

Multi-source UAV-based object classification using CNN’s and Data acquisition system for

Robotic Skin

by

M.S. Raghavendra Sriram.

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2017

Copyright © by Raghavendra Sriram 2017

All Rights Reserved

"But it's been no bed of roses, no pleasure cruise. I consider it a challenge before the whole

human race, and I ain't gonna lose"

- We Are the Champions/Freddie Mercury (1977)

ii

Acknowledgements

I am grateful to Dr. Frank Lewis for giving me an opportunity to work with him and

mentoring my Master's thesis. I shall forever cherish that chance meeting of ours on December 1st,

2012 on the neederman hall bridge. It led to some of my most cherished years. Dr. Lewis provided

an extraordinary level of attention and hands on guidance in, the shaping of my knowledge and

skill base. I would also like to thank Dr. Dan Popa for letting me participate and contribute to some

truly innovative research and his guidance throughout the years. I would like to thank them both

for their critical assessment of my work. I would like to thank Dr. Yan Wan and Dr. William Dillon

for serving on my committee.

I would also like to thank the various Research Assistants and employees at UTARI for their

support and constant help. I would be remiss if I didn’t thank the UTARI IT department especially

Jared Beaty and Vinh, for continuously putting with a lot of frantic questions and issues and for

finding solutions for various issues and most of all for being amazing friends and people during my

time at UTARI. Thank you Norman Spayd, you will be missed.

 I would like to thank my lab associates and friends, Patrik Kolaric, Rommel Alonzo, Sven

Cremer, Sumit Das, Joe Sanford, Monica Beltran, JPaul and the other NGS group members over

the years for their help during various projects. Cheers to all the great times at NH250!

A special thanks to Chaitanya Rani. If not for your help, a lot of things would not have

been possible and as much fun. Mishka!

Kanishka, Rohit, Nayana, Soumitro, Sheetal, Shwetha, Dilip, Karthik,Patanjali, and all my

iii

friends through the years, I must thank you for all the years of wild and crazy times. From the crazy

times we had at House 140/141, to Bentleys and the parking lots across campus, lets bring them

back soon!.

And finally, I would like to thank my Mom,Dad and my Sister, Lakshmi. If not for all the

support and time and everything else, none of this and whats to come would be possible. From

Phosphorus , 3 Dimensional vectors and to every problem ever, I love you all.

August 9th, 2017

iv

Abstract

Autonomous robots are intelligent systems capable of performing tasks in the world by

themselves, without explicit human control. Examples range from autonomous helicopters to

Roomba, the robot vacuum cleaner to robotic manipulators. The numerous sensors on-board gather

data related to the desired actions and this poses several challenges and design constraints in terms

of computation and hardware design that can prove to be extremely difficult and expensive to avoid.

The objective of this research is to study, develop and implement various Intelligent solutions to

help solve several real-world problems with respect to multi agent configurations of unmanned

systems. We shall see examples of integration of machine learning especially Deep learning

capabilities in swarms.

We shall also discuss the development of robotic skin modules and the several constraints

and design schemes adopted and tested to support the development of more social robots and help

study and determine certain requirements and develop smart systems to help give robots a more

natural sensory based interface with its surroundings.

v

Table of contents

 Acknowledgements……………………………………………………………………………….ii

Abstract…………………………………………………………………………………………..iv

Chapter 1. Introduction……………………………………………………………………………1

Chapter 2. Ground based Robotic Platforms

 2.1 Platform Design…………………………………………………………….....7

 2.2 Software Architecture………………………………………………………..10

Chapter 3. Aerial Based Autonomous Platforms

 3.1 Hardware Design…………………………………………………………….18

 3.2 Software Architecture………………………………………………………..23

 3.3 Sensor Integration……………………………………………………………25

Chapter 4. Controller Designs Simulations and Implementation

 4.1 Skeletal Tracking…………………………………………………………….28

 4.2 Potential Field Navigation…………………………………………………...32

 4.2.1. UAV-UGV cooperative Image based navigation…………………33

4.2.2 UAV based image classification using Convolutional Neural

Networks…………………………………………………………...35

 4.2.2.1 Convolutional Neural Networks…………………………………35

 4.2.2.2 NVIDIA Jetson TX2……………………………………………..40

 4.2.2.3 Classification results……………………………………………..42

vi

Chapter 5. Conclusion and Future work…………………………………………...…………….44

Chapter 6. Integration of multi-modal, multi-resolution, MEMS skin sensors to include

 tactile, thermal, pressure, acceleration, and distance IR sensing

6.1. Introduction ……………………………………………………………..…….45

6.2. Skin Prototypes……………………………………………………………..…47

6.3. Temperature sensor ………………………………………………...…………47

6.4. Sensor Integration……………………………………………………..………48

6.4 Outcomes…………………………………………………………...………….55

6.5 Data collection and processing ………………………………………………..58

Chapter 7. Conclusion……………………………………………………………………………60

References…………...…………………………………………………………………….……..62

1

Chapter 1

Introduction

Unmanned vehicle systems namely, unmanned aerial vehicles (UAVs) and unmanned

ground vehicles (UGVs), have become a sought-after research area for industry as well and

academics.

This thesis discusses two main topics - Autonomous systems and Assistive Robotics. In

the first part, the potential of UAV-UGV collaboration and several design solutions and systems

to work with each other in a distributed manner and with sensor based solutions for several well-

known problems along with several human machine interface control mechanisms designed to

provide a more intuitive and natural control interface is shown. A more distributed framework is

also discussed.

Wireless mesh networks have been around for quite some time starting with the

development of radio mesh networks to connect various clients as well as servers [1]. A mesh is

an interconnected network of devices and systems that share information with each other. Mesh

networks tend to have a fixed topology for fast and reliable communication. They can be dynamic

in topology, but that comes at a cost of computation time of delivery route optimization. There

are several implementations of wireless mesh networks already established and in use [2]. SMesh,

an 802.11 multi-hop wireless mesh made it possible to allow real time applications such as

VoIP[3]. Firetide[4] and Wave relay and systems that allow communication over multiple radio

2

bands using software defined radio. ZigBee, a low-cost radio module allows the creation of a

network which allows small sensors and microcontroller systems to be easily integrated with each

other. These are used in several smart home automation projects. Recently several consumer

products have been increasingly introduced, that allows users to create a wireless WiFi based

mesh networks at home.

Several protocols have been defined to allow better design and standardization of wireless

mesh networks. Some of them are:

1. ZigBee: The protocol used by ZigBee wireless systems and several low-cost radios is based on

the IEEE 802.15.4 standard. This protocol is best used in situations where the amount of

data is very small and is transmitted over short distances and consumes very low power.

This allows more abstraction of capabilities such as a self-healing network and is designed

to utilize extremely low power when not being used for communication. The data is

generally encrypted and has a size of 64k. Its maximum speed is 250 kBs [6].

Fig 1. Zigbee Protocol architecture[6]

3

2. SNAP: SNAP is a high-performance stack that runs efficiently on 8-bit microprocessors. Along

with wireless mesh capabilities it is extremely small in memory usage (~ 40 KB). Since

SNAP includes a python virtual machine, its performance parameters can be changed and

it does not require recompilation every time.

Fig 2. SNAP Protocol architecture [6]

3. WirelessHART: This is based on the HART protocol developed for use in industrial applications

and automation. This protocol allows real time communication and uses a Time

Synchronized Mesh Protocol (TSMP). Some key features are Industry standard 128-bit

AES Encryption, Multi-tiered security, and data integrity and device authentication [6].

Fig 3. WirelessHART Protocol architecture.

4

4. OpenWrt: OpenWRT is an open source writable file system management tool which allows

easy configuration of Wi-Fi based devices. This allows application based selection and

customization capabilities to suit user’s needs. For developers, OpenWrt is a framework

that allows reconfiguration of systems without the need to create separate firmware for

devices. For users, this means the ability for full customization, to use the device in ways

never envisioned. It supports several Wi-Fi protocols and acts as a separate configuration

layer over these protocols [7].

Fig 4. OpenWRT Protocol architecture

In this report, implementation of a multi-robot wireless mesh network where data can be

shared amongst multiple systems and certain tasks can be performed even with constrains is

studied.

