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ABSTRACT 

 

H-INFINITY OUTPUT FEEDBACK CONTROL: APPLICATION TO UNMANNED 

AERIAL VEHICLE 

 

Publication No. ______ 

 

Jyotirmay Gadewadikar, PhD. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor: Frank L. Lewis 

This dissertation presents new necessary and sufficient conditions for static 

output-feedback control of linear time-invariant systems using the H-Infinity approach. 

Simplified conditions are derived which only require the solution of two coupled matrix 

design equations. It is shown that the static output-feedback H-Infinity solution does not 

generally yield a well-defined saddle point for the zero sum differential game; 

conditions are given under which it does.  

This work presents a simplified parameterization of all H-Infinity static state-

feedback controllers in terms of a single algebraic Riccati equation and a free parameter 

matrix. As a special case, necessary and sufficient conditions for the existence of an H-

Infinity static output feedback gain are given. 
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This work also proposes three numerically efficient solution algorithms for the 

coupled design equations to determine the static output-feedback gain. In two of the 

algorithms an initial stabilizing gain is not needed. Correctness of these algorithms is 

proved. These algorithms also give flexibility to relatively weight control input and 

system performance. 

Application to Unmanned Aerial Vehicle exemplifies the power of the theory 

developed. This work give a procedure for designing compensators of specified 

structure for shaping the closed loop response that uses H-infinity output-feedback 

design techniques. The method developed takes advantage of the wealth of experience 

in aerospace control design. This work also presents the implementation of L2 Gain 

Bounded Static Output-Feedback control on Electromechanical Systems. Finally some 

future applications are explored including wireless networks. 
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CHAPTER 1 

INTRODUCTION 

The static output-feedback control, H-Infinity design and parameterization of all 

stabilizing controllers are three of the most researched and written about issues in 

modern control. This dissertation brings H-Infinity Design, Output-feedback, 

parameterization, and iterative design applications together. Achieved theoretical 

contributions in H-Infinity design techniques are presented. Chapter 1 gives a brief 

overview and background. In chapter 2, we show that the H-Infinity approach can be 

used for static output-feedback design to yield a simplified solution procedure that only 

requires the solution of one associated Riccati equation and a coupled gain matrix 

condition. This explains and illuminates the results in Kucera and de Souza (1995). That 

is, H-Infinity design provides more straightforward design equations than optimal 

control, which requires solving three coupled equations. 

In chapter 3, we present a parameterization of all stabilizing H-Infinity 

controllers for continuous-time systems in terms of a single ARE and a free parameter 

matrix.  The form of the result is simple and can be used to select the parameter matrix 

to satisfy additional design criteria.  The result is used to develop necessary and 

sufficient conditions for existence of a solution to the H-Infinity static output feedback 

problem for continuous-time systems.  
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Chapter 4 presents three numerically efficient solution algorithms for the 

coupled design equations to determine the static output-feedback gain. In two of the 

algorithms an initial stabilizing gain is not needed. Correctness of these algorithms is 

proved. These algorithms also give flexibility to relatively weigh control input and 

system performance. Chapter 5 gives methods to design the controllers for Unmanned 

Aerial Vehicles (UAVs). Chapter 6 presents the application of L2 gain bounded output-

feedback controller on an electro-mechanical system. In chapter 7 some future 

applications are explored which includes wireless networks. 

We have three objectives. First, we give necessary and sufficient conditions for 

OPFB with H-Infinity design. Second, we show parameterization of all stabilizing H-

Infinity controllers. Third, we suggest less restrictive numerical solution algorithms. F-

16 design examples drawn from the popular literature are included to show the power of 

the approach.  

1.1 Review of Related work and Motivation

1.1.1 Review of Static Output-Feedback 

The use of output feedback allows flexibility and simplicity of implementation. 

Moreover, in practical applications, full state measurements are not usually possible. 

The restricted-measurement static output-feedback (OPFB) problem is of extreme 

importance in practical controller design applications including flight control in Stevens 

and Lewis (2003), manufacturing robotics in Kim and Lewis (1998), and elsewhere 

where it is desired that the controller have certain pre-specified desirable structure, e.g., 

unity gain outer tracking loop and feedback only from certain available sensors. A 
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survey of OPFB design results is presented (Syrmos et al., 1994). Finally, though many 

theoretical conditions have been offered for the existence of OPFB, there are few good 

solution algorithms.  Most existing algorithms require the determination of an initial 

stabilizing gain, which can be extremely difficult. 

It is well known that the OPFB optimal control solution can be prescribed in 

terms of three coupled matrix equations (Lewis and Syrmos, 1995), namely two 

associated Riccati equations and a spectral radius coupling equation. A sequential 

numerical algorithm to solve these equations is presented in Moerder and Calise (1985). 

OPFB stabilizability conditions that only require the solution of two coupled matrix 

equations are given (Trofino-Neto and Kucera, 1993, Kucera and Desouza, 1995, and 

Geromel and Peres, 1985). Some recent LMI approaches for OPFB design are presented 

in El Ghaoui et al. (1997), Geromel et al. (1998), and Cao at al., (1998). These allow 

the design of OPFB controllers using numerically efficient software, e.g., the MATLAB 

LMI toolbox (Gahinet et al., 1995). However several problems are still open, most of 

the solution algorithms are hard to implement (Lewis, 1995), are difficult to solve for 

higher order systems, may impose numerical problems and may have restricted solution 

procedures such as the initial stabilizing gain requirements.  

1.1.2 Review of H-Infinity Design 

H-Infinity design has played an important role in the study and analysis of 

control theory since its original formulation in an input-output setting in Zames (1981). 

It is well known that, through conservative, they provide better response in the presence 

of disturbance than H2 optimal techniques. State-space H-Infinity solutions were 
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rigorously derived for the linear time-invariant case that required solving several 

associated Riccati equations in Doyle et al. (1989). Later, more insight into the problem 

was given after the H-Infinity linear control problem was posed as a zero-sum two-

player differential game (Basar et al., 1991). A thorough treatment of H-Infinity design 

is given in Knobloch et al., (1993), which also considers the case of OPFB using 

dynamic feedback.  

Static OPFB design, as opposed to dynamic output feedback with a regulator, is 

suitable for the design of aircraft controllers of prescribed structure.  Recently H-

Infinity design has been considered for static OPFB, Hol and Scherer (2004) addressed 

the applicability of matrix-valued sum-of-squares (sos) techniques for the computations 

of LMI lower bounds. Prempain and Postlethwaite (2004) presented conditions for a 

static output loop shaping controller in terms of two coupled matrix inequalities.  

1.1.3 Review of Parameterization 

The parameterization of all stabilizing controllers and the static output-feedback 

control problems are two of the most researched and written about issues in modern 

control. Static output feedback is indeed a special case of the former problem where the 

controller gain is restricted to lie in some subspace.  The computation of optimal H-

Infinity controllers of prescribed order and of static output feedback controllers are non-

convex problems, and so are difficult to confront. 

The parameterization of all stabilizing polynomial controllers was first given by 

Youla et al. (1976), and Kucera (1975, 1979) in terms of solutions to a Diophantine 

equation.  The H-Infinity approach (Doyle, Glover, Khargonekar, and Francis, 1989) 
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has shown its effectiveness in the design of controllers for modern systems in 

aerospace, vehicle, automotive, industrial systems, and elsewhere.  A parameterization 

of H-Infinity dynamic compensators for the state feedback and full information cases 

was given by Zhou (1992) in terms of the Hamiltonian matrix and the Youla-Kucera 

parameterization. A parameterization of all fixed-order H-Infinity dynamic 

compensators was given by Iwasaki and Skelton (1995) in terms of covariance control 

and the Lyapunov matrix.  A parameterization of all dynamic H-Infinity controllers was 

given by Mita et al. (1998) in terms of two coupled algebraic Riccati equations (ARE).  

Zeren and Ozbay (2000) provided a solution in terms of linear fractional 

transformations and algebraic Riccati equations.  A technique provided by Campos-

Delgado and Zhou (2003) uses norm-constrained stable transfer matrices and a two-

stage numerical search procedure.  An LMI approach for the computation of optimal 

∞H controllers of prescribed order is given by Hol and Scherer (2004).  Henrion, 

Kucera, and Molina-Cristobal (2005) use the Youla-Kucera parameterization to provide 

a method for designing low order compensators by simultaneous optimization over the 

numerator and denominator of the compensator.  Application is made to H-Infinity 

control. 

The book by Colaneri, Geromel, and Locatelli (1997) provides a unifying point 

of view for optimal H2 and H-Infinity control for linear systems.  Parameterization of 

full information controllers is given, both for static state feedback and dynamic 

feedback.  Parameterization of dynamic output feedback controllers is given in terms of 

solutions to two algebraic Riccati equations.  LMI solutions are also given.  Nonlinear 
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H-Infinity design has been presented in Isidori and Astolfi (1992), which derives a 

dynamic output feedback regulator in terms of coupled Hamilton-Jacobi equations.  A 

parameterization of nonlinear dynamic output feedback H-Infinity controllers was given 

there and also by Astolfi (1993), and Yang et al. (1996) in terms of nonlinear coupled 

Hamilton-Jacobi equations. A summary of ∞H design is given by Knobloch, Isidori, 

and Flockerzi (1993), which considers disturbance attenuation, full information 

regulators, and nonlinear H-Infinity techniques including observers.  

A survey of static output feedback control is given by Syrmos et al. (1997).  

Conditions often involve two Riccati equations coupled by a spectral radius condition 

(Lewis and Syrmos, 1995). Covariance assignment techniques (Hotz and Skelton, 1987, 

and Skelton and Iwasaki, 1993) involve coupled Lyapunov equations on subspaces.  A 

parameterization of all static output feedback gains is given by Yasuda et al. (1993) in 

terms of such equations.  LMI approaches have been presented by Iwasaki and Skelton 

(1995), where a parameterization was also presented.  In Colaneri, Geromel, and 

Locatelli (1997), & Geromel, de Souza, and Skelton (1998), a parameterization of static 

output feedback gains is given in terms of the blocks of a symmetric matrix derived 

from coupled matrix inequalities.  Also provided is a condition in terms of a matrix and 

its inverse.  A numerical procedure is given to determine these quantities.  LMI 

conditions for optimal and H-Infinity static output feedback are given by Shaked 

(2003).   

Solutions to the parameterization of all stabilizing controllers and the output 

feedback problems are generally complex, depending for instance on coupled Riccati 
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equations, LMIs, or on a matrix and its inverse belonging to some sets.  Moerder and 

Calise (1985) presented an algorithm for computing the optimal H2 static output 

feedback gain that is in standard use, along with a convergence proof.  This algorithm is 

extended and used for aircraft control design in Stevens and Lewis (2003).  An initial 

stabilizing output-feedback gain is needed, which is difficult to determine for practical 

systems. Recent results address these issues.  Jen-Te Yu (2004) provides a solution for 

the optimal static output feedback problem in terms of two AREs plus a projective 

coupling condition, but the AREs are standard ones involving state feedback, not output 

feedback.  An algorithm is presented that requires an initial stabilizing state feedback 

gain, which is easy to find using standard LQR methods.  Yang and Moore (2004) give 

an algorithm for static output feedback based on alternating projections.  

A solution to the H-Infinity static output feedback problem is given by Gu and 

Misra (1994) for a restricted class of systems in terms of a single ARE and a related 

negative definiteness condition.  Trofino-Neto and Kucera (1993) solve the static output 

feedback problem using inverse optimal control in terms of a single ARE projected onto 

nullspace perpendicular of C and a free parameter matrix.  Astolfi and Colaneri (2000, 

2001) present results in terms of a single ARE plus a condition holding over the 

nullspace of C.  This is also recast as a pair of LMI with a nonlinear coupling equation.  

In Astolfi and Colaneri (2000b) this approach was used to give a parameterization of all 

static output feedback controllers, and in (Astolfi and Colaneri (2000, 2002, 1993) the 

results were generalized to nonlinear systems. 
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Geromel and Peres (1985) give a sufficient condition for a stabilizing static 

output feedback in terms of a single ARE with a free parameter matrix, plus a condition 

on the form of the gain matrix.  A computational algorithm is proposed. Kucera and de 

Souza (1995) provide necessary and sufficient conditions for stabilizing static output 

feedback control using these constructions.  Gadewadikar et al., extend these conditions 

to obtain necessary and sufficient conditions for the existence of an H-Infinity static 

output feedback control.  Geromel et al. (1989) provide similar results for the discrete-

time case for decentralized feedback and output feedback.  De Souza and Xie (1992) 

provide for the discrete-time case a parameterization of all stabilizing H-Infinity 

controllers in terms of similar constructions, and use that result to solve the H-Infinity 

static output feedback problem for discrete systems. 

1.2 Mathematical Preliminaries and Notations

Over the years a terminology for H-Infinity Control has been developed. This section 

describes the basic concepts and background material related to analysis and control of 

linear systems using H-Infinity techniques. More details are described in B. Francis’s 

Lecture Notes in Mathematics (Mosca et al., 1990). 

1.2.1 Norms for Signals and Systems 

We consider systems which are linear, time-invariant, causal and finite 

dimensional. In the time domain an input-output model for such a system has the form 

of a convolution function. 

τττ dutgty ∫
∞

∞−

−= )()()(
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Such a system has an equivalent state-space model 

)()()( tButAxtx +=& ,

)()()( tDutCxty +=

Where A, B, C, D are real matrices of appropriate size. 

Let )(sG denote the system transfer matrix 

BAsICDsG 1)()( −−+=

Another popular notation is the packed-matrix notation given by 









=

DC
BA

sG )(

Note that 









DC
BA

is a block matrix, not a transfer function. 

One way to describe the performance control system is in terms of the size of 

certain signals of interest. Next section describes several ways of defining a signal’s 

size, i. e. several norms of the signals. For simplicity, all signals are assumed to be 

scalar-valued. We consider signal mapping ( )∞∞− , , for simplicity they are assumed 

to be piecewise continuous. 

pL -norm, ∞<≤ p1 : The pL norm of a signal )(tu is 

p
p

p
dttuu

1

)( 







= ∫

∞

∞−

(1.1) 

∞L -norm 
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)(sup tuu
t

=
∞

(1.2) 

Norms for Systems 

We introduce norms for a stable transfer function G:

pH -norm, ∞<≤ p1

p
p

p
djGG

1

)( 







= ∫

∞

∞−

ωω (1.3) 

H-Infinity -norm 

)(sup ω
ω

jGG =
∞

(1.4) 

More generally ∞H denotes the space of bounded analytic functions in the open right 
half-plane. 
 

