
A STUDY ON THE NONLOCAL SHALLOW-WATER MODEL ARISING FROM

THE FULL WATER WAVES WITH THE CORIOLIS EFFECT

by

JUNWEI SUN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2017



Copyright c© by Junwei Sun 2017

All Rights Reserved



To my mother Daiwei Wang and my father Daming Sun.



ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Yue Liu for his clairvoyant

mathematical vision and cautious work attitude, like a lighthouse shining on my way

forward. I wish to thank my academic advisors Dr. Jianzhong Su, Dr. Gaik Am-

bartsoumian, Dr. Guojun Liao for their interest in my research and for taking time

to serve in my dissertation committee.

I would also like to extend my appreciation to Department of Mathematics,

University of Texas at Arlington for providing financial support for my doctoral stud-

ies. I wish to thank Ting Luo and Emel Bolat. I have been enjoying the time we

discussing questions and working like a family in past four years.

I am grateful to the teachers who taught me during the years I spent in school,

first in China, then in the Unites States. I would like to thank Dr. Da-jun Zhang,

my master’s advisor, for encouraging and inspiring me to pursue graduate studies.

Last but not least, thanks to my parents, who love me, support me, listen to

me selflessly.

May 31, 2017

iv



ABSTRACT

A STUDY ON THE NONLOCAL SHALLOW-WATER MODEL ARISING FROM

THE FULL WATER WAVES WITH THE CORIOLIS EFFECT

Junwei Sun, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Yue Liu

The Equatorial Undercurrent is a significant feature of the geophysical waves

near the equator, which is one of the key factors to explain El Niño phenomenon.

However, based on β-plane approximation, the classical theory of geophysical waves

ignored the vertical structure of the Equatorial Undercurrent.

To obtain a better description of the equatorial waves, in this dissertation, I

study the rotational-Camassa-Holm (R-CH) equation, which is a mathematical model

of long-crested water waves near the equator, propagating mainly in one direction with

the effect of Earth’s rotation under the f -plane approximation. R-CH equation can

be derived by following the formal asymptotic procedures. Such a model equation is

analogous to the Camassa-Holm approximation of the two-dimensional incompress-

ible and irrotational Euler equations and has a formal bi-Hamiltonian structure. Its

solutions corresponding to physically relevant initial perturbations is more accurate

on a much longer time scale. It is shown that the deviation of the free surface can be

determined by the horizontal velocity at a certain depth in the second-order approx-

imation. The effects of the Coriolis force caused by the Earth rotation and nonlocal
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higher nonlinearities on blow-up criteria and wave-breaking phenomena are also in-

vestigated.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter Page

1. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 El Niño and equatorial waves . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Early Developments of solitary shallow waves . . . . . . . . . . . . . 4

1.3 The Camassa-Holm equation . . . . . . . . . . . . . . . . . . . . . . . 6

2. THE ROTATION-CAMASSA-HOLM EQUATION . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Derivation of RCH equation . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Some other forms of R-CH equation . . . . . . . . . . . . . . . . . . . 35

2.3.1 Weak forms of R-CH equation . . . . . . . . . . . . . . . . . . 35

2.3.2 A simplified form of R-CH equation . . . . . . . . . . . . . . . 36

2.3.3 Some more discussions . . . . . . . . . . . . . . . . . . . . . . 37

3. LOCAL WELL POSEDNESS OF R-CH EQUATIONS . . . . . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 First three conservation laws . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Hamiltonian format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Local well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Wake-breaking phenomena . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



LIST OF ILLUSTRATIONS

Figure Page

1.1 The 1997-98 El Niño observed by TOPEX/Poseidon. The white areas

indicate the pool of warm water off the Tropical Western coasts of north-

ern South and all Central America as well as along the Central-eastern

equatorial and Southeastern Pacific Ocean . . . . . . . . . . . . . . . . 2

1.2 Map showing Niño 3.4 and other index regions . . . . . . . . . . . . . 3

1.3 Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-

Watt University, 12 July 1995 . . . . . . . . . . . . . . . . . . . . . . . 6

ix



CHAPTER 1

BACKGROUND

1.1 El Niño and equatorial waves

El Niño is associated with a band of warm ocean water that develops in the

central and east-central equatorial Pacific (between approximately the International

Date Line and 120◦W), including off the Pacific coast of South America (See Figure

1.1). Fishermen off the west coast of South America were the first to notice appear-

ances of unusually warm water that occurred at year’s end. The phenomenon became

known as El Niño because of its tendency to occur around Christmas time. El Niño

is Spanish for ”the boy child” and is named after the baby Jesus.

Most of early El Niño conditions were too weak to attracted people’s attention.

From the 19th century, some strong El Niño events were recorded gradually because

of their effect on those enterprises that depend on biological productivity of the sea.

Charles Todd, in 1888, suggested droughts in India and Australia tended to occur

at the same time [18]; Norman Lockyer noted the same in 1904 [29]. An El Niño

connection with flooding was reported in 1894 by Vctor Eguiguren (1852-1919) and

in 1895 by Federico Alfonso Pezet (1859-1929) [17, 31]. In 1924, Gilbert Walker

coined the term ”Southern Oscillation” [37]. He and others are generally credited

with identifying the El Niño effect.

Now, El Niño is widely regarded as a phenomenon affecting the global climate

and disrupts normal weather patterns, which as a result can lead to intense storms

in some places and droughts in others. Currently, a number of studies show that the
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sea surface temperature near the equator, especially Niño 3.4 and Niño 3 (See Figure

1.1), play an important role in constituting an El Niño event.

Figure 1.1. The 1997-98 El Niño observed by TOPEX/Poseidon. The white areas
indicate the pool of warm water off the Tropical Western coasts of northern South and
all Central America as well as along the Central-eastern equatorial and Southeastern
Pacific Ocean.

The United States Climate Prediction Center and the International Research

Institute for Climate and Society claims that an El Niño event is under way when
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the sea surface temperatures index in the central Pacific (the Niño 3.4 region) equal

or exceed +0.5◦C for several seasons in a row [19]. While in another research, the

Japan Meteorological Agency declares that an El Niño event has started when the

average 5 month sea surface temperature deviation for the Niño 3 region, is over

+0.5◦C warmer for six consecutive months or longer [25]. In these El Niño regions,

an important feature is that the Equatorial Undercurrent. First discovered in 1951

[32], the flow reverses at a depth of several tens of meters while the surface flow is

generally directed westward because of the prevalence of winds that blow westward.

Because of the Equatorial Undercurrent, the inherent ocean adjustment influence the

surface ocean temperature. Therefore, one of the keys in explaining El Niño is to

model the Pacific Equatorial Undercurrent. Today, lots of researches shows that the

Pacific Equatorial Undercurrent is thin (less than 200 m deep [32]), symmetric (from

5◦S latitude to 5◦N latitude) and remarkable long (about 13000 km, extending nearly

the whole ocean basin [24]) such that it can be taken as a shallow water layer.

Figure 1.2. Map showing Niño 3.4 and other index regions.

The classical model of equatorial waves are eastward propagating Kelvin waves,

which predicted theoretically by using a β-plane approximation to the governing equa-

tions in the shallow water regime of a one-layer reduced-gravity model [15]. Unfor-
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tunately, this theory ignored vertical variations of the flow but the fact is that the

vertical stratification of the Coriolis force on the ocean is greater than anywhere else.

Meanwhile, the Coriolis parameter along the Equator vanish and the β-plane effect

on the planetary vorticity of the flow in these area amounts to less than 1.75%, which

implies f -plane approximation is reasonable. Recently, a shallow water model with

the f -plane approximation proposed by A. Constantin succeeded to capture these

features of the Equatorial Undercurrent [10]. However, it is just the simplest approx-

imation to the Euler dynamics such that more mathematical work is needed in the

future.

1.2 Early Developments of solitary shallow waves

In this section we review the historical development of nonlinear shallow water

wave theory following Ablowitz and Clarkson [1].

In 1834, a young engineer named John Scott Russel (1808-1882) made a remark-

able discovery when he was riding on horseback along a narrow canal near Edinburgh,

Scotland. He described it in his ”Report on Waves” [33, 34].

”I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped - not so the mass of

water in the channel which it had put in motion; it accumulated round the prow

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled

forward with great velocity, assuming the form of a large solitary elevation, a rounded,

smooth and well-defined heap of water, which continued its course along the channel

apparently without change of form or diminution of speed. I followed it on horseback,

and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving

its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the
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windings of the channel. Such, in the month of August 1834, was my first chance

interview with that singular and beautiful phenomenon which I have called the Wave

of Translation.”

To confirm and study this phenomenon, he build an experimental tank, 20 feet

long and 1 foot wide, in his garden in August, 1837. He wanted to repeat the solitary

waves in his tank and he succeeded. Based on the data from these experiments, he

found that the speed of propagation c of the solitary wave in a channel of depth h to

be

c =
√
g(h+ α),

where α is the amplitude of the wave and g the force due to gravity.

Unfortunately, Russel’s contemporaries, containing famous fluid mechanic George

Gabriel Stokes, ill-understood and doubted this discovery. And solitary waves was

forgotten by the times.

Until 1895, D. J. Korteweg and his student, G. de Vries, deduced the now

famous Korteweg-de Vries (KdV) equation

ut + ux +
3

2
uux +

1

6
uxxx = 0, (1.1)

under the long-wave and small-amplitude assumption[28]. And the traveling wave

solution they obtained from KdV equation, also named one-soliton solution later,

explain Russel’s phenomenon. In 1965, Kruskal and Zabusky gave Russel’s wave a

new name, soliton, after using digital computer and numerical simulation method

to research two-soliton solution[39]. Now, soliton, as a nonlinear mathematical and

physical theory, can describe so many phenomena from fiber optics, quantum me-

chanics to biology. To commemorate Russel’s contribution to soliton discovery, on

12 July 1995, an international gathering of scientists witnessed a re-creation of the
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famous 1834 ’first’ sighting of a soliton or solitary wave on the Union Canal near

Edinburgh (see Figure 1.2).

Figure 1.3. Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-
Watt University, 12 July 1995.

1.3 The Camassa-Holm equation

In this section, we review the historical development of the Camssa-Holm equa-

tion.

It is known that many of the shallow water models as approximations to the

full Euler dynamics are only valid in the weakly nonlinear regime, for instance, the

classical Korteweg-de Vries (KdV) equation. However, the more interesting physical
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phenomena, such as wave breaking, waves of maxima height [2, 36], require a tran-

sition to full nonlinearity. The KdV equation is a simple mathematical model for

gravity waves in shallow water, but it fails to model fundamental physical phenom-

ena such as the extreme wave of Stokes [35] and does not include breaking waves (i.e.

wave profile remains bounded while its slope becomes unbounded in finite time). The

failure of weakly nonlinear shallow-water wave equations to model observed wave

phenomena in nature is prime motivation in the search for alternative models for

nonlinear shallow-water waves [34, 38]. The long-wave regime is usually character-

ized by presumptions of long wavelength λ and small amplitude a with the amplitude

parameter ε and the shallowness parameter µ respectively by

ε =
a

h0

� 1, µ =
h2

0

λ2
� 1.

It is well understood that the KdV model provides a good asymptotic approximations

of unidirectional solutions of the irrotational two-dimensional water waves problem

on the Boussinesq regime µ � 1, ε = O(µ) [7, 14]. To describe more accurately the

motion of these unidirectional waves, it was shown in [13] that the Camassa-Holm

(CH) equation [8, 20] in the CH scaling, µ � 1, ε = O(
√
µ), could be valid higher

order approximations to the governing equation for full water waves in the long time

scaling O(1
ε
). Like the KdV, the CH equation is integrable and have solitons, while

the CH equation models breaking waves and has peaked solitary waves [8, 12, 30].

It is also found that the Euler equation has breaking waves [4] and a traveling-wave

solution with the greatest height which has a corner at its crest [36].

The Camassa-Holm equation inspired the search for various generalization of

this equation with interesting properties and applications. Note that all nonlinear

terms in the CH equation is quadratic. It is then of great interest to find those

integrable equations with higher-power nonlinear terms.
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CHAPTER 2

THE ROTATION-CAMASSA-HOLM EQUATION

2.1 Introduction

Our first main aim of this chapter is to formally derive a model equation with the

Coriolis effect from the incompressible and irrotational two-dimensional shallow water

in the equatorial region. This new model equation called the rotation-Camassa-Holm

(R-CH) equation has a cubic and even quartic nonlinearities and a formal Hamiltonian

structure. More precisely, the motion of the fluid is described by the scalar equation

in the form

∂tu− βµ∂tuxx + cux + 3αεuux − β0µuxxx + ω1ε
2u2ux + ω2ε

3u3ux

= αβεµ(2uxuxx + uuxxx),

(2.1)

where the parameter Ω is the constant rotational frequency due to the Coriolis effect.

The other constants appearing in the equation are defined by c =
√

1 + Ω2−Ω, α
def
=

c2

1+c2
, β0

def
= c(c4+6c2−1)

6(c2+1)2
, β

def
= 3c4+8c2−1

6(c2+1)2
, ω1

def
= −3c(c2−1)(c2−2)

2(1+c2)3
, andω2

def
= (c2−2)(c2−1)2(8c2−1)

2(1+c2)5

satisfying c→ 1, β → 5
12

, β0 → 1
4
, ω1, ω2 → 0 and α→ 1

2
when Ω→ 0.

The solution u of (2.1) represents the horizontal velocity field at height z0, and

after the re-scaling, it is required that 0 ≤ z0 ≤ 1, where

z2
0 =

1

2
− 2

3

1

(c2 + 1)
+

4

3

1

(c2 + 1)2
. (2.2)

Since it is also natural to require that the constant β > 0, it must be the case

0 ≤ Ω <

√
1

6
(1 + 2

√
19) ≈ 1.273,

and

1√
2
≤ z0 <

√
61− 2

√
19

54
≈ 0.984.
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In particular, when Ω = 0, z0 = 1√
2

is corresponding to the case of classical CH

equation.

The starting point of our derivation of the R-CH model in (2.1) is the paper

[26] where the classical CH equation was derived. The R-CH equation in (2.1) is

established by showing that after a double asymptotic expansion with respect to ε

and µ, the free surface η = η(τ, ξ) under the field variable (η, ξ) defined in (2.5) in

2D Euler’s dynamics (2.6) (see Section 2), is governed by the equation

2(Ω + c)ητ + 3c2ηηξ +
c2

3
µηξξξ + A1εη

2ηξ + A2ε
2η3ηξ + A5ε

3η4ηξ

= εµ
[
A3ηξηξξ + A4ηηξξξ

]
+O(ε4, µ2),

where the constants A1
def
= 3c2(c2−2)

(c2+1)2
, A2

def
= − c2(2−c2)(c6−7c4+5c2−5)

(c2+1)4
, A3

def
= −c2(9c4+16c2−2)

3(c2+1)2
,

A4
def
= −c2(3c4+8c2−1)

3(c2+1)2
, A5

def
= c2(c2−2)(3c10+228c8−540c6−180c4−13c2+42)

12(c2+1)6
. The free surface η

with respect to the horizontal component of the velocity u at z = z0 under the CH

regime ε = O(
√
µ) is also given by

η =
1

c
u+ γ1εu

2 + γ2ε
2u3 + γ3ε

3u4 + γ4εµuξξ +O(ε4, µ2),

where the constants in the expression are given by γ1 = 2−c2
2c2(c2+1)

, γ2 = (c2−1)(c2−2)(2c2+1)
2c3(c2+1)3

,

γ3 = − (c2−1)2(c2−2)(21c4+16c2+4)
8c4(c2+1)5

, and γ4 =
z20
2c
− 3c2+1

6c(c2+1)
= −(3c4+6c2−5)

12c(c2+1)2
(here the height

parameter z0 is determined by (2.2)).

