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Abstract 

Early Detection of Metastatic Cancer using Computational Analysis 

Nuzhat Mansur, PhD 

University of Texas at Arlington, 2017 

Supervising Professor: Samir M. Iqbal 

Metastasis is the leading cause of cancer related deaths. Early detection of cancer cells 

can enable early disease diagnosis and stage specific therapeutics. Metastatic cancer 

cells have abnormal expression of certain proteins. One such protein is Epidermal Growth 

Factor Receptor (EGFR). Anti-EGFR aptamers have emerged as more effective probe 

molecules for selectively binding with EGFR compared to antibodies. Capturing cancer 

cells with aptamer is an emerging and developing technique for cancer cell isolation. 

Nanotextured substrates inspired by naturally occurring basement membranes are 

promising platform for triggering unique cell behavior. Along with the biochemical and 

physical techniques to probe cancer cell behavior, mathematical analysis using high 

performing computers is proving to be highly efficient for accurate and fast inference. This 

work is presented with the anticipation of presenting a novel and exciting approach based 

on computational analysis of cellular behavior on physically and biochemically modified 

substrates to detect metastatic cancer cells at early stage.     

This research focuses on two major areas. One is observing, understanding and 

modifying cellular behavior on functionalized substrates. The other focus is utilizing the 

developed platform for cancer detection similar to a clinical setting and ultimately pave 

the path for a future point of care device. 
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Chapter 1 

INTRODUCTION 

1.1. Research Objective 

Cancer is a fatal disease and a major health hazard. It is the uncontrolled growth of cells 

which can penetrate adjacent tissue and travel through circulatory system to reach other 

organs. This process, called metastasis, creates new cancer in the distant organs. Early 

cancer diagnosis is crucial for preventing metastasis. Current techniques are proving to 

be not sufficiently efficient for detecting cancer at early stages. Detection techniques to 

capture and isolate cancer cells from biopsy or bodily fluids are being researched 

extensively. Detection of cancer cells requires high selectivity and acute sensitivity. The 

focus of this dissertation is to develop a detection platform towards a future point of care 

device for early detection of metastatic cancer.   

1.2. Overview of Research Work 

In chapter 2, we have reviewed the current clinical and laboratory techniques to detect 

cancer cells. In the following chapters our research works for detecting metastatic cancer 

cells are described. 

1.2.1. Discrimination of Metastatic Breast Cancer Cells from Indolent Cells on 

Aptamer Functionalized Surface with Imaging Based Contour Following 

Techniques  

Early detection of metastatic cells can lead to better prognosis and higher survival rate of 

patients. Often the symptoms for metastasis are not evident till cancer incapacitates a 

secondary organ. Early detection is the key to prevent metastasis. In chapter 3, an 
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imaging based approach with contour detection technique is presented to distinguish 

metastatic breast cancer cells from benign cells when captured on anti-EGFR aptamer 

modified glass substrates. The metastatic (MDA-MDB-231) and non-metastatic (MCF-7) 

breast cancer cells were studied. Temporal tracking of cells showed that metastatic cells 

depicted prominent morphological change whereas the benign cells did not show such 

behavior. Metastatic cells showed rapid change in shape by protruding/retracting cell 

membrane. Images of each type of cells captured on functionalized substrates were 

analyzed and morphology changes were quantified. Low similarity coefficient meant more 

morphology change and metastatic cells showed low similarity coefficient. High distance 

values meant more morphology change. Metastatic cells showed higher distance matrix 

values (average Hausdorff distance=2.8 a.u.; average Mahalanobis distance=0.7 a.u.) 

than non-metastatic cells (average Hausdorff distance=1.5 a.u.; average Mahalanobis 

distance=0.31 a.u.). These parameters were successfully used to detect 52% metastatic 

cells in a cell mixture that imitated breast tissue. This approach can be used for detecting 

metastatic potential of a given sample towards precise therapy for a patient.   

1.2.2. Functionalization of Nanotextured Substrates for Enhanced Identification of 

Metastatic Breast Cancer Cells 

In chapter 4, we report a nanotextured platform for enhanced detection of metastatic cells. 

We captured metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer cells 

on anti-EGFR aptamer modified plane and nanotextured substrates. Metastatic cells were 

seen to change their morphology at higher rates when captured on nanotextured 

substrates than on plane substrates. Analysis showed statistically different morphological 

behaviors of metastatic cells that were much pronounced on nanotextured substrates. 
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Several distance matrices were calculated to quantify dissimilarity of cell shape change. 

Nanotexturing increased dissimilarity of metastatic cells, as a result the contrast between 

metastatic and non-metastatic cells increased. Jaccard distance measured that non-

metastatic and metastatic cell shape change ratio enhanced from 1:1.01 to 1:1.81, going 

from plane to nanotextured substrates. Non-metastatic to metastatic cell shape change 

ratio improved from 1:1.48 to 1:2.19 for Hausdorff distance and from 1:1.87 to 1:4.69 for 

Mahalanobis distance after introducing nanotexture. Distance matrix analysis showed 

that nanotexture amplified shape change ratios of non-metastatic and metastatic cells. 

Hence, the detectability of metastatic cells increased. These calculated matrices provided 

clear and explicit measures to discriminate single cells for their metastatic state on 

functional nanotextured substrates. 

1.2.3. Detection of Cancer Metastasis by Distance Matrix Analysis from Surface 

Immobilized Tumor Cells in Blood 

In metastasis, tumor cells leave primary cancer site, travel through circulatory system, 

and reach distant organs. Presence of tumor cells in blood can be an effective marker for 

cancer detection at early stages. In chapter 5, we report aptamer-functionalized 

nanotextured substrates to capture tumor cells from blood. Anti-EGFR aptamer was used 

to target overexpressed EGFR on tumor cells. Blood cells and tumor cells were captured 

separately on the substrates. Captured tumor cells changed their shape over time while 

blood cells were inactive. Cell shape changes were quantified with distance matrix 

analysis. Hausdorff distance and Mahalanobis distance analysis showed tumor cells 

exhibited higher shape change.  This translated as higher values in distance profiles of 

tumor cells compared to blood cells. Tumor cells had 214.9% higher Hausdorff distance 
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and 274.7% higher Mahalanobis distance than white blood cells (WBCs). Tumor cells 

displayed characteristic distance profiles in blood and the detection efficiency was 75%. 

This technique can be an important modality in identifying metastatic tumor cells from 

blood. 

1.2.4. Development of a Non-Invasive Test for Bladder Cancer Detection Based on 

Cellular Tracking and Distance Matrix Analysis 

Detecting bladder cancer from urine sample is a major challenge for clinicians. Current 

processes conducted to detect bladder cancer before metastasis are mostly invasive. The 

results also vary widely depending on the technical skill of the pathologists. We report a 

non-invasive technique to detect bladder cancer cells from urine sample based on 

morphological change of cells captured on nanotextured anti-EGFR aptamer 

functionalized substrates in chapter 6. Distance matrices were calculated to quantify cell 

shape change. Bladder cancer cells had 125.4% higher Hamming distance, 95.9% higher 

Hausdorff distance and 86.81% higher Mahalanobis distance than healthy urothelial cells. 

We established distinctive distance profiles for both types of cells. Urine samples from 

patients known to have bladder cancer were collected and suspended on nanotextured 

anti-EGFR aptamer modified substrates. The cells which had similar diameter to cancer 

cells were selected and distance values for these cells were calculated. These distance 

values were compared with ideal distance values calculated from cell lines and bladder 

cancer cells could be detected from patient urine sample in this way.    
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

2.1. Carcinogenesis and Metastasis 

Uncontrolled growth of cells is cancer, and spreading of cancer cells to other parts of our 

body is metastasis. Metastasis starts with direct extension or invasion of cancer cells to 

surrounding tissues. Cancerous cells then break away from primary tumor and travel 

through lymphatic or hematogenous system. These cells are circulating tumor cells or 

CTCs. CTCs in blood contain some cells capable of initiating metastasis growth in other 

organs. CTCs have been reported to form metastatic deposits recently [1, 2]. They have 

been found in patients with metastatic cancer [3, 4]. Decreased CTC count has been 

shown to be associated with higher survival rates in lung, breast, colorectal, and prostate 

cancer patients [5-8]. Number of CTC is significantly relevant to diagnosis [9] and disease 

progression [6, 10, 11]. This number is also a good measure of the effectiveness of 

therapeutic treatments [12, 13].  

In this dissertation we have focused on two types of metastatic cancer: breast and bladder 

cancer. Detecting metastatic breast cancer at an early stage is of great importance for 

prescribing specific treatments to curtail the spread of disease. For breast cancer, 

metastasis can reach bone, liver, lungs, and even brain. According to American Cancer 

Society, in 2016 among the new breast cancer cases 249,000 cases were diagnosed as 

metastatic while only 61,000 were in situ. The death toll was 40,890 [14]. Only 6-10% of 

reported breast cancer cases are diagnosed initially as metastatic [15], but eventually 20-

30% of all reported breast cancer cases become advanced or metastatic [16]. Breast 

cancer death rates among women are higher than those for any other cancer, besides 



6 

lung cancer [14]. Early detection of metastatic breast cancer can dramatically improve the 

diagnosis and treatment which in turn can reduce the possibility of occurrence of 

advanced cancer and improve life expectancy.  

Bladder, an extremely important organ of our body is part of the urinary tract in the pelvis 

and stores urine before excreting it by urination. The flexible and muscular wall of this 

hollow organ has thin lining made up of urothelial cells. Bladder cancer begins when these 

cells start to grow and divide uncontrollably and form tumors. Most bladder cancers start 

in the innermost lining aka urothelium. Cancer may also initiate from the squamous cells 

or glandular cells. American Cancer Society estimated that 79,030 adults (60,490 men 

and 18,540 women) would be diagnosed with bladder cancer in the United States and the 

estimated death would be 16,870 (12,240 men and 4,630 women) in 2017 [17]. Among 

man, bladder cancer is the fourth most common cancer and the eighth most common 

cause for death by cancer. Chance for men to develop this cancer during life time is about 

1 in 26 [18]. As more cancer cells develop, the disease can grow into the bladder wall 

and spread to other areas of the body and become more advanced and harder to treat. 

Metastatic or invasive bladder cancer spreads to nearby lymph nodes, bones, lungs, or 

liver. About 1 in 3 bladder cancers invade into deeper layers. Sometimes the symptoms 

of cancer like blood in urine (hematuria), pain during urination, frequent urge to urinate 

etc. are absent. Often some of the symptoms are confused to be caused by other medical 

conditions. Hence, finding it early regardless of the symptoms improves the chance of 

effective treatment and decrease the rate of progression [18]. It is easily evident in the 5-

year survival statistics published by American Cancer Society [17]. According to the 

report, for non-invasive bladder cancer the rate is 96%, for invasive but contained inside 
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the bladder case it is 70%, for cancer invaded to nearby lymph nodes it is 34% and finally 

for the completely metastasized cancer it is 5%. 

2.2. Cancer Diagnosis 

Computed x-ray tomography, magnetic resonance imaging, mammogram, and 

ultrasound scans are the current diagnostic tools to clinically detect metastasis of breast 

cancer. The ability of these tools hugely depends on the size and density of the tissue. 

Mammogram is less likely to find tumors in women younger than 50 years and less than 

one-tenth of one percent of standard mammograms can lead to cancer diagnosis [14]. 

Even though these tools can detect tumors in many patients, they are quiet unreliable to 

detect metastasis as they cannot image metastatic cells traveling inside the body unless 

the cells form distant micrometastases. At that point the disease is already at the last 

stage. Currently, researchers are investigating some new imaging tools like positron 

emission tomography (PET) to acquire molecular and physiological information [19, 20]. 

FDA has approved PET imaging to specify stage of breast cancer [21]. A group has 

reported macrophages targeting magnetic nanoparticles to detect millimeter sized lymph 

node metastases in patients [22]. Another group investigated radiolabeled monoclonal 

antibodies targeting tumor-specific antigens such as HER2 and carcino-embryonic 

antigen to image cancer [23]. One of the negative sides of these techniques is they require 

imaging agents or radiotracers which are often restricted if the patient has any illness, or 

medical condition like pregnancy, or allergies or is on medication. Sometimes the tracers’ 

slow clearance from the blood causes further complications. Hence, most of these are 

not FDA approved. As a result, if there is any confusion about a lump, a biopsy is 

prescribed. Biopsy is followed by histological examination of surgically removed breast 
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tissue. Cancer stage is determined by the arrangement of cells, shape and size of cells, 

cell nucleus color when stained, histochemical staining of cancer cells, and 

immunohistochemical staining of cancer cells with antibody. But in the early stages of 

metastasis, the number of cells are really small in the tissue and histological examination 

after biopsy is again not very effective. About 10% of patients who have a mammogram 

will require further testing. And less than 10% of those will require a biopsy and about 

80% of those biopsies will not show cancer [14]. 