1.2.2 Hamiltonian Matrix Notation 

The solution to the H-Infinity Control problem contains Algebraic Riccati Equations; 

the following Hamiltonian matrix notation (Knobolch et al., 1993) is introduced to 

simplify solution representation. Consider the following riccati equation 

01 =−++ − PBPBRQPAPA TT (1.5) 

The stabilizing solution of this equation is denoted by )(HRicP = where H is  










−−
−

=
−

T

T

AQ
BBRA

H
1

and )( 1 PBBRA T−− is stable. 
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1.2.3 Two-Port Block Diagram Representation 

 
Figure 1.1 Two port block diagram 

 

The two port diagram shown represents a variety of problems of interest. The diagram 

contains two main blocks, the plant and the controller. The plant section has two inputs 

and two outputs. The plant inputs are classified as control inputs and the disturbance. 

The control input, u is the output of the controller, which become the input to the 

actuators driving the plant. The disturbance, d(t) is actually a collection of exogenous 

inputs. The main distinction between d(t) and u(t) is that controller can not manipulate 

exogenous inputs. The plant outputs are also characterized into two groups. The first 

group y(t), are signals that are measured and feedback. These become input to the 

controller. The second group, z(t) are the performance outputs. These are all the signals 

we are interested in controlling or regulating. 

1.2.4 Interpreting H-Infinity Design Problems 

H-Infinity control problems can be formulated in many ways, here is the most 

simplified interpretation of the problem is to find controller for the generalized plant 

such that Infinity norm of the transfer function relating exogenous input d(t) to 
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performance output z(t) is minimum (consider the two port diagram in Figure 1.1). The 

minimum gain is denoted by *γ . If the norm for an arbitrary stabilizing controller is 

*γγ > then system is 2L gain bounded. To solve the H-Infinity problem we start with a 

value of γ and reduce it until *γ is achieved. 
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CHAPTER 2 

H-INFINITY OUTPUT FEEDBACK 

This chapter presents new necessary and sufficient conditions for H-Infinity 

output-feedback design. Section 2.1 establishes system definitions with input, 

performance output, and disturbance notations; output-feedback stabilizability and 

detectability are discussed as well. Next section formulates bounded 2L gain design 

problem in the context of output feedback control. Section 2.3 builds the foundation 

blocks for the main results; here intermediate mathematical analysis is presented to 

simplify the derivations of the main necessary and sufficient conditions in section 2.4. 

Finally section 2.5 presents the optimality conditions i.e. conditions of existence of well 

defined game theoretic solution are derived. 

2.1 System Description and Definitions

Consider the linear time-invariant system of Figure 2.1 with control input u(t) 

output y(t), and disturbance d(t) given by 

DdBuAxx ++=& , Cxy = (2.1) 

and a performance output z(t) that satisfies 

RuuQxxtz TT +=2)( , Cxy = ,

for some positive  matrices 0≥Q and 0>R . It is assumed that C has full row rank, a 

standard assumption to avoid redundant measurements.  
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RuuQxxz

Cxy
DdBuAxx

TT +=

=
++=

2

&

Kyu −=

d

u

z

y
RuuQxxz

Cxy
DdBuAxx

TT +=

=
++=

2

&

Kyu −= Kyu −=

d

u

z

y

Figure 2.1 System Description H-Infinity Output Feedback 
 

By definition the pair (A, B) is said to be stabilizable if there exists a real matrix 

K such that BKA − is (asymptotically) stable. The pair (A, C) is said to be detectable if 

there exists a real matrix L such that LCA− is stable. System (2.1) is said to be output 

feedback stabilizable if there exists a real matrix K such that BKCA − is stable. 

2.2 Bounded L2 Gain Design Problem

The System L2 gain is said to be bounded or attenuated by γ if  

2

0

0

0

2

0

2

)(

)(

)(

)(
γ≤

+

=

∫

∫

∫

∫
∞

∞

∞

∞

dtdd

dtRuuQxx

dttd

dttz

T

TT

(2.2) 

Defining a constant output-feedback control as 

KCxKyu −=−= (2.3) 

it is desired to find a constant output-feedback gain K such that the system is stable and 

the L2 gain is bounded by a prescribed valueγ .

2.3 Intermediate Mathematical Analysis

To find a constant output-feedback gain K as described in previous section, one may 

define the value functional given by Equation (2.4) 
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,])([

)(

),(

0

2

0

2

∫

∫
∞

∞

−+=

−+=

dtddxRKCKCQx

dtddRuuQxx

dKJ

TTTT

TTT

γ

γ (2.4) 

the corresponding Hamiltonian is defined as 

ddxRKCKCQxDdxBKCA
x
V

dKVxH

TTTT
T

x

2)(])[(

),,,(

γ−+++−
∂
∂

=
(2.5) 

with co-state 
x
V
∂
∂ . It is known that for linear systems the value functional V(x) is 

quadratic and may be taken in the form 0>= PxxV T without loss of generality. We 

shall do so throughout the chapter. 

Two lemmas simplify the presentation of our main Theorem 2.1 which solves 

this OPFB control problem. Lemma 2.1 is a mathematical description of Hamiltonian 

H, Equation (2.5) at given predefined disturbance d*, Equation (2.6) and gain K*,

Equation (2.7). It shows that if the gain K* exists the Hamiltonian takes on a special 

form.  

Lemma 2.1: For the disturbance defined as 

PxDtd T
2

1)(*
γ

= , (2.6) 

if there exists  K* satisfying 

),(* 1 LPBRCK T += − (2.7) 

for some matrix L, then one can write 
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.]1[

*)*,,,(

11
2 xLRLPBPBRPPDDQPAPAx

dKVxH

TTTTT

x

−− +−+++

=

γ
(2.8) 

Remark. The meaning of d* and K* and the special Hamiltonian *)*,,,( dKVxH x will 

be discussed later. The existence of K* satisfying Equation (2.7) is addressed in 

Theorem 1. 

Proof :  Introduce a quadratic form V(x) 

0>= PxxV T . (2.9) 

Then Px
x
V 2=
∂
∂ , and substitution in Equation (2.5) will give 

ddxRKCKCQxDdxBKCAPx
dKVxH

TTTTT
x

2)(])[(2

),,,(

γ−+++−=
(2.10) 

Note that, ),,( dKVxH x is globally concave in d. To find a maximizing disturbance set 

dPxD
d
H T 2220 γ−=
∂
∂

= . This defines the maximizing or worst case disturbance (2.6).  

Substitute Equation (2.6) into Equation (2.10) to get  

xRKCKCPBKCPBKC

PPDDQPAAPx

PxDPxDxRKCKCQx

PxDDxBKCAPx

dKVxH

TTTTT

TTT

T
T

TTTT

TT

x

]

1[

11)(

]1)[(2

*),,,(

2

22
2

2

+−

−+++=









−++

+−=

γ

γγ
γ

γ

Completing the squares yields 
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xPBRKCRPBRKC

PBPBRPPDDQPAPAx

dKVxH

TTT

TTTT

x

)]()(

1[

*),,,(

11

1
2

−−

−

−−+

−+++=
γ

(2.11) 

Substituting the gain defined by Equation (2.7) into Equation (2.11) yields Equation 

(2.8)  

xPBRLRPBRRPBRLRPBR

PBPBRPPDDQPAPAx

dKVxH

TTTTT

TTTT

x

)]()(

1[

*)*,,,(

111111

1
2

−−−−−−

−

−+−+

+−+++=
γ

Or 

.]1[

*)*,,,(

11
2 xLRLPBPBRPPDDQPAPAx

dKVxH

TTTTT

x

−− +−+++=
γ

The next Lemma expresses the Hamiltonian for any K and d(t) in terms of the 

Hamiltonian for K* and d*(t). 

Lemma 2.2: Suppose there exists K* so that Lemma 2.1 holds, then for any x(t), K and 

d(t) one can write 

221

1

*][

]*)([]*)([

*)*,,,(
),,,(

ddxLRLx

xCKKRLRCKKRLx
dKVxH

dKVxH

TT

TT
x

x

−−−

−+−++

=

−

−

γ

(2.12) 

for K* satisfying Equation (2.7), *d satisfying Equation (2.6). 

Proof: Now one has for any x(t), K, d(t), and a quadratic form V(x) defined by Equation 

(2.9) 
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ddxRKCKCQxDdxBKCAPx
dKVxH

TTTTT
x

2)(])[(2

),,,(

γ−+++−

=
(2.13) 

whence, one may derive 

ddPDdx

xLRLPBPBRPPDDRKCKCPBKCPBKCx

xLRLPBPBRPPDDQPAPAx

dKVxH

TT

TTTTTTTTT

TTTTT

x

2

11
2

11
2

2

]1[

]1[

),,,(

γ
γ

γ

−+

−+−+−−+

+−+++=

−−

−−

or 

ddPDdxxPPDDx

xLRLRKCPBKCPBRKCPBx
dKVxH

dKVxH

TTTT

TTTTTT
x

x

2
2

11

2]1[

])()([

*)*,,(
),,,(

γ
γ

−+−+

−−−−−+

=
−− (2.14) 

Substituting CKLPBR T *)(1 =+− , LRCKPBR T 11 * −− −= , LCRKPBT −= * , and  

TTT LRKCPB −= *)( into the first term in square brackets  yields, after some 

manipulations 

xLRLCKKLLKKCLRLx
xCKKRKKCx

xLRLRKCPBKCPBRKCPBx

TTTTTT

TTT

TTTTTT

]*)(*)([
]*)(*)([

])()([

11

11

−−

−−

−−+−++

−−=

−−−−−

The result contains non-square terms. One must change these into square form and 

study the contribution in order to reach any conclusion, therefore complete the square to 

see that  
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{ } { }
xLRLCKKRRRKKC

CKKRLRRKKCLx
xLRLCKKLLKKCLRLx

TTT

TTTT

TTTTTT

]*)(*)(
*)(*)([

]*)(*)([

11

1

11

−−

−

−−

−−−−

−+−+=

−−+−+

Therefore one has 

{ } { } xLRLCKKRLRRKKCLx
xLRLRKCPBKCPBRKCPBx

TTTTT

TTTTTT

]*)(*)([
])()([
11

11

−−

−−

−−+−+=

−−−−−
(2.15) 

Consider now the remaining three terms on the right-hand side of Equation (2.14). One 

has PxDd T
2

1*
γ

= , so that 

PDxd TT
2

1*)(
γ

= , TT dPDx *)(2γ= , and xPPDDxdd TTT ][*)(*4 =γ .Therefore one can 

show 

222
2 *2]1[ ddddPDdxxPPDDx TTTT −−=−+− γγ

γ
(2.16) 

Substituting now Equations (2.16) and (2.15) into (2.14) yields Equation (2.12). 

 

Remarks: 

1. According to the proof and the form of the Hamiltonian in Equation (2.12), d*(t) 

given by Equation (2.6) can be interpreted as a worst-case disturbance since the 

equation is negative definite in *dd − .

2. The form (2.12) of the Hamiltonian does not allow the interpretation of K* defined 

by Equation (2.7) as a minimizing control. More shall be said about this 

subsequently. 
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2.4 Necessary and Sufficient Conditions

Theorem 2.1. Necessary and Sufficient Conditions for H-infinity Static OPFB 

Control: 

Assume that 0≥Q and (A, Q ) is detectable. Then system defined by Equation (2.1) 

is output-feedback stabilizable with L2 gain bounded byγ , if and only if 

i. (A, B) is stabilizable and (A, C) is detectable 

ii. There exist matrices K* and L such that  

)(* 1 LPBRCK T += − (2.17) 

where P>0, PT =P, is a solution of 

01 11
2 =+−+++ −− LRLPBPBRPPDDQPAPA TTTT

γ
(2.18) 

Proof:  

Sufficiency. To prove sufficiency first note that Lemma 2.1 shows 

that 0*)*,,,( =dKVxH x if (ii) holds. It is next required to show bounded L2 gain if (ii) 

holds. From Lemma 2.1 and Lemma 2.2, one has for any K, x(t), and d(t) 

221

1

*][

]*)([]*)([

),,,(

ddxLRLx

xCKKRLRCKKRLx
dKVxH

TT

TT
x

−−−

−+−+=
−

−

γ

(2.20) 

Note that one has, along the system trajectories, for  KCxKyu −=−=

)( DdBuAx
x
Vx

x
V

t
V

dt
dV TT

++
∂
∂

=
∂
∂

+
∂
∂

= & = ])[( DdxBKCA
x
V T

+−
∂
∂ , so that from 

Equation (2.5) 
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ddxRKCKCQx
dt
dVdKVxH TTTT

x
2)(),,,( γ−++= (2.21) 

With Equations (20) and (21) 

.)(

*][

]*)([]*)([

2

221

1

ddxRKCKCQx
dt
dV

ddxLRLx

xCKKRLRCKKRLx

TTTT

TT

TT

γ

γ

−++=

−−−

−+−+
−

−

Selecting K= K*, for all d(t), and x(t) 

.0*][

)(

221

2

≤−−−

=−++

− ddxLRLx

ddxRKCKCQx
dt
dV

TT

TTTT

γ

γ
(2.22) 

Integrating this equation yields 

0])([))0(())(( 2

0

≤−++− ∫ dtddxRKCKCQxxVTxV TTTT
T

γ (2.22) 

Selecting x(0)=0 and noting that non-negativity implies TTxV ∀≥ 0))(( , one obtains 

dtdddtxRKCKCQx T
T

TTT
T

∫∫ ≤+
0

2

0

)( γ (2.24) 

for all T>0, so that the L2 gain is less than γ.

Finally, to prove the stability of the closed-loop system, letting 0)( =td in 

Equation (2.22) one has 

xRKCKCQx
dt
dV TTT )( +−≤ QxxT−≤ . (2.25) 
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Now detectability of (A, Q ) shows that the system is locally AS with Lyapunov 

function V(x). 