An application of using the mesh network/system capable of behaving like a flying cluster

of drones which can classify images using a convolutional neural network (CNN) trained using

5

the ImageNet dataset [8] and the inception CNN model [9] is shown. This is part of a robotic

challenge that is developing an aerial robotic solution for complete autonomous farm mapping

solutions.

A social robot is an autonomous robot that interacts and communicates with humans or

other autonomous physical agents by behaviors attached to its design [10]. It also deals with study

of methods to help reduce the gap between robots and human interaction and make the interaction

more natural and intelligent. Robots that can interact and communicate among themselves, with

humans, and with their immediate environment, within the social and cultural structure, need to

appeal to the human in a manner like the user’s expectations in various social interactions. This

requires the need to make the robots not only appear more human-like but also feel more human

and one such way is to provide the robot with a more human-like interface to interact with the

environment physically. Several social robots have been used for research purposes such as the

Phillip K Dick android [11] developed by Hanson Robotics. The first version was built in 2005

by Hanson Robotics with David Hanson, Andrew Olney with the Fedex Institute of Technology

team, the University of Texas at Arlington Research Institute, UT Dallas and others. The robot

interacted with various people orally and visually. However, it lacked a smart physical and

human-like interaction system. This is one example of the gap between the robot and human. The

skin developed for the android was a silicone based material which lacked any sensory capability

[12].

6

Fig 5. Phillip K Dick Android developed by Hanson Robotics

In the second part of the thesis, the design of a data acquisition system for the design and

implementation of artificial skin modules for use on social robotic systems to provide them with

an additional natural interface between the robot and the immediate environment along with

several sensory features such as pressure sensing, non-contact thermal sensing is discussed. It

also addresses several design challenges such as scalability and communication.

7

Chapter 2

Ground-based Robotic Platforms

2.1 Platform design

Several robotic platforms were designed and modified according to their specific tasks.

Some of them are detailed below with specifications.

1. DrRobot Jaguar 4x4 - The Jaguar 4x4 designed by DrRobot [13], is a 4-wheel Robotic Platform

and is developed mainly for indoor and outdoor operation requiring higher ground clearance

and fast maneuverability. It is driven by four powerful 80Watt motors. The Jaguar-4x4-wheel

platform is rugged, weighing in at less than 40lbs, having a top speed of about 7 mph, compact,

weather and water resistant. It is designed for rough environments and can run over vertical

step up to 155mm and climbing up low-rise stairs (up to 110mm step). The Jaguar-4x4-wheel

is WiFi enabled with two wireless routers. It was converted from a 2-channel drive system to

a 4-channel drive system allowing for individual wheel control, allowing much faster responses

in constrained situations. An on-board computer system running Ubuntu 14.04 and ROS indigo

was also installed on the robot. This allows it to perform all the computing on-board the system

instead of off-board and allowed integration of several sensors and planning algorithms on-

board. A modular payload tray allows it to be used as a mobile landing or takeoff pad for UAVs

using a ArTag, which is a 2D image similar to a QR code which can be designed for

identification, etched on it. The UAV can land, take off or follow the system using this ArTag.

8

There is also a payload tray with a wireless charging pad, that allows a swarm to fly down to

the charging pads, charge wirelessly and take off again. The design of each specific charging

unit solves the main issue of the UAV landing uncertainty, i.e. error in final landing position.

A motorized X-Y stage below each pad, detects the location of the landed UAV from a resistive

touch film on it, and moved the secondary charging coil to the exact location below the UAV.

Thus, giving more flexibility to the location and increasing the charging efficiency.

Fig 6. Jaguar 4x4 with various payloads (AR tags, Wireless charging)

2. Husky A200: The Clearpath Robotics Husky A200, as shown in Fig. 7 carries an Xsense MT700

IMU with integrated GPS and a piksy RTK GPS. It is equipped with a digital compass for

heading information, as well as an optical encoder on each side of the differential drive for

odometry measurements and velocity control. The modified system also includes a Kinect

Camera and a Hokuyo LIDAR mounted on a set of specially fitted dynamixel motors which

allows it to pan and tilt adding another dimension to the 2D LIDAR. The UGV can be

9

controlled by requesting linear and angular velocities, and is an ideal option for the kinematic

control scheme developed and used via the ROS navigation stack along with the various

localization methods.

Fig 7. Husky A200

It also consists of a long-range transmitter which allows for serial communication over an

extended area of over 2 miles from the base station. An Intel NUC computer was added onto the

system and connected to allow integration of various sensors and processing of data. This allows

it to run various tasks such as mapping and navigation on-board. The on-board Wi-Fi router

supports OpenWRT and hence can also be integrated into the Wi-Fi mesh set up in the lab. This

allows the system to share data and maps with multiple robots and utilize the right maps when

needed.

10

2.2 Software Architecture

Several open source packages were integrated and implemented on the system, allowing

for various tasks:

1. Combined odometry using robot_pose_ekf: The Robot Pose EKF [14] package is used to

estimate the 3D pose of a system, based on partial pose information coming from various

sources. It uses an extended Kalman filter with a 6D model (3D position and 3D

orientation) to combine measurements from wheel odometry, IMU sensor and visual

odometry. Sensor fusion is a concept involving the combination of data from multiple

sensors intelligently and use the result to improve the performance and estimates of certain

states of a system. It allows us to identify several sources and reduce any errors that may

be inherent in certain kinds of data. For estimating states, several methods of filtering and

estimation are available. The most common technique is to use an Extended Kalman Filter.

The basic idea is to offer loosely coupled integration with different sensors, where sensor

signals are received as ROS messages. The package, allows improved odometry

information using the GPS, RTK GPS, visual odometry from the RTAB mapping package

using the Kinect along with the Xsense IMU used on the system. The stack is a multi-

sensor fusion framework, that refers to one sensor as a fixed sensor and the others as update

sensors. The input format is the 2D pose from the odometry (x, y and yaw angle), the 3D

orientation from the IMU (roll, pitch, yaw) and the visual odometry from the camera which

is the full 3D pose (x,y,z and roll, pitch, yaw). The odom message is converted into the a

11

vector3 of quaternions. The IMU is converted into an orientation vector with the

base_footprint as reference and finally visual odom is converted into a pose vector. All the

three are concatenated into the buffer and then passed into the Extended Kalman Filter

node. More than one of each can be used and the data can be filtered or averaged before

being passed to the node as well.

Basic Algorithm:

1. Collect data from sensors and verify

2. If valid, convert them with respect to the base frame of reference

3. Depending on the data rate, each sensor information is stored until information from all the sensors are

available. Each of the data received has its own time stamp

4. Once all the data is consolidated, the EKF (as defined in the Orocos-BFL library) is updated for each sensor

when all the sensor data is available (i.e, if the data from the odometry and the data from the IMU is

received at time t_1(>t_0) and the data from the visual odometry is received at time t_2(>t_1), then the

filter is run for all the three sets of data at time t_1).

5. This fused sensor data is converted into an odometry msg and published on the topic /odom_combined

The Extended Kalman Filter was developed mainly for nonlinear discrete time state

estimation as a normal Kalman filter. The Kalman filter is a method based on recursive

Bayesian filters where the noise is known and is assumed to be gaussian. The Extended Kalman

filter is an extension of the Kalman filter where the system is first linearized around the initial

states and then filtered. Owing to the inherent errors in linearization, the EKF, unlike the

Kalman filter is not optimal. However, for most nonlinear cases it works much better than the

regular filter. The EKF can be represented in standard state space form as shown below,

12

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘, 𝑘) + 𝑤𝑘+1

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘 , 𝑘)

Where,

 𝑘 denotes a discrete point in time (with k-1 being the immediate past time point).

𝑢𝑘 is a vector of inputs.

𝑥𝑘 is a vector of the actual states, which may be observable but not measured.

𝑦𝑘 is a vector of the actual process outputs.

𝑦̃𝑘 is a vector of the measured process outputs.

𝑤𝑘+1 and 𝑣𝑘 are process and output noise respectively. They are assumed to be zero mean

Gaussian with covariance 𝑄𝑘and 𝑅𝑘 respectively.