Diagnosis of early stage bladder cancer is a major challenge. The current clinical 

techniques to detect bladder cancer are urinalysis, urine cytoscopy, cystoscopy, 

biomarker check and biopsy. In urinalysis, urine is microscopically checked for irregular 

cellular constituents and blood (gross hematuria or microscopic hematuria) [24]. Blood in 

urine is the first sign of bladder cancer but can also be caused by benign (non-cancerous) 

conditions like infections which reduce the potential of this test. For cytology test the 

doctor uses a microscope to look for cancer cells in urine after cell fixation. Cancerous 

cells display increased nucleus/cytoplasm (N/C) ratio, hyperchromatism, markedly 

irregular nuclear borders or prominent nucleoli [25]. But technical preparation, experience 

and skill of the cytopathologist [26] and intraobserver reproducibility [27, 28]  cause 

variability in result [29-32]. Cytology is not a point of care test and is expensive [33]. 

Though it is highly specific (>90%) , it is limited by low sensitivity (<50%) [34-37] and 

unsuitable for low-grade lesions [38]. There are urinary biomarker tests such as 

UroVysion™ based on FISH which looks for chromosome changes [39-41], BTA tests 

based on qualitative latex agglutination assay which look for a substance called bladder 

tumor-associated antigen (BTA) [42], Immunocyt™ based on three monoclonal 
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antibodies which looks for mucin and carcinoembryonic antigen (CEA), and NMP22 

BladderChek® based on quantitative ELISA which looks for a protein called NMP22 [42]. 

All these testing techniques exhibit a higher sensitivity but a lower specificity [43-48] which 

also varies test to test. Among the invasive tests, cystoscopy is widely recommended. In 

this test, a urologist examines the bladder wall with a thin tube directing light. Abnormal 

areas seen through cystoscopy are biopsied. Cystoscopy is the gold standard 

investigation. But it can miss small or flat lesions [34], has false-negative rates of 10-40% 

[49-51] and potential side effects with discomfort and distress of the patient [52]. These 

tests are yet not full proof because they might find some bladder cancers, but can miss 

some also. Sometimes the results announce cancer in some healthy people. At this time 

these tests are mainly used to look for recurrance in bladder cancer patients or in people 

who already have signs or symptoms of cancer. 

2.3. Epidermal Growth Factor Receptor 

The most frequently overexpressed receptor tyrosine kinase oncogene is epidermal 

growth factor receptor (EGFR) which promotes cell migration, invasion proliferation, 

adhesion, angiogenesis etc. [53-57].  It is present on the cell membrane, and is activated 

when it binds with different growth factors. In healthy cells, EGFR expression level varies 

from 40,000 to 100,000 proteins per cell [58]. The expression increases as the cells start 

to become cancerous. The constant activation of this upregulated receptor leads to 

uncontrolled cell division which in time turns out to be cancer. Both wild type (WT) and 

mutated EGFR have been reported to be biomarkers for cancer. Overexpression of WT 

EGFR is reported to be found on lung cancer and glioblastoma cells while a mutated 

variant EGFRvIII has also been reported to be present in gliocarcinoma [59]. In non-
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metastatic breast cancer cell line MCF-7, EGFR expression is 1.5x104 receptors per cell 

whereas in metastatic breast cancer cell line MDA-MDB-231, the expression increases 

to 1.3x105 receptors per cell [60]. Most bladder cancer cells show overexpression of 

EGFR [61-65]. For bladder cancer cells EGFR expression is around 105 sites per cell [66, 

67]. 

2.4. Antibody and Aptamer 

Cancer cell detection based on affinity interaction between cell membrane proteins and 

aptamers is a highly proficient process. Aptamers are single stranded oligonucleic acid or 

peptide molecules that can selectively bind to specific target molecules. Interaction 

between membrane protein and aptamer is highly selective and very specific. Aptamers 

are reported to be better than antibodies in terms of affinity and specificity [68]. They are 

reported to be highly stable in various salt and ionic conditions. Moreover, aptamers can 

be immobilized on specific sites very precisely. They can also be reversibly denatured 

[69]. Aptamers are more hydrophilic than antibodies. These crucial qualities of aptamers 

have made them preferable to antibodies in detecting cancer cells. In this dissertation, 

we are using anti-EGFR aptamer to selectively capture metastatic breast and bladder 

cancer cells based on EGFR overexpression on cell membrane. 

2.5. Cancer Cell Detection 

To combat cancer at early stages, CTC detection and enumeration in peripheral blood 

and detection of metastatic cells in biopsy samples have significant clinical importance 

[70, 71]. CTCs have been evidenced as prognostic markers for breast cancer [72]. To 

ensure stage specific timely treatment, CTC detection in blood and/or accurate staging of 

biopsy samples can enhance existing early detection methods. Blood samples are 
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routinely being extracted from patients’ body for any health test and it can be easily used 

to check for CTCs. But the technical difficulty to detect CTCs in peripheral blood is their 

rarity [73, 74]. The absolute number varies depending on the progression of the disease, 

but in most cancer patients it ranges between 1 to 200 cells in 1 ml of blood [13, 74-77]. 

Current state of the art techniques to isolate CTCs from peripheral blood include 

immunomagnetic separation, immunocytochemistry detection [6, 78] and reverse 

transcriptase-polymerase chain reaction [79-82]. Among other techniques, direct 

visualization assay [75], fluorescence activated cell sorter [83], array scanning technology 

cytometer based on fiber optics [77], anti-EpCAM coated microstructures [84] etc. have 

also been reported. Most of these techniques are tedious and complicated with long 

processing time and expensive equipments [84, 85]. These are also limited by cell purity 

and yield [86]. 

2.6. Nanostructured Substrates 

Nanotextured substrates are the emerging biosensing platforms to capture or isolate 

cancer cells. Nanotexture increases the effective surface area of substrates and 

augments sensitivity; but the tradeoff is specificity. This problem is overcome by 

introducing specific antibodies and aptamers. The idea of introducing nanotexture in 

device design comes from nature. Micro or nanoscale structures are vastly seen in plants, 

insects, and even in human tissues. The vascular endothelial basement membranes in 

human body have 3D nanoscale topography. This kind of structure influences cellular 

functions significantly [87]. Cancer cells anchor to basement membranes using cell 

adhesion molecules and invade the barrier [88]. Nanoscale structures provide higher 

interactions with biomolecules, which is a primary requirement for any sensing technique. 
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The sensing devices often use defined nanotopography for cell capture [84]. To study cell 

morphology, adhesion, and migration, Fischer et al. used micro and nanoscaled array of 

silicon pillars [89]. To separate T lymphocyte, 100-200 nm sized silicon nanowires 

functionalized with streptavidin were used. Resulting capture efficiency was 88% [90]. We 

previously reported synthesis of a biocompatible scaffold from nanotextured chicken 

eggshell [91]. Such nanotextured scaffolds can remarkably increase the density of some 

cells [92, 93]. 
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Chapter 3 

DISCRIMINATION OF METASTATIC BREAST CANCER CELLS FROM 

INDOLENT CELLS ON APTAMER FUNCTIONALIZED SURFACE WITH 

IMAGING BASED CONTOUR FOLLOWING TECHNIQUES 

3.1. Introduction 

To effectively detect metastatic breast cancer cells, here we report a simple post-biopsy 

imaging technique on aptamer functionalized substrates. This is a label-free, single cell 

analysis technique where each and every cell can be examined for metastatic behavior. 

Examination of each and every cell presents high probability of detecting metastatic cells 

even though the number of these cells may be very small in patient sample.  

In this chapter, the capture and detection of metastatic breast cancer cells MDA-MDB-

231 is reported based on their unique morphological characteristic on anti-EGFR aptamer 

immobilized glass substrates. Metastatic breast cancer cells changed their morphology 

with time when captured on anti-EGFR aptamer functionalized glass substrates. Non-

metastatic MCF-7 cells captured on aptamer-modified substrates did not show this 

behavior. Based on this distinguishable trait of metastatic and non-metastatic cells on 

functionalized glass substrates, we established a detection technique. We used distance 

matrix analysis to compute shape change of cells from optical image.  The technique was 

tested on a cell mixture of metastatic and non-metastatic cells mimicking a biopsy sample. 

In biopsy we extract different types of cells including metastatic ones. It is hard to detect 

metastatic cells from non-metastatic cells using current technology. The technique 
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presented here can successfully detect metastatic cells from this mixture based on their 

morphological alteration on aptamer grafted substrates.  

We have reported efficient capture of human glioblastoma cells from astrocytes on 

aptamer grafted substrates previously [94, 95]. Cell capture technique is very popular for 

its selectivity and the efficiency of our reported technique for glioblastoma cell capture 

was higher than astrocytes. But in the captured cell population, distinction of cells was 

not possible. We later showed that there was morphological non-uniformity between 

glioblastoma and astrocyte cells on aptamer modified substrates [95]. Here, we show a 

precise distance matrix based cell shape analysis technique to differentiate between 

metastatic and non-metastatic breast cancer cells on aptamer modified substrate.   

3.2. Materials and Methods 

All chemicals used in the experiments were obtained from Sigma-Aldrich (St. Louis, 

Missouri, USA), unless mentioned otherwise. 

3.2.1. Substrate Preparation 

Fisher brand microscope slides were used as substrates. The glass slides were cut into 

5 mm x 5 mm pieces and cleaned with Piranha solution (H2SO4:H2O2::3:1) for 10 minutes 

to remove any contaminant and create –OH groups. The substrates were subsequently 

washed with deionized (DI) water and dried in N2 flow. To remove any moisture, a baking 

step at 195 °C for 10 minutes was done. To create amine groups on the surface, the 

substrates were immersed into 200 µl of 2% (3-Aminopropyl)triethoxysilane (APTES) for 

30 minutes. After a thorough rinse with isopropyl alcohol (IPA) and DI water, the 

substrates were dehydrated again at 150 °C for 30 minutes. A solution of 9 ml dimethyl 
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sulfoxide (DMSO), 1 ml pyridine and 0.002 gm p-Phenylene diisothiocyanate (PDITC) 

was prepared to immerse the substrates for 5 hours at 45 °C. After another washing with 

IPA and diethylpyrocarbonate (DEPC)-treated water, unreacted PDITC end groups were 

capped to prevent any nonspecific adsorption. To do that, the substrates were immersed 

in 150 mmol/l N,N-Diisopropylethylamine (DIPEA) in dimethylformamide (DMF) and 50 

mmol/l 6-amino-1-hexanol for 5 hours. PDITC created a diisothiocyanate layer on the 

substrates, one end of which attached to the glass substrate-tethered APTES and the 

other end could bind to amine-bearing capture molecules. We used amine modified DNA 

as capture molecules. The amine modified capture DNA had the sequence: 5′-amine-

CTGGTCATGGCGGGCATTTAATTC-3′ and was diluted with DMSO [94]. Then each of 

the glass substrates was loaded with 20 µl of 5 µM capture DNA and was incubated for 

18 hours at 45 °C in a humid chamber. This capture DNA would later bind with the 

aptamers.  

3.2.2. Aptamer Preparation and Substrate Functionalization 

The sequence for anti-EGFR aptamer was: 5′-GGC GCU CCG ACC UUA GUC UCU 

GUG CCG CUA UAA UGC ACG GAU UUA AUC GCC GUA GAA AAG CAU GUC AAA 

GCC GGA ACC GUG UAG CAC AGC AGA GAA UUA AAU GCC CGC CAU GAC CAG-

3′ [94]. The underlined part is the complementary chain which could bind with the capture 

DNA. As a negative control, to show lack of non-specific binding, a mutant aptamer 

sequence was used (5′-GGC GCU CCG ACC UUA GUC UCU GUU CCC ACA UCA UGC 

ACA AGG ACA AUU CUG UGC AUC CAA GGA GUU CUC GGA ACC GUG UAG CAC 

AGC AGA GAA UUA AAU GCC CGC CAU GAC CAG-3′) [94]. The anti-EGFR and mutant 

aptamers were diluted with DEPC-treated water and mixed with hybridization buffer 
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(5:1::RNA:hybridization buffer). After 18 hour incubation period, the DNA incubated 

substrates were washed with IPA and DEPC water. A volume of 25 µl aptamer was placed 

on a substrate. Half the substrates were incubated with anti-EGFR aptamer while the 

other half were incubated with mutant aptamer. All the substrates were incubated at 37 

°C for 1 hour in an incubation chamber. The chamber was previously washed with RNase-

free and DEPC treated DI water. After incubation, substrates were washed with 1X 

phosphate buffered saline (PBS), (pH 7.5) solution and used immediately.  

