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ABSTRACT

Neural Image and Video Understanding

RASOOL FAKOOR, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Manfred Huber

Even though recent works on neural architectures have shown promising results at

tasks like image recognition, object detection, playing Atari games, etc., learning a map-

ping from a visual space to a language space or vice versa remains challenging in prob-

lems like image/video captioning or question-answering tasks. Furthermore, transferring

knowledge between seen and unseen classes in a setting like zero-shot learning is quite

challenging given the fact that a model should be able to make a prediction for novel test

data belonging to classes for which no examples have been seen during training.

To address these issues, this dissertation will first introduce a novel memory-based

attention model for video description. Specifically, attention-based models have shown

promising and interesting results for image captioning. However, they are not able to model

the higher-order interactions involved in problems such as video description/captioning,

where the relationship between parts of the video and the concepts being depicted is com-

plex. The proposed model here utilizes memories of past attention when reasoning about

where to attend to, in the current time step.

Secondly, this dissertation will introduce an end-to-end deep neural network model

for attribute-based zero-shot learning with layer-specific regularization that encourages the

v



higher, class-level layers to generalize beyond the training classes. This architecture en-

ables the model to ’transfer’ knowledge learned from seen training images to a set of novel,

unseen test images.
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CHAPTER 1

Introduction

Machine learning in image and video domains has made significant strides in recent

years, leading to many systems that allow to ’interpret’ images or video either by classify-

ing their content, by detecting object inside them, or by generating language representations

of their content. However, many of these systems still require significant problem-specific

expert engineering of the structure to be successful and often do not make the most effi-

cient use of the available data. The work in this dissertation focuses on addressing two

main issues:

• The efficient incorporation of iterative attention and differentiable memory structures

into deep network architectures.

• The automatic imposition of known correlation structures into deep networks

Both of these mechanisms are aimed at allowing deep models to more fully take advantage

of available data in end-to-end learning systems.

1.1 Iterative attention and differentiable memory

In recent years, we have witnessed remarkable progress in machine learning based

methods in which they try to learn a mapping from visual space (i.e., video or image) to

a language space (i.e. natural language). Image and video captioning is one such applica-

tion. One of the primary challenges in learning a mapping from a visual space to a language

space is learning a representation that not only effectively represents each of these modal-

ities, but is also able to translate a representation from one space to the other. One of the

emerging paradigms, shared by models for these kinds of problems (e.g image/video cap-
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tioning), is the notion of an attention mechanism that guides the model to attend to certain

parts of the image while generating. The attention models used for problems such as image

captioning typically depend on the single image under consideration and the partial output

generated so far, jointly capturing one region of an image and the words being generated.

However, such models cannot directly capture the temporal reasoning necessary to effec-

tively produce words that refer to actions and events taking place over multiple frames in a

video.

Motivated by these observations, we present a method to improve video descrip-

tion generation by modeling higher-order interactions between video frames and described

concepts (Fakoor et al., 2016a). By storing past visual attention in the video associated

to previously generated words, the system is able to decide what to look at and describe

in light of what it has already looked at and described. This enables not only more effec-

tive local attention, but tractable consideration of the video sequence while generating each

word. Evaluation on the challenging and popular MSVD and Charades datasets demon-

strates that the proposed architecture outperforms previous video description approaches

without requiring external temporal video features.

In Chapter 2, we introduce this novel memory-based attention model for video de-

scription (Fakoor et al., 2016a). In addition, in Chapter 2, we study related works and

conduct extensive experiments to show the effectiveness of our proposed approach.

1.2 Imposing structure into deep networks

The availability of large image datasets has been integral to recent progress on image

classification. However, many approaches to image classification make the assumption that

the classes encountered at test time are a subset of those seen during training. Zero-shot

learning considers the problem of classifying images of novel, unseen classes by transfer-

2



ring knowledge learned from a separate space of training classes. An effective strategy is

to learn the relationship between image features and classes via intermediate semantic rep-

resentations such as attribute signatures (e.g., color and shape). We propose a deep neural

network model for attribute-based zero-shot learning with layer-specific regularization that

encourages the higher, class-level layers to generalize beyond the training classes (Fakoor

et al., 2016b, 2015). This architecture enables our model to transfer knowledge learned

from seen training images to a set of novel, unseen test images. We evaluate our method

on a number of benchmark datasets and achieve results that equal or exceed state-of-the-art

techniques. We then conduct a series of ablations to elucidate the contributions of layer-

specific regularization and the architecture depth. Results on several benchmark datasets

demonstrate that our method achieves greater transferability than existing state-of-the-art

methods.

In Chapter 3, we discuss this proposed model in details and we provide rigorous

analysis and extensive experiments over the popular dataset and show the effectiveness of

our models (Fakoor et al., 2016b, 2015). In addition, we show the scenarios in which our

proposed model fail.
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CHAPTER 2

Memory-augmented Attention Modelling for Videos (Fakoor et al., 2016a)

Deep neural architectures have led to remarkable progress in computer vision and

natural language processing problems. Image captioning is one such problem, where the

combination of convolutional structures (Krizhevsky et al., 2012; LeCun et al., 1998), and

sequential recurrent structures (Sutskever et al., 2014) leads to remarkable improvements

over previous work Fang et al. (2015); Devlin et al. (2015). One of the emerging modelling

paradigms, shared by models for image captioning as well as related vision-language prob-

lems, is the notion of an attention mechanism that guides the model to attend to certain

parts of the image while generating Xu et al. (2015a).

The attention models used for problems such as image captioning typically depend

on the single image under consideration and the partial output generated so far, jointly

capturing one region of an image and the words being generated. However, such models

cannot directly capture the temporal reasoning necessary to effectively produce words that

refer to actions and events taking place over multiple frames in a video. For example, in a

video depicting “someone waving a hand”, the “waving” action can start from any frame

and can continue on for a variable number of following frames. At the same time, videos

contain many frames that do not provide additional information over the smaller set of

frames necessary to generate a summarizing description. Given these challenges, it is not

surprising that even with recent advancements in image captioning Fang et al. (2015); Xu

et al. (2015a); Johnson et al. (2016); Vinyals et al. (2015); Donahue et al. (2015), video

captioning has remained challenging.
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Motivated by these observations, we introduce a memory-based attention mechanism

for video captioning and description. Our model utilizes memories of past attention in the

video when reasoning about where to attend in a current time step. This allows the model

to not only effectively leverage local attention, but also to consider the entire video as it

generates each word. This mechanism effectively binds information from both vision and

language sources into a coherent structure.

Our work shares the same goals as recent work on attention mechanisms for sequence-

to-sequence architectures, such as Rocktäschel et al. (2016) and Yang et al. (2016). Rocktäschel

et al. (2016) consider the domain of entailment relations, where the goal is to determine en-

tailment given two input sentences. They propose a soft attention model that is not only

focused on the current state, but the previous as well. In our model, all previous attentions

are explicitly stored into memory, and the system learns to memorize the encoded version

of the input videos conditioned on previously seen words. Yang et al. (2016) and our work

both try to solve the problem of locality of attention in vision-to-language, but while Yang

et al. (2016) introduce a memory architecture optimized for single image caption gener-

ation, we introduce a memory architecture that operates on a streaming video’s temporal

sequence.

The contributions of this work include:

• A deep learning architecture that represents video with an explicit model of the

video’s temporal structure.
• A method to jointly model the video description and temporal video sequence, con-

necting the visual video space and the language description space.
• A memory-based attention mechanism that learns iterative attention relationships in

a simple and effective sequence-to-sequence memory structure.
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• Extensive comparison of this work and previous work on the video captioning prob-

lem on the MSVD (Chen and Dolan, 2011) and the Charades (Sigurdsson et al.,

2016) datasets.

We focus on the video captioning problem, however, the proposed model is general enough

to be applicable in other sequence problems where attention models are used (e.g., machine

translation or recognizing entailment relations).

2.1 Related Work

One of the primary challenges in learning a mapping from a visual space (i.e., video

or image) to a language space is learning a representation that not only effectively repre-

sents each of these modalities, but is also able to translate a representation from one space

to the other. Rohrbach et al. (2013a) developed a model that generates a semantic represen-

tation of visual content that can be used as the source language for the language generation

module. Venugopalan et al. (2015b) proposed a deep method to translate a video into a

sentence where an entire video is represented with a single vector based on the mean pool

of frame features. However, it was recognized that representing a video by an average of

its frames loses the temporal structure of the video. To address this problem, recent work

(Yao et al., 2015; Pan et al., 2016a; Venugopalan et al., 2015a; Andrew Shin, 2016; Pan

et al., 2016b; Xu et al., 2015b; Ballas et al., 2016; Yu et al., 2016) proposed methods to

model the temporal structure of videos as well as language.

