane) surface. Then the improvement in cell adhesion was calculated with the 

following equation 

Percent increase in attachment =  
𝜏50%,𝑛𝑎𝑛𝑜𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑑 − 𝜏50%,plain

𝜏50%,plain
 𝑥 100% 

Cell capture improvement on functionalized nanotextured PDMS versus plain 

PDMS was calculate using the following equation. 

Percent increase in cells captured =  
𝑁𝑛𝑎𝑛𝑜𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑑 − 𝑁𝑝𝑙𝑎𝑖𝑛

𝑁𝑝𝑙𝑎𝑖𝑛
 𝑥 100% 

Where, Nnanotextured is the number of cells captured on nanotextured surface per 

mm2 and Nplain is the number of cells captured on plain surface per mm2. 

3.2.14. Nucleic Acid Extraction 

After cell capture, nucleic acid isolation was performed using a Quick-RNA 

MicroPrep kit (Zymo-Research) and quantified using a NanoDrop-1000 

Spectrophotometer (Thermo). Two methods were compared. In the first method, the 

PDMS substrate with attached cells was removed from the SEAM platform and transferred 

directly into a microtube containing 400 µL of lysis buffer and then processed according 

to the manufacturer’s directions. In the second method, in-channel lysis was done by 

flowing 400 µL of lysis buffer through the channel, collected in a tube, and then processed 

according to the manufacturer’s protocol. At least three independent experiments were 

done for each method.  
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3.2.15. Statistical Analysis 

Statistical significance was assessed with two-tailed unpaired t-test or ANOVA with 

Bonferroni post-hoc analysis as indicated in the text. Data are reported as the average ± 

standard deviation with p-value < 0.05 considered statistically significant. The number of 

independent replicates is indicated in the text. 

3.3. Results and Discussion 

3.3.1. Nanotextured PDMS 

Silicon wafers are commonly used in soft lithography to create microfluidic channel 

features and PDMS is a chemically inert, optically transparent, and ubiquitous material in 

microfluidic applications [54]. To create nanotextured surfaces without requiring 

specialized equipment, a replica molding technique was used with the unpolished 

backside of a silicon wafer as a template and PDMS as the fabrication material. The 

molding process transferred the intrinsic nanotexture from the unpolished wafer (Rq = 702 

± 73 nm) to the PDMS polymer. As shown in Figure 3.2, the topographical features of 

nanotextured surfaces were imaged with scanning electron microscopy (SEM) and 

compared with plain PDMS surface molded from the polished side of a silicon wafer. 

Atomic force microscopy (AFM) was used to measure the surface roughness of the plain 

PDMS (inset to Figure 3.2(a)). The roughness of the nanotextured surface was beyond 

the measurement limit of the AFM and profilometer was used to assess the roughness of 

the surface (Figure 3.3). Rq for nanotextured and plain PDMS was found to be 682 ± 102 

nm and 3.7 ± 1.5 nm, respectively (p-value < 0.05, n = 8). 
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Figure 3.2. Surface topography of plain and nanotextured PDMS captured at 30 angle in 

low vacuum. (a) SEM micrograph of plain PDMS. The inset shows the surface topography 

measured with AFM. (b) SEM micrographs of nanotextured PDMS. A high magnification 

image of the surface topography is shown in the inset.  

Obtaining Rq values equivalent to our method using conventional additive or 

subtractive nanofabrication techniques involves processing steps that must be optimized 

for every material (e.g. silicon, glass, polymer), and care must be taken to quantify 

differences in resulting surface compositions.  Reactive ion etching (RIE), nanoparticle 

coating, electrospinning and other deposition methods have been used to create 

nanotexture from 20-200 nm and multiple rounds are required to achieve the equivalent 

roughness of our molding process.  The replica molding from the backside of a silicon 

wafer is a simple, one-step process that can be done in any laboratory. If other Rq values 

are desired, the backside of the silicon wafer can be modified to expand the range of 

nanotexture transferred to the polymer during replica molding. For example, anisotropic 

etching of the silicon wafer can create surfaces with higher Rq while dry-etch methods can 

be used to decrease Rq. Although additional processing is required, the resulting backside 
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silicon surfaces can be used indefinitely as templates outside of a nanofabrication 

laboratory. 

 

Figure 3.3. Surface roughness profiles of plain and nanotextured PDMS measured by the 

profilometer. The scale in the vertical axis of the two profiles represents the difference in 

surface roughness. The root mean square (RMS) roughness (Rq) of nanotextured and 

plain PDMS was 682 ± 102 nm and 3.7 ± 1.5 nm, respectively (p-value < 0.05, n = 8).  

3.3.2. Effect of Nanotexture on Surface Area 

To calculate the increase in the surface area resulting from a two-order of 

magnitude enhancement in Rq, a triangulation-based image analysis technique was used 

as described by Necas and coworkers [118]. In this approach, an image of each surface 

was calibrated with measured surface roughness and the individual pixel intensity of the 

two-dimensional image was used to calculate the topographic parameters. Four adjacent 

pixels were chosen on the surface with a common corner at the center. The intensity of 

the center corner was approximated to be the mean intensity of the four points and 

rectangular pyramid shape was formed; the corresponding surface area was calculated 

from the four lateral triangles. The total surface area for the plain and nanotextured PDMS 

was found to be 0.034 mm2 and 0.063 mm2 for the same footprint of 200 m x 172 m, 

corresponding to an 85% increase in surface area. 
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PDMS is an intrinsically hydrophobic material (c = 110) while the thiol group is 

slightly polar. Contact angle measurements showed that nanotextured PDMS (nanotextured 

= 49.7 ± 3.6) became more hydrophilic after thiol functionalization compared to plain 

PDMS (plain = 61.3 ± 6.8) (see Figure 3.4); the ~20% decrease in contact angle of thiol-

functionalized surfaces can be attributed to the increased surface area and corresponding 

increase of surface-bound thiol groups [119]. Thiol groups were used to attach neutravidin 

molecules to the surface to create a versatile method to functionalize a surface using 

biotin-conjugated reagents (e.g. antibodies, proteins, or aptamers). 

 

Figure 3.4. Change in water contact angle on plain and nanotextured PDMS surfaces due 

to silanization process. The contact angles (c > 90) of untreated plain and nanotextured 

PDMS suggest a hydrophobic material. Both of the surfaces changed to hydrophilic (c < 

90) after thiol functionalization. Because of the increased surface area on the 

nanotextured surface, the thiol functionalization made nanotextured PDMS more 

hydrophilic (nanotextured = 49.7 ± 3.6) compared to plain PDMS (plain = 61.3 ± 6.8) as is 

shown by the contact angle measurements. 

3.3.3. Nanotexture and Surface Composition 

Energy-dispersive spectroscopy (EDS) analysis was used to verify that molding 

from the backside of a silicon wafer did not alter the composition of the resulting 
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nanotextured PDMS (Table 3.2). The molecular weight of Hydrogen (H) is too small to be 

detected with EDS and the trace aluminum (Al) was attributed to the sample holder. Our 

data showed no significant change in composition between the plain and nanotextured 

PDMS. In contrast to other texturing methods (e.g. CVD, chemical etch, electrospinning), 

our simple replica molding technique allowed us to transfer texture to the bulk material 

without altering the surface composition. 

Table 3.2. Elemental analysis of plain and nanotextured PDMS (C2H6OSi)n 

Element Plain PDMS (%wt.) Nanotextured PDMS (%wt.) 

C 46.1 ± 0.31 45.07 ± 0.31 

Si 24.96 ± 0.17 26.31 ± 0.16 

O 28.35 ± 0.25 28.05 ± 0.24 

Al 0.57 ± 0.09 0.57 ± 0.04 

Total 100.00 100.00 

 

3.3.4. Integration of Nanotextured PDMS into microfluidic architecture  

Microfluidic devices used for cell culture studies are typically permanently bonded 

together (i.e. channel feature layer attached to culture surface) using chemical 

modification or mechanically assembled with screws or retaining clips. To simplify 

integration efforts, a modular platform containing a magnetic latching mechanism was 

utilized to enable self-aligned, tool-free, sealing and resealing of microfluidic devices 

(Figure 3.5). Replica molded PDMS substrates (textured or non-textured) were sealed 

against a PDMS slab that contained microfluidic channel features using a two-piece 

PMMA housing assembly with magnets of opposite polarity embedded in each layer [120].   

The magnets enabled a simple, self-aligned compression seal and could be easily 

disassembled and reassembled as needed. Magnetic latching also allowed easy access 
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to cells within the device and facilitated a simplified process for isolating cells and nucleic 

acids for downstream analysis. 

 

Figure 3.5 (a) Schematic showing the microfluidic integration of nanotextured PDMS using 

the SEAM platform that consists of PMMA housings with embedded magnets, 

nanotextured PDMS surface, and PDMS channel. Magnets are installed in top and bottom 

housings with opposite polarity facing each other for self-aligned assembly. (b) Image of 

an assembled device. Channel access ports are connected to syringe pump through 

microfluidic tubing and barb fittings. Red dye was loaded into the channel for visualization. 

(Scale bar = 10 mm). 

3.3.5. Nanotexture for Enhanced Cell Adhesion 

It was expected that the increased surface area on nanotextured PDMS would lead 

to enhanced cell-surface interactions resulting in stronger cell attachment compared to 

plain (non-textured) PDMS. To test this, PDMS surfaces were functionalized with an anti-

EGFR antibody within the reversibly sealed SEAM platform. SEAM allowed easy 

integration of nanotextured PDMS and enabled controlled application of fluid shear stress. 

EGFR is upregulated in several cancer types and is a common target for cancer cell 

capture. A human non-small lung cancer cell line, A549, was used to investigate possible 

enhancements in cell attachment strength. These cells were chosen because they have 
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relatively low expression levels of EGFR compared to other cancer cell populations such 

as A431 and human glioblastoma [121-123]. Cells with overexpressed EGRF are likely to 

have more pronounced interactions with antibody-functionalized surfaces while cells with 

moderate expression could highlight the influence of functionalized nanotextured surfaces 

on cell attachment.  

 

Figure 3.6. a) Cell attachment as a function of wall shear stress. The dashed line 

represents the 50% cell detachment threshold. The experimental data were fitted with a 

4-parameter sigmoidal fit (coefficient of determination, R2 > 0.99 for both data series). The 

reduced chi-square values for the fitted curves were 2.3 and 2.0 for plain and nanotextured 

PDMS, respectively. b) The average shear stress required to detach 50% cells captured 

on functionalized plain PDMS (24 ± 0.4 dyne/cm2) and nanotextured (30 ± 0.7 dyne/cm2) 

PDMS; (*p-value < 0.05, n = 4).  

A549 cells (average density of 200 cells/mm2) were allowed to attach onto anti-

EGFR antibody functionalized PDMS surfaces and exposed to different shear stresses 

ranging from 0 – 50 dyne/cm2 using SEAM. The number of cells remaining in the channel 

after exposure to shear stress was fit to a 4-parameter sigmoidal curve (Figure 2.6a). The 

average shear stress required to detach 50% of cells from the two surfaces, 50%, was 

compared (Figure 3.6b). Results showed that 26 ± 5% higher 50% was required to detach 

A549 cells from functionalized nanotextured PDMS versus plain PDMS. These results can 
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be attributed to the larger capture area and higher density of antibodies on the surface. 

Assuming a hexagonal close-packed neutravidin layer [124] the neutravidin surface 

density on plain and nanotextured PDMS was estimated to be 1.36 x 109 and 2.5 x 109 

per mm2, respectively. A biotin-fluorophore conjugate was used to verify the increased 

presence of neutravidin on the nanotextured surfaces (Figure 3.7). 