Denote m
def
= (1 − βµ∂2

x)u, one can rewrite the above equation in terms of the

evolution of the momentum density m, namely,

∂tm+ αε(umx + 2mux) + cux − β0µuxxx + ω1ε
2u2ux + ω2ε

3u3ux = 0. (2.3)

2.2 Derivation of RCH equation

The formal derivation of the Camassa-Holm model equation with the Coriolis

effect is the topic of the present section. Attention is given here is the so-called long-
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wave limit. in this setting, it is assumed that water flows are incompressible and

inviscid with a constant density ρ and no surface tension, and the interface between

the air and the water is a free surface. Then such a motion of water flow occupying

a domain Ωt in R3 under the influence of the gravity g and the Coriolis force due to

the Earth’s rotation can be described by the Euler equations [21], viz.
~ut + (~u · ∇) ~u+ 2~Ω× ~u = −1

ρ
∇P + ~g, x ∈ Ωt,

∇ · ~u = 0, x ∈ Ωt,

~u|t=0 = ~u0, x ∈ Ω0,

where ~u = (u, v, w)T is the fluid velocity, P (t, x, y, z) is the pressure in the fluid,

~g = (0, 0,−g)T with g ≈ 9.8m/s2 the constant gravitational acceleration at the

Earth’s surface, and ~Ω = (0, Ω0 cosφ, Ω0 sinφ)T , with the rotational frequency Ω0 ≈

73 · 10−6rad/s and the local latitude φ, is the angular velocity vector which is di-

rected along the axis of rotation of the rotating reference frame. We adopt a rotating

framework with the origin located at a point on the Earth’s surface, with the x-axis

chosen horizontally due east, the y-axis horizontally due north and the z-axis up-

ward. We consider here waves at the surface of water with a flat bed, and assume

that Ωt = {(x, y, z) : 0 < z < h0 + η(t, x, y)}, where h0 is the typical depth of the

water and η(t, x, y) measures the deviation from the average level. Under the f -plane

approximation (sinφ ≈ 0, φ � 1), the motion of inviscid irrotational fluid near the

Equator in the region 0 < z < h0 + η(t, x, y) with a constant density ρ is described

by the Euler equations [10, 21] in the form
ut + uux + vuy + wuz + 2Ω0w = −1

ρ
Px,

vt + uvx + vvy + wvz = −1
ρ
Py,

wt + uwx + vwy + wwz − 2Ω0u = −1
ρ
Pz − g,

10



the incompressibility of the fluid,

ux + vy + wz = 0,

and the irrotational condition,

(wy − vz, uz − wx, vx − uy)T = (0, 0, 0)T .

The pressure is written as

P (t, x, z) = Pa + ρg(h0 − z) + p(t, x, y, z),

where Pa is the constant atmosphere pressure, and p is a pressure variable measuring

the hydrostatic pressure distribution.

The dynamic condition posed on the surface z = h0 + η yields P = Pa. Then

there appears that

p = ρgη.

Meanwhile, the kinematic condition on the surface is given by

w = ηt + uηx + vηy, when z = h0 + η(t, x, y).

Finally, we pose ”no-flow” condition at the flat bottom z = 0, that is,

w|z=0 = 0.

Consider the two-dimensional flows, moving in the zonal direction along the

equator independent of the y-coordinate, in other words, v ≡ 0 throughout the flow,

the irrotational condition will be simplified as uz −wx = 0. According to the magni-

tude of the physical quantities, we introduce dimensionless quantities as follows

x→ λx, z → h0z, η → aη, t→ λ√
gh0

t,

11



which implies

u→
√
gh0u, w →

√
µgh0w, p→ ρgh0p.

And under the influence of the Earth rotation, we introduce

Ω =

√
h0

g
Ω0.

Furthermore, considering whenever ε→ 0,

u→ 0, w → 0, p→ 0,

that is, u,w and p are proportional to the wave amplitude so that we require a scaling

u→ εu, w → εw, p→ εp.

Therefore the governing equations become

ut + ε(uux + wuz) + 2Ωw = −px in 0 < z < 1 + εη(t, x),

µ{wt + ε(uwx + wwz)} − 2Ωu = −pz in 0 < z < 1 + εη(t, x),

ux + wz = 0 in 0 < z < 1 + εη(t, x),

uz − µwx = 0 in 0 < z < 1 + εη(t, x),

p = η on z = 1 + εη(t, x),

w = ηt + εuηx on z = 1 + εη(t, x),

w = 0 on z = 0.

(2.4)

To derive the R-CH equation for shallow water waves,, we first introduce a

suitable scale and a double asymptotic expansion to get equations in groups with

respect to ε and µ independent on each other, where ε, µ� 1.

Let c be the group speed of water waves. We can apply a suitable far field

variable together with a propagation problem [26, 27]

ξ = ε1/2(x− ct), τ = ε3/2t, (2.5)
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which implies, for consistency from the equation of mass conservation, that we also

transform

w =
√
εW.

Then the governing equations (2.4) become

−cuξ + ε(uτ + uuξ +Wuz) + 2ΩW = −pξ in 0 < z < 1 + εη,

εµ{−cWξ + ε(Wτ + uWξ +WWz)} − 2Ωu = −pz in 0 < z < 1 + εη,

uξ +Wz = 0 in 0 < z < 1 + εη,

uz − εµWξ = 0 in 0 < z < 1 + εη,

p = η on z = 1 + εη,

W = −cηξ + ε(ητ + uηξ) on z = 1 + εη,

W = 0 on z = 0.

(2.6)

A double asymptotic expansion is introduced to seek a solution of the system (2.6),

q ∼
∞∑
n=0

∞∑
m=0

εnµmqnm

as ε → 0, µ → 0, where q will be taken the scale functions u, W, p and η, and all

the functions qnm satisfiy the far field conditions qnm → 0 as |ξ| → ∞ for every

n, m = 0, 1, 2, 3, ....

Substituting the asymptotic expansions of u, W, p, η into (2.6), we check all

the coefficients of the order O(εiµj) (i, j = 0, 1, 2, 3, ...).

13



From the order O(ε0µ0) terms of (2.6) we obtain

−cu00,ξ + 2ΩW00 = −p00,ξ in 0 < z < 1,

2Ωu00 = p00,z in 0 < z < 1,

u00,ξ +W00,z = 0 in 0 < z < 1,

u00,z = 0 in 0 < z < 1,

p00 = η00 on z = 1,

W00 = −cη00,ξ on z = 1,

W00 = 0 on z = 0.

(2.7)

To solve the system (2.7), we first obtain from the fourth equation in (2.7) that u00

is independent of z, that is,

u00 = u00(τ, ξ).

Thanks to the third equation in (2.7) and the boundary condition of W on z = 0, we

get

W00 = W00|z=0 +

∫ z

0

W00,z′dz
′ = −

∫ z

0

u00,ξ dz
′ = −zu00,ξ, (2.8)

which along with the boundary condition of W on z = 1 implies

u00,ξ(τ, ξ) = cη00,ξ(τ, ξ). (2.9)

Thereore, we have

u00(τ, ξ) = cη00(τ, ξ), W00 = −czη00,ξ, (2.10)

here use has been made of the far field conditions u00, η00 → 0 as |ξ| → ∞.

On the other hand, from the second equation in (2.7), there appears that

p00 = p00|z=1 +

∫ z

1

p00,z′ dz
′ = η00 + 2Ω

∫ z

1

u00 dz
′ = η00 + 2Ω(z − 1)u00, (2.11)
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which along with (2.9) implies

p00,ξ =
(1

c
+ 2Ω(z − 1)

)
u00,ξ, (2.12)

Combining (2.12) with (2.8) and the first equation in (2.7) gives rise to

(c2 + 2Ωc− 1)u00,ξ = 0,

which follows that

c2 + 2Ωc− 1 = 0, (2.13)

if we assume that u00 is an non-trivial velocity. Therefore, when consider the waves

move towards to the right side, we may obtain

c =
√

1 + Ω2 − Ω. (2.14)

Vanishing the order O(ε1µ0) terms of (2.6), we obtain from the second equation

in (2.16) and the Taylor expansion

f(z) = f(1) +
∞∑
n=1

(z − 1)n

n!
f (n)(1) (2.15)

that 

−cu10,ξ + u00,τ + u00u00,ξ + 2ΩW10 = −p10,ξ in 0 < z < 1,

2Ωu10 = p10,z in 0 < z < 1,

u10,ξ +W10,z = 0 in 0 < z < 1,

u10,z = 0 in 0 < z < 1,

p10 + p00,zη00 = η10 on z = 1,

W10 + η00W00,z = −cη10,ξ + η00,τ + u00η00,ξ on z = 1,

W10 = 0 on z = 0.

(2.16)
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From the fourth equation in (2.16), we know that u10 is independent to z, that is,

u10 = u10(τ, ξ). Thanks to the third equation in (2.16) and the boundary conditions

of W on z = 0 and z = 1, we get

W10 = W10|z=0 +

∫ z

0

W10,z′dz
′ = −zu10,ξ (2.17)

and

W10|z=1 = −cη10,ξ + η00,τ + (u00η00)ξ.

Hence, we obtain from the third equation in (2.7) and (2.10) that

u10,ξ = cη10,ξ − η00,τ − (u00η00)ξ, (2.18)

and then

W10 = z(η00,τ + 2cη00η00,ξ − cη10,ξ).

On the other hand, thanks to the second equation in (2.16) and (2.10), we deduce

that

p10 = p10|z=1 +

∫ z

1

p10,z′dz
′ = η10 − 2Ωu00η00 + 2Ω(z − 1)u10,

and then

p10,ξ = η10,ξ − 2Ω(u00η00)ξ + 2Ω(z − 1)u10,ξ. (2.19)

Taking account of the first equation in (2.16), (2.10), and (2.10), it must be

−p10,ξ = −cu10,ξ + cη00,τ + c2η00η00,ξ − 2Ωzu10,ξ,

which along with (2.19) and (2.18) implies

0 =− (c+ 2Ω)u10,ξ + η10,ξ + cη00,τ + c2η00η00,ξ − 2Ω(u00η00)ξ

=c(u00η00)ξ − (c2 + 2Ωc− 1)η10,ξ + 2(c+ Ω)η00,τ + c2η00η00,ξ.
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Hence, it follows from (2.10) and (2.13) that

2(Ω + c)η00,τ + 3c2η00η00,ξ = 0. (2.20)

Defining

c1
def
= − 3c2

4(Ω + c)
= − 3c3

2(c2 + 1)
, (2.21)

we may rewrite (2.20) as

η00,τ = c1(η2
00)ξ, (2.22)

which, together with (2.18), implies

u10,ξ =
(
cη10 − (c+ c1)η2

00

)
ξ
. (2.23)

Therefore, we get from the far field conditions u10, η00, η10 → 0 as |ξ| → ∞ that

u10 = cη10 − (c+ c1)η2
00, (2.24)

which follows from (2.22) that

u10,τ = cη10,τ − 4(c+ c1)c1η
2
00η00,ξ. (2.25)

Similarly, vanishing the order O(ε0µ1) terms of (2.6), we obtain from the second

equation in (2.7) and the Taylor expansion (2.15) that

−cu01,ξ + 2ΩW01 = −p01,ξ in 0 < z < 1,

2Ωu01 = p01,z in 0 < z < 1,

u01,ξ +W01,z = 0 in 0 < z < 1,

u01,z = 0 in 0 < z < 1,

p01 = η01 on z = 1,

W01 = −cη01,ξ on z = 1,

W01 = 0 on z = 0.
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From this, we may readily get from the above argument that

u01 = cη01 = cη01(τ, ξ), W01 = −czη01,ξ, p01 = [2Ωc(z − 1) + 1]η01. (2.26)

For the order O(ε2µ0) terms of (2.6), we obtain from the Taylor expansion

(2.15) that

−cu20,ξ + u10,τ + (u00u10)ξ + 2ΩW20 = −p20,ξ in 0 < z < 1,

−2Ωu20 = −p20,z in 0 < z < 1,

u20,ξ +W20,z = 0 in 0 < z < 1,

u20,z = 0 in 0 < z < 1,

p20 + η00p10,z + η10p00,z = η20 on z = 1,

W20 + η00W10,z + η10W00,z

= −cη20,ξ + η10,τ + u00η10,ξ + u10η00,ξ on z = 1,

W20 = 0 on z = 0.

(2.27)

From the fourth equation in (2.27), we know that u20 is independent of z, that is,

u20 = u20(τ, ξ),

which along with the third equation in (2.27) and the boundary condition of W20 at

z = 0 implies that

W20 = −zu20,ξ. (2.28)

Combining (2.28) with the boundary condition of W20 at z = 1, we get from the

equations of W00,z and W10,z that

u20,ξ = cη20,ξ − η10,τ − (u00η10 + u10η00)ξ,

that is,

u20,ξ = cη20,ξ − η10,τ − 2c(η00η10)ξ + (c+ c1)(η3
00)ξ. (2.29)
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While from the second equation in (2.27) and the boundary condition of p20 at z = 1,

we get

p20 = p20|z=1 +

∫ z

1

p20,z′ dz
′ = η20 − (η00p10,z + η10p00,z) + 2Ω

∫ z

1

u20 dz
′

= η20 − 2Ω(η00u10 + η10u00) + 2Ω(z − 1)u20,

which leads to

p20,ξ = η20,ξ − 2Ω(η00u10 + η10u00)ξ + 2Ω(z − 1)u20,ξ. (2.30)

On the other hand, due to the first equation in (2.27), we deduce from (2.28) and

(2.29) that

−p20,ξ = −cu20,ξ + u10,τ + (u00u10)ξ − 2Ωzu20,ξ. (2.31)

Combining (2.30) with (2.31), we have

η20,ξ − 2Ω(η00u10 + η10u00)ξ − (c+ 2Ω)u20,ξ + u10,τ + (u00u10)ξ = 0.

Thanks to (2.9), (2.24), and (2.25), we obtain

2(c+ Ω)η10,τ + 3c2(η00η10)ξ − (2c+
4

3
c1)(c+ c1)(η3

00)ξ = 0, (2.32)

which leads to

η10,τ = 2c1(η00η10)ξ +
2c1 + 3c

3(c+ Ω)
(c+ c1)(η3

00)ξ. (2.33)

Therefore, we have

u20,ξ = cη20,ξ − 2(c+ c1)(η00η10)ξ −
2c1 − 3Ω

3(c+ Ω)
(c+ c1)(η3

00)ξ,

which along with the far field conditions η00, η10, η20 → 0 as |ξ| → ∞ gives

u20 = cη20 − 2(c+ c1)η00η10 −
2c1 − 3Ω

3(c+ Ω)
(c+ c1)η3

00. (2.34)
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Thanks to (2.22) and (2.33), we deduce that

u20,τ = cη20,τ − 4(c+ c1)c1(η2
00η10)ξ −

8cc1 + 4c2
1 + 21

4
c2

2(c+ Ω)
(c+ c1)(η4

00)ξ. (2.35)

For the order O(ε1µ1) terms of (2.6), we obtain from the Taylor expansion

(2.15) that

−cu11,ξ + u01,τ + u00u01,ξ + u10u00,ξ +W00u01,z

+W10u00,z + 2ΩW11 = −p11,ξ in 0 < z < 1,

−cW00,ξ − 2Ωu11 = −p11,z in 0 < z < 1,

u11,ξ +W11,z = 0 in 0 < z < 1,

u11,z −W00,ξ = 0 in 0 < z < 1,

p11 = η11 − (η00p01,z + η01p00,z) on z = 1,

W11 +W00,zη01 +W01,zη00

= −cη11,ξ + η01,τ + u00η01,ξ + u01η00,ξ on z = 1,

W11 = 0 on z = 0.

(2.36)

Thanks to (2.10) and the fourth equation of (2.36), we have

u11,z = −czη00,ξξ,

and then

u11 = − c
2
z2η00,ξξ + Φ11(τ, ξ) (2.37)

for some arbitrary smooth function Φ11(τ, ξ) independent of z. While from the third

equation in (2.36) with W11|z=0 = 0, it follows that

W11 = W11|z=0 +

∫ z

0

W11,z′ dz
′ =

c

6
z3η00,ξξξ − z∂ξΦ11(τ, ξ), (2.38)
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which, along with the equations of W00,z and W01,z, and the boundary condition of

W11 on {z = 1}, implies

−∂ξΦ11(τ, ξ) == − c
6
η00,ξξξ + (u00η01 + η00u01)ξ − cη11,ξ + η01,τ . (2.39)

Hence, in view of (2.38), (2.10), (2.26), and (2.9), we obtain

W11 =
c

6
z(z2 − 1)η00,ξξξ + z

(
− cη11,ξ + η01,τ + (u00η01 + η00u01)ξ

)
. (2.40)

Due to (2.10), (2.26), (2.37), and the boundary condition of p11 in (2.36), we deduce

from the second equation of (2.36) that

p11 = p11|z=1 +

∫ z

1

p11,z′ dz
′ = p11|z=1 +

∫ z

1

(cW00,ξ + 2Ωu11) dz′

= η11 − 2Ω(u00η01 + η00u01)−
(
c2

2
(z2 − 1) +

Ωc

3
(z3 − 1)

)
η00,ξξ + 2Ω(z − 1)Φ11,

which implies

p11,ξ = η11,ξ − 2Ω(u00η01 + η00u01)ξ −
(
c2

2
(z2 − 1) +

Ωc

3
(z3 − 1)

)
η00,ξξξ

+ 2Ω(z − 1)∂ξΦ11.

