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Abstract 

Conditional Bias-Penalized Kalman Filter for Improved Estimation and Prediction of 

Extremes 

Miah Mohammad Saifuddin, MS 

The University of Texas at Arlington, 2017 

Supervising Professor: Dr. Yu Zhang 

Kalman filter (KF) and its variants are widely used for real-time updating of model 

states and prediction in environmental sciences and engineering. Whereas in many 

applications the most important performance criteria may be the fraction of the times when 

the filter performs satisfactorily under different conditions, in many other applications the 

performance for estimation and prediction of extremes, such as floods, droughts, algal 

blooms, etc., may be of primary importance. Because KF is essentially a least squares 

solution, it is subject to conditional biases (CB) which arise from the error-in-variable, 

attenuation, effects when the model dynamics are highly uncertain, the observations have 

large errors and/or the system is not very predictable. In this work, conditional bias-penalized 

Kalman filter is developed based on CB-penalized linear estimation which minimizes a 

weighted sum of error covariance and expectation of Type-II CB squared, and comparatively 

evaluate with KF through a set of synthetic experiments for one-dimensional state estimation 

under the idealized conditions of normality and linearity. The results show that CBPKF 

reduces root mean square error (RMSE) over KF by 10 to 20% or more over the tails of the 

distribution of the true state. For nonstationary cases, CBPKF performs comparably to KF in 

the unconditional sense in that CBPKF increased RMSE over all ranges of the true state 

only by 3% or less. With the ability to reduce CB explicitly, CBPKF provides a significant 

addition to the existing suite of filtering techniques toward improving analysis and prediction 

of extreme states of uncertain environmental systems. 
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Chapter 1 Introduction 

1.1 Background 

Kalman filter (KF, Kalman 1960) and its variants are arguably the most popular class 

of techniques for state estimation and prediction of dynamic systems. In environmental 

sciences and engineering, they are widely used for real-time updating of model states via 

data assimilation (DA), and prediction. Just to name a small subset, ensemble KF (EnKF, 

Evensen 2003) was used for hydrologic forecasting (Clark et al. 2008, Komma et al. 2008, 

Moradkhani et al. 2005, Neal et al. 2007, Rafieeinasab et al. 2014, Weerts and Serafy 2006, 

Xie and Zhang 2010), extended KF (EKF, Jazwinski 1970) and EnKF were used for water 

quality forecasting and ecological modeling (Cosby 1984, Ennola et al. 1998, Huang et al. 

2013, Kim K et al. 2014, Kim S et al. 2014, Xue et al. 2012), and EnKF was used for marine 

ecosystem and ocean modeling (Eknes and Evensen 2002, Evensen 2003, 2009) and for 

weather forecasting (Houtekamer and Mitchell 1998, Zhang and Pu 2010). Whereas in most 

applications the most important performance criterion may be the fraction of the times when 

the filter performs satisfactorily under different conditions, in many applications the 

performance for estimation and prediction of extreme may be of primary importance. For 

example, in flood forecasting, accurate prediction of flood peaks or stages, which occur only 

for a very small fraction of the times, is far more important than that of average flows. In 

drought monitoring and prediction, accurate estimation of extremely dry soil moisture states 

is much more important than estimation of those above the 10th or even lower percentile. In 

water quality forecasting, being able to estimate accurately high concentrations of 

Chlorophyll a and other state variables is critical to skillful prediction of algal blooms (Guo et 

al. 2003, Mao et al. 2009, Pastres et al. 2003, Twigt et al. 2011, Whitehead and Hornberger 

1984, Zingone and Enevoldsen 2000). Because KF is essentially a least squares solution 

(Jazwinski 1970, Schweppe 1973), it is subject to conditional biases (CB) if the model 
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dynamics are highly uncertain, the observations have large errors and/or the system is not 

very predictable. By “predictable”, it is meant that it is possible to make skillful predictions of 

the future state of the system. By “skillful”, it is meant that the prediction in question is 

superior to some clearly defined reference prediction such as climatological or simple 

statistical forecast. To illustrate the adverse effect of CB, Figure 1.1 shows an example of 

the KF estimates vs. the verifying observations from a synthetic experiment using a linear 