Necessity. To prove necessity, suppose that there exists an output feedback gain K that 

stabilizes the system and satisfies γ<gain  2L . It follows that BKCAAc −≡ is stable. 

Since KBACLABKCA +=+=− , then (i) follows.  

Consider the equation 

.01
2 =++++ RKCKCQPPDDPAPA TTT

c
T

c γ
(2.26) 

 

From Knobloch, Isidori, & Flockerzi, 1993, Theorem 2.3.1, closed-loop stability and L2

gain boundedness implies that Equation (2.26) has a unique symmetric solution such 

that 0≥P . Rearranging Equation (2.26) and completing the square will yield. 

.0
)()(

1

11

1
2

=
−−+

−+++

−−

−

PBRKCRPBRKC

PBPBRPPDDQPAPA

TTT

TTT

γ

(2.27) 

Equation (2.18) is obtained from Equation (2.27) for the gain defined by Equation 

(2.17) and (ii) is verified. 

Note that Equation (2.26) is a Lyapunov equation referred to the output z(t), since 

RuuQxxtz TT +=2)( . Moreover, this theorem reveals the importance of the 
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Hamiltonian *)*,,,( dKVxH x since the equation *)*,,,( dKVxH x =0 must hold for a 

stabilizing OPFB with bounded H-infinity gain. Note further that if C=I, L=0, this 

theorem reduces to known results for full state variable feedback.  

2.5 Existence of Game Theoretic Solution

The form of Equation (2.12) does not allow the interpretation of (K*, d*) as a 

well-defined saddle point. The purpose of this section is to study when the two policies 

are in saddle point equilibrium for static output-feedback ∞H . This means one has a 

Nash equilibrium in the game theoretic sense as discussed in Basar et al., 1991, so that 

the ∞H OPFB problem has a unique solution for the resulting L. In fact, this is the case 

when Theorem 2.1 is satisfied with L=0, as we now show using notions from two-

player, zero-sum differential game theory (Knobloch et al., 1993, and Basar et al.,

1991). The minimizing player controls u(t) and maximizing player controls d(t).  

Theorem 2.2: Existence of Well-Defined Game Theory Solution  

(K*,d*) is a well-defined game theoretic saddle point corresponding to a zero-sum 

differential game if and only if L is such that 

0*)(*)(*)(*)( ≥−−+−+−

≡

CKKRKKCLKKCCKKL
M

TTTTT (2.28) 

when *KK ≠ .

Note that this is always true if L=0.

Proof:  

Equation (2.12) becomes 
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221

1

*][

]*)([]*)([*)*,,,(

),,,(

ddxLRLx

xCKKRLRCKKRLxdKVxH
dKVxH

TT

TT
x

x

−−−

−+−++

=

−

−

γ

2211

1

1

221

1

*][]*)([]*)([

]*)([*)(

*)*,,,(

*][

]*)([]*)([*)*,,,(

),,,(

ddxLRLxxCKKRRCKKRx

LxRCKKRxCxKKLx
LxRLxdKVxH

ddxLRLx

xCKKRLRCKKRLxdKVxH
dKVxH

TTTT

TTTT

TT
x

TT

TT
x

x

−−−−−

+−+−

++=

−−−

−+−++=

−−

−

−

−

−

γ

γ

22 **)*,,,(),,,( ddMxxdKVxHdKVxH T
xx −−+= γ , (2.29) 

under the condition defined by Equation (2.28), one has 

*),,,(*)*,,,()*,,,( dKVxHdKVxHdKVxH xxx ≤≤ (2.30) 

or 

,0,0 2

2

2

2

<
∂
∂

>
∂
∂

d
H

u
H (2.31) 

at (K*, d*). It is known that a saddle point at the Hamiltonian implies a saddle point at 

the value function J when considering finite-horizon zero sum games. For the infinite 

horizon case, the same strategies remain in saddle point equilibrium when sought 

among the class of stabilizing non-anticipative strategies (Basar and Oldser, 1998). 

Therefore, this implies that  

0,0 2

2

2

2

<
∂
∂

>
∂
∂

d
J

u
J , (2.32) 

which guarantees a game theoretic saddle point. 

Remarks: 
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1. To complete the discussion in the Remarks following Lemma 2, note that Theorem 

2 allows the interpretation of K* defined by Equation (2.7), when L=0, as a 

minimizing control in a game theoretic sense. It is important to understand that 

introducing L in Theorem 1 provides the extra design freedom nedded to provide 

necessary and sufficient conditions for the existence of the H-infinity OPFB 

solution. 

2. If 0≠L , then there may exist a saddle point in some cases. However counter-

examples are easy to find. 
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CHAPTER 3 

H-INFINITY STATE FEEDBACK PARAMETERIZATION 

 

This chapter presents a parameterization of all stabilizing ∞H controllers for 

continuous-time systems in terms of a single ARE and a free parameter matrix. The 

form of the result is simple and can be used to select the parameter matrix to satisfy 

additional design criteria. Chapter is organized as follows; Sections 3.1 and 3.2 are 

introductory. Section 3.3 presents main results. In section 3.4 the result is used to 

develop necessary and sufficient conditions for existence of a solution to the H-Infinity 

static output feedback problem for continuous-time systems. 

3.1 System Description and Definitions

Consider the Linear Time-Invariant (LTI) system in Figure 3.1 

DdBuAxx ++=& , Cxy = (3.1) 

pmn RyRuRx ∈∈∈ ,,

and a performance output )(tz that satisfies 

RuuQxxtz TT +=2)( , (3.2) 

with 0≥= QQT , 0>= RRT . It is assumed that C has full row rank, a standard 

assumption to avoid redundant measurements. 
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RuuQxxz

Cxy
DdBuAxx

TT +=

=
++=

2

&

Kxu −=

d

u
y

z

x

Figure 3.1 System Description H-Infinity State-Feedback 
 

The System 2L gain is said to be bounded or attenuated by γ if 

2

0

0

0

2

0

2

)(

)(

)(

)(
γ≤

+
=

∫

∫

∫

∫
∞

∞

∞

∞

dtdd

dtRuuQxx

dttd

dttz

T

TT

(3.3) 

for any non-zero energy-bounded disturbance input d . Call *γ the minimum 

gain for which this occurs.  For linear systems, there are explicit formulae to 

compute *γ , see, e.g., Chen (2000).  Throughout this paper we shall assume that γ is 

fixed and *γγ > .

3.2 Bounded L2 Gain Design Problem Statement

Defining a constant state-feedback control as 

xKu s−= , (3.4) 

it is desired to find the state-variable feedback (SVFB) gain sK such that the closed-

loop system scs BKAA −≡ is asymptotically stable and the 2L gain is bounded by a 

prescribed value *γγ > .
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3.3 Parameterization 

The following main theorem shows necessary and sufficient conditions for the 

parameterization of all stabilizing H-Infinity static state-feedback gains.  It provides a 

simpler parameterization than most other results in the literature. 

Theorem 3.1 – Parameterization of all H∞ SVFB gains 

Assume that ( A , 2/1Q ) is detectable. Then sK is a state feedback that stabilizes system 

(3.1) and guarantees 2L gain bounded by *γγ > , if and only if there exists a parameter 

matrix L such that 

)(1 LPBRK T
s += − , (3.5) 

where 0≥= TPP , is a solution to  

01 11
2 =+−+++ −− LRLPBPBRPPDDQPAPA TTTT

γ
(3.6) 

Proof: 

Necessity:  

Suppose that there exists a state-feedback gain sK that stabilizes the closed loop system 

scs BKAA −≡ and satisfies 2L gain bounded byγ . Consider the equation 

01
2 =++++ s

T
s

TT
cscs RKKQPPDDPAPA

γ
(3.7) 

Considering the definition (3.2), from Knobloch et al.(1993), Theorem 2.3.1, closed-

loop stability and 2L gain boundedness implies that Equation (3.7) has a unique 

symmetric solution such that 0≥P . Rearranging Equation (3.7) and completing the 

square will yield 
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.0)()(

1

11

1
2

=−−+

−+++

−−

−

PBRKRPBRK

PBPBRPPDDQPAPA

T
s

TT
s

TTT

γ (3.8) 

Substituting the gain defined by (3.5) in (3.8) yields (3.6). 

Sufficiency:  

Define PPDDRKKQQ T
s

T
s 2

1
γ

++≡ and s
T

s RKKQQ +≡
~ . Suppose that (3.5) and 

(3.6) hold, then (3.7) follows, so that 

0=++ QPAPA T
cscs . (3.9) 

We claim that detectability of ( A , 2/1Q ) implies detectability of ),( 2/1QAcs . For, note 

that detectability of ( A , 2/1Q ) implies that 2/1~QLA− is stable for some L~ . One can 

write  

2/12/1~ QLAQLA c −=− (3.10) 

for ( ) ( ) 















≡ PDKRQQ TTT

γ
1)( 2/12/12/1 and 



 −≡ − 0~ 2

1
BRLL . It follows 

that if pair ),( 2/1QA is detectable then pair ),( 2/1QAc is detectable as well.  

Moreover 0≥Q , and 0≥P . Therefore, using the Lyapunov stability criteria (Wonham, 

1985), Lemma 12.2, Equation (3.9) implies closed-loop stability. Finally for 

TuRxQz ][ 2/12/1= one has xQxzz TT ~
= , and  

0~1
2 =+++ QPPDDPAPA TT

cscs γ
, (3.11) 

and system 2L gain bounded-ness then follows from Van der Schaft (1992), Theorem 2.  
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3.4 Applications to Output Feedback Design

A special case of this result shows when there exists a static output 

feedback (OPFB) gain F that stabilizes the system (3.1) with bounded 2L gain. OPFB 

requires a restricted form of the gain matrix sK that has C as a right divisor. Define the 

control input for OPFB as 

xKFCxFyu s−=−=−=

which yields the closed-loop system )(0 BFCAA −≡ Equations for OPFB 

design are generally complicated, consisting of three coupled matrix equations, as given 

in Lewis and Syrmos (1995), Moerder and Calise (1985), and Jen Te Yu (2004). 

The next result provides simplified equations for OPFB design.  The Corollary 

holds for a prescribed matrix Q and follows directly from Theorem 1. 

Corollary 3.1- Existence of H-Infinity OPFB for a given Q

Consider a specified 0≥Q such that ( A , 2/1Q ) is detectable, and a specified 

value of *γγ > . Then there exists an OPFB gain F such that )(0 BFCAA −≡ is 

asymptotically stable with bounded 2L gain if and only if there exists a parameter 

matrix L such that 

)(1 LPBRFC T += − , (3.12) 

where 0≥= TPP , is a solution to 

01 11
2 =+−+++ −− LRLPBPBRPPDDQPAPA TTTT

γ
(3.13) 
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The next result gives necessary and sufficient conditions for the existence of a 

stabilizing OPFB with bounded 2L gain. It follows from Corollary 1 by 

setting CCQ T= . It is a refinement of the result in Kucera and de Souza (1995), and 

extends that result to solve the H-Infinity OPFB problem. 

Corollary 3.2- Existence of H-Infinity OPFB  

For a given *γγ > , there exists an OPFB gain such that )(0 BFCAA −≡ is 

asymptotically stable with 2L gain bounded by γ if and only if: 

i. ),( CA is detectable 

and there exist matrices L and 0≥= TPP such that: 

ii. )(1 LPBRFC T += − .

iii. 01 11
2 =+−+++ −− LRLPBPBRPPDDCCPAPA TTTTT

γ
(3.14) 

Proof: 

Necessity:  

To prove necessity, set CCQ T= , FCKs = and proceed with the necessity 

proof of Theorem 1. Note further that )( BFCA− stability implies ),( CA detectability. 

Sufficiency:  

Suppose that (i), (ii) and (iii) hold, then the sufficiency proof of Theorem 1 

holds with 0≥= CCQ T .

Remarks.   
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Note that under the special form CCQ T= , the performance output is 

given by  

222 uyz += ,

Note that a stabilizability condition on ),( BA is hidden in the 

assumption of existence of a solution 0≥= TPP to (3.14). 
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CHAPTER 4 

SOLUTION ALGORITHMS  

 

Chapters 2 and 3 established the existence of the H-Infinity Design Conditions. 

This chapter presents three approaches to find the H-Infinity Design Solution using 

output-feedback. These approaches are Algebraic Riccati Equation Based Iterative 

Numerical Algorithms to achieve predefined disturbance attenuation.  

4.1 Solution Algorithm I

Most existing iterative algorithms for OPFB design require the determination of 

an initial stabilizing gain, which can be very difficult for practical systems.   

The following algorithm is proposed to solve the two coupled design equations 

in Theorem 2.1. Note that it does not require an initial stabilizing gain since, in contrast 

to Kleinman’s Algorithm, 1968 and the algorithm of Moerder and Calise, 1985, it uses a 

Riccati equation solution, not a Lyapunov equation, at each step. 

Algorithm: 

1. Initialize: Set n=0, 00 =L , and select γ , Q and R. 

2. n-th iteration: solve for nP in 

01 11
2 =+−+++ −−

n
T

nn
T

nn
T

nn
T

n LRLPBBRPPDDPQPAAP
γ

(4.1) 

Evaluate gain and update L
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11
1 )()( −−

+ += TT
nn

T
n CCCLPBRK (4.2) 

n
T

nn PBCRKL −= ++ 11 (4.3) 

3. Check Convergence: If  1+nK and  nK are close enough to each other, go 

to 4 otherwise set 1+= nn and go to 2.  

4. Terminate: Set K= 1+nK

Note that this algorithm uses well-developed techniques for solving Riccati equations 

available, for instance, in MATLAB.  

Lemma 4.1:  

If this algorithm converges, it provides the solution to (2.17) and (2.18). 