3.2.3. Target Cell Preparation 

Two types of breast cancer cells were used. The metastatic cell line was MDA-MDB-231 

and the non-metastatic cell line was MCF-7. They were obtained from the University of 

Texas Southwestern Medical Center (Dallas, TX). The cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM/F-12; Cellgro, Corning, Manassas, Virginia, USA) with 

10% heat inactivated fetal bovine serum. L-glutamine (Invitrogen, Carlsbad, California, 

USA) and Gentamycin were also added to the medium. A sterile humidified culture 

environment was maintained with 95% air and 5% CO2 at 37 °C. In all experiments, the 

cells were first centrifuged to remove supernatants and then diluted with sterilized and 

warm 1× PBS solution. The prepared cells were immediately used.  

3.2.4. Cell Mixture Preparation 

Two sets of experiments were conducted with metastatic and non-metastatic cells. In the 

first set of experiments, both types of cell were captured on anti-EGFR aptamer and 

mutant aptamer modified substrates separately. Cells were observed and images were 

taken. The distinctive morphological characteristics of metastatic and non-metastatic cells 

were established and quantified from this experiment. 
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In the second set of experiments, a mixture of metastatic and non-metastatic cells was 

used. The metastatic cells were tagged with 5-chloromethylfluorescein diacetate 

(CMFDA; Thermo Fisher Scientific, Carlsbad, California, USA). This fluorescent dye was 

used for tracking cell motility. The emission spectra were 492/517 nm.  CMFDA (0.2 µl) 

was mixed in 1 ml of the medium. The tagged metastatic and untagged non-metastatic 

cells were mixed in 1:1 ratio. The purpose of this experiment was to track morphology 

change of the cells temporally and detect metastatic cells from the mixture based on 

previously established quantitative metrics.  

3.2.5. Cell Suspension and Image Capture  

In the first set of experiments, the prepared cells were suspended in 1x PBS solution. 

These were then loaded on the 5 mm x 5 mm functionalized glass substrates. Typically, 

a volume of 30 µl cell suspension was used to cover each substrate.  The density of non-

metastatic cell suspension was 200,000 cells/ml and for metastatic cell suspension was 

100,000 cells/ml. Usually 3 or 4 minutes were given to let the cells settle down on the 

functionalized substrates. After settling down the average concentration of cells on 

functionalized glass substrates was ~120 cells per mm2 for metastatic cells and ~240 

cells per mm2 for non-metastatic cells. To inspect cell attachment on the substrates and 

their behavior over the time, an optical microscope was used. Three samples from each 

of the four groups of cell-RNA pairs were analyzed: metastatic cells captured on anti-

EGFR aptamer functionalized substrates, metastatic cells captured on mutant aptamer 

functionalized substrates, non-metastatic cells captured on anti-EGFR aptamer 

functionalized substrates, and non-metastatic cells captured on mutant aptamer 

functionalized substrates. The cells on all 12 substrates were imaged. Over the next 30 
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minutes, images were taken 30 seconds apart using a Leica DM series optical 

microscope with DFC295 color camera at 20X magnification. 

In the second set of experiments, CMFDA tagged metastatic and untagged non-

metastatic cell pellets were mixed inside 1X PBS solution in 1:1 ratio and suspended on 

anti-EGFR aptamer modified substrates. Then the cells were imaged with Zeiss 

fluorescence microscope (Axioplan 2 LSM) with AxioCamMR3 camera. 

3.2.6. Image Analysis  

The captured images were analyzed with custom written code in MATLAB. From the 

images, each cell was cropped and arranged sequentially with respect to time. A batch 

of images was generated for each cell showing its shape change with time. These images 

were in RGB format. They were processed via edge detector code which generated 

batches of binary images. All the binary images were processed in a way that the center 

of the cell was always at the same position. This precaution was taken due to the fact that 

some cells moved a little bit with time while still attached to the surface. Each of these 

batches of binary images was processed using our code to quantify their shape change.  

3.2.7. Cell Contour Detection 

The computational procedure for cellular edge detection was based on level set algorithm. 

The RGB images were processed with Wiener filter for noise removal. Wiener filter is a 

low pass filter which removes noise by adapting to pixel wise statistical estimation of the 

local neighborhood. The adaptive nature of Wiener filter worked better than linear filters 

due to its capability to preserve edges. The images were further smoothed by Gaussian 

filter. Cellular edge was the place of rapid change in the intensity profile of the image. 
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Therefore, cellular edge corresponded to the extremas of the derivatives of image 

intensity. Gradients of the images were calculated which indicated the places with most 

rapid intensity change i.e. cellular edge. The strength of the edge is calculated by the 

magnitude of the gradient. From this magnitude an edge indicator function is calculated 

with the following formula: 

𝐸𝑑𝑔𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

1+𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡2. 

The level set method is a dynamic process which tracks the motion of an interface [96]. 

The interface is called zero level set and in our case it was the image boundary. When 

the image boundary aka zero level set started to move inwards and towards the cellular 

edge, we got an initial value partial differential equation. In solving this equation Neumann 

boundary condition was used. Neumann boundary consisted of the derivatives of the 

image intensity.  

The tracked boundary from the level set method was compared with the edge indicator 

function over and over until matched. In this way we segmented the cells from non-cell 

background by detecting the cell contour.   

3.2.8. Shape Similarity Calculation 

The segmented cells were converted to binary where the cell body was black and the 

background was white. To quantify the cell shape change, we employed a shape similarity 

matching technique. The cells were tracked over time with an optical microscope and 

images were taken for 30 minutes. These images were converted to binary formats by 

contour detection. The binary data was matched from image to image. The binary data 
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had a 1 value where cell body was present and a 0 meant absence of cell body. A 2x2 

contingency table was generated for each pixel to match two consecutive images. The 4 

conditions that dictated the table were: presence of cell body in both images, ‘a’; presence 

of cell body in first image and absence in second image, ‘b’; absence of cell body in first 

image and presence in second image, ‘c’; absence of cell body in both images, ‘d’. For a 

pixel, only 1 of the 4 conditions had to be true. A value of 1 was assigned for the true 

condition and 0 for false. A similarity coefficient, Sokal-Sneath coefficient [20], was 

calculated from this table. The mathematical formula is: 

𝑆𝑜𝑘𝑎𝑙 𝑆𝑛𝑒𝑎𝑡ℎ 𝑐𝑜𝑒𝑓𝑓𝑐𝑖𝑒𝑛𝑡 =
𝑎

𝑎 + 2(𝑏 + 𝑐)
 

Mutually absent attribute or ‘d’ was not necessary for similarity calculation, according to 

Sokal-Sneath [20]. When two binary shapes were similar, ‘a’ was very large; as well as 

the similarity coefficient. If a cell did not change shape significantly, it remained similar to 

its previous form and would generate a high similarity coefficient. Continuous 

morphological change of a cell thus depicted lower values of coefficient. 

3.2.9. Distance Matrix Calculation 

Distance matrix analysis is a more rigorous method for comparing cell shape. It is a 

statistical method of pattern recognition, where each pattern is described in terms of 

features. In our case, we calculated two features: Hausdorff distance and Mahalanobis 

distance. Features were computed in a way that for different patterns there were non-

overlapping feature spaces. We calculated and established Hausdorff distance profile and 

Mahalanobis distance profile for metastatic and non-metastatic cells.  These distance 
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profiles clustered in clearly recognizable manners to distinguish metastatic and non-

metastatic cells based on a decision boundary. 

The first distance matrix, called Hausdorff distance, calculated the resemblance between 

cell contours in two consecutive images [97]. If A and B are the sets of points on the cell 

contour in two consecutive images, the distance is: 

𝐻(𝐴, 𝐵) = max(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))  

where,      ℎ(𝐴, 𝐵) = max
𝑎𝜖𝐴

min
𝑏𝜖𝐵

|𝑎 − 𝑏|    

Hausdorff distance minimizes positional errors with nominal and fast calculations. The 

distance between two closed sets is zero if and only if both sets are identical. That means, 

if the cells are not showing any morphological change, the Hausdorff distance will be 

ideally zero or practically a small number. If a cell is changing shape, distance will be a 

larger number. 

Another distance matrix, called Mahalanobis distance, measures the numbers of standard 

deviations the cell periphery is away from mean cell boundary [98]. It is calculated from 

the formula: 

𝐷2  =  (𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚) 

where, D = Mahalanobis distance, m = Vector of mean values from initial cell boundary, 

x = Vector of changing cell boundary, C−1 = Inverse covariance matrix of initial cell 

boundary, and T = Transpose vector. 
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3.3. Results and Discussion  

3.3.1. Dynamic Tracking of Morphological Characteristics of Cells  

The metastatic and non-metastatic cells were captured separately on anti-EGFR aptamer 

and mutant aptamer modified substrates. The captured cells were tracked for 30 minutes. 

Over this time, the metastatic cells changed their shapes on anti-EGFR aptamer modified 

substrates by creating protrusions form cell membranes. The non-metastatic cells 

captured on anti-EGFR aptamer functionalized substrates did not show such changes in 

shapes. Both types of cells captured on mutant aptamer functionalized substrates did not 

show any morphological changes. It was unique for metastatic breast cancer cells 

captured with anti-EGFR aptamer to show distinctive morphological behaviors. This 

feature was used to identify metastatic breast cancer cells from non-metastatic ones.   

Metastatic and non-metastatic cells captured with mutant aptamer showed the same 

behavior (no shape change) as non-metastatic cells captured with anti-EGFR aptamer. 

For simplicity in presentation, results from cell morphology on mutant aptamer 

functionalized glass substrates are not shown in the data analysis. Results for non-

metastatic cells captured with anti-EGFR aptamer are good representations of metastatic 

and non-metastatic cells captured on mutant aptamer functionalized glass substrates. 

The temporal optical micrographs in Fig. 3-1 show the morphological change of cells with 

time. The metastatic breast cancer cells showed morphological changes when captured 

with anti-EGFR aptamer (Fig. 3-1(a)). Micrographs of 5 different metastatic cells exhibited 

this behavior over time. Non-metastatic cells captured with either anti-EGFR aptamer or 

mutant aptamer and metastatic cells captured with mutant aptamer did not show such 

behavior (Fig. 3-1(b)).  



23 

 

Figure 0-1: (a) Metastatic cells captured with anti-EGFR aptamer. Micrographs of 5 different 
cells after (I) 2 minutes, (II) 9 minutes, (III) 17 minutes of capture. Each cell shows change in 
contour with respect to time; (b) (A) Non-metastatic cell captured by anti-EGFR aptamer, (B) 

Non-metastatic cell captured by mutant aptamer, (C) Metastatic cell captured by mutant 
aptamer. Micrographs taken after (I) 2 minutes, (II) 9 minutes, and (III) 17 minutes of capture. 

Non-metastatic cells do not show any morphological change over time. 
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The morphological changes of metastatic cells on anti-EGFR aptamer modified 

substrates can be explained by the expression of EGFR on their cell membrane. 

Metastatic breast cancer cells have 10 times more EGFR than their non-metastatic 

counterparts [60]. EGFR detects specific signals for cell movement, proliferation and 

migration [99, 100]. Metastatic breast cancer cells, having higher density of EGFR, 

created more receptor-aptamer bonds than non-metastatic cells. In these cells, more 

activated EGFRs generated cascades of intracellular signals. It is known that intracellular 

signaling stimulated by EGFR results in continuous restructuring of actin filaments [101]. 

Overexpression of EGFR thus triggered dynamic rearrangement of cytoskeleton structure 

of metastatic cells on anti-EGFR aptamer functionalized substrates. 

3.3.2. Shape Similarity Matching  

In Fig. 3-2(a), average Sokal-Sneath coefficient is presented for metastatic and non-

metastatic cells with time. It is a similarity coefficient and lower value of coefficient meant 

cell shape was changing prominently with time. Average for non-metastatic cells was 

more than 0.9 a.u. during the whole 30 minute period, confirming a high similarity.  For 

metastatic cells, the average was much lower for first 10 minutes. Later, it increased but 

still stayed below 0.9 a.u. The propensity of changing morphology for metastatic cells was 

observed to gradually decrease with time. It can be inferred that after around 20 minutes, 

the cytoskeleton rearrangement of metastatic cells was finally stable. In Fig. 3-2(b), the 

contrast comparison is shown with respect to time. While for non-metastatic cells the 

average coefficient is almost the same (~0.9 a.u.) over time, for metastatic cells it 

changed from 0.77 a.u. (at 4 min) to 0.84 a.u. (at 28 min). The average coefficients for 

metastatic cells are significantly different than that for the non-metastatic cells in both time 
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points (p-value < 0.01). For better diagnostics, the contrast between metastatic and non-

metastatic cells is preferable to be strong. And the early coefficient values give a better 

diagnostic. 