Gaussian state-space model (Kitagawa and Gersch 1996, Durbin and Koopman 2001; see 

the Evaluation Section for the model used). It is readily seen that, whereas the KF estimates 

are unbiased over the near-median range of the truth, they are biased everywhere else. This 

CB problem, where the larger and smaller values are systematically under- and 

overestimated, respectively, is referred to in the statistical literature as the error-in-variable, 

or attenuation, effects (Carroll et al. 1995, Fuller 1987, Seber 1989). These effects occur in 

least squares regression when the predictors are observed with significant error. In modeling 

and observation of environmental systems, such effects are the norm rather than the 

exception (see, e.g., Ciach et al. 2000). As such, the solutions obtained from KF or its 

variants often suffer from CB with potentially very large negative impact on estimation and 

prediction of extremes.  

Type-I and –II CBs emerge from Type-I and Type-II errors which occur when falsely 

detecting an effect which does not exist, and when failing to detect an existing effect, 

respectively (Joliffe and Stephenson 2003). Whereas Type-I CB can be reduced via 

calibration, Type-II CB cannot. Therefore, reducing Type-II CB in optimal estimation 

addresses an important gap in estimation and prediction of extremes. As the resolution of 

environmental models continues to increase, it is expected that the model dynamics and 

observations will be subject to larger uncertainties and variabilities, and hence to larger CBs. 

As such, there is an increasingly large need for filtering techniques that can explicitly 

address CB. Recently, Seo (2013) developed a Fisher-like solution for optimal linear 
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estimation by minimizing a weighted sum of error variance and expectation of Type-II CB 

squared. The technique has since been applied successfully to rain gauge-only precipitation 

estimation in the form of conditional bias-penalized kriging (CBPK, Seo 2013, Seo et al. 

2014), multi-sensor precipitation estimation using radar and rain gauge data in the form of 

conditional bias-penalized co-kriging (CBPCK, Kim et al. 2016), bias correction of forecast 

precipitation and streamflow in the form of conditional bias-penalized indicator co-kriging 

(CBP-ICK, Brown and Seo 2010), and high-resolution fusion of multiple radar-based 

quantitative precipitation estimation (QPE) products (Rafieeinasab et al. 2015).  

In this work, CB-penalized optimal linear estimation is applied for dynamic filtering, 

and formulate and evaluate conditional bias-penalized Kalman filter, or CBPKF, which 

extends KF to explicitly minimize Type-II CB in addition to error variance. While much 

progress has been made since the introduction of KF in extending KF for nonlinear 

predictions and ensemble forecasting as referenced above, to the best of my knowledge no 

attempts have been reported to address CB explicitly until this paper. With the ability to 

reduce CB explicitly, CBPKF provides a significant addition to the existing suite of filtering 

techniques toward improving analysis and prediction of extreme states of uncertain 

environmental systems. 

1.2 Objective 

The main objective of this study is to develop conditional bias-penalized Kalman 

filter, or CBPKF, based on CB-penalized linear estimation which minimizes a weighted sum 

of error covariance and expectation of Type-II CB squared, and comparatively evaluate with 

KF through a set of synthetic experiments for one-dimensional state estimation under the 

idealized conditions of normality and linearity. It is expected that that CBPKF reduces root 

mean square error (RMSE) over KF over the tails of the distribution of the true state. For 

nonstationary cases, CBPKF performs comparably to KF in the unconditional sense in that 
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CBPKF increased RMSE over all ranges of the true state only by 3% or less. With the ability 

to reduce CB explicitly, CBPKF provides a significant addition to the existing suite of filtering 

techniques toward improving analysis and prediction of extreme states of uncertain 

environmental systems. 

 

1.3 Outline of the Thesis 

Chapter 1 Presents the background of the study and the statement of the problem, 

specific objectives of the study. 

Chapter 2 Describes the CBPKF methodology and the algorithm. 

Chapter 3 Describes comparative evaluation of CBPKF with KF. 

Chapter 4 Presents the evaluation results. 

Chapter 5 Presents the conclusion and suggested recommendations for further 

improvement of the proposed technique. 

 

 

Figure 1.1 Example of the KF estimates vs. the truth from a synthetic experiment. 
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Chapter 2 Methodology 

This chapter surveys the literature related to CB type and describes the algorithms 

related to CBPKF.  

