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Abstract 

 

Autonomous robots are intelligent systems capable of performing tasks in the world by 

themselves, without explicit human control. Examples range from autonomous helicopters to 

Roomba, the robot vacuum cleaner to robotic manipulators. The numerous sensors on-board gather 

data related to the desired actions and this poses several challenges and design constraints in terms 

of computation and hardware design that can prove to be extremely difficult and expensive to avoid. 

The objective of this research is to study, develop and implement various Intelligent solutions to 

help solve several real-world problems with respect to multi agent configurations of unmanned 

systems. We shall see examples of integration of machine learning especially Deep learning 

capabilities in swarms.  

We shall also discuss the development of robotic skin modules and the several constraints 

and design schemes adopted and tested to support the development of more social robots and help 

study and determine certain requirements and develop smart systems to help give robots a more 

natural sensory based interface with its surroundings. 
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Chapter 1 

 

Introduction 

 

Unmanned vehicle systems namely, unmanned aerial vehicles (UAVs) and unmanned 

ground vehicles (UGVs), have become a sought-after research area for industry as well and 

academics.  

This thesis discusses two main topics -  Autonomous systems and Assistive Robotics. In 

the first part, the potential of UAV-UGV collaboration and several design solutions and systems 

to work with each other in a distributed manner and with sensor based solutions for several well-

known problems along with several human machine interface control mechanisms designed to 

provide a more intuitive and natural control interface is shown. A more distributed framework is 

also discussed.  

Wireless mesh networks have been around for quite some time starting with the 

development of radio mesh networks to connect various clients as well as servers [1]. A mesh is 

an interconnected network of devices and systems that share information with each other. Mesh 

networks tend to have a fixed topology for fast and reliable communication. They can be dynamic 

in topology, but that comes at a cost of computation time of delivery route optimization. There 

are several implementations of wireless mesh networks already established and in use [2].  SMesh, 

an 802.11 multi-hop wireless mesh made it possible to allow real time applications such as 

VoIP[3]. Firetide[4] and Wave relay and systems that allow communication over multiple radio 



 

2 
 

bands using software defined radio. ZigBee, a low-cost radio module allows the creation of a 

network which allows small sensors and microcontroller systems to be easily integrated with each 

other. These are used in several smart home automation projects. Recently several consumer 

products have been increasingly introduced, that allows users to create a wireless WiFi based 

mesh networks at home. 

Several protocols have been defined to allow better design and standardization of wireless 

mesh networks. Some of them are: 

1. ZigBee: The protocol used by ZigBee wireless systems and several low-cost radios is based on 

the IEEE 802.15.4 standard. This protocol is best used in situations where the amount of 

data is very small and is transmitted over short distances and consumes very low power. 

This allows more abstraction of capabilities such as a self-healing network and is designed 

to utilize extremely low power when not being used for communication. The data is 

generally encrypted and has a size of 64k. Its maximum speed is 250 kBs [6]. 

 

 
Fig 1. Zigbee Protocol architecture[6] 
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2. SNAP: SNAP is a high-performance stack that runs efficiently on 8-bit microprocessors. Along 

with wireless mesh capabilities it is extremely small in memory usage (~ 40 KB). Since 

SNAP includes a python virtual machine, its performance parameters can be changed and 

it does not require recompilation every time. 

                                       
Fig 2. SNAP Protocol architecture [6] 

 

3. WirelessHART: This is based on the HART protocol developed for use in industrial applications 

and automation. This protocol allows real time communication and uses a Time 

Synchronized Mesh Protocol (TSMP). Some key features are Industry standard 128-bit 

AES Encryption, Multi-tiered security, and data integrity and device authentication [6]. 

 
Fig 3. WirelessHART Protocol architecture. 
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4.  OpenWrt: OpenWRT is an open source writable file system management tool which allows 

easy configuration of Wi-Fi based devices. This allows application based selection and 

customization capabilities to suit user’s needs. For developers, OpenWrt is a framework 

that allows reconfiguration of systems without the need to create separate firmware for 

devices. For users, this means the ability for full customization, to use the device in ways 

never envisioned. It supports several Wi-Fi protocols and acts as a separate configuration 

layer over these protocols [7]. 

 
Fig 4. OpenWRT Protocol architecture 

 

In this report, implementation of a multi-robot wireless mesh network where data can be 

shared amongst multiple systems and certain tasks can be performed even with constrains is 

studied. 

An application of using the mesh network/system capable of behaving like a flying cluster 

of drones which can classify images using a convolutional neural network (CNN) trained using 
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the ImageNet dataset [8] and the inception CNN model [9] is shown. This is part of a robotic 

challenge that is developing an aerial robotic solution for complete autonomous farm mapping 

solutions. 

A social robot is an autonomous robot that interacts and communicates with humans or 

other autonomous physical agents by behaviors attached to its design [10]. It also deals with study 

of methods to help reduce the gap between robots and human interaction and make the interaction 

more natural and intelligent. Robots that can interact and communicate among themselves, with 

humans, and with their immediate environment, within the social and cultural structure, need to 

appeal to the human in a manner like the user’s expectations in various social interactions. This 

requires the need to make the robots not only appear more human-like but also feel more human 

and one such way is to provide the robot with a more human-like interface to interact with the 

environment physically. Several social robots have been used for research purposes such as the 

Phillip K Dick android [11] developed by Hanson Robotics. The first version was built in 2005 

by Hanson Robotics with David Hanson, Andrew Olney with the Fedex Institute of Technology 

team, the University of Texas at Arlington Research Institute, UT Dallas and others. The robot 

interacted with various people orally and visually. However, it lacked a smart physical and 

human-like interaction system. This is one example of the gap between the robot and human. The 

skin developed for the android was a silicone based material which lacked any sensory capability 

[12].  
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Fig 5. Phillip K Dick Android developed by Hanson Robotics 

 

In the second part of the thesis, the design of a data acquisition system for the design and 

implementation of artificial skin modules for use on social robotic systems to provide them with 

an additional natural interface between the robot and the immediate environment along with 

several sensory features such as pressure sensing, non-contact thermal sensing is discussed. It 

also addresses several design challenges such as scalability and communication. 
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Chapter 2 

Ground-based Robotic Platforms 

2.1 Platform design 

 

Several robotic platforms were designed and modified according to their specific tasks. 

Some of them are detailed below with specifications.  

 

1. DrRobot Jaguar 4x4 - The Jaguar 4x4 designed by DrRobot [13], is a 4-wheel Robotic Platform 

and is developed mainly for indoor and outdoor operation requiring higher ground clearance 

and fast maneuverability. It is driven by four powerful 80Watt motors. The Jaguar-4x4-wheel 

platform is rugged, weighing in at less than 40lbs, having a top speed of about 7 mph, compact, 

weather and water resistant. It is designed for rough environments and can run over vertical 

step up to 155mm and climbing up low-rise stairs (up to 110mm step). The Jaguar-4x4-wheel 

is WiFi enabled with two wireless routers. It was converted from a 2-channel drive system to 

a 4-channel drive system allowing for individual wheel control, allowing much faster responses 

in constrained situations. An on-board computer system running Ubuntu 14.04 and ROS indigo 

was also installed on the robot. This allows it to perform all the computing on-board the system 

instead of off-board and allowed integration of several sensors and planning algorithms on-

board. A modular payload tray allows it to be used as a mobile landing or takeoff pad for UAVs 

using a ArTag, which is a 2D image similar to a QR code which can be designed for 

identification, etched on it. The UAV can land, take off or follow the system using this ArTag. 