 

Figure 3.7. Fluorescence intensity of biotin-atto-488 conjugated on neutravidin and control 

functionalized PDMS surfaces. All the values are normalized with respect to average 

fluorescence intensity on plain PDMS. The average fluorescence intensity on neutravidin 

functionalized plain and nanotextured PDMS surfaces were 4.67 ± 0.32 and 5.7 ± 0.24, 

respectively; Fluorescence intensity on plain and nanotextured control PDMS surfaces 

were 1 ± 0.14 and 1 ± 0.09 (*p-value < 0.05, #p-value = 0.96, n = 3). The presence of 

nanotexture increased the surface area and helped to accommodate a higher number of 

neutravidin molecules on the surface. 

3.3.6. Nanotexture for Enhanced Cell Capture 

Based on the cell adhesion results demonstrating increased cell-surface 

interactions, it was expected that the nanotextured PDMS surfaces would exhibit 

enhanced selective cancer cell capture compared with plain PDMS. To test this 
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hypothesis, A549 cells were 1) incubated on PDMS surfaces for 20 minutes followed by 

2) a wash at a flow rate (Q) of 100 μL/min and 3) captured cells were imaged with a 

fluorescence microscope. An illustration of the cell capture experiment is shown in Figure 

3.8(a). Figure 3.8(b) shows representative images of cells captured on functionalized 

nanotextured and plain surfaces. Images of fluorescently labeled cells were superimposed 

on optical images of the underlying surface to highlight texture. Figure 3.8(c) summarizes 

the cell capture results. 

 

Figure 3.8. (a) Schematic showing cell capture process. Surfaces are incubated with A549 

cells and washed using a syringe pump. (b) Representative fluorescent images of 

captured A549 cells on nanotextured (top) and plain PDMS (bottom); scale bar is 100 µm. 

Fluorescent images of A549 superimposed on bright-field micrographs of the respective 

surfaces for visualization. (c) The density of captured A549 cells on anti-EGFR and isotype 

control functionalized plain and nanotextured PDMS. The A549 cell densities (average 

number of cells/mm2) on anti-EGFR antibody functionalized plain and nanotextured 

surfaces were 85 ± 14 and 148 ± 37 cells/mm2, respectively; cell densities on isotype 

control plain and nanotextured PDMS surfaces were 4 ± 2 and 7 ± 3 cells/mm2; (*p-value 

< 0.05, #p-value = 0.15).  

From these experiments, a 71 ± 19% increase in cell capture was observed on the 

nanotextured PDMS compared to the plain PDMS with statistically significant differences 
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(p-value < 0.05, n = 4). To confirm that these observations were due to increased contact 

between cells and antibody functionalized surfaces and not from physical trapping of cells 

on nanotextured surfaces (Rq ~680 nm), PDMS substrates were functionalized with (non-

targeting) antibodies isotype-matched to anti-EGFR antibodies. If physical trapping played 

a significant role in the cell capture, the number of cells non-specifically attached to the 

nanotextured surface compared to a plain PDMS surface would be higher. Capture 

experiments with non-targeting isotype-matched antibodies showed no statistical 

differences (p-value = 0.15) between plain and nanotextured surfaces. Thus, it is 

concluded that the increased capture could be attributed to the specific interactions 

between the antibody functionalized nanotextured PDMS and the EGFR on the cell 

surface.  

A neutravidin-biotin functionalization scheme was used here because it is a 

versatile and commonly used approach to immobilize antibodies to a surface that can be 

easily replicated. The small amount of non-specific cell attachment could be related to 

electrostatic interactions between the neutravidin surface and the cellular membranes and 

these effects could be further reduced by (i) incorporating hydrophilic polyethylene glycol 

(PEG) chains as linkers between the antibody and the biotin molecule and/or by (ii) 

introducing PEG-biotin molecules in the channel after antibodies are attached to block 

unoccupied biotin binding sites.  

3.3.7. Selective Capture of Cancer Cells on Nanotextured Surfaces from a Multi-

Cell Mixture 

In clinical samples, cancer cells are captured from blood samples that include red 

blood cells (RBC), white blood cells (WBC), epithelial, and endothelial cells. The ability to 

selectively capture cancer cells from a background cell population was explored by 

creating a ~1:1 (47%-53%) mixture of A549 and human umbilical vein endothelial cells 
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(HUVEC), respectively.  The cell mixture was introduced onto the functionalized 

nanotextured surface within SEAM platform (initial seeding density = 150 cells/mm2). 

HUVECs were chosen because they have very low expression of EGFR on the cell 

membrane[125]. PDMS surfaces were functionalized with an isotype-matched biotinylated 

antibody as a control, and A549 cells (green) and HUVECs (orange) were fluorescently 

labeled to simplify cell identification and enumeration.  A schematic illustration of the 

experiment is shown in Figure 3.9(a) and a representative multi-color fluorescence image 

of the cell mixture on the surface before and after washing is shown in Figure 3.9(b).  

 

Figure 3.9. (a) Schematic of specificity experiments. Nanotextured surfaces are incubated 

with a mixture of A549:HUVEC at 1:1 ratio and washed using a syringe pump. (b) 

Representative fluorescent images of the cell mixture before (left) and after wash (right); 

green cells are A549 cells and red are HUVECs; scale bar = 100 µm for both images. (c) 

Graphical representation of average cell densities of A549 cells and HUVECs on anti-

EGFR and the control surfaces after the washing step. Average A549 and HUVEC cell 

densities on anti-EGFR modified surfaces were 52 ± 4.1 and 4.0 ± 0.7 cells/mm2, 
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respectively. The average number of cells captured on isotype modified surfaces were 1 

± 0.2 cells/mm2. (*p-value = 0.0001, **p-value = 0.005, ***p-value = 0.0001; n = 3).   

Results showed that the fraction of A549 cells on the nanotextured surface 

increased from 47% at initial introduction to 93% after the attachment and wash steps as 

shown in Figure 3.9(b). Capture data are summarized in Figure 3.9(c). Average cell 

densities of A549 cells and HUVECs were 52 ± 4.1 cells/mm2 and 4 ± 0.7 cells/mm2, 

respectively. ANOVA showed statistically significant differences in cell capture between 

the two types of cells. After washing, 74% of cancer cells and 5% of HUVECs remained 

bound to the anti-EGFR functionalized surface.  HUVECs may have been bound to the 

surfaces due to (i) interactions between the low expression of cell-membrane EGFR and 

high-density of anti-EGFR antibody on the nanotextured surface [122, 126], or (ii) 

interactions between the captured cancer cells and E-selectin and P-selectin on the 

HUVECs [127-129]. It is also observed that 1 ± 0.2 cells/mm2 were attached to the isotype 

control surface. This non-specific attachment could be due to electrostatic interactions 

with the surfaces. In addition to increased cell attachment (Figure 3.8c), nanotextured 

PDMS was able to enrich cancer cells from a mixed cell solution using nanotextured 

PDMS in the SEAM platform.  

3.3.8. Simplified Workflow for Nucleic Acid Isolation from Captured Cells 

An important capability in cell capture devices is easy access to cells and nucleic 

acids for downstream analysis (e.g. clonal expansion, fluorescence in situ hybridization 

(FISH), gene expression, and sequencing) to determine the type of primary tumor and 

monitor disease progression [130, 131]. Microfluidic cell capture approaches are typically 

formed by permanently bonding the channel network to the capture surface, and access 

to the captured cells and nucleic acids is only possible by flowing fluid through the channel. 

With the magnetic latching used in SEAM, the channel and the surface can be quickly 
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decoupled to provide open access to the captured cells. For nucleic acid isolation, the 

flexible PDMS surface (and captured cells) can be removed from the device and 

transferred directly to a commercially available nucleic acid isolation workflow. Direct 

transfer can limit sample losses since the entire cell population is transferred without 

requiring flow-based sample handling or collection. As shown in Figure 3.10, nucleic acid 

was extracted from captured cells and the isolation yield was compared from flow-based 

in-channel lysis to our direct transfer method. Cells were captured in individual devices 

and half were selected at random for in-channel lysis of cells while the remaining devices 

were used for direct transfer of nanotextured surfaces to the lysis buffer. For in-channel 

lysis, a syringe pump was used to flow lysis buffer through the channel and collected in a 

tube. In the direct transfer method, the flexible PDMS surfaces were removed from the 

device and transferred directly into an equivalent volume of lysis buffer in a collection tube. 

The lysate was then processed using a Zymo extraction kit according to the 

manufacturer’s instructions. The nucleic acid yield and purity were measured with a 

Nanodrop spectrometer.   
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Figure 3.10. (a) Nucleic acid extraction from captured cells using in-channel lysis. The 

dotted line represents flow path for the lysis buffer and sample collection. (b) Cell lysis 

with direct transfer of captured cells from nanotextured PDMS surface into lysis buffer. (c) 

Comparison of nucleic acid extraction efficiency using the two methods. The data is 

normalized to the amount of nucleic acid directly extracted from a cell suspension. (*p-

value < 0.05; n = 5). 

Results showed that approximately twice as much nucleic acid was extracted from 

the direct transfer method (1523 ± 225.9 ng, A260/280 = 2.03 ± 0.02) compared to in-channel 

lysis (647 ± 5.7 ng, A260/280 = 1.99 ± 0.08) with statistically significant differences (n = 5, p-

value < 0.05). For the normalization of data in Figure 3.10(c) the number of cells equivalent 

to the initial cell seeding density was pipetted directly from cell suspension into lysis buffer. 

The data are presented as the extraction efficiency with respect to the control. The 

extraction efficiency of direct transfer and in-channel method was 80% and 35%, 

respectively. The purity of the extracted nucleic acid between the methods was 

comparable, but the direct transfer method was simple to implement and did not require 

sample handling or fluid manipulation. The straight channel used here represented a 

conservative extraction because more complicated branched networks can lead to sample 

losses from dead volumes, external tubing, and large surface area-to-volume ratios 

microfluidic channels. The open cell access enabled by SEAM simplified the experimental 
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workflow for cell processing required for downstream analysis. Taken as a whole, our 

simplified nanotexture fabrication technique and microfluidic integration approach aim to 

eliminate the entry barrier for researchers interested in exploring the interactions between 

nanotextured surfaces and target cells.  

3.4. Discussion 

The goal of this work was to present solutions to enable researchers to fabricate 

nanotextured substrates and easily integrate them into microfluidic systems to support 

applications where cell-surface interactions play an important role. Using a simple 

fabrication scheme can be carried out in any laboratory, our capture capabilities were 

comparable with other techniques that required specialized equipment and complex 

fabrication processes (71% increase vs. 85-100% increase) [57, 66, 70, 99]. It was 

anticipated that optimized surface functionalization approaches will improve our capture 

capabilities. The replica molding-based fabrication of nanotextured surfaces enables rapid 

iteration of surface modification approaches to improve capture. Conventional 

nanofabrication tools are compatible with a variety of hard materials (e.g. metal, glass, 

polymers), but soft biological materials pose a processing challenge; the backside molding 

approach used here can be applied to create defined nanotexture on polymers, synthetic 

hydrogels, and biological gels. A common neutravidin-biotin functionalization scheme was 

utilized to immobilize antibodies to the capture surfaces. This approach can be advanced 

to target a wide range of cancer cells through the simple addition of multiple biotinylated 

antibodies. This method is also amenable to other reagents such as RNA and DNA 

aptamers, or ECM proteins. The versatility of the approach opens the door for studies 

exploring the combined effects of nanotopography, substrate stiffness, and cell-protein 

interactions to control stem cell differentiation, cell adhesion, and migration. The molding 

technique is also a highly scalable and cost-effective approach to quickly create 
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nanotextured surfaces at the benchtop to support proof of concept studies and is 

compatible with a variety of other mold fabrication techniques including 3D printing. 