Lower similarity resulting from more inclination to change morphology of metastatic cells 

on anti-EGFR aptamer functionalized substrates confirmed the fact that the cytoskeleton 

structure of these cells were more flexible than non-invasive cancer cells [26-28]. The 

actin filaments of the cytoskeleton have been reported to be very agile in metastatic cells 

[29, 30].  

Over the imaging period, it was observed that the cells spread out on the substrate. 

Hence, their size changed in the 2D images. For coefficient analysis, where we took every 

pixel change into account, this event laid an undesirable influence and decreased the 

sensitivity of this metric. We calculated distance matrices to avoid this problem. Distance 

matrix analysis was done only on cell contours. Though cell contours also changed due 

to spreading out, the change was subtler than cell area change. Although coefficient 

analysis was burdened with cell spreading phenomenon, but it still presented a quick and 

simple measure to indicate dynamic morphology of metastatic cells.  
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Figure 0-2: (a) Average Sokal-Sneath coefficient of metastatic and non-metastatic cells 
with time. The trend shows metastatic cells have lower coefficient value, which means cell 
shape was changing with time. Non-metastatic cells are uniformly showing higher similarity 

with a coefficient value closer to 1, where 1 means exactly same shape. (b) Contrast 
comparison between metastatic and non-metastatic cells with time based on Sokal-Sneath 

coefficient (*, p-value < 0.01). 
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3.3.3. Hausdorff Distance Profile for Metastatic and Non-metastatic Cells 

In Fig. 3-3(a), the average Hausdorff distance for metastatic and non-metastatic cells are 

shown with time. Higher Hausdorff distance meant higher cell shape change. The non-

metastatic cells showed a low and uniform distance over 30 minutes. Due to constant 

morphological change of metastatic cells, their distance values were higher. From this 

analysis, it was again evident that the shape changing tendency of metastatic cells 

subsided after around 20 minutes. When activated EGFR on cell membrane triggered 

intracellular signaling pathways, actin-modifying proteins were released from the cell 

membrane which reorganized actin cytoskeleton [102]. Filopodia/lamellipodia extension 

and retraction from cell membrane was controlled by actin cytoskeleton. Presence or 

absence of suitable binding sites on the substrates stabilized the extension or retraction 

of filopodia/lamillipodia [103, 104]. Stable binding between surface-bound anti-EGFR 

aptamer and cell membrane EGFR ultimately suppressed cell morphological change after 

20 minutes. The total distance value after 30 minutes consists of the high-contrast early 

values and low contrast late values. It is true that we could only take the high-contrast 

early values for discrimination. But from our results we concluded that inclusion of the 

low-contrast late values augmented the metrics and enhanced the difference between 

metastatic and non-metastatic cells. Average Hausdorfff distance after 30 minutes is 

plotted for both types of cell in Fig. 3-3(b). The average was 1.5 a.u. (SD=0.4 a.u.) for 

non-metastatic cells and 2.8 a.u. (SD=0.7 a.u.) for metastatic cells. Two-tailed t-test 

confirmed that the averages were statistically significant (p-value < 0.05).  
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Figure 0-3: (a) Average Hausdorff distance of metastatic and non-metastatic cells with 
time; (b) Average of total Hausdorff distance of both type of cells after 30 minutes. Two-

tailed t-test showed *,p-value < 0.05. 
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Metastatic cells have the unique ability to move into tissues surrounding the primary 

cancer site. This aberrant behavior is caused by genetic mutations. One such mutation 

happens in the EGFR family of genes [105]. Genetic alteration of EGFR gene is reported 

to result in upregulation of EGFR on cell membrane of metastatic cells [106]. We 

employed this fact to capture metastatic cells with anti-EGFR aptamers. Upregulated 

growth factor driven signaling boosted cell motility in metastatic cells. 

3.3.4. Mahalanobis Distance Profile for Metastatic and Non-metastatic Cells  

Larger Mahalanobis distance value means larger change in the cell boundary. In Fig. 3-

4(a), this distance is plotted with respect to time. The metastatic cells showed higher 

dissimilarity than non-metastatic ones. The non-metastatic cells showed a more uniform 

trend than metastatic cells. Average Mahalanobis distance after 30 minutes is shown in 

Fig. 3-4(b). The averages are 0.7 a.u. (SD=0.27 a.u.) and 0.31 a.u. (SD=0.08 a.u.) for 

metastatic and non-metastatic cells respectively. Two-tailed t-test showed that the 

distance values for metastatic cells were significantly different from that of non-metastatic 

cells (p-value < 0.05).   

Hausdorff distance analysis is very precise and includes very small positional change of 

cell contour in calculation. Cells are alive entities and it is usual for any cell to show small 

shape change over time. As a result, Hausdorff distance analysis is sometimes 

overloaded and the detection contrast between metastatic and non-metastatic cells 

decreases. On the other hand, Mahalanobis distance analysis is based on mean 

boundary of cell and its covariance matrix with new boundary. Hence, Mahalanobis 

distance sometimes misses subtle change in shape that is expected to be taken into 

account and over-amplifies the contrast between metastatic and non-metastatic cells. We 
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combined these two features to counterbalance the imprecise calculations and came up 

with combined distance profile for metastatic and non-metastatic cells.  

We observed that similarity coefficient took cell area into account. Even a very small 

change of cell shape was amplified in the calculated similarity coefficient and produced 

huge variability in average values. Whereas distance matrices circumvented the cell 

spreading effect to some extent. Both type of calculations can thus give us insight into the 

cell activity over time. 
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Figure 0-4: (a) Average Mahalanobis distance for metastatic and non-metastatic cells with time; (b) 
Average of total Mahalanobis distance of both type of cells after 30 minutes. Two-tailed t-test 

showed *,p-value < 0.05. 



32 

3.3.5. Detection of Cells from Cell Mixture Based on Distance Profile 

From distance matrix analysis we could successfully differentiate metastatic cells from 

non-metastatic ones from their morphological behavior on anti-EGFR aptamer modified 

substrates. For the purpose of clinical applications to detect metastatic cells, we 

demonstrated our technique in a cell mixture. Metastatic and non-metastatic cells were 

mixed in 1:1 ratio. The anti-EGFR aptamer modified substrates were incubated with the 

cell mixture and imaged for 30 minutes. Metastatic cells, tagged with CMFDA, were 

confirmed from fluorescence imaging.  Fig. 3-5(a-b) show the cell mixture under optical 

and fluorescent microscopes.    

 

Figure 0-5: (a) Optical and (b) fluorescent image of metastatic and non-metastatic cell mixture at 
1:1 ratio. Metastatic cells were tagged with CMFDA. Fluorescent imaging was used to backtrack 

the identity of cells. 
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Figure 0-6: (a) Cells from metastatic and non-metastatic cell mixture captured on aptamer modified 
substrate are plotted according to their distance profile. Metastatic and non-metastatic cell regions 
are established based on previous distance matrix analysis. (b) Metastatic and non-metastatic cells 

are plotted from fluorescent image. The red dotted line is previously established metastatic cell 
region containing 52% of the metastatic cells from the cell mixture. 
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Figure 0-7: (a) Mixture of metastatic and non-metastatic cells::1:6; 1 out of 5 metastatic cell could 
be detected (circled within red dotted line) (b) Mixture of metastatic and non-metastatic cells::1:10; 

2 out of 4 metastatic cells could be detected (circled within red dotted line). 



35 

Cell images on anti-EGFR aptamer functionalized substrates were converted into binary 

format and distance matrix data were accumulated. In Fig. 3-6(a) the captured cells from 

the mixture are plotted with respect to their Hausdorff and Mahalanobis distances. We 

took these two parameters because both are distances, and their combination gave the 

analysis flexibility with precision. A 2D distance profile is simple, sensitive and more 

robust as advantage of one parameter balances the disadvantage of the other. It was 

demonstrated that metastatic cells had average Hausdorff distance of 2.8 a.u. (SD=0.7 

a.u.) from Fig. 3-3(b) and average Mahalanobis distance of 0.7 a.u. (SD=0.27 a.u.) from 

Fig. 3-4(b). Combining these features we hypothesized that we can expect metastatic cell 

population around and beyond these values. In Fig. 3-6(a), we established regions where 

we expected metastatic and non-metastatic cells to be present. We did find some cells 

inside the metastatic region. We overlaid the fluorescent image on the optical image to 

confirm cell identification. Fig. 3-6(b) shows results from the fluorescent image and in our 

established metastatic region all cells were metastatic (inside red dotted circle). We could 

thus successfully detect 52% metastatic cells from the mixture. Two more experimental 

results are shown in Fig. 3-7(a-b).   

Cell motility on anti-EGFR aptamer modified substrates can be a novel biomarker for 

detection of metastatic cells from other cells. Non-metastatic cells closely resemble 

metastatic cells in size and shape. In biopsy samples, where both invasive and benign 

cancer cells are present, it is extremely important but difficult to differentiate between 

these two. Our results suggest that implementation of shape similarity analysis method 

with anti-EGFR aptamer functionalized capture substrates can be an exciting new 

strategy for detecting metastatic breast cancer cells in a breast tissue environment.  The 
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technique also eliminates the inadequacy of single cell addressing that exists in current 

clinical imaging systems. Cell staining often impedes normal cellular function which can 

be unfavorable for cancer cell identification. Our technique is label-free and selective. Our 

work is based on ‘immobilization’ of anti-EGFR aptamers on surface for capturing cancer 

cells [94]. Capture of cancer cells is necessary for further protein or nucleotide study. The 

captured cells can be later collected by washing off from the surface for these studies. It 

is difficult to maximize isolation of metastatic cancer cells based on EGFR expression as 

the expression is just 10 fold from non-metastatic to metastatic cells. Our work has 

introduced a ‘detection stage’ in between the ‘capture’ and ‘collection’ stage to confirm 

detection and capture of metastatic cells and maximize their collection.  

From our current and previous work [94] and other studies on cell motility due to EGFR 

binding [102-104], we confirmed that the cause of the reported behavior of metastatic 

cells is high EGFR expression. We can infer that for other cell lines this should also hold 

true. But the sensitivity of the detection will certainly depend on the absolute expression 

of EGFR and the effectiveness of the calculated metric. We also expect metastatic cancer 

cells in real patient sample will show same kind of behavior as it is based on EGFR 

overexpression. 

3.4. Conclusions 

We have presented a simple but elegant way of differentiating metastatic and non-

metastatic breast cancer cells. Based on well-defined characteristics, our shape matching 

technique could differentiate and detect metastatic cells from cell mixture that mimicked 

composition of breast cancer tissue. This capture procedure and morphological feature 
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calculation can be used as a simple platform to develop a cost effective and efficient point 

of care device to detect metastatic breast cancer at an early stage. 
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Chapter 4 

FUNCTIONALIZATION OF NANOTEXTURED SUBSTRATES FOR 

ENHANCED IDENTIFICATION OF METASTATIC BREAST CANCER 

CELLS 

4.1. Introduction 

Previously, we have fabricated random nanotopography on substrates that could 

selectively capture 93% of cancer cells when functionalized with aptamer [56, 57, 107, 

108]. Morphological change of brain cancer cells on these substrates have been reported 

by our group also [94, 95]. Our platform was simple and easy to fabricate. Use of 

aptamers provided higher selectivity and specificity against epidermal growth factor 

receptor (EGFR) of cell membrane.  

Using the differential expression of EGFR, we report measurements of differential 

morphology of metastatic and non-metastatic breast cancer cells on anti-EGFR aptamer 

coated plane and nanotextured substrates. This modality can be used to define metastatic 

grade of a given sample whether the cells come from biopsy sample or collected from 

blood (e.g. circulating tumor cells).  In this work, we introduced nanotexture on our 

platform. Nanotexturing modulated and amplified the activity of captured cancer cells. The 

effect was much more pronounced for metastatic breast cancer cells.  These cells 

changed their shapes rapidly on nanotextured substrates distinguishing them from non-

metastatic cells. A number of quantitative features were developed to clearly identify 

metastatic breast cancer cells.     
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4.2. Materials and Methods 

4.2.1. Substrate Preparation 

Fisher brand microscope slides (12-550D, Fisher Scientific) were cut into 5 mm x 5 mm 

pieces and used as substrates. Two types of substrates were used. One type was just 

plane untreated microscope glass slides.  The second type consisted of nanotextured 

slides, produced by reactive ion etching (RIE). Technics Micro-RIE Series 800 Plasma 

System was used to do RIE. A gas mixture of 10 sccm O2 and 15 sccm of CF4 was used 

in RIE for 25 minutes to create the nanotexture. The RF power was set at 200 W during 

RIE. Nanotextured substrates were marked to easily separate them from plane ones.   