Proof:  

Clearly at convergence (2.18) holds for Pn. Note that substitution of Equation (4.2) into 

Equation (4.3) yields. 

n
TTT

nn
T

n PBCCCCLPBRRL −+= −−
+ ])()([ 11
1

Defining 1)( −+ = TT CCCC as the right inverse of C one has  

CCLCCIPBL
PBCCLPBL

nn
T

n

n
T

nn
T

n
++

+

+
+

+−−=

−+=

)(

)(

1

1

At convergence LLL nn ≡=+1 , PPn ≡ so that 

))((0
)()(0

CCILPB
CCIPBCCIL

T

T

+

++

−+=

−+−=

CCLPBLPB TT ++=+ )(
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This guarantees that there exists a solution K* to (3.17) given by 

+− += CLPBRK T )(1 .

4.2  Design Example: F-16 Normal Acceleration Regulator Design using 
Solution Algorithm I

In aircraft control design, it is very important to design feedback control 

regulators of prescribed structure for both stability augmentation systems (SAS) and 

control augmentation systems (CAS) (Stevens and Lewis, 2003). Therefore, static 

OPFB design is required.  This example shows the power of the proposed static H-

Infinity OPFB design technique, since it is easy to include model dynamics, sensor 

processing dynamics, and actuator dynamics, but no additional dynamics (e.g. 

regulator) are needed.   

The OPFB design algorithm presented is applied to the problem of designing an 

output-feedback normal acceleration regulator for the F-16 aircraft in Stevens and 

Lewis (2003, Section 5.4). The control system is shown in Figure 4.1, where nz is the 

normal acceleration, r is the reference input in g’s, and the control input u(t) is the 

elevator actuator angle. To ensure zero steady-state error an integrator has been added 

in the feed-forward path, this corresponds to the compensator dynamics. The integrator 

output isε . The short period approximation is used so the aircraft states are pitch rate q

and angle of attackα . Since alpha measurements are quite noisy, a low pass filter with 

the cutoff frequency of 10 rad/s is used to provide filtered measurements Fα of the 

angle of attack. An additional state eδ is introduced by the elevator actuator. 
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Aircraft
q,α

2.20
2.20

+s

kα

kq

α

q

kI

ke

s
1r e ε u δe

nzz =

10
10
+s

+ - - -

++

-

Figure 4.1 G Command System 
 

The state vector is: 

α=)1(x : Angle of attack. 

qx =)2( : Pitch Rate. 

ex δ=)3( : Elevator Actuator. 

Fx α=)4( : Filtered measurement of angle of attack. 

ε=)5(x : Integral Controller. 

The measurement outputs are T
F eqy ][ εα= .

We use the short period approximation to the F-16 dynamics linearized about 

the nominal flight condition described in Stevens and Lewis (2003), Table 3.6-3 (502 

ft/s, level flight, dynamic pressure of 300 psf, cxcg 35.0= ) and the dynamics are 

augmented to include the elevator actuator, angle-of-attack filter, and compensator 

dynamics. The result is 
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with  
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The factor of 57.2958 is added to convert angles from radians to degrees.  

The control input is ykkkkKyu Ieq ][ α−=−= . It is required to select the output-

feedback feedback gains to yield stability with good closed-loop response. Note that αk

and qk are feedback gains, while ek and Ik are feed-forward gains. This approach 

allows the adjustment of both for the best bounded L2 gain performance.  The algorithm 

presented above was used to design an H-Infinity pitch-rate regulator for a prescribed 

value of γ.

For the computation of the output feedback gain K it is necessary to select Q

and R. Using the algorithm described above for the given γ, Q, and R the control gain K

is easily found using MATLAB in a few seconds. If this gain is not suitable in terms of 

time responses and closed-loop poles, the elements of Q and R can be changed and the 



38

design repeated. After repeating the design several times we selected the design 

matrices as 























=

1000000
00000
00001
0006016
00116264

Q , ]1.0[=R

which yields the feedback matrix 

[ ]7201.314336.121778.00 −=K .

The resulting closed-loop poles are at  

-28.3061=s , 1.2148i 1.4974- ± , 3.1809- , 10- .

The resulting gains are applied to the system, and a unit step disturbance d(t) is 

introduced in simulations to verify robustness of the design. The resulting time 

responses shown in Figures 4.2 and 4.3 are very good. Note that, though we designed an 

H∞ regulator, the structure of the static OPFB controller with the prescribed loops also 

guarantees good tracking. 
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Figure 4.2 Angle of Attack 
 

Figure 4.3 Pitch Rate 
 

Note on selecting γ :
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The gain parameter γ defines the L2 bound for a given disturbance.  One can 

quickly perform the design using the above algorithm for a prescribed value of γ in a 

few seconds using MATLAB. If the algorithm converges, the parameter γ may be 

reduced.  If γ is taken too small, the algorithm will not converge since the ARE has no 

PD solution.  This provides an efficient and fast trial-and-error method for determining 

the smallest allowable γ , for given Q and R design matrices which solves the H-Infinity 

problem.  For this example, the H-Infinity value of γ is found to be equal to 0.2, for 

which the above results were obtained. 

4.3 Solution Algorithm II

In this section we present another algorithm to solve H-Infinity Output 

Feedback. Assuming Conditions defined in theorem 2.1, closed form coupled equations 

can be written as  

)(* 1 LPBRCK T += − (4.4) 

01
2 =++++ RKCKCPPDDQPAPA TTTT

cc γ
(4.5) 

This OPFB H-Infinity design algorithm solves Equation (4.4) and (4.5) and is an 

extension of Klienman’s algorithm which was originally proposed for state-variable 

feedback control without disturbance (Klienman, 1968) . At this point it is important to 

state that unlike the algorithms of (Moerder and Calise, 1985), (Jen Te-Yu 2004), it uses 

a Riccati equation solution, not a Lyapunov equation, at each step to solve for the H-

Infinity design for a given admissible disturbance attenuation.  

Algorithm:  
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1. Initialization: 00 =L , =0K Initial stabilizing gain. 

2. Solve for P

01
)()(

2 =+++

−+−

CRKKCQPDDP

PCBKACBKAP

n
T

n
T

n
T

n

n
T

nnn

γ
. (4.6) 

3. Update K

+−
+ += CLPBRK nn

T
n )(1

1 . (4.7) 

Where 1)( −+ = TT CCCC is defined as the right inverse of C.

4. Update L  

n
T

nn PBCRKL −= ++ 11 . (4.8) 

Check for convergence ε<− −1nn PP , at convergence define K∞=K, go to 1 if not 

converged. 

 

Lemma 4.2 : If this algorithm converges, it provides the solution to Equations 

(4.4) and (4.5). 

Proof: Clearly at convergence Equation (4.5) holds for Pn. Note that 

substitution of Equation (4.7) into Equation (4.8) yields. 

n
T

nn
T

n PBCCLPBRRL −+= +−
+ ])([ 1
1

At convergence LLL nn ≡=+1 , PPn ≡ so that 

PBCCLPBL TT −+= +)( , or 

CCLPBLPB TT ++=+ )( (4.9) 
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This guarantees that there exists a solution K* to (4.4) given by +− += CLPBRK T )(1 .

4.4 Aircraft Flight Tracking Controller Design using H-Infinity Static Output-
Feedback Algorithm II

This example aims to analyze the effects by combining aircraft control design 

techniques for tracking with H-Infinity output-feedback design, algorithm 2 is used. It is 

shown that for the F-16 Aircraft model H-Infinity OPFB performs better than Optimal 

OPFB if disturbance exists. 

4.4.1 Structure of Aircraft Tracking System 

In aircraft control design, experience is often utilized to make the decisions 

about the compensator, Figure  4.4  describes an approach to the design of tracking 

control system which is very useful in aircraft control application; this approach will 

allow one to design a servo control system that has any structure desired. 

compensator -L plant

-KP Cp

Hp

r(t) u(t)v(t)

d(t)

x(t)

performance output   z(t)

measured output   y(t)

-

e(t)

 
Figure 4.4 Plant with Compensator of Desired Structure under Disturbance 



43

By defining the state, the output and the matrix variable to stream line the 

notations we see that the augmented dynamics that contain the aircraft, compensator 

and the disturbance are of the form described by Equation 4.10.  

Hx
FrCxy

DdGrBuAxx

=
+=

+++=

ζ

&

(4.10) 

The modifying procedure is illustrated in the example. The admissible controls 

are proportional output feedback of the form 

KFrKCxKyu −−=−= (4.11) 

Using these equations the closed-loop system is found to be of the form as in 

Equation 4.12, and illustrated in Figure 4.5. 

DdrBxAx cc ++=& (4.12) 

with rBKFGBBKCAA cc )(),( −≡−≡ .

G

K

C

y(t)

d(t)

DdGrbuAxx +++=&

D

-
u(t) 

control

F

Figure 4.5 Plant/Feedback Structure with Disturbance 
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It is well known that if the compensator is required to have a specific structure, 

the selection of control gains is an output feedback problem. Even if state-variable 

feedback might be able to guarantee stability, the resulting compensator has no structure 

and is unsuitable. Another important issue is that disturbances can affect the system 

performance even if stability is guaranteed. Therefore one is motivated to consider H-

Infinity OPFB design. 

Design of this tracking system can be converted to a regulator design problem 

(Stevens and Lewis, 2003).  Having designed a suitable regulator using H-Infinity 

technique, the structure in Figure 4.4, which includes a unity gain outer tracking loop, 

then guarantees good tracking performance. 

Disturbance )(tdδ is affecting the elevator actuation and n(t) is affecting  the 

filtered measurement, so that [ ]Ttntdtd )()()( δ= .

The optimal output feedback gain K2 for the Q and R shown below is given in 

(Stevens and Lewis, 2003). It is  

[ ]6.7756.18316.1629.12 −−=K .























=

1000000
00000
00001
0006016
00116264

Q , ]01.0[=R

Using these Q and R which yields the H-Infinity output feedback matrix ∞K and 

resulting closed loop poles  

[ ]0003.1009091.305171.00 −=∞K .
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-42.9359=s , 1.1082i 1.6099- ± , 6.4347- , 10- .

The resulting gains are applied to the system, and step disturbances d(t) with 

varying magnitude is introduced in simulations to verify robustness of the design. The 

resulting time responses shown in Figures 4.6 and 4. 7 are very good. The structure of 

the H- Infinity static OPFB controller with the prescribed loops guarantees good 

tracking when disturbance is introduced. In Figure 4.7 one sees the effect of disturbance 

on the transient response; in Figure 4.8 the increased disturbances of magnitude 10 

times higher than unit step will make the response of the optimal output-feedback 

worse. 

Figure 4.6 Response without Disturbance 
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Figure 4.7 Response with unit step Disturbance 
 

Figure 4.8 Response with increased Disturbance 
 

4.5 Solution Algorithm III

This section presents an algorithm to solve the two coupled design equations in 

Corollaries 3.1 and 3.2. The algorithm starts with a stabilizing SVFB gain, which can 
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easily be found using standard computational tools (e.g. LQR). It is shown that the 

algorithm, if it converges, solves the output feedback problem.  

Since C has full row rank, the right inverse is defined as 1)( −+ ≡ TT CCCC , which 

is best computed using the SVD 

[ ] 







== T

T
T

V
V

SUUSVC
2

1
0 0 . (4.10) 

Then ]0[][ 121 CVVCCV == , so that 11 CCV = , and 02 =CV . Note 

that TT VVVVI 2211 += . Therefore,  

i. TT USVUVSC 1
01 )( −++ == .

ii. CCVVIVV TT +=−= 2211 is the projection onto nullspace perpendicular 

of C .

iii. CCIVVIVV TT +−=−= 1122 is the projection onto the nullspace of C .

The equation )(1 LPBRKC T += − has an exact solution K if and only if 

TTT VVLPBCCILPB 22)())((0 +=−+= + .

Then the solution is given by 

TTT USVLPBRCLPBRK 1
01

11 )()()( −−+− +=+= .

The following algorithm is based on Yu (2004), where, however, three coupled 

equations must be solved.  It solves for a state feedback at each iteration, and then 

projects that SVFB onto nullspace perpendicular of C.

OPFB Design Algorithm 



48

1. Initialize: Fix *γγ ≥ . Set 0=n , 00 =L . Solve a standard (e.g. LQR) Riccati 

equation for given Q and R and obtain a stabilizing SVFB gain as initial 

gain )0(sK . Define closed-loop matrix )0(0
~

sBKAA −= .

2. n-th iteration:  

Solve ARE for P 

01)~()~( 2 =++++ n
T

nsn
T

snn
T

nnn PDDPRKKQPAAP
γ , (4.11) 

update K, project onto nullspace perpendicular of C

))(( 22
1

)1(
T

nn
T

ns VVILPBRK −+= −
+ , (4.12) 

update L

n
T

nsn PBRKL −=+ )(1 , (4.13) 

update closed-loop system matrix  

)1(1
~

++ −= nsn BKAA , (4.14) 

3. Check convergence. If converged, go to step 4 otherwise set 1+= nn go to step 

2. 

4. End.  Set )1( += nss KK and compute OPFB gain T
s USVKK 1

01 )( −= .

The convergence can be checked using the norm of nn PP −+1 .

This algorithm has converged on all examples tried.  The next result shows the 

correctness of the algorithm, namely, that if it converges, it provides the H-Infinity 

OPFB gain. 

Lemma 4.3 
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If this algorithm converges, it provides the H∞ OPFB gain. 

Proof: Clearly, at convergence (3.7) holds for PPP nn ≡=+1 . Substitution of Equation 

(4.12) into Equation (4.13) yields. 

n
TT

nn
T

n PBVVILPBRRL −−+= −
+ ))(( 22

1
1

At convergence LLL nn ≡=+1 , so that 

PBVVILPBL TTT −−+= ))(( 22 , therefore 

CCLPBLPB TT ++=+ )( (4.15) 

This guarantees that there exists a solution F to (3.12) given 

by +−+ +== CLPBRCKK T
s )(1 T

s USVK 1
01 )( −= .

4.6 Design Example using Solution Algorithm III

In this example we demonstrate the effectiveness of the proposed static H-Infinity 

OPFB design technique on a more complex design example. It is desired to design a 

lateral-directional (e.g., roll damper/yaw damper) command augmentation system 

(CAS) for the F-16 dynamics from Stevens and Lewis (2003) linearized at the nominal 

flight condition in Table 3.6-3 (Stevens and Lewis, 2003) ( 502=TV ft/s, 300psf dynamic 

pressure, cg at 0.35 c ).  This CAS has two input channels, and includes actuators and a 

washout filter.  The design requires the selection of 8 control gains.  The structured 

nature of the CAS means that OPFB, not SVFB, must be used. 