𝑓(.)and ℎ(.) are generic non-linear functions relating the past state, current input, and current time

to the next state and current output respectively.

Given the inputs, and assuming the appropriate noise for the sensors, the estimated states,

𝑥̂𝑘 and 𝑦̂𝑘 are the estimated outputs. In a regular Kalman filter, the first step is the projection

of the most recent state estimate and estimate of the error covariance forwards in time to predict

the estimates of the current time. The next step is updating the predicted estimate with the most

recent measurement to generate the state estimate. Due to the nonlinear nature of the states, the

covariance prediction and the update equations first need to be linearized and thus their

jacobians are used, which are,

𝐹𝑘 =
𝜕𝑓

𝜕𝑥
|

(𝑥̂𝑘,𝑢𝑘,𝑘)
 , 𝐻𝑘 =

𝜕𝑓

𝜕𝑦
|

(𝑦̂𝑘,𝑢𝑘,𝑘)

The Prediction step can be written as

𝑥̂𝑘
− = 𝑓(𝑥̂𝑘−1, 𝑢𝑘, 𝑘)

13

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 + 𝑄𝑘

 and the measurement correction step is,

𝐾𝑘
− = 𝑃𝑘

−𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘

−𝐻𝑘
𝑇 + 𝑅𝑘)−1

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑦̃𝑘 − ℎ(𝑥𝑘

−, 𝑢𝑘, 𝑘))

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−

Where 𝑃𝑘 is an estimate of the covariance of the measurement error and 𝐾𝑘 is the Kalman gain.

With this information, the necessary states are obtained. Multiple sensors of the same type can

also be used. The result of sensor fusion with an EKF running on one sensor and multiple

sensors are shown in figure 8.

Fig 8. EKF with single input

14

Fig 9. EKF with 1 IMU and with multiple IMU sources

From the above results, figure 9, the estimation gets better with three sensors rather than

one and the mean squared error reduces from 2.49 to 1.34.

2. loam back and forth - This package, developed by Ji Zhang [15], is a real time odometry

detection method that allows the use of a 2 axis LIDAR to localize itself and map its

surroundings while moving in 6DOF. In the two algorithms developed, one algorithm allows

localization using a point cloud and performs odometry at high frequency and low fidelity and

another algorithm generates maps using scan matching and pose registration in the point

cloud.

 The package is made up of four nodes. The scanRegistration node saves all the laser data

in a stack and publishes the data as a point cloud at the end of each sweep. The laserOdometry

node estimates motion of the lidar between two sweeps, at a higher frame rate. By keeping

15

track of the odometry data, the laserMapping node creates and saves a map. It also consists

of a transformation node that determines the pose of the laser and the states of the system.

 Two dynamixel motors, mounted on each other in a pan-and-tilt configuration are used. This

allows a variety of ways to hold the LIDAR and use it. The benefit of this is the ability to

choose the configuration of the LIDAR according to the situation.

Fig 10. Loam running on nsh_dataset

3. RTAB mapping - Real-Time Appearance-Based Mapping is a RGB-D Graph-Based SLAM

approach based on an iterative appearance-based loop closure detection algorithm. It utilizes

a bag-of-words technique to identify features [17] present in various images and identify

the probability of the features matching and determining loop closure. When a loop closure

solution is accepted, the graph is optimized and the errors minimized. RTAB mapping is

implemented using an Xbox Kinect camera mounted on the vehicle. These 3D maps are

saved onto a single shared server and on the client system, and can be accessed by various

robots [16].

16

Fig 11. Dimensional Pointcloud maps using real time appearance based mapping

(Left: UTARI Atrium, Right: Navigation within the 3D map and odometry in blue)

4. Gmapping – Gmapping is a package developed with the ROS navigation stack which allows the

creation of grid-based maps. It is built on the OpenSLAM [19] software. It utilizes the

odometry information to localize and traverse the maps generated. In conjunction with the

ROS navigation stack, it can detect obstacles and simulate a potential field bubble around

the obstacle allowing for obstacle avoidance during navigation. It reduces the amount of

data to process by using a local costmap for immediate navigation goals such as obstacle

avoidance and motion planning, while a global costmap, saves all the mapped data and

generates the global map for localization. The global planner uses the global costmap to

generate a long-term plan while the local planner uses the local costmap to generate a short-

term plan. The package also can be used with preexisting maps to traverse.

17

Fig 12. Navigation using gmapping (blue: Potential bubble around obstacles)

18

Chapter 3

Aerial-based Autonomous Platforms

3.1 Hardware design

Multi-rotor aerial vehicles have recently gained a lot of interest amongst enthusiasts and

researchers. The simplicity in the design and the inherent benefits over single rotor and coaxial

rotor systems allows for much easier control and stable flight responses. The reduction of

mechanical linkages between the motors and the rotors allows them to be more robust, and

maintenance free to a large degree. The design allows for fine flight control as well. These

vehicles are being used regularly for photography and for research purposes to explore various

intelligent algorithms such as localization, navigation and computer vision etc.

Unlike a helicopter with a single giant rotor that is unsafe to use by a civilian user, a

multirotor can be made to be much safer, easier to use and can be designed to accommodate strong

/ uneven wind and loading conditions. It is also a purely electrical system allowing for extremely

efficient flight and quick response.

Several multirotor platforms were designed and used for various tasks. Based on the

design of the ‘Pelican’ by ascending technologies the Octorotor was designed to be a research

platform capable of a variety of tasks and capabilities. The coaxial design of the propellers allows

for lesser arms and reduced frame weight but also causes a reduction in motor efficiency. This

can be improved by selecting the right propeller motor combination.

19

In our platform design, a multi system approach and a bottom-up architecture to handle

various aspects of control and data acquisition and processing is implemented. The processing

into critical flight controls and auxiliary control systems is divided. Different tasks such as flight

stabilization and data acquisition and servo control of all the motors requires an embedded

autopilot to be used with inertial measurement units and GPS and other sensors. For this purpose,

a Pixhawk Autopilot was used, which is explained later. For the higher order navigation and

decision control systems, LIDAR, camera and computer vision tasks, a separate Odroid U3 on-

board computer was used.

 The Pixhawk is an independent open source and open hardware project [20]. Low cost and

availability enable its use in small autonomous flight systems and ground vehicles. The project

started in 2009, and is being further developed and used at Computer Vision and Geometry Lab

of ETH Zurich (Swiss Federal Institute of Technology) and supported by the Autonomous

Systems Lab and the Automatic Control Laboratory.

 The autopilot design includes an 32bit STM32F427 Cortex M4 core with FPU

microprocessor with a 256 KB RAM and 2MB flash. It includes a ST Micro L3GD20H 16-bit

gyroscope, a ST Micro LSM303D 14-bit accelerometer / magnetometer, Invensense MPU 6000

3-axis accelerometer/gyroscope and MEAS MS5611 barometer. The Pixhawk has several

failsafe’s built in.

One benefit of using the Pixhawk is that it makes the system modular and easily

upgradable in terms of hardware and software.

20

 The Pixhawk has various capabilities giving it an advantage over other systems available.

Several companies, further developed several task specific sensor modules for the Pixhawk. For

example, 3DRobotics developed (PX4FLOW), a camera coupled with an ultrasonic distance

sensor to achieve accurate position estimation in GPS denied situations using optical flow [21].

PX4FLOW developed by 3D Robotics, offers a low-cost, low-power sensor with a 21-degree

Field of View (FOV) and 752x480 resolution. The range sensor is used for distance calculation

for scaling optical flow measurements to metric velocity. It also uses the gyroscope to reduce the

error and improve estimation. An on-board STM32F4 processes the sensor data and makes it

available via I2C. The result yields high dead-reckoning accuracy unavailable to similar

autopilots.

Fig 13. Pixhawk Autopilot

The companion computer used with the Pixhawk is the Odroid u3 which is a single board

ARM computer that runs a lightweight linux distribution called Linaro 14.04 and ROS Indigo. It

connects to the Pixhawk via serial. Several sensors like the Hokuyo lidar, USB cameras, Xtion

stereo camera and GPS system can be driven with this computer and the data processed on-board.