The majority of these methods are inspired by sequence-to-sequence (Sutskever et al.,

2014) and attention (Bahdanau et al., 2015) models. Sequence learning was proposed to

map the input sequence of a source language to a target language (Sutskever et al., 2014).

Applying this method with an additional attention mechanism to the problem of translating

a video to a description showed promising initial results, however, revealed additional chal-
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lenges. First, modelling the video content with a fixed-length vector in order to map it to a

language space is a more complex problem than mapping from a language to a language,

given the complexity of visual content and the difference between the two modalities. Since

not all frames in a video are equally salient for a short description, and an event can happen

in multiple frames, it is important for a model to identify which frames are most salient.

Further, the models need additional work to be able to focus on points of interest within

the video frames to select what to talk about. Even a variable-length vector to represent a

video using attention (Yao et al., 2015) can have some problems.

More specifically, current attention methods are local Yang et al. (2016), since the

attention mechanism works in a sequential structure, and lack the ability to capture global

structure. Moreover, combining a video and a description as a sequence-to-sequence prob-

lem motivates using some variant of a recurrent neural network (RNN) (Hochreiter and

Schmidhuber, 1997): Given the limited capacity of a recurrent network to model very long

sequences, memory networks (Weston et al., 2014; Sukhbaatar et al., 2015) have been in-

troduced to help the RNN memorize sequences. However, one problem these memory

networks suffer from is difficulty in training the model. The model proposed by Weston

et al. (2014) requires supervision at each layer, which makes training with backpropaga-

tion a challenging task. Sukhbaatar et al. (2015) proposed a memory network that can be

trained end-to-end, and the current work follows this research line to tackle the challenging

problem of modeling vision and language memories for video description generation.

2.2 Learning to Attend and Memorize

A main challenge in video description is to find a mapping that can capture the

connection between the video frames and the video description. Sequence-to-sequence

models, which work well at connecting input and output sequences in machine transla-

7
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Figure 2.1. Our proposed architecture. Each component of our model is described in 2.2.1
through 2.2.3..

tion (Sutskever et al., 2014), do not perform as well for this task, as there is not the same

direct alignment between a full video sequence and its summarizing description.

Our goal in the video description problem is to create an architecture that learns

which moments to focus on in a video sequence in order to generate a summarizing natu-

ral language description. The modelling challenges we set forth for the video description

problem are: (1) Processing the temporal structure of the video; (2) Learning to attend to

important parts of the video; and (3) Generating a description where each word is rele-

vant to the video. At a high-level, this can be understood as having three primary parts:

When moments in the video are particularly salient; what concepts to focus on; and how

to talk about them. We directly address these issues in an end-to-end network with three

primary corresponding components (Figure 2.1): A Temporal Model (TEM), An Iterative

Attention/Memory Model (IAM), and a Decoder. In summary:

• When: Frames within the video sequence - The Temporal Model (TEM).
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• What: Language-grounded concepts depicted in the video - The Iterative Atten-

tion/Memory mechanism (IAM).

• How: Words that fluently describe the what and when - The Decoder.

The Temporal Model is in place to capture the temporal structure of the video: It

functions as a when component. The Iterative Attention/Memory is a main contribution of

this work, functioning as a what component to remember relationships between words and

video frames, and storing longer term memories. The Decoder generates language, and

functions as the how component to create the final description.

To train the system end to end, we formulate the problem as sequence learning to

maximize the probability of generating a correct description given a video:

Θ∗ = arg max
Θ

∑
(S,f1,...,fN )

log p(S|f1, . . . , fN ; Θ) (2.1)

where S is the description, f1, f2, . . . , fN are the input video frames, and Θ is the model

parameter vector. In the next sections, we will describe each component of the model, then

explain the details of training and inference.

2.2.0.0.1 Notational note: Numbered equations use bold face to denote multi-dimensional

learnable parameters, e.g., Wj
p. To distinguish the two different sets of time steps, one for video

frames and one for words in the description, we use the notation t for video and t′ for language.

Throughout, the terms description and caption are used interchangeably.

2.2.1 Temporal Model (TEM)

The first module we introduce encodes the temporal structure of the input video. A

clear framework to use for this is a Recurrent Neural Network (RNN), which has been

shown to be effectual in modelling the temporal structure of sequential data such as video

(Ballas et al., 2016; Sharma et al., 2015; Venugopalan et al., 2015a) and speech (Graves

9



and Jaitly, 2014). In order to apply this in video sequences to generate a description, we

seek to capture the fact that frame-to-frame temporal variation tends to be local (Brox and

Malik, 2011) and critical in modeling motion (Ballas et al., 2016). Visual features extracted

from the last fully connected layers of Convolutional Neural Networks (CNNs) have been

shown to produce state-of-the-art results in image classification and recognition (Simonyan

and Zisserman, 2014; He et al., 2016), and thus seem a good choice for modeling visual

frames. However, these features tend to discard low level information useful in modeling

the motion in the video (Ballas et al., 2016).

To address these challenges, we implement an RNN we call the Temporal Model

(TEM). At each time step of the TEM, a video frame encoding from a CNN serves as input.

Rather than extracting video frame features from a fully connected layer of the pretrained

CNN, we extract intermediate convolutional maps.

In detail, for a given video X with N frames X = [X1, X2, · · · , XN ], N convolu-

tional maps of size RL×D are extracted, where L is the number of locations in the input

frame and D is the number of dimensions (See TEM in Figure 2.1). To enable the net-

work to store the most important L locations of each frame, we use a soft location attention

mechanism, fLatt (Bahdanau et al., 2015; Xu et al., 2015a; Sharma et al., 2015). We first

use a softmax to compute L probabilities that specify the importance of different parts in

the frame, and this creates an input map for fLatt.

Formally, given a video frame at time t, X t ∈ RL×D, the fLatt mechanism is defined

as follows:

ρtj =
exp(Wj

ph
t−1
v )∑L

k=1 exp(Wk
ph

t−1
v )

(2.2)

fLatt(X
t, ht−1

v ; Wp) =
L∑
j=1

ρtjX
t
j (2.3)

10



where ht−1
v ∈ RK is the hidden state of the TEM at time t-1 with K dimensions, and

Wp ∈ RL×K . For each video frame time step, TEM learns a vector representation by

applying location attention on the frame convolution map, conditioned on all previously

seen frames:

F t = fLatt(X
t, ht−1

v ; Wp) (2.4)

htv = fv(F t, ht−1
v ; Θv) (2.5)

where fv can be an RNN/LSTM/GRU cell and Θv is the parameters of the fv. Due to the

fact that vanilla RNNs have gradient vanishing and exploding problems (Pascanu et al.,

2013), we use gradient clipping, and an LSTM with the following flow to handle potential

vanishing gradients:

it = σ(F tWxi
+ (ht−1

v )
T
Whi

)

f t = σ(F tWxf
+ (ht−1

v )
T
Whf

)

ot = σ(F tWxo + (ht−1
v )

T
Who)

gt = tanh(F tWxg + (ht−1
v )

T
Whg)

ctv = f t � ct−1
v + it � gt

htv = ot � tanh(ct)

where Wh∗ ∈ RK×K , Wx∗ ∈ RD×K , and we define Θv = {Wh∗,Wx∗}.

2.2.2 Iterative Attention/Memory (IAM)

A main contribution of this work is a global view for the video description task:

A memory-based attention mechanism that learns iterative attention relationships in an

efficient sequence-to-sequence memory structure. We refer to this as the Iterative Atten-

tion/Memory mechanism (IAM), and it aggregates information from previously generated

words and all input frames.
11



The IAM component is an iterative memorized attention between an input video and

a description. More specifically, it learns a iterative attention structure for where to attend

in a video given all previously generated words (from the Decoder), and previous states

(from the TEM). This functions as a memory structure, remembering encoded versions of

the video with corresponding language, and in turn, enabling the Decoder to access the full

encoded video and previously generated words as it generates new words.

This component addresses several key issues in generating a coherent video descrip-

tion. In video description, a single word or phrase often describes action spanning multiple

frames within the input video. By employing the IAM, the model can effectively capture

the relationship between a relatively short bit of language and an action that occurs over

multiple frames. This also functions to directly address the problem of identifying which

parts of the video are most relevant for description.

The proposed Iterative Attention/Memory mechanism is formalized with an Atten-

tion update and a Memory update, detailed in Figure 2.2. Figure 2.1 illustrates where the

IAM sits within the full model, with the Attention module shown in 2.1a and the Memory

module shown in 2.1b.

As formalized in Figure 2.2, the Attention update F̂ (Θa) computes the set of proba-

bilities in a given time step for attention within the input video states, the memory state, and

the decoder state. The Memory update stores what has been attended to and described. This

serves as the memorization component, combining the previous memory with the current

iterative attention F̂ . We use an LSTM fm with the equations described above to enable the

network to learn multi-layer attention over the input video and its corresponding language.