(2.41)

Combining (2.41) and the first equation in (2.36), it follows from (2.10), (2.26), and

(2.37) that

− cu11,ξ + cη01,τ + c2(η00η01)ξ + 2ΩW11 + η11,ξ − 4Ωc(η00η01)ξ

−
(
c2

2
(z2 − 1) +

Ωc

3
(z3 − 1)

)
η00,ξξξ + 2Ω(z − 1)∂ξΦ11 = 0.

(2.42)

Substituting (2.37) and (2.39) into (2.42), we obtain

2(Ω + c)η01,τ + 3c2(η00η01)ξ +
c2

3
η00,ξξξ = 0, (2.43)

that is,

η01,τ = 2c1(η00η01)ξ +
2c1

9
η00,ξξξ, (2.44)
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which, together with (2.39), (2.40), and (2.37), leads to

−∂ξΦ11(τ, ξ) = (
2c1

9
− c

6
)η00,ξξξ + 2(c+ c1)(η00η01)ξ − cη11,ξ,

and then

W11 =

(
2c1

9
+
c

6
(z2 − 1)

)
z η00,ξξξ + 2(c+ c1) z (η00η01)ξ − c z η11,ξ

and

u11 =

(
c

6
− 2c1

9
− c

2
z2

)
η00,ξξ + cη11 − 2(c+ c1)η00η01, (2.45)

where use has been made by the far field conditions u11, η00,ξξ, η00, η01, η11 → 0 as

|ξ| → ∞.

Thanks to (2.22) and (2.44), we obtain

u11,τ =cη11,τ +

(
cc1

6
− 2c2

1

9
− cc1

2
z2

)
(η2

00)ξξξ

− 2(c+ c1)

(
2c1(η2

00η01)ξ +
2c1

9
η00η00,ξξξ

)
.

(2.46)

For the order O(ε3µ0) terms of (2.6), we obtain from the Taylor expansion

(2.15) that

−cu30,ξ + u20,τ + (u00u20 + 1
2
u2

10)ξ + 2ΩW30 = −p30,ξ in 0 < z < 1,

−2Ωu30 = −p30,z in 0 < z < 1,

u30,ξ +W30,z = 0 in 0 < z < 1,

u30,z = 0 in 0 < z < 1,

p30 + η00p20,z + η10p10,z + η20p00,z = η30 on z = 1,

W30 + η00W20,z + η10W10,z + η20W00,z

= −cη30,ξ + η20,τ + u00η20,ξ + u10η10,ξ + u20η00,ξ on z = 1,

W30 = 0 on z = 0.

(2.47)
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From the fourth equation in (2.47), we know that u30 is independent of z, that is,

u30 = u30(τ, ξ),

which along with the third equation in (2.47) and the boundary condition of W30 at

z = 0 implies that

W30 = −zu30,ξ.

Combining (2.28) with the boundary condition of W20 at z = 1, we have

u30,ξ = cη30,ξ − η20,τ − (u00η20 + u10η10 + u20η00)ξ. (2.48)

While from the second equation in (2.47) and the boundary condition of p30 at z = 1,

we get

p30 = p30|z=1 +

∫ z

1

p30,z′ dz
′

= η30 − (η00p20,z + η10p10,z + η20p00,z) + 2Ω

∫ z

1

u30 dz
′

= η30 − 2Ω(u00η20 + u10η10 + u20η00) + 2Ω(z − 1)u30,

which leads to

p30,ξ = η30,ξ − 2Ω(u00η20 + u10η10 + u20η00)ξ + 2Ω(z − 1)u30,ξ. (2.49)

On the other hand, from the first equation in (2.47), we have

−p30,ξ = −cu30,ξ + u20,τ + (u00u20 +
1

2
u2

10)ξ − 2Ωzu30,ξ. (2.50)

Combining (2.49) with (2.50), we get

0 = η30,ξ − 2Ω(u00η20 + u10η10 + u20η00)ξ − (c+ 2Ω)u30,ξ + u20,τ + (u00u20 +
1

2
u2

10)ξ.

(2.51)
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Substituting (2.48) and (2.35) into (2.51), we obtain

2(c+ Ω)η20,τ + 3c2(η00η20)ξ +
3c2

2
(η2

10)ξ − 2(2c1 + 3c)(c+ c1)(η2
00η10)ξ

− (64cc1 + 24c2
1 + 45c2 − 15)

12(c+ Ω)
(c+ c1)(η4

00)ξ = 0,

(2.52)

that is,

η20,τ = 2c1(η00η20)ξ + c1(η2
10)ξ +

2c1 + 3c

Ω + c
(c+ c1)(η2

00η10)ξ

+
(64cc1 + 24c2

1 + 45c2 − 15)

24(c+ Ω)2
(c+ c1)(η4

00)ξ.

(2.53)

Thanks to (2.48) again, we have

u30,ξ =cη30,ξ − 2(c+ c1)(η00η20)ξ − (c+ c1)(η2
10)ξ −

2c1 − 3Ω

Ω + c
(c+ c1)(η2

00η10)ξ

− (64cc1 + 24c2
1 + 45c2 + 24Ω2 − 3)

24(c+ Ω)2
(c+ c1)(η4

00)ξ,

which implies

u30 =cη30 − 2(c+ c1)(η00η20)− (c+ c1)(η2
10)− 2c1 − 3Ω

Ω + c
(c+ c1)(η2

00η10)

− (64cc1 + 24c2
1 + 45c2 + 24Ω2 − 3)

24(c+ Ω)2
(c+ c1)(η4

00).

(2.54)

Therefore, due to (2.22), (2.33), and (2.53), we have

u30,τ =cη30,τ −
2(3c2 + 5cc1 + 4c2

1 − 3Ωc1)

Ω + c
(c+ c1)(η3

00η10)ξ

− 4c1(c+ c1)(η00η
2
10)ξ − 4c1(c+ c1)(η2

00η20)ξ −B1η
4
00η00,ξ

(2.55)

with

B1
def
=

(c+ c1)2(82cc1 + 36c2
1 + 45c2 − 18Ωc1 − 27Ωc− 15)

3(Ω + c)2

+
c1(c+ c1)(64cc1 + 24c2

1 + 45c2 + 24Ω2 − 3)

3(Ω + c)2
.
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For the terms of (2.6) at order O(ε4µ0), it is inferred from the Taylor expansion (2.15)

that

−cu40,ξ + u30,τ + (u00u30 + u10u20)ξ + 2ΩW40 = −p40,ξ in 0 < z < 1,

−2Ωu40 = −p40,z in 0 < z < 1,

u40,ξ +W40,z = 0 in 0 < z < 1,

u40,z = 0 in 0 < z < 1,

p40 + η00p30,z + η10p20,z + η20p10,z + η30p00,z = η40 on z = 1,

W40 + η00W30,z + η10W20,z + η20W10,z + η30W00,z

= −cη40,ξ + η30,τ + u00η30,ξ + u10η20,ξ + u20η10,ξ + u30η00,ξ on z = 1,

W40 = 0 on z = 0.

(2.56)

From the fourth equation in (2.47), we know that u40 is independent of z, that

is,

u40 = u40(τ, ξ),

which along with the third equation in (2.56) and the boundary condition of W40 at

z = 0 implies that

W40 = −zu40,ξ. (2.57)

Combining (2.57) with the boundary condition of W40 at z = 1, we have

u40,ξ = cη40,ξ − η30,τ − (u00η30 + u10η20 + u20η10 + u30η00)ξ, (2.58)
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From the second equation in (2.56) and the boundary condition of p30 at z = 1, we

get

p40 = p40|z=1 +

∫ z

1

p40,z′ dz
′

= η40 − (η00p30,z + η10p20,z + η20p10,z + η30p00,z) + 2Ω

∫ z

1

u40 dz
′

= η40 − 2Ω(u00η30 + u10η20 + u20η10 + u30η00) + 2Ω(z − 1)u40,

which implies

p40,ξ = −η40,ξ − 2Ω(u00η30 + u10η20 + u20η10 + u30η00)ξ + 2Ω(z − 1)u40,ξ. (2.59)

On the other hand, from the first equation in (2.56), we have

−p40,ξ = −cu40,ξ + u30,τ + (u00u30 + u10u20)ξ + 2ΩW40,

which along with (2.57) and (2.59) gives rise to

0 =− (c+ 2Ω)u40,ξ + u30,τ + (u00u30 + u10u20)ξ

+ η40,ξ − 2Ω(u00η30 + u10η20 + u20η10 + u30η00)ξ

(2.60)

Substituting (2.58) and (2.55) into (2.60), we obtain

2(c+ Ω)η30,τ + 3c2(η00η30 + η10η20)ξ − 2(3c+ 2c1)(c+ c1)(η2
00η20 + η00η

2
10)ξ

− (64cc1 + 24c2
1 + 45c2 − 15)

3(c+ Ω)
(c+ c1)(η3

00η10)ξ −B2(η5
00)ξ = 0

(2.61)

with

B2
def
=

1

5
B1 −

(c+ c1)2(2c1 − 3Ω)

3(Ω + c)
+

2c(c+ c1)(64cc1 + 24c2
1 + 45c2 + 24Ω2 − 3)

12(Ω + c)2

=
c2(2− c2)(3c10 + 228c8 − 540c6 − 180c4 − 13c2 + 42)

60(c2 + 1)6
.
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For the terms in (2.6) at order O(ε2µ1), we have

−cu21,ξ + u11,τ + (u00u11 + u10u01)ξ +W00u11,z + 2ΩW21 = −p21,ξ in 0 < z < 1,

−cW10,ξ +W00,τ + u00W00,ξ +W00W00,z − 2Ωu21 = −p21,z in 0 < z < 1,

u21,ξ +W21,z = 0 in 0 < z < 1,

u21,z −W10,ξ = 0 in 0 < z < 1,

p21 + η10p01,z + η01p10,z + η00p11,z + η11p00,z = η21 on z = 1,

W21 + η10W01,z + η01W10,z + η00W11,z + η11W00,z

= −cη21,ξ + η11,τ + u00η11,ξ + u11η00,ξ + u10η01,ξ + u01η10,ξ on z = 1,

W21 = 0 on z = 0.

(2.62)

We now first derive from (2.17), (2.23), and the fourth equation in (2.62) that

u21,z = W10,ξ = z

(
2(c+ c1)(η2

00,ξ + η00η00,ξξ)− cη10,ξξ

)
,

which gives

u21 =
z2

2

(
2(c+ c1)(η2

00,ξ + η00η00,ξξ)− cη10,ξξ

)
+ Φ21(τ, ξ) =

z2

2
H1 + Φ21(τ, ξ)

for some smooth function Φ21(τ, ξ) independent of z, where we denote

H1
def
= 2(c+ c1)(η2

00,ξ + η00η00,ξξ)− cη10,ξξ.

Hence, we have

u21,ξ =
z2

2
H1,ξ + ∂ξΦ21(τ, ξ).

On the other hand, thanks to the third equation in (2.62) and the boundary condition

of W21 on {z = 0}, we get

W21 = W21|z=0 +

∫ z

0

W21,z′ dz
′ = −

∫ z

0

u21,ξ dz
′ = −z

3

6
H1,ξ − z∂ξΦ21(τ, ξ),
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which along with the boundary condition of W21 on {z = 1} leads to

−1

6
H1,ξ − ∂ξΦ21(τ, ξ) = −cη21,ξ + η11,τ + (u00η11 + u11η00 + u10η01 + u01η10)ξ|z=1

= −cη21,ξ + η11,τ +H2,ξ|z=1,

where we denote

H2
def
= u00η11 + u11η00 + u10η01 + u01η10.

It then follows that

∂ξΦ21(τ, ξ) = cη21,ξ − η11,τ −
1

6
H1,ξ −H2,ξ|z=1, (2.63)

which implies

u21,ξ = cη21,ξ − η11,τ + (
z2

2
− 1

6
)H1,ξ −H2,ξ|z=1 (2.64)

and

W21 =
z(1− z2)

6
H1,ξ − czη21,ξ + zη11,τ + z(H2,ξ|z=1). (2.65)

Substituting the expressions of W00,τ , u00, W00,ξ, W00, W00,z, and W10,ξ into the second

equation in (2.62), we obtain

p21,z = 2Ωu21 − c2zη10,ξξ + c(c+ 4c1)zη2
00,ξ + c(3c+ 4c1)zη00η00,ξξ. (2.66)

While from the boundary condition of p21 on z = 1, we have

p21|z=1 = η21 + c2η00η00,ξξ − 2ΩH2|z=1,

which along with (2.66) leads to

p21 = p21|z=1 +

∫ z

1

p21,z′ dz
′

= η21 − 2ΩH2|z=1 + 2Ω

∫ z

1

u21 dz
′ − c2

2
(z2 − 1)η10,ξξ

+
c(c+ 4c1)

2
(z2 − 1)η2

00,ξ +

(
c2 +

c(3c+ 4c1)

2
(z2 − 1)

)
η00η00,ξξ,

(2.67)
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and then

p21,ξ = η21,ξ − 2ΩH2,ξ|z=1 + 2Ω

∫ z

1

u21,ξ dz
′ − c2

2
(z2 − 1)η10,ξξξ

+
c(c+ 4c1)

2
(z2 − 1)(η2

00,ξ)ξ +

(
c2 +

c(3c+ 4c1)

2
(z2 − 1)

)
(η00η00,ξξ)ξ

= −2ΩzH2,ξ|z=1 + 2Ω(z − 1)

(
cη21,ξ − η11,τ

)
+
z(z2 − 1)

6
H1,ξ −

c2

2
(z2 − 1)η10,ξξξ

+ η21,ξ +
c(c+ 4c1)

2
(z2 − 1)(η2

00,ξ)ξ +

(
c2 +

c(3c+ 4c1)

2
(z2 − 1)

)
(η00η00,ξξ)ξ.

(2.68)

Thanks to the first equation in (2.62), (2.65), and (2.10), we get

−p21,ξ =− cu21,ξ + u11,τ + (u00u11 + u10u01)ξ + c2z2η00,ξη00,ξξ

+
Ω

3
z(1− z2)H1,ξ − 2Ωczη21,ξ + 2Ωzη11,τ + 2ΩzH2,ξ|z=1.

(2.69)

Combining (2.69) with (2.67), we get

0 = −cu21,ξ + u11,τ + (u00u11 + u10u01)ξ +

(
c2

2
z2 +

c(c+ 4c1)

2
(z2 − 1)

)
(η2

00,ξ)ξ

+
Ω

3
z(1− z2)H1,ξ + (1− 2Ωc)η21,ξ + 2Ωη11,τ +

z(z2 − 1)

6
H1,ξ −

c2

2
(z2 − 1)η10,ξξξ

+

(
c2 +

c(3c+ 4c1)

2
(z2 − 1)

)
(η00η00,ξξ)ξ.

(2.70)

Notice that

(u01u10 + u00u11)ξ

= c2(η01η10 + η00η11)ξ +

(
c2

6
− 2cc1

9
− c2z2

2

)
(η00η00,ξξ)ξ − 3c(c+ c1)(η2

00η01)ξ

and

H2,ξ|z=1 = 3c2(η01η10 + η00η11)ξ −
(
c2

3
+

2cc1

9

)
(η00η00,ξξ)ξ − 3c(c+ c1)(η2

00η01)ξ.

We substitute (2.64) and (2.46) into (2.70) to get

2(Ω + c)η11,τ + 3c2(η00η11 + η10η01)ξ − 2(c+ c1)(3c+ 2c1)(η2
00η01)ξ +

c2

3
η10,ξξξ

−
(
c2

6
+

10cc1

9
+

2c2
1

9

)
(η2

00,ξ)ξ −
(
c2

3
+

20cc1

9
+

8c2
1

9

)
(η00η00,ξξ)ξ = 0.

(2.71)
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Taking η := η00 + εη10 + ε2η20 + ε3η30 + µη01 + εµη11 + O(ε4, µ2). Multiplying

the equations (2.20), (2.32), (2.43), (2.52), (2.61), and (2.71) by 1, ε, µ, ε2, ε3, and

εµ, respectively, and then summating the results, we get the equation of η up to the

order O(ε4, µ2) that

2(Ω + c)ητ + 3c2ηηξ +
c2

3
µηξξξ + εA1η

2ηξ + ε2A2η
3ηξ − 5B0ε

3η4ηξ

= εµ

(
A3ηξηξξ + A4ηηξξξ

)
+O(ε4, µ2),

(2.72)

where c1 = − 3c3

2(c2+1)
is defined in (2.21), A1

def
= −2(3c + 2c1)(c + c1) = 3c2(c2−2)

(c2+1)2
,

A2
def
= − (64cc1+24c21+45c2−15)

3(c+Ω)
(c + c1) = − c2(2−c2)(c6−7c4+5c2−5)

(c2+1)4
, A3

def
= 2c2

3
+ 40cc1

9
+

4c21
3

=

−c2(9c4+16c2−2)
3(c2+1)2

, A4
def
= c2

3
+ 20cc1

9
+

8c21
9

= −c2(3c4+8c2−1)
3(c2+1)2

.