The SEAM platform is designed to simplify integration of microfluidics and 

nanotextured substrates.  Although our proof of concept uses a single microfluidic channel 

and a static cell incubation, throughput can be increased with a branched fluidic channel 

network and chaotic advection features can be introduced to the channel-roof to improve 

cell-surface contact during flow-based sample introduction. The removable assembly 

provides easy access to captured cell populations for processing and downstream 

analysis. SEAM enables the transfer of the entire captured cell population with minimal 

sample handling and fluidic manipulation; direct access to captured cell population 

provides a convenient approach for clinicians and life-science researchers to perform a 

variety of post-capture analysis without requiring potentially problematic liquid handling. 

3.5. Conclusion 

This work presented (i) a simple molding process to create nanotextured 

substrates and (ii) introduce an easy-to-use platform to integrate nanotextured substrates 

into microfluidic architecture and (iii) demonstrated applicability in studies involving cell-

surface interactions. An improvement in cell capture on antibody functionalized 

nanotextured PDMS was observed compared to non-textured PDMS surfaces. The 

nanotextured surfaces were also used to capture cancer cells from a mixed population. 

The modular assembly provided open access to captured cancer cell population for 

downstream analysis; nucleic acid extraction from the captured cancer cells using our 

approach showed higher isolation efficiency compared to conventional in-channel flow-

based extraction method. The accessible nature of this research platform provides myriad 

opportunities to explore the effects of nanotexture on cell adhesion, cell capture, and other 

cell-surface phenomena.  
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Chapter 4 

4. Classification of Cancer Cells using Computational Analysis of Dynamic Morphology 

4.1. Introduction 

Over the past few years, numerous efforts have been made to detect tumor cells 

for early cancer diagnosis. Early detection and treatment of cancer has very high survival 

rates and dramatically improved quality of life. The detection of cancer cells is challenging 

due to their rare presence in blood samples at early stages. In a similar vein, the 

identification of metastatic and aggressive cells is very important for cancer staging.  

Several methods have been employed to capture and identify tumor cells based on their 

physical, mechanical and chemical properties (e.g., size, deformability, electrical 

polarizability) [132]. For example, tumor cells have been recognized based on their 

biophysical properties using microfiltration, atomic force microscopy, micropipette 

aspiration, and micropore devices [31, 34, 116, 133-135]. The distinct electrical charge of 

tumor cells have also been utilized for electrophoresis based separation [136]. In the past 

decade, ligand-based tumor cell capture platforms have been widely used for highly 

sensitive and selective applications [53, 54, 69, 113, 137]. Such affinity-based methods 

have also been explored to selectively tag magnetic and fluorescent particles for cancer 

screening [138-140]. Although these techniques have their own advantages, these 

methods often require complex and time-consuming post-capture analysis for further 

verification. There is a huge disparity in knowledge for rapid, low-cost, and highly sensitive 

platforms for cancer screening. 

Various cell screening methods have been demonstrated to analyze static images 

of cells, and a significant amount of work is reported on automated high-throughput 

microscopy for its rapid image acquisition capability [141-143]. Several fluorescently 

tagged biopsy samples have been imaged and analyzed to classify multiple cell phenotype 
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and morphology [82, 144, 145]. Nevertheless, static image-based classification 

techniques are limited to analyze cell composition only and cannot capture the behavior 

of cells. Therefore, time-resolved live-cell imaging is the way to go to analyze complex 

cellular dynamic processes. It has already been shown that the morphology of cancer cell 

lines correlates to their gene expression profile [146]. Fluorescence time-lapse imaging 

has been used to investigate complex dynamic processes such as cell division, cell 

motility, and intracellular trafficking [147-149]. It has been reported that tumor cells show 

distinctive morphology on a biofunctionalized surface [114, 150-152]. However, visual 

inspection of morphological dynamics from large-scale data is very time-consuming, labor-

intensive, and unreliable. Even a well-trained pathologist would require to spend a great 

deal of time to process and analyze the data from simple biological assay. The 

overwhelming size of data motivates the design of machine learning approaches for the 

classification of cell phenotype, gene sequence, protein expressions, and other physical 

properties [153-157]. The ability to process and learn from a large number of time-resolved 

images and a comprehensive analysis of cell gesture can make a unique contribution to 

effective detection and classification of cancer cells. 

This work describes a predictive computational framework to interpret complex 

cellular dynamics from microscopic time-lapse images for cancer diagnosis. About 50 

characteristics features were extracted to quantify the intricate gesture of cells. A 

supervised machine learning algorithm was implemented to develop a classification model 

that identified metastatic tumor cells derived from solid-biopsy of cancer patient. The 

healthy counterparts of tumor cells, astrocytes, were also incubated on an aptamer-

functionalized glass surface. The temporal context was incorporated into the annotation 

scheme to define the gestures of cells. Incorporation of cell behavior also suppressed 

confusion due to cell-outlook. Cell gestures were quantified in terms of features such as 
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cell geometry, cellular protrusions, and morphological changes in cellular boundary over 

time. The feature vectors were combined in a dataset to train and validate a predictive 

model. The approach was demonstrated to selectively detect metastatic human 

glioblastoma (hGBM) cells and astrocytes with an average accuracy of 85%. The 

approach is equally appreciable for large-scale applications for the detection of tumor cells 

without fluorescently labeling the cells. This is a novel system to detect cancer cells from 

cell gestures and can be readily used by pathologists and life science researchers to study 

cell behavior for disease diagnosis. 

4.2. Materials, Methods, and Experimental Setup 

4.2.1. System Overview 

A high-level overview of the system is shown in Figure 4.1. The cell preparation 

and sample collection section include a functionalized surface and an optical microscope 

to record time-lapse images of cells. Cells were introduced on an anti-EGFR modified 

surface and the morphological behavior of cells was analyzed from their time-lapse optical 

micrographs. The classification of cancerous and non-cancerous cells was done based 

on this dynamic cell morphology. The classification system is composed of two major 

stages: (i) training and (ii) prediction. The image segmentation component crops out 

individual cell images from every frame of the time-lapse optical micrographs. The feature 

extraction part computes shape-dependent feature vectors. Machine learning algorithm 

was used to build the classifier based on the known sample. Once trained, the classifier 

identifies the unknown cell samples based on their distinguishing features.   
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Figure 4.1. Schematic of dynamic morphological analysis of cell gesture. Optical 

micrographs of the cell population are processed with image analysis tool to detect the 

cell-contour. A collection of feature vectors is extracted to generate a morphological 

profile. The data for cell gesture is stored in a dataset. Machine learning algorithm is used 

to generate decision-making system to classify the cells based on the training data. Once 

the classification model is developed, unknown cells are classified based on the 

resemblance of their feature vectors to the known dataset. 

4.2.2. Surface Functionalization 

Glass slides were functionalized with the anti-EGFR aptamer molecules. All 

chemicals were obtained from Sigma-Aldrich unless otherwise noted.  Details of the 

functionalization process have been described before [114, 150]. To summarize, clean 

glass slides were functionalized with a silane reagent (3-Aminopropyl-triethoxysilane, 

SigmaAldrich-440140), crosslinker (p-Phenylene diisothiocyanate, SigmaAldrich-

258555), DNA capture molecule and RNA aptamer (anti-EGFR) sequentially to immobilize 
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aptamers on the surface. The DNA linker with customized sequence was obtained from 

Integrated DNA Technologies (IDT) and the anti-EGFR aptamer was designed through 

SELEX process in the Ellington laboratory at the University of Texas at Austin. The anti-

EGFR aptamer sequence was: 5′-GGC GCU CCG ACC UUA GUC UCU GUG CCG CUA 

UAA UGC ACG GAU UUA AUC GCC GUA GAA AAG CAU GUC AAA GCC GGA ACC 

GUG UAG CAC AGC AGA GAA UUA AAU GCC CGC CAU GAC CAG-3′ (the extended 

sequence is shown in italics and it was used to bind to capture DNA). Aptamers are 

synthetically selected DNA or RNA oligonucleotides that bind to target molecules and are 

used for cancer diagnosis and therapeutics [158-160]. The sequence of the DNA capture 

molecules was 5′-amine-CTG GTC ATG GCG GGC ATT TAA TTC-3′. A mutant aptamer 

of the same length with a scrambled sequence was used for the control experiments. The 

sequence for mutant aptamer was 5′-GGC GCU CCG ACC UUA GUC UCU GUU CCC 

ACA UCA UGC ACA AGG ACA AUU CUG UGC AUC CAA GGA GGA GUU CUC GGA 

ACC GUG UAG CAC AGC AGA GAA UUA AAU GCC CGC CAU GAC CAG-3′. The 

presence of the aptamer on the glass surface was characterized with fluorescence 

imaging (with acridine orange). A schematic of the surface functionalization process is 

shown in Figure 4.2.  

 

Figure 4.2. Schematic representing anti-EGFR aptamer functionalization on glass 

substrate. 

It has been reported previously that most of the cancer cells overexpress EGFR 

on cell membrane [23, 161]. The EGFR density on lung and brain tumor cells is in the 
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range from 40,000 to 100,000 per cell. In a separate study, it has also been shown that 

EGFR is responsible for the proliferative nature of cancer cells [162]. It is the constant 

activation of these EGFR that causes the cells to go through morphological changes. 

4.2.3. Cancer and Healthy Cell Preparation 

Human glioblastoma (hGBM) cells and astrocytes were used for cell-gesture 

comparison. The hGBM cells were obtained from consenting patients at the University of 

Texas Southwestern Medical Center at Dallas, Texas as per the approved Institutional 

Review Board (IRB) protocol work [150]. Glioblastomas are brain tumor cells with 

overexpression of EGFR.  The surface was functionalized with anti-EGFR aptamer 

because hGBM cells overexpress EGFR [114]. The astrocytes are healthy counterparts 

from the same lineage as hGBM cells. hGBM specimens (~50 mm3) were collected from 

patient’s tumor (hGBM mass) and kept in ice-cold HBSS medium immediately after 

removal from the brain. The red blood cells were removed by lymphocyte-M (Cedarlane 

labs). The hGBM tissue was gently dissociated with a solution of papain (2%) and dispase 

(2%). It has been reported that GBM cells can be identified by a cell surface glycoprotein, 

CD133 [163-165]. The triturated solution was then tagged with CD133/2 (Miltenyibiotec-

293C3)-PE antibodies and sorted with Fluorescence-Activated Cell Sorting (FACS) 

Calibur machine (BD Biosciences). Cells were suspended in serum-free DMEM/F-12 

medium (20 ng/mL of mouse EGF, 20 ng/mL of fibroblast growth factor, 1× B27 

supplement, 1× Insulin-Transferrin-Selenium-X, and 100 units/mL penicillin - 100 μg/mL 

streptomycin) at 3 x 106 cells/60-mm plate density. Only CD133-positive cells were used 

in the experiments (referred as hGBM). The Astrocytes used for control experiments were 

also derived from human patients. After extraction and culture, the astrocytes were 

isolated from microglia and oligodendrocytes and were grown in culture medium.  
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4.2.4. Effect of Aptamer on Morphology of Cancer Cells 

Tumor cells overexpress EGFR on the cell membrane. These EGFR interacts with 

the anti-EGFR aptamer and results in a change in cell shape on a functionalized surface. 

The constant interactions of EGFR and anti-EGFR aptamers are responsible for the 

change in cell morphology. This phenomenon is not observed in healthy cells because 

healthy cells do not have enough EGFR on the cell membrane to interact with the 

functionalized surface. Figure 4.3 illustrates the change in tumor cell morphology due to 

the presence of aptamer on glass substrates 

 

Figure 4.3. Effect of aptamer on the morphology of cancer cells. (a) EGFR expressed 

tumor cells interacts with anti-EGFR aptamer functionalized glass surface. (b) Tumor cells 

show distinct morphology over time when seeded on anti-EGFR aptamer functionalized 

surface. (c) Tumor cells do not show much activity in absence of aptamer on the surface. 