The output of this function is then used as input to the Decoder.

12



• Given:
N = Number of frames in a given video

T = Number of words in description

Hv = Input video states, [h1
v, ..., h

N
v ]

Ht′−1
g = Decoder state hg at time t-1, repeated N times

Ht′−1
m = Memory state hm at time t-1, repeated N times

Wv,Wg ∈ RK×K

Wm ∈ RM×K

u ∈ RK

α = Probability over all N frames

Θa = {Wv,Wg,Wm, u}

• Attention update [F̂ (Θa)]:

QA = tanh(HvWv +Ht′−1
g Wg +Ht′−1

m Wm) (2.6)

αt′ = softmax(QAu) (2.7)

F̂ = HT
v αt′ (2.8)

• Memory update:

ht
′
m = fm(ht

′−1
m , F̂ ; Θm) (2.9)

Figure 2.2. Iterative Attention and Memory (IAM) is formulated as an Attention update and
a Memory update..

2.2.3 Decoder

In order to generate a new word conditioned on all previous words and IAM states, a

recurrent structure is modelled as follows:

ht
′

g = fg(s
t′ , ht

′

m, h
t′−1
g ; Θg) (2.10)

ŝt
′
= softmax((ht

′

g )TWe) (2.11)
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where ht′g ∈ RK , st′ is a word vector at time t′, We ∈ RK×|V |, and |V | is the vocabulary

size. In addition, ŝt′ assigns a probability to each word in the language. fg is an LSTM

where st′ and ht′m are inputs and ht′g is the recurrent state.

2.2.4 Training and Optimization

The goal in our network is to predict the next word given all previously seen words

and an input video. In order to optimize our network parameters Θ = {Wp,Θv,Θa,Θm,Θg,We},

we minimize a negative log likelihood loss function:

L(S,X; Θ) = −
T∑
t′

|V |∑
i

st
′

i log(ŝt
′

i ) + λ ‖ Θ ‖2
2 (2.12)

where |V | is the vocabulary size. We fully train our network in an end-to-end fashion using

first-order stochastic gradient-based optimization method with an adaptive learning rate.

More specifically, in order to optimize our network parameters, we use Adam (Kingma

and Ba, 2015a) with learning rate 2 × 10−5 and set β1, β2 to 0.8 and 0.999, respectively.

During training, we use a batch size of 16. The source code for this paper is available on

https://github.com/rasoolfa/videocap.

2.3 Experiments

Dataset We evaluate the model on the Charades (Sigurdsson et al., 2016) dataset and

the Microsoft Video Description Corpus (MSVD) (Chen and Dolan, 2011). Charades con-

tains 9, 848 videos (in total) and provides 27, 8471 video descriptions. We follow the same

train/test splits as Sigurdsson et al. (2016), with 7569 train, 1, 863 test, and 400 validation.

A main difference between this dataset and others is that it uses a “Hollywood in Homes”

1Only 16087 out of 27, 847 are used as descriptions for our evaluation since the 27, 847 refers to script of

the video as well as descriptions.
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approach to data collection, where “actors” are crowdsourced to act out different actions.

This yields a diverse set of videos, with each containing a specific action.

MSVD is a set of YouTube videos annotated by workers on Mechanical Turk,2 who

were asked to pick a video clips representing an activity. In this dataset, each clip is an-

notated by multiple workers with a single sentence. The dataset contains 1, 970 videos

and about 80, 000 descriptions, where 1, 200 of the videos are training data, 670 test, and

the rest (100 videos) for validation. In order for the results to be comparable to other ap-

proaches, we follow the exact training/validation/test splits provided by Venugopalan et al.

(2015b).

Evaluation metrics We report results on the video description generation task. In order

to evaluate descriptions generated by our model, we use model-free automatic evaluation

metrics. We adopt METEOR, BLEU-N, and CIDEr metrics available from the Microsoft

COCO Caption Evaluation code3 to score the system.

Video and Caption preprocessing We preprocess the captions for both datasets using

the Natural Language Toolkit (NLTK)4 and clip each description up to 30 words, since the

majority have less. We extract sample frames from each video and pass each frame through

VGGnet (Simonyan and Zisserman, 2014) without fine-tuning. For the experiments in this

paper, we use the feature maps from conv5 3 layer after applying ReLU. The feature map

in this layer is 14 × 14 × 512. Our TEM component operates on the flattened 196 × 512

of this feature cubes. For the ablation studies, features from the fully connected layer with

4096 dimensions are used as well.
2https://www.mturk.com/mturk/welcome
3https://github.com/tylin/coco-caption
4http://www.nltk.org/
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Hyper-parameter optimization We use random search (Bergstra and Bengio, 2012) on

the validation set to select hyper-parameters on both datasets. The word-embedding size,

hidden layer size (for both the TEM and the Decoder), and memory size of the best model

on Charades are: 237, 1316, and 437, respectively. These values are 402, 1479, and 797 for

the model on the MSVD dataset. A stack of two LSTMs are used in the Decoder and TEM.

The number of frame samples is a hyperparameter which is selected among 4, 8, 16, 40 on

the validation set. ATT + NO TEM and NO IAM + TEM get the best results on the validation

set with 40 frames, and we use this as the number of frames for all models in the ablation

study.

2.3.1 Video Caption Generation

We first present an ablation analysis to elucidate the contribution of the different

components of our proposed model. Then, we compare the overall performance of our

model to other recent models.

Ablation Analysis

Ablation results are shown in Table 2.1, evaluating on the MSVD test set. The first

(ATT + NO TEM) corresponds to a simpler version of our model in which we remove

the TEM component and instead pass each frame of the video through a CNN, extracting

features from the last fully-connected hidden layer. In addition, we replace our IAM with

a simpler version where the model only memorizes the current step instead of all previous

steps. In the next variation (ATT + TEM), it is same as the first one except we use TEM

instead of fully connected CNN features. In the next ablation (NO IAM + TEM), we remove

the IAM component from our model and keep the rest of the model as-is. In the next

variation (IAM + NO TEM), we remove the TEM and calculate features for each frame,

16



Method METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

ATT + NO TEM 31.20 77.90 65.10 55.30 44.90 63.90
ATT + TEM 31.00 79.00 66.50 56.30 45.50 61.00
NO IAM + TEM 30.50 78.10 65.20 55.10 44.60 60.50
IAM + NO TEM 31.00 78.70 66.90 57.40 47.00 62.10
IAM + TEM [40F] 31.70 79.00 66.20 56.0 45.60 62.20
IAM + TEM [8F] 31.80 79.40 67.10 56.80 46.10 62.70

Table 2.1. Ablation of proposed model with and without the IAM component on the MSVD
test set.

similar to ATT + NO TEM. Finally, the last row in the table is our proposed model (IAM +

TEM) with all its components.

The IAM plays a significant role in the proposed model, and removing it causes a

large drop in performance, as measured by both BLEU and METEOR. On the other hand,

removing the TEM by itself does not drop performance as much as dropping the IAM.

Putting the two together, they complement one another to result in overall better perfor-

mance for METEOR. However, further development on the TEM component in future work

is warranted. In the NO IAM + TEM condition, an entire video must be represented with

a fixed-length vector, which may contribute to the lower performance (Bahdanau et al.,

2015). This is in contrast to the other models, which apply single layer attention or IAM to

search relevant parts of the video aligned with the description.

Performance Comparison

To extensively evaluate the proposed model, we compare with state-of-the-art models

and baselines for the video caption generation task on the MSVD dataset. In this exper-

iment, we use 8 frames per video as the inputs to the TEM module. As shown in Table
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Method METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

Venugopalan et al. (2015b) 27.7 − − − − −
Venugopalan et al. (2015a) 29.2 − − − − −
Pan et al. (2016b) 29.5 74.9 60.9 50.6 40.2 −
Yu et al. (2016) 31.10 77.30 64.50 54.60 44.30 −
Pan et al. (2016a) 33.10 79.20 66.30 55.10 43.80 −
Our Model 31.80 79.40 67.10 56.80 46.10 62.70

Yao et al. (2015) + C3D 29.60 − − − 41.92 51.67
Venugopalan et al. (2015a) + Flow 29.8 − − − − −
Ballas et al. (2016) + FT 30.75 − − − 49.0 59.37
Pan et al. (2016b) + C3D 31.0 78.80 66.0 55.4 45.3 −
Yu et al. (2016) + C3D 32.60 81.50 70.40 60.4 49.90 −

Table 2.2. Video captioning evaluation on MSVD (670 videos).