4.2.2. Substrate Topography Examination 

Roughness was measured by atomic force microscope (AFM). Non-contact AFM mode 

was used (Park XE70 AFM) to collect topographical data. Maximum tip diameter was less 

than 10 nm. Nominal force constant and resonance frequency were 42 N/m and 330 kHz, 

respectively. Five samples for each type of substrates were scanned and plane levelled. 

Average, RMS roughness, and maximum peak to valley height were measured. 

A Hitachi S-3000N variable pressure scanning electron microscope (SEM) was used to 

examine the surfaces of nanotextured substrates. The substrates were coated with 5 nm 

gold film and acceleration voltage of 18 kV was used to capture micrographs. 

4.2.3. Surface Elemental Analysis 

Elemental analysis of the substrates was done with the energy-dispersive x-ray 

spectroscopy (EDS) tool of the SEM. It quantified elemental composition of the substrates 

at low vacuum and 30 kV acceleration voltage. 
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4.2.4. Contact Angle Measurements 

Contact angles of plane and nanotextured substrates were measured with ramé-hart 

contact angle goniometer (NRL-100; Ramé-hart Instrument Co, NJ, USA). Deionized (DI) 

water sessile drop was placed on the substrates at room temperature and contact angles 

were visually observed through microscope at the water-substrate interface. Five 

measurements were taken for each of total 7 runs. 

4.2.5. Substrate Functionalization 

Same as described in Chapter 3. 

4.2.6. Aptamer Preparation and Substrate Functionalization with Aptamer 

Same as described in Chapter 3. 

4.2.7. Target Cell Preparation 

Same as described in Chapter 3. 

4.2.8. Cell Suspension and Image Capture  

Around 200,000 cells were present in 1 ml of PBS. A volume of 30 µl of cell solution was 

loaded on a substrate. Five minute was given for the cells to interact with aptamer 

modified substrates. The cells were then tracked and imaged with optical microscope for 

15 minutes.  

4.2.9. Cell Contour Detection 

Same as described in Chapter 3. 

4.2.10. Distance Matrix Analysis 

We compared cell shapes over time and defined distance analysis and shape dissimilarity 

matrices to objectively detect shape change of cells. Distance matrix analysis is a 



41 

standard pattern recognition technique. This technique computes shape change and 

presents a distance value. Distance value represents shape dissimilarity. Usually the 

higher the distance value, the more the shape is changing. We converted optical images 

into binary images having only one of two values: a black pixel or a white one. A black 

pixel meant presence of cell body at those coordinates and white meant absence. A 2X2 

contingency table was generated for each pixel. There were 4 conditions in the table that 

were derived from the presence of a cell in any two consecutive images.  An “a” meant 

presence in both images.  The “b” depicted presence in first image but absence in next 

image.  The “c” was absence in the first image and presence in next image, and absence 

in both images was recorded was a “d”. For a particular pixel, only 1 of the 4 conditions 

had to be true.  Using this table, a distance matrix called Jaccard distance was calculated. 

Jaccard distance is calculated as [109]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 −
𝑎

𝑎 + 𝑏 + 𝑐
 

Hausdorff and Mahalanobis distance calculation is described in Chapter 3. 

4.2.11. Statistical Analysis with Distance Values 

Change in distance values were calculated between two following time points for each 

cell. At the end of 15 min all the changes were summed up to find total distance change 

for each cell. The average of total distance indicated how the group (metastatic or non-

metastatic cells) behaved in terms of morphological change after 15 min. Two tailed t-

test was used to assess if the averages of any two groups were statistically significant. 

We calculated p-values in each case. We calculated cell shape change ratio using the 

following formula: 
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𝐶𝑒𝑙𝑙 𝑆ℎ𝑎𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) =

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐽𝑎𝑐𝑐𝑎𝑟𝑑 | 𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 | 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠𝑜𝑓 𝑁𝑜𝑛 − 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑡𝑖𝑐 𝐶𝑒𝑙𝑙𝑠𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 / 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐽𝑎𝑐𝑐𝑎𝑟𝑑 | 𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 | 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠𝑜𝑓 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑡𝑖𝑐 𝐶𝑒𝑙𝑙𝑠𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 

where Distance was either of the Jaccard distance or Hausdorff distance or Mahalanobis 

distance, and the Substrate was either plane or nanotextured substrate. 

4.3. Results and Discussion 

4.3.1. Substrate Topography Examination 

Roughness values for plane and nanotextured substrates are presented in Table 4-1. 

AFM micrographs in Fig. 4-1(a-b) show surface features of both types of substrates. On 

average, nanotexturing increased the RMS roughness from ~6.8 nm (S.D.=3.3 nm) to 

~36 nm (S.D.=4.9 nm). Increased roughness directly affected and amplified density of 

immobilized surface-tethered ssDNA and anti-EGFR aptamer on nanotextured substrates 

[90]. SEM micrograph of nanotextured substrate is shown in Fig. 4-1(c). 

Table 0-1:  Substrate Roughness from AFM 

 

Substrate 

Average Roughness 

(nm)±S.D. 

RMS Roughness 

(nm)±S.D. 

Maximum Peak to Valley 

Height (nm)±S.D. 

 

Plane 

 

5.76 ± 4.03 

 

6.87 ± 3.3 

 

28.11 ± 12.2 

 

Nanotextured 

 

29.75 ± 4.57 

 

36 ± 4.9 

 

134.5 ± 13.3 

 

4.3.2. Elemental Analysis of Substrates 

Elemental analysis of plane and nanotextured substrates showed that there was no 

change in the composition of the substrates after RIE (Fig. 4-2). This eliminated any 
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possible effects on cell behavior due to elemental changes. Trace amounts of C, Al, and 

K were found on both substrates, which were typical and came from sample handling.   

4.3.3. Contact Angle Measurements 

Contact angle data shows that the substrates became more hydrophilic after 

nanotexturing (Table 4-2). Hydrophilic substrates are ideal for biological molecule 

adhesion [110]. Hydrophobic substrates deter cell attachment while hydrophilic 

substrates permit and even boost attachment [111-116]. Contact angle values shown in 

Table 4-2 manifest that nanotexturing increased hydrophilic behavior of the substrates 

and enhanced interactions between substrates and cells.  
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Figure 0-1: AFM micrographs of (a) plane substrate before RIE, (b) nanotextured substrate after 
RIE. (c) SEM micrograph of the nanotextured substrate. 
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Table 0-2: Contact Angle Measurements (n=7) 

 

Substrate 

 

Contact Angle ± S.D. 

 

Plane 

 

25° ± 1.5 

 

Nanotextured 

 

12° ± 1 

 

Figure 0-2: EDS analysis of (a) plane and (b) nanotextured glass substrates 
before chemical and biological modifications. 
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4.3.4. Cell Morphology Observations 

Cells captured on plane and nanotextured substrates were imaged for 15 minutes. Binary 

images of the cells were extracted from optical images. Fig. 4-3 shows representative cell 

behaviors observed in the images. Each panel shows one cell at a time, imaged at interval 

of 3 minutes going from left to right. The data clearly shows that the non-metastatic cells 

(Fig. 4-3(c-d)) captured on plane and nanotextured substrates did not show significant 

shape change. Metastatic cells changed their shapes more prominently on nanotextured 

substrates (Fig. 4-3(a)) than on plane substrates (Fig. 4-3(b)). 

Prominent morphological changes of metastatic cells on anti-EGFR aptamer modified 

nanotextured substrates can be linked with the overexpression of EGFR on cell 

membrane. EGFRs of cell membrane are activated when captured on nanotextured 

substrates with anti-EGFR aptamers. Activated EGFR triggers PLC γ, an enzyme 

dependent intracellular signaling pathway, which influences cell motility [117-119]. Here, 

we detected shape change of cells from optical images and converted these changes into 

numeric values to objectively differentiate between metastatic and non-metastatic cells.     



47 

 

Figure 0-3: Cell behavior over 15 minutes. Going from left to right, each 
consecutive image is taken at 3 minute mark.  The optical and binary images of (a) 

a metastatic cell captured on nanotextured substrate; (b) a metastatic cell 
captured on plane substrate; (c) a non-metastatic cell captured on nanotextured 

substrate; and (d) a non-metastatic cell captured on plane substrate. 
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4.3.5. Distance Matrix Analysis: Jaccard Distance 

For higher dissimilarity in shape, Jaccard distance has higher values. A sensitive 

detection platform is capable of rendering statistically significant values using simple 

operations. Jaccard distance value gives a clear measure of the sensitivity of 

nanotextured functionalized substrates in distinguishing between metastatic and non-

metastatic cells. In Fig. 4-4(a), we see that on plane substrates, the Jaccard distance 

does not show difference between metastatic and non-metastatic cells (both averages 

~3.8 a.u.; both S.D.s ~1.2 a.u.). But on nanotextured substrates the disparity is 

statistically significant and metastatic cells are easily distinguishable (*, p-value < 0.001). 

Average for metastatic cells is 4.6 a.u. (S.D.=1.2 a.u.) and non-metastatic cells is 2.5 a.u. 

(S.D.=0.39 a.u.) on nanotextured substrate. Non-metastatic to metastatic cell shape 

change ratio jumped from 1:1.01 to 1:1.81 for Jaccard distance from plane to 

nanotextured substrate. Evidently, nanotextured anti-EGFR aptamer modified substrates 

are remarkably sensitive in detecting metastatic cells from non-metastatic cells than plane 

functionalized substrates. This shows the compound effect of aptamer interactions and 

nanotexture. 

Overactive extension and retraction of cell membrane for metastatic cells captured on 

anti-EGFR aptamer modified nanotextured substrates resulted in higher Jaccard distance 

value than that for non-metastatic cells. Metastatic cells are more flexible than benign 

cells because of their cytoskeleton structure [120-122]. The agility of actin cytoskeleton 

structure is thus the vital component in defining vigorous cell membrane 

extension/retraction of metastatic cells [123, 124].  
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4.3.6. Distance Matrix Analysis: Hausdorff Distance 

Hausdorff distance calculation is fast, simple and tolerant of positional errors. This 

distance value is very rigorous and precise in calculating small positional change. If cells 

do not change shape, Hausdorff distance value is very low and vice versa. In Fig. 4-5, the 

averages of total Hausdorff distance changes for cells are plotted. On the plane 

substrates, metastatic cells showed higher Hausdorff distance; i.e. higher dissimilarity 

than non-metastatic cells (**, p-value < 0.05). The distance value is larger because 

metastatic cells were rapidly changing shape. On nanotextured substrates, difference 

Figure 0-4: Jaccard distance shows dissimilarity from shape change of non-metastatic and 
metastatic cells on plane and nanotextured substrates (From two-tailed t-test; *, p-value < 

0.0001; #, p-value = 0.02; ##, p-value = 0.2). 
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between distance values of metastatic and non-metastatic cells was even higher (*, p-

value < 0.0001). Average of total distance for non-metastatic cells decreased from 270.4 

a.u. (S.D.=118.5 a.u.) to 220.8 a.u. (S.D.=76.25 a.u.) going from plane to nanotextured 

substrates. Opposite effect was seen on metastatic cells as average of total Hausdorff 

distance increased from 399.1 a.u. (S.D.=69.3 a.u.) to 484.7 a.u. (S.D.=67.7 a.u.) going 

from plane to nanotextured substrates. Nanotexture significantly enhanced the activity of 

metastatic cells while suppressed the activity of non-metastatic cells. As metastatic cells 

had more EGFR on the cell membranes, they got vigorously active to create more bonds 

with high density aptamer molecules functionalized on nanotextured substrates. The non-

metastatic cells with low density of EGFR on cell membrane got inactive precisely for the 

same reason. Non-metastatic to metastatic cell shape change ratio improved from 1:1.48 

to 1:2.19 for Hausdorff distance analysis going from plane to nanotextured substrate. 

Undoubtedly, nanotexturing has increased the detection possibility of metastatic breast 

cancer cells on anti-EGFR aptamer functionalized substrates. 