4.2.5. Image Acquisition and Processing 

Cells were suspended on the glass substrates at a density of 100,000 cells/mL 

and were allowed to interact with the functionalized substrates. Time-lapse optical 

micrographs were acquired at an interval of 30 seconds for 15 minutes using a Leica 

optical inverted microscope (Leica DM IL LED) with DFC295 CMOS color camera at 20X 

magnification. A mercury light source (Leica classic) was used to illuminate the samples 

from the bottom side. All transmitted-light images were acquired in the Differential 

Interference Contrast (DIC) mode with 20 ms exposure time. A larger interval may fail to 
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capture the morphological changes of cell. Alternatively, a smaller interval is preferable to 

monitor the cell activity more precisely but at the cost of increased data size. The entire 

substrate was imaged with a moving stage microscope. The micrographs were acquired 

and stored at 4096x3072 resolutions in TIFF format. After contrast enhancement and 

Wiener filtering on the acquired images, each cell image was separated in a 200 × 200 

pixel (60 m x 60 m) cropping window using image segmentation algorithm [114]. With 

15 seconds interval, a set of 25 images was allocated for each cell depicting states of that 

particular cell to represent the dynamic morphology over time. A representative time-lapse 

images of a cancer and healthy cell is shown in Figure 4.4. These images were processed 

and analyzed to quantify the cell gestures with a set of feature vectors. The features were 

used to construct a dataset to train and validate the system. All the algorithms were 

implemented in MATLAB (v2013a) and Python (v3.5) software. Python package scikit-

learn (v0.18) was used for the machine learning. 

 

Figure 4.4. Representative time-lapse images of a cancer cell and a healthy cell on anti-

EGFR functionalized surface taken with an optical microscope. The changes in cell 

morphology over time are more pronounced for cancer cell. 

4.2.6. Feature Extraction and Annotation of Cell Gesture 

A level-set algorithm was applied to detect the contour of the cell from each image 

[166]. Multiple feature vectors, such as the center of mass, area, perimeter, and 
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equivalent-radius of the cell were extracted from the cell’s contour. Other shape-defining 

parameters such as aspect ratio, convexity, bounding rectangle, minimum enclosing 

circle, best-fitted ellipse, extent, and solidity of the shape were also calculated to 

characterize cell gestures at various instances of time.  Figure 4.5 demonstrates a few 

shape defining features extracted from cell contour. 

 

Figure 4.5. Features extracted from grayscale optical micrographs of a cell. (a) Grayscale 

image of the cell. The scale bar = 10 µm. (b) The contour of the cell. (c) 4-point shape 

estimation. (d) Convexity from cell contour. (e) Bounding rectangle. (f) Minimum enclosing 

circle. (g) Best fitted ellipse. (h) Extreme points. 

Cancer is a disease of abnormal cell growth and unusual cellular activity. Tumor 

cells can have larger size, greater nucleus-to-cytoplasm ratio, and very different 

cytoskeletal structures in contrast to normal cells. In addition to that, cells showed distinct 

dynamic morphology. To quantify the changes in cell shape over time, the rate of change 

of the shape-parameters was also taken as another set of feature vectors. The Hausdorff 

distance between consecutive frames, uniformity of cell contour, and the number of 

pseudopods around cell boundary were calculated to define the dynamic behavior of the 

cells. The rate of change of these parameters was also calculated and defined as 

additional feature vectors. Tracking the activity of the cell over the whole incubation period 
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revealed unique but subtle nature of cancer cells. Using machine learning algorithms, 

these features were quantitatively and computationally analyzed to recognize the 

differences in cell behavior.  

4.2.7. Feature Extraction 

After acquiring all the time-lapse micrographs, each cell image was cropped out in 

a 200x200 pixel window. A MATLAB program was used to store all the cropped images 

for each cell and every frame in an indexed directory. A batch of images was generated 

for each cell showing its shape change with time. These images were in RGB format. Then 

a level-set algorithm was used to detect the cell contour based on the image contrast. The 

RGB images were processed with a low-pass Wiener filter to remove noise while 

preserving the edges by adapting to a pixel-wise statistical estimation of the local 

neighborhood. The images were further smoothed by a Gaussian filter. Then the RGB 

images were converted to greyscale images. A properly exposed cell image (greyscale) 

should have the maximum contrast along its contour. The level-set method is a dynamic 

process which starts from the image boundary and moves inwards the cellular edge to 

track the cell contour. In this way, the cells were segmented from the non-cell background 

by detecting the cell boundary.  The greyscale images of the cells were then converted to 

binary images. A binary image contains solid black (pixel value=0) and white (pixel 

value=255) pixels only. Thus every cell image is represented as an orthogonal matrix with 

the pixel intensity corresponding to its location (coordinates). The cell contour is the vector 

containing all the coordinates of the cell boundary. Multiple features were calculated from 

this binary cell images including the area of the cell, the perimeter (length of the contour), 

roundness, aspect ratio, solidity, and the equivalent radius.  
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4.2.8. Definition of Features 

Pseudopods are defined as the protruding section from a regular cell boundary. If 

the protrusion was larger than 120% of the average distance from the center to cell-

contour; and the width of the protrusion has an angular distance of >10 at the center of 

the cell, then the protrusion was counted as one pseudopod. Cell aspect ratio is the ratio 

of cell width and cell height. The solidity of the cell was calculated by taking the ratio of 

the area of the contour and the area of the convex envelope of the cell. Cell extent is the 

ratio of the cell area and the bounding rectangle. Hausdorff distance was used to calculate 

the resemblance between cell contours (represented by A, B in the equation) in two 

consecutive images. If the cells do not show any morphological change within two 

consecutive frames, the Hausdorff distance will be a small number. If a cell is changing 

shape, the distance will be a larger number.  

Aspect ratio = cell width
cell height⁄  

Solidity = are of cell contour 
area of cell convex envelope⁄  

Cell extent = area of cell contour
area of cell bounding box⁄  

Hausdorff distance, 𝐻(𝐴, 𝐵) = max ((ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))) ;  where, ℎ(𝐴, 𝐵) = max
𝑎𝜖𝐴

min
𝑏𝜖𝐵

|𝑎 − 𝑏| 

The quantitative metrics of all the features are mentioned in Table 4.1. The 

resemblance of the cell shape with a rectangle, circle, or an ellipse also provided 

information about cell geometry. For these measures, the best fitted geometric shape was 

determined by the algorithm and the area or extreme points of the shapes were used for 

feature vector calculation. Once all the features were defined, the variation of these unique 

features among the different frame of the time-lapse images was calculated and used as 
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another set of features. The rate of change of the parameters with respect to time was 

also taken into account.  

A dataset was created with all the feature vectors. The machine learning was 

implemented in using python programming (version 3.5). Python package ‘numpy’, and 

‘matplotlib’ was used for data calculation, matrix manipulation, and feature extraction. 

Package ‘pandas’ was used for data structure and data analysis. And ‘sklearn’ package 

was imported to implement machine learning in python. The Flowchart of the training and 

prediction process is illustrated in Figure 4.1.  

Table 4.1. List of feature vectors with quantitative measure. 

Feature Quantitative Feature (Average ± SD) 

Active Cancer Inactive Cancer Healthy Astrocytes 

Cell area 3.51E+03 ± 09E+02 2.75E+03 ± 10E+02 5.39E+03 ± 13E+02 

Number of pseudopods 4.68E-01 ± 32E-02 4.00E-03 ± 01E-02 7.20E-02 ± 13E-02 

Perimeter 2.31E+02 ± 35E+00 1.99E+02 ± 35E+00 2.85E+02 ± 35E+00 

Aspect ratio 9.92E-01 ± 07E-02 1.05E+00 ± 04E-02 1.01E+00 ± 07E-02 

Bounding rectangle 6.85E+01 ± 10E+00 5.83E+01 ± 12E+00 8.50E+01 ± 12E+00 

Center shift 2.74E+00 ± 82E-02 1.24E+00 ± 18E-02 1.92E+00 ± 79E-02 

Convex hull 3.58E+03 ± 10E+02 2.60E+03 ± 10E+02 5.46E+03 ± 13E+02 

Equivalent radius 3.26E+01 ± 04E+00 2.69E+01 ± 06E+00 4.06E+01 ± 05E+00 

Equivalent rectangle 4.47E+03 ± 12E+02 3.23E+03 ± 13E+02 6.81E+03 ± 17E+02 

Cell extent 7.08E-01 ± 02E-02 6.84E-01 ± 04E-02 7.27E-01 ± 03E-02 

Hausdorff distance 1.10E+01 ± 03E+00 6.30E+00 ± 02E+00 1.73E+01 ± 10E+00 

Length of fitted ellipse 7.17E+01 ± 09E+00 5.76E+01 ± 12E+00 8.61E+01 ± 11E+00 

Minimum enclosing circle 3.72E+01 ± 05E+00 2.92E+01 ± 06E+00 4.43E+01 ± 06E+00 

Non-uniformity 2.88E+00 ± 82E-02 1.75E+00 ± 28E-02 2.28E+00 ± 71E-02 

Solidity 9.57E-01 ± 02E-02 9.65E-01 ± 78E-04 9.63E-01 ± 01E-02 

Cell stretch 6.95E+01 ± 09E+00 5.53E+01 ± 11E+00 8.41E+01 ± 11E+00 

Width of fitted ellipse 6.14E+01 ± 09E+00 5.10E+01 ± 11E+00 7.78E+01 ± 10E+00 

Variation in cell area 2.86E+02 ± 99E+00 2.86E+02 ± 03E+02 2.50E+02 ± 01E+02 

Variation in number of pseudopods 5.96E-01 ± 20E-02 2.00E-02 ± 06E-02 1.49E-01 ± 24E-02 

Variation in perimeter 1.26E+01 ± 04E+00 1.06E+01 ± 07E+00 8.34E+00 ± 05E+00 

Variation in aspect ratio 1.10E-01 ± 02E-02 6.44E-02 ± 03E-02 4.62E-02 ± 01E-02 

Variation in bounding rectangle 5.47E+00 ± 01E+00 1.05E+01 ± 09E+00 2.67E+00 ± 01E+00 

Variation in cell center shift 1.35E+00 ± 27E-02 6.65E-01 ± 13E-02 9.25E-01 ± 30E-02 

Variation in cell convex hull 3.11E+02 ± 01E+02 5.30E+02 ± 05E+02 2.60E+02 ± 01E+02 

Variation in equivalent radius 1.31E+00 ± 36E-02 4.82E+00 ± 04E+00 9.66E-01 ± 55E-02 

Variation in equivalent rectangle 4.22E+02 ± 01E+02 6.61E+02 ± 06E+02 3.53E+02 ± 02E+02 

Variation in cell extent 3.36E-02 ± 77E-04 6.47E-02 ± 05E-02 1.88E-02 ± 57E-04 

Variation in Hausdorff distance 4.31E+00 ± 01E+00 2.69E+00 ± 89E-02 7.12E+00 ± 05E+00 

Variation in length of fitted ellipse 4.51E+00 ± 66E-02 1.05E+01 ± 09E+00 2.73E+00 ± 01E+00 

Variation in minimum enclosing circle 2.53E+00 ± 37E-02 5.38E+00 ± 05E+00 1.46E+00 ± 78E-02 

Variation in non-uniformity 8.75E-01 ± 18E-02 4.22E-01 ± 11E-02 4.05E-01 ± 20E-02 

Variation in solidity 1.36E-02 ± 48E-04 1.25E-02 ± 60E-04 7.97E-03 ± 62E-04 

Variation in cell stretch 4.80E+00 ± 01E+00 1.01E+01 ± 08E+00 3.18E+00 ± 02E+00 
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Variation in width of fitted ellipse 3.22E+00 ± 66E-02 9.19E+00 ± 08E+00 2.09E+00 ± 01E+00 

Rate of change in cell area over time 1.88E+02 ± 74E+00 2.11E+02 ± 03E+02 2.00E+02 ± 01E+02 