21

This allows the development of navigation algorithms and controllers to avoid obstacles and

indoor mapping and navigation.

Fig 14. Odroid U3 with UPS

 Several micro aerial platforms mainly the, Crazyflie 2.0 by Bitcraze have been used in

several projects. The Crazyflie 2.0 is one of the smallest quadrotors available on the market. Its

small size, robust design and safety features make it ideal for applications that require it to fly in

close proximity to people and in constrained environments. It measures 92mm from propeller to

propeller and weighs about 27 grams. It has a flight time of around 5 minutes. The small size of

the Crazyflie presents many challenges in using it as a research platform. The controllers designed

for it require extremely low latency to handle its small inertia. Its payload capacity is also limited

(approx. 7 grams), making it challenging to add additional sensors. However, all the code for the

system is completely open source and that gives us complete control over the firmware on the

quadrotor, the firmware running on the radio as well as the client library running on the base-

station.

22

Fig 15. (A)Crazyflie 2.0 (B) Wireless charging coil

 The Crazyflie 2.0 is equipped with two microcontrollers - an ARM Cortex-M4 embedded

processor (STM32F405), is used to run the main system. The processor is a 32 bits architecture

and can run at 168MHz. The ARM Cortex-M4 also has a floating-point unit that supports all

ARM single-precision data-processing instructions and data types. The Crazyflie 2.0 also has a

second microcontroller to handle power management and the radio. The microprocessor is an

ARM CortexM0 (nRF51822) that runs at 32MHz. The Crazyflie Nano Quadcopter is equipped

with an IMU, the MPU-9250. The IMU contains a 3-axis gyroscope and a 3-axis accelerometer.

 The battery used by the Crazyflie 2.0 is a single cell Lithium-Polymer (LiPo) battery as it

provides the best power-to-weight ratio. The supply voltage is 3.7V and has a capacity of 310

mAh. The battery also comes with a Protection Circuit Module (PCM) attached to it that prevents

the user from under or overcharging the battery or from shorting it. The battery is easily

removable from the quadrotor so connectors were built for it so that they could be easily replaced.

23

3.2 Software Architecture

The PX4 flight stack is an open source software package which includes several modules

for various tasks such as guidance, navigation and control algorithms for autonomous systems. It

includes controllers for fixed wing, multirotor and VTOL airframes as well as estimators for

attitude and position. It also includes various estimators for local positioning systems (VICON)

as well as global positioning systems (GPS). This allows indoor and outdoor use and appropriate

sensor information can be selected. The diagram below, figure 16, shows some of the basic

implementation of the various modules. These modules can be combined and others added

depending on the application [22].

Fig. 16. Sensor and control modules

The system interacts with the ground control station (GCS) is through MAVLink packets

and converts them into the on-board uORB data structures [23]. This allows some amount of

abstraction within the system and reduces the dependencies. The MAVLink application also

24

consumes a lot of sensor data and state estimates and sends them to the ground control station.

Fig 17. Mavlink protocol module

For communication with the base station the Odroid U3 computer on-board the UAV running

ROS Indigo. ROS is a robotics framework providing many APIs and services such as hardware

abstraction, low level device control and a graph architecture for message passing between

multiple systems or nodes [24]. The ROS ecosystem can be defined into 3 groups [25],

1. Language and platform independence which allows for a distributed architecture.

2. Client and Server Library implementations

3. Open Source packages for various applications for specific client libraries.

ROS contains many open source packages developed for robotics purposes and are used to build

and integrate various systems within our applications.

Some of the packages utilized for the robotic platforms and development are MAVROS

developed by Vladmir Ermakov and distributed under the GPLv3, LGPLv3, BSD licenses.

MAVROS is a MAVLink based communication node to allow for easier integration between

ROS and MAVLink based autopilots such as the Pixhawk.

25

3.3 Sensor Integration

1. Px4flow - The PX4FLOW (Optical Flow) is an optical sensor consisting of a downward facing

camera module and a 3-axis gyro . This high resolution camera module detects the ground

texture and visible features and a separate built in sonar. The Maxbotix LZ-EZ4 sonar is used

to determine the UAVs ground velocity and altitude. Unlike many other sensors, it also works

indoors and in low outdoor light conditions without the need for an illumination LED. It can

be freely reprogrammed to do any other basic, efficient low-level computer vision task.

Processor

168 MHz Cortex M4F CPU (128 + 64 KB RAM)

Sensor
752×480 MT9V034 image sensor, L3GD20 3D Gyro

Optics
16 mm M12 lens (IR block filter)

Dimensions
45.5 mm x 35mm

Power consumption
 115mA / 5V

Table 1: Pxflow specifications

2. TP-Link TL-MR3020 – is one of the smallest wireless routers available and easy to use and

supports OpenWRT technology. OpenWRT is an open source Linux distribution for

embedded devices. Apart from creating a single, static firmware, OpenWrt provides a fully

writable filesystem with package management. This allows us to select the necessary

configuration and customize the device using packages to suit any application. For

developers, OpenWrt is the framework to build an application without having to build a

26

complete firmware around it.

The router, being USB powered, allows us to create a portable Wi-Fi access point

that can be utilized in creating a Wi-Fi mesh network. This allows all systems to

communicate via a mesh network and provides several features such as a self-healing

network where nodes damaged or not responding can be cut off from the system and data

rerouted via other nodes, extending the range of a network and easy integration between

multiple nodes.

Fig 18. TP link travel Router

Each of the ground and aerial vehicles have been fitted with the router allowing them to

communicate with each other wirelessly over the same network. This allows global and local

system control. It also allows unique address for each node to control or acquire data from a

sensor.

The use of a wireless mesh also has the benefit of being able to choose our own network

architecture such as a centralized architecture, a decentralized architecture where several nodes

communicate with their nearest nodes and do not form a fully connected network, or a Distributed

27

graph, where all the systems are connected to the next node via different paths.

Fig 19. Mesh configurations

28

Chapter 4

Controller Designs, Simulations and Implementation

4.1. Skeletal Tracking

Fig. 20. (A) Skeletal joints, (B) Xbox Kinect, (C) Kinect coordinate frame

This project works based on the open source OpenNI ROS drivers for skeleton tracking. The

package works with a Kinect camera connected to a PC and can track up to fifteen joints and body

parts in human skeleton. These joints include hands, elbows, head, neck, shoulders, torso, left and

right hips, knees, and feet. The 3D positions and rotation quaternions of all these joints in space

are calculated with reference to the center of camera frame, /openni_depth_frame. It also provides

a set of transformations between the various joints (/tf). These joints are shown in figure 21.

29

This ROS node publishes the position and the orientation of joints as transforms, as shown in

figure 21. All the frames of the human model are computed from the reference coordinate frame

called camera_rgb_optical_frame, located on the RGB camera of the Kinect sensor. The sensor

can identify multiple users; however, it becomes necessary to identify various users and map their

structure data and calibrate the system to perform better.

A calibration sequence was designed to run initially, where the user moves the joints to the

extremes and the system records the extreme transform and uses that to determine the thresholds

for each user, this allows for clearer identification of gestures and control.

Fig 21. Joints and Tf being tracked by the Kinect

To calculate the transforms and rotations between various joints on the skeleton, the tf library

was used. The Tf library is an open source library that provides a standard method to track

multiple coordinate frames within a global frame. It allows the user to reliably obtain data of a

frame without having to worry about transforming between multiple frames. The Tf library

30

provides functions to calculate the translation and rotation between multiple frames and calculate

the pose and distances between the ends of different links.

Fig 22. Example of Frames between parent link and child

Based on the transforms, the values of the coordinates and relation between multiple joins,

the program can identify various actions and gestures. Some of the gestures are raising the right

and left hand and lowering them or holding them at a fixed pose.

In the implementation, the Parrot AR Drone quadrotor was chosen to demonstrate the

controller. The AR Drone connects to the system via WiFi and uses the ardrone_autonomy ros

package. Different services and commands were mapped to different gestures using a state

machine and tested [26].