Overactive extension and retraction of cell membrane for metastatic cells captured on 

anti-EGFR aptamer modified nanotextured substrates resulted in higher distance value 

than that for non-metastatic cells. Metastatic cells are more flexible than benign cells 

because of their cytoskeleton structure [120-122]. The agility of actin cytoskeleton 

structure is thus the vital component in defining vigorous cell membrane 

extension/retraction of metastatic cells [123, 124].  
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4.3.7. Distance Matrix Analysis: Mahalanobis Distance 

Mahalanobis distance of a changing cell boundary was calculated. Larger Mahalanobis 

distance meant larger change in cell boundary. This is evident from Fig. 4-6. The 

distinguishing factor between metastatic and non-metastatic cells is the difference in their 

respective average distances. On plane substrates, average distances are 0.49 a.u. 

(S.D.=0.21 a.u.) and 0.92 a.u. (S.D.=0.2 a.u.) for non-metastatic and metastatic cells, 

respectively (**, p-value < 0.05). On nanotextured substrates, the statistical significance 

is enhanced, going from 0.32 a.u. (S.D.=0.13 a.u.) to 1.53 a.u. (S.D.=0.34 a.u.) for non-

Figure 0-5: Hausdorff distance analysis for shape dissimilarity analysis of the cells (From 
two-tailed t-test; *, p-value < 0.0001; **, p-value = 0.0007; #, p-value = 0.2; ##, p-value = 

0.006) 
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metastatic to metastatic cells (*, p-value < 0.0001). Nanotexture amplified the morphology 

change of metastatic cells to such extent that Mahalanobis distance analysis clearly 

differentiated between the behavior of metastatic cells on plane and nanotextured 

substrates (##
, p-value = 0.0003). The non-metastatic to metastatic cell shape change ratio 

improved from 1:1.87 to 1:4.69 for Mahalanobis distance analysis going from plane to 

nanotextured substrate.  

Figure 0-6: Mahalanobis distance analysis showing dissimilarity in the shape of the cells (From 
two-tailed t-test; *, p-value < 0.0001; **, p-value = 0.001; #, p-value = 0.02; ##, p-value = 0.0003) 
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Figure 0-7: Distance profiles of metastatic and non-metastatic cells on (a) plane and (b) 
nanotextured substrate. Nanotexturing increased the propensity of metastatic cell 

shape change and induced higher value distance profile. The arrows show contrast 
between metastatic and non-metastatic cells. Detection efficiency is increased for 

metastatic cells on anti-EGFR aptamer modified nanotextured substrates. 
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In Fig. 4-7, the distance profiles for metastatic and non-metastatic cells are summarized 

to show the enhancement in contrast. It is evident that the differentiation between 

metastatic and non-metastatic cells is amplified on nanotextured anti-EGFR aptamer 

modified substrate.   

Another advantage of nanotextured substrate over plane substrate is that it has effectively 

more surface area [107]. Hence, more number of linker ssDNA and thus RNA aptamer 

molecules are tethered on nanotextured substrates. Capture efficiency has already been 

reported to go up for cancer cells on nanotextured substrates [107]. There is thus more 

to nanotexture than just surface area. In this work, the shape change phenomena of 

cancer cells on aptamer modified nanotextured substrates has been investigated and 

quantifiable differentiation metrics have been defined to categorize metastatic cells from 

non-metastatic ones. 

Differentiating metastatic cell from non-metastatic ones is critical for cancer staging to 

define appropriate treatment regime. The fabrication process for the glass substrate is 

easy, economic and scalable. The capture process is selective, efficient and label-free 

[94]. The aptamer modified nanotextured platform enhance cell motility which is a novel 

and easy physical biomarker for early detection. Established distance profiles for 

metastatic and non-metastatic cells provide simple metrics for objective and error-free 

differentiation. Overall, the implementation of nanotextured functionalized platform with 

optical image analysis yielded an innovative strategy for sensing metastatic breast cancer 

cells in a simple and economic setting. 
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4.4. Conclusions 

Early detection of metastatic breast cancer is important for effective therapy and 

reduced mortality rates. The main challenge is to distinguish metastatic cells from non-

metastatic ones. This work presents a nanotextured platform and analysis approaches 

for rapid, robust and objective detection of metastatic cells from non-metastatic ones. 

Results demonstrated that aptamer modified nanotextured substrates substantially 

enhanced the morphological changes of captured metastatic cells. This physical attribute 

can be used as cellular biomarker for metastatic cancer cell detection. The quantification 

produced statistically significant difference between metastatic and non-metastatic cell 

features. Functionalized nanotextured substrates integrated with the image processing 

and analysis methods can be thus incorporated in effective point of care devices for 

affordable and quick detection of metastatic breast cancer. 



56 

Chapter 5 

DETECTION OF CANCER METASTASIS BY DISTANCE MATRIX 

ANALYSIS FROM SURFACE IMMOBILIZED TUMOR CELLS IN BLOOD 

5.1. Introduction 

Recently we have demonstrated increased cell capture efficiency with nanotextured 

substrates [56, 57, 108]. Nanotexturing offers increased surface area for binding to a high 

quantity of proteins or nucleic acids. Several studies already demonstrated that cell 

capture, cell growth, adhesion and orientation are influenced by nanoscale topography of 

surfaces [91]. We have also observed previously that glioblastoma cells show distinctive 

morphological change with time on aptamer grafted substrates [94, 95]. We report 

quantitative analysis of the shape change of tumor cells with respect to normal blood 

cells. We calculated distance matrices to evaluate the shape change feature and compare 

tumor cells with blood cells. Tumor cells exhibited higher shape change and presented a 

distinguishable profile from blood cells. We used this distance profiles to detect tumor 

cells from blood. This approach can be a prospective platform towards functional and 

accurate point of care devices for label free CTC detection in breast cancer patients.   

5.2. Materials and Methods 

5.2.1.  Substrate Preparation 

Same as described in Chapter 4. 

5.2.2. Substrate Topography Characterization  

Same as described in Chapter 4. 
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5.2.3. Substrate Composition and Contact Angle Analysis 

Same as described in Chapter 4. 

5.2.4. Aptamer Preparation and Surface Functionalization 

Same as described in Chapter 4. 

5.2.5. Target Cell Preparation and Blood Collection 

Metastatic breast cancer cell line MDA-MDB-231 was used as a model for cancer cells. 

These cells have overexpression of EGFR and the tyrosine kinase receptors on the 

membrane were targeted to capture the cells with anti-EGFR functionalized nanotextured 

substrates. The cells were obtained from the University of Texas Southwestern Medical 

Center at Dallas, Texas. Cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM/F-12, Cellgro, Corning) with 10% heat inactivated fetal bovine serum. L-glutamine 

and Gentamycin were added to the medium in a sterile humidified environment (95% air, 

5% CO2 at 37 °C). Cultured cells were centrifuged and diluted with sterilized warm 1× 

PBS. The prepared cells were immediately used.  

The blood samples were collected from the tail of a rat after restraining it. K2-EDTA was 

used as anti-coagulant. 

5.2.6. Dynamic Tracking of Metastatic Cancer and Blood Cells 

The metastatic breast cancer cells were suspended in 30 µl PBS solution and placed on 

functionalized nanotextured substrates. There were ~200,000 cells in 1 ml of PBS. The 

cells were captured on the functionalized substrates. After the cells settled down, optical 

images were taken for 15 minutes at 30 seconds interval.  
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Blood sample taken from rat tail was used to extract white blood cells (WBC). Red blood 

cell (RBC) lysis buffer was used to lyse RBCs. Ten ml of 1x RBC lysis buffer was added 

to each ml of blood. The solution was then incubated at room temperature for 10 minutes 

with occasional shaking. Chemical reaction was stopped by adding 10 ml of 1x PBS to 

the solution. The solution was then centrifuged at 300g for 5 minutes and the pellet was 

resuspended in 1x PBS. RBCs of blood were lysed by then and only WBCs were left. The 

intact WBCs could be seen along with debris of RBCs through the microscope. Cell 

suspension of WBCs was loaded on the nanotextured functionalized substrates and cells 

were again tracked for 15 minutes and images were taken after every 30 seconds. 

5.2.7. Tumor Cell Detection from Blood 

The rat blood was spiked with metastatic breast cancer cells. One hundred µl of rat blood 

was mixed in 15 ml of 1x PBS. From diluted blood, 500 µl was taken and set aside. It is 

reported that, the concentration of WBC is 6000 cells in 1 µl of rat blood [125]. In the set 

aside volume, around 20,000 WBCs were present. Metastatic breast cancer cells (MDA-

MDB-231) were suspended in 100 µl of 1x PBS. The cell concentration was 20,000 cells 

per 100 µl. The diluted blood and metastatic cell suspension were mixed together. This 

suspension had 20,000 cancer cells and 20,000 WBCs; a ratio of 1:1. A 50 µl aliquot of 

this mixture was suspended on nanotextured functionalized substrate. The substrates 

were images for 15 minutes at 30 seconds interval. The experiments were repeated six 

times. 

5.2.8. Image Analysis  

Same as described in Chapter 4. 
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5.3. Results and Discussion 

5.3.1. Substrate Topography Evaluation 

Same as described in Chapter 4. 

5.3.2. Size Comparison between Blood Cells and Metastatic Cancer Cells 

We compared size of blood cells and metastatic breast cancer cells. In Fig. 5-1(a) blood 

spiked with tumor cells is shown. Diameters for RBCs, WBCs and tumor cells are shown 

in Fig. 5-1(b). Average diameter of RBCs, WBCs and tumor cells were 4.9 µm (S.D.=0.6 

µm), 7.8 µm (S.D.=1.8 µm), and 13.5 µm (S.D.=1.8 µm) respectively. Among the cells 

RBCs are too small enough to be visually detected. Moreover, they are concave or disk 

shaped [125]. Lymphocytes make 86% of all WBCs and have diameters between 6 to 15 

µm [125].  Tumor cells and WBCs have the same diameter range depending on cell 

maturity. For easy interpretation of results, we eliminated RBCs because of their easy 

detection due to smaller diameter and visible disk shape. We compared WBCs with tumor 

cells based on their shape changes on nanotextured aptamer modified substrates.  
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Figure 0-1: Size comparison between tumor cells and blood cells. (a) Blood spiked with 
tumor cells on aptamer modified nanotextured substrate. (b) Cell diameter of rat RBCs, 
WBCs and tumor cells. WBCs and tumor cells are almost the same size. (n=30 for each 

type of cell) 
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5.3.3. Dynamic Tracking of Captured Cells on Functionalized Substrates 

The tumor cells suspended in 1x PBS solution were captured on nanotextured aptamer 

grafted substrates and imaged for 15 minutes. Same steps were followed for WBCs 

extracted from blood through lysis. From the images of tumor cells and WBCs, it was 

observed that only tumor cells changed cell shape with time. Cell membrane on tumor 

cells created tiny processes like filopodia and lamellipodia. These projections were not 

static rather they changed position and size with time. The WBCs were inactive from this 

perspective. Representative cell shape changes are shown in Fig. 5-2. Fig. 5-2(a) shows 

filopodia/lamellipodia extensions and retractions of tumor cells over time. Fig. 5-2(b) 

shows comparatively static and inactive WBCs. 

 

Figure 0-2: Dynamic cell tracking of tumor cell and WBC with respect to time. 
From left to right each image is taken at 4 minutes interval. (a) Tumor cell 

changed shape by creating processes. (b) WBC did not show any cell 
membrane protrusion with time. 
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5.3.4. Distance Matrix Analysis for Cell Shape Change 

We calculated two distance matrices. Distance matrix calculation is standard for 

comparing shapes of biological objects [126]. The first matrix was the Hausdorff distance 

[97]. In Fig. 5-3(a), Hausdorff distance changes for tumor cells and WBCs are plotted with 

respect to time. Tumor cells captured on aptamer grafted nanotextured substrates are 

uniformly showing higher Hausdorff distance than WBCs.  

The second distance matrix was Mahalanobis distance. Larger Mahalanobis distance 

meant larger change in cell boundary or cell shape. From Fig. 5-3(b) it is evident that 

tumor cells again are continuously changing cell shape compared to indolent WBCs. 