Rate of change in pseudopods over time 5.33E-01 ± 25E-02 8.33E-03 ± 03E-02 8.13E-02 ± 14E-02 

Rate of change in cell perimeter over time 8.63E+00 ± 03E+00 6.93E+00 ± 06E+00 6.93E+00 ± 03E+00 

Rate of change in aspect ratio over time 6.37E-02 ± 01E-02 5.21E-02 ± 02E-02 4.03E-02 ± 02E-02 

Rate of change in bounding rectangle over time 3.47E+00 ± 78E-02 6.69E+00 ± 06E+00 2.23E+00 ± 01E+00 

Rate of change in cell center shift over time 1.18E+00 ± 22E-02 6.79E-01 ± 13E-02 9.30E-01 ± 30E-02 

Rate of change in cell convex hull over time 2.02E+02 ± 81E+00 3.64E+02 ± 04E+02 2.06E+02 ± 01E+02 

Rate of change in equivalent radius over time 8.72E-01 ± 31E-02 3.10E+00 ± 03E+00 7.66E-01 ± 47E-02 

Rate of change in equivalent rectangle over time 2.87E+02 ± 01E+02 4.68E+02 ± 05E+02 2.84E+02 ± 01E+02 

Rate of change in cell extent over time 2.59E-02 ± 59E-04 4.82E-02 ± 04E-02 1.87E-02 ± 57E-04 

Rate of change in Hausdorff distance over time 3.05E+00 ± 01E+00 2.13E+00 ± 91E-02 2.68E+00 ± 92E-02 

Rate of change in length of fitted ellipse over time 2.98E+00 ± 77E-02 6.74E+00 ± 06E+00 2.16E+00 ± 01E+00 

Rate of change in minimum enclosing circle over time 1.62E+00 ± 37E-02 3.45E+00 ± 03E+00 1.13E+00 ± 70E-02 

Rate of change in non-uniformity over time 5.66E-01 ± 20E-02 3.41E-01 ± 13E-02 3.68E-01 ± 21E-02 

Rate of change in cell solidity over time 1.02E-02 ± 39E-04 1.18E-02 ± 60E-04 7.13E-03 ± 40E-04 

Rate of change in cell stretch over time 3.08E+00 ± 01E+00 6.55E+00 ± 06E+00 2.51E+00 ± 01E+00 

Rate of change in width of fitted ellipse over time 2.39E+00 ± 78E-02 6.20E+00 ± 06E+00 1.79E+00 ± 01E+00 

 

4.2.9. Data Classification 

The feature vectors calculated for each cell sample were fed to a classifier to train 

respective data clusters. The model was trained with the dataset to classify three cell 

categories (i) Active cancer, (ii) Inactive cancer, and (iii) Healthy cells. The classes ‘active 

cancer’ and ‘inactive cancer’ included the gestures of hGBM cells incubated on an anti-

EGFR aptamer surface and a control mutant aptamer surface, respectively. The ‘healthy’ 

group contained the gestures of healthy/non-cancerous cells (astrocytes) on both anti-

EGFR and mutant aptamer functionalized substrates. Supervised machine learning 

algorithms were used to label the cell types in the training dataset. The system was trained 

with 1000 sample images including 25% active tumor cells, 25% inactive tumor cells, and 

50% healthy cell samples. Three commonly used classifiers were implemented, (i) 

Support Vector Machine (SVM), (ii) Random Forest Tree (RFT), and (iii) Naïve Bayes 

Classifier (NBC) to train the system. After training, the accuracy of the classifiers was 

validated and compared based on their performance. A five-fold validation technique was 

used where 80% of the dataset was used as training samples and the rest 20% was used 
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for test purpose. Generally, a larger proportion of training sample ensures better 

classification of the test samples. 

4.2.10. Machine Learning Algorithm 

The key purpose of this work was to systematically quantify the extents to which a 

machine learning based classification model identifies tumor cells from their morphological 

characteristics. The task of tumor cell category identification was defined as a supervised 

multi-class classification problem. In supervised learning, the knowledge about the 

problem is composed in the form (x, c), in which x represents an input (feature vectors in 

this case) and c denotes its label (cancer class). The machine learning algorithm extracts 

the knowledge from the example dataset and predicts new labels for unknown inputs.  

Formally, given X, a set of all cells, and a training set, S of labeled cells (s,c), where  (s,c) 

 (X x C), to learn a function f, such that f: XC, in other words, it maps a cell to one of 

the categories of C. Here, X represents as a vector of the above features and C represent 

the classes such that C = [Active Cancer, Inactive Cancer, Healthy Cell]. Theoretically, 

this problem formulation allows us to leverage any supervised classification algorithm that 

can handle multi-class scenarios. In this work, three algorithms were used for the 

experiment, (i) Naïve Bayes (NB), (ii) Support Vector Machine (SVM), and (iii) Random 

Forest Tree (RFT). NB is a probabilistic classifier based on the Bayes theorem for 

conditional probabilities whereas SVM is based on concepts from the statistical learning 

theory. RFT is a combination of decision trees where each tree votes for a preferred class 

and the majority voted class is considered as the final prediction. The accuracy, precision, 

recall, and F1-score were calculated to compare the performance of these three 

algorithms.  
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4.3. Results and Discussion 

4.3.1. Classification of Cell Gesture Using Supervised Methods 

For cancer diagnosis, the primary goal is to accurately identify and count the 

number of cancer cells from blood sample where other cells are present. Once the 

classifier was modeled, the system was validated with untrained samples to measure the 

accuracy. A five-fold validation technique was used to measure the accuracy. In this 

technique, the entire dataset was randomized and then divided into five segments. Four 

segments were used to train the system and the remaining one was used to test the 

accuracy. The same approach was repeated for all combinations of train-test data 

segments (five possible combinations). The accuracy was calculated and compared to all 

three classifier models, Support Vector Machine (SVM), Random Forest Tree (RFT) and 

Naïve Bayes Classifier (NBC). The following equation was used to calculate the accuracy 

of the predicted result. Here, 𝑦𝑖̂ is the predicted label of the 𝑖-th sample, 𝑦𝑖 is the 

corresponding true label, and 𝑁 is the total number of samples analyzed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦̂) =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ 1(𝑦𝑖̂ =  𝑦𝑖)

𝑁

𝑖=1

 

Table 4.2 compares the accuracy of the three classifiers. The overall accuracy of 

the model to classify tumor cells and healthy cells were 90%, 82% and 85% using NBC, 

SVM, and RFT classifiers, respectively. The performance of the classifier depends on the 

type of dataset used to build the model. However, an overall accuracy of 85% validates 

the effectiveness of multiple feature analysis and applicability of machine learning 

algorithm for tumor cell diagnosis. Such high accuracy is achieved while the classification 

is fully automated and compatible for large-scale application without disturbing the cell 

microenvironment. The selectivity has been maintained with aptamers and the cell did not 
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have to be fluorescently stained either. Aptamers are also preferred over antibody for 

chemical stability and high selectivity. 

Table 4.2. Average accuracy of classification using SVM, RFT, and NBC computed with 

five-fold validation technique. The standard deviation was calculated from the accuracy 

among the five combinations of training sets in cross-validation. 

Classifier Average Accuracy (%) 

Naïve Bayes Classifier 90 ± 10 

Support Vector Machine 82 ± 25 

Random Forest Tree 85 ± 24 

 

4.3.2. Feature Ranking 

 From visual inspection of static images, it is easy to confuse a cancer cell 

with a healthy one. However, a combination of all the extracted feature vectors provided 

an opportunity to distinguish the cancer cell gestures. Machine learning algorithm provided 

a feasible approach to combine all the feature vectors and build a robust classifier. It 

should be borne in mind that classifying the samples from just a few feature vectors would 

be very challenging. A feature ranking chart using random forest tree (RFT) was created 

to demonstrate the importance of including all the feature vectors in constructing the 

classifier. A random forest is a collection of decision trees used for classification. Each of 

these decision trees consists of several feature vectors. The RFT classifier was trained 

with a known sample dataset and calculated the importance of every feature vector. Figure 

4.6 shows the ranking of the top 25 features in descending order of importance. 

Overlapping large error bars represent that the importance of any individual feature is not 

significant enough to be a single discerning factor to distinguish the cell categories. The 

machine learning provided the combination of all the features to develop a complex 

decision-making algorithm to classify the dataset correctly. 
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Figure 4.6. Feature ranking of the top 25 features in descending order of importance. The 

vertical lines represent the standard deviations of importance-metric.  

4.3.3. Confusion Matrix Analysis 

The difference in cell gesture of cancer and healthy cell is not always very obvious. 

Not all cancer cells would express very active behavior either. The model missed a few 

targets as some of the cancer cells did not show much activity on a functionalized surface. 

The gestures of a few cancer cells on control surface also appeared similar to the gestures 

of healthy cells. This could be a possible source of confusion for the model. To understand 

the false-positive and false-negative results, a normalized confusion matrix was calculated 

to compare among the three classifier models. SVM classifier was chosen because it 

scored the lowest accuracy. The confusion matrix in Figure 4.7 displays the matching of 

active, inactive, and control cells versus predicted annotations by the classifier. Each row 

represents the instances of actual cell type and each column of the matrix represents the 

instances for the predicted label by the classifier. 
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Figure 4.7. Confusion matrix of the SVM classifier for active cancer, inactive cancer, and 

healthy cell categories. The intensity bar represents the scale. 

As shown in Figure 4.7, the diagonal digits represent the best accuracy for all three 

categories. The system correctly predicted cancer cells on anti-EGFR and mutant-

aptamer surface in 80% cases. Among the tumor cells, 20% did not show remarkable 

activity to be identified as active cancer cells. On the other hand, all healthy cells were 

identified with 85% accuracy whereas remaining 15% showed similar gesture as active 

cancer cells. The accuracy could be improved with a larger dataset with more samples 

and features. However, 85% accuracy with this sample dataset validated the significance 

of machine learning algorithm for such applications.  

4.3.4. Comparison between Classifiers 

For cancer diagnosis, the measurement of false-positive and false-negative results 

can add significant complexity to the later prognosis. The system's ability in avoiding false-

negative predictions is much more important than concluding a false-positive result. It is 

crucial not to miss any cancer cells rather than misunderstanding a healthy cell as 

cancerous one.  The precision and recall value from predicted results were measured to 
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further analyze the performance of the model. The recall is the ratio of the number of true 

positives over the total number of actually positive instances. Precision is the ratio of the 

number of true positives over the total number of predicted positive instances. The 

following equations were used to calculate these two parameters. Here 𝑇𝑃 = true positive, 

𝐹𝑃 = false-positive, and 𝐹𝑁 = false-negative. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑟) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ;  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ;  𝐹1 𝑠𝑐𝑜𝑟𝑒 =

2𝑝𝑟

𝑝 + 𝑟
 

Table 4.3. Precision, recall and F1-score measurements (The maximum value of each 

column in shown in bold). 

 

Precision Recall F1-Score 

Active Inactive Other Active Inactive Other Active Inactive Other 

NBC 0.91 1.0 0.87 1.0 0.6 1.0 0.95 0.75 0.93 

SVC 0.62 1.0 0.89 0.8 0.8 0.85 0.7 0.89 0.87 

RFT 1.0 0.73 0.85 0.9 0.8 0.85 0.95 0.76 0.85 

 

For all three classification models, the recall score is greater than 80% (Table 4.3). 

The recall-value for active tumor cells with the NBC model is 100%. Overall, the NBC 

performed better compared to the other two classifiers which as observed from F1-score. 

The F1-score is the harmonic mean of precision and recall. A good retrieval algorithm 

would maximize precision and recall simultaneously and score a large F1-measure. 