On the other hand, notice that u00 = cη00, u10 = cη10 − (c1 + c)η2
00, u01 = cη01,

u11 = cη11 − 2(c1 + c)η00η01 +
(
c
6
− 2c1

9
− cz2

2

)
η00,ξξ, u20 = cη20 − 2(c + c1)(η00η10) −

2c1−3Ω
3(c+Ω)

(c+ c1)(η3
00), and

u30 = cη30 − 2(c+ c1)(η00η20)− (c+ c1)(η2
10)− 2c1 − 3Ω

Ω + c
(c+ c1)(η2

00η10)

− (64cc1 + 24c2
1 + 45c2 + 24Ω2 − 3)

24(c+ Ω)2
(c+ c1)(η4

00),

we obtain

η00 =
1

c
u00, η10 =

1

c
u10 + γ1u

2
00, η01 =

1

c
u01, η20 =

1

c
u20 + 2γ1u00u10 + γ2u

3
00,

η30 =
1

c
u30 + γ1u

2
10 + 2γ1u00u20 + 3γ2u

2
00u10 + γ3u

4
00,

η11 =
1

c
u11 + 2γ1u00u01 + γ4u00,ξξ,

where γ1
def
= c1+c

c3
, γ2

def
= 2(c+c1)2

c5
+ (2c1−3Ω)(c+c1)

3c4(c+Ω)
, γ3

def
= 5(c+c1)3

c7
+ 5(2c1−3Ω)(c+c1)2

3c6(c+Ω)
+

(64cc1+24c21+45c2+24Ω2−3)

24c5(c+Ω)2
(c+ c1), γ4

def
= −

(
1
6c
− 2c1

9c2
− z2

2c

)
, or it is the same,

γ1 = − 3

2(c2 + 1)
, γ2 =

(c2 − 1)(c2 − 2)(2c2 + 1)

2c3(c2 + 1)3
,

γ3 = −(c2 − 1)2(c2 − 2)(21c4 + 16c2 + 4)

8c4(c2 + 1)5
, γ4 =

z2

2c
− 3c2 + 1

6c(c2 + 1)
.

(2.73)
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Therefore, it follows that

η = η00 + εη10 + ε2η20 + µη01 + ε3η30 + εµη11 +O(ε4, µ2)

=
1

c
u00 + ε

(
1

c
u10 + γ1u

2
00

)
+ ε2

(
1

c
u20 + 2γ1u00u10 + γ2u

3
00

)
+ µ

1

c
u01 + εµ

(
1

c
u11 + 2γ1u00u01 + γ4u00,ξξ

)
+ ε3

(
1

c
u30 + γ1u

2
10 + 2γ1u00u20 + 3γ2u

2
00u10 + γ3u

4
00

)
+O(ε4, µ2).

which along with u = u00 + εu10 + ε2u20 + µu01 + ε3u30 + εµu11 +O(ε4, µ2) yields

η =
1

c
u+

c1 + c

c3
εu2 + γ2ε

2u3 + γ3ε
3u4 + γ4εµuξξ +O(ε4, µ2), (2.74)

where c1 = − 3c3

2(c2+1)
and γi (i = 1, 2, 3, 4) are defined in (2.73) and the parameter

z ∈ [0, 1].

Remark 2.2.1. From the above derivation, we know that, in the free-surface incom-

pressible irrotational Euler equations, the relation between the free surface η and the

horizontal velocity u formally obeys the equation (2.74), with or without Coriollis

effect. It also illustrates that, all the classical models, such as the classical KdV equa-

tion, the BBM equation, or the (improved) Boussinesq equation, can be also formally

derived from relation (2.74) in the KdV regime ε = O(µ).

In the following steps, we will derive the equation for u from express (2.72).

In view of (2.74), we have

2(Ω + c)ητ =
2(Ω + c)

c
uτ +

2(Ω + c)(c1 + c)

c3
ε(u2)τ + 2(Ω + c)γ2ε

2(u3)τ

+ 2(Ω + c)γ3ε
3(u4)τ + 2(Ω + c)γ4εµuτξξ +O(ε4, µ2),

(2.75)

and

3c2ηηξ =
3c2

2

(
(
1

c
u+

c1 + c

c3
εu2 + γ2ε

2u3 + γ3ε
3u4)2 + γ4εµuξξ

)
ξ

+O(ε4, µ2)

=
3c2

2

(
1

c2
u2 +

2(c1 + c)

c4
εu3 + (

(c1 + c)2

c6
+

2

c
γ2)ε2u4 +

2

c
γ4µεuuξξ

+ (
2

c
γ3 +

2(c1 + c)

c3
γ2)ε3u5

)
ξ

+O(ε4, µ2).
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Similarly, we may get

c2

3
µηξξξ =

c2

3
µ(

1

c
u+

c1 + c

c3
εu2)ξξξ +O(ε4, µ2),

εµ

(
A3ηξηξξ + A4ηηξξξ

)
= εµ

(
A3

c2
uξuξξ +

A4

c2
uuξξξ

)
+O(ε4, µ2),

A1εη
2ηξ =

A1

3
ε

[
1

c3
u3 +

3(c1 + c)

c5
εu4 + (

3(c1 + c)2

c7
+

3

c2
γ2)ε2u5

]
ξ

+O(ε4, µ2),

A2ε
2η3ηξ =

A2

4c4
ε2(u4)ξ +

A2(c1 + c)

c6
ε3(u5)ξ +O(ε4, µ2),

and

−5B2ε
3η4ηξ = −B2

c5
ε3(u5)ξ +O(ε4, µ2).

Hence, we deduce from the equation (2.72) that

uτ +
2(c1 + c)

c2
εuuτ + 3γ2cε

2u2uτ + γ4cεµuτξξ + 4γ3cε
3u3uτ +

3c

2(Ω + c)
uuξ

+
cA5

2(Ω + c)
ε2u3uξ +

cA6

2(Ω + c)
εu2uξ +

c2

6(Ω + c)
µuξξξ +

cA7

2(Ω + c)
ε3u4uξ

+ (
cA8

2(Ω + c)
uξuξξ +

cA9

2(Ω + c)
uuξξξ)εµ = O(ε4, ε2µ, µ2),

(2.76)

where A5 := 6(c1+c)2

c4
+ 12cγ2 + 4A1(c1+c)

c5
ε2 + A2

c4
, A6 := 9(c1+c)

c2
+ A1

c3
, A8 := 3cγ4 +

2(c1+c)
c
− A3

c2
, A9 := 3cγ4 + 2(c1+c)

3c
− A4

c2
, and A7 := 5

[
3
2
c2(2

c
γ3 + 2(c1+c)

c3
γ2) + A1

3
( 3
c7

(c1 +

c)2 + 3
c2
γ2) + A2(c1+c)

c6
− B2

c5

]
.

Hence, we obtain

εuuτ = −εu
(

2(c1 + c)

c2
εuuτ + 3γ2cε

2u2uτ +
3c

2(Ω + c)
uuξ +

cA5

2(Ω + c)
ε2u3uξ

+
cA6

2(Ω + c)
εu2uξ +

c2

6(Ω + c)
µuξξξ

)
+O(ε4, ε2µ, µ2),

which implies

εu

(
1 +

2(c1 + c)

c2
εu + 3γ2cε

2u2

)
uτ = −εu

(
3c

2(Ω + c)
uuξ +

cA5

2(Ω + c)
ε2u3uξ

+
cA6

2(Ω + c)
εu2uξ +

c2

6(Ω + c)
µuξξξ

)
+O(ε4, ε2µ, µ2).
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This follows that

εuuτ = −εu
[
1− (

2(c1 + c)

c2
εu+ 3γ2cε

2u2) + (
2(c1 + c)

c2
εu)2

][
3c

2(Ω + c)
uuξ

+
cA5

2(Ω + c)
ε2u3uξ +

cA6

2(Ω + c)
εu2uξ +

c2

6(Ω + c)
µuξξξ

]
+O(ε4, µ2),

and then

εuuτ = −εu
[

3c

2(Ω + c)
uuξ +

c2

6(Ω + c)
µuξξξ +

c2A6 − 6(c1 + c)

2c(Ω + c)
εu2uξ

+
c2A5 − 2A6(c1 + c) + 3c2(4(c1+c)2

c4
− 3γ2c)

2c(Ω + c)
ε2u3uξ

]
+O(ε4, µ2),

(2.77)

ε2u2uτ = − ε2u2

[
3c

2(Ω + c)
uuξ +

c2A6 − 6(c1 + c)

2c(Ω + c)
εu2uξ

]
+O(ε4, ε2µ, µ2),

ε3u3uτ = − 3c

2(Ω + c)
ε3u4uξ +O(ε4, µ2), εµuτξξ = − 3c

2(Ω + c)
εµ(uuξ)ξξ +O(ε4, µ2)

(2.78)

Decompose εµuτξξ into εµ(1−ν)uτξξ+εµνuτξξ for some constant ν (to be determined

later), we may get from (2.78) that

εµuτξξ = εµ(1− ν)uτξξ −
3cν

2(Ω + c)
εµ(uuξ)ξξ +O(ε4, µ2). (2.79)

Substituting (2.77)-(2.79) into (2.76), we obtain that

uτ + cγ4(1− ν)µεuτξξ +
3c

2(Ω + c)
uuξ +

c2

6(Ω + c)
µuξξξ −

9c2γ2

2(Ω + c)
ε2u3uξ

− 3c2γ4ν

2(Ω + c)
µε(uuξ)ξξ +

2(c1 + c)

c2
ε

[
3c

2(Ω + c)
u2uξ +

c2

6(Ω + c)
µuuξξξ

+
c2A6 − 6(c1 + c)

2c(Ω + c)
εu3uξ

]
+

cA5

2(Ω + c)
ε2u3uξ +

cA6

2(Ω + c)
εu2uξ

+ µε(
cA8

2(Ω + c)
uξuξξ +

cA9

2(Ω + c)
uuξξξ) + A10ε

3u4uξ = +O(ε4, µ2),

where

A10 :=
cA7

2(Ω + c)
−

(c1 + c)

(
c2A5 − 2A6(c1 + c) + 3c2(4(c1+c)2

c4
− 3γ2c)

)
c3(Ω + c)

− 3γ2(c2A6 − 6(c1 + c)) + 12c2γ3

2(Ω + c)
,
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which implies

uτ +
3c2

c2 + 1
uuξ +

c3

3(c2 + 1)
µuξξξ + cγ4(1− ν)µεuτξξ + A11εu

2uξ

+ A12ε
2u3uξ + A10ε

3u4uξ + µε

[
A13uuξξξ + A14uξuξξ

]
= O(ε4, ε2µ, µ2).

(2.80)

where A11 := c2A6−6(c1+c)
2c(Ω+c)

= −3c(c2−1)(c2−2)
2(c2+1)3

, A12 := cA5

2(Ω+c)
− 9c2γ2

2(Ω+c)
− 2(c1+c)

c2
c2A6−6(c1+c)

2c(Ω+c)
=

(c2−1)2(c2−2)(8c2−1)
2(c2+1)5

, A13 := cA9

2(Ω+c)
− 3c2γ4ν

2(Ω+c)
− c1+c

3(Ω+c)
= 3c3γ4

(c2+1)
(1−ν)+ c2(3c4+8c2−1)

3(c2+1)3
, A14 :=

cA8

2(Ω+c)
− 9c2γ4ν

2(Ω+c)
= 3c3

(c2+1)
γ4(1− 3ν) + c2(6c4+19c2+4)

3(c2+1)3
.

Consider the transformation x = ε−
1
2 ξ + cε−

3
2 τ, t = ε−

3
2 τ , we have

∂

∂ξ
= ε−

1
2∂x,

∂

∂τ
= ε−

3
2 (c∂x + ∂t).

Hence, according to this transformation, the equation (2.80) can be written as

∂tu+ c∂xu+
3c2

c2 + 1
εuux + A11ε

2u2ux + A12ε
3u3ux + cγ4(1− ν)µutxx

+
( c3

3(c2 + 1)
− c2γ4(1− ν)

)
µuxxx + µε

(
A13uuxxx + A14uxuxx

)
= O(ε4, µ2).

In order to get the R-CH equation, we need

2c2

(c2 + 1)
cγ4(1− ν) = 2A13 = A14,

which yields

2c3

(c2 + 1)
γ4 =

−c2(3c4 + 6c2 − 5)

6(c2 + 1)3
(2.81)

and then

2c2

(c2 + 1)
cγ4(1− ν) = 2A13 = A14 =

−c2(3c4 + 8c2 − 1)

3(c2 + 1)3
.

Therefore, it enables us to derive the R-CH equation in the form

∂tu− βµ∂tuxx + cux + 3αεuux − β0µuxxx + ω1ε
2u2ux + ω2ε

3u3ux

= αβεµ(2uxuxx + uuxxx).

34



Combining (2.81) and (2.73), it is found that the height parameter z in γ4 may take

the value

z0 =
1

2
− 2

3

1

(c2 + 1)
+

4

3

1

(c2 + 1)2
. (2.82)

2.3 Some other forms of R-CH equation

In this section, I state some more forms of R-CH equation, which will help us

in later analysis.

2.3.1 Weak forms of R-CH equation

Recall rotation-Camassa-Holm equation as follow,

ut − βµuxxt + cux + 3αεuux − β′µuxxx + ω1ε
2u2ux + ω2ε

3u3ux

= αβεµ(2uxuxx + uuxxx).

We may rewrite it as follow,

ut − βµuxxt + αεuux − αβεµ(3uxuxx + uuxxx) +
β′

β
ux − β′µuxxx

+ cux −
β′

β
ux + 2αεuux + αβεµuxuxx + ω1ε

2u2ux + ω2ε
3u3ux.

Since (uux)xx = 3uxuxx + uuxxx, we get

(1− βµ∂2
x)ut + (1− βµ∂2

x)αεuux + (1− βµ∂2
x)
β′

β
ux

+

(
c− β′

β

)
ux + 2αεuux + αβεµuxuxx + ω1ε

2u2ux + ω2ε
3u3ux = 0.

Denote pµ(x)
def
= 1

2
√
βµ
e
− |x|√

βµ , x ∈ R, then (1−βµ∂2
x)
−1f = pµ ∗f for all f ∈ L2(R) and

pµ ∗ (u−βµuxx) = u, where ∗ denotes convolution with respect to the spatial variable
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x. With this notation, Therefore, equation (2.1) can also be equivalently rewritten

as the following nonlocal form:

ut + αεuux +
β′

β
ux

+ pµ ∗ ∂x
{(

c− β′

β

)
u+ αε

(
u2 +

1

2
βµu2

x

)
+

1

3
ω1ε

2u3 +
1

4
ω2ε

3u4

}
= 0. (2.83)

or what is the same,
ut + β0

β
ux + αεuux + ∂xP = 0,

(1− βµ∂2
x)P = (c− β0

β
)u+ αεu2 + 1

2
αβεµu2

x + ω1

3
ε2u3 + ω2

4
ε3u4.

2.3.2 A simplified form of R-CH equation

To get some convenience in mathematical analysis, We eliminate ε and µ in

R-CH equation (2.1) by a transformation

u′(t′, x′) = αεu(
√
βµ t,

√
βµx). (2.84)

In fact, choosing point (
√
βµ t,

√
βµx) in (2.1), this transformation gives us that

1

αε
√
βµ

u′t′(t
′, x′)+

c

αε
√
βµ

u′x′(t
′, x′)+

3αε

α2ε2
√
βµ

u′(t′, x′)u′x′(t
′, x′)− β′µ

αε
√
βµ

3u
′
x′x′x′(t

′, x′)

− βµ

αε
√
βµ

3u
′
x′x′t′(t

′, x′) +
ω1ε

2

α3ε3
√
βµ

u′2(t′, x′)u′x′(t
′, x′) +

ω2ε
3

α4ε4
√
βµ

u′3(t′, x′)u′x′(t
′, x′)

=
αβεµ

α2ε2
√
βµ

2 (2u′x′(t
′, x′)u′x′x′(t

′, x′) + u′(t′, x′)u′x′x′x′(t
′, x′))

After some simplification, we have

u′t′ + cu′x′ + 3u′u′x′ −
β′

β
u′x′x′x′ − u′x′x′t′ +

ω1

α2
u′2u′x′ +

ω2

α3
u′3u′x′ = 2u′x′u

′
x′x′ + u′u′x′x′x′ ,

where we take equation at point (t′, x′). For convenience, we still use u(t, x) instead

of u′(t′, x′), then we obtain a simplified R-CH, that is,

ut + cux + 3uux −
β′

β
uxxx − uxxt +

ω1

α2
u2ux +

ω2

α
u3ux = 2uxuxx + uuxxx. (2.85)
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2.3.3 Some more discussions

In the case that the Coriolis effect vanishes (Ω = 0), the coefficients in the

higher-power nonlinearities ω1 = 0 and ω2 = 0. Using the scaling transformation

u(t, x)→ αεu(
√
βµ t,

√
βµx) and then the Galilean transformation u(t, x)→ u(t, x−

3
4
t) + 1

4
, the R-CH equation (2.3) is then reduced to the classical CH equation

u− uxxt + 3uux = 2uxuxx + uuxxx.