Nanotopography have been known to influence the organization of focal adhesions, the 

sites of transmembrane integrin clustering, by prompting specific integrin recruitment 

[127]. Nanotexture induces orientation of actin filaments, microtubules or localization of 

focal adhesion proteins and hence controls cell motility, alignment, and attachment [128-

135]. On the other hand, altered cellular motility instigated by genetic mutation and 

abnormal expression of cytoskeletal proteins is a hallmark feature of metastatic cancer 

[136, 137]. In numerous invasive cancer types, Rho GTPase genes are upregulated, 

These genes control Rho GTPase signaling pathway which regulates the cytoskeleton 

[138]. Rho GTPases are a family of 20 small G proteins. In gastric adenocarcinoma cells, 

increased activity of a Rho protein results alterations to cytoskeletal organization 

stimulating amoeboid-like cell motility [139]. Nestin, an intermediate filaments protein, is 

overexpressed in metastatic pancreatic and prostate cancer, melanoma and glioblastoma 

[140]. Overexpression of Vimentin, another intermediate filaments protein, can be 

correlated with several invasive cancer  [141]. Perturbed expression of focal adhesion 
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kinase, a focal adhesion regulatory protein, is found to be associated with increased 

progression to highly malignant pathology [142]. It is evident that cancer cells can 

reorganize cytoskeleton dynamically [143]. Dynamic cell shape change in captured tumor 

cells was thus amplified by nanotextures on the substrates. 

 

 

Figure 0-3: Calculated distance matrix of cell shape changes for tumor cells and WBCs. (a) 
Average Hausdorff distance (b) Average Mahalanobis distance of cells with time. The red 

markers and fitted curves are for metastatic breast cancer cells, blue markers and blue fitted 
lines are for WBCs. Metastatic cells show higher distance values meaning higher cell shape 

changes compared to WBCs (n=32). 
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5.3.5. Discrimination of Metastatic Cancer and Blood Cells  

Distance matrix analysis established that metastatic breast cancer cells were constantly 

changing shape and showing high distance values with time. After 15 minutes of 

observation, the total distance values were averaged out for Hausdorff and Mahalanobis 

distance, respectively (Figs. 5-4 (a-b)). In Fig. 5-4(a) average Hausdorff distance for 

tumor cell is 451.3 a.u. (S.D.=60.9 a.u.) and WBC is 143.3 a.u. (S.D.=43.6 a.u.). In Fig 5-

4(b) average Mahalanobis distance for tumor cell is 1.45 a.u. (S.D.=0.32 a.u.) and WBC 

is 0.36 a.u. (S.D.=0.113 a.u.). Tumor cells have 214.9% higher Hausdorff distance and 

274.7% higher Mahalanobis distance than WBCs. Statistical difference of Hausdorff and 

Mahalanobis distance between WBCs and tumor cells are significant (p-value < 0.01). 

The two distances for both tumor cells and WBCs are shown together in Fig. 5-4(c). 

Tumor cells and WBCs occupy distinguishably separate areas in the plot. The WBCs 

occupy an area with low distance values and the tumor cells with high distance values. 

Tumor cells in peripheral blood highly vary in maturity and certainly not all cells would 

show high distance values practically. In clinical samples we would expect the area 

occupied by tumor cells in Fig. 5-4(c) to be broader and overlapping with some area of 

WBCs. But we can expect a high volume of tumor cells to show high distance values and 

hence easily detectable from their distinguishing distance profile.  

5.3.6. Detection of Tumor Cells from Blood 

The rat blood was spiked with metastatic breast cancer cells to model tumor cells in 

peripheral blood. Blood was diluted with 1x PBS and the ratio between tumor cells and 

WBCs was 1:1. After introduction of cell suspension on EGFR-functionalized 
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nanotextured substrates and imaging, the distance values for the cells were extracted 

from binary images, as plotted together in Fig 5-5.  

Figure 0-4: Average distance values for WBCs and tumor cells after 15 minutes. (a) 
Average Hausdorff distance (*, p-value < 0.01) and (b) average Mahalanobis distance 
(*, p-value < 0.01). (c) Both types of cells plotted with respect to their distance profiles. 

WBCs are observed to occupy low distance values and tumor cells to populate high 
distance values (n=32). 
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From Fig. 5-1, it could be inferred that the cells with diameter smaller than 6 µm and with 

disk shapes were indeed RBCs. These cells were eliminated from the results to keep the 

detection simple. Only WBCs and tumor cells were taken into account. Rat WBCs were 

slightly smaller in diameter compared to tumor cells (refer to Fig. 5-1). 

In Fig. 5-5, the Hausdorff and Mahalanobis distance of the cells captured on 0.5 mm x 

0.5 mm substrate are plotted. The red dotted line encloses the already established area 

for tumor cells from Fig. 5-4(c). The cells in this area make 75% of the tumor cells 

expected to be captured. The bubble plot represents the distance profiles of the cells and 

Figure 0-5: Tumor cell detection from blood based on distance profiles. Red dotted line (on 
the right top) encloses the area occupied by cancer cells based on previous calculations.  

The blue dotted line encompasses WBC population (lower left area). The sizes of the 
markers suggest the sizes of respective cells. All larger cells are inside tumor region and 
smaller cells are inside WBC region. From previous measurements of cell diameters, it is 

evident that tumor cells are larger than WBCs and are indeed residing in the tumor region. 
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the the cell diameters. It is noticeable that the cells with high distance profiles also have 

larger diameter indicating them to be tumor cells. In a similar fashion, cells with low 

distance profiles (shown inside dotted blue line on lower left corner) have smaller 

diameters suggesting to be WBCs. There is an overlap region between these two 

populations. Outside the overlap region 60% cells could be identified as either tumor cells 

or WBCs, and 75% of tumor cells could be discriminated from blood cells based on their 

distance profile. Tumor cells are inherently more flexible than healthy cells due to their 

cytoskeleton structure [120, 121]. The agility of cytoskeleton structure is the vital 

component in defining vigorous morphology change of these cells. 

Detecting tumor cells from peripheral blood is critical for early detection of metastasis. 

Cell motility on aptamer functionalized nanotextured substrates can be an easy and 

unique physical biomarker for tumor cell detection. We have previously showed that 

specific fluid flow rates can dislodge captured cancer cells for collection and further 

processing [144]. We can incorporate that technique here with our tumor cell detection 

platform to collect tumor cells after successful detection. Our results showed that 

combined implementation of functionalized nanotextured platform with distance analysis 

algorithms yielded an innovative strategy for sensing tumor cells from blood in a simple 

and economic setting.  

5.4. Conclusions 

A simple and unique platform is presented here to detect tumor cells from peripheral blood 

based on their distinguishing distance profiles on anti-EGFR aptamer modified 

nanotextured substrates. To target EGFR that is overexpressed on tumor cell membrane, 

anti-EGFR aptamer was grafted on nanotextured substrates. Anti-EGFR aptamer 
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provided selectivity between blood cells and tumor cells as well as cell cytoskeleton 

flexibility in tumor cells. We detected >75% of the tumor cells. Given the scarce number 

of tumor cells present in blood, the whole clinical sample can be suspended on a bigger 

substrate and a stepper microscope can be used to record images in all locations on the 

substrate. This technique can be economical as there is no need to use expensive 

sensing transducers or tedious fabrication methods. Fabrication of nanotextured 

substrate is simple and yields uniform nanoscale roughness. The functionalization 

process is widely accepted and standardized with high capture efficiency. The system 

can be used for any kind of metastatic cancer overexpressing EGFR. Our capture 

procedure and distance calculation method can be developed in to a cost effective and 

efficient point of care device to detect metastasis at early stages. 
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Chapter 6 

DEVELOPMENT OF A NON-INVASIVE TEST FOR BLADDER CANCER 

DETECTION BASED ON CELLULAR TRACKING AND DISTANCE 

MATRIX ANALYSIS 

6.1. Introduction 

We have developed a very simple non-invasive technique based on distance matrix 

analysis on cellular images to detect bladder cancer cells. We captured advanced stage 

bladder cancer cells on anti-EGFR aptamer coated nanotextured glass substrates. 

Cancer cells show distinctive morphological behavior on aptamer modified substrates and 

on aptamer modified nanotextured substrates this behavior is enhanced [145]. We 

captured urothelial cells and bladder cancer cells on anti-EGFR aptamer modified 

nanotextured substrates and observed them under an optical microscope for 15 minutes. 

The healthy urothelial cells did not show any morphological change. But the bladder 

cancer cells showed characteristic morphological change with time. We could differentiate 

between healthy and cancerous cells from distance matrix analysis. We employed the 

representative distance profiles of bladder cancer and urothelial cells among captured 

cells from bladder cancer patient urine samples on aptamer functionalized nanotextured 

substrates and detected cancer cells successfully. This technique is very selective, 

simple, and economic. As the captured cancer cells are label-free, their cellular 

characteristics are uncompromised and can be detached from the substrate for 

subsequent analysis. The technique is non-invasive and can be further developed as a 

platform towards a point of care device for bladder cancer detection from urine. 
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6.2. Materials and Methods 

6.2.1. Substrate Preparation 

Same as described in Chapter 5. 

6.2.2. Surface Characterization  

Same as described in Chapter 5. 

6.2.3. Substrate Functionalization 

Same as described in Chapter 5. 

6.2.4. Human Urothelial Cell Preparation 

Human uroepitheliam derived immortalized cell line SV-HUC was used as model for 

healthy urothelial cell. The cells were cultured with T-medium (Invitrogen) supplemented 

with 5% fetal bovine serum. Cultured cells appeared as an epithelioid cell monolayer and 

were enzymatically dissociated with trypsin (0.25%)–EDTA (0.03%) solution. Cultured 

cells were centrifuged and diluted with sterilized warm 1× PBS and immediately used in 

the experiments. Cell concentration was 200k in 1 ml PBS. 

6.2.5. Human Bladder Cancer Cell Preparation 

Human bladder cancer cells (T24) were purchased from American Type Culture 

Collection (Rockville, MD). Cells were cultured with T-medium supplemented with 5% 

fetal bovine serum. Trypsin (0.25%)–EDTA (0.03%) solution was used to dissociate the 

cells enzymatically when the cells were confluent. Trypan blue assay was used to assess 

the viability of the cultured cells after trypsinization and >94% cells were healthy. These 

cells have overexpression of EGFR and the tyrosine kinase receptors on the membrane 

were targeted to capture the cells with anti-EGFR functionalized nanotextured substrates. 
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Cultured cells were centrifuged and diluted with sterilized warm 1× PBS. The prepared 

cells were immediately used. The concentration of the cells in suspension was 200k cells 

per ml. 

6.2.6. Patient Urine Sample Preparation 

Two urine samples from patients known to have bladder cancer were procured from 

University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. The two 

samples were tagged as “sample no. 1” and “sample no. 2”. Sample volume was 50 ml 

each. The samples were stored inside icebox to carry from collection site to laboratory. 

Two centrifuge tubes were sterilized for holding the samples. Polypropylene cell strainer 

(BD Falcon) with a nylon mesh of 100 μm size was used to remove any chunks or cell 

clumps. Two strainers were pre wet with imaging medium PBS and placed on the mouth 

of the centrifuge tubes. The samples in carrier containers were gently shaked and the 

contents were poured through the strainers into the centrifuge tubes. Both filtered 

samples were centrifuged at 3000 rpm for 5 minutes. Supernatant was removed and 1X 

PBS was added to make the volume of each tube 200 µl.  

6.2.7. Dynamic Tracking of Cells 

The urothelial and bladder cancer cells were suspended in 30 µl PBS solution and placed 

on anti-EGFR aptamer functionalized nanotextured substrates. There were ~200,000 

cells in 1 ml of PBS for both types of cells. The cells were captured on the functionalized 

substrates. After the cells settled down, optical images were taken for 15 minutes at 30 

seconds interval.  
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Cell pellets prepared from patient urine samples were tagged according to sample 

number. The pellets was suspended on previously prepared anti-EGFR aptamer 

functionalized nanotextured substrates. After the cells settled down they were observed 

through the optical microscope and images were taken for 15 minutes at every 30 

seconds.   

6.2.8. Image Analysis and Data Interpretation 

Same as described in Chapter 5. 

6.2.9. Hamming Distance Calculation 

Morphological changes were measured from segmented binary images. Distance 

matrices were calculated for cell shape similarity check. Higher distance value meant 

higher shape change. The values for the distance matrices showed statistically significant 

differences between healthy urothelial and bladder cancer cells captured on nanotextured 

aptamer functionalized substrates. 

Hamming distance is a metric based on binary segmentation. The cell images were 

converted to binary for each and every pixel. Hamming distance measured the number 

of pixels that were different in two consecutive images. It’s an exclusive-or (XOR) 

operation between two cell images followed by a count operation to sum up the number 

of ones in the XOR result. Table 6-1 shows the XOR operation between images. 