 

8 
 

There is also a payload tray with a wireless charging pad, that allows a swarm to fly down to 

the charging pads, charge wirelessly and take off again. The design of each specific charging 

unit solves the main issue of the UAV landing uncertainty, i.e. error in final landing position. 

A motorized X-Y stage below each pad, detects the location of the landed UAV from a resistive 

touch film on it, and moved the secondary charging coil to the exact location below the UAV. 

Thus, giving more flexibility to the location and increasing the charging efficiency. 

 

 
Fig 6. Jaguar 4x4 with various payloads (AR tags, Wireless charging) 

 

2. Husky A200: The Clearpath Robotics Husky A200, as shown in Fig. 7 carries an Xsense MT700 

IMU with integrated GPS and a piksy RTK GPS. It is equipped with a digital compass for 

heading information, as well as an optical encoder on each side of the differential drive for 

odometry measurements and velocity control. The modified system also includes a Kinect 

Camera and a Hokuyo LIDAR mounted on a set of specially fitted dynamixel motors which 

allows it to pan and tilt adding another dimension to the 2D LIDAR. The UGV can be 
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controlled by requesting linear and angular velocities, and is an ideal option for the kinematic 

control scheme developed and used via the ROS navigation stack along with the various 

localization methods.  

 
Fig 7. Husky A200 

 

It also consists of a long-range transmitter which allows for serial communication over an 

extended area of over 2 miles from the base station. An Intel NUC computer was added onto the 

system and connected to allow integration of various sensors and processing of data. This allows 

it to run various tasks such as mapping and navigation on-board. The on-board Wi-Fi router 

supports OpenWRT and hence can also be integrated into the Wi-Fi mesh set up in the lab. This 

allows the system to share data and maps with multiple robots and utilize the right maps when 

needed.  
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2.2 Software Architecture 

Several open source packages were integrated and implemented on the system, allowing 

for various tasks: 

1. Combined odometry using robot_pose_ekf:  The Robot Pose EKF [14] package is used to 

estimate the 3D pose of a system, based on partial pose information coming from various 

sources. It uses an extended Kalman filter with a 6D model (3D position and 3D 

orientation) to combine measurements from wheel odometry, IMU sensor and visual 

odometry. Sensor fusion is a concept involving the combination of data from multiple 

sensors intelligently and use the result to improve the performance and estimates of certain 

states of a system. It allows us to identify several sources and reduce any errors that may 

be inherent in certain kinds of data. For estimating states, several methods of filtering and 

estimation are available. The most common technique is to use an Extended Kalman Filter. 

The basic idea is to offer loosely coupled integration with different sensors, where sensor 

signals are received as ROS messages. The package, allows improved odometry 

information using the GPS, RTK GPS, visual odometry from the RTAB mapping package 

using the Kinect along with the Xsense IMU used on the system. The stack is a multi-

sensor fusion framework, that refers to one sensor as a fixed sensor and the others as update 

sensors. The input format is the 2D pose from the odometry (x, y and yaw angle), the 3D 

orientation from the IMU (roll, pitch, yaw) and the visual odometry from the camera which 

is the full 3D pose (x,y,z and roll, pitch, yaw). The odom message is converted into the a 
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vector3 of quaternions. The IMU is converted into an orientation vector with the 

base_footprint as reference and finally visual odom is converted into a pose vector. All the 

three are concatenated into the buffer and then passed into the Extended Kalman Filter 

node. More than one of each can be used and the data can be filtered or averaged before 

being passed to the node as well. 

 

Basic Algorithm: 

 

1. Collect data from sensors and verify 

2. If valid, convert them with respect to the base frame of reference 

3. Depending on the data rate, each sensor information is stored until information from all the sensors are 

available. Each of the data received has its own time stamp 

4. Once all the data is consolidated, the EKF (as defined in the Orocos-BFL library) is updated for each sensor 

when all the sensor data is available (i.e, if the data from the odometry and the data from the IMU is 

received at time t_1(>t_0) and the data from the visual odometry is received at time t_2(>t_1), then the 

filter is run for all the three sets of data at time t_1). 

5. This fused sensor data is converted into an odometry msg and published on the topic /odom_combined 

 

The Extended Kalman Filter was developed mainly for nonlinear discrete time state 

estimation as a normal Kalman filter. The Kalman filter is a method based on recursive 

Bayesian filters where the noise is known and is assumed to be gaussian. The Extended Kalman 

filter is an extension of the Kalman filter where the system is first linearized around the initial 

states and then filtered. Owing to the inherent errors in linearization, the EKF, unlike the 

Kalman filter is not optimal. However, for most nonlinear cases it works much better than the 

regular filter. The EKF can be represented in standard state space form as shown below, 
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𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘, 𝑘) + 𝑤𝑘+1 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘 , 𝑘) 

 

Where,  

 𝑘 denotes a discrete point in time (with k-1 being the immediate past time point). 

𝑢𝑘 is a vector of inputs. 

𝑥𝑘 is a vector of the actual states, which may be observable but not measured. 

𝑦𝑘 is a vector of the actual process outputs. 

𝑦̃𝑘 is a vector of the measured process outputs. 

𝑤𝑘+1 and  𝑣𝑘 are process and output noise respectively. They are assumed to be zero mean 

Gaussian with covariance 𝑄𝑘and 𝑅𝑘 respectively. 

𝑓( . )and ℎ(. ) are generic non-linear functions relating the past state, current input, and current time 

to the next state and current output respectively. 

 

Given the inputs, and assuming the appropriate noise for the sensors, the estimated states, 

𝑥̂𝑘 and 𝑦̂𝑘 are the estimated outputs. In a regular Kalman filter, the first step is the projection 

of the most recent state estimate and estimate of the error covariance forwards in time to predict 

the estimates of the current time. The next step is updating the predicted estimate with the most 

recent measurement to generate the state estimate. Due to the nonlinear nature of the states, the 

covariance prediction and the update equations first need to be linearized and thus their 

jacobians are used, which are, 

𝐹𝑘 =  
𝜕𝑓

𝜕𝑥
|

(𝑥̂𝑘,𝑢𝑘,𝑘)
  ,  𝐻𝑘 =  

𝜕𝑓

𝜕𝑦
|

(𝑦̂𝑘,𝑢𝑘,𝑘)
 

The Prediction step can be written as 

𝑥̂𝑘
− =  𝑓(𝑥̂𝑘−1, 𝑢𝑘, 𝑘) 
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𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 +  𝑄𝑘 

       and the measurement correction step is,  

𝐾𝑘
− =  𝑃𝑘

−𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘

−𝐻𝑘
𝑇 + 𝑅𝑘)−1 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑦̃𝑘 − ℎ(𝑥𝑘

−, 𝑢𝑘, 𝑘)) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− 

Where 𝑃𝑘 is an estimate of the covariance of the measurement error and 𝐾𝑘 is the Kalman gain. 