On the other hand, if we take formally β = 0 and ω2 = 0 in (2.3), then we get the

following integrable Gardner equation [22]

ut + cux + 3αεuux − β0µuxxx + ω1ε
2u2ux = 0.
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CHAPTER 3

LOCAL WELL POSEDNESS OF R-CH EQUATIONS

3.1 Introduction

Our attention in this chapter is now turned to the local-posedness issue for

the R-CH equation. Recall the R-CH equation (2.1) in terms of the evolution of m,

namely, the equation (2.3). Applying the transformation uε,µ(t, x) = αεu(
√
βµ t,

√
βµx)

to (2.3), we know that uε,µ(t, x) solves

ut − uxxt + cux + 3uux −
β0

β
uxxx +

ω1

α2
u2ux +

ω2

α3
u3ux = 2uxuxx + uuxxx,

and its corresponding three conserved quantities (still denoted by I(u), E(u), and

F (u)) are as follows

I(u) =

∫
R
u dx, E(u) =

1

2

∫
R
u2 + u2

x dx,

and

F (u) =
1

2

∫
R
cu2 + u3 +

β0

β
u2
x +

ω1

6α2
u4 +

ω2

10α3
u5 + uu2

x dx.

And we also have two more forms of equations,
mt + umx + 2uxm+ cux − β0

β
uxxx + ω1

α2u
2ux + ω2

α3u
3ux = 0,

m = u− uxx,

and

ut + uux +
β0

β
ux + p ∗ ∂x

{(
c− β0

β

)
u+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

}
= 0. (3.1)

where p = 1
2
e−|x|.

38



Define that

B1
def
= ∂x(1− βµ∂2

x), and

B2
def
= ∂x((αεm+

c

2
)·) + (αεm+

c

2
)∂x − β0µ∂

3
x +

2

3
ω1ε

2∂x(u∂
−1
x (u∂x·))

+
5

8
ω2ε

3∂x(u
3
2∂−1

x (u
3
2∂x·)).

A simple calculation then reveals that the R-CH equation (2.1) has the formal bi-

Hamiltonian structure, that is,

mt = −B1
δF

δm
= −B2

δE

δm
,

where B1 and B2 are two Hamiltonian operators, which provides the recursion oper-

ator R = B2 ◦B−1
1 .

The class of evolution equations (2.1) are all formally models for small ampli-

tude, long waves on the surface of water over a flat bottom. It is our expectation

that these equations approximate solutions of the full water-wave problem with the

Coriolis effect for an ideal fluid with an error that is of order O(µ2t) over a CH time

scale at least of order O(ε−1). Rigorous theory to this effect is available in [9, 23] (see

also [13] for the case without the Coriolis effect).

It is also found that the consideration of the Coriolis effect gives rise to a higher

power nonlinear term into the R-CH model, which has interesting implications for

the fluid motion, particular in the relation to the wave breaking phenomena and

the permanent waves. On the other hand, it is also our goal in the present paper

to investigate from this model how the Coriolis forcing due to the Earth rotation

with the higher power nonlinearities affects the wave breaking phenomena and what

conditions can ensure the occurrence of the wave-breaking phenomena or permanent

waves.

The dynamics of the blow-up quantity along the characteristics in the R-CH

equation actually involves the interaction among three parts: a local nonlinearity, a
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nonlocal term, and a term stemming from the weak Coriolis forcing. It is observed

that the nonlocal (smoothing) effect can help maintain the regularity while waves

propagate and hence prevent them from blowing up, even when dispersion is weak or

absent. See, for example, the Benjamin-Bona-Mahoney (BBM) equation [3]. As the

local nonlinearity becomes stronger and dominates over the dispersion and nonlocal

effects singularities may occur in the sense of wave-breaking. Examples can be found

in the Whitham equation [12, 38], Camassa-Holm (CH) equation [8, 13, 20]. It is also

found that the Coriolis effect will spread out waves and make them decay in time,

delaying the onset of wave-breaking. Understanding the wave-breaking mechanism

such as when a singularity can form and what the nature of it is not only presents

fundamental importance from mathematical point of view but also is of great physical

interest, since it would help provide a key-mechanism for localizing energy in conser-

vative systems by forming one or several small-scale spots. For instance, in fluid

dynamics, the possible phenomenon of finite time breakdown for the incompressible

Euler equations signifies the onset of turbulence in high Reynolds number flows.

The R-CH equation with a nonlocal structure can be reformulated in a weak

form of nonlinear nonlocal transport type. From the transport theory, the blow-up

criteria assert that singularities are caused by the focusing of characteristics, which

involve the information on the gradient ux. The dynamics of the wave-breaking quan-

tity along the characteristics is established by the Riccati-type differential inequality.

The argument is then approached by a refined analysis on evolution of the solution

u and its gradient ux. Recently Brandolese and Cortez [5] introduced a new type

of blow-up criteria in the study of the classical CH equation. It is shown how local

structure of the solution affects the blow-ups. Their argument relies heavily on the

fact that the convolution terms are quadratic and positively definite. As for the R-

CH equation, the convolution contains cubic even quartic nonlinearities which do not
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have a lower bound in terms of the local terms. Hence the higher-power nonlinearities

in the equation makes it difficult to obtain a purely local condition on the initial data

can generate finite-time wave-breaking. In our case, the blow-up can be deduced by

the interplay between u and ux. More precisely, this motivates us to carry out a re-

fined analysis of the characteristic dynamics of M = u−ux + c1 and N = u+ux + c2.

The estimates of M and N can be closed in the form of

M ′(t) ≥ −cMN +N1, N ′(t) ≤ cMN +N2,

where the nonlocal terms Ni (i = 1, 2) can be bounded in terms of certain order

conservation laws. From these Riccati-type differential inequalities the monotonicity

of M and N can be established, and hence the finite-time wave-breaking follows.

The present contribution proceeds in the following. In the next section, the R-

CH model equation is formally derived from the incompressible and irrotational full

water wave equations with the Coriolis effect considered, which is an asymptotic model

in the CH regime to the f -plane geophysical governing equations in the equatorial

region. Sections 3.5.1 is devoted to the local well-posedness and blow-up criteria. In

the last section, Section 3.6, the wave-breaking criteria are established in Theorem

3.6.1 and the breakdown mechanisms are set up in Theorem 3.6.2.

Notation. In the sequel, we denote by ∗ the convolution. For 1 ≤ p <∞, the norms

in the Lebesgue space Lp(R) is ‖f‖p =
( ∫

R |f(x)|pdx
) 1
p
, the space L∞(R) consists

of all essentially bounded, Lebesgue measurable functions f equipped with the norm

‖f‖∞ = inf
µ(e)=0

sup
x∈R\e

|f(x)|. For a function f in the classical Sobolev spaces Hs(R) (s ≥
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0) the norm is denoted by ‖f‖Hs . We denote p(x) = 1
2
e−|x| the fundamental solution

of 1− ∂2
x on R, and define the two convolution operators p+, p− as

p+ ∗ f(x) =
e−x

2

∫ x

−∞
eyf(y)dy

p− ∗ f(x) =
ex

2

∫ ∞
x

e−yf(y)dy.

Then we have the relations p = p+ + p−, px = p− − p+.

3.2 First three conservation laws

The first conservation law of R-CH is

I(u) =

∫
R
u dx. (3.2)

In fact, we rewrite (2.83) as

∂

∂t
u = − ∂

∂x

{
1

2
αεu2 +

β′

β
u

+ pµ ∗
[(
c− β′

β

)
u+ αε(u2 +

1

2
βµu2

x) +
1

3
ω1ε

2u3 +
1

4
ω2ε

3u4

]}
.

Because we assume that for any n ∈ N, |∂nxu| → 0 as |x| → ∞, integrating this

equation on R, we find that∫
R
u dx

= −
∫
R

∂

∂x

{
1

2
αεu2 +

β′

β
u+ pµ ∗

[(
c− β′

β

)
u+ αε(u2 +

1

2
βµu2

x) +
1

3
ω1ε

2u3 +
1

4
ω2ε

3u4

]}
dx

= 0,

which means I(u) is a conservation law.

The second conservation law of R-CH is

E(u) =
1

2

∫
R
u2 + βµu2

x dx. (3.3)
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To show E(u) is a conservation law, first, we multiply u on (2.1), we obtain

uut − βµuuxxt = −{cuux + 3αεu2ux − β′µuuxxx

+ ω1ε
2u3ux + ω2ε

3u4ux − αβεµ(2uuxuxx + u2uxxx)}

Then we integrate the equation on R, we get

∫
R
uut − βµuuxxt dx = −

∫
R
cuux + 3αεu2ux − β′µuuxxx + ω1ε

2u3ux

+ ω2ε
3u4ux − αβεµ(2uuxuxx + u2uxxx) dx.

Since uuxxx = ∂x
(
uuxx − 1

2
u2
x

)
and 2uuxuxx + u2uxxx = ∂x(u

2uxx), we have∫
R
cuux + 3αεu2ux − β′µuuxxx + ω1ε

2u3ux + ω2ε
3u4ux

− αβεµ(2uuxuxx + u2uxxx) dx

=

∫
R

∂

∂x

{
1

2
cu2 + αεu3 − β′µ

(
uuxx −

1

2
u2
x

)
+

1

4
ε2u4 +

1

5
ε4u5 − αβεµu2uxx

}
dx

As we assume that for any n ∈ N, |∂nxu| → 0 as |x| → ∞, we get∫
R

∂

∂x

{
1

2
cu2 + αεu3 − β′µ

(
uuxx −

1

2
u2
x

)
+

1

4
ε2u4 +

1

5
ε4u5 − αβεµu2uxx

}
dx = 0.

So with the integration by parts, we obtain∫
R
uut − βµuuxxt dx

=

∫
R
uut + βµuxuxtdx

=
∂

∂t

{
1

2

∫
R
u2 + βµu2

x dx

}
=
∂

∂t
E(u)

= 0.

Therefore, we know E(u) is a conservation law.
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The third conservation law is

F (u) =
1

2

∫
R
cu2 + αεu3 + β′µu2

x +
1

6
ω1ε

2u4 +
1

10
ω2ε

3u5 + αβεµuu2
x dx (3.4)

To show F (u) is a conservation law, we rewrite (2.1) as

(1− βµ∂2
x)ut + cux + 3αεuux − β′µuxxx + ω1ε

2u2ux

+ ω2ε
3u3ux − αβεµ(2uxuxx + uuxxx) = 0.

Since 2uxuxx + uuxxx =
(

1
2
u2
x + uuxxx

)
x
, we have

(1− βµ∂2
x)ut + ∂x

{
cu+

3

2
αεu2 − β′µuxx +

1

3
ω1ε

2u3

+
1

4
ω2ε

3u4 − αβεµ
(

1

2
u2
x + uuxx

)}
= 0,

or

ut+pµ∗∂x
{
cu+

3

2
αεu2 − β′µuxx +

1

3
ω1ε

2u3 +
1

4
ω2ε

3u4 − αβεµ
(

1

2
u2
x + uuxx

)}
= 0.

For convenience, we define

F1 = cu+
3

2
αεu2 − β′µuxx +

1

3
ω1ε

2u3 +
1

4
ω2ε

3u4 − αβεµ
(

1

2
u2
x + uuxx

)
,

thus we have ut = −pµ ∗ ∂xF1.

In fact, ∂x is a skew-symmetric operator but pµ is a symmetric operator, we

have

〈F1, pµ ∗ ∂xF1〉 = 0,

which implies 〈F1, ut〉 = 0, that is,∫
R
cuut +

3

2
αεu2ut − β′µuxxut +

1

3
ω1ε

2u3ut

+
1

4
ω2ε

3u4ut − αβεµ
(

1

2
u2
xut + uuxxut

)
dx = 0. (3.5)
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By the integration by parts, we have

−
∫
R
β′µuxxut dx =

∫
R
β′µuxuxt dx =

∂

∂t

1

2

∫
R
β′µu2

x dx,

and

− αβεµ
∫
R

1

2
u2
xut + uuxxut dx

=− αβεµ
(
−
∫
R
u2
xut + uuxxut dx+

∫
R

1

2
u2
xut dx

)
=

1

2
αβεµ

∫
R
−(u2)xxut + u2

xut dx

=
1

2
αβεµ

∫
R
(u2)xuxt + u2

xut dx

=αβεµ

∫
R
uuxuxt +

1

2
u2
xut dx

=
1

2
αβεµ

∂

∂t

∫
R
uu2

x dx.

Therefore, from (3.5), we have

∂

∂t

1

2

∫
R
cu2 + αεu3 + β′µu2

x +
1

6
ω1ε

2u4 +
1

10
ω2ε

3u5 + αβεµuu2
x dx = 0,

which means F (u) is a conservation law.

3.3 Hamiltonian format

Here I show that E(u) and F (u) satisfy Hamiltonian format, that is,

∂

∂t

δE

δu
= − ∂

∂x

δF

δu
. (3.6)

In fact, directly computation shows that

∂

∂t

δE

δu
=

∂

∂t

δ

δu

(
1

2

∫
R
u2 + βµu2

xdx

)
=

∂

∂t

1

2
(2u− 2βµuxx)

=
∂

∂t
(u− βµuxx)

= ut − βµuxxt,
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and

− ∂

∂x

δE

δu

= − ∂

∂x

δ

δu

(
1

2

∫
R
cu2 + αεu3 + β′µu2

x +
1

6
ω1ε

2u4 +
1

10
ω2ε

3u5 + αβεµuu2
x dx

)
= − ∂

∂x

1

2

{
2cu+ 3αεu2 − 2β′µuxx +

2

3
ω1ε

2u3 +
1

2
ω2ε

3u4 + αβεµ
[
u2
x − 2(uux)x

]}
= − ∂

∂x

{
cu+

3

2
αεu2 − β′µuxx +

1

3
ω1ε

2u3 +
1

4
ω2ε

3u4 − αβεµ
(

1

2
u2
x + uuxx

)}
= −cux − 3αεuux + β′µuxxx − ω1ε

2u2ux − ω2ε
3u3ux + αβεµ(2uxuxx + uuxxx).

Therefore (2.1) implies

∂

∂t

δE

δû
= − ∂

∂x

δF

δû
.

3.4 Preliminaries

For convenience, we recall some useful properties of Sobolev space.

Lemma 3.4.1 (Commutator estimate). For all s > 3/2 and some C > 0, if f and g

are smooth enough, then

‖[Λs, f ]g‖L2 ≤ C (‖f‖Hs‖g‖L∞ + ‖∂xf‖L∞‖g‖Hs−1) , (3.7)

Lemma 3.4.2. For all s > 3/2 and some C > 0, if f and g are smooth enough, then

| 〈Λs (f∂xg) ,Λsg〉 | ≤ C‖f‖Hs‖g‖2
Hs . (3.8)

Proof. In fact, for all constant coefficient skew-symmetric differential polynomial P,

and f, g smooth enough, a commutator process gives

Λs (fPg) = fPΛsg + [Λs, f ]Pg. (3.9)

Taking P = ∂x and integration by parts we have

〈Λs (f∂xg) ,Λsg〉 =

∫
R
f∂xΛ

sg · Λsg dx+

∫
R
[Λs, f ]∂xg · Λsg dx

=− 1

2

∫
R
fx (Λsg)2 dx+

∫
R
[Λs, f ]∂xg · Λsg dx.
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On one hand, ∣∣∣∣12
∫
R
fx (Λsg)2 dx

∣∣∣∣ ≤ 1

2
‖fx‖L∞‖Λsg‖2

L2 ,

=
1

2
‖fx‖L∞‖g‖2

Hs

(3.10)

On the other hand, by Lemma 3.4.1, we infer that

|〈[Λs, f ]∂xg,Λ
sg〉| ≤ ‖Λsg‖L2‖[Λs, f ]∂xg‖L2

≤ C‖g‖Hs (‖f‖Hs‖∂xg‖L∞ + ‖fx‖L∞‖∂xg‖Hs−1) ,

≤ C‖g‖Hs (‖f‖Hs‖∂xg‖L∞ + ‖fx‖L∞‖g‖Hs)

(3.11)

Combining (3.10) and (3.11), we obtain that

| 〈Λs (f∂xg) ,Λsg〉 | ≤ C(‖fx‖L∞‖g‖2
Hs + ‖f‖Hs‖g‖Hs‖∂xg‖L∞). (3.12)

Thanks to the Sobolev embedding theorem, ∀s > 1/2, Hs(R) ↪→ L∞(R), we know

‖∂xg‖ ≤ C‖u‖Hs , s >
3

2
.