The user must initially run through a calibration sequence where the user initializes the node

by holding the psi calibration pose and once detected, rotates all tracked joints to the extremes

and back, this allows the program to measure the complete range of values and identify the

minimum and maximum values of all the frames. The program then decides the thresholding

values based on these min and max values.

31

Fig 23. Changing states according to user gestures and controller Flowchart

Several gestures were used to control the UAV shown in figure 23.

Fig 23. Gestures recognized by the Kinect

Data from several instances with several users and calculated the errors in detection

detailed below. The percentage of errors after the calibration sequence is lesser and is mainly

present only when the gestures are similar.

32

Gesture Command Without calibration

(approx.) Error %

After calibration

(approx.) Error %

Pose 1 Take off 20 5

Pose 2 Hover 15 10

Pose 3 Land 10 2

Pose 4 Forward 15 5

Pose 5 Back 10 2

Table 2: Detected User Pose errors

Thus, with a simple calibration sequence, the pose and gesture detection can be improved quite

well. The system could further be improved using a neural net classifier to correctly classify

gestures.

4.2. Potential Field Navigation

In this section, the implementation of an Image-based local path planning algorithm based on

potential field is discussed. The potential field algorithm uses distance based virtual forces to

traverse from one location to another in the path of least resistance or repulsion.

 The concept of potential fields is a natural phenomenon and is observed in many cases.

Some examples are the effect of a magnetic field on a charged particle, flow of water down a hill.

The difference between the potential of forces causes a force to be exerted on the object. It is

possible to simulate the same effect, by introducing artificial potential forces based on distances

between the object, the goal and the obstacles [27]. By defining a charge to the object, we can

decide if it is attractive or repulsive in nature and thus influence the behavior of mobile robots.

33

At any point (x, y) in the plane, the net forces acting on a point based on the combination

of individual forces are calculated. The net force as a function of position, is a vector force field

that represents the resultant force obtained by the sum the attractive forces and repulsive forces

which gives us a gradient in the direction of the minima.

𝐹⃗(𝑟) = 𝐹⃗𝑡𝑎𝑟𝑔𝑒𝑡(𝑟) + ∑ 𝐹⃗𝑜𝑏𝑠(𝑟)

𝑛

𝑖=1

= −∇⃗⃗⃗𝑉(𝑟)⃗⃗⃗⃗

where arrows denote vectors. In potential field motion control, it is necessary to calculate and

keep track of the potentials at all points. With mobile ground robot applications, the potential

fields are usually used in a 2D space.

Thus, the force gradient for 𝑟 = [𝑥 𝑦]𝑇
 ∈ 𝑅2 is,

−∇⃗⃗⃗𝑉(𝑟)⃗⃗⃗⃗ = [
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦
]

𝑇

= [𝐹𝑥 𝐹𝑦]
𝑇

∈ 𝑅2

Where the 𝑥 and 𝑦 Force components are

𝐹𝑥(𝑥, 𝑦) = −
𝜕𝑉(𝑥,𝑦)

𝜕𝑥
 , 𝐹𝑦(𝑥, 𝑦) = −

𝜕𝑉(𝑥,𝑦)

𝜕𝑦

4.2.1. Image-based navigation

In this method, a combination of aerial systems and ground systems is used to help the ground

vehicle navigate in real world terrain. This collaborative working technique can help a vehicle

gain better situational awareness otherwise limited by its on-board capabilities.

In this algorithm, the images are taken by the camera and the following steps are

executed to get the result:

34

Algorithm:

Step 1: Obtain image from camera

Step 2: Threshold and create an inverse binary map of the environments

Step 3: Calculate minimum distances from robot to goal point

Step 4: Create Potential field at all points detected in the binarized, threshold matrix

Step 6: Calculate Attractive and Repulsive forces caused by goal and obstacles respectively.

Step 7: Find the sum of all forces and calculate the next position of the robot based on previous position.

Step 8: Calculate the optimal path and calculate heading angle of the robot using the Pose estimate obtained using

the earlier method.

Fig 24. Input image taken from google maps to simulate outdoor images at high elevation. The red spots denote the

initial point where the robot is located and the final goal point. The image on the right is the final path identified

However, it is evident that certain drawbacks exist in this method. The robot is easily and more

likely to be stuck in local minima as the number of individual pixels having their own potential

fields is high.This can be tackled by introducing various dither signals that cause small

movements and can nudge the system out of the trap.

35

4.2.2 UAV based image classification using Convolutional Neural Networks

Machine Learning is an area which has exploded with interest and development in recent

years and its integration with robotic systems has given rise to a whole new generation of

intelligent systems capable of learning and making smart decisions based on data available.

Traditional learning methods require the use of large datasets manually labelled and defined. This

is extremely time-consuming and not viable in the long run for many applications. Deep learning

is a subset of machine learning algorithms developed to reduce the development and learning time

and to utilize unlabelled datasets which automatically allows a model to learn and obtain a good

representation of the input from this data. It can be used in robotics to solve several tasks such as

perception, navigation and control. Several studies have been performed on the application of

deep learning algorithms and tasks with respect to UAVs and robotic systems and tasks such as

security and surveillance.

One application is the implementation of Convoluted Neural Networks (CNN) in the use

of classification and tracking applications on-board robotic platforms and the integration of this

capability in a mesh network consisting of multiple sources and the ROS framework.

4.2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), are a specific type of neural networks designed

to accept images as inputs. They perform several 2D convolution operations on the input data at

36

multiple levels within the network convoluting th 2D images with a 2D Kernel, whose depth more

than the input layer. Multiple convolutions can be done to each layer with varying kernel

dimensions and the final outputs of the layers are pooled together using a pooling function, which

pools several local outputs obtained from a nonlinear activation function. This helps in

representation of learned invariants from local outputs and results in a subset of the input data.

Several convolutional layers and pooling layers are stacked together in a hierarchical structure to

form a pyramid-like structure where each layer allows for a unique feature learning, thus

providing more abstraction and generalization of learning and outputs. For example, the first layer

can be used to identify certain edges and other low-level representations, the next layer can be

used to identify higher level features like shapes and structures. Thus, as the layers progress, the

amount of feature learning, progressively grows higher. Once the features required for the task

(eg: faces, plants, fruits, etc.) has been learned, the output of the last layer is passed through an

activation function and classified according to the input [28].

Fig 25. 16 layers channel CNN architecture

37

Image classification training data samples are simply images (usually a small image or

patch containing a single object) labeled by class (typically integer class ID or a string class

name). Object detection, on the other hand, requires more information for training. ImageNet

training data samples are images of individual objects. The network is trained to identify objects

within a single image. For this dataset, a naïve image label format works fine as each image has

one object present within it. Other datasets are available such as DetectNet, where the network

must detect not only multiple objects within an image, but also the location of objects within the

images. This can be used to perform object identification and tracking in applications such as

pedestrian tracking [29].

Fig 26. Image net Architecture

Integrating CNN’s trained with ImageNet and DetectNet with the existing UAV system

framework available at the lab gives us the opportunity to create a mobile floating UAV cluster

with one central system with high processing capable UAV and several UAVs with constrained

38

processing capabilities.

Fig 27. Convolution Filters for each layer

For the implementation of the model, Tensorflow, an open-source machine learning

library released by Google, to run the inception based cnn model trained using the Imagenet

dataset is used. The training data consists of nearly 14 million images of 1000 classes of objects.

The Inception module [31] is based on a pattern recognition, in a manner similar to how the visual

cortex works. After getting several input data images, the network learns minute details, middle

sized features or almost whole images. Individual layers of the network reinforce some features

and passes on to the next. If trained to recognize faces, the first layer detects edges, the second

overall shape, the third eyes, mouth, nose, the fourth the face, the fifth the mood, etc.