Method METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

Human
24 62 43 29 20 53

(Sigurdsson et al., 2016)

Sigurdsson et al. (2016) 16 49 30 18 11 14
Our Model 17.6 50 31.1 18.8 11.5 16.7

Table 2.3. Video captioning evaluation on Charades (1863 videos). Sigurdsson et al. (2016)
results use the Venugopalan et al. (2015a) model.

2.2,5 our proposed model achieves state-of-the-art scores in BLEU-4, and outperforms al-

most all systems on METEOR. The closest-scoring comparison system, from Pan et al.

(2016a), shows a trade-off between METEOR and BLEU: BLEU prefers descriptions with

short-distance fluency and high lexical overlap with the observed descriptions, while ME-

TEOR permits less direct overlap and longer descriptions. A detailed study of the generated

descriptions between the two systems would be needed to better understand these differ-

ences.
5The symbol − indicates that the score was not reported by the corresponding paper. The horizontal line

in Table 2.2 separates models that do/do not use external features for the video representation.
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The improvement over previous work is particularly noteworthy because we do not

use external features for the video, such as Optical Flow (Brox et al., 2004) (denoted Flow),

3-Dimensional Convolutional Network features (Tran et al., 2015) (denoted C3D), or fine-

tuned CNN features (denoted FT), which further enhances aspects such as action recogni-

tion by leveraging an external dataset such as UCF-101. The only system using external

features that outperforms the model proposed here is from Yu et al. (2016), who uses a

slightly different version of the same dataset6 along with C3D features for a large improve-

ment in results (compare Table 2.2 rows 4 and 11); future work may explore the utility of

external visual features for this work. Here, we demonstrate that the proposed architec-

ture maps visual space to language space with improved performance over previous work,

before addition of further resources.

We additionally report results on the Charades dataset Sigurdsson et al. (2016), which

is challenging to train on because there are only a few (≈ 2) captions per video. In this

experiment, we use 16 frames per video as the input to the TEM module. As shown in

Table 2.3, our method achieves a 10% relative improvement over the Venugopalan et al.

(2015a) model reported by Sigurdsson et al. (2016). It is worth noting that humans reach

a METEOR score of 24 and a BLEU-4 score of 20, illustrating the low upper bound in this

task.7

Results Discussion

We show some example descriptions generated by our system in Figures 2.3 and

2.4. The model generates mostly correct descriptions, with naturalistic variation from the

ground truth. Errors illustrate a preference to describe items that have a higher likelihood

6Yu et al. (2016) uses the MSVD dataset reported in Guadarrama et al. (2013), which has different pre-

processing.
7For comparison, the upper bound BLEU score in machine translation for English to French is above 30.
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Example Video Frame Sequence Proposed Model Ground Truth

A group of people
are dancing

A group of young
children performing

together

A person is cutting
the vegetable

A woman is cutting
garlic

A man is playing a
guitar

A man is playing the
guitar

A woman is pouring
eggs into a bowl

A woman is pouring
ingredients into a

bowl

A man is playing a
flute

A man is playing a
large flute

A woman is applying
a makeup

A woman is putting
on makeup

Figure 2.3. Example captions generated successfully by our model on MSVD test videos.

of being mentioned, even if they appear in less of the frames. For example, in the “a dog is

on a trampoline” video, our model focuses on the man, who appears in only a few frames,

and generates the incorrect description “a man is washing a bath”. The errors, alongside

the ablation study shown in Table 2.1, suggest that the TEM module in particular may be

further improved by focusing on how frames in the video sequence are captured and passed

to the IAM module.
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Example Video Frame Sequence Proposed Model Ground Truth

Action error                                               

A man is cutting a
gun

A guy is shooting a
gun

Action error, Attention error                     

A man is washing a
bath

A dog is on a
trampoline

Object error in Subject position                

A cat is eating Hamsters are eating

Object error                                                

A young girl is
playing the flute

A little girl is talking
on a cordless

telephone

Figure 2.4. Example captions in which our model made mistakes on MSVD test videos.

2.4 Conclusion

We introduce a general framework for an memory-based sequence learning model,

trained end-to-end. We apply this framework to the task of describing an input video with a

natural language description. Our model utilizes a deep learning architecture that represents

video with an explicit model of the video’s temporal structure, and jointly models the video

description and the temporal video sequence. This effectively connects the visual video

space and the language description space.
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A memory-based attention mechanism helps guide where to attend and what to rea-

son about as the description is generated. This allows the model to not only reason effi-

ciently about local attention, but also to consider the full sequence of video frames during

the generation of each word. Our experiments confirm that the memory components in our

architecture, most notably from the IAM module, play a significant role in improving the

performance of the entire network.

Future work should raim to refine the temporal video frame model, TEM, and explore

how to improve performance on capturing the ideal frames for each description.
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CHAPTER 3

Deep Transferable Zero-shot Learning with Attribute-based Regularization and

Embeddings (Fakoor et al., 2016b, 2015)

The availability of large image datasets (Deng et al., 2009) has been integral to recent

progress on image classification within the computer vision community (Krizhevsky et al.,

2012). However, many approaches to image classification make the assumption that the

classes encountered at test time are a subset of those seen during training. Zero-shot learn-

ing (ZSL) removes this assumption by considering test images with novel classes for which

no examples have been seen during training. This problem can be addressed by transfer-

ring knowledge gleaned from the “seen” training image classes to the “unseen” test image

classes based on learned, generalizable relationships between an image and its correspond-

ing class. One way of modeling this interaction is through the use of mid-level semantic

representations, such as human-labeled attributes (e.g., color and shape) (Lampert et al.,

2009), that can then be inferred for test classes and, in turn, used for classification.

A number of methods exist that leverage the use of attributes as a form of transferable

knowledge for zero-shot learning (Lampert et al., 2009, 2014; Romera-paredes and Torr,

2015; Huang et al., 2015; Zhang and Saligrama, 2015; Akata et al., 2015). One class of

techniques assumes that the attributes are independent given the class (Lampert et al., 2014,

2009). After learning a model for attribute prediction, they then use these predictions in an

attribute-based classifier to predict novel image classes. However, ignoring the dependence

among attributes results in weaker performance and, in turn, the loss of transferability

when compared to models that explicitly account for these dependencies (Huang et al.,

2015; Zhang and Saligrama, 2015; Akata et al., 2015; Romera-paredes and Torr, 2015).

23



The challenge here is to encode as much knowledge as possible from the seen classes,

while keeping the semantic representations sufficiently generic in order to predict unseen

classes at test time. However, designing a model that is able to both effectively capture

the relationships between input (images) and output (classes) as well as to to generalize to

novel classes is non-trivial.

Without knowledge of the test classes, it is beneficial to exploit the discriminative

capacity of attributes as a means of knowledge transfer. Hence, we propose an end-to-end

deep neural network that predicts instances of unseen test classes based upon their visual

attributes. We constrain (regularize) each layer of the network so as to encourage gen-

eralizability between the seen (training) and unseen classes, resulting in a model that we

show to be more transferable. More specifically, our method learns a multi-layer nonlinear

transformation from seen to unseen classes in a manner that constrains the individual layers

in order to promote feature transferability between seen and unseen classes. We evaluate

our method on four benchmark ZSL datasets and demonstrate results that comparable or

exceed the performance of current state-of-the-art methods. Furthermore, we explore the

use of word embeddings trained on large amounts of external text as additional seman-

tic knowledge to further enhance transferability. We build class embeddings based on a

weighted average of attribute embeddings that are built from a combination of word em-

beddings from the attribute description. These embeddings further improve performance

for datasets with description-based attributes. As part of the evaluation, we also perform

a series of ablations that demonstrate the contributions of the different components of our

model, including layer-specific regularization, nonlinearity, architecture depth, and word

embeddings. In addition, we evaluate our method on the related few-shot learning task to

better understand the ability to learn classifiers when there is some overlap between training

and test.

We summarize the primary contributions of the paper as follows:
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• We propose an end-to-end, deep neural network model with layer-specific regulariza-

tion and attribute class word embeddings that improves transferability in a zero-shot

learning setting.

• We demonstrate word embeddings as effective attribute and class representations.

• We perform ablations evaluating the importance of individual model components.

• We achieve state-of-the-art results on several benchmark datasets and our method

achieves greater transferability than existing state-of-the-art methods.

3.1 Related Work

An effective solution to zero-shot learning is to use the set of available seen images

to learn a mid-level semantic embedding that relates an image and its corresponding class.

Given an unseen test image, the problem then becomes one of first predicting its mid-level

semantic embedding and then using these predictions together with the learned relation-

ships to infer the object’s class.