Therefore, (3.12) implies that

| 〈Λs (f∂xg) ,Λsg〉 | ≤ C‖f‖Hs‖g‖2
Hs .

Lemma 3.4.3. Let φ(t), ψ(t) be two positive function on [0, T ], for a non-negative,

absolutely continuous function η(·) on [0, T ], if the differential inequality

d

dt
(η2)(t) ≤ φ(t)η2 + ψ(t)η,

holds for a.e. t, then

η(t) ≤ e
1
2

∫ t
0 φ(τ)dτ

[
η(0) +

1

2

∫ t

0

ψ(τ)dτ

]
. (3.13)
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3.5 Local well-posedness

Now we are in a position to state the local well-posedness result of the fol-

lowing Cauchy problem, which may be similarly obtained as in [16] (up to a slight

modification).
ut − uxxt + cux + 3uux − β0

β
uxxx + ω1

α2u
2ux + ω2

α3u
3ux = 2uxuxx + uuxxx,

u|t=0 = u0.

(3.14)

Theorem 3.5.1. Let u0 ∈ Hs(R) with s > 3
2
. Then there exist a positive time

T > 0 and a unique solution u ∈ C([0, T ];Hs(R))∩C1([0, T ];Hs−1(R)) to the Cauchy

problem (3.14) with u(0) = u0. Moreover, the solution u depends continuously on the

initial value u0.

Proof. We prove the Theorem 3.5.1 by six steps. In fact, the Cauchy problem has a

weak form as
ut + uux + β0

β
ux + p ∗ ∂x

{(
c− β0

β

)
u+ u2 + 1

2
u2
x + ω1

3α2u
3 + ω2

4α3u
4
}

= 0.

u|t=0 = u0.

(3.15)

Step 1: Approximation solution. We use a standard iterative process to

construct a solution of (3.15). Not lose the generation, we define u(0) = 0, then a

sequence of approximation solutions
{
u(n)
}
n∈N is build as solving the following linear

transport equation,
∂tu

(n+1) + u(n)∂xu
(n+1) +

[
β0
β

+
(
c− β0

β

)
p ∗
]
∂xu

(n+1)

= −p ∗ ∂x
{
u(n)2 + 1

2
u

(n)2

x + ω1

3α2u
(n)3 + ω2

4α3u
(n)4
}
,

u(n+1)(0, x) = u
(n+1)
0 (x) = Sn+1u0,

(3.16)

where

Ŝn+1u0(ξ) := 1|ξ|<2×2n+2(ξ)û0(ξ).
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By the theory of the linear evolution, ∀n ∈ N, there is a unique smooth solution

u(n+1) of (3.16) and u(n+1) ∈ C1(R;H∞(R)).

Then, we show that the sequence
{
u(n)
}
n∈N converges. Because of the com-

pactness of Sobolev space, we show two facts to release the convergence of
{
u(n)
}
n∈N,

that
{
u(n)
}
n∈N is uniformly bounded and that

{
u(n)
}
n∈N is a Cauchy sequence.

Step 2: Uniform bounds. In this step, we show that the sequence {u(n)}n∈N is

uniformly bounded in some Sobolev space. Applying the operator Λs to the (3.16),

we get

∂tΛ
su(n+1) = −Λs

(
u(n)∂xu

(n+1)
)
− β0

β
Λs∂xu

(n+1) −
(
c− β0

β

)
Λs
(
p ∗ ∂xu(n+1)

)
− Λs

(
p ∗ ∂x

{
u(n)2 +

1

2
u(n)2

x +
ω1

3α2
u(n)3 +

ω2

4α3
u(n)4

})
.

Multiply Λsu(n+1) and integrate on R, then we have

1

2

d

dt

∥∥Λsu(n+1)
∥∥2

L2 =
〈
∂tΛ

su(n+1),Λsu(n+1)
〉

=−
〈
Λs
(
u(n)∂xu

(n+1)
)
,Λsu(n+1)

〉
− β0

β

〈
Λs∂xu

(n+1),Λsu(n+1)
〉

−
(
c− β0

β

)〈
Λs−2∂xu

(n+1),Λsu(n+1)
〉

−
〈

Λs−2∂x

(
u(n)2

)
,Λsu(n+1)

〉
− 1

2

〈
Λs−2∂x

(
u(n)2

x

)
,Λsu(n+1)

〉
− ω1

3α2

〈
Λs−2∂x

(
u(n)3

)
,Λsu(n+1)

〉
− ω2

4α3

〈
Λs−2∂x

(
u(n)4

)
,Λsu(n+1)

〉
.

In fact, Λs is symmetric operator and ∂x is skew-symmetric, so for all h smooth

enough, we have

〈Λs∂xh,Λ
sh〉 =

〈
Λs−2∂xh,Λ

sh
〉

= 0. (3.17)
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Taking h = u(n+1), we get

d

dt

∥∥Λsu(n+1)
∥∥2

L2

=− 2
〈
Λs
(
u(n)∂xu

(n+1)
)
,Λsu(n+1)

〉
− 2

〈
Λs−2∂x

(
u(n)2

)
,Λsu(n+1)

〉
−
〈

Λs−2∂x

(
u(n)2

x

)
,Λsu(n+1)

〉
− 2ω1

3α2

〈
Λs−2∂x

(
u(n)3

)
,Λsu(n+1)

〉
− ω2

2α3

〈
Λs−2∂x

(
u(n)4

)
,Λsu(n+1)

〉
= I11 + I12 + I13 + I14 + I15.

From Lemma 3.4.2, we have that

| I11 | . ‖u(n)‖Hs‖u(n+1)‖2
Hs . (3.18)

Furthermore, we know that

|I12| =
∣∣∣2〈Λs−2∂x

(
u(n)2

)
,Λsu(n+1)

〉∣∣∣
. ‖Λs−2∂x(u

(n)2)‖L2‖Λsu(n+1)‖L2

. ‖∂x(u(n)2)‖Hs−2‖u(n+1)‖Hs

. ‖u(n)‖2
Hs−1‖u(n+1)‖Hs

. ‖u(n)‖2
Hs‖u(n+1)‖Hs ,

(3.19)

|I13| =
∣∣∣〈Λs−2∂x

(
u(n)2

x

)
,Λsu(n+1)

〉∣∣∣
. ‖Λs−2∂x(u

(n)2

x )‖L2‖Λsu(n+1)‖L2

. ‖∂xu(n)2

x ‖Hs−2‖u(n+1)‖Hs

. ‖u(n)
x ‖2

Hs−1‖u(n+1)‖Hs

. ‖u(n)‖2
Hs‖u(n+1)‖Hs ,

(3.20)
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|I14| =
∣∣∣∣2ω1

3α2

〈
Λs−2∂x

(
u(n)3

)
,Λsu(n+1)

〉∣∣∣∣
. ‖Λs−2∂x(u

(n)3)‖L2‖Λsu(n+1)‖L2

. ‖∂xu(n)3‖Hs−2‖u(n+1)‖Hs

. ‖u(n)‖3
Hs−1‖u(n+1)‖Hs

. ‖u(n)‖3
Hs‖u(n+1)‖Hs ,

(3.21)

and

|I15| =
∣∣∣ ω2

2α3

〈
Λs−2∂x

(
u(n)4

)
,Λsu(n+1)

〉∣∣∣
. ‖Λs−2∂x(u

(n)4)‖L2‖Λsu(n+1)‖L2

. ‖∂xu(n)4‖Hs−2‖u(n+1)‖Hs

. ‖u(n)‖4
Hs−1‖u(n+1)‖Hs

. ‖u(n)‖4
Hs‖u(n+1)‖Hs .

(3.22)

Combining these equaitons, (3.18) - (3.22), we get

d

dt
‖u(n+1)‖2

Hs ≤ C0

{
‖u(n)‖Hs‖u(n+1)‖2

Hs +
4∑
j=2

‖u(n)‖jHs‖u(n+1)‖Hs

}
. (3.23)

Without loss of generation, we may assume C0 ≥ 2. Let’s fix a T > 0 such that

C5
0 max(‖u0‖3

Hs , 1)T < 1. (3.24)

Now we claim that ∀n ∈ N,

‖u(n)(t)‖Hs ≤ C0‖u0‖Hs , ∀t ∈ [0, T ]. (3.25)

We prove this claim by an inductive argument.

i) For n = 0, from (3.16), noting u(0) = 0, we have

∂tu
(1) +

[
β0

β
+

(
c− β0

β

)
p ∗
]
∂xu

(1) = 0,
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which implies that

d

dt
‖u(1)‖2

Hs = 2〈∂tΛsu(1),Λsu(1)〉

= −2β0

β
〈Λs∂xu

(1),Λsu(1)〉 − 2

(
c− β0

β

)
〈Λs−2∂xu

(1),Λsu(1)〉.

Recalling (3.17), we get

〈Λs∂xu
(1),Λsu(1)〉 = 〈Λs−2∂xu

(1),Λsu(1)〉 = 0,

which infers that

d

dt
‖u(1)‖2

Hs = 0.

Along with u(1)(0, x) = S1u0(x), we get

u(1)(t, x) = S1u0(x), ∀t ∈ R.

In fact, ∀s ≥ 0, as the definition of Snu0, for all n ∈ R, we have

‖Snu0‖2
Hs =

∫
R
(1 + |ξ|2)s1|ξ|≤2·2n+2(ξ)|û0(ξ)|2dξ

=

∫
|ξ|≤2·2n+2

(1 + |ξ|2)s|û0(ξ)|2dξ

≤
∫
R
(1 + |ξ|2)s|û0(ξ)|2dξ

= ‖u0‖2
Hs .

(3.26)

Therefore, we have

‖u(1)‖Hs = ‖S1u0‖Hs ≤ ‖u0‖Hs ≤ C0‖u0‖Hs .

ii) For some fixed n, n ∈ N, we assume

sup
0≤t≤T

‖u(n)‖Hs ≤ C0‖u0‖Hs . (3.27)

Applying this assumption on (3.23), we have

‖u(n+1)‖Hs ≤ e
C0
2

∫ t
0 ‖u

(n)‖Hsdτ

(
‖u(n+1)

0 ‖Hs +
C0

2

∫ t

0

4∑
j=2

‖u(n)‖jHsdτ

)
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By our assumption on u(n), (3.27), we have

‖u(n+1)‖Hs ≤ e
C2
0
2
‖u0‖HsT

(
‖u(n+1)

0 ‖Hs +
T

2

4∑
j=2

Cj+1
0 ‖u0‖jHs

)

Since ‖u(n+1)
0 ‖Hs = ‖Sn+1u0‖Hs ≤ ‖u0‖Hs , we have

‖u(n+1)‖Hs ≤ e
C2
0
2
‖u0‖HsT

(
1 +

T

2

3∑
j=1

Cj+2
0 ‖u0‖jHs

)
‖u0‖Hs . (3.28)

When ‖u0‖Hs ≤ 1, we have

‖u(n+1)‖Hs ≤ e
C2
0
2
T

(
1 +

T

2

3∑
j=1

Cj+2
0

)
‖u0‖Hs .

Thanks to (3.24), we have

‖u(n+1)‖Hs < e
1

2C3
0

(
1 +

1

2

2∑
j=0

Cj−2
0

)
‖u0‖Hs .

Recalling C0 ≥ 2, we get

‖u(n+1)‖Hs <
15

8
e

1
16‖u0‖Hs < 2‖u0‖Hs ≤ C0‖u0‖Hs .

On the other hand, when ‖u0‖Hs > 1, from (3.28), we have

‖u(n+1)‖Hs ≤ e
C2
0
2
‖u0‖3HsT

(
1 +

1

2
C5

0‖u0‖3
HsT

2∑
j=0

Cj−2
0

)
‖u0‖Hs .

Thanks to (3.24), we have

‖u(n+1)‖Hs < e
1

2C3
0

(
1 +

1

2

2∑
j=0

Cj−2
0

)
‖u0‖Hs

<
15

8
e

1
16‖u0‖Hs < 2‖u0‖Hs ≤ C0‖u0‖Hs

Therefore, we get

‖u(n+1)‖Hs ≤ C0‖u0‖Hs ,

which complete our induction. Hence, the sequence {u(n)} is uniformly bounded in

C([0, T ];Hs). Thanks to (3.16), we get that {∂tu(n+1)}n∈N is uniformly bounded in
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C([0, T ];Hs−1).

Step 3 In this step, we want to prove that {un}n∈N is a Cauchy sequence in C([0, T ];Hs−1).

From (3.16), for any n,m ∈ N, we have

∂tu
(m+n+1) + u(m+n)∂xu

(m+n+1) +

[
β0

β
+

(
c− β0

β

)
p ∗
]
∂xu

(m+n+1)

= −p ∗ ∂x
{
u(m+n)2 +

1

2
u(m+n)2

x +
ω1

3α2
u(m+n)3 +

ω2

4α3
u(m+n)4

}
, (3.29)

and

∂tu
(n+1) + u(n)∂xu

(n+1) +

[
β0

β
+

(
c− β0

β

)
p ∗
]
∂xu

(n+1)

= −p ∗ ∂x
{
u(n)2 +

1

2
u(n)2

x +
ω1

3α2
u(n)3 +

ω2

4α3
u(n)4

}
. (3.30)

Taking difference between (3.29) and (3.30), and adopting

u(m+n)∂xu
(m+n+1) − u(n)∂xu

(n+1) = u(m+n)∂x(u
(m+n+1) − u(n+1))

+ (u(m+n) − u(n))∂xu
(n+1),

we have

∂t(u
(m+n+1) − u(n+1)) =− u(m+n)∂x(u

(m+n+1) − u(n+1))

− (u(m+n) − u(n))∂xu
(n+1)

−
[
β0

β
+

(
c− β0

β

)
p ∗
]
∂x(u

(m+n+1) − u(n+1))

− p ∗ ∂x
{

(u(m+n)2 − u(n)2) +
1

2
(u(m+n)2

x − u(n)2

x )

+
ω1

3α2
(u(m+n)3 − u(n)3) +

ω2

4α3
(u(m+n)4 − u(n)4)

}
,
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which implies that u(m+n+1) − u(n+1) solves

∂t(u
(m+n+1) − u(n+1)) = −u(m+n)∂x(u

(m+n+1) − u(n+1))

−(u(m+n) − u(n))∂xu
(n+1)

−
[
β0
β

+
(
c− β0

β

)
p ∗
]
∂x(u

(m+n+1) − u(n+1))

−p ∗ ∂x
{

(u(m+n)2 − u(n)2) + 1
2
(u

(m+n)2

x − u(n)2

x )

+ ω1

3α2 (u(m+n)3 − u(n)3) + ω2

4α3 (u(m+n)4 − u(n)4)
}

(u(m+n+1) − un+1)|t=0 = Sm+n+1u0 − Sn+1u0.

(3.31)

We adopt Λs−1 on (3.31), multiply Λs−1(um+n+1 − u(n+1)) and integrate on R,

we have

〈∂tΛs−1(um+n+1 − u(n+1)),Λs−1(u(m+n+1) − u(n+1))〉

=− 〈Λs−1(u(m+n)∂x(u
(m+n+1) − u(n+1))),Λs−1(u(m+n+1) − u(n+1))〉

− 〈Λs−1((u(m+n) − u(n))∂xu
(n+1)),Λs−1(u(m+n+1) − u(n+1))〉

− 〈Λs−3∂x(u
(m+n)2 − u(n)2),Λs−1(u(m+n+1) − u(n+1))〉

− 1

2
〈Λs−3∂x(u

(m+n)2

x − u(n)2

x ),Λs−1(u(m+n+1) − u(n+1))〉

− ω1

3α2
〈Λs−3∂x(u

(m+n)3 − u(n)3),Λs−1(u(m+n+1) − u(n+1))〉

− ω2

4α3
〈Λs−3∂x(u

(m+n)4 − u(n)4),Λs−1(u(m+n+1) − u(n+1))〉

= I21 + I22 + I23 + I24 + I25 + I26,

(3.32)

where we ignore two terms since we know that by (3.17),

−β0

β
〈Λs−1∂x(u

(m+n+1) − u(n+1)),Λs−1(u(m+n+1) − u(n+1))〉 = 0,

and

−
(
c− β0

β

)
〈Λs−3∂x(u

(m+n+1) − u(n+1)),Λs−1(u(m+n+1) − u(n+1))〉 = 0,
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Thanks to Lemma 3.4.2, we get

| I21 | . ‖u(m+n)‖Hs−1‖u(m+n+1) − u(n+1)‖2
Hs−1 . (3.33)

Furthermore, a commutator process,

Λs−1((u(m+n) − u(n))∂xu
(n+1)) =(u(m+n) − u(n))Λs−1∂xu

(n+1)

+ [Λs−1, u(m+n) − u(n)]∂xu
(n+1),

implies that

|I22| =
∣∣〈Λs−1((u(m+n) − u(n))∂xu

(n+1)),Λs−1(u(m+n+1) − u(n+1))〉
∣∣

.
∣∣〈(u(m+n) − u(n))Λs−1∂xu

(n+1),Λs−1(u(m+n+1) − u(n+1))〉
∣∣

+
∣∣〈[Λs−1, u(m+n) − u(n)]∂xu

(n+1),Λs−1(u(m+n+1) − u(n+1))〉
∣∣ .