4.3.5. Precision-Recall Curve Analysis 

The precision-recall relation was also used to compare the performance of the 

three classifiers. Together, precision and recall represent a trade-off. One can be 

improved by compromising the performance of the other. For cancer diagnosis, a good 
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recall value is more important than the precision. Figure 4.8(a) shows the precision vs. 

recall values for the SVM classifier. The precision-recall curves for individual classes are 

shown with dotted lines. As seen from the plot, the classifier predicted the inactive tumor 

cells more accurately compared to the other two classes.  It was possible to maintain a 

good precision while achieving a good recall score. The black solid line represents the 

overall average precision-recall performance of the SVM classifier. 

 

Figure 4.8. (a) Precision-Recall plot for the predictive model trained with SVM classifier. 

The black solid line represents the average performance of the model. (b) Performance 

comparison of three different classifiers. The average value of precision and recall are 

plotted here for each classifier model. The area under the curve (AUC) for each model is 

mentioned in the legend. 

Figure 4.8(b) shows the average precision-recall performance of three classifiers.  

To compare the performance, the area under the curve (AUC) was calculated. A large 

AUC represents a better classifier in terms of error margins. SVM, RFT and NBC classifier 

scored AUC values of 0.73, 0.77, and 0.84, respectively. Among the three commonly used 

classifiers, the NBC performed best with the dataset and application.  

The dynamic morphology of cells on an aptamer-functionalized surface can be a 

novel biomarker for detection of cancer cells. Both, cancerous and non-cancerous cells 

are present in biopsy samples from patients. This work demonstrates a fast and accurate 
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method to quantify cell gestures and distinguish hGBM cells from astrocytes based on 

their dynamic morphology from time-lapse images. Multiple factors can contribute to 

regulating cell protrusion, adhesion, and surface tension (cell rounding). Individual genes 

and signaling proteins can also modulate cell morphology [153]. The hGBM cells showed 

random extensions and contractions of pseudopods, whereas astrocyte cells did not show 

any distinct activity. This was due to many reasons and especially from the EGFR 

overexpression on hGBM cells and their affinity toward anti-EGFR aptamer/antibody [19, 

167, 168]. Overexpression of EGFR and flexibility of cell membrane on hGBM cells 

allowed a higher number of binding interactions between EGFR and anti-EGFR aptamer 

[161, 169]. On the other hand, astrocytes did not show any change in their morphology on 

anti-EGFR and mutant aptamer surface in the 15-minute interval while the surfaces were 

imaged with the microscope camera. The less number of EGFR on astrocyte cell 

membrane could not instigate any interactions with the anti-EGFR-modified surface. This 

increased the cell motility of hGBM cells compared to that of astrocytes. The experiments 

were performed with solid-biopsy samples and the work can be expanded with liquid-

biopsy samples too. Similar cell response can also be expected from other types of tumor 

cell with appropriate choice of aptamer functionalized surface. Thus, the approach can be 

extended to target other types of tumor cells (breast, lung, and prostate cancer samples) 

that are known to travel in the blood (e.g. circulating tumor cells). 

This work utilized the cell motility on anti-EGFR aptamer-modified substrates as a 

new strategy to detect cancer cells. The cancer cells with overexpressed surface 

biomarkers (EGFR) interacted more with the aptamer-functionalized surface and showed 

distinct morphology. Noncancerous cells did not show such activity because they do not 

have high EGFR expression on the surface. The approach is very selective and this can 

be a good tool to analyze invasive and benign cancer cells where the number of 



85 
 

biomarkers expressed on different cell-membranes are different. Existing methods to 

quantify cell surface receptors commonly involves staining of cells with antibody-

conjugated fluorescent or magnetic particles and then analyze them with an optical setup 

or magnetic sorter. These tools are expensive, bulky, and requires strict maintenance. Our 

approach used only a standard optical microscope and a CMOS camera.  The analysis is 

packaged as software and can be used on any computer/mobile platform. Also, cell 

staining often restricts regular cellular functions which can be a concern for post-capture 

analysis. The advantage of this technique compared to others is that it is suitable for a 

quick diagnosis without much overhead. This method does not involve any cell staining. 

Furthermore, aptamers are chemically more stable than antibodies [170]. Aptamer-

functionalized chips can be stored in controlled conditions for a few weeks. When the 

samples are available, cells can be seeded on the functionalized chips and imaged within 

15 minutes to run the experiment.  

Another advantage of the chip-based device is that it can be easily integrated with 

other microfluidic cell-capture platforms to serve as an additional modality to identify 

cancer cells based on their physical behavior. Dynamic morphology analysis can be a 

good cytological indicator to complement other chip-based detection techniques. It is also 

possible to introduce nanotexture on the surface to enhance the cell-surface interactions 

[171, 172]. If required, cleavable linkers can also be used for functionalization so that after 

the morphology analysis, cells could be released from the surface to perform other post-

capture analysis [173]. 

This method is compatible with automated high-throughput imaging and can 

analyze a large volume of data in a short amount of time. Microscopic image assessment 

is still the most commonly used and available tool. It is financially and logistically feasible 

compared to other commonly used approaches like flow cytometry, x-ray radiography, 
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computed tomography (CT), positron emission tomography (PET), and magnetic 

resonance imaging (MRI). Most of these techniques are for advanced stage cancer 

diagnosis and have limited sensitivity. The method presented here uses only an optical 

microscope and does not require sophisticated infrastructure for device fabrication. This 

makes it simple to analyze whole-slide microscopic images without any fluorescent 

staining. The automation of the analysis makes it more suitable for large volume sample 

analysis which otherwise would not be very convenient and feasible to a human 

pathologist. 

Cell segmentation is still one of the major challenges in automated image analysis 

workflow. For this work, bright field images and contrast analysis were used to isolate cells 

in a label-free environment. It is very important to focus the cells properly in order to 

capture their activity and avoid imaging artifacts. An out-of-focus image may appear 

different than a focused one which may create confusion in tracing the cell boundary from 

image contrast analysis. In this experiment, single plane images acquired from an optical 

microscope were used for simplicity. Cells were seeded on the aptamer-functionalized 

(anti-EGFR and mutant aptamer) glass surfaces and the surface was always kept in focus 

to minimize variability in the image acquisition process. Thus, all the images of the cells 

were captured at the same focal plane. An alignment mark on the glass surface was 

helpful to maintain the focal plane on the surface. However, it is also possible to use a 

confocal microscope and use 3D-stacked images to find the best focal plane. This may 

also help to detect the cell boundary more accurately. 

However, cells can be tagged with fluorescent markers to facilitate the intensity-

based segmentation scheme. It is known that tumor cells have a larger nucleus to 

cytoplasm ratio. The nucleus of the cells can also be stained to analyze the change in 

shape of the nucleus over time. Further characterization of the morphological behavior of 
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tumor cells in combination with molecular characteristics can provide additional valuable 

prognostic information about the primary tumor. A larger dataset and unsupervised 

machine learning can also be implemented to identify aberrant cell gestures. For larger 

dataset, the inclusion of selective features based on their importance can reduce over-

fitting of the model and analysis time. 

The presented approach can also be applied to investigate the role of individual 

genes in regulating time-resolved cell morphology and complex phenotypes. The change 

in cell gesture with disease progression is another aspect to explore. Since this method 

only requires an imaging setup, a central database can be maintained to store the cell 

gesture of different types of cancer cells and predicted results can be sent to local remote 

devices for off-site diagnosis. With the increased availability of live-cell screening 

microscopes, the cell gesture analysis can be a dominating technology for early detection 

of cancer in near future.  

4.4. Conclusion 

This work presented a simple and elegant approach to detect and classify cancer 

cells based on cell gesture using a machine learning technique. The dynamic morphology 

of cells was quantified with a number of unique features which were used to identify hGBM 

cells from healthy astrocytes. The identification scheme was validated with untrained data 

and three different classifiers were used to construct the system and compare the 

performances. The Naïve Bayes classifier identified the cancer cells with the highest 

accuracy. This work established the foundation for automated screening and classification 

of cancer from time-lapse optical micrographs. This can further be used to study cell 

behaviors for other types of diseases. Cell gesture analysis can be a simple platform to 

develop cost-effective and efficient point-of-care device to detect cancer at early stages. 
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Chapter 5 

5. Molecular Dynamics Study of Protein Deformation through Solid-State Nanopore 

5.1. Introduction 

Over the past decade, nanopore technology has advanced substantially due to its 

capability for single molecule detection and characterization [174-178]. Nanopore devices 

have been used for label-free detection of DNA [179], RNA [180, 181], and also for rapid 

sequencing of DNA [182-184]. It is an attractive choice for sensitive and accurate detection 

of proteins and protein-complexes [174, 185, 186]. This work explores the structural 

deformation of a protein from a nanopore translocation.  

Most of the early nanopore studies were done with biological nanopores like alpha-

hemolysin or mycobacteria smegmatis porin A (MspA) [182, 187]. Solid-state nanopore 

emerged as an alternative choice and became more popular for its robustness, easy 

fabrication, high throughput, low cost, and scalability [178]. In the past decade, synthetic 

nanopores have been widely used for single molecule detection [175, 188-190]. Although 

silicon nitride (Si3N4) is the most popular choice of material for synthetic nanopores [186, 

188, 191, 192], other materials such as silicon dioxide (SiO2) [189, 193], aluminum-oxide 

(Al2O3) [190], and graphene [194-197] have also been used to make nanopores. Several 

studies have been conducted on protein translocation through solid-state nanopore 

including protein transport [198], protein identification [186, 199], unfolding and stretching 

of protein [200], protein trapping [187], high voltage transport of protein [198], and 

localization of protein in a DNA [201]. In some cases, the inner wall of the nanopore is 

bioengineered with other biomaterials to mimic the biological nanopore [202]. Lipid-coated 

nanopore has been used to tailor protein translocation [203], aptamer coating on nanopore 

wall has been used for increased selectivity [92], chemical modification and metallization 

have been done for stochastic sensing of proteins [199]. 
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The structural integrity of protein is a common concern during a nanopore-based 

protein detection process [188]. The stress caused by channel constriction during 

translocation or applied electric field may deform the 3D shape of a protein. Recent studies 

have shown that the biophysical properties of a protein are manipulated by variations in 

solvent or pH in a nano-confined environment [188, 204]. In addition, the thermal, 

chemical, and electrical field can influence interactions between the protein and pore 

which can trigger protein denaturation inside a nanopore [205]. Thus, a comprehensive 

understanding of the conformational changes is important because of the nature of 

detection using ionic current measurement. Study of the deformation can be a stepping 

stone for a comprehensive understanding of the orientation and interaction of the 

constituting amino acid molecules of protein. Computational analysis and simulation tools 

provide an exceptional advantage in such cases because it allows us to explore atomic 

level interactions which are rather difficult to grasp from experimental situations [206]. 

Several theoretical and computational analyses such as coarse-grained dynamic 

simulation [207], time distribution model [192], molecular dynamics [208, 209], and 

stochastic model [210] have been designed to study the translocation behavior and 

dynamics of protein molecule inside a nanopore [211]. Similar studies on deformation 

mechanism for DNA have been presented already [212-215]. The deformability of DNA 

structure under electric bias has been shown already [216]. 

This work focuses on the deformation of a protein inside a nanopore under the 

influence of applied bias. This is valuable for protein detection with nanopore as the 

function of a protein depends on the integrity of its conformal structure [217]. Nanoscale 

Molecular Dynamics (NAMD v2.9) was used to simulate the translocation of protein 

through a Si3N4 pore and observed the deformation of protein structure [218]. Thrombin 

was selected as a proof of concept. The 3D structural deformation of thrombin was 
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measured using Visual Molecular Dynamics (VMD v1.9.2) while different electric fields 

were applied across the pore [219]. Thrombin is the protein responsible for thrombosis. 