Visual attributes have proven to be a commonly used semantic abstraction for zero-

shot learning. Among the first to propose the use of visual attributes is Lampert et al. (2009)

who describe a two-step method whereby they first learn to predict the attributes associated

with a given image. At inference time, they then use these predictions to estimate the

classes based upon their attribute signatures. Similarly, Farhadi et al. (2009) learn a com-

bination of semantic and discriminative attributes that are able to generalize both within

and across object classes. Palatucci et al. (2009) consider a related zero-shot learning prob-

lem in which they project fMRI scans corresponding to people thinking about words into

a space of manually specified features that they then use to predict the words. The ef-

fectiveness of such attribute-based methods is inherently limited by the accuracy of the

intermediate attribute predictions, and learning accurate attribute predictors is challenging
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due to attribute correlations that are difficult to model (Jayaraman et al., 2014). Recogniz-

ing this limitation, Jayaraman and Grauman (2014) propose a random forest method that

explicitly accounts for the unreliability of attribute predictions.

Rather than take a two-step approach, Akata et al. (2013) propose an alternative uni-

fied method that treats attribute-based image classification as a label-embedding problem,

whereby they learn a function that expresses the compatibility between an image and the

class embeddings. Recognition for a given image then follows by selecting the class with

the most compatible embedding. Akata et al. (2015) learn the compatibility function us-

ing a combination of manual (supervised) attributes and unsupervised embeddings derived

from unlabeled text corpora. Romera-paredes and Torr (2015) also take an integrated ap-

proach that does not distinguish between training (attribute prediction) and inference (class

estimation) stages. Instead, they learn a simple linear embedding from attribute and image

instances to their corresponding class in the form of linear regression model. The model

first transforms images features to an attribute space via a linear projection learned during

training. It then relates this attribute representation to class labels according to knowledge

of their attribute signatures at test time. Integral to the effectiveness of the framework is

their careful selection of regularizers as a means of learning parameters that better gener-

alize to unseen classes. Our method similarly maps input images directly to their corre-

sponding class via an implicit learned relationship between images and visual attributes.

In contrast to Romera-paredes and Torr (2015), our model employs a multi-layer nonlinear

network to represent the relationship between input images, visual attributes, and class la-

bels. We learn this relationship using a different loss function and (layer-wise) regularizer,

which, enables our method to better generalize to unseen classes, leading to significantly

better results.

An alternative to human-labeled visual attributes is to directly learn the set of se-

mantic embedding vectors from text corpora in an unsupervised fashion, and to then map

26



images into this embedding space (Frome et al., 2013; Socher et al., 2013a; Norouzi et al.,

2014; Ba et al., 2015). This has the advantage that the problem of predicting the class of

an image essentially becomes a nearest neighbor search against vectors in the embedding

space. (Ba et al., 2015) introduce a deep model that map raw text (i.e. encyclopedia ar-

ticles) and image pixels to a joint embedding space which then used as a set of classifier

weights for an object recognition network. Even though it seems there is similarity with

our proposed model, there are significant differences from type of attributes to modeling

of the problem using deep network. More specifically, our model differs in that we feed

the CNN into a multi-layer nonlinear feedforward network that then takes the attributes as

input at the last layer. We use layer-specific regularizers to enforce our model’s general-

izability. Frome et al. (2013) take advantage of the availability of large unannotated text

corpora and describe an approach that combines a neural language model and a deep neural

network for object recognition to learn to map images into a semantic embedding space.

Classification then follows by choosing the nearest label in this embedding space. Socher

et al. (2013a) similarly employ a neural language model to learn a semantic word space

from a large unsupervised corpus of text. They then learn to map images into this space

such that they are close to their corresponding semantic word vectors. These embeddings

can then be used to infer the class of seen and unseen images based upon the semantic word

vectors. Meanwhile, Norouzi et al. (2014) use a pre-trained classifier to map images into

a semantic embedding space through a convex combination of the class label embedding

vectors. Specifically, they use the predictive probabilities for different training labels from

each of the classifiers to weigh the combination of the label embeddings in the semantic

space. Zhang and Saligrama (2015) propose a parameterized method that learns a seman-

tic similarity embedding using seen classes and then maps attributes into this space. They

learn a similarity function that then embeds the target domain into this space.
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An issue that arises with regards to the learned projection from an image to the se-

mantic embedding space is the so-called projection domain shift problem (Fu et al., 2014),

whereby learned projections are biased to the training data. Fu et al. (2014) propose a

method that alleviates this issue by learning a multi-view semantic space that correlates

image embeddings with the semantic embeddings. Additionally, attribute-based methods

may suffer from noisy information in the form of missing or incorrect annotations, which

can negatively affect prediction. Rohrbach et al. (2013b) seek to mitigate these limitations

by proposing a transductive learning method that uses attributes as a means of transferring

information from seen to unseen classes. They then use a graph-based algorithm to learn

the manifold structure that underlies the novel classes. Mensink et al. (2014) use web-based

data to learn co-occurrence statistics that they then use to weigh a combination of known

classifiers to define predictors for new classes.

One-shot learning (Fei-Fei et al., 2006; Torralba et al., 2011; Lake et al., 2011; Walter

et al., 2012) considers a related problem, relaxing the zero-shot learning assumption that the

training and test sets are disjoint. Few-shot learning then considers the problem of learning

to predict an object’s class from a small number of training examples. Similarly, domain

adaptation considers the scenario in which there is a large number of labeled examples

drawn from a source domain that can be used for training but very few examples available

for the target (testing) domain. Much of the work in domain adaptation focuses on natural

language tasks (Blitzer et al., 2007; Glorot et al., 2011), however the technique has also

been applied to object recognition (Saenko et al., 2010).

3.2 Our Framework

Our approach performs zero-shot learning in an end-to-end fashion by relating im-

ages to their corresponding class via an intermediate attribute-based semantic space. The
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method learns a nonlinear mapping from the input image and attribute vectors to the out-

put class using a multi-layer feedforward neural network that takes as input the available

attribute vectors and the image. We do so in a way that encourages the features to be

generic and transferable by enforcing layer-specific regularizers with a Gaussian prior over

the model’s parameters. Next, we first derive the general model and then describe in de-

tail the deep multi-layered network architecture with layer-specific regularizers. We then

describe an extension of our model that uses word embeddings to build attribute and class

embeddings, in order to further improve the transferability of the semantic space.

3.2.1 Problem Formulation

Let F s = {(xs1, ys1), ...(xsN , y
s
N)} be the training data that consists of N seen images

xsi ∈ RD in an embedding space and their corresponding labels ysi , where ysi is a one-

hot indicator vector of length equal to the number of training classes Ks. The set of all

training images and their labels can be defined as matrices Xs ∈ RD×N and Y s ∈ RKs×N ,

respectively. Additionally, the data includes an attribute matrix As ∈ RP×Ks , where each

column asj is a binary- or real-valued vector of P attribute assignments for class j. Further,

we assume a held-out set of M unseen image-class pairs F u = {(xu1 , yu1 ), ..., (xuM , y
u
M)}

and their corresponding attributes Au ∈ RP×Ku , where the set of Ku test classes is disjoint

from the set of Ks training classes, i.e., Ks ∩ Ku = ∅. We represent the test images and

classes as matrices Xu ∈ RD×M and Y u ∈ RKu×M .

Given the input image feature embeddings and their corresponding attribute vectors,

our goal is to learn a deep functional mapping from input space to output space1

yi = f(xi, A;W ), (3.1)

1For simplicity, we omit the superscripts, but will add them back later.
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where W is a parameter matrix, which we define such that this mapping is sufficiently

generic to transfer class prediction from the seen to unseen data.

3.2.2 Probabilistic Formulation

As with much of the previous work in zero-shot learning, we cast class prediction as

a regression problem and later extend our formulation to the deep network model. Given

an image xi, we are interested in learning the conditional distribution over the class yi

p(yi|xi;W ) = N (yi;W
>xi, I), (3.2)

where N (y;µ,Σ) denotes a Gaussian distribution over a random variable y with mean µ

and covariance Σ and W ∈ RD×K is a parameter matrix. We impose a Gaussian prior over

the parameters to capture the relationship between different classes

p(W ) = q(W )
K∏
j

N (wj; 0D, ε
2ID), (3.3)

where wj is the j th column of W , 0D is a D-dimensional zero mean vector, ID is a D ×D

identity matrix, and ε2 is a variance parameter. The term q(W ) takes the form

q(W ) =MND×K(W |0D×K , ID ⊗ Ωc), (3.4)

where MND×K(W |M,Σ ⊗ Ω) is a matrix-variate normal distribution with mean M ∈

RD×K , row covariance matrix Σ ∈ RD×D, and column covariance matrix Ω ∈ RK×K (Gupta

and Nagar, 1999). The termMND×K(W |M,Σ⊗ Ω) can be expressed as (Gupta and Na-

gar, 1999; Zhang and Yeung, 2010)

exp(−1
2

tr(Σ−1(W −M)Ω−1(W −M)T ))

(2π)DK/2|Σ|K/2|Ω|D/2 . (3.5)

The row covariance matrix ID in the Eqn. 3.4 models the relationship between in-

put features, while the column covariance matrix Ωc captures the relationship among the
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columns of W and, in turn, the classes (Zhang and Yeung, 2010). Hence, the first term

q(W ) in Eqn. 3.3 models the structure of W and the second penalizes separately the com-

plexity of each column (Zhang and Yeung, 2010). Eqn. 3.3 then serves as a means of

regularizing the parameter matrix.