On one hand, using the integration by parts and a fact from Soblev embedding the-

orem, that is,

‖∂xu‖L∞ . ‖u‖Hσ ,∀σ > 3/2,

we get ∣∣〈(u(m+n) − u(n))Λs−1∂xu
(n+1),Λs−1(u(m+n+1) − u(n+1))〉

∣∣
. ‖(u(m+n) − u(n))Λs−1∂xu

(n+1)‖L2‖u(m+n+1) − u(n+1)‖Hs−1

. ‖∂x(u(m+n) − u(n))‖L∞‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

. ‖∂x(u(m+n) − u(n))‖Hs−2‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

. ‖u(m+n) − u(n)‖Hs−1‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1 ,

where s > 3/2.

On the other hand, from Lemma 3.4.1 we know

〈[Λs−1, u(m+n) − u(n)]∂xu
(n+1)),Λs−1(u(m+n+1) − u(n+1))〉

. ‖u(m+n) − u(n)‖Hs−1‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1
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Therefore, we get

‖I22‖ . ‖u(m+n) − u(n)‖Hs−1‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1 . (3.34)

Also we have these estimates,

|I23| =
∣∣∣〈Λs−3∂x(u

(m+n)2 − u(n)2),Λs−1(u(m+n+1) − u(n+1))〉
∣∣∣

. ‖∂x(u(m+n)2 − u(n)2)‖Hs−3‖u(m+n+1) − u(n+1)‖Hs−1

. ‖u(m+n)2 − u(n)2‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

. ‖u(m+n) + u(n)‖Hs−2‖u(m+n) − u(n)‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

(3.35)

|I24| =
∣∣∣∣12〈Λs−3∂x(u

(m+n)2

x − u(n)2

x ),Λs−1(u(m+n+1) − u(n+1))〉
∣∣∣∣

. ‖u(m+n)2

x − u(n)2

x ‖Hs−3‖u(m+n+1) − u(n+1)‖Hs−1

. ‖u(m+n)
x + u(n)

x ‖Hs−3‖u(m+n)
x − u(n)

x ‖Hs−3‖u(m+n+1) − u(n+1)‖Hs−1

. ‖u(m+n) + u(n)‖Hs−2‖u(m+n) − u(n)‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

(3.36)

|I25| =
∣∣∣ ω1

3α2
〈Λs−3∂x(u

(m+n)3 − u(n)3),Λs−1(u(m+n+1) − u(n+1))〉
∣∣∣

. ‖u(m+n) − u(n)‖Hs−2‖u(m+n)2 + u(m+n)u(n) + u(n)2‖Hs−2

· ‖u(m+n+1) − u(n+1)‖Hs−1

(3.37)

|I26| =
∣∣∣ ω2

4α3
〈Λs−3∂x(u

(m+n)4 − u(n)4),Λs−1(u(m+n+1) − u(n+1))〉
∣∣∣

. ‖u(m+n) − u(n)‖Hs−2‖u(m+n) + u(n)‖Hs−2

· ‖u(m+n)2 + u(n)2‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

(3.38)
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Combining these estimates, (3.33) - (3.38), we get

d

dt
‖u(m+n+1) − u(n+1)‖2

Hs−1

. ‖u(m+n)‖Hs−1‖u(m+n+1) − u(n+1)‖2
Hs−1

+ ‖(u(m+n) − u(n))‖Hs−1‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) + u(n)‖Hs−2‖u(m+n) − u(n)‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) + u(n)‖Hs−2‖u(m+n) − u(n)‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) − u(n)‖Hs−2‖u(m+n)2 + u(m+n)u(n) + u(n)2‖Hs−2

· ‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) − u(n)‖Hs−2‖u(m+n) + u(n)‖Hs−2

· ‖u(m+n)2 + u(n)2‖Hs−2‖u(m+n+1) − u(n+1)‖Hs−1

Since Hs is Banach algebra, Hs−1 ↪→ Hs−2, we get

d

dt
‖u(m+n+1) − u(n+1)‖2

Hs−1

. ‖u(m+n)‖Hs−1‖u(m+n+1) − u(n+1)‖2
Hs−1

+ ‖(u(m+n) − u(n))‖Hs−1‖u(n+1)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) + u(n)‖Hs−1‖u(m+n) − u(n)‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) − u(n)‖Hs−1‖u(m+n)2 + u(m+n)u(n) + u(n)2‖Hs−1

· ‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) − u(n)‖Hs−1‖u(m+n) + u(n)‖Hs−1

· ‖u(m+n)2 + u(n)2‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1 .
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Recalling ‖u(n)(t)‖Hs ≤ C0‖u0‖Hs for any n ∈ N, we get

d

dt
‖u(m+n+1) − u(n+1)‖2

Hs−1

. ‖u0‖Hs−1‖u(m+n+1) − u(n+1)‖2
Hs−1

+ ‖(u(m+n) − u(n))‖Hs−1‖u0‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) − u(n)‖Hs−1‖u0‖2
Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

+ ‖u(m+n) − u(n)‖Hs−1‖u0‖3
Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

= ‖u0‖Hs−1‖u(m+n+1) − u(n+1)‖2
Hs−1

+
3∑
j=1

‖u0‖jHs−1‖(u(m+n) − u(n))‖Hs−1‖u(m+n+1) − u(n+1)‖Hs−1

Thanks to Lemma 3.4.3, there is some C1 > 0 such that

‖u(m+n+1) − u(n+1)‖Hs−1

.

(
‖u(m+n+1)

0 − u(n+1)
0 ‖Hs−1 +

C1

2

3∑
j=1

∫ t

0

‖u0‖jHs−1‖(u(m+n) − u(n))‖Hs−1dτ

)

· e
C1
2

∫ t
0 ‖u0‖Hs−1dτ

Let M = 3C1

2
max(1, ‖u0‖3

Hs), we have

‖u(m+n+1) − u(n+1)‖Hs−1

.

(
‖u(m+n+1)

0 − u(n+1)
0 ‖Hs−1 +M

∫ t

0

‖(u(m+n) − u(n))‖Hs−1dτ

)
· e

C1
2

∫ t
0 ‖u0‖Hs−1dτ

. CT

(
‖u(m+n+1)

0 − u(n+1)
0 ‖Hs−1 +

∫ t

0

‖(u(m+n) − u(n))‖Hs−1dτ

)
,

(3.39)

where CT depends on T and M .

Before I show the estimate of ‖u(m+n+1)
0 − u(n+1)

0 ‖, I use an iterative process to

estimate ‖u(n+1) − u(n)‖. Fixing m = 1 in (3.39), we have

‖u(n+2) − u(n+1)‖Hs−1 ≤ CT

(
‖u(n+2)

0 − u(n+1)
0 ‖Hs−1 +

∫ t

0

‖(u(n+1) − u(n))‖Hs−1dτ

)
.

(3.40)
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Furthermore, as the definition in (3.16),

u
(m+n+1)
0 − u(n+1)

0 = Sn+m+1u0 − Sn+1u0 = 12·2n+2≤|ξ|≤2·2m+n+2(ξ)u0(ξ), (3.41)

we have the estimate,

‖u(m+n+1)
0 − u(m+n)

0 ‖2
Hs−1

=

∫
R
(1 + |ξ|2)(s−1)|û0(ξ)|12n+3≤ξ≤2m+n+3(ξ)dξ

=

∫
2n+3≤|ξ|≤2m+n+3

(1 + |ξ|2)s−1|û0(ξ)|2dξ

≤ 1

22(n+3)

∫
2n+3≤|ξ|≤2m+n+3

|ξ|2(1 + |ξ|2)s−1|û0(ξ)|2dξ

≤ 1

22(n+3)

∫
2n+3≤|ξ|≤2m+n+3

(1 + |ξ|2)s|û0(ξ)|2dξ

≤ 1

22(n+3)

∫
R
(1 + |ξ|2)s|û0(ξ)|2dξ

≤2−2(n+3)‖u0‖2
Hs ,

which implies that

‖u(m+n+1)
0 − u(m+n)

0 ‖Hs−1 ≤ 1

2n+1
‖u0‖Hs . (3.42)

Applying this estimate on (3.40), we have

‖u(n+2) − u(n+1)‖Hs−1 ≤ CT

(
1

2n+1
‖u0‖Hs +

∫ t

0

‖(u(n+1) − u(n))‖Hs−1dτ

)
. (3.43)

We claim that ∀n ≥ 1,

‖u(n+1)−u(n)‖ ≤

(
n−1∑
k=0

1

2n−k
1

(k + 1)!
Ck+1
T T k

)
‖u0‖Hs+

C0(CT · T )n

n!
‖u0‖Hs−1 . (3.44)

Let n = 0 in (3.43), recalling the fact ∀t ∈ [0, T ], ‖u(1)‖Hs ≤ C0‖u0‖Hs and

u(0) = 0, we have

‖u(2) − u(1)‖Hs−1 ≤CT
(

1

2
‖u0‖Hs +

∫ t

0

‖(u(1) − u(0))‖Hs−1dτ

)
=CT

(
1

2
‖u0‖Hs +

∫ t

0

‖u(1)‖Hs−1dτ

)
≤CT

(
1

2
‖u0‖Hs + C0‖u0‖Hs−1T

)
,

(3.45)
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which satisfy our claim.

Now we apply our assumption (3.44) on (3.43), we have

‖u(n+2) − u(n+1)‖

≤CT
(

1

2n+1
‖u0‖Hs +

∫ t

0

‖(u(n+1) − u(n))‖Hs−1dτ

)
≤CT {

1

2n+1
‖u0‖Hs

+

∫ t

0

(
n−1∑
k=0

1

2n−k
1

(k + 1)!
Ck+1
T T k

)
‖u0‖Hs +

C0(CT · T )n

n!
‖u0‖Hs−1dτ

}

≤ CT
2n+1
‖u0‖Hs +

(
n−1∑
k=0

1

2n−k
1

(k + 2)!
Ck+2
T T k · t

)
‖u0‖Hs +

C0C
n+1
T T n · t

(n+ 1)!
‖u0‖Hs−1

≤ CT
2n+1
‖u0‖Hs +

(
n−1∑
k=0

1

2n−k
1

(k + 2)!
Ck+2
T T k+1

)
‖u0‖Hs +

C0(CT · T )n+1

(n+ 1)!
‖u0‖Hs−1

=

(
n∑
k=0

1

2n−k
1

(k + 1)!
Ck+1
T T k

)
‖u0‖Hs +

C0(CT · T )n+1

(n+ 1)!
‖u0‖Hs−1 ,

(3.46)

which prove our claim completely.

Furthermore, recalling the fact that ‖u0‖Hs−1 . ‖u0‖Hs , from (3.44), we infer

that ∀n ≥ 1,

‖u(n+1) − u(n)‖ ≤

(
n−1∑
k=0

1

2n−k
1

(k + 1)!
Ck+1
T T k

)
‖u0‖Hs +

C0(CT · T )n

n!
‖u0‖Hs−1

≤ 1

2n

(
n−1∑
k=0

CT
(2TCT )k

(k + 1)!
+ C0

(2TCT )n

n!

)
‖u0‖Hs

≤C
′
T

2n
,

where C ′T depends on T , CT and ‖u0‖Hs .
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Now, let m,n ∈ N, then

‖u(m+n+1) − u(n+1)‖Hs−1

=‖u(m+n+1) − u(m+n) + u(m+n) − u(m+n−1) + · · ·+ u(n+2) − u(n+1)‖Hs−1

≤‖u(m+n+1) − u(m+n)‖Hs−1 + · · ·+ ‖u(n+2) − u(n+1)‖Hs−1

≤
m∑
k=0

C ′T
2n+k+1

≤ C ′T
2n+1

∞∑
k=0

1

2k

=
C ′T
2n
,

(3.47)

which implies that as n → ∞, ‖u(m+n+1) − u(n+1)‖Hs−1 → 0. Hence, {u(n)}n∈N is

a Cauchy sequence in C([0, T ];Hs−1). By the completeness of the Banach Space

C([0, T ];Hs−1), we get a limit u in C([0, T ];Hs−1) such that

u(n) → u in C([0, T ];Hs−1).

Step 4 Passing to the limit. For any s′ ∈ (s− 1, s), thanks to the fact that

{u(n)}∞n∈N is uniformly bounded is C([0, T ];Hs)∩C1([0, T ];Hs−1) and the interpolation

inequality,

‖u‖Hs′ ≤ C‖u‖θHs−1‖u‖1−θ
Hs ,

where θ = s− s′, we have

‖u(m+n+1) − u(n+1)‖Hs′ .‖u(m+n+1) − u(n+1)‖θHs−1‖u(m+n+1) − u(n+1)‖1−θ
Hs

.‖u(m+n+1) − u(n+1)‖θHs−1 ,

which with (3.47), implies that {u(n)}∞n∈N is a Cauchy sequence in C([0, T ];Hs′). So,

by the uniqueness of the limit, we have

u(n) → u in C([0, T ];Hs′), (3.48)
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This yields that

u(n)∂xu
(n+1) → u∂xu in C([0, T ];Hs′−1),

which requires s′ > 3/2. Similarly, we have[
β0

β
+

(
c− β0

β

)
p ∗
]
∂xu

(n+1) →
[
β0

β
+

(
c− β0

β

)
p ∗
]
∂xu

in C([0, T ], Hs′−1), where s′ > 3/2;

p ∗ ∂x
{
u(n)2 +

ω1

3α2
u(n)3 +

ω2

4α3
u(n)4

}
→ p ∗ ∂x

{
u2 +

ω1

3α2
u3 +

ω2

4α3
u4
}

in C([0, T ], Hs′+1), where s′ > −1/2;

p ∗ ∂x
1

2
u(n)2

x → p ∗ ∂x
1

2
u2
x

in C([0, T ], Hs′), where s′ > 1/2. By (3.16), we know that {∂tu(n)}∞n∈N is a Cauchy

sequence in C([0, T ];Hs′−1),∀s′ > 3/2 and ∃v ∈ C([0, T ];Hs′−1) s.t.

∂tu
(n) → v (3.49)

in C([0, T ];H(s′−1)) for any s′ ∈ [3/2, s]. On the other hand, from the fact that

{u(n)}∞n∈N is uniformly bounded in C([0, T ];Hs) ∩ C1([0, T ];Hs−1) and (3.48), we

infer that

∂tu
(n) → ∂tu (3.50)

in the sense of distribution, which along with (3.49) implies that

v = ∂tu and ∂tu
(n) → ∂tu (3.51)

in C([0, T ];Hs′−1), ∀3/2 < s′ < s.

On the other hand, by the Banach-Alaoglu theorem, there is a subsequence

{u(nj)}j∈N of {u(n)}j∈N such that

u(nj)(t)→ u∗(t)
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weekly in L2([0, T ];Hs) and ∀t ∈ [0, T ],

u(nj)(t)→ u∗(t) weekly in Hs

∂tu
(nj)(t)→ ∂tu

∗(t) weekly in Hs−1

which gives rise to

u = u∗ in L∞([0, T ];Hs) ∩ Lip([0, T ];Hs−1).

Up to a subsequence, we get that for fixed t ∈ [0, T ], lim supn→∞ ‖u(n)(t)‖Hs ≥

‖u(t)‖Hs . Hence, we have

lim sup
t→0+

‖u(t)‖Hs ≥ ‖u0‖Hs

On the other hand, from u ∈ Cw([0, T ];Hs) and the fact that

‖f‖Hs = sup
Ψ∈H−s

|〈f,Ψ〉Hs×H−s|,

we get that

lim inf
t→0+

‖u(t)‖ ≥ ‖u0‖Hs .