The lateral states are sideslip β , bank angleφ , roll p, and yaw rate r. Additional 

states aδ and rδ are introduced by the aileron and rudder actuators 
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aa u
s 2.20

2.20
+

=δ , rr u
s 2.20

2.20
+

=δ .

A washout filter 

r
s

srw 1+
=

is used, with r the yaw rate and wr the washed out yaw rate. The washout filter 

state is denoted wx . The entire state vector is  

[ ]Twra xrpx δδφβ= .

The control inputs are the rudder and aileron servo inputs so that 









=

r

a

u
u

u .

The disturbance is given by [ ]T
ra tntdtdtd )()()()( = , where )(tda affects the 

aileron actuation, )(tdr the rudder actuation, and )(tn the washout filter state. 

The full state variable model of the aircraft plus actuators, washout filter, disturbance, 

and control dynamics has matrices.  
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−
−−−−

−−−

−−

=

1002958.57000
02.2000000
002.200000
00620.00319.04764.00254.005396.8
01315.07333.06646.06784.306492.30
0000037.0100
00008.0003.09917.00364.00640.03220.0

A
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The output is  
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,

and Cxy = with 

















 −

=

000002958.570
0000002958.57
00002958.5700
1002958.57000

C

The factor of 57.2958 is added to convert angles from radians to degrees. The 

feedback control is output feedback of the form Fyu = , so that the F is a 42× matrix. 

That is, eight feedback gains must be selected. 

For the computation of the H-Infinity output feedback gain F it is necessary to 

select Q, R, andγ . The proposed algorithm makes it very easy and fast to perform the 

design for different values of Q, R, γ . We selected CCQ T= and IR = . If the 

resulting gain F is not suitable in terms of time responses and closed-loop poles, the 
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elements of Q and R can be changed and the design repeated. These values were found 

suitable in this example. 

After some design repetitions, which were performed very quickly using the 

algorithm, we found the smallest value of the gain to be =*γ 1.499.  The results for that 

gain are 

 







=

0.88250050.5608-9.3495 10.100919.7080-
0.30770017.6280-47.1518-56.0021-95.1780

sK









=

0.17630.3440-0.1632 0.8825-
0.9774-1.66120.8230-0.3077-

K .

The resulting closed-loop poles are at  

 1.1350-1.0468i, 1.3423-4.1338,-15.1711,-25.4311i, -11.3762s ±±= .

The resulting gains are applied to the system, and step disturbances d(t) are 

introduced in simulations to verify robustness of the design. The resulting time 

responses shown in Figures 4.9 and 4.10 are very good. The design procedure based on 

solving two coupled equations is significantly easier than methods based on solving 

three coupled equations, e.g. as described in Lewis and Syrmos (1995) and Moerder and 

Calise (1985).  Moreover, the H-Infinity static OPFB controller generally outperforms 

the H2 optimal OPFB controller when disturbances are introduced. 
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Figure 4.9 Closed loop response dutch roll states 

Figure 4.10 Closed loop response roll mode states 
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CHAPTER 5 

UNMANNED AERIAL VEHICLE CONTROL 

 

5.1 Helicopter Dynamics

There is a growing interest in developing control strategies for unmanned 

autonomous helicopters, in particular a small scale one. From a strictly aerodynamic 

point of view, these rotary-wing aircrafts may be defined as configurations which derive 

their forces directly from open airscrews. The dynamics of rotorcrafts are significantly 

more complex than those of fixed wing aircrafts. A rotorcraft is an inherently unstable, 

high order, cross coupled and challenging to model dynamic system. Low weight 

modern instrumentation and new theoretical contributions in systems theory is resulting 

in important breakthroughs. This work in section 5.1 is not claimed to be an original 

work of the dissertation, this introductory work is given for completeness and 

continuity. This section is organized as follows- Section 5.1.1 derives 12th order rigid 

body dynamics ( Friedland, 1986), trim conditions are discussed in Section 5.1.2. A 

reduced order helicopter model is derived in section 5.1.3. 

5.1.1 Rigid Body Dynamics 

The motion of a single rigid body has six dynamic degrees of freedom: three of 

those define the location of a reference point (usually the center of gravity) in the body, 

and three define the orientation (attitude) of the body. Each of the six degrees of 
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freedom takes two state variables (one position and one velocity) a total of 12 first-order 

differential equations are required to completely describe the motion of the body. The 

motion of a rigid body is governed by the familiar Newtonian laws of motion 

f
dt
pd rr

= (5.1) 

τr
r

=
dt
hd (5.2) 

Where 
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is the force acting on the body, 
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τ
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τ

τ
r is the torque 

acting on the body. 

It is important to understand that (5.1) and (5.2) are valid only when the axes 

along with the motion is resolved are an inertial frame of reference, i.e., they are neither 

rotating or accelerating. If the axes are accelerating linearly or rotating then (5.1) and 

(5.2) must be modified to account for the motion of the reference axes. 

The rotational dynamics of a rigid body are more complicated than the 

translational dynamics for several reasons: the mass M of a rigid body is a scalar, but 

for the moment of Inertia J is a 33× matrix. If the body axes are chosen to coincide with 

the principal axis, the moment of inertia matrix is diagonal; otherwise the matrix J has 

off diagonal terms. However the main complication is in the description of the attitude 
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or orientation of the body in space. To define the orientation of the body in space, we 

can define three axes ),,( BBB zyx fixed in the body, as shown in Figure 5.1 

Figure 5.1 Inertial and body-fixed axes 
 

One way of defining the attitude of the body is the define the angles between the 

body axes and the inertial reference axes )( ,, III zyx . In aircraft and space 

mechanics it is now customary to define the orientation of a set of orthogonal axes in 

the body (body axes) with respect to the inertial reference. 

Suppose the body axes are initially aligned with the inertial reference axes. 

Then the following sequences of rotations are made to bring the body axes into general 

position: 

1. First, a rotation ψ (yaw) about the z axis 

2. Second, a rotation θ (pitch) about the resulting y axis 
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3. Third, a rotation φ (roll) about the resulting x axis 

It can be shown that 
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Thus we see that  
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(5.7) 

Where BIT is the matrix that rotates the body axes from reference position, and is the 

product of three matrices 
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Each factor of BIT is orthogonal matrix and hence BIT is orthogonal, i.e., 

( ) ( )T
BIBIIB TTT == −1 (5.9) 

Note that ( ) 1−= BIIB TT is the matrix that returns the body axes from the general position 

to the reference position. 
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Since any vector in space can be resolved into its components in body axes or in 

inertial axes, we can use the transformation BIT to obtain the components of a vector in 

one set of axes, given its component in the other. In particular suppose ar is any vector 

in space. When it is resolved into components along an inertial reference we attach the 

subscript I ; when it is resolved in body axes, we attach the subscript B.
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Using (5.7) we obtain 

IBIB aTa rr
= (5.10) 

This relationship can be applied to newtonial law of motion τr
r

=
dt
hd for the 

angular motion of a rigid body and, for describing the motion of a rotorcraft along 

rotating body axes. In the case of a rigid body, the angular momentum vector is 

ω
rr

Jh = (5.11) 

Where J is the moment of inertia matrix and ωr is the angular velocity vector. 

If the axes along which angular momentum vector of the body h
r

is resolved are defined 

to be coincident with the physical principal axes of the body, then J is a diagonal 

matrix. Thus when h
r

is resolved along principal body axes we get  
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(5.12) 
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Because of the fact that newtonian law of motion τr
r

=
dt
hd holds only when the body 

angular momentum vector h
r

is measured with to an inertial reference, one can write 

( ) IBIB
I hT

dt
d

dt
hd

τr
r

r

== (5.13) 

The transformation IBT , however, is not constant. Hence (2.12) can be written as 

IBIBBIB hThT τr
r

&&r =+

IBIBIBBIB ThTTh τr
r

&&r =+

BBIBBIB hTTh τr
r

&&r =+ (5.14) 

Which in component form can be written as 
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(5.15) 

These differential equations relate the components of the angular velocity 

vector, ωr projected onto rotating body axes 
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to the torque vector also projected along body axes. To complete (5.15) we need the 

matrix IBBITT & . It can be shown that 
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So that 
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Hence one can write 
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(5.18) 

These are the famous Euler equations that describe how the body-axis 

components of the angular velocity evolve in time, in response to torque components in 

body axes. In order to completely define the attitude (orientation), we need to relate the 

rotation angles φ , θ , and ψ to the angular velocity components 

θφωφωψ

φωφωθ

θφωφωωφ

cos)cossin(

sincos

tan)cossin(

yx

zy

zyx

+=

−=

++=

&

&

&

(5.19) 

The rotation motion of a general rigid body has been given in (5.15). In aircraft 

terminology the projections of the angular velocity vector on the body x, y, and z axes 

have standard symbols. 

px =ω (roll rate) 
qy =ω (pitch rate) (5.20) 
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rz =ω (yaw rate) 
 

Thus assuming the body axes are the principal axes of the aircraft, the rotational 

dynamics can be expressed as 
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(5.21) 

Where L is the rolling moment, M is the pitching moment, and N is the yawing 

moment. To define the translational motion of an rotorcraft it is customary to project the 

velocity vector onto body fixed axes. 
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w
v
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vB

r (5.22) 

Where u, v, and w are the projections of the vehicle velocity vector onto the 

body x, y, and z axes. The linear momentum of the body, in an inertial frame is 

 
BIBI vmTvmp rrr

==

Hence , the dynamic equations for translation are 

( ) IBIB
B

IBBIB fvT
dt
vdTmvmT

dt
d rr&

r
r

=





 += (5.23) 

where If
r

are the external forces acting on the aircraft referred to an inertial frame. 

Proceeding as before, we can find that 
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In component form (5.24) becomes 
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Where zByBxB fandff ,, are the total forces acting on the body. The equations for 

the vehicle position are 
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(5.27) 

Complete dynamic equations of the vehicle is given in (5.28),  this system of 12 

first order differential equations, with the moments and forces constitute the complete 

six-degrees-of-freedom description of a rotorcraft behavior. 



63

)28.5(

cos)cossin(
sincos

tan)cossin(

1

1

1
















=

+=

−=

++=

+−=

++−=

+−=

−
−=

−
−=

−
−=

w
v
u

T
z
y
x

f
m

pvquw

f
m

pwruv

f
m

qwrvu

pq
J

JJ
J
Nr

pr
J

JJ
J
Mq

qr
J

JJ
J
Lp

IB

yx

zy

zyx

zB

yB

xB

z

xy

z

y

zx

y

x

yz

x

&

&

&

&

&

&

&

&

&

&

&

&

θφωφωψ

φωφωθ

θφωφωωφ

5.1.2 Helicopter Flight Dynamics: Trim, Stability, and Response 

In most applications, not all of the 12 states variables derived in the previous 

section are of interest, and not all the differential equations are needed. A mathematical 

description or simulation of helicopter’s flight dynamics needs to embody the important 

aerodynamic, structural and other internal dynamic effects (e.g. engine, actuation) that 

combine to influence the response of the aircrafts to controls. The problem is highly 

complex and the dynamic behavior of the helicopter is often limited by local effects that 

rapidly grow in their influence to inhibit larger or faster motion. 
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The behavior of a helicopter in flight can be modeled as the combination of a 

large number of interacting sub-systems. Figure 5.2 highlights the main rotor elements, 

the fuselage, power plant, and the resulting forces and moments. 

Figure 5.2 The modeling components of a helicopter 
 

Helicopter states in body frame coordinate system are shown in simplified form 

in Figure 5.3. Strictly speaking, the center of gravity will move as the rotor blades flap, 

but we shall assume that the center of gravity is located at the mean position, relative to 

a particular trim state. 
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Figure 5.3 Helicopter states in body frame coordinate system 
 

The equations governing the behavior of these interactions are developed from 

the application of the physical laws, e.g., conservation of energy, Newton’s law of 

motion, to the individual components, and commonly take the form of nonlinear 

differential equations written in the first order vector form 

),,( tuxf
dt
dx

= (5.29) 

with initial conditions x(0)=x0

x(t) is the column vector of state variables; u(t) is the vector of control variables and f is 

a nonlinear function of the aircraft motion, control inputs and external disturbances. 
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For the special case where only six rigid body degrees of freedom are 

considered, the  state vector x, comprises the three translational velocity components 

wvu and ,, , the three rotational velocity components rqp and,, and the Euler angles 

ψθφ and ,, . The three Euler attitude angles augment the equations of motion through 

the kinematic relationship between the fuselage rates ,, qp and r and the rate of change 

of euler angles ψθφ &&& and ,, . The velocities are referred to an axes system fixed at the 

center of gravity as shown in the Figure 5.3 and the Euler angles define the orientation 

of the fuselage with respect to an earth fixes axes system. 

The degrees of freedom can be arranged in the state vector as longitudinal and 

lateral motion subsets, as 

Trpvqwux ][ ψφθ= (5.30) 

The function f then contains the applied forces and moments, again referred to 

the aircraft centre of gravity, from aerodynamic, structural, gravitational, and inertial 

sources. Strictly speaking, the inertial and gravitational forces are not applied but it is 

conventional to label them so and place them on the right-hand side of the describing 

equation. The derivation of these equations from Newton’s laws of motion is carried out 

in appendix. 

It is important to note that this six degrees-of-freedom model, while itself 

complex and widely used is still an approximation to the aircraft behavior. This process 

of approximation is a common feature of flight dynamics, in the search for simplicity to 

enhance physical understanding and ease the computational burden. 
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Solution to the three fundamental problems of flight dynamics can be cab be formulated 

using Trim, Stability and the Response notions. 