39

Fig 28. googLeNet architecture

For the application, an Nvidia Jetson TX2 module along running Tensorflow 0.9 and ROS

Indigo on Ubuntu 14.04 was used. The ROS package consists of a python script which calls the

tensorflow module and uses the inception network model. Since ROS is designed with a

distributed architecture, multiple camera sources (UAV camera feeds) can be obtained on one

system. Video streams from multiple AR Drone Quadrotor and USB cameras were used for

testing. Several nodes are simultaneously run, which can process each video stream individually

and identify various objects from each system. The image classifier requires an image size of

299x299 RGB which can be resized either using the cv_camera, package or by setting the

input_width and input_height flag values. The program looks for training images to identify

objects and classify. It can identify 1000 classes of objects. The data is downloaded from the

ImageNet database (inception-2015-12-05.tgz dataset). Using a softmax function at the outermost

layer of the network, it identifies the object along with a calculated confidence score.

For this implementation, a custom-built Octocopter, a DJI s1000 was used. The system is

40

built with primarily for photography and cinematography. However, it has been modified and

setup for use in aerial mapping and collecting field data for farmers. This enables precision

farming and supplies a farmer with automated solutions for a variety of tasks. The system is

designed to be scalable autonomous and allow a large amount of data processing on-board

especially of images of farms and regions.

Fig 29. NVIDIA Jetson TX2

4.2.2.2 NVIDIA Jetson TX2

While dealing with image processing, on high resolution images, it becomes necessary to

use specific graphically optimized computers. The s1000 has an on-board NVIDIA Jetson TX2

GPU computing module for this purpose. The Jetson TX2, released in March 2017, belongs to a

family of GPU devices specifically designed for machine learning and vision processing. The

specifications of the device are below:

41

CPU ARM Cortex-A57 (quad-core) @ 2GHz +

NVIDIA Denver2 (dual-core) @ 2GHz

GPU 256-core Pascal @ 1300MHz

Storage 32GB eMMC 5.1

Camera 12 lanes MIPI CSI-2 | 2.5 Gb/sec per lane

| 1400 megapixels/sec ISP

Power 7.5W

 Table 3: NVIDIA Jetson TX2 specifications

Fig 30. Internal Architecture of Jetson TX2

From figure 30, the Jetson is designed to handle several cameras together and is optimized

to process multiple image streams together.

Fig 31.A.I. System Pipeline

42

The above figure(31) shows the Jetson TX2 platform machine learning pipeline. It is ideal

for the end-to-end design of autonomous machines. It is designed specifically to handle high

resolution images and can simultaneously process data from multiple sensors and media

compression and extraction according to several encoding protocols, networking, and low-level

command & control protocols after processing the data on the GPU. The image also shows the

various sensors and the ways it can be interfaced with the system via USB, MIPI, PCIe and

ethernet. It also supports serial and I2C communication as well.

4.2.2.3 Classification results

Using the Jetson as the main processing board running Tensorflow (ver 0.9), OpenCV a

ROS package called multi_uav_classifier, AR Drone autonomy and usb_cam package to obtain

the camera images. The classifier node, which uses the inception CNN model, then classifies the

objects detected in the images. Once classified, it calculates a confidence value which is the

probability score of the object being detected and outputs the score. The detection can be further

filtered by adjusting certain thresholding parameters. The usb_cam package was used for testing

however any size or source image can be used for classification. Multiple video sources from AR

Drone parrots were also used and tested. The results are shown below in figure 32. The main limit

on the number of sources is the amount of processing power available for the system.

43

Fig 32. object detection using classifier on Multiple image sources

An implementation of a network to detect multiple objects and track objects in the image

was also shown. Using the Detectnet model trained to identify pedestrians and a few other classes

such as bags and chairs, the model runs on the jetson and makes use of the CUDA cores present

on it. Pedestrians are identified and tracked along the image pixels as they move and that

information can be sent back to the robot for navigation.

Fig 33. Pedestrian Tracking on the UAV

44

Chapter 5

Conclusion and Future work

From the results in the previous chapters, the development and design of such a mesh

network of UAVs and platforms, along with systems capable of processing considerable amounts

of data is demonstrated. It allows us to develop a simple and cheaper and effective solution of a

floating UAV framework where small UAVs with simple cameras can stream the data to a central

node, where it can then be processed and the real-time identification of objects can be done. This

has the benefit of having few expensive processing systems, while working with several low-cost

systems. The processing can also be done on multiple ground-based vehicles as well.

 Another project which is currently being worked on is the implementation of the object

tracking model for multi-source tracking and integration with image sources from multiple

systems. The program returns the position of the object detected. This information can be used to

control multiple systems and follow their targets independently. The object tracking algorithm

has been successfully implemented and tested using an on-board camera and a high-resolution

ZED stereo camera.

45

Chapter 6

Integration of multi-modal, multi-resolution, MEMS skin sensors to include tactile,

thermal, pressure, acceleration, and distance IR sensing

6.1 Introduction

The development of artificial robotic skin is motivated by the necessity to provide robots

with a more effective feedback of their interaction with themselves and the world[32]. Interactions

of robotic systems is mainly grounded with the surface of the agent and the environment. As social

robotics become more ubiquitous, it becomes necessary to address certain design challenges

between these systems to create a more intuitive and natural sensing and feedback system which

takes advantage of this surface interaction. There are several available methods such as resistive

and capacitive touch methods, but these are not intuitive and natural. The objective of this research

is to answer design questions for multi-functional robotic skin sensors, and develop various

solutions for various design constraints such as sensor placement optimization, scalable data

acquisition and processing, have the robot and human “learn” how to use the skin sensors

efficiently, and quantitatively assess the impact of this assistive technology to humans. The

approach is to design and fabricate integrated micro-scale sensors in conjunction with iterative

simulation and experimental studies of the performance of physical human-robot interaction

enabled by this technology.

This section presents the development of a Real-time data acquisition system to collect data

from multiple sensors such as Infrared thermopile sensors namely the Omron D6T-44L,

46

Piezoelectric Flexiforce pressure sensors, accelerometers and to process the collected data in a

deterministic manner and to generate a thermal map to allow the robot to obtain thermal data to

identify obstacles namely humans and interact with the environment using the data.

Several attempts have been made to design robotic skin capable of replicating the various

natural senses of human skin. Researchers from the University of Illinois, Urbana-Champaign

designed a skin molded flexible fingertip sensor. The Hex-o-skin, one of the most sophisticated

skin modules consists of several sensors such as accelerometers, proximity sensors and

temperature sensors[32][33][34][35]. However, most of these sensors consist of only one sensor

output or limited in some ways.

Using these systems as inspiration, Roboskin is developed using multiple types of sensors

integrated within a soft silicone-based substrate that provides a more natural feeling and sensory

response.

Fig 34. Proposed Design

47

6.2 Skin Prototypes

Multiple silicone skin patches were created at UTARI from a silicone based rubber from

Silicones, Inc. The polymer is a 10:1 mixture of silicone to the curing agent. Several moulds coated

with a releasing agent, were used to create skin patches. Patches of several thicknesses were made

with various sensors embedded within. Once the silicone material is poured into the mould, the

mixture is set in a vacuum chamber to remove any bubbles within, and then cured in an oven.

Several piezoelectric skin sensors were embedded within the skin patches with 3D printed

buttons placed on top of the sensors.

Fig 35. Skin Patch prototypes with embedded flexy force sensors

6.3. Temperature sensor

To incorporate a sense of temperature within the skin modules, a non-contact thermopile

sensor was chosen. The Omron D6T – 44L [36] is a contactless based temperature sensor with a

broad range and field of view. It consists of an array of 16 temperature sensing pixels, which output

the raw data to an amplifier which is then processed and converted into digital data and transmitted

48

over I2C.

Fig 36. Omron D6T-44L Thermal Sensor

6.4. Sensor Integration

The first phase of testing and development was done using an open source microcontroller

board running an ATmega2560 chip. The purpose of this was to understand the method of handling

the data and the limitations and the speed of data acquisition that could be achieved. A speed of

about 10 Hz was achieved due to limitations of the chip and the Omron sensors.

The second phase involved developing and designing a method to reduce the number of

wires and power lines running through the system. This involved the development of the

MicroBoard (µC Board). The board made use of a 16 channel 12-bit ADC (AMC7812) [38] by

Texas Instruments and allowed us to gather data from up to 16 different Flexiforce sensors and 3

Omron sensors simultaneously. The Flexiforce also required several mini boards to be developed

which were essentially voltage divider circuits which allowed us to condition the signal and reduce

the errors. The µC board and the mini boards are covered in detail further below. Various versions

of the board were made and revised until issues such as noise and power issues were resolved.