With this information, the necessary states are obtained. Multiple sensors of the same type can 

also be used. The result of sensor fusion with an EKF running on one sensor and multiple 

sensors are shown in figure 8.  

 

Fig 8. EKF with single input 
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Fig 9. EKF with 1 IMU and with multiple IMU sources 

From the above results, figure 9, the estimation gets better with three sensors rather than 

one and the mean squared error reduces from 2.49 to 1.34. 

 

2. loam back and forth -  This package, developed by Ji Zhang [15], is a real time odometry 

detection method that allows the use of a 2 axis LIDAR to localize itself and map its 

surroundings while moving in 6DOF. In the two algorithms developed, one algorithm allows 

localization using a point cloud and performs odometry at high frequency and low fidelity and 

another algorithm generates maps using scan matching and pose registration in the point 

cloud. 

  The package is made up of four nodes. The scanRegistration node saves all the laser data 

in a stack and publishes the data as a point cloud at the end of each sweep. The laserOdometry 

node estimates motion of the lidar between two sweeps, at a higher frame rate. By keeping 
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track of the odometry data, the laserMapping node creates and saves a map. It also consists 

of a transformation node that determines the pose of the laser and the states of the system. 

 Two dynamixel motors, mounted on each other in a pan-and-tilt configuration are used. This 

allows a variety of ways to hold the LIDAR and use it. The benefit of this is the ability to 

choose the configuration of the LIDAR according to the situation. 

 
 

Fig 10. Loam running on nsh_dataset 

 

3. RTAB mapping - Real-Time Appearance-Based Mapping is a RGB-D Graph-Based SLAM 

approach based on an iterative appearance-based loop closure detection algorithm. It utilizes 

a bag-of-words technique to identify features [17] present in various images and identify 

the probability of the features matching and determining loop closure. When a loop closure 

solution is accepted, the graph is optimized and the errors minimized. RTAB mapping is 

implemented using an Xbox Kinect camera mounted on the vehicle. These 3D maps are 

saved onto a single shared server and on the client system, and can be accessed by various 

robots [16]. 
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Fig 11. Dimensional Pointcloud maps using real time appearance based mapping  

(Left: UTARI Atrium, Right: Navigation within the 3D map and odometry in blue) 

 

4. Gmapping – Gmapping is a package developed with the ROS navigation stack which allows the 

creation of grid-based maps. It is built on the OpenSLAM [19] software. It utilizes the 

odometry information to localize and traverse the maps generated. In conjunction with the 

ROS navigation stack, it can detect obstacles and simulate a potential field bubble around 

the obstacle allowing for obstacle avoidance during navigation. It reduces the amount of 

data to process by using a local costmap for immediate navigation goals such as obstacle 

avoidance and motion planning, while a global costmap, saves all the mapped data and 

generates the global map for localization. The global planner uses the global costmap to 

generate a long-term plan while the local planner uses the local costmap to generate a short-

term plan. The package also can be used with preexisting maps to traverse. 
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Fig 12. Navigation using gmapping (blue: Potential bubble around obstacles) 
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Chapter 3 

Aerial-based Autonomous Platforms 

3.1 Hardware design  

Multi-rotor aerial vehicles have recently gained a lot of interest amongst enthusiasts and 

researchers. The simplicity in the design and the inherent benefits over single rotor and coaxial 

rotor systems allows for much easier control and stable flight responses. The reduction of 

mechanical linkages between the motors and the rotors allows them to be more robust, and 

maintenance free to a large degree. The design allows for fine flight control as well. These 

vehicles are being used regularly for photography and for research purposes to explore various 

intelligent algorithms such as localization, navigation and computer vision etc. 

Unlike a helicopter with a single giant rotor that is unsafe to use by a civilian user, a 

multirotor can be made to be much safer, easier to use and can be designed to accommodate strong 

/ uneven wind and loading conditions. It is also a purely electrical system allowing for extremely 

efficient flight and quick response.  

Several multirotor platforms were designed and used for various tasks. Based on the 

design of the ‘Pelican’ by ascending technologies the Octorotor was designed to be a research 

platform capable of a variety of tasks and capabilities. The coaxial design of the propellers allows 

for lesser arms and reduced frame weight but also causes a reduction in motor efficiency. This 

can be improved by selecting the right propeller motor combination.  
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In our platform design, a multi system approach and a bottom-up architecture to handle 

various aspects of control and data acquisition and processing is implemented. The processing 

into critical flight controls and auxiliary control systems is divided.  Different tasks such as flight 

stabilization and data acquisition and servo control of all the motors requires an embedded 

autopilot to be used with inertial measurement units and GPS and other sensors. For this purpose, 

a Pixhawk Autopilot was used, which is explained later. For the higher order navigation and 

decision control systems, LIDAR, camera and computer vision tasks, a separate Odroid U3 on-

board computer was used.  

 The Pixhawk is an independent open source and open hardware project [20].  Low cost and 

availability enable its use in small autonomous flight systems and ground vehicles. The project 

started in 2009, and is being further developed and used at Computer Vision and Geometry Lab 

of ETH Zurich (Swiss Federal Institute of Technology) and supported by the Autonomous 

Systems Lab and the Automatic Control Laboratory.  

 The autopilot design includes an 32bit STM32F427 Cortex M4 core with FPU 

microprocessor with a 256 KB RAM and 2MB flash. It includes a ST Micro L3GD20H 16-bit 

gyroscope, a ST Micro LSM303D 14-bit accelerometer / magnetometer, Invensense MPU 6000 

3-axis accelerometer/gyroscope and MEAS MS5611 barometer. The Pixhawk has several 

failsafe’s built in.  

One benefit of using the Pixhawk is that it makes the system modular and easily 

upgradable in terms of hardware and software. 
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 The Pixhawk has various capabilities giving it an advantage over other systems available. 

Several companies, further developed several task specific sensor modules for the Pixhawk. For 

example, 3DRobotics developed (PX4FLOW), a camera coupled with an ultrasonic distance 

sensor to achieve accurate position estimation in GPS denied situations using optical flow [21]. 

PX4FLOW developed by 3D Robotics, offers a low-cost, low-power sensor with a 21-degree 

Field of View (FOV) and 752x480 resolution. The range sensor is used for distance calculation 

for scaling optical flow measurements to metric velocity. It also uses the gyroscope to reduce the 

error and improve estimation. An on-board STM32F4 processes the sensor data and makes it 

available via I2C. The result yields high dead-reckoning accuracy unavailable to similar 

autopilots. 