Thrombin plays a vital role in cancer metastasis as well [220]. No mechanical force was 

used on the protein to ensure that only the influence of applied bias on the deformation 

was monitored. The model was simulated for 20 ns of translocation of protein using a 

multicore computing facility at Texas Advanced Computing Center (TACC) and analyzed 

the structural changes for different applied voltages. Root mean square deviation (RMSD) 

and Radial distribution function (RDF) from VMD were used to quantify the deviation of 

protein structure from its initial structure. The protein deformed gradually with the increase 

in electric field and although the overall size of the protein did not change much at a small 

voltage, the shape was stretched due to the presence of electric field. Such molecular 

dynamics (MD) simulation provided insight to investigate protein deformation in nanopore 

study before delving into laboratory experiment.  

The basic principle of molecular translocation through a nanopore is very 

straightforward. A schematic is shown in Figure 5.1. The experimental setup includes two 

chambers separated by a solid-state nanopore. Typically the pore is drilled by high energy 

electron beam using Transmission Electron Microscope (TEM) or by using Focused Ion 

Beam (FIB) [189]. Although the ion beam has higher energy compared to electron-beam 

to drill a pore in a thicker membrane, a TEM offers better control and precision over the 

pore diameter because the size of the electron beam is much smaller than the size of ions 

used in FIB. The chambers are filled with buffer solution and electrodes are placed in the 

chambers to create an electric field high enough to force the target molecule to pass from 

one chamber to the other through the nano-aperture. The ionic current is measured with 

a patch-clamp measurement system. When a protein travels through the nanopore, a drop 

in the ionic current is registered. This current profile gives insights on the properties of the 
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molecule. The magnitude and duration of the current blockade are proportional to the size 

and the transition time of the passing analyte through the pore. In some cases, the pore 

is smaller than the molecule to measure the mechanophysical property of the translocating 

molecule. Figure 5.1 shows a cross-section of a Si3N4 nanopore and a protein crossing 

the pore due to the applied bias. 

 

Figure 5.1. (a) Schematic representation of nanopore experiment to capture the ionic 

current signature for protein translocation. The inset shows an actual TEM drilled pore. (b) 

Model of the simulated system: all-atom MD model comprised of a thrombin inside a Si3N4 

nanopore. The pore is solvated with KCl. The inner diameter of the pore is 6 nm, simulated 

periodic cell structure was 68 Å × 78 Å × 96 Å. 

5.2. Materials and Methods 

5.2.1. Simulation Details 

NAMD v2.9 was used to simulate the experiment [218]. VMD v1.9.2 was used for 

visualization and data analysis of the simulated results [219]. The protocol for MD model 

is similar to the one reported by Aksimentiev et al. [221]. The CHARMM22 model was 

used for the force field calculation [222, 223]. All simulations were performed on computer 

clusters (includes 6400 nodes each configured with two Xeon E5-2680 processors and 

one Intel Xeon Phi SE10P Coprocessor (on a PCIe card). Each node was configured with 
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32GB of ‘host’ memory with an additional 8GB of memory on the Xeon Phi coprocessor 

card) at Texas Advanced Computing Center (TACC) using 240 cores in parallel. Thrombin 

was selected as a sample protein. The structure of thrombin was obtained from the 

Research Collaboratory for Structural Bioinformatics (RCSB). The protein data bank 

(PDB) file, 1HAP, contained the x-ray resolved configuration of a thrombin-oligomer 

complex [224]. VMD was used to extract the structure of human alpha-thrombin. The 

protein had two major chains, chain-L and chain-H with 36 and 259 amino acids, 

respectively. The pore diameter was selected to be slightly larger than the protein size to 

negate the effect of protein deformation due to pore constriction. The pore was placed in 

the z-direction and the protein was electrophoretically driven through the nanopore.  

5.2.2. Model Construction 

The simulation consisted of a 6 nm thick block of Si3N4 containing a 6 nm diameter 

nanopore at the center. First, a crystalline structure of Si3N4 unit cell was created. Then 

the unit cell was replicated and assembled in order to form a 10 nm x 10 nm x 6 nm Si3N4 

membrane. Since the longest dimension of thrombin is 4.7 nm in its native state, a 6 nm 

diameter nanopore was created at the center of the membrane. The membrane was given 

a hexagonal shape to reduce the total number of atoms ensuring better simulation speed.  

The atom count for the complete nanopore model was 11,016. The pore was solvated with 

1M KCl solution. Salt concentration was chosen close to standard experimental conditions 

[225]. Since no mechanical force was applied, the protein was electrophoretically driven 

through the nanopore. 

Each simulation was executed in three steps. First, the total system energy was 

minimized by conjugate gradient method to ensure a stable system. Energy minimization 

involves finding the minimum energy landscape where the molecule is relaxed, by 

systematically varying the positions of atoms and calculating the energy in an iterative 
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manner. Then the temperature of the system was raised to 295 K gradually at constant 

volume (i.e. in NVT ensemble) followed by an equilibration at constant pressure and 

temperature (i.e. NPT ensemble). Finally, an electric potential was applied across the 

nanopore along the z-axis at constant volume. The simulation was performed for 20 ns at 

1 fs steps. The applied electric field was varied from 0 to 1 kCal/(mol.Å.e) for each system 

using equation 1 [221]. The trajectory frames were recorded every 800 fs in 20 ns duration. 

𝐸 − 𝑓𝑖𝑒𝑙𝑑𝑧 ( 𝑘𝐶𝑎𝑙
𝑚𝑜𝑙. Å. 𝑒

⁄ ) =   
−23.060549 𝑥 𝑈

𝑙𝑧
 (𝑉 Å⁄ ); 

Here, U is the potential difference and lz is the size of the whole system along the 

z-axis. The NAMD unit for electric field is kCal/(mol.Å.e), 23.0605492 is the conversion 

factor for U (volts) and lz (angstroms). 

5.2.3. Nanopore Construction and Energy Minimization 

The simulation consisted of a 6 nm thick block of Si3N4 containing a 6 nm diameter 

nanopore at the center. First, a crystalline structure of Si3N4 unit cell was created in NAMD. 

Then the unit cell was replicated and assembled in order to form a Si3N4 membrane. The 

dimension of the membrane was 10 nm x 10 nm with a uniform thickness of 6 nm. A 

cylindrically shaped nanopore was created at the center of the membrane by removing 

atoms from the center. The smallest diameter inside the nanopore was 6 nm. Figure 5.2(A) 

illustrates the construction of nanopore. Finally, the membrane was given a hexagonal 

shape large enough to surround the nanopore. This reduced the total number of atoms 

ensuring better simulation speed.  The atom count for the complete nanopore model was 

11,016. Thrombin was selected as a sample protein. The structure of thrombin was 

obtained from the Research Collaboratory for Structural Bioinformatics (RCSB). Any 

protein whose crystallographic structure is known could be used for the study. The longest 

dimension of thrombin is 4.7 nm in its native state. Since no mechanical force was applied, 
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the protein was electrophoretically driven through the nanopore. There were 394 residues 

in thrombin composed of total 3934 atoms in the system. 

 

Figure 5.2. (A) Construction of Si3N4 nanopore from a Si3N4 unit cell using NAMD. (1) Si3N4 

unit cell; (2) Single-molecule thick Si3N4 membrane; (3) the membrane is given a 

convenient geometry; (4) a nanopore in a Si3N4 membrane. (B) Visualization of the 

thrombin molecule inside a Si3N4 membrane (using VMD). Each color represents a 

different secondary structure. (C) The complete model of the system with molecular 

transport through nanopore under an applied bias. 

All of the simulations were performed using NAMD2.9 with periodic boundary 

conditions under constant temperature and constant system volume known as NVT 

ensemble. Each simulation was executed in three steps. First, the total system energy 

was minimized by conjugate gradient method to ensure a stable system. Then the 

temperature of the system was raised to 295 K in 500 steps gradually at constant volume 

(i.e. in NVT ensemble) followed by an equilibration at constant pressure and temperature 

(i.e. NPT ensemble). The Langevin thermostat with 5 ps-1 damping constant was used to 
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maintain the desired temperature. During the equilibration, the temperature was kept at 

295 K while applying Langevin forces. Finally, an electric potential was applied across the 

nanopore along the z-axis at constant volume. Both the equilibration and application of 

external electric field was performed for 20 ns at 1 fs steps. Before applying the electric 

field, the system was equilibrated by minimizing the energy to ensure a stable system. 

The system as can be seen from the energy curve (Figure 5.3). The total energy of the 

system dropped very quickly during stabilization and remained unchanged for the rest of 

the time. 

 

Figure 5.3. Energy minimization of the system with conjugate gradient method for 20 

nanoseconds. The inset shows the minimization of energy during the first 40 picoseconds. 

5.2.4. Force-field Calculations 

The interatomic and intermolecular force fields were estimated with CHARMM22 

and CHARMM27 models because these are noteworthy for protein and DNA systems, 

respectively. The CHARMM22 model used a potential energy function U(R) defined by the 

following equation [222]. 
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𝑈(𝑅) =  ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝑈𝐵(𝑆 − 𝑆0)2

𝑈𝐵

+  ∑ 𝐾( − 0)2

𝑎𝑛𝑔𝑙𝑒

+  ∑ 𝐾(1 + cos (𝑛 − ))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+   ∑ 𝐾𝑖𝑚𝑝( − 
0

)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+  ∑ ∈𝑖𝑗 [(
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑛𝑜𝑛𝑏𝑜𝑛𝑑

+  
𝑞𝑖𝑞𝑗

∈1 𝑟𝑖𝑗
; 

Where, 𝐾𝑏, 𝐾𝑈𝐵, 𝐾, 𝐾, 𝐾𝑖𝑚𝑝 are the force constants associated with bonds, Urey-

Bradley, angles, dihedrals, and improper dihedral angles, respectively. 𝑏, 𝑆, , , , 𝑛, and 

 represent the bond length, Urey-Bradley-distance, bond angle, dihedral angle, improper 

torsion angle, phase shift, and multiplicity or periodicity of the dihedral angle, respectively. 

The last two terms of the equation describe the van der Waals energy calculated with 

Lennard-Jones potential and the electrostatic energy assessed from Coulombic potential. 

Here ∈ and 𝑟𝑖𝑗 are effective dielectric constant, and distance between atoms 𝑖 and 𝑗. The 

∈𝑖𝑗 values were established by the geometric mean of ∈𝑖 and ∈𝑗 and 𝑅𝑚𝑖𝑛𝑖𝑗
 values were 

calculated from the arithmetic mean of 𝑅𝑚𝑖𝑛𝑖
 and 𝑅𝑚𝑖𝑛𝑗

.  

5.3. Results and Discussion 

The thrombin molecule was placed inside the nanopore and the change in its 

structure was observed for different electric potentials applied across the nanopore. The 

electric field was set to 0.0, 0.05, 0.10 and 1.0 kCal/(mol.Å.e) along the z-axis. The 

deformation was quantified by the root mean square deviation (RMSD) of protein 

backbone with its initial conformation having the two structures in best alignment with each 

other. The formula for RMSD calculation is given by the following equation. 

𝑅𝑀𝑆𝐷𝛼(𝑡𝑗) =  √
∑ (𝑟𝛼(𝑡𝑗) −  〈𝑟𝛼〉)

2𝑁𝛼
𝛼=1

𝑁𝛼
,  
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〈𝑟𝛼〉 =  
1

𝑁𝑡
 ∑ 𝑟𝛼(𝑡𝑗)

𝑁𝑡

𝑗=1
; 

Where 𝑁𝛼 is the number of atoms whose positions are being compared. 𝑁𝑡 is the 

number of time steps over which the positions were compared, 𝑟𝛼(𝑡𝑗) is the position of 

atom 𝛼 at time 𝑡𝑗 and 〈𝑟𝛼〉 is the average value of the position of atom 𝛼. VMD was used 

to calculate the RMSD of the protein structure for each frame at every 0.8 ps interval for 

the total time span of 20 ns. 

Figure 5.4 shows the RMSD plot of thrombin’s shape at different electric fields. 