The posterior distribution over the parameter matrix follows as

p(W |X, Y ) ∝ p(Y |X,W ) p(W ). (3.6)

Substituting the expressions in Equations 3.2 and 3.3 and taking negative logarithm, we

formulate the maximum a posteriori estimate of the parameter matrix as the following

optimization problem (Zhang and Yeung, 2010)

min
W

∑
i

∑
j

L(f(xi;wj), yi) + η tr(WΩcW>) + γ‖W‖2
F (3.7)

where L is the squared loss function, γ = 1/ε2, and f = W>xi.2 In addition, we include a

new regularization parameter η that modulates the trace norm penalty.3

3.2.3 Deep Network with Layer-specific Regularizers

Up to this point, we posed zero-shot learning as a regression problem without ac-

counting for the attributes as an intermediate semantic representation. Next, we describe

a modification to the optimization (3.7) that incorporates attributes with a nonlinear deep

network architecture. We structure this model with layer-specific regularizers that promote

the model’s transferability to unseen classes.

Our network (Fig. 3.1) takes as input an image and the available attribute matrix. As

with other vision architectures (Vinyals et al., 2015; Xu et al., 2015a), we pass each image

through a convolutional neural network (CNN), followed by a series of fully-connected lay-

ers. These D-dimensional feature vectors feed into a fully-connected multi-layer network
2However, we note that this expression holds for any function f .
3In the case of the MAP estimate, η = 1.
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✓LX 2 RD⇥N CNN(X) ✓1

✓2
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.56		.24	… .17	 .23
.																									.

.06		.32	…		.78		.33

.11		.92	…		.01		.10
.																									.

.06		.32	…		.78		.33

Figure 3.1. A visualization of our network architecture. A CNN embedding of input images
is fed into a multi-layer network of which the last layer also takes as input the attribute
matrix. The output is a prediction over the unseen class assignment..

on which we impose layer-specific regularization. This fully-connected network has the

effect of representing the learned (during training) relationship between input images and

an intermediate attribute representation. These learned features are fed into the last layer

together with the attribute embeddings (at test time) to estimate the corresponding class

label. In the results that we present shortly, we use the VGG-19 (Simonyan and Zisserman,

2014) and DeCAF (Donahue et al., 2014) networks as the CNN.

In our previous formulation, the columns of the parameter matrix W relate image

embeddings with the object classes. We redefine the parameter matrix so as to use the at-

tributes as an intermediate representation in order to better model the relationship between

image embeddings and object classes. Specifically, we decompose the parameter matrix as

W = ΘA, where Θ ∈ RD×P . The term Θ maps the image embeddings into the space of

attributes, while the attribute matrix A then relates this intermediate embedding represen-

tation to the space of object classes. Next, we move away from MAP estimation (Eqn. 3.7)

and extend our optimization in order to express the complex nonlinear interactions between

the input images, attributes, and classes. We do so by modeling the transformation Θ as a
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multi-layer network g(θl ∗ g(θl−1(g(..)..))), where g can be any activation function. In our

architecture, we use rectified-linear units (ReLU) g(X) = max(0, X), which have proven

effective at accelerating the convergence of stochastic gradient descent (Krizhevsky et al.,

2012). As a result, with ReLU activation, we define the deep network architecture as

max
[

0, (...max[ 0, X ∗ θ1 ] ∗ θ2...)
]
∗ θL, (3.8)

where Θ = {θi}Li=1 with θi ∈ RDi×Ki are the network parameters, Di and Ki are number

of parameters before and after layer i, respectively, and L is the number of layers. Further-

more, we update our architecture to then incorporate the attribute vectors as an additional

input to the last layer of the network. A major advantage of adding the attribute vectors

to only the last layer is that the other layers remain the same between training and test,

since their parameter vectors θl do not depend on the number of classes. Similarly, the

parameters of the last layer remain the same between training and test and the only change

involves feeding in the new attribute matrix, i.e., θLAs becomes θLAu.

The term tr(WΩcW>) in Eqn. 3.7 models the relationship between all classes based

upon W and Ω. We modify this regularization to incorporate attributes as an intermediate

embedding space between images and classes. In order to promote transferability in our

model, we only apply this regularization to the last layer due to the fact that it tends to be

more class-specific than the features close to the input, which tend to be more generic (Ben-

gio et al., 2013). This has the additional benefit that it enables the network to focus on

mapping the input to the output (class) space, while the last layer transfers knowledge be-

tween seen and unseen classes based upon the attribute embeddings. With this intuition, we

introduce the term tr(θLAsA>s θ
>
L ) for the last layer of our model. This term plays the same

role as the tr(WΩcW>) term in the Eqn. 3.7, thereby favoring parameters θL that are less

class-specific. In addition, we penalize the remaining layers with standard weight decay
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by penalizing the Frobenius norm. As a result, the optimization (3.7) can be rewritten as

follows

min
θl∈Θ

N∑
i

L(f(xsi , A
s; Θ), ysi ) + η tr(θLAsA>s θ

>
L ) + γ

L−1∑
l

‖θl‖2
F , (3.9)

which defines the regularized optimization over the multi-layered network parameters. It

is necessary to say that the novelty of our method is not solely in the use of the trace norm

as a regularizer to impose structure, but rather in the way in which the trace norm is used

only at the last layer in combination with the attribute vectors to allow transferability from

seen to unseen classes. Further, our model uses different regularizers at the lower layers

(i.e., γ
∑L−1

l ‖θl‖2
F ) to control model complexity (i.e., avoid overfitting to seen classes).

Together, these “layer-specific regularizers” enable our model to better generalize to new

classes. The results demonstrate this characteristic as well as the contribution of our pro-

posed model components (Table 3.1 and Table 3.2 ).

3.2.4 Learning and Inference

We train our network according to the optimization in Eqn. 3.9 using the hinge loss

as the loss function

L(f(xs, As; Θ), ys) =
∑
i

∑
j 6=ysi

max(0, f(xsi , A
s
j ; Θ)j−f(xsi , A

s
ysi

; Θ)ysi + ∆) (3.10)

where ∆ is a margin.4 We train our model with stochastic gradient descent using the Adam

algorithm (Kingma and Ba, 2015b). Having trained the model, we then perform inference

over a given set of attributes Au and an unseen test image xui as

arg max
j

f(xui , A
u
j ; Θ), (3.11)

where j specifies the class and f expresses the mapping from the image and attribute matrix

to the output space, given the learned parameters Θ.
4In our experiments, we use a margin of ∆ = 1.
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3.2.5 Attribute and Class Embeddings

In this section, we discuss further improvements to improve transferability by using

word embeddings trained on large amounts of external data to build dense, continuous, and

shareable attribute and class embeddings. Continuous word vector representations (Pen-

nington et al., 2014; Mikolov et al., 2013; Faruqui et al., 2015) have recently proven very

effective for various NLP (Turian et al., 2010; Collobert et al., 2011; Socher et al., 2013b;

Bansal et al., 2014; Guo et al., 2014) and multimodal learning tasks (Frome et al., 2013;

Norouzi et al., 2014) due to their ability to capture fine-grained semantic relationships be-

tween various words. Specifically, we use the Glove (Pennington et al., 2014) word vectors

that combine the advantages of global matrix factorization and local context window meth-

ods.

We extend our model to use these dense word embeddings to better represent at-

tributes and classes, which we later show results in improvements for domains that have

descriptive attributes (e.g., has upper tail color::white) rather than a single word. In doing

so, we propose a new attribute representation based on word embeddings and the origi-

nal real-valued attributes. In this new representation, we update the attribute-based class

embedding (column) vector ai ∈ A associated with each class i as follows

aemi =
[∑P

j a
j
i · Embed(dj)∑P

j a
j
i

]
, (3.12)

where Embed(dj) is a function that computes the embedding vector for the description dj

associated with the j th attribute of class i. The attribute vector Embed(dj) is built as the

product of the Glove embeddings for each property word in the description attributes, e.g.,

a product of the word embeddings for upper, tail, and white in the case of the attribute de-

scription dj = has upper tail color::white (leaving out the redundant word color repeated

across such attributes). The original real attribute values aji (provided as part of the data)

are used as weights for the corresponding attribute’s vector representation. This yields a
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class vector as a weighted average of the attribute vectors, themselves built from a product

of the word embeddings in the attribute’s description.