 
Fig 13. Pixhawk Autopilot 

 

The companion computer used with the Pixhawk is the Odroid u3 which is a single board 

ARM computer that runs a lightweight linux distribution called Linaro 14.04 and ROS Indigo. It 

connects to the Pixhawk via serial. Several sensors like the Hokuyo lidar, USB cameras, Xtion 

stereo camera and GPS system can be driven with this computer and the data processed on-board. 
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This allows the development of navigation algorithms and controllers to avoid obstacles and 

indoor mapping and navigation. 

 

 
 

Fig 14. Odroid U3 with UPS 

 

 

 Several micro aerial platforms mainly the, Crazyflie 2.0 by Bitcraze have been used in 

several projects. The Crazyflie 2.0 is one of the smallest quadrotors available on the market. Its 

small size, robust design and safety features make it ideal for applications that require it to fly in 

close proximity to people and in constrained environments. It measures 92mm from propeller to 

propeller and weighs about 27 grams. It has a flight time of around 5 minutes. The small size of 

the Crazyflie presents many challenges in using it as a research platform. The controllers designed 

for it require extremely low latency to handle its small inertia. Its payload capacity is also limited 

(approx. 7 grams), making it challenging to add additional sensors. However, all the code for the 

system is completely open source and that gives us complete control over the firmware on the 

quadrotor, the firmware running on the radio as well as the client library running on the base-

station. 
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Fig 15.   (A)Crazyflie 2.0                             (B) Wireless charging coil 

 

 The Crazyflie 2.0 is equipped with two microcontrollers - an ARM Cortex-M4 embedded 

processor (STM32F405), is used to run the main system. The processor is a 32 bits architecture 

and can run at 168MHz. The ARM Cortex-M4 also has a floating-point unit that supports all 

ARM single-precision data-processing instructions and data types. The Crazyflie 2.0 also has a 

second microcontroller to handle power management and the radio. The microprocessor is an 

ARM CortexM0 (nRF51822) that runs at 32MHz. The Crazyflie Nano Quadcopter is equipped 

with an IMU, the MPU-9250. The IMU contains a 3-axis gyroscope and a 3-axis accelerometer.  

 The battery used by the Crazyflie 2.0 is a single cell Lithium-Polymer (LiPo) battery as it 

provides the best power-to-weight ratio. The supply voltage is 3.7V and has a capacity of 310 

mAh. The battery also comes with a Protection Circuit Module (PCM) attached to it that prevents 

the user from under or overcharging the battery or from shorting it. The battery is easily 

removable from the quadrotor so connectors were built for it so that they could be easily replaced. 
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3.2 Software Architecture  

The PX4 flight stack is an open source software package which includes several modules 

for various tasks such as guidance, navigation and control algorithms for autonomous systems. It 

includes controllers for fixed wing, multirotor and VTOL airframes as well as estimators for 

attitude and position. It also includes various estimators for local positioning systems (VICON) 

as well as global positioning systems (GPS). This allows indoor and  outdoor use and appropriate 

sensor information can be selected. The diagram below, figure 16, shows some of the basic 

implementation of the various modules. These modules can be combined and others added 

depending on the application [22].  

 
 

Fig. 16. Sensor and control modules 

 

The system interacts with the ground control station (GCS) is through MAVLink packets 

and converts them into the on-board uORB data structures [23]. This allows some amount of 

abstraction within the system and reduces the dependencies. The MAVLink application also 
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consumes a lot of sensor data and state estimates and sends them to the ground control station. 

 

Fig 17. Mavlink protocol module 

For communication with the base station the Odroid U3 computer on-board the UAV running 

ROS Indigo. ROS is a robotics framework providing many APIs and services such as hardware 

abstraction, low level device control and a graph architecture for message passing between 

multiple systems or nodes [24]. The ROS ecosystem can be defined into 3 groups [25], 

1. Language and platform independence which allows for a distributed architecture. 

2. Client and Server Library implementations 

3. Open Source packages for various applications for specific client libraries. 

ROS contains many open source packages developed for robotics purposes and are used to build 

and integrate various systems within our applications. 

Some of the packages utilized for the robotic platforms and development are MAVROS 

developed by Vladmir Ermakov and distributed under the GPLv3, LGPLv3, BSD licenses. 

MAVROS is a MAVLink based communication node to allow for easier integration between 

ROS and MAVLink based autopilots such as the Pixhawk. 

 



 

25 
 

 

3.3 Sensor Integration  

1. Px4flow - The PX4FLOW (Optical Flow) is an optical sensor consisting of a downward facing 

camera module and a 3-axis gyro . This high resolution camera module detects the ground 

texture and visible features and a separate built in sonar. The Maxbotix LZ-EZ4 sonar is used 

to determine the UAVs ground velocity and altitude. Unlike many other sensors, it also works 

indoors and in low outdoor light conditions without the need for an illumination LED. It can 

be freely reprogrammed to do any other basic, efficient low-level computer vision task. 

 
Processor 

168 MHz Cortex M4F CPU (128 + 64 KB RAM) 

Sensor 
752×480 MT9V034 image sensor, L3GD20 3D Gyro 

Optics 
16 mm M12 lens (IR block filter) 

Dimensions 
45.5 mm x 35mm 

Power consumption 
 115mA / 5V 

Table 1: Pxflow specifications 

 

2.  TP-Link TL-MR3020 – is one of the smallest wireless routers available and easy to use and 

supports OpenWRT technology. OpenWRT is an open source Linux distribution for 

embedded devices. Apart from creating a single, static firmware, OpenWrt provides a fully 

writable filesystem with package management. This allows us to select the necessary 

configuration and customize the device using packages to suit any application. For 

developers, OpenWrt is the framework to build an application without having to build a 
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complete firmware around it.  

The router, being USB powered, allows us to create a portable Wi-Fi access point 

that can be utilized in creating a Wi-Fi mesh network. This allows all systems to 

communicate via a mesh network and provides several features such as a self-healing 

network where nodes damaged or not responding can be cut off from the system and data 

rerouted via other nodes, extending the range of a network and easy integration between 

multiple nodes.  

 

Fig 18. TP link travel Router 

 

Each of the ground and aerial vehicles have been fitted with the router allowing them to 

communicate with each other wirelessly over the same network. This allows global and local 

system control. It also allows unique address for each node to control or acquire data from a 

sensor. 

The use of a wireless mesh also has the benefit of being able to choose our own network 

architecture such as a centralized architecture, a decentralized architecture where several nodes 

communicate with their nearest nodes and do not form a fully connected network, or a Distributed 
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graph, where all the systems are connected to the next node via different paths. 

 
Fig 19. Mesh configurations 
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Chapter 4 

Controller Designs, Simulations and Implementation 

4.1. Skeletal Tracking  

 

 
Fig. 20. (A) Skeletal joints, (B) Xbox Kinect, (C) Kinect coordinate frame 

 

This project works based on the open source OpenNI ROS drivers for skeleton tracking. The 

package works with a Kinect camera connected to a PC and can track up to fifteen joints and body 

parts in human skeleton. These joints include hands, elbows, head, neck, shoulders, torso, left and 

right hips, knees, and feet. The 3D positions and rotation quaternions of all these joints in space 

are calculated with reference to the center of camera frame, /openni_depth_frame. It also provides 

a set of transformations between the various joints (/tf). These joints are shown in figure 21.   
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This ROS node publishes the position and the orientation of joints as transforms, as shown in 

figure 21. All the frames of the human model are computed from the reference coordinate frame 

called camera_rgb_optical_frame, located on the RGB camera of the Kinect sensor. The sensor 

can identify multiple users; however, it becomes necessary to identify various users and map their 

structure data and calibrate the system to perform better.  