The deformation in thrombin’s structure was insignificant for low electric fields such as 

0.05 and 0.1 kCal/(mol.Å.e). At these voltage levels, the force fields were not strong 

enough to deform the protein’s structure. Proteins are made of amino acids. The net 

charge of a protein depends on its isoelectric point and pH. In the presence of an electric 

field, these amino acids tend to reorder themselves due to the electrostatic field to attain 

the lowest possible energy state. This resulted in a slightly deformed structure of the 

molecule. Higher voltage would produce larger electrostatic force and cause more 

deformation. The results showed that an electric field as high as 1 kCal/(mol.Å.e) 

deformed the protein by approximately 16% from its initial structure within the first 20 ns. 

The trend of the deformation suggested that more deformation would occur for a longer 

exposure to this electric field. However, a high voltage in a nanopore experiment would 

reduce the protein translocation time to facilitate a high-throughput analysis but at the cost 

of further deformation in protein structure.  
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Figure 5.4. Root mean squared deviation (RMSD) of the protein backbone compared with 

the initial conformation. 

In a typical nanopore experiment, protein molecules move through the nanopore 

due to their charge which in turn is defined by their isoelectric point and the pH of the 

solution in the presence of an electric field [226]. A complete protein translocation event 

is approximately a few hundred microseconds to milliseconds [185, 186]. The isoelectric 

point of human thrombin is 7.0–7.6 [227]. Since the pH of the solution was ~7.0, the 

thrombin was slightly positively charged. As a result, it traveled towards the negative 

potential.  A complete protein translocation event is approximately a few hundred 

microseconds to milliseconds [185, 186]. An MD simulation with such long event would 

require unreasonable processing power and time. The simulations performed here were 

done for 20 ns. Although it was very short compared to typical experiment, it was possible 

to precisely monitor the movement even within 20 ns because of the detailed information 

captured by MD simulations. The center of mass (COM) of the molecule was calculated 

and the movement of the COM was tracked over time. Then the projection of the overall 

movement along the three axes (x, y, and z) were calculated. The correlation between the 

protein’s overall movement and the projection in a particular axis was calculated to find 
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the direction of movement. The maximum correlation coefficient (0.963 ± 0.025) was 

observed with the z-axis component for all three bias situations.  This validated that the 

overall movement was along the z-axis which was the same direction for the applied 

electric field.  The same was observed from the trajectory of the molecule in VMD.  

The radial distribution function, 𝑔(𝑟), of thrombin’s structure was also calculated to 

observe how the atoms of the protein were distributed and how this distribution was 

affected by the external electric field. In statistical mechanics, the radial distribution 

function of a system describes how the density of particles varies as a function of distance 

from a reference point. It is a useful tool utilized in molecular dynamics to describe the 

structure of a system. It measures the probability of finding a neighboring atom with 

respect to distance from another one. The 𝑔(𝑟) of thrombin’s 3D structure was computed 

by calculating the interatomic distance of every particle pair and binning them in a 

histogram. The histogram was then normalized by the volume of a spherical shell with 

thickness, 𝑟. This was achieved by multiplying the density function with the volume of a 

spherical shell at distance 𝑟 shown in the following equation. 

𝑔(𝑟) =
1

𝑁
 

𝑑𝑛(𝑟)

4𝜋 𝑟2 𝑑𝑟 𝜌
 

Here, N represents the total number of atoms,  is the number density, and dn(r) 

is the number of atoms at a distance r and r+dr. 

The radial distribution function for thrombin’s structure at different electric fields is 

shown in Figure 5.5(a) and 5.5(b). The horizontal axis is the distance around an atom, 

while the vertical axis in Figure 5.5(a) represents the number of atom-pairs available at a 

distance given on the x-axis. The position of the peak represents the most common 

distance between two atoms. At higher electric field, there is a right shift of the curve. That 
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means the most probable distance between any two atoms increased approximately from 

2.2 nm to ~2.6 nm due to the large electric field. Hence the atoms in the protein went apart 

from each other. The expansion of the curve along horizontal axis also suggests that the 

protein got stretched under a higher electric field. 

 

Figure 5.5. (a) Radial distribution analysis of thrombin’s structure after 20 ns simulation at 

increasing electric fields. The vertical axis represents the number of atom-pair at a 

distance mentioned in the horizontal axis. (b) Normalized radial distributions function. The 

density of atoms lying on the surface of a sphere at the listed distance from an atom. 

Figure 5.5(b) is the normalized version of 5.5(a). The vertical axis here shows the 

number of neighboring atoms present in an imaginary sphere of that distance. The position 
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of the prominent peak over here is around 1 Å, which refers to the radius of the imaginary 

sphere around an atom to have the highest atom density. There is no significant shift in 

the position of this peak. However, the height of the dominant peak has increased by 

approximately 20% from its initial position at the high electric fields. It means that at the 

very vicinity of an atom the neighboring atoms were more tightly packed in the presence 

of the higher electric field. This was again a result of stretched deformation.   

To measure the effect of protein deformation on the ionic current profile, the 

average ionic current was measured through the pore. Ideally, proteins are suspended in 

an ionic solution in nanopore experiments. When there is no protein inside the nanopore, 

the setup only measures the ionic current from the movements of K+ and Cl- ions. This is 

registered as the baseline current. During translocation, the protein molecule blocked a 

certain amount of KCl ions through the cylindrical pore. This current blockage depends on 

the size and charge of the translocating molecule and also the charge of the K+ and Cl- 

atoms. The ionic current profiles for four different electric fields ranging from 0 to 1 

kCal/(mol.Å.e) were recorded. Since the state of the MD system was recorded after every 

800 fs, the current profile was recorded from the change in total electric charge in between 

two consecutive time-frames. These calculations were done for the entire 20 ns time span. 

Equation 5 represents current calculation, where, 𝑧𝑖 and 𝑞𝑖 are z-coordinate and charge 

of ion 𝑖, respectively, and ∆𝑡 is the simulation step [228]. 

𝐼(𝑡 + ∆𝑡 2⁄ ) =  
1

∆𝑡 𝑙𝑧
 ∑ 𝑞𝑖(𝑧𝑖(𝑡 + ∆𝑡) − 𝑧𝑖(𝑡))

𝑁

𝑖=1

 

The current-voltage (I-V) profile of the system was calculated to understand the 

equivalent resistance introduced by the protein (Figure 5.6). At higher electric field, more 

ions passed through the nanopore resulting in an increase in the current. It is visible from 
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the plot that the nanopore current increased linearly as the applied voltage increased. The 

linear I-V profile suggests that the protein, while inside the nanopore, offered a constant 

resistance even when it was slightly deformed due to the electric field.  

 

Figure 5.6. Current-Voltage profile of the system. The average ionic current is linearly 

dependent on the applied potential when the protein is inside the nanopore. The inset 

shows the linear relationship between the two entities. The data points are interpolated 

with linear regression analysis. 

Figure 5.5 in conjugation with the RMSD plot suggests that the protein showed 

deformation in the shape with more atomic packing. This led to an overall enlargement of 

the protein’s shape at a higher electric field. The protein went through stretching 

associated with the forces in the nanopore in response to high voltage. Since the force 

was exerted in the direction of travel, the structure got stretched in the same direction. 

This did not affect the overall blocking of the pore by that much and hence was not visible 

through the ionic current profile. This phenomenon may not be very crucial for nanopore 

experiments with DNA or polymer chains but should be considered for studying size 

sensitive biomolecules such as proteins. 
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5.4. Conclusion 

A computational model for sensing protein translocations through nanopores was 

shown here. The interatomic interactions and translocation of thrombin through a Si3N4 

nanopore was studied using this model. The conformal structure of the protein that yields 

its particular functional form and also the alterations in protein structure are important to 

understand. A comprehensive analysis has been presented to quantify the behavior of a 

model protein inside a solid-state nanopore under external electric field. The protein 

underwent gradual deformation at high applied voltage. The structural deformability, 

atomic displacement, and ionic current for thrombin passing through a nanopore were 

quantified. The presented framework allowed a closer inspection on the underlying 

processes of a nanopore experiment. This knowledge can be translated into design rules 

for protein measurement experiments with solid-state nanopore and also further protein 

deformation study. 
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Chapter 6 

6. Future research directions 

6.1. Introduction 

In this chapter, scopes of future works that can complement/supplement the 

current research are discussed. 

6.2. Effect of Nanotexture and Stiffness of Substrate in Cell Adhesion 

In chapter 3, a quick and easy method of creating nanotextured polymer was 

presented. The application of nanotextured PDMS in cell capture was also demonstrated. 

However, the same approach can be implemented to explore different patterns and 

roughness of nanotexture and its effect in cell adhesion, cell viability, attachment, and cell 

migration studies. Other moldable polymers, such as gelatin and hydrogel can be used to 

create a nanotextured substrate and explore the effect of substrate material in cancer cell 

experiments. Different ratio of PDMS and curing agent can be used to create different 

surfaces having different stiffness but same roughness to investigate the role of role of 

surface stiffness in cell adhesion and interactions.  

6.3. Diagnosis of Different Cell Types using Dynamic Morphology Analysis 

The cell gesture identification method was demonstrated for brain tumor cells and 

healthy astrocytes. The overexpression of EGFR on hGBM cells made it possible to utilize 

cell behavior on the anti-EGFR modified surface as a metric to identify cancer cells. 

However, overexpression of biomarkers on cancer cells is common. Hence, a surface 

functionalized with anti-EpCAM or anti-HER aptamer can be used to quantify gesture for 

other types of cancer cells such as breast cancer and lung cancer.  
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6.4. Cell Gesture at Different Stages of Cancer 

The expression of surface receptors on cancer cells depends on the origin and the 

stage of cancer. Therefore, the interaction between cancer cells and surface immobilized 

capture molecules could be an indicator to determine the staging of cancer. The 

functionalized nanotextured substrates and the cell gesture analysis can both be used to 

design experiments to explore the staging of cancer. The activity of cancer cells before 

and after metastasis is also known to be different. So the dynamic morphology analysis 

can be used to distinguish metastatic cancer cells from non-metastatic ones.  

6.5. MD Simulation for EGFR and EGFR-aptamer Complex Translocation through 

Nanopore  

Computer simulations provide a bridge between macroscopic laboratory 

experiments and microscopic understanding of the underlying physics. An MD simulation 

can be used to design different nanopore models to study the deformation dynamics of a 

protein in nanopore experiment. Optimization of the diameter and depth of the pore can 

be done before investing in laboratory experiments. Recently, nanopore devices are being 

used for protein-complex detection. Protein biomarkers can be selectively labeled with 

aptamer and a nanopore device can quantify the number of target sample through ionic 

current measurements. Such experiments can also be modeled using MD simulations for 

optimizing experimental process parameters.  
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Chapter 7 

7. Conclusion 

In this dissertation, we discussed the importance of early detection for effective 

diagnosis and treatment of cancer. A few devices and technologies for detection of cancer 

cells were reviewed here. We have demonstrated the use of a simple flexible nanotextured 

polymer-based device to capture cancer cells. We presented a one-step fabrication 

method of creating nanotexture in a polymer and showed a modular approach to integrate 

nanotextured polymer into microfluidics. Biofunctionalized nanotextured PDMS showed 

enhanced cell-surface interactions to facilitate cell capture and the modular assembly 

provided easy access to captured cells for post-capture analysis. We also presented a 

novel approach to analyze the dynamic morphology of cells on a biofunctionalized surface. 

We used this technique to identify cancer cells from its gestures. The interaction between 

the protein biomarker on cancer cell surface and the surface immobilized aptamers 

triggered the cells to show distinct morphological change. We used machine learning 

algorithms to classify cancer and healthy cells from cell gestures. We also developed a 

molecular dynamics model of protein biomarker detection using nanopore. The 

computational model allowed us to understand protein deformation mechanism under 

electric fields in a nanopore experiment.  
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