3.3 Experiments

We first analyze the overall performance of our model on the zero-shot learning task

and subsequently present an ablation analysis to elucidate the contribution of the different

components of our model. Next, we investigate the effects of word embeddings as an alter-

native semantic representation for the attribute-based class vectors. We then consider the

effect of the ratio of seen-to-unseen classes on the overall accuracy as well as analyze the

effectiveness of our method for the related task of few-shot learning. Note that the sup-

plementary material provides further analyses that include evaluations of class confusion,

precision and recall, and examples of correctly and incorrectly classified images.

3.3.1 Setup

3.3.1.0.1 Datasets We evaluate our method on four benchmark datasets: 1) SUN scene

attributes (SUN) (Patterson and Hays, 2012) with 102 attributes, 707 seen classes, 10 un-

seen classes, and a total of 14, 340 images; 2) aPascal/aYahoo objects (aPY) (Farhadi et al.,

2009) with 65 attributes, 20 seen classes, 12 unseen classes, and 15, 339 total images; 3)

Animals with Attributes (AwA) (Lampert et al., 2009) with 85 attributes, 40 seen classes,

10 unseen classes, and a total of 30, 475 images; and 4) Caltech-UCSD Birds-200-2011

(CUB) (Wah et al., 2011) with 312 attributes, 150 seen classes, 50 unseen classes, and a

total of 11, 788 images. The SUN, aPY, and CUB datasets include continuous, real-valued

attributes, while AwA includes both real- and binary-valued attributes. In this paper, we

only use real-valued attributes. We use publicly available 4096-dimensional DeCAF (Don-

ahue et al., 2014) (AwA) features.5 Additionally, we use VGG-19 (Simonyan and Zisser-

5http://pub.ist.ac.at/˜chl/ABC/.
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man, 2014) features made available Zhang and Saligrama (2015)6 for the CUB, AwA, aPY,

and SUN datasets.

Training Details While our method is amenable to training the entire network from

scratch, we use pre-trained VGG-19 (Simonyan and Zisserman, 2014) and DeCAF (Don-

ahue et al., 2014) networks for the CNN without fine-tuning in order to minimize memory

consumption and to speed up training. We train our model on each dataset using the Adam

gradient optimization algorithm (Kingma and Ba, 2015b) 7 We tune the hyper-parameters

for our model, including the number of layers, the number of hidden units, the dropout rate,

and settings for η and γ (Eqn. 3.9) on a validation set that consists of 20% of the class la-

bels sampled from the training set. It is worth noting that there is no class overlap between

the training and validation sets, which both follow the zero-shot setting. Having tuned the

hyper-parameters, we re-train our model on the entire training set and report results on

the test set. We use the inverted form of dropout (Srivastava et al., 2014) as an additional

means of regularization, which does scaling at training time, in order to leave the forward

pass during the test time untouched. We initialize the network parameters according to the

procedures proposed by Glorot and Bengio (2010) and He et al. (2015). The training results

in a three-layer network with 1000 hidden units for SUN, 1200 for aPY, and 800 for AwA;

and a four-layer network with 1400 hidden units for the CUB dataset. Tuning resulted in

parameter settings of8 γ = 14.48 and η = 0.29 for AwA, γ = 17.67 and η = 1.47 for aPY,

γ = 15.81 and η = 10.17 for SUN, and γ = 17.29 and η = 0.01 for CUB.
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Table 3.1. Zero-shot learning accuracy percentage on all three datasets

Method Image Feature Attribute AwA aPY SUN CUB

Lampert et al. (2009, 2014) Non-CNN Real 41.40 19.10 52.50 -
Lampert et al. (2009, 2014)i VGG-19 Real 57.23 38.16 72.00 -
Huang et al. (2015) DeCAF Binary 45.60 - - 17.50
Jayaraman and Grauman (2014) Non-CNN Real 43.01± 0.07 26.02± 0.05 56.18± 0.27 -
Akata et al. (2013) Non-CNN Binary 43.50 - - 18.00
Akata et al. (2015) DeCAF Real 61.90 - - 40.30
Akata et al. (2015) GOOGLE-1K Real 73.90 - - 51.70
Romera-paredes and Torr (2015) Non-CNN Binary 49.30± 0.21 27.27± 1.62 65.75± 0.51 -
Romera-paredes and Torr (2015)ii DeCAF Real 56.50± 0.012 - - -
Romera-paredes and Torr (2015)iii VGG-19 Real 75.32± 2.28 24.22± 2.89 82.10± 0.32 -
Zhang and Saligrama (2015) VGG-19 Real 76.33± 0.83 46.23± 0.53 82.50± 1.32 30.41± 0.20
Our method DeCAF Real 60.36 - - -
Our method VGG-19 Real 77.51 46.60 87.50 47.56

i Reported elsewhere (Zhang and Saligrama, 2015). ii Our implementation. iii Reported
elsewhere (Zhang and Saligrama, 2015).

3.3.2 Primary Results

We evaluate our method using the standard unseen and seen class splits for AwA and

aPY (Lampert et al., 2014), the ten unseen class random split for SUN (Jayaraman and

Grauman, 2014), and those used by Akata et al. (2013) for CUB.

Table 3.1 compares the performance of our method to that of several existing ap-

proaches in terms of multiclass accuracy, where numbers in bold denote the highest ac-

curacy for each dataset. Our method achieves results that exceed existing state-of-the-art

methods on the AwA and SUN benchmarks, and results are equivalent to the current state-

of-the-art on aPY. Our method results in a relative improvement of 1.55% (1.18% absolute

improvement) on AwA over that of Zhang and Saligrama (2015). On the aPY dataset,

our method performs equivalently to their approach, while exceeding the other methods by

a significant margin. On the SUN dataset, we achieve a relative improvement of 6.06%

6https://zimingzhang.files.wordpress.com/2014/10/cnn-features1.key.
7We use Adam (Kingma and Ba, 2015b) with learning rate of 0.0001 and settings of β1 = 0.9 and

β2 = 0.99.
8Rounded to two decimal places.
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(5.00% absolute improvement) relative to Zhang and Saligrama (2015), which is the pre-

vious state-of-the-art method. On the CUB dataset, our method lags behind that of Akata

et al. (2015), which uses GOOGLE-1K image features, however it significantly outper-

forms all other methods.

3.3.3 Ablation Analysis

Next, we perform a series of ablation studies in order to show the contributions of the

different components of our model, namely nonlinearity, multiple layers, and layer-specific

regularization. Note that all methods include the Frobenius term for regularization and only

ablate the trace term (Eqn. 3.9), which regularizes the last layer.

One ablation (denoted as L) corresponds to a simpler version of Eqn. 3.7 in which we

perform classification with a linear mapping from input (images) to output (classes) without

trace regularization. The second ablation (denoted as L+R) considers the same model, but

with the inclusion of the trace regularization penalty, and corresponds to Eqn. 3.7. The

next variation (denoted as NL) adds nonlinearity to the single-layer network (L). We then

add multiple nonlinear layers (denoted as NL+D) to understand the contribution of a deep

network. Finally, we consider our proposed model (denoted here as NL+D+R) that includes

layer-specific regularization by adding back the trace term η tr(θLAsA>s θ
>
L ) in Eqn. 3.9.

Table 3.2. Analysis of our architecture components

Method AwA aPY SUN CUB

L 67.91 41.19 70.50 39.28
L+R 70.84 44.10 81.00 42.62
NL 76.36 40.62 81.50 45.76
NL+D 76.59 42.02 85.00 44.19
NL+D+R 77.51 46.60 87.50 47.56
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Table 3.2 reports the ablation results across the four benchmark datasets. The inclu-

sion of our regularization term results in a noticeable increase in classification accuracy.

We also see an increase as a result of adding in nonlinearity, with the exception of aPY on

which there is a slight decrease in accuracy. We see an additional boost in performance

by adding additional layers. Overall, the ablation supports the claim that regularization

is important to realizing a model that is able to transfer knowledge from seen to unseen

classes.

3.3.4 Attribute and Class Embeddings

Next, we evaluate the effectiveness of using pre-trained word embeddings as a richer,

dense representation of the attributes in order to further promote generalizability. In our

experiments, we use the 300-dimensional Glove Pennington et al. (2014) vectors. We eval-

uate the effect of word embeddings on the CUB dataset, since it contains more descriptive

attributes than the other datasets (see examples and discussion in Section 3.2.5).

Table 3.3. Classification accuracy for with embeddings

Method CUB

Original attributes 47.56
Embedding-Glove 48.31

Table 3.3 presents the multiclass accuracy when using Embedding-Glove attribute-

based class vectors, calculated per Eqn. 3.12. These attribute-based class vectors result

in a relative improvement of 1.58% (0.75% absolute improvement) over our primary full

model that uses the original attributes, hence enhancing further the results on CUB dataset.