Trim is generally defined as a condition in which none of the state variables change 

with time (that is, all of the state variable rates are zero) and the resultant of applied 

forces and moments is zero. This does not, however, preclude accelerating conditions; 

the velocities must remain fixed in body axes, but will change direction in an inertial 

reference frame if the helicopter rotates. In a trimmed maneuver, the helicopter will be 

accelerating under the action of a non-zero resultant aerodynamic and gravitational 

forces and moments, but these will then be balanced by effects such as centrifugal and 

gyroscopic inertial forces and moments. The trim solution is represented by zeros of a 

nonlinear algebraic function, where the control eu required holding a defined state ex in 

equilibrium. With four controls, only four states can be prescribed in trim, the 

remaining set forming into the additional unknowns in Equation (3.1). 

0),( =ee uxf (5.31) 

The solution of the stability problem is found by linearizing the equations about 

a particular trim condition and computing the eigen values of the aircraft system matrix 

written in Equation (5.32) as the partial derivative of the forcing vector with respect to 

the system states. The stability thus found refers to small motions about the trim point, 

for larger motions, nonlinearities can alter the behavior.  

0det =


















∂
∂

−
exx

fIλ (5.32) 
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The response solution is found from the time integral of the forcing function and 

allows the evolution of the aircraft states, forces and moments to be computed following 

disturbed initial conditions x(0), and/or prescribed control inputs and atmospheric 

disturbances. In simulations, the nonlinear equations are usually solved numerically; 

analytical solutions generally do not exist. 

ττττ duxfxtx
t

)),(),(()0()(
0
∫+= (5.33) 

Helicopter as a six-degrees-of freedom rigid body model can be augmented with 

servo/rotor dynamics, and artificial yaw damping dynamics. 

5.1.3 Helicopter Reduced Order Modeling 

To initialize the design process reduced order model can be derived from a full 

order model. Full order state dynamics is shown in equations (5.34) to (5.44). 

saU aXgUXU
s

+−= θ& (5.34) 

sbV bYgVYV
s

++= φ& (5.35) 

sbsaVU bLaLVLULp
ss

+++=& (5.36) 

sbsaVU bMaMVMUMq
ss

+++=& (5.37) 

p=φ& (5.38) 

q=θ& (5.39) 
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& (5.40) 

longilongilatilatis
f

sas BBbaBpb
s

δδ
τ

++−+−=
1& (5.41) 
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colcolrwsbsas ZrZwZbZaZW
s

δ++++=& (5.42) 

pedpedcolcolfbpedrwp NNrNrNWNpNr δδ ++−++=& (5.43) 

fbrrfb rKrKr
fb

−=& (5.44) 

For small scale rotorcrafts, lateral & longitudinal blade flapping angles, and yaw 

rate feedback can be neglected as the first stage of control design process 

Neglecting yaw rate feedback i.e Equation (5.44) 
 
Equation (5.43) can be written as 
 

pedpedcolcolrwp NNrNWNpNr δδ ++++=& (5.45) 

One has to take care of the coupling of the dynamics (intended to be neglected) with 

Equations (5.34), (5.35), (5.36), (5.37) and (5.43). 

To neglect the dynamics involved with sa and sb , we assume no change with respect to 

time, i.e. 0,0 == ss ba && .
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Working with Equations (5.46) and (5.47) will lead to (5.48) and (5.49) 
 

)( longilongilatilatisbfs AAbAqa
s

δδτ +++−= (5.48) 

)( longilongilatilatisafs BBaBpb
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Substituting (5.49) into (5.48) 
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Substituting (5.48) into (5.49) 
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Substituting (5.51) into Equation (5.34) 
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Modified dynamics for body frame x axis velocity is now 
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Similarly  
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Working with Equation (5.36) 
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Working with Equation (5.37) 
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Working with Equation (5.42) 
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The reduced order model will become 
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for 
[ ]Tm rWqpVUx θφ=_
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5.2 Attitude Control Loop Design Example

The controller design is based on an 11-state linear model of a “Raptor-90” helicopter 

shown in Figure 5.4.  

 



77

Figure 5.4 Raptor-90 helicopter 
 

The results are based on the model derived at National University of Singapore. 

A linearized model for hover operating point has been established. The model currently 

used is a state-space model which represents the helicopter as 6-degree-of-freedom 

(DOF) rigid body augmented with servo/rotor dynamics and artificial yaw damping 

dynamics(Chen, 2004). The state vector physically shown in Figure 5.3 (repeated here) 

contains eleven states and can be expressed 

as T
fbss rrWbaqpVUx ][ θφ= .
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Figure 5.3 Helicopter states in body frame coordinate system 
 

The input vector can be written as T
pedlongilatiu ][ δδδ= . Where latiδ is the 

lateral channel input and affects roll motion, longiδ is longitudinal channel input and 

affects pitch, pedδ is pedal channel input of remote controller and affects yaw motion. In 

helicopters there is a high degree of coupling between lateral and longitudinal 

dynamics. In this paper collective channel, the fourth actuator which produces lift, is 

left to be controlled manually. 

The primary variables to be controlled are the pitch angle and roll angle. Two 

extra rate gyros measuring pitch angular rate and roll angular rate will also be used for 

feedback purposes. Five system states constitute the output vector 

Tqpry ][ θφ= . The rotorcraft equations mentioned were trimmed in a hover 

configuration to obtain the reference trim condition. The nonlinear equations then 
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linearized for the hover configuration based on the reference values obtained5. The plant 

linear matrices are as below 

11.1120-2.7492000000000
36.6740-5.5561-0.1446-000000.2834-00

00.1070-0.6821-7.101817.1680000000
0008.1222-0.0921-000100
0004.6535 8.1222-001000
00000001000
00000000100
00059.9580-172.620000000.2940-0.1903
000343.860075.764000000.5353-0.3326-
0009.7807009.7807000.3104-0
00009.7807-9.7807-00000.1778-
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5.2.1 Wind Turbulence Model 

The disturbance vector d given in (5.58) has wind components along the 

Tyx ][ fuselage axes, disturbance input matrix D defines dynamics involved with body 

frame x, and y velocities. For this example D is a 211× matrix and is constituted from 

first two columns of the plant matrix A.

T
VU ddd ][= (5.58) 

In Hall and Bryson(1973) the wind components along the fuselage axes are modeled by 

independently excited correlated Gauss-Markov processes 
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Equation (5.59) is called a “shaping filter” for the wind, where Uq , and Vq are 

independent with zero mean, sec 2.3=cτ is the correlation time of the 

wind, sft
VU qq /20, =σσ , wB is the turbulence input identity matrix, and 2

1=ρ is the 

scalar weighting factor. 

5.2.2 Controller Structure 

The control structure shown in Figure 5.5 is basically an attitude control loop; 

each input channel is augmented with a compensator. Precompensators )(sGlat ,

)(sGlong , and )(sG ped shape the plant prior to closing the loop. Loop shaping procedure 

is explained in the next section. 
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Figure 5.5 Controller Structure 
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5.2.3 H-Infinity Loop Shaping Design Procedure 

We will now formally state the design procedure. The objective of this approach 

is to balance the tradeoff between performance and robustness in loop shaping. The 

procedure couples loop shaping design with H-Infinity output-feedback control 

techniques. 

Using a precompensator W1 and a postcompensator W2, the singular values of 

the nominal plant are shaped to achieve a desired open-loop shape. The nominal plant G

and the compensators are combined to form the shaped plant sG . Let (A, B, C, Dsys) be a 

realization of sG .

W1 G W2

Gs

K

kpf

Figure 5.6 Loop shaped plant with controller 
 

• Choose weighing matrices Q and R for sG .

• Use H-Infinity static output feedback algorithm to find the static output-

feedback gain. The algorithm is described in Chapter 3. 

• Find prefilter gain pfK for unity steady state gain between input and 

output pairs. 
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In this example precompensators )(and ),(),( sGsGsG pedlonlat all are chosen as 

0.5( ) 2
( 5)precomp
sG s
s s

 +
=  + 

to shape the open loop plant. Additional dynamics in the Pre-

Compensators is included to pull the cut-off to within the 2-5 rad/sec region, which is 

typical with aircraft and rotorcraft controllers.  The design was effective using only the 

Pre-Compensators, so no Post-Compensators were chosen, i.e., the Post-Compensator 

weights was set to the identity matrix. The singular value plots of the original loop-gain 

and the shaped loop-gain are shown in Figure 5.7.  Also shown is the wind gust 

spectrum. 
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Figure 5.7 Loop-gain singular value plots 
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Weighting Matrices  

In this example the weighting matrices are taken as 

=Q diag

[ ]0.25 0.25 0.01 0.01 100 100 1E-4 1E-4 0.25  0.01 0.01 0 0 0 0 0 0
=R diag [ ]78.0169169 .

The selection of Q and R is further discussed in the next subsection. 

5.2.4 Simulation Results with Disturbance Effects 

The static output feedback solution derived in Chapter 2 is applied to obtain an 

output feedback controller to stabilize the loop-shaped plant. The controller is then 

simulated subject to the wind disturbances to evaluate the efficacy of the proposed 

control law. The closed-loop system is shown in Figure 5.8, where the exogenous 

disturbance input d(t) is a random variable, shown in Figure 5.9, generated in the time 

domain to match statistical properties of the turbulence model, as discussed in Section 

B. 
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Figure 5.8 Simulation with turbulence model 
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Figure 5.9 Random velocity disturbance vector 
 

For the computation of the output-feedback gain K it is necessary to select 

weighting matrices Q and R. A diagonal structure is used for Q and R. The diagonal 

entries are tuned iteratively.  That is, for a given selection of Q and R, our algorithm 

was run to find the OPFB gain K. Then, the closed-loop system was simulated.  If the 

results are not satisfactory, Q and R were modified and the procedure was repeated.  

Our algorithm makes it very fast and easy to perform this procedure., To avoid the 

excitation of un-modeled high frequency dynamics, the control input and velocity states 

are heavily penalized.  

The gain parameter γ defines the desired 2L gain bound. For the initial design, 

a fairly large γ is selected.  If the algorithm converges, the parameter γ may be 
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reduced. If γ is taken too small the algorithm will not converge since the Algebraic 

Riccati Equation has no positive semidefinite solution.  After some design repetitions, 

which were performed very quickly using the algorithm; we found the smallest value of 

the gain to be 0.62. 

Two particular cases were simulated to evaluate the closed loop system 

performance, namely bank angle command tracking i.e. commandφ and a pitch angle 

command tracking i.e. commandθ

Bank angle command tracking ( commandφ ): The step responses of the lateral-

directional states for a unit bank angle command (equivalent of 1 radian) are shown in 

Figure 5.10. The inner loop simulation is begun at a hover configuration at an altitude 

of 50 m and was subjected to a turbulent wind disturbance with peak amplitude of 4.0 

m/s. Considering, that the helicopter is initially in the hover configuration, this is a 

significant perturbation. It is seen that the bank angle settles to less than 5% of the 

steady state value within 5 seconds. The overshoot is 18.5%. The roll rate does not peak 

beyond 1 rad/s, which is within acceptable limits. We also note that the yaw rate 

activity is consistent with the build up in the lateral velocity. It is to be mentioned that 

throughout this inner loop control design, the collective pitch is not utilized. The 

consequence of this is a velocity build-up that causes the helicopter to drift from its 

current position. It was seen that without the collective pitch being active, the helicopter 

loses altitude very rapidly as the main rotor thrust vector is no longer aligned along the 

inertial Z-axis. The only way to increase the component of the thrust along the inertial 

Z-axis to balance the weight of the helicopter is to use the collective pitch. 
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Figure 5.10 Closed loop lateral-directional state responses to a unity bank angle 
step command 

 
Figure 5.11 shows the longitudinal state responses for this case. It is seen that 

the states are all within acceptable limits. Note, the slight build up in the body axes U 

and W components of the velocities is attributed to the loss in lift due to the vectoring 

of the main rotor thrust to achieve the desired bank angle as well as the coupling 

between the longitudinal and lateral-directional dynamics. In addition, there is a 

velocity disturbance along the body X-axis due to turbulent wind. 
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Figure 5.11 Closed loop longitudinal state responses to a unity bank angle step 
command 

 
Figure 5.12 shows the cyclic-pitch activity in the lateral as well as the 

longitudinal axes and the rudder pedal activity. As expected the activity in the rudder is 

minimal. The longitudinal cyclic-pitch responds to arrest the build up in the longitudinal 

states (pitch angle and pitch rate). 
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Figure 5.12 Control history for unity bank angle step demand 
 

Pitch angle command tracking ( commandθ ): The step responses of the longitudinal 

states for a unit pitch angle command (equivalent of 1 radian) are shown in Figure 5.13. 

The helicopter configuration is identical to the earlier case, i.e. there is no collective 

pitch activity and similar turbulent wind disturbances are injected into the system. It is 

seen that the pitch angle settles to less than 6% of the steady state value within 5 

seconds. The overshoot is < 18.5%. The slight oscillations within the 5% settling band 

are due to the external state disturbance (due to turbulent wind). The pitch rate does not 

peak beyond 1.5 rad/s, which is within acceptable limits (< 90 deg/s). While there is a 

significant change in the horizontal velocity there isn’t as much change in the vertical 

velocity. The pitch angle demand is very aggressive, almost 60 degrees whose primary 

effect is to drastically slow down the helicopter. In the hover configuration, this would 
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mean that the helicopter moves backwards while losing altitude. There is also a lateral 

shift in the inertial position due to the external disturbance activity and the weak 

coupling inherent in the vehicle dynamics. One way to arrest the build up in the 

translational velocities is to include an inner-loop for the translational dynamics 

(velocity loops) and use collective pitch. 
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Figure 5.13 Closed loop longitudinal state responses to a unity pitch angle step 
command 

 
Figures 5.14 and 5.15 show the lateral-directional responses and the control 

activity for this maneuver (pitch angle command). As it is seen from the plots, the 

lateral-directional responses are within acceptable limits and the control histories are as 

expected.  
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We note from the plots for both the maneuvers the cross coupling between the 

longitudinal and lateral-directional modes is minimal.  Additionally the roll rate and the 

pitch rate have low peaks for the respective maneuvers (< 90 deg/s). Our objective was 

to reduce these rate peaks as much as possible and also obtain good step responses in 

the attitude variables. 
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Figure 5.14 Closed loop lateral-directional state responses to a unity pitch angle 
step command 
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Figure 5.15 Control history for unity pitch angle step demand 
 

5.3 Position Control Design

The ability to hold position and to hover over a particular point in a three 

dimensional space is a requirement common to rotary-wing Unmanned Aerial Vehicles 

(UAVs). Position tracking control system design for a UAV is challenging because of 

the nonlinear dynamics, and strong coupling present in the rotorcraft. The aim of this 

paper is to design a helicopter position control system with guaranteed performance that 

allows tracking control of Unmanned Aerial Vehicle positions - x, y, z, and yaw while 

preserving a structure that is generally accepted in the helicopter control community. 