A calibration sequence was designed to run initially, where the user moves the joints to the 

extremes and the system records the extreme transform and uses that to determine the thresholds 

for each user, this allows for clearer identification of gestures and control.  

 

Fig 21. Joints and Tf being tracked by the Kinect 

To calculate the transforms and rotations between various joints on the skeleton, the tf library 

was used.  The Tf library is an open source library that provides a standard method to track 

multiple coordinate frames within a global frame. It allows the user to reliably obtain data of a 

frame without having to worry about transforming between multiple frames. The Tf library 
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provides functions to calculate the translation and rotation between multiple frames and calculate 

the pose and distances between the ends of different links. 

 
Fig 22. Example of Frames between parent link and child 

 

Based on the transforms, the values of the coordinates and relation between multiple joins, 

the program can identify various actions and gestures. Some of the gestures are raising the right 

and left hand and lowering them or holding them at a fixed pose.  

In the implementation, the Parrot AR Drone quadrotor was chosen to demonstrate the 

controller. The AR Drone connects to the system via WiFi and uses the ardrone_autonomy ros 

package. Different services and commands were mapped to different gestures using a state 

machine and tested [26]. 

The user must initially run through a calibration sequence where the user initializes the node 

by holding the psi calibration pose and once detected, rotates all tracked joints to the extremes 

and back, this allows the program to measure the complete range of values and identify the 

minimum and maximum values of all the frames. The program then decides the thresholding 

values based on these min and max values. 
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Fig 23. Changing states according to user gestures and controller Flowchart  

 

Several gestures were used to control the UAV shown in figure 23. 

 

Fig 23. Gestures recognized by the Kinect 

 

Data from several instances with several users and calculated the errors in detection 

detailed below. The percentage of errors after the calibration sequence is lesser and is mainly 

present only when the gestures are similar. 
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Gesture Command Without calibration 

(approx.) Error % 

After calibration 

(approx.) Error % 

Pose 1 Take off 20 5 

Pose 2 Hover 15 10 

Pose 3 Land 10 2 

Pose 4 Forward 15 5 

Pose 5 Back 10 2 

Table 2: Detected User Pose errors 

Thus, with a simple calibration sequence, the pose and gesture detection can be improved quite 

well. The system could further be improved using a neural net classifier to correctly classify 

gestures. 

 

4.2. Potential Field Navigation   

In this section, the implementation of an Image-based local path planning algorithm based on 

potential field is discussed. The potential field algorithm uses distance based virtual forces to 

traverse from one location to another in the path of least resistance or repulsion. 

  The concept of potential fields is a natural phenomenon and is observed in many cases. 

Some examples are the effect of a magnetic field on a charged particle, flow of water down a hill. 

The difference between the potential of forces causes a force to be exerted on the object. It is 

possible to simulate the same effect, by introducing artificial potential forces based on distances 

between the object, the goal and the obstacles [27]. By defining a charge to the object, we can 

decide if it is attractive or repulsive in nature and thus influence the behavior of mobile robots. 
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At any point (x, y) in the plane, the net forces acting on a point based on the combination 

of individual forces are calculated. The net force as a function of position, is a vector force field 

that represents the resultant force obtained by the sum the attractive forces and repulsive forces 

which gives us a gradient in the direction of the minima. 

𝐹⃗(𝑟) = 𝐹⃗𝑡𝑎𝑟𝑔𝑒𝑡(𝑟) +  ∑ 𝐹⃗𝑜𝑏𝑠(𝑟)

𝑛

𝑖=1

=  −∇⃗⃗⃗𝑉(𝑟)⃗⃗⃗⃗  

where arrows denote vectors. In potential field motion control, it is necessary to calculate and 

keep track of the potentials at all points. With mobile ground robot applications, the potential 

fields are usually used in a 2D space. 

Thus, the force gradient for  𝑟 =  [𝑥   𝑦]𝑇
 ∈ 𝑅2 is,  

−∇⃗⃗⃗𝑉(𝑟)⃗⃗⃗⃗ =   [
𝜕𝑉

𝜕𝑥
   

𝜕𝑉

𝜕𝑦
]

𝑇

=  [𝐹𝑥   𝐹𝑦]
𝑇

∈ 𝑅2  

Where the 𝑥 and 𝑦 Force components are 

𝐹𝑥(𝑥, 𝑦) =  −
𝜕𝑉(𝑥,𝑦)

𝜕𝑥
  ,  𝐹𝑦(𝑥, 𝑦) =  −

𝜕𝑉(𝑥,𝑦)

𝜕𝑦
 

4.2.1. Image-based navigation  

In this method, a combination of aerial systems and ground systems is used to help the ground 

vehicle navigate in real world terrain. This collaborative working technique can help a vehicle 

gain better situational awareness otherwise limited by its on-board capabilities. 

In this algorithm, the images are taken by the camera and the following steps are 

executed to get the result:  
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Algorithm: 

Step 1: Obtain image from camera 

Step 2: Threshold and create an inverse binary map of the environments 

Step 3: Calculate minimum distances from robot to goal point 

Step 4: Create Potential field at all points detected in the binarized, threshold matrix 

Step 6: Calculate Attractive and Repulsive forces caused by goal and obstacles respectively. 

Step 7: Find the sum of all forces and calculate the next position of the robot based on previous position. 

Step 8: Calculate the optimal path and calculate heading angle of the robot using the Pose estimate obtained using 

the earlier method. 

 

Fig 24. Input image taken from google maps to simulate outdoor images at high elevation. The red spots denote the 

initial point where the robot is located and the final goal point. The image on the right is the final path identified 

 

However, it is evident that certain drawbacks exist in this method. The robot is easily and more 

likely to be stuck in local minima as the number of individual pixels having their own potential 

fields is high.This can be tackled by introducing various dither signals that cause small 

movements and can nudge the system out of the trap. 
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4.2.2 UAV based image classification using Convolutional Neural Networks 

 

Machine Learning is an area which has exploded with interest and development in recent 

years and its integration with robotic systems has given rise to a whole new generation of 

intelligent systems capable of learning and making smart decisions based on data available. 

Traditional learning methods require the use of large datasets manually labelled and defined. This 

is extremely time-consuming and not viable in the long run for many applications. Deep learning 

is a subset of machine learning algorithms developed to reduce the development and learning time 

and to utilize unlabelled datasets which automatically allows a model to learn and obtain a good 

representation of the input from this data. It can be used in robotics to solve several tasks such as 

perception, navigation and control. Several studies have been performed on the application of 

deep learning algorithms and tasks with respect to UAVs and robotic systems and tasks such as 

security and surveillance.  