It is worth noting that it may be possible to further improve the contribution of word em-
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(b) Attribute Word Embeddings
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(d) Attribute Word Embeddings (20 classes)

Figure 3.2. Visualization of class embeddings for the CUB dataset..

beddings by fine-tuning the embedding vectors after initializing with the human-provided

attributes. We leave this for future work.

3.3.5 Class Embedding Visualization

Next, we visualize the class embeddings for the CUB dataset and compare the orig-

inal real-valued attribute-based vectors to those created using our method of weighted av-

eraging of attribute word embeddings. In both cases, we use principle component analysis

(PCA) and plot the top two dimensions. Figures 3.2(a) and 3.2(b) show the separation be-
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(b) aPY Dataset

Figure 3.3. Few-shot learning results on the (a) SUN and (b) aPY datasets..

tween the classes based upon the original vectors and the word embedding-based vectors,

respectively, where we indicate each class by the first letter in its label. As one can see,

the classes are well-separated using our embedding method, whereas they are all clustered

closely together when using the original class vectors. This helps to explain the improve-

ments in multiclass accuracy that we demonstrated in Table 3.3. Figures 3.2(c) and 3.2(d)

then present the original and learned embeddings for a smaller set of 20 classes. As we

can see, the “Red Cockaded Woodpecker” and the “American Three-Toed Woodpecker”

(Fig. 3.2(d) top-right) are visually very similar and adjacent in our learned class embedding.

Similarly, the “American Goldfinch” and the “Blue Winged Warbler” (Fig. 3.2(d) bottom-

left) are also clustered in our embedding space and are similar in appearance. We see

similar behavior for the “Last Tern,” “Forster’s Tern,” and “Artic Tern” classes (Fig. 3.2(d)

bottom-right), which share many similar visual attributes.

3.3.6 Few-shot Learning

We evaluate the performance of our model for the few-shot learning task in which

one is allowed to see a limited number of classes from the test data during training. We do
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so using the SUN and aPY datasets. For SUN, we randomly select 317 classes as seen and

400 as unseen. We use a 40/60 training/test split in order to have fewer images in training

than in test. We use a standard split for aPY in which 20 classes are treated as seen and 12

are treated as unseen. It is worth noting that classes may be shared between training and

test but not individual images.

Figure 3.3 plots the multiclass classification accuracy as a function of the number of

classes shared between the seen and unseen sets. We start with the case of zero overlapping

classes, which corresponds to the zero-shot scenario, and increase this number to 100 over-

lapping classes for SUN and 12 for aPY. We compare our approach to few-shot learning

to the ESZSL method Romera-paredes and Torr (2015), and use the same setup and splits

for both methods. As Figure 3.3(a) shows, our method outperforms ESZSL on SUN for

all sample sizes in the few-shot learning setup. Figure 3.3(b) shows that our method yields

greater performance on aPY when the number of shared classes is lower, but that the differ-

ence in accuracy decreases when there are more shared classes. We attribute the difference

in behavior to the unbalanced nature of the aPY dataset.

3.3.7 Confusion Matrices

We first evaluate the multiclass classification accuracy by visualizing the confusion

matrices for the four benchmark datasets. As can be seen in Figure 3.4, our method cor-

rectly discriminates between the classes on the AwA and SUN datasets. There is a higher

rate of misclassification on the aPY and CUB datasets, which is consistent with the overall

accuracies reported previously in Table 1. On the AwA dataset, we see that our method

exhibits the most confusion between the “Hippopotamus” and “Pig” classes, which we at-

tribute to the similarities in their appearance. The method also sometimes misclassifies

“Persian Cat” images as being of the “Raccoon” class, the two of which are in fact visually

similar in this particular set of classes.
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(d) CUB Dataset

Figure 3.4. Confusion matrices for the four datasets that we consider. Note that we omit
the labels for CUB due to lack of space..

3.3.8 ROC Curves

Next, we evaluate the multiclass accuracy by plotting the ROC curves for the differ-

ent classes in each of the datasets, which we visualize in Figure 3.5. Our method learns

accurate classifiers for all classes in the SUN (Fig. 3.5(a)) and AwA (Fig. 3.5(b)) datasets.

Figure 3.5(c) presents the ROC curves for each of the 50 classes in the CUB dataset (where,

for lack of space, the legend identifies the 5 classes with the lowest performance). Our

method performs well on most classes, with one exception being the “Golden winged war-
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Figure 3.5. Class-wise ROC curves for the (a) SUN, (c) CUB, (d) aPY, and (b) AwA
datasets..

bler” class, which we discuss next. Meanwhile, our method has difficulty with a few of the

classes within the aPY dataset (Fig. 3.5(d)).

3.3.9 Scalability Analysis

In order to explore the performance of our method when faced with imbalanced

datasets with a bias against the number of seen classes, we consider a zero-shot learning

scenario in which we vary the ratio of seen-to-unseen classes. The setup for this experi-

ment follows that of Zhang and Saligrama Zhang and Saligrama (2015) who use the SUN

dataset. First, we randomly select 17, 117, 217, and 317 out of 717 classes and individu-

ally consider them as seen classes. Second, we randomly select 10, 20, 30, and onwards
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Figure 3.6. Accuracies for different ratios of seen-to-unseen classes..

from the remaining images (e.g., up to 400 in the case that we use 317 seen classes) as the

unseen classes. For each of the combinations, e.g., 117 seen and 400 unseen, or 17 seen

and 700 unseen, we train our network and report the classification accuracy. As shown in

Figure 3.6, the performance degrades as the ratio of unseen to seen classes increases. In

the case of 317 seen classes, the accuracy decreases by 55.96% when the number of unseen

classes increases from 10 to 100, and decreases by 20.8% when going from 300 to 400

unseen classes. With 217 seen classes, the decreases in accuracy for these same ranges

are 66.32% and 8.28%, respectively. Meanwhile, the accuracy decreases by 75.84% and

22.68%, respectively, when there are 117 seen classes. Finally, we see that with 17 seen

classes, the accuracy decreases by 84.21% when the number of unseen classes increases

from 10 to 100. However, the accuracy decreases by only 29.65% when the number of

unseen classes increases from 300 to 400, and by only 16.66% when going from 400 to 500

unseen classes.

Overall, our model performs well when the number of unseen classes is small relative

to the number of seen classes. Not surprisingly, the accuracies decrease as the number of

unseen classes increase. This decrease is steep initially, but begins to slow down between

100 and 200 unseen classes.
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(a) Failure Examples (b) Success Examples

Figure 3.7. Images from (a) a class (“Golden winged warbler”) on which our method
performs poorly as well as (b) a class (“Indigo bunting”) for which our method correctly
classifies most images. In the latter, our method exploits the bird’s blue color as a discrim-
inative attribute..

3.3.10 Success and Failure Examples

Finally, we provide examples from the CUB test dataset that demonstrate examples

of classes that were easy as well as difficult for our model to classify. Figure 3.7(a) shows

images from CUB for the “Golden winged warbler” class, which is one for which our

method makes a large number of errors. Figure 3.7(b) shows example images of the “Indigo

bunting” class on which our model makes only a few errors. Our method is able to exploit

the discriminative attributes that exist this and other classes, such as the bird’s distinctive

blue color.
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3.4 Conclusion

We proposed a unified framework for zero-shot learning that relates input images

with their corresponding class labels via an implicit embedding of visual attributes. Our

model takes the form of a multi-layer nonlinear network that learns the relationship between

images, attributes, and classes through layer-wise regularization. These layer-wise regular-

izers enhance the model’s ability to learn features that generalize between seen and unseen

classes. In this way, the model learns a nonlinear semantic projection that is able to trans-

fer knowledge from the training space to the test space. Moreover, we propose the use of

word embeddings as an alternative representation for attributes and classes, and show that

these embeddings improve the performance of our model. Results on various benchmark

datasets show that our method achieves greater transferability than existing state-of-the-art

methods.
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CHAPTER 4

Conclusion

In this dissertation, we first introduced an end-to-end memory-based attention model

to describe an input video using natural language description. This model utilizes memo-

ries of past attention when reasoning about where to attend to in the current time step. This

allows the model to not only reason about local attention more effectively, but also allows

it to consider the entire sequence of video frames while generating each word. The exper-

iments have confirmed that the memory component in the architecture plays a significant

role in improving the performance of the entire network. It is worth noting even though in

this work the problem of video caption generation has been considered, this model can be

applied to any sequence learning problem, which remains as future works. As an another

contribution, we introduced a simple but effective end-to-end deep network for zero-shot

learning. The proposed method learns a nonlinear semantic projection that can be used

to transfer knowledge from the training space to the test space. Results on several bench-

mark datasets demonstrate that this method achieves greater transferability than existing

state-of-the-art methods.
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