The paper presents an approach for designing compensators for shaping the closed-loop 

inertial positions and yaw step response using H-Infinity output-feedback design 

techniques. The current paper is giving an inner loop design where all three attitudes 
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rates along with attitudes yaw and roll are controlled. We specifically focus on the 

problem of control in a hover configuration which in general is an unstable 

configuration. Further, in the presence of disturbances, the helicopter exhibits 

deviations in the dynamical states which complicate the control problem as the 

helicopter dynamical states are very tightly coupled. For example, in hover, pitch 

motion almost always is accompanied by forward and vertical motion and all three 

states need to be controlled simultaneously. 

5.3.1 Controller Structure (Inner Loop) 

The input vector can be written as T
pedcollongilatiu ][ δδδδ= . Where latiδ is 

the lateral channel input and affects roll motion, longiδ is longitudinal channel input and 

affects pitch, pedδ is pedal channel input of remote controller and affects yaw motion, 

colδ is collective channel, the fourth actuator which produces lift. Note that we are using 

all of the control channels to do the position control.  

Figure 5.16 Controller structure 
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The control structure shown in Figure 5.16 is basically a stabilization control 

loop. Inner loop controls the attitude states roll, pitch and attitude rates. 

The closed loop responses in roll and pitch are given in Figure 5.17.  It can be 

observed that roll and pitch angles converge very quickly so to facilitate a fast inner 

loop. 
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Figure 5.17 Closed-loop time response 
 

It is important to mention that although inner loop has a good control on the 

attitude states it can not hold position of the UAV in hover. Position tracking in hover is 

addressed in the next section. 

5.3.2 Controller Structure (Outer Loop) 

In order to meet the objective to maintain the station position it is imperative to 

add an outer tracking loop i.e. the primary variables to be controlled in the outer loop 

are the positions x, y, and z, body rates u, v, w,  and yaw angle, seven system states 

constitute the outer loop output vector T
o wvuzyxy ][ ψ= . Figure 5.18 explains 

the structure 
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Figure 5.18 Outer and Inner loop Controller structure 
 

Precompensators )(sGlat , )(sGlong , )(sGcol , and )(sGped shape the plant prior to 

closing the loop. Loop shaping procedure is explained in the next section. 

Disturbance Effects in the Outer Loop: In the inner loop we have used the 

model of the wind components as disturbance. To further see the efficacy of the design 

disturbance can be formulated as the noise getting in to the helicopter control channels 

in the outer tracking loop.  In this example disturbance is modeled as an external wind 

gust affecting Lateral control input channel. A band limited white noise source is used 

to simulate disturbance input signal. 
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5.3.3 Simulation Results with Disturbance Effects 

Inner closed loop plant is given as 

xCqpry
BuxAx

in
T

in

in

==

+=

][ θφ

&
(5.60) 

where ininin CBKAA −= is the inner closed loop system matrix. An inertial 

measurement unit can be used to measure the position (Ben Chen, 2005). For a fast 

inner loop it is equivalent of introducing integrators.  Equation (5.61) is used to 

calculate the outer loop H-Infinity Output feedback gain  
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oo
T

o xCwvuzyxy == ][ ψ (5.62) 

Loop shaping for outer loop is not required for station keeping because of the 

addition of the effective integrators. In simulations body to inertial transformation is 

used to generate outer loop outputs which recreate a real life situation.   

Figures below shows the effectiveness of the design, configuration 1 in Figure 

5.19 shows the plots for an altitude command i.e. UAV is commanded from initial 

position vector ),,( 111 zyx to ),,( 211 zyx . Configuration 2 shows the convergence properties 

of the closed loop system i.e. how UAV converges to the station position from a 

different initial position vector i.e from ),,( zzyyxx ∆+∆+∆+ to ),,( zyx . One can see 

also that the yaw angle is maintained at the commanded position. Next configuration, 
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configuration 3 shown in Figure 5.21 is an illustration of successful following of a yaw 

step command while maintaining the position. Last configuration show in Figure 5.22 

simulates the effects of disturbance in the lateral channel of the control input.  
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Figure 5.19 Configuration 1: Altitude Command 
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CHAPTER 6 

ELECTROMECHANICAL IMPLEMENTATION 

 

6.1 Introduction

For electro-mechanical systems, static OPFB controllers are less expensive to 

implement than full state variable feedback (SVFB). In a real situation, it is often not 

possible to measure the whole state vector for the feedback.  Moreover, static OPFB 

preserves the desirable structure of the control system (Stevens and Lewis, 2003). Static 

OPFB controllers can also be employed as back-up controllers, i.e. as controllers which 

are not active during the regular operation, but which are used in the case of faults. For 

this reason back-up controllers have to be as simple as possible (Astolfi et al., 2005). 

Issues of importance to the design of practical static OPFB controllers include (i) on-

line computational simplicity, (ii) ability to operate solely with available measurable 

quantities, and (iii) design and implementability in a short time. However, 

implementation experiences and results on industry-like test beds are rarely published in 

the research literature. In this chapter we offer a design procedure which addresses the 

above issues. The proposed procedure is different than existing approaches such as 

classical control, optimal SVFB, or optimal OPFB. The procedure described in this 

paper allows one to achieve disturbance attenuation and control with prescribed 

performance at the same time.  
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Today’s industrial systems have complex & possibly unknown dynamics, 

unknown disturbances, and nonlinear effects such as friction & deadzone. Such systems 

include but are not limited to VLSI, manufacturing positioning systems, hard disk 

drives, high speed robotic assembly systems, and CNC machine tools. In eletro-

mechanical systems it is expensive and sometimes difficult to achieve and implement 

full state-feedback. Uncertainties in the electromechanical systems and the disturbances 

affect the performance of the optimal controller. Controllers may require prescribed 

desirable structures as well. Implementation experiences on electromechanical system 

are addressed at many forums. Kuljaca et al. (2003) implemented a novel neural 

network backstepping controller for application to an industrial motor drive system with 

a fairly complex real time computational platform. A robust tracking Servo System 

considering force disturbance is implemented on the optical disk recording system 

in(Ohishi et al., 2006). Recent work  (Wai et al., 2006) addresses uncertainties in 

practical applications with a Neural-Fuzzy-Network Controller; implementation is done 

on a Robot Manipulator which includes actuator dynamics. A multistage Position/Force 

Control for constrained Robotic systems with friction is presented in Khayati et al. 

(2006) with an LMI formulation. Hammoto et al. (2000) presented a two degrees-of-

freedom controller for two-mass spring system based on an iterative feedback tuning 

approach. However, simplified procedures using a practical implementation platform 

are rarely addressed.  
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6.2 Plant Description

We implemented H-Infinity OPFB control algorithm on a spring mass damper 

system shown in Figure 6.1. This platform is representative of realistic industrial and 

automotive systems with flexibility and vibration effects. 

Figure 6.1 Spring Mass System 
 

The schematic of the system is shown in Figure 6.2 

Figure 6.2 Two Degrees of Freedom Spring Mass System 
 

The dynamics are 

 (t))y(t)k(y(t)yc(t)ym
F(t) (t))y(t)k(y(t)yc(t)ym
0122222

211111

=−++
=−++

&&&

&&&
(6.1) 
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The states and output are assigned as Tyyyyx ][ 2211 &&= , Tyyy ][ 21= respectively. 

The state-space description is 
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where the hardware gain 20102.12478=hwk N/m translates force units into the servo 

voltage actuation signal. The parameter values for the case dealt with are: 77.21 =m kg, 

59.22 =m kg, 1.21 =c N/ (m/s), 2.12 =c N/ (m/s), 830=k N/m. The details of the 

identification process to determine these parameters are given in Bhilegaonkar (2005). 

The electrical drive motor dynamics were neglected since they are much faster than the 

actual dynamics of the mechanical system (Parks, 2005). 

In addition  

2yHx ==ζ (6.3) 

is the tracking output which must track the step reference input r(t).   

6.3 Problem Description

Our objective is to do the performance analysis with disturbances present in the 

system.  A damper attached to mass 2 is used to introduce the disturbance into the 

system. The disturbance dynamics are given by   

[ ]T
dD δ000= (6.4) 
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where
2m

cd
d −=δ , and dc represents unmeasured disturbance component. In this paper 

we are focusing on the exogenous disturbance formulation presented in Section III. 

6.4 Controller Structure

Algorithm 1 was used to calculate the bounded L2 gain OPFB. It is emphasized that 

Algorithm 1 requires no initial stabilizing OPFB gain.  Figure 6.3 describes the closed-

loop structure. 

Figure 6.3 Closed loop Controller Structure 
 

Figure 6.4 summarizes the static OPFB controller structure. To ensure good tracking 

of the reference trajectory, the servo control signal u(t) is equal to the H∞ regulator 

feedback  control Ky− plus a feed forward term involving the inverse of the dc gain of 

the closed loop system.  The loop is closed using the available measurement outputs y(t) 

so that the output variable )(tζ tracks the reference command r(t) (Lewis, 1992).The 

tracking output variable )(tζ , (6.3) dictates the formulation of the feedforward term 

)0(1−
cH .
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Figure 6.4 Bounded L2 gain Output-feedback Controller 
 

The closed-loop system description with OPFB and SVFB is respectively 
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STATE FEEDBACK OUTPUT-FEEDBACK 

Controller 
Gains 

][ 14131211 kkkkK s = ][ 1211 ffK =

Closed-
loop 
 transfer 
function 

BBKAsIHsH cs
1)}({)( −−−= BBKCAsIHsH c

1)}({)( −−−=

Control 
signal 

rHxKu css )0(1−+−= rHKyu c )0(1−+−=

Closed 
loop 
description 

DdrBHxBKAx cs ++−= − )0()( 1& DdrBHxBKCAx c ++−= − )0()( 1&
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For the computation of bounded L2 gain output feedback K it is necessary to 

select Q and R.  The H∞ static output feedback controller gains are obtained with 10=γ .

Using the algorithms described in earlier section for the given γ , Q and R, the control 

signal K can be found easily using MATLAB in a few seconds. If the time response and 

closed loop poles are not satisfactory, the elements of Q and R can be changed and the 

design repeated. After repeating the design several times we selected the design 

parameters as  

 



















××

×
==

−65-

5-

101001.01020
0.0011.020

10202.0004.00
0000

s
T

s CCQ , 100000=R .

Where ]001.102.0[=sC specifies the desired state performance in terms of heavy weighting 

on 2y , and reduced weighting on velocities 1y& , and 2y& . Note that the tracking output 

variable state 3x is weighted heavier than other elements in matrix Q. This design 

shows that the feedback output Cxy = and the performance output can be different. 

See(Lewis, 1992).  For optimal OPFB gain calculation, initial stabilizing gain was taken 

as [ ]1.010 =K . We have assumed that initial states are uniformly distributed on unit 

sphere, such that IX = (Knobloch, 1993).  
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6.5 Implementation Results

The resulting time simulation responses shown compare bounded L2 gain 

OPFB, optimal OPFB, and optimal state feedback control. In the simulations all three 

controllers have commensurate settling times, State-feedback has better transient 

response characteristics than both bounded L2 gain output feedback and optimal Output 

feedback. However, bounded L2 gain output feedback is superior for practical 

applications since the actual system has unmodelled dynamics and disturbances that are 

better controlled by H-Infinity Control than by optimal design techniques. Infact, Figure 

6.7 shows the implementation results. This Figure clearly shows that in the actual 

system L2 gain OPFB outperforms both the other methods. 

Figures 6.5 and 6.6 show the implementation results for a step reference 

trajectory.  Figure 6.5 shows that the implemented controller has good transient tracking 

response characteristics. Figure 6.6 is the error response plot that shows practically 

achieved good steady state results using the available encoder measurements. It is to be 

emphasized that numerical quantization occurs by necessity in all control systems that 

contain inexpensive measurement elements such as incremental encoders (Parks, 2005). 

It can be concluded here that bounded L2 gain output feedback gives good results.  
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Figure 6.5 Implementation Results (Step Response) 
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Figure 6.6 Implementation Results (Tracking error) 
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Figure 6.7 Comparison Plots 
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CHAPTER 7 

FUTURE APPLICATIONS: MEASUREMENT AND CONTROL IN 
WIRELESS NETWORKS 

 

Over the years a lot of rigorous mathematical analysis has been done by systems 

and controls community for optimization of multivariable systems with a 

mathematically rigorous systems theoretic approach. In parallel, wireless 

telecommunication industry was working on performance measurement analysis tools 

and achieved demonstrable optimization. This chapter will elaborate on the need for 

finding common grounds between optimization of telecommunication networks and 

optimal control theory; some existing measurement tools will be presented. 

Decision on measurement tools for designing optimal, reliable 

telecommunications networks implies tradeoffs between reliability, capacity, and the 

economics of meeting present and future customer demands. The creation of efficient 

wireless networks is an everyday challenge in front of service providers. In this chapter 

there are first identified the parameters which can and should be measured to facilitate 

the optimization for performance of telecommunication networks. Secondly, there are 

given available resources on measurements tools for these parameters together with a 

comparative analysis. Finally, the hardware setup for the some of these measurements 

will be explained. This work extends, elaborates, and concocts wealth of knowledge 
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with available open source tools, and the documentation available in the popular 

literature. 

7.1 Introduction

In the recent past, there have been many technological developments in 

telecommunication networks and the optimization (Hoesel, 2005). Data applications are 

expected to be the primary drivers for deployment of third generation (3G) wireless 

systems. Performance of Data applications over a CDMA air interface is given in (Khan 

et. al. 2000). TCP/IP has been widely used in computer networks for many years. It has 

also been recommended as a major protocol suit for async data and data and fax 

communications. Performance evaluation of TCP/RLP protocol stack over CDMA 

wireless link is discussed (Bao, 1996). The popularity of network-based control systems 

is continuously growing, to a large extent the actual quality of control in such systems 

depends on network timing such as delay and delay jitter. In a seminal work Soucek and 

Sauter (2004) discussed quality of service concerns in IP based Control Systems. 