One application is the implementation of Convoluted Neural Networks (CNN) in the use 

of classification and tracking applications on-board robotic platforms and the integration of this 

capability in a mesh network consisting of multiple sources and the ROS framework. 

 

4.2.2.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs), are a specific type of neural networks designed 

to accept images as inputs. They perform several 2D convolution operations on the input data at 
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multiple levels within the network convoluting th 2D images with a 2D Kernel, whose depth more 

than the input layer. Multiple convolutions can be done to each layer with varying kernel 

dimensions and the final outputs of the layers are pooled together using a pooling function, which 

pools several local outputs obtained from a nonlinear activation function. This helps in 

representation of learned invariants from local outputs and results in a subset of the input data. 

Several convolutional layers and pooling layers are stacked together in a hierarchical structure to 

form a pyramid-like structure where each layer allows for a unique feature learning, thus 

providing more abstraction and generalization of learning and outputs. For example, the first layer 

can be used to identify certain edges and other low-level representations, the next layer can be 

used to identify higher level features like shapes and structures. Thus, as the layers progress, the 

amount of feature learning, progressively grows higher. Once the features required for the task 

(eg: faces, plants, fruits, etc.) has been learned, the output of the last layer is passed through an 

activation function and classified according to the input [28]. 

 
Fig 25. 16 layers channel CNN architecture 
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Image classification training data samples are simply images (usually a small image or 

patch containing a single object) labeled by class (typically integer class ID or a string class 

name). Object detection, on the other hand, requires more information for training. ImageNet 

training data samples are images of individual objects. The network is trained to identify objects 

within a single image. For this dataset, a naïve image label format works fine as each image has 

one object present within it. Other datasets are available such as DetectNet, where the network 

must detect not only multiple objects within an image, but also the location of objects within the 

images. This can be used to perform object identification and tracking in applications such as 

pedestrian tracking [29]. 

 

Fig 26. Image net Architecture 

 

Integrating CNN’s trained with ImageNet and DetectNet with the existing UAV system 

framework available at the lab gives us the opportunity to create a mobile floating UAV cluster 

with one central system with high processing capable UAV and several UAVs with constrained 
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processing capabilities.  

 

Fig 27. Convolution Filters for each layer 

For the implementation of the model, Tensorflow, an open-source machine learning 

library released by Google, to run the inception based cnn model trained using the Imagenet 

dataset is used. The training data consists of nearly 14 million images of 1000 classes of objects. 

The Inception module [31] is based on a pattern recognition, in a manner similar to how the visual 

cortex works. After getting several input data images, the network learns minute details, middle 

sized features or almost whole images. Individual layers of the network reinforce some features 

and passes on to the next. If trained to recognize faces, the first layer detects edges, the second 

overall shape, the third eyes, mouth, nose, the fourth the face, the fifth the mood, etc. 
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Fig 28. googLeNet architecture 

 

 

For the application, an Nvidia Jetson TX2 module along running Tensorflow 0.9 and ROS 

Indigo on Ubuntu 14.04 was used. The ROS package consists of a python script which calls the 

tensorflow module and uses the inception network model. Since ROS is designed with a 

distributed architecture, multiple camera sources (UAV camera feeds) can be obtained on one 

system. Video streams from multiple AR Drone Quadrotor and USB cameras were used for 

testing. Several nodes are simultaneously run, which can process each video stream individually 

and identify various objects from each system. The image classifier requires an image size of 

299x299 RGB which can be resized either using the cv_camera, package or by setting the 

input_width and input_height flag values. The program looks for training images to identify 

objects and classify. It can identify 1000 classes of objects. The data is downloaded from the 

ImageNet database (inception-2015-12-05.tgz dataset). Using a softmax function at the outermost 

layer of the network, it identifies the object along with a calculated confidence score.  

For this implementation, a custom-built Octocopter, a DJI s1000 was used. The system is 
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built with primarily for photography and cinematography. However, it has been modified and 

setup for use in aerial mapping and collecting field data for farmers. This enables precision 

farming and supplies a farmer with automated solutions for a variety of tasks. The system is 

designed to be scalable autonomous and allow a large amount of data processing on-board 

especially of images of farms and regions.  

 
Fig 29. NVIDIA Jetson TX2 

 

4.2.2.2 NVIDIA Jetson TX2 

 

While dealing with image processing, on high resolution images, it becomes necessary to 

use specific graphically optimized computers. The s1000 has an on-board NVIDIA Jetson TX2 

GPU computing module for this purpose. The Jetson TX2, released in March 2017, belongs to a 

family of GPU devices specifically designed for machine learning and vision processing. The 

specifications of the device are below: 
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CPU ARM Cortex-A57 (quad-core) @ 2GHz + 

NVIDIA Denver2 (dual-core) @ 2GHz 

GPU 256-core Pascal @ 1300MHz 

Storage 32GB eMMC 5.1 

Camera 12 lanes MIPI CSI-2 | 2.5 Gb/sec per lane 

| 1400 megapixels/sec ISP 

Power 7.5W 

 Table 3: NVIDIA Jetson TX2 specifications 

 
Fig 30. Internal Architecture of Jetson TX2 

 

 

From figure 30, the Jetson is designed to handle several cameras together and is optimized 

to process multiple image streams together. 

 

 

 

Fig 31.A.I. System Pipeline 
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The above figure(31) shows the Jetson TX2 platform machine learning pipeline. It is ideal 

for the end-to-end design of autonomous machines. It is designed specifically to handle high 

resolution images and can simultaneously process data from multiple sensors and media 

compression and extraction according to several encoding protocols, networking, and low-level 

command & control protocols after processing the data on the GPU. The image also shows the 

various sensors and the ways it can be interfaced with the system via USB, MIPI, PCIe and 

ethernet. It also supports serial and I2C communication as well. 

 

4.2.2.3 Classification results           

 

Using the Jetson as the main processing board running Tensorflow (ver 0.9), OpenCV a 

ROS package called multi_uav_classifier, AR Drone autonomy and usb_cam package to obtain 

the camera images. The classifier node, which uses the inception CNN model, then classifies the 

objects detected in the images. Once classified, it calculates a confidence value which is the 

probability score of the object being detected and outputs the score. The detection can be further 

filtered by adjusting certain thresholding parameters. The usb_cam package was used for testing 

however any size or source image can be used for classification. Multiple video sources from AR 

Drone parrots were also used and tested. The results are shown below in figure 32. The main limit 

on the number of sources is the amount of processing power available for the system.  
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Fig 32. object detection using classifier on Multiple image sources 

An implementation of a network to detect multiple objects and track objects in the image 

was also shown. Using the Detectnet model trained to identify pedestrians and a few other classes 

such as bags and chairs, the model runs on the jetson and makes use of the CUDA cores present 

on it. Pedestrians are identified and tracked along the image pixels as they move and that 

information can be sent back to the robot for navigation.     