Therefore, we have

lim inf
t→0+

‖u(t)‖ = ‖u0‖Hs ,

which means ‖u(t)‖Hs is strongly right continuous at t = 0. Similarly, ‖u(t)‖Hs

is strongly left continuous at t = 0. So ‖u(t)‖Hs is continuous strongly at t = 0.

Step 5 Uniqueness. It is easy to prove the uniqueness of the solution of the R-

CH equation. Assume that u1, u2 ∈ C([0, T ;Hs′ ]) ∩ L∞([0, T ];Hs) with ∂tu1, ∂tu2 ∈
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C([0, T ;Hs′−1]) ∩ L∞([0, T ];Hs) where 3/2 < s′ < s and u1|t=0 = u2|t=0. Solve the

R-CH equation, then we have

∂t(u1 − u2) =− u1∂x(u1 − u2)− (u1 − u2)∂xu2

−
[
β0

β
+

(
c− β0

β

)
p ∗
]
∂x(u1 − u2)

− p ∗ ∂x
{

(u2
1 − u2

2) +
1

2
(u2

1,x − u2
2,x)

+
ω1

3α2
(u3

1 − u3
2) +

ω2

4α3
(u4

1 − u4
2)
}
,

Then by the similar process to the one in Step 3, we can prove the uniqueness of the

solution.

Step 6 Continuity. Back to the proof of the fact that u ∈ C([0, T ];Hs). We

have known that ‖u(t)‖Hs is continuous at t = 0, then ∀T0 ∈ [0, T ] and the solution

u(·, T0), we obtain

‖uT00 ‖Hs ≤ ‖u0‖Hse
C2
0
2
‖u0‖HsT0 ,

where u(·, T0) ≡ uT00 ∈ Hs(R) at a fixed time T0. So we take uT00 as initial data

and construct a forward and backward-in-time solution by solving (3.16). We obtain

approximation solution u(n)T0 (t) and then its limit uT0(t) which solves the R-CH equa-

tion with initial data uT0(t)|t=0 = uT00 for some positive T1 > 0 and then ‖uT0(t)‖Hs

is continuous at t = 0. By the uniqueness, we get that

uT0(t) = u(t+ T0) on [T0 − T1, T0 + T1],

which implies that u(t) is continuous at t = T0. Therefore, we obtain that u ∈

C([0, T ];Hs).

We have completed the proof of Theorem 3.5.1.

Motivated to the method in [16], the following blow-up criterion can be also

derived, and we omit details of its proof.
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Theorem 3.5.2 (Blow-up criterion). Let s > 3
2
, u0 ∈ Hs and u be the corresponding

solution to (3.14) as in Theorem 3.5.1. Assume T ∗u0 is the maximal time of existence.

Then

T ∗u0 <∞ ⇒
∫ T ∗u0

0

‖∂xu(τ)‖L∞dτ =∞. (3.52)

Remark 3.5.1. The blow-up criterion (3.52) implies that the lifespan T ∗u0 does not

depend on the regularity index s of the initial data u0.

Now we return to the original R-CH (2.1), and let

‖u‖2
Xs+1
µ

= ‖u‖2
Hs + µβ‖∂xu‖2

Hs .

For some µ0 > 0 and M > 0, we define the Camassa-Holm regime Pµ0,M := {(ε, µ) :<

µ ≤ µ0, 0 < ε ≤M
√
µ}. Then, we have the following corollary.

Corollary 3.5.1. ([11]) Let u0 ∈ Hs+1(R), µ0 > 0 and M > 0, s > 3
2
. Then, there

exist T > 0 and a unique family of solutions (uε,µ) |(ε,µ)∈Pµ0,M in C
([

0, T
ε

]
;Xs+1(R)

)
∩

C1
([

0, T
ε
;Xs(R)

])
to the Cauchy problem

∂tu− βµ∂tuxx + cux + 3αεuux − β0µuxxx + ω1ε
2u2ux + ω2ε

3u3ux

= αβεµ(2uxuxx + uuxxx),

u|t=0 = u0.

3.6 Wake-breaking phenomena

Using the energy estimates, we can further obtain the following wave breaking

criterion to the R-CH equation.

Theorem 3.6.1 (Wave breaking criterion). Let u0 ∈ Hs(R) with s > 3
2
, and T ∗u0 > 0

be the maximal existence time of the solution u to the system (3.14) with initial data

66



u0 as in Theorem 3.5.1. Then the corresponding solution blows up in finite time if

and only if

lim inf
t↑T ∗u0 ,x∈R

ux(t, x) = −∞. (3.6.1)

Proof. Applying Theorem 3.5.1, Remark 3.5.1, and a simple density argument, we

only need to show that Theorem 3.6.1 holds for some s ≥ 3. Here we assume s = 3

to prove the above theorem.

Multiplying the first equation in (3.14) by u and integrating by parts, we get

1

2

d

dt
‖u‖2

H1 = 0, (3.6.2)

and then for any t ∈ (0, T ∗u0)

‖u(t)‖H1 = ‖u0‖H1 . (3.6.3)

On the other hand, multiplying the first equation in (3.14) by uxx and integrating by

parts again, we obtain

1

2

d

dt
‖ux‖2

H1 = −3

2

∫
R
ux(u

2
x + u2

xx)dx−
∫
R
(
ω1

α2
u2ux +

ω2

α3
u3ux)uxx dx

= −3

2

∫
R
ux(u

2
x + u2

xx)dx+

∫
R

∣∣ ω1

2α2
u2 +

ω2

2α3
u3
∣∣(u2

x + u2
xx) dx.

(3.6.4)

Assume that T ∗u0 < +∞ and there exists M > 0 such that

ux(t, x) ≥ −M, ∀ (t, x) ∈ [0, T ∗u0)× R. (3.6.5)

It then follows from (3.6.2), (3.6.3), and (3.6.4) that

d

dt

∫
R
(u2 + 2u2

x + u2
xx)dx ≤ (

3

2
M +

|ω1|
2α2
‖u‖2

L∞ +
|ω2|
2|α|3

‖u‖3
L∞)

∫
R
(u2

x + u2
xx) dx

≤ C(1 +M + ‖u‖3
H1)

∫
R
(u2

x + u2
xx) dx,

(3.6.6)
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where we used the Sobolev embedding theorem Hs(R) ↪→ L∞(R) (with s > 1
2
) in the

last inequaity. Applying Gronwall’s inequality to (3.6.6) yields for every t ∈ [0, T ∗u0)

‖u(t)‖2
H2 ≤ 2‖u0‖2

H2(R)e
Ct(1+M+‖u0‖3

H1 ) ≤ 2‖u0‖2
H2(R)e

CT ∗u0 (1+M+‖u0‖3
H1 ). (3.6.7)

Differentiating the first equation in (3.14) with respect to x, and multiplying the

result equation by uxxx, then integrating by parts, we get

1

2

d

dt

∫
R
(u2

xx + u2
xxx) dx

= −15

2

∫
R
uxu

2
xxdx−

5

2

∫
R
uxu

2
xxxdx−

∫
R
(
ω1

α2
u2ux +

ω2

α3
u3ux)xuxxx dx

≤ C(1 +M + ‖u‖3
L∞)

∫
R
(u2

xx + u2
xxx) dx+ C(‖u‖2

L∞ + ‖u‖4
L∞)‖ux‖4

L4 ,

where we have used the assumption (3.6.5), which follows from the Sobolev embedding

theorem and the interpolation inequality ‖f‖L4(R) ≤ C‖f‖
3
4

L2(R)‖fx‖
1
4

L2(R) that

d

dt

∫
R
(u2

xx + u2
xxx) dx ≤ C(1 +M + ‖u0‖3

H1)

∫
R
(u2

xx + u2
xxx) dx

+ C‖u0‖5
H1(1 + ‖u0‖2

H1)‖uxx‖L2

≤ C(1 +M + ‖u0‖14
H1)

∫
R
(u2

xx + u2
xxx) dx.

Hence, Gronwall’s inequality applied implies that for every t ∈ [0, T ∗u0)∫
R
(u2

xx + u2
xxx)dx ≤ eC(1+M+‖u0‖14

H1 )T ∗u0

∫
R
(u2

0xx + u2
0xxx)dx,

which, together with (3.6.7), yields that for every t ∈ [0, T ∗u0),

‖u(t)‖2
H3(R) ≤ 3‖u0‖2

H3(R)e
C(1+M+‖u0‖14

H1 )T ∗u0 .

This contradicts the assumption the maximal existence time T ∗u0 < +∞.

Conversely, the Sobolev embedding theorem Hs(R) ↪→ L∞(R) (with s > 1
2
)

implies that if (3.6.1) holds, the corresponding solution blows up in finite time, which

completes the proof of Theorem 3.6.1.
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Recall the R-CH equation (3.1), namely,

ut + uux +
β0

β
ux + px ∗

((
c− β0

β

)
u+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
= 0,

where p = 1
2
e−|x|. The wave breaking phenomena could be now illustrated by choosing

certain the initial data.

Theorem 3.6.2 (Wave breaking data). Suppose u0 ∈ Hs with s > 3/2. Let T > 0 be

the maximal time of existence of the corresponding solution u(t, x) to (3.1) with the

initial data u0. Assume these is x0 ∈ R such that

u0,x(x0) < −
∣∣∣∣u0(x0)− 1

2

(
β0

β
− c
)∣∣∣∣−√2C0,

where C0 > 0 is defined by

C2
0 =
|ω1|
2α2

E
3
2
0 +
|ω2|
2α3

E2
0 , (3.6.8)

and

E0 =
1

2

∫
R

(
u2

0 + (∂xu0)2
)
dx.

Then the solution u(t, x) breaks down at the time

T ≤ 2√
u2

0,x(x0)−
(
u0(x0)− 1

2

(
β0
β
− c
))2

−
√

2C0

.

Remark 3.6.1. In the case of the rotation frequency Ω = 0, or the wave speed c = 1,

the corresponding constant C0 in (3.6.8) must be zero, because the parameters ω1

and ω2 vanish. The assumption on the wave breaking is then back to the case of the

classical CH equation.

Proof. Applying the translation u(t, x) 7→ u(t, x − β0
β
t) to equation (3.1) yields the

equation in the form,

ut + uux + px ∗
((

c− β0

β

)
u+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
= 0. (3.6.9)
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Taking the derivative ∂x to (3.6.9), we have

uxt + uuxx =− 1

2
u2
x + u2 +

(
c− β0

β

)
u+

ω1

3α2
u3 +

ω2

4α3
u4

− p ∗
((

c− β0

β

)
u+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
.

(3.6.10)

We introduce the associated Lagrangian scales of (3.6.9) as
∂q
∂t

= u(t, q), 0 < t < T,

q(0, x) = x, x ∈ R,

where u ∈ C1([0, T ), Hs−1) is the solution to equation (3.6.9) with initial data u0 ∈

Hs, s > 3/2. Along with the trajectory of q(t, x)), (3.6.9) and (3.6.10) become

∂u(t, q)

∂t
= −px ∗

((
c− β0

β

)
u+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
,

∂ux(t, q)

∂t
= −1

2
u2
x + u2+

(
c− β0

β

)
u+

ω1

3α2
u3 +

ω2

4α3
u4

− p ∗
((

c− β0

β

)
u+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
.

Denote now at (t, q(t, x0)),

M(t) = u(t, q)− k

2
− ux(t, q) and N(t) = u(t, q)− k

2
+ ux(t, q),

where k = β0
β
− c. Recall the two convolution operators p+, p− as

p+ ∗ f(x) =
e−x

2

∫ x

−∞
eyf(y)dy,

p− ∗ f(x) =
ex

2

∫ ∞
x

e−yf(y)dy

and the relation

p = p+ + p−, px = p− − p+.

Applying [6, Lemma 3.1 (1)] with m = −k2/4 and K = 1 we have the following

convolution estimates

p± ∗
(
u2 − ku+

1

2
u2
x

)
≥ 1

4

(
u2 − ku− k2

4

)
.
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It then follows that at (t, q(t, x0)),

∂M

∂t
=

1

2
u2
x − u2 + ku− ω1

3α2
u3 − ω2

4α3
u4

+ 2p+ ∗
(
−ku+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
≥ 1

2

(
u2
x −

(
u− k

2

)2
)
− ω1

3α2
u3 − ω2

4α3
u4 + 2p+ ∗

( ω1

3α2
u3 +

ω2

4α3
u4
)

= − 1

2
MN − ω1

3α2
u3 − ω2

4α3
u4 + 2p+ ∗

( ω1

3α2
u3 +

ω2

4α3
u4
)

∂N

∂t
= − 1

2
u2
x + u2 − ku+

ω1

3α2
u3 +

ω2

4α3
u4

− 2p− ∗
(
−ku+ u2 +

1

2
u2
x +

ω1

3α2
u3 +

ω2

4α3
u4

)
≤ − 1

2

(
u2
x −

(
u− k

2

)2
)

+
ω1

3α2
u3 +

ω2

4α3
u4 − 2p− ∗

( ω1

3α2
u3 +

ω2

4α3
u4
)

=
1

2
MN +

ω1

3α2
u3 +

ω2

4α3
u4 − 2p− ∗

( ω1

3α2
u3 +

ω2

4α3
u4
)

The terms with ω1 and ω2 in the right sides of the above estimates can be bounded

by ∣∣∣ ω1

3α2
u3 +

ω2

4α3
u4 ∓ 2p± ∗

( ω1

3α2
u3 +

ω2

4α3
u4
)∣∣∣

≤ |ω1|
3α2
‖u‖3

L∞ +
|ω2|
4α3
‖u‖4

L∞ + ‖u‖L∞
(
|ω1|
3α2
‖u‖2

L2

)
+ ‖u‖2

L∞

(
|ω2|
4α3
‖u‖2

L2

)
≤ |ω1|

2α2
E

3
2
0 +
|ω2|
2α3

E2
0 = C2

0 > 0,

where use has been made of the fact that

‖p±‖L∞ =
1

2
, ‖p±‖L2 =

1

2
√

2
.

In consequence, we have 
dM
dt
≥ −1

2
MN − C2

0 ,

dN
dt
≤ 1

2
MN + C2

0 .

(3.6.11)

By the assumptions on u0(x0), it is easy to see that

M(0) = u0(x0)−k
2
−u0,x(x0) > 0, N(0) = u0(x0)−k

2
+u0,x(x0) < 0,

1

2
M(0)N(0)+C2

0 < 0.
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By the continuity of M(t) and N(t), it then ensures that

dM

dt
> 0,

dN

dt
< 0, ∀t ∈ [0, T ).

This in turn implies that

M(t) > M(0) > 0, N(t) < N(0) < 0, ∀t ∈ [0, T ).

Let h(t) =
√
−M(t)N(t). It then follows from (3.6.11) that

dh

dt
=
−M ′(t)N(t)−M(t)N ′(t)

2h
≥
(
−1

2
MN − C2

0

)
(−N)−M

(
1
2
MN + C2

0

)
2h

=
M −N

2h

(
−1

2
MN − C2

0

)
.

Using the estimate M−N
2h
≥ 1 and the fact that h+

√
2C0 > h−

√
2C0 > 0, we obtain

the following differential inequalities

dh

dt
≥− 1

2
MN − C2

0 =
1

2
(h−

√
2C0)(h+

√
2C0) ≥ 1

2
(h−

√
2C0)2.

Solving this inequality gives

t ≤ 2√
u0,x(x0)2 − (u0(x0)− k

2
)2 −
√

2C0

<∞.

This in turn implies there exists T <∞, such that

lim inf
t↑Tu0 ,x∈R

∂xu(t, x) = −∞,

the desired result as indicated in Theorem 3.6.2.

Remark 3.6.2. Returning to the original scale, our assumption for the blow-up phe-

nomena becomes

√
βµu0,x(

√
βµx0) +

∣∣∣∣u0(
√
βµx0)− 1

2αε

(
β0

β
− c
)∣∣∣∣ < −√2

αε
C1.
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Note that when Ω increases, α and β decrease. It is then observed that with effect of

the Earth rotation, a worse initial data u0(x0) are required to make the breaking wave

happen. On the other hand, in the original scale, we have

T ≤ 2

αε

(√
βµu2

0,x(
√
βµx0)−

(
u0(
√
βµx0)− 1

2αε
(β0
β
− c)

)2

−
√

2
αε
C1

)

where

C2
1 =
|ω1|αε3

2
E

3
2 +
|ω2|ε2

2α
E2 with E(u0) =

1

α2ε2
E0(αεu0(

√
βµx0)),

which also implies that a longer time is required for wave to break down when effect

of the Earth rotation is considered.
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