Wireless control systems can have a huge impact in future development of integrated 

control systems in decentralized plants, such as refineries, chemical foundries, and 

hydro power plants. Replacing the wired connections with wireless systems would 

immensely simplify the amount of work and material involved in maintenance, and, 

providing that network functions properly, may also enhance the control performance.  

It is clear that the evaluating the performance of a networked system is very 

important and that necessitates the need for choosing a good testing and measurement 

tool. Also there are huge benefits in correlating performance optimization of networked 
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systems to the optimal control developed by systems and controls community. This 

chapter aims at bringing both together. 

This chapter is organized as follows. Section 7.2 elaborates on optimization of 

multi-input multi-output systems with a system theoretic approach. Performance index 

and the mathematical description of the system are given for both discrete time and 

continuous time systems. In section 7.3 a description of Quality of Service in 

Telecommunication networks is given delay and jitter measurements for an IP based 

network is explained along with the hardware setup description. Power control is an 

important factor to achieve higher communication link quality and better system 

capacity. Section 7.4 poses CDMA power control within a system theoretic H-Infinity 

framework.  

7.2 Optimization with a System Theoretic Approach

There has been a lot of work done in systems and controls community to 

achieve optimization in multi-input multi-output systems. The objective of optimal 

control theory is to determine the control signals that will cause a process to satisfy the 

physical constraints and at the same time minimize (or maximize) some performance 

criterion (Lewis and Syrmos, 1995). We shall briefly visit the problem formulation and 

some mathematically rigorous approaches here.  

7.2.1 Problem Formulation     

The formulation of an optimal control problem requires a mathematical 

description or the model of the system, a statement of the physical constraints, and 

specification of the performance criterion. Mathematical model is the starting point and 
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it has to be in the state variable form. Below are presented continuous and discrete time 

optimal control problem formulations.   

Optimal Control: Discrete Time Systems: Suppose the plant is described by the 

very general nonlinear discrete time dynamical equation 

),(1 kk
k

k uxfx =+ (7.1) 

with initial condition 0x . Let the state kx be an n vector and the control input ku be an m 

vector. Since (7.1) determines the state at the time 1+k given the control and the state at 

time k, (1) is our constraint relation. Clearly, nRf ∈ . Suppose there is an associated 

scalar performance index given in the general form 

),(),(
1

kk

N

ik

k
Ni uxLxNJ ∑

−

=

+= φ . (7.2) 

where [ ]Ni, is the time interval over which we are interested in the behavior of the 

system. ),( NxNφ is a function of the final time N and the state at the final time, and 

),( kk
k uxL is an in-general time varying function of the state and control input at each 

intermediate time k in [ ]Ni, . The optimal control problem is to find the control 

ku * on the interval [ ]Ni, that drives the system (7.1) along a trajectory kx * such that 

the performance index is minimized. The optimal controller solution involves state 

equation, costate equation, stationarity condition and boundary conditions that given in 

( Lewis and Syrmos, 1995), where also are given fixed final state and final state free 

solutions. 
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7.3 Performance of Wireless Networks

Quality of services is a major issue for telecom providers. There is a conflict of 

interest in what customer desires and what he/she is willing to pay. Growing 

competition within telecommunication operators and the increase in the expectations of 

the customers necessitate the operators to keep improvising the network. Also, the 

demand for the calls and bandwidth capacity is time variant. So the installed capacity is 

to have a guaranteed availability probability, the Quality of Service  

Below we are explaining which parameters are relevant to most systems in 

deciding on the performance of the systems. 

7.3.1 End to End Delay 

End-to-end delay refers to the time taken for a packet to be transmitted across a 

network from source to destination. It is explained in RFC2326 Real time streaming 

protocol. 

7.3.2 Delay Jitter 

The delay jitter (RFC 1889 RTP) is an estimate of the statistical variance of the 

RTP data packet interarrival time, measured in timestamp units and expressed as an 

unsigned integer. The interarrival jitter J is defined to be the mean deviation (smoothed 

absolute value) of the difference D in packet spacing at the receiver compared to the 

sender for a pair of packets. As shown in the Equation (7.3) below, this is equivalent to 

the difference in the "relative transit time" for the two packets; the relative transit time 

is the difference between a packet's RTP timestamp and the receiver's clock at the time 

of arrival, measured in the same units. 
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Defining iS as the RTP timestamp from packet i. iR as the time of arrival in 

RTP timestamp units for packet i, then for two packets i and j, D may be expressed as 

)S-(R-)S-(R)()(),( iijj=−−−= ijij SSRRjiD (7.3) 

The interarrival jitter is calculated continuously as each data packet i is received from 

source SSRC_n, using the difference D for that packet and the previous packet 1−i in 

order of arrival (not necessarily in sequence), according to the formula 

16/)),1(( JiiDJJ −−+= (7.4) 

Whenever a reception report is issued, the current value of J is sampled. The jitter 

calculation is prescribed in (Cadzow, 1987) allow profile-independent monitors to make 

valid interpretations of reports coming from different implementations.  

Delay Jitter Measurement in an IP based Network System: This section compares two 

available tools for delay jitter measurement in an IP based network. 

IPERF: Iperf is a tool to measure maximum TCP bandwidth, allowing the 

tuning of various parameters and UDP characteristics. Iperf reports bandwidth, delay 

jitter, datagram loss. Features include running Iperf in bidirectional mode, removed 

STDLIB requirement for Iperf , and Client reporting of server side statistics in UDP 

tests. A hardware setup is explained below in Figure 7.1. 
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Figure 7.1 System Setup for Delay-Jitter measurement with IPERF 

 

CISCO TOOLS: Delay and jitter can be measured by deploying Cisco routers 

17xx or higher with Cisco IOS software code version 12.05T or higher, and configuring 

the Cisco IOS SAA features. The routers should be placed in the networks next to hosts. 

This provides statistics for end-to-end connections. Since it is not practical to measure 

every possible voice path in the network, place the probes in typical host locations 

providing for a statistical sampling of typical voice paths. Some examples include a 

local site-to-site path, a local site-to-remote site path via a 384 kbs Frame Relay circuit, 

a local site-to-remote site via an ATM permanent virtual circuit (PVC). Figure 7.2 

below describes the setup. 
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Figure 7.2 Set up with Cisco Tools 

 

7.3.3 Throughput 

 The throughput defines how many bits per unit time can be transferred over a 

given network path. In an end-to-end view the delay can be seen as a direct function of 

the instantaneous throughput. The practical notion of throughput, however, implicitly 

includes a certain time interval. 

The throughput θ can be defined as  

t
tAttA

∆
−∆+

=
)()(

θ (7.5) 

where )(tA denote the aggregate amount of transferred data up to time t.

7.3.4 Power Control 

CDMA is interference limited multiple access system. Because all users 

transmit on the same frequency, internal interference generated by the system is the 

most significant factor in determining system capacity and call quality. The transmit 
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power for each user must be reduced to limit interference, however, the power should 

be enough to maintain the required Eb/No (signal to noise ratio) for a satisfactory call 

quality. Maximum capacity is achieved when Eb/No of every user is at the minimum 

level needed for the acceptable channel performance. As the Mobile Station moves 

around, the RF environment continuously changes due to fast and slow fading, external 

interference, shadowing, and other factors. The aim of the dynamic power control is to 

limit transmitted power on both the links while maintaining link quality under all 

conditions (CDMA Tutorial, Web Link, and unknown Year). 

7.4  CDMA Power Control within a System Theoretic H-Infinity Framework

Primary aim of this section is to give an overview of how CDMA power control 

has been posed with a System Theoretic Optimization framework in the literature 

(Gadewadikar et. al., submitted 2007).  

Spectrum efficiency is one of the biggest positive outcomes of Code Division 

Multiple Access. It is possible because in this technique, all users operate on the same 

channel. As described in the section 7.3.2 good power control facilitates higher 

communication link quality and better system capacity. In order to track the desired 

signal-to-interference-plus noise ratio (SINR) under round trip delay, multiple access 

interference, channel fading, and noise, a time delay based state space model described 

below is developed by Lee et. al. (2006), the model represents the tracking error 

dynamics.  
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7.4.1 Problem Formulation 

Measurement SINR at the base station can be written as 

kkkk wfxy −+= (7.6) 

Here kx is the transmission power, and kf is the fading gain. The overall 

interferences that includes quantization error, Multiple Access Interference, Additive 

White Gaussian Noise, and nonlinear effect due to transmission power limitation are 

describes as kw .

Defining the sum of downlink, uplink, and overall delay respectively as 1d , 2d ,

and d , such that 21 ddd += . Transmission power kx can be denoted as 

dkkk uxx −− += 1 (7.7) 

Here ku is the power control update command. It is desired to keep the SINR at a set 

point namely a desired value defined as kr . Target SINR is specified jointly by the 

frame error rate (FER) statistics and the SINR error Statistics in the outer loop for 

power control. Tracking error than can be formulated as 

kkk yre −= (7.8) 

Working with (7.6), (7.7) and in (7.8) will yield 

11 −−− +−= kdkkk vuee (7.9) 

where 1111 −−−− −++−−= kkkkkkk rrffwwd indicates the uncertain interference, fading 
noise, and nonlinear effects. The State vector kX can now be defined as  
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The past power control update commands 1−ku to dku − are considered in the state vector. 

Tracking error dynamic equation are expressed as  
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In the tracking error dynamic Equation in (7.11) the power tracking design purpose is 

to specify control ku such that ke is minimum under the influence of the signal kd . Note 

that kd is highly uncertain due to interference, fading, noise and nonlinear effects. For 

the state space model, the pair ),( BA is controllable.  

In the state-space model (7.11), a state feedback controller can be introduced such 

that 
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kk KXu = (7.12) 

The closed-loop state-space system consisting of (7.11) and (7.12) can be written as 

kk

kkk

CXe
DdXBKAX

=

++=+ )(1 (7.13) 

Now we can solve the H-Infinity tracking problem as  
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(7.14) 

7.4.2 Exploring Bounded Real Lemma 

The work by de Souza and Xie (1990) deals with the discrete time bounded real 

Lemma and its application in the characterization of all static state feedback H-Infinity 

Controllers for discrete time systems. In this section we are elaborating on the bounded 

real Lemma with a suggested technique to explore the possibility of parameterizing 

CDMA H-Infinity Power Controllers. As generalized using Equation (7.11) the results 

can be given in terms of either the positive semi-definite strong solution, or the positive 

semi-definite stabilizing solution of a discrete algebraic Riccati equation. 

Notations and Definitions: Throughout this section the notation NM ≥

( NM > ) with M and N being symmetric matrices, means that the matrix NM − is 

positive semi-definite (positive definite). 
∞

)(zG will refers to the infinity norm of a 

stable discrete-time transfer matrix G(z) . [ ])()( max20
ω

πω σ jeGsuozG ≤≤∞
= , where 

(.)maxσ stands for the maximum singular value of a matrix. 
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Consider the discrete algebraic Riccati Equation 

0)())(( 1 =++−++− − QMPABPBBRMPBAPPAA TTTTT (7.15) 

where A, B, Q, R and M are real matrices of dimensions nn× , mn × , nn× , mm× and 

nm × respectively, and with Q and R being symmetric matrices. A real symmetric 

matrix P is said to be a stabilizing solution to (7.15) if P satisfies (7.15) and the matrix 

0)()( 1 =++−+= − QMPABPBBRAA TT stable. In the case when all of the 

eigenvalues of A lie in the closed unit disk, P is said to be a strong solution to (7.15) 

Let G(z) be a mp × real rational transfer function matrix of a proper linear 

discrete-time system and consider a state-space realization (A, B, C, Dsys) of G(z), i.e. 

with no feed forward matrix i.e. 0Dsys = ,

BAzICzG 1)()( −−= (7.16) 

Note that no a priori assumption on minimality of the realization (A, B, C, Dsys)

is made. A bound for the H-Infinity norm of G(z) is provided by the following version 

of the Discrete-time Bounded Real Lemma. 

 
Lemma 1: The following statements are equivelent 

(a)  A is a stable matrix and γ≤−
∞

− BAzIC 1)( . 

(b) (C, A) has no observable modes on the inner circle, and there exists a strong  

positive definite symmetric solution to the riccati equation. 
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such that ( )[ ] 02 >− − PBBI Tγ .



122

Lemma 2: The following statements are equivelent 

(a)  A is a stable matrix and γ≤−
∞

− BAzIC 1)( . 

(b) There exists a matrix 0ˆˆ >= TPP satisfying 

( ) ( ) ( ) 0ˆ
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ˆ 1
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γ (7.18) 

such that ( )[ ] 0ˆ2 >− − BPBI Tγ .

(c) There exists a stabilizing solution 0>= TPP to the Riccati Equation 

( ) ( ) ( ) 0
1

2
2 =+








−

−







−

−

−
CCPAB

PBB
I

PBA
P
PAA TT

T
T

T

γ
γ

such that ( )[ ] 02 >− − PBBI Tγ . Moreover, PP ˆ< .

Main aim of this section was to give an example of a wireless communication 

problem being posed in a H-Infinity system theoretic framework and hence system 

theoretic optimal control tools explained in section II can be used. This is an active area 

of the current research. This chapter is focusing on introducing the problem and finding 

the common grounds between telecommunication measurements, performance 

optimization and systems theoretic optimal control.  

Telecommunication technology is expected to be the primary driver over the 

next few decades. With ever increasing demand it is imperative to find common 

grounds between theoretical achievements in other fields in order to improvise. Test and 

measurement setups play a big role in improving the performance of a network and the 
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IP based equipment used by the consumer. This chapter stresses the need for correlating 

test, measurement, optimization, and performance for telecommunication networks. 

Along with the presentation of classical optimal control problem this chapter also 

explains some measurement variables and exemplifies a telecommunication 

performance problem in a system theoretic framework.  
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