49

Fig 37. Electrical schematic of Data Acquisition board

The major work done in this phase was to set up the data acquisition system for acquiring

the data and processing it. For this purpose, the National Instruments cRIO FPGA Real-time

system was used. The cRIO [38] provides a flexibility and scalability, which allowed integration

of several data protocols from various sensors over multiple communication methods and to

sample the data simultaneously. It consists of a real-time FPGA module which was programmed

using LabVIEW. The architecture allows the use of various modules which can be used for specific

applications and sensor integration. Several of the modules are shown below. The cRIO initially

was used with the Tangent blue to acquire data however due to constraints in the driver and the

architecture of the module and incompatibility with the Omron sensors, this module was

abandoned.

The following enlists most of the activities and major findings achieved during the various

phases of the project:

50

1. Elastic effect of Skin:

Fig 38. Flexi force sensor response without firm substrate below it

Fig 39. Single channel (sensor response) Left: Force response without a firm substrate

 Right: With hard base within the soft skin substrate

The uneven response observed is due to the viscoelastic property displayed by the

material. This effect can be due to multiple reasons: friction between neighboring

molecules, displacement of air from cells within the material causing deformation. The

flexible and soft nature of the material provides a slow compressive and elastic response

which distributes the force and leads to a reduced response. This was reduced by using a

firm backing behind each sensor, within the silicone substrate. The compressive response

0

100

200

300

400

1
4
5

8
9

1
3
3

1
7
7

2
2
1

2
6
5

3
0
9

3
5
3

3
9
7

4
4
1

4
8
5

5
2
9

5
7
3

6
1
7

C0

0

100

200

300

400

500

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

--- C0

51

is still visible due to the soft surface action; however, a much better force detection and

cleaner response is observed.

One of the outcomes of the project was SkinSim [37], a skin simulation

environment based on the Gazebo simulator. It provides functionality for building robot

models with robotic skin attached and near real-time realistic skin simulation. It allows

testing of future skin models, simulating the pressure response similar to the test results.

Fig 40. SkinSim simulation of pressure sensing

2. Omron Addressing: One major characteristic of the Omron is the fact that every single

sensor utilizes a single common address which cannot be changed or reassigned. Thus, at

any given time only one single Omron sensor can be addressed and if multiple sensors are

used, they must be separately selected and read.

This issue was tackled by adding 2 extra bytes of overhead to the address and adding a

separate I2C bus switching IC which is used to separately select between different Omron

sensors which have been connected to the IC.

52

1st

Byte

2nd

Byte

Omron

Selected

0 0 Omron 0

0 1 Omron 1

1 0 Omron 2

1 1 Unassigned

Table 4: Omron Addressing

The following image (41), shows how the software uses the same bus and by changing the

1st 2 Bytes, it selects the Omrons.

Fig 41. Selection process of the three Omron sensors

3. Clock Stretching: Another feature of the Omrons is that it utilizes a concept called clock

stretching [39] and it appears that the I2C interface is a microcontroller acting as a slave device,

it operates slower than a dedicated I2C peripheral. It has a maximum of 100KHz clock

frequency and clock stretching is implemented because of the slowness of the interface.

However, the total bandwidth of the shared bus might be significantly decreased. Hence while

working with I2C buses shared by multiple devices, it is important to estimate the impacts of

53

clock-stretching. One method of reducing this task is to have separate I2C channels for each

Omron sensor and to use modules that can handle the Clock stretching.

 The I2C slave pulls the SCL line low on the 9th clock of every I2C data transfer

(before the ACK stage). The clock is pulled low when the CPU is processing the I2C interrupt

to evaluate either the address or process a data received from Master or to prepare the next

data when Master is reading from the slave.

The time the clock is pulled low depends on the time the CPU takes to process the

interrupt and hence is dependent on the CPU speed and not the I2C clock speed. This process

is shown in figure 42.

 Fig 42. Clock Stretching in the Omron sensor

Frequency Frequency - Capable of 100 – 200 Hz individually,

Data Data rate - Limited to 100 kbps on I2C Bus by device

Field of view Field of view - 45 degree viewing angle

ADC ADC - Using a TI AMC7812

16 Channel ADC – 12 bits (1.22 mV step on 0-5

VDC)

Interface I2C or SPI

LDO 2 – 1 A, 5V

1 for IC, 1 for Sensors

8 Channel GP-I/O 8 Channel GP-I/O

54

Table 5: Micro Board Specifications

Fig 43. Kuka Youbot manipulator arm with sensor patches

4. Kuka Youbot: The Kuka Youbot [40] was chosen to be used as a responsive platform for the

data acquisition system and controller. The pressure sensors are mounted at various locations

along the arm and base as shown in image 43. The Kuka arm is outfitted with 16 different

sensors while the base is fitted with 10 pressure sensors. The sensors on the arm are mounted

in the form of sensor pads where several sensors are embedded in a patch of silicon with plastic

buttons to concentrate the force incident on the buttons. The cables are snaked through the Kuka

Youbot from within the arm to avoid exposing the cables. 30-gauge wires are used to connect

all the sensors due to its thin size.

I2C Switching Bus I2C Switching Bus - Only adds 2 bytes per update per

channel

 but allows up to 4 devices with same address

Single Ethernet

connection for I/O

Single Ethernet connection for I/O

Temperature Sensor Internal Temperature Sensor

55

Fig 44. Top View of Kuka Youbot with sensors and cRIO installed

6.4 Outcomes

Some of the important milestones and achievements are :

• Temperature mapping using Omron

o Three Omrons to achieve a 120 deg map.

o Detect presence of obstacles in front of device and to be able to track movement over

the entire map.

• Recognize heat signature: This task was quite difficult because of the constraints in resolution

and clarity.

o The lower pixel count does not allow the proper identification of humans and objects,

but it is possible to track movements and follow objects.

Fig 45. 4x16 pixel Thermal map to track object detected by all three Omrons

56

• Created Silicone-based pads with embedded pressure sensors to mimic the sense of touch with

real skin.

Fig 46. Skin cell pads with embedded pressure sensors

• Designed and developed single slave board to connect all sensor and then relay data to the data

acquisition and processing system µC Board with LDO and ADC to gather and send data over

a single cable.

• Small size of 3.3” x 2” allows for easy installation and small footprint. Further iterations

increased capacity and improved performance and increased sensor numbers.

• Breakout board to connect to power and cRIO (power stepped down from 24V to 12V and

from 12V to 5V for sensors)

57

Fig 47. MicroBoard for data collection

Fig 48. CAD drawing of final housing(left) and final 3D printed housing with sensors and boards

fitted.(right)

 Fig 49. Kuka YouBot fitted with 3D printed box and mount for Omron sensors.

58

6.5 Data collection and processing

The process by which the data was collected and the different prototypes involved are

detailed in this section.

The initial process involved acquiring data from 2-3 different sensors and using an Arduino

Mega 2560 board to preprocess the raw data and then transmit the processed data for final

processing and application.

The initial schematic of the prototype board is shown in figure (47).

The below figure 50, shows the method of addressing and reading data from the ADC and

connection with the cRIO.

Fig 50. I2C addressing and Read and Write

59

Fig 51. Reading and writing From the ADC to cRIO

60

Chapter 7

Conclusion

Design and development of a custom data acquisition board to collect the data from up to

19 different sensors in one centralized location and convert the analog data into digital data and

transmit all the data via SPI and I2C protocols to the NI cRIO real time controller. Various methods

to overcome certain default restrictions such as clock stretching in the Omron sensors, which limit

the sampling rate and thus increase the sampling rate from 10Hz to 30Hz were found and

implemented.

Mini signal conditioning boards were developed for the pressure sensors, thus allowing

0.023mV increments from 0-5V. These boards were basic voltage divider circuits which could be

augmented with a wheatstone bridge circuit to linearize the outputs to a much better signal. Various

other conditioning methods were considered. However, only the voltage divider method was

implemented.