 

Fig 33. Pedestrian Tracking on the UAV 
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Chapter 5 

Conclusion and Future work 

From the results in the previous chapters, the development and design of such a mesh 

network of UAVs and platforms, along with systems capable of processing considerable amounts 

of data is demonstrated. It allows us to develop a simple and cheaper and effective solution of a 

floating UAV framework where small UAVs with simple cameras can stream the data to a central 

node, where it can then be processed and the real-time identification of objects can be done. This 

has the benefit of having few expensive processing systems, while working with several low-cost 

systems. The processing can also be done on multiple ground-based vehicles as well.  

  Another project which is currently being worked on is the implementation of the object 

tracking model for multi-source tracking and integration with image sources from multiple 

systems. The program returns the position of the object detected. This information can be used to 

control multiple systems and follow their targets independently. The object tracking algorithm 

has been successfully implemented and tested using an on-board camera and a high-resolution 

ZED stereo camera.  
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Chapter 6 

Integration of multi-modal, multi-resolution, MEMS skin sensors to include tactile, 

thermal, pressure, acceleration, and distance IR sensing 

6.1 Introduction 

The development of artificial robotic skin is motivated by the necessity to provide robots 

with a more effective feedback of their interaction with themselves and the world[32]. Interactions 

of robotic systems is mainly grounded with the surface of the agent and the environment. As social 

robotics become more ubiquitous, it becomes necessary to address certain design challenges 

between these systems to create a more intuitive and natural sensing and feedback system which 

takes advantage of this surface interaction. There are several available methods such as resistive 

and capacitive touch methods, but these are not intuitive and natural. The objective of this research 

is to answer design questions for multi-functional robotic skin sensors, and develop various 

solutions for various design constraints such as sensor placement optimization, scalable data 

acquisition and processing, have the robot and human “learn” how to use the skin sensors 

efficiently, and quantitatively assess the impact of this assistive technology to humans. The 

approach is to design and fabricate integrated micro-scale sensors in conjunction with iterative 

simulation and experimental studies of the performance of physical human-robot interaction 

enabled by this technology. 

This section presents the development of a Real-time data acquisition system to collect data 

from multiple sensors such as Infrared thermopile sensors namely the Omron D6T-44L, 
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Piezoelectric Flexiforce pressure sensors, accelerometers and to process the collected data in a 

deterministic manner and to generate a thermal map to allow the robot to obtain thermal data to 

identify obstacles namely humans and interact with the environment using the data. 

Several attempts have been made to design robotic skin capable of replicating the various 

natural senses of human skin. Researchers from the University of Illinois, Urbana-Champaign 

designed a skin molded flexible fingertip sensor. The Hex-o-skin, one of the most sophisticated 

skin modules consists of several sensors such as accelerometers, proximity sensors and 

temperature sensors[32][33][34][35]. However, most of these sensors consist of only one sensor 

output or limited in some ways.  

Using these systems as inspiration, Roboskin is developed using multiple types of sensors 

integrated within a soft silicone-based substrate that provides a more natural feeling and sensory 

response. 

 
 

 

Fig 34. Proposed Design  
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6.2 Skin Prototypes 

Multiple silicone skin patches were created at UTARI from a silicone based rubber from 

Silicones, Inc. The polymer is a 10:1 mixture of silicone to the curing agent. Several moulds coated 

with a releasing agent, were used to create skin patches. Patches of several thicknesses were made 

with various sensors embedded within. Once the silicone material is poured into the mould, the 

mixture is set in a vacuum chamber to remove any bubbles within, and then cured in an oven.  

Several piezoelectric skin sensors were embedded within the skin patches with 3D printed 

buttons placed on top of the sensors. 

 

 

 

 

 

Fig 35. Skin Patch prototypes with embedded flexy force sensors 

 

6.3. Temperature sensor  

To incorporate a sense of temperature within the skin modules, a non-contact thermopile 

sensor was chosen. The Omron D6T – 44L [36] is a contactless based temperature sensor with a 

broad range and field of view. It consists of an array of 16 temperature sensing pixels, which output 

the raw data to an amplifier which is then processed and converted into digital data and transmitted 
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over I2C. 

 

Fig 36. Omron D6T-44L Thermal Sensor 

6.4. Sensor Integration 

The first phase of testing and development was done using an open source microcontroller 

board running an ATmega2560 chip. The purpose of this was to understand the method of handling 

the data and the limitations and the speed of data acquisition that could be achieved. A speed of 

about 10 Hz was achieved due to limitations of the chip and the Omron sensors. 

The second phase involved developing and designing a method to reduce the number of 

wires and power lines running through the system. This involved the development of the 

MicroBoard (µC Board). The board made use of a 16 channel 12-bit ADC (AMC7812) [38] by 

Texas Instruments and allowed us to gather data from up to 16 different Flexiforce sensors and 3 

Omron sensors simultaneously. The Flexiforce also required several mini boards to be developed 

which were essentially voltage divider circuits which allowed us to condition the signal and reduce 

the errors. The µC board and the mini boards are covered in detail further below. Various versions 

of the board were made and revised until issues such as noise and power issues were resolved. 
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Fig 37. Electrical schematic of Data Acquisition board 

The major work done in this phase was to set up the data acquisition system for acquiring 

the data and processing it. For this purpose, the National Instruments cRIO FPGA Real-time 

system was used. The cRIO [38] provides a flexibility and scalability, which allowed integration 

of several data protocols from various sensors over multiple communication methods and to 

sample the data simultaneously. It consists of a real-time FPGA module which was programmed 

using LabVIEW. The architecture allows the use of various modules which can be used for specific 

applications and sensor integration. Several of the modules are shown below. The cRIO initially 

was used with the Tangent blue to acquire data however due to constraints in the driver and the 

architecture of the module and incompatibility with the Omron sensors, this module was 

abandoned.  

The following enlists most of the activities and major findings achieved during the various 

phases of the project: 
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1. Elastic effect of Skin:  

 

Fig 38. Flexi force sensor response without firm substrate below it 

 

Fig 39. Single channel (sensor response) Left: Force response without a firm substrate 

 Right: With hard base within the soft skin substrate 

 

The uneven response observed is due to the viscoelastic property displayed by the 

material. This effect can be due to multiple reasons: friction between neighboring 

molecules, displacement of air from cells within the material causing deformation. The 

flexible and soft nature of the material provides a slow compressive and elastic response 

which distributes the force and leads to a reduced response. This was reduced by using a 

firm backing behind each sensor, within the silicone substrate. The compressive response 
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is still visible due to the soft surface action; however, a much better force detection and 

cleaner response is observed. 

One of the outcomes of the project was SkinSim [37], a skin simulation 

environment based on the Gazebo simulator. It provides functionality for building robot 

models with robotic skin attached and near real-time realistic skin simulation. It allows 

testing of future skin models, simulating the pressure response similar to the test results. 

 

Fig 40. SkinSim simulation of pressure sensing 

2. Omron Addressing: One major characteristic of the Omron is the fact that every single 

sensor utilizes a single common address which cannot be changed or reassigned. Thus, at 

any given time only one single Omron sensor can be addressed and if multiple sensors are 

used, they must be separately selected and read.  