Hamming distance calculated from XOR operation is: 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑥𝑖⨁𝑦𝑖

𝑖
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Table 0-1: XOR operation on image. 1 means pixel is present inside/on cell boundary; 0 
means pixel is absent inside/on cell boundary. 

Pixel value in image (𝑥𝑖) Pixel value in consecutive image (𝑦𝑖) XOR (𝑥𝑖⨁𝑦𝑖) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Hamming distance is widely used to differentiate between cell types based on genetic 

expression [146-149]. 

6.2.10. Hausdorff Distance Calculation 

Same as described in Chapter 5. 

6.2.11. Mahalanobis Distance Calculation 

Same as described in Chapter 5. 

6.2.12. Statistical Analysis with Distance Values 

Same as described in Chapter 5. 

6.3. Results and Discussion 

6.3.1. Substrate Topography Assessment 

Same as described in Chapter 5. 
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6.3.2. Dynamic Tracking of Urothelial and Bladder Cancer Cells on Functionalized 

Substrates 

In Fig. 6-1, both urothelial and bladder cancer cells are shown after they were captured 

on anti-EGFR aptamer functionalized nanotextured substrate. Fig. 6-1(a)(I) shows 

urothelial cells and Fig. 6-1(b)(I) shows bladder cancer cells. From visual observation we 

saw that urothelial cells were showing uniform cell membrane while bladder cancer cells 

showed rough membranes. Images were taken over 15 minutes to track cell shape 

change due to membrane roughness. With time, filopodia/lamellipodia like fine 

Figure 0-1: (a) Urothelial cells captured on anti-EGFR aptamer coated nanotextured 
substrate: (I) Urothelial cells showed smooth membrane (II)Time series image of urothelial 
cells showed, with time the cells maintained their smooth membrane and did not show any 
morphological change. (b) Bladder cancer cells captured on anti-EGFR aptamer modified 

nanotextured substrate: (I) Bladder cancer cells showed rough cell membrane (II) With time 
filopodia/lamelllipodia like fine protrusions appeared/ disappeared in cell membrane of bladder 

cancer cells. 
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protrusions appeared or disappeared on the cell membrane of bladder cancer cells. 

Urothelial cells did not show any protrusion on their cell membrane with time.  

6.3.3. Hamming Distance Analysis 

Hamming distance calculated the change of each and every pixel inside a cell body. This 

simple metric took into account the whole cell body change reflecting the overall effect of  

EGFR binding on both type of cells. Higher cell motility produced higher alteration in pixel 

values. On nanotextured anti-EGFR aptamer modified substrate bladder cancer cells 

showed higher Hamming distance value than urothelial cells. Average of total Hamming 

distance was 99110.3 a.u. (S.D.=33785 a.u.) for bladder cancer cells, and 43966.4 a.u. 

(S.D.=17848.02 a.u.) for urothelial cells. In Fig. 6-2(a), two tailed t-test showed the values 

are significantly different (p-value < 0.01). 

6.3.4. Hausdorff Distance Analysis 

Hausdorff distance calculated the minute change among two datasets. The datasets here 

are coordinates of cell contour in two consecutive images. As  cells were changing shape, 

cell contour was changing position. Hausdorff distance value reflected how each and 

every point on cell contour changed their position with respect to previous position over 

time. In Fig. 6-2(b) average of total Hausdorff distance for bladder cancer cell is 282.3 

a.u. (S.D.= 67.4 a.u.) and for urothelial cell is 144.1 a.u. (S.D.= 39.7 a.u.). Statistical 

difference of Hausdorff distance between urothelial and bladder cancer cells is significant 

(p-value < 0.01). 
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6.3.5. Mahalanobis Distance Analysis 

Mahalanobis distance compared the covariance between cell contours of two successive 

cell shapes and provided the course shape change. Bladder cancer cells were constantly 

changing shape and showing high Mahalanobis distance values with time than urothelial 

cells. In Fig. 6-2(c), average of total Mahalanobis distance for bladder cancer cells is 0.77 

a.u. (S.D.= 0.30 a.u.) and urothelial cells is 0.41 a.u. (S.D.= 0.14 a.u.). Two tailed t-test 

confirmed significant difference between two cell types on nanotextured aptamer 

functionalized substrate (p-value < 0.01). 

Bladder cancer cells have 125.4% higher Hamming distance, 95.9% higher Hausdorff 

distance and 86.81% higher Mahalanobis distance than healthy urothelial cells. Three 

distance matrices signify three features that we considered to discriminate cell shape 

change between bladder cancer and urothelial cells. Hamming distance considered cell 

body, Hausdorff distance calculated precise contour change and Mahalanobis distance 

measured course contour change. Cells bound with anti-EGFR aptamer tethered with 

nanotextured substrate sometimes moved or rotated from initial position a little with time. 

Calculation based on cell body was more accurate compared with calculation based on 

cell contour. On the other hand cell contour based analysis was straighforward and 

eliminated the probably error derived from cell spreading over surface with time. 

Hausdorff distance was extremely sensitive to shape change with a downside of 

overcalculating subtle cell movement. Mahalanobis distance resolved this problem with 

course calculation of cell contour change. Overall, three features of cell shape change 

was calculated with three distance matrices and when combined they can provide an 
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effective discriminating feature space for detecting bladder cancer cells from healthy 

urothelial cells. 

6.3.6. Size Comparison of Cells in Patient Urine Sample  

Patient urine sample was collected, filtered and suspended on nanotextured anti-EGFR 

aptamer functionalized substrate. The suspension is shown in Fig. 6-3(a). Different kinds 

of cells having different size were observed and compared with a standard urinalysis 

slide. Normal urine contains epithelial cells, sometimes red bloods cells (RBCs), lipid 

droplets, salt and acid crystals, microorganisms and contamination like mucus and starch 

or fatty casts [150]. Among epithelial cells urothelial aka transitional epithelial cells are 

frequently present in urine and have the diameter of 20-30 µm. Another type of epithelial 

cell is squamous epithelial cells which are easily recognized from their large and flat size 

(diameter 30-50 µm) [150]. RBCs in urine have the diameter of 6.2-8.2 µm [151]. They 

are easily recognized from their smaller size, biconcave disk-shape. RBCs are crenellated 

in hypertonic urine for higher external pressure and swelled in hypotonic urine for higher 

internal pressure [150]. Their size, shape and crenelated feature make them easily 

distinguishable.  
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Figure 0-2: Shape dissimilarity analysis using a) Hamming distance *, p < 0.01; b) Hausdorff 
distance *, p < 0.01 and c) Mahalanobis distance *, p < 0.01 (n=81 cells). Distance matrix 

analysis clearly shows bladder cancer cells show higher morphological change than healthy 
urothelial cells.  
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For convenience in analysis we eliminated some cells from patient urine sample. RBCs 

were easily eliminated for their smaller size and shape. The cells larger than 30 µm were 

recognized to be squamous epithelial cells. The cast and contaminations were irregular 

in shape which were easily recognizable. That left us with urothelial and probable bladder 

cancer cells in patient urine sample. From our previous experimentation with bladder 

cancer and urothelial cell lines we presented the distribution of diameter in Fig. 6-3(b)(I-

II), We observed bladder cancer cells and urothelial cells frequently had diameter 

between 10-25 µm. The cells having diameter in the range of 10-25 µm were included in 

subsequent analysis.  
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Figure 0-3: a) Bladder cancer patient urine sample suspended on anti-EGFR coated 
nanotextured glass substrate. Different kinds of cells and contamination are seen. b) 

Distribution of diameter of (I) bladder cancer cells and (II) urothelial cells are presented 
from our previous observation with cell lines.  Both types of cells frequently showed 

diameter between 10-25 µm. Patient urine cells which had diameter inside the range 10-
25 µm were considered for subsequent analysis. 
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6.3.7. Discrimination of Bladder Cancer Cells in Patient Urine Sample  

Patient urine cells having diameter between 10-25 µm were selected for further analysis. 

These selected cells could be bladder cancer cells or normal healthy urothelial cells. We 

already analyzed the healthy urothelial and bladder cancer cell lines using distance 

matrices. Same calculations were done with selected patient urine cells. The distance 

profiles of cell lines and selected patient urine cells were compared in Fig. 6-4(a-c). 

In Fig. 6-4 a)(I), b)(I), and c)(I), distance profiles of bladder cancer and urothelial cell lines 

are shown. Bladder cancer cells and urothelial cells occupied distinguishably separate 

areas (inside circle). Urothelial cells occupied areas with low distance values and bladder 

cancer cells occupied areas with high distance values. Bladder cancer cells in urine highly 

vary in maturity and certainly not all cells would show high distance values practically. In 

clinical samples, we would expect the area occupied by bladder cancer cells to be broader 

and overlapping with some area of healthy cells. But we expected some cancer cells 

would show high distance values and hence easily distinguishable. In Fig. 6-4 a)(II-III), 

b)(II-III) and c)(II-III), distance profiles of patient urine cells are shown. Using the 

previously established area in Fig. 6-4 a)(I), b)(I), and c)(I) (inside the circle), we 

extrapolated bladder cancer cells from patient urine samples. For robust detection we 

considered all three distance matrices and the distance profiles confirmed that at least 2 

and 11 cells were cancerous in sample 1 and 2 respectively. Agility of cytoskeletal 

structure of cancer cells was enhanced on nanotextured aptamer modified substrate 

which resulted in vigorous morphology change. Distance profiles based on this cell 

modality could be effectively used as a cellular biomarker for detecting bladder cancer 

cells from urine samples.  
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For combined detection of bladder cancer cells from patient urine sample, three distance 

profiles are plotted together in Fig. 6-5. The cells of patient urine sample are localised in 

the region where bladder cancer cell population resides.  It depicts the significance of 

high distance profile of bladder cancer cells as a potential cellular biomarker for detection. 

Detecting cancer cells from urine sample is critical for early detection of high grade 

bladder cancer. Our nanotextured substrate proved to be extremely effective in detecting 

bladder cancer cells based on their distance profiles resulting from higher cell motility 

triggered by higher EGFR-aptamer binding. Combination of functionalized nanotextured 

platform with distance matrix analysis algorithm has proved to be an innovative strategy 

for detecting bladder cancer cells from patient urine sample in a simple and economic 

setting.  
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Figure 0-4: Distance matrix analysis of patient urine cells and comparison of distance 
profiles with cell lines after attachment on nanotextured aptamer functionalized substrate. a) 
Hamming and Hausdorff distance profiles for (I) bladder cancer and urothelial cell lines. (II) 

cells present in patient urine sample 1 (III) cells present in patient urine sample 2. b) 
Mahalanobis and Hamming distance profiles for (I) bladder cancer and urothelial cell lines. 

(II) cells present in patient urine sample 1 (III) cells present in patient urine sample 2. c) 
Mahalanobis and Hausdorff distance profiles for (I) bladder cancer and urothelial cell lines. 
(II) cells present in patient urine sample 1 (III) cells present in patient urine sample 2. a)(I), 
b)(I), and c)(I) show distinguishably separate areas for bladder cancer and urothelial cell 

lines. The areas with high distance profiles(inside circle) were established as the probable 
area for cancer cell population in patient urine sample. In a)(II-III), b)(II-III), and c)(II-III), 
some cells are located in high distance profile zone (inside circle) and are detected as 

bladder cancer cells. 
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6.4. Conclusions 

We have presented an unique platform to detect bladder cancer cells from patient urine 

sample based on their distinguishable distance profiles on anti-EGFR aptamer modified 

nanotextured substrates. This technique is non-invasive and label free. Anti-EGFR 

aptamer provided selectivity between healthy and cancer cells. EGFR binding with anti-

Figure 0-5: Three distance profiles combined for bladder cancer cells, urothelial cells and cells from 
patient urine sample; a) patient urine sample no. 1 and b) patient urine sample no. 2. The 

concordance of the locality of patient urine sample cells with that of bladder cancer cells depicts the 
significance of high distance profile of bladder cancer cells as a potential cellular biomarker. 
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EGFR aptamer stimulated cell cytoskeleton flexibility in cancer cells. We successfully 

detected bladder cancer cells from other types of cells from urine of a bladder cancer 

patient. High sensitivy of the technique can be ensured by suspending the sample on a 

bigger substrate and using a stepper microscope to record images in all locations on the 

substrate. This technique is economical as there is no need to use expensive sensing 

transducers or tedious methods for fabrication. Fabrication of uniformly nanotextured 

substrate is simple and easy. The functionalization process is highly standardized with 

high capture efficiency and widely accepted. This capture platform coupled with distance 

analysis method has the potential to be developed into an inexpensive and efficient point 

of care device to detect bladder cancer cells from collected urine and determine cancer 

in a person. 
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