Fig 52. Signal Conditioning board with voltage divider circuit

Scalability of this system though restricted can be easily achieved by having systems which

61

can be addressed separately and thus made faster that the existing version (case in point: The

Omron sensors).

Although the integration of the system to the robot controller was not implemented,

majority of the data acquisition system was completed.

The current Micro Board prototype, due to limitations in the communication protocols, can

be tackled by using multiple separate microcontrollers specifically allocated to collect and process

the data from multiple sensors, thus allowing all the sensors to run and not be dependent or limited

due to constraints imposed by the others. Factors such as clock stretching and too much data can

be reduced or avoided and speed and precision can be increased. Separate I2C and SPI channels

can be run in parallel and allowing better data transmission.

 The RoboSkin patches can be modified by using custom pressure sensors and be designed

to cover a larger area and make it more responsive and reduce the amount of unsensitized area on

the patches.

Fig 53. Subsequent testing skin patches and data acquisition board

62

References:

1. Chai Keong Toh Ad Hoc Mobile Wireless Networks, Prentice Hall Publishers, 2002. ISBN

978-0-13 007817-9

2. Wikipedia contributors, "Wireless mesh network," Wikipedia,,The Free Encyclopedia,

https://en.wikipedia.org/w/index.php?title=Wireless_mesh_network&oldid=792086437

(accessed August 3, 2017).

3. Amir, Yair, Claudiu Danilov, Raluca Musuăloiu-Elefteri, and Nilo Rivera. "The SMesh

wireless mesh network." ACM Transactions on Computer Systems (TOCS) 28, no. 3 (2010):

6.

4. Firetide, I. N. C. "An introduction to wireless mesh networking." 2005-03-31)[2007-10-07].

http://www. firetide. com.

5. Sun, Jing, and Xiaofen Zhang. "Study of ZigBee wireless mesh networks." In Hybrid

Intelligent Systems, 2009. HIS'09. Ninth International Conference on, vol. 2, pp. 264-267.

IEEE, 2009.

6. Wireless Mesh Protocols

http://www.mouser.com/applications/wireless_mesh_networking_protocols

7. OpenWRT website: https://openwrt.org/

8. Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. "Imagenet: A large-

scale hierarchical image database." In Computer Vision and Pattern Recognition, 2009. CVPR

63

2009. IEEE Conference on, pp. 248-255. IEEE, 2009.

9. Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. "Imagenet: A large-

scale hierarchical image database." In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pp. 248-255. IEEE, 2009.

10. "Social robot," (3, 2017)

 https://en.wikipedia.org/w/index.php?title=Social_robot&oldid=791927723

11. Hanson, David. "Expanding the aesthetic possibilities for humanoid robots." In IEEE-RAS

international conference on humanoid robots, pp. 24-31. 2005.

12. "Frubber," (August2017) https://en.wikipedia.org/w/index.php?title=Frubber&oldid=722074

884

13. DrRobot: http://www.drrobot.com/

14. Robot_pose_Ekf: http://wiki.ros.org/robot_pose_ekf

15. J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time. Robotics: Science

and Systems Conference (RSS). Berkeley, CA, July 2014.

16. Kejriwal, Nishant, Swagat Kumar, and Tomohiro Shibata. "High performance loop closure

detection using bag of word pairs." Robotics and Autonomous Systems 77 (2016): 55-65.

17. Labbé, Mathieu, and François Michaud. "Memory management for real-time appearance-based

loop closure detection." In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ

International Conference on, pp. 1271-1276. IEEE, 2011.

18. Kostas J. Kyriakopoulos, Nikos Skounakis “Moving Obstacle Detection for a Skid-Steered

64

Vehicle Endowed with a Single 2-D Laser Scanner”. ICRA 2003: 7-12

19. Stachniss, Cyrill, Udo Frese, and Giorgio Grisetti. "OpenSLAM." URL: http://www. openslam.

org (2007).

20. Meier, Lorenz, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. "Pixhawk: A

system for autonomous flight using onboard computer vision." In Robotics and automation

(ICRA), 2011 IEEE international conference on, pp. 2992-2997. IEEE, 2011.

21. Px4flow, website : https://pixhawk.org/modules/px4flow

22. Meier, Lorenz, Dominik Honegger, and Marc Pollefeys. "PX4: A node-based multithreaded

open source robotics framework for deeply embedded platforms." In Robotics and Automation

(ICRA), 2015 IEEE International Conference on, pp. 6235-6240. IEEE, 2015.

23. Meier, Lorenz, J. Camacho, B. Godbolt, J. Goppert, L. Heng, and M. Lizarraga. "Mavlink:

Micro air vehicle communication protocol." Online]. Tillgänglig: http://qgroundcontrol.

org/mavlink/start.[Hämtad 2014-05-22](2013).

24. Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng. "ROS: an open-source Robot Operating System." In ICRA

workshop on open source software, vol. 3, no. 3.2, p. 5. 2009.

25. Garage, Willow. "Robot operating system (ROS)." (2012).

26. Naseer, Tayyab, Jürgen Sturm, and Daniel Cremers. "Followme: Person following and gesture

recognition with a quadrocopter." In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ

International Conference on, pp. 624-630. IEEE, 2013.

65

27. Lewis, Frank L., Hongwei Zhang, Kristian Hengster-Movric, and Abhijit Das. Cooperative

control of multi-agent systems: optimal and adaptive design approaches. Springer Science &

Business Media, 2013.

28. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep

convolutional neural networks." In Advances in neural information processing systems, pp.

1097-1105. 2012.

29. Berg, Alex, Jia Deng, and L. Fei-Fei. "Large scale visual recognition challenge 2010." (2010):

42-55.

30. Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny

images." (2009).

31. Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with

convolutions." In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1-9. 2015.

32. Wade, Joshua, Tapomayukh Bhattacharjee, Ryan D. Williams, and Charles C. Kemp. "A

force and thermal sensing skin for robots in human environments." Robotics and Autonomous

Systems (2017).

33. Mittendorfer, Philipp, and Gordon Cheng. "Uniform cellular design of artificial robotic skin."

In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pp. 1-5. VDE,

2012.

66

34. Mittendorfer, Philipp, and Gordon Cheng. "Humanoid multimodal tactile-sensing

modules." IEEE Transactions on robotics 27, no. 3 (2011): 401-410.

35. Engel, Jonathan, Jack Chen, Zhifang Fan, and Chang Liu. "Polymer micromachined

multimodal tactile sensors." Sensors and Actuators A: physical 117, no. 1 (2005): 50-61.

36. VESELY, Michal, Aleksander CIESZCZYK, Yang ZHAO, and Wim ZEILER. "Low cost

infrared array as a thermal comfort sensor." In Proceedings of International Conference

CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, no.

EPFL-CONF-213353, pp. 393-398. LESO-PB, EPFL, 2015.

37. A. Habib, I. Ranatunga, K. Shook, and D. O. Popa (2014). SkinSim: A Simulation

Environment for Multimodal Robot Skin. IEEE Conference on Automation Science and

Engineering (CASE). Taipei, Taiwan.

38. Texas Instruments product website: http://www.ti.com/product/AMC7812

39. N. Instruments, "NI LabVIEW for CompactRIO Developer's Guide," 2013.

39. Leens, Frédéric. "An introduction to I 2 C and SPI protocols." IEEE Instrumentation &

Measurement Magazine 12, no. 1 (2009): 8-13.

40. Bischoff, Rainer, Ulrich Huggenberger, and Erwin Prassler. "Kuka youbot-a mobile

manipulator for research and education." In Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pp. 1-4. IEEE, 2011.

67

Biographical Information

Raghavendra Sriram is from Mumbai, India. He received his Bachelor in Engineering in

Electrical and Electronics Engineering from Canara Engineering University, Mangalore. India in

2012. He earned his Master degree in Electrical Engineering from the University of Texas at

Arlington and worked as a Graduate Research Assistant at the University of Texas at Arlington

Research Institute. His current research interests include Autonomous Vehicle Systems, Control

Systems, Distributed Control Systems, Automation, Embedded firmware, Robotics, Consumer

Electronics and Real-time systems.