This issue was tackled by adding 2 extra bytes of overhead to the address and adding a 

separate I2C bus switching IC which is used to separately select between different Omron 

sensors which have been connected to the IC. 
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1st 

Byte 

2nd 

Byte 

Omron 

Selected 

0 0 Omron 0 

0 1 Omron 1 

1 0 Omron 2 

1 1 Unassigned 

Table 4:  Omron Addressing 

The following image (41), shows how the software uses the same bus and by changing the 

1st 2 Bytes, it selects the Omrons. 

 
Fig 41. Selection process of the three Omron sensors 

 

3. Clock Stretching: Another feature of the Omrons is that it utilizes a concept called clock 

stretching [39] and it appears that the I2C interface is a microcontroller acting as a slave device, 

it operates slower than a dedicated I2C peripheral. It has a maximum of 100KHz clock 

frequency and clock stretching is implemented because of the slowness of the interface. 

However, the total bandwidth of the shared bus might be significantly decreased. Hence while 

working with I2C buses shared by multiple devices, it is important to estimate the impacts of 
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clock-stretching. One method of reducing this task is to have separate I2C channels for each 

Omron sensor and to use modules that can handle the Clock stretching. 

 The I2C slave pulls the SCL line low on the 9th clock of every I2C data transfer 

(before the ACK stage). The clock is pulled low when the CPU is processing the I2C interrupt 

to evaluate either the address or process a data received from Master or to prepare the next 

data when Master is reading from the slave.  

The time the clock is pulled low depends on the time the CPU takes to process the 

interrupt and hence is dependent on the CPU speed and not the I2C clock speed. This process 

is shown in figure 42. 

 
 Fig 42. Clock Stretching in the Omron sensor 

Frequency Frequency - Capable of 100 – 200 Hz individually,  

Data  Data rate - Limited to 100 kbps on I2C Bus by device  

Field of view  Field of view - 45 degree viewing angle 

  

ADC  ADC - Using a TI AMC7812 

16 Channel ADC – 12 bits (1.22 mV step on 0-5 

VDC) 

Interface  I2C or SPI 

LDO 2 – 1 A, 5V  

1 for IC, 1 for Sensors 

8 Channel GP-I/O 8 Channel GP-I/O 
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Table 5: Micro Board Specifications 

 

 

 

Fig 43. Kuka Youbot manipulator arm with sensor patches 

4. Kuka Youbot: The Kuka Youbot [40] was chosen to be used as a responsive platform for the 

data acquisition system and controller. The pressure sensors are mounted at various locations 

along the arm and base as shown in image 43. The Kuka arm is outfitted with 16 different 

sensors while the base is fitted with 10 pressure sensors. The sensors on the arm are mounted 

in the form of sensor pads where several sensors are embedded in a patch of silicon with plastic 

buttons to concentrate the force incident on the buttons. The cables are snaked through the Kuka 

Youbot from within the arm to avoid exposing the cables. 30-gauge wires are used to connect 

all the sensors due to its thin size.  

I2C Switching Bus I2C Switching Bus - Only adds 2 bytes per update per 

channel 

 but allows up to 4 devices with same address 

Single Ethernet 

connection for I/O 

Single Ethernet connection for I/O 

Temperature Sensor Internal Temperature Sensor 
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Fig 44. Top View of Kuka Youbot with sensors and cRIO installed 

 

6.4 Outcomes   
 

Some of the important milestones and achievements are : 

• Temperature mapping using Omron  

o Three Omrons to achieve a 120 deg map. 

o Detect presence of obstacles in front of device and to be able to track movement over 

the entire map. 

• Recognize heat signature: This task was quite difficult because of the constraints in resolution 

and clarity. 

o The lower pixel count does not allow the proper identification of humans and objects, 

but it is possible to track movements and follow objects. 

 
Fig 45. 4x16 pixel Thermal map to track object detected by all three Omrons 
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• Created Silicone-based pads with embedded pressure sensors to mimic the sense of touch with 

real skin. 

 
 

Fig 46. Skin cell pads with embedded pressure sensors 

• Designed and developed single slave board to connect all sensor and then relay data to the data 

acquisition and processing system µC Board with LDO and ADC to gather and send data over 

a single cable. 

• Small size of 3.3” x 2” allows for easy installation and small footprint. Further iterations 

increased capacity and improved performance and increased sensor numbers. 

• Breakout board to connect to power and cRIO (power stepped down from 24V to 12V and 

from 12V to 5V for sensors)  
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Fig 47. MicroBoard for data collection 

 

 

 

Fig 48. CAD drawing of final housing(left) and final 3D printed housing with sensors and boards 

fitted.(right) 

 

 
    Fig 49. Kuka YouBot fitted with 3D printed box and mount for Omron sensors. 
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6.5 Data collection and processing 

The process by which the data was collected and the different prototypes involved are 

detailed in this section. 

The initial process involved acquiring data from 2-3 different sensors and using an Arduino 

Mega 2560 board to preprocess the raw data and then transmit the processed data for final 

processing and application.  

The initial schematic of the prototype board is shown in figure (47). 

The below figure 50, shows the method of addressing and reading data from the ADC and 

connection with the cRIO. 

 
Fig 50. I2C addressing and Read and Write 
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Fig 51. Reading and writing From the ADC to cRIO 
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Chapter 7  

Conclusion 

   

Design and development of a custom data acquisition board to collect the data from up to 

19 different sensors in one centralized location and convert the analog data into digital data and 

transmit all the data via SPI and I2C protocols to the NI cRIO real time controller. Various methods 

to overcome certain default restrictions such as clock stretching in the Omron sensors, which limit 

the sampling rate and thus increase the sampling rate from 10Hz to 30Hz were found and 

implemented. 

Mini signal conditioning boards were developed for the pressure sensors, thus allowing 

0.023mV increments from 0-5V. These boards were basic voltage divider circuits which could be 

augmented with a wheatstone bridge circuit to linearize the outputs to a much better signal. Various 

other conditioning methods were considered. However, only the voltage divider method was 

implemented.  

 

Fig 52. Signal Conditioning board with voltage divider circuit 

Scalability of this system though restricted can be easily achieved by having systems which 
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can be addressed separately and thus made faster that the existing version (case in point: The 

Omron sensors). 

Although the integration of the system to the robot controller was not implemented, 

majority of the data acquisition system was completed. 

The current Micro Board prototype, due to limitations in the communication protocols, can 

be tackled by using multiple separate microcontrollers specifically allocated to collect and process 

the data from multiple sensors, thus allowing all the sensors to run and not be dependent or limited 

due to constraints imposed by the others. Factors such as clock stretching and too much data can 

be reduced or avoided and speed and precision can be increased. Separate I2C and SPI channels 

can be run in parallel and allowing better data transmission. 

 The RoboSkin patches can be modified by using custom pressure sensors and be designed 

to cover a larger area and make it more responsive and reduce the amount of unsensitized area on 

the patches. 

 

Fig 53. Subsequent testing skin patches and data acquisition board 
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