Conditional Bias: 

Unbiased estimates having minimum error variance in the unconditional sense 

is produced by most of the conventional precipitation estimation techniques. But in the 

conditional (on the magnitude of the truth being estimated) sense, heavy precipitation 

is underestimated and light precipitation are overestimated by these techniques (Seo, 

2012). There are two types of CB. 

1) Type-I conditional bias (Type-I CB) 

2) Type-II conditional bias (Type-II CB) 

There is a widespread confusion about CB in the literature and among the 

practitioners of geo-statistics (Mclennan and Duestch, 2003). Isaak (2004) stated that 

CB is poorly understood even though it is a well-recognized problem in geo-

statistics. Lack of distinction between Type-I and Type-II CB in the literature may 

be one of the main sources of such confusion (Seo, 2012). 

Type-I CB: 

Type-I CB is defined as: 𝐸[𝑋|𝑋∗] − 𝑋∗ 

where 𝑋∗ and 𝑋 the estimate and the truth, respectively. Type-I CB occurs when t h e  

estimate is biased against the expected value of the true precipitation conditional on 

the estimate. (Siddique, R. 2014) 

Type-II CB: 

Type-II CB is defined as: 𝐸[𝑋∗|𝑋] – 𝑋 

Type-II CB exists when the expected value of the estimate given the truth differs from the 
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truth. 

This study is concerned with reducing Type-II CB. Different scientists and geo-statisticians 

discuss the problem of Type-II CB in different contexts e.g. in those of mining and radar 

rainfall estimation (Siddique, R. 2014). 

Brown and Seo (2012) proposed a new non-parametric technique to minimize Type-II CB 

in streamflow prediction. This technique is analogous to indicator co-kriging (ICK) and 

is called conditional bias-penalized indicator co-kriging (CBP-ICK). It is found that CBP-

ICK successfully reduce Type-II CB and produce estimates that are more skillful than the 

estimates from other post processors used in hydrologic prediction (Siddique, R. 2014). 

Seo (2012) proposed and described a new estimation technique, CBPK, which is an 

extension of SK. CBPK adds a penalty term for Type-II CB in addition to error variance. 

Seo (2012) evaluated CBPK using normal and lognormal synthetic experiments and 

found that CBPK successfully reduces Type-II CB for large precipitation amounts 

(Siddique, R. 2014). Seo (2012) also described a Fisher-like solution of CBPK  

 

Seo (2013) has shown that, by minimizing the weighted sum, , of the 

error variance of the true states, , and the expectation 

of the Type-II CB squared, , where X, X
*
 

and α denote the true state of the system, optimal (in some sense of the word) estimate of 

the state, and scaler weight given to , and the subscripts to expectation operation 

signify that the expectation is with respect to the variables subscripted, one arrives at the 

following Fisher-like solution for linear estimation (see Equations. A20 and A21 in Appendix 

A for the derivation of Equations. (1) and (2)): 

CBEVJ  

]))([( **

, *

T

XXEV XXXXE 

T

XXXCB XXEXXXEXE ])|[])(|[[( **
** 

CB
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       (1) 

     (2) 

In the above,  denotes the (m×m) estimation error covariance matrix, B is the 

(m×m) scaling matrix,  is the (mx(n+m)) modified structure matrix, and  denotes the 

((n+m)×(n+m)) modified observation error covariance matrix, X
*
 denotes the (m×1) vector of 

the estimates, W denotes the (m×(n+m)) weight matrix, and Z denotes the ((n+m)x1) 

observation vector. The matrices,  and , are analogous to the structure and 

observation error covariance matrices, H and R, in Fisher estimation (see Appendix A) but 

modified according to Eqs.(3) and  (4), respectively. The matrices, ,  and B are given 

by (see Eqs.(A11), (A12) and (A18) in Appendix A): 

       (3) 

   (4) 

       (5) 

where the (m×m) and ((n+m)xm) matrices, ΨXX and ΨZX, denote Cov[X,X
T
] and 

Cov[Z,X
T
], respectively, R denotes the ((n+m)×(n+m)) observation error covariance matrix, 

R=E[VV
T
], and I denotes the (m×m) identity matrix. In this work, it is assumed for simplicity 

that α is a scaler rather than a matrix so that the penalty given to CB is applied 

proportionately across all state variables. It is possible to prescribe α, e.g., as a diagonal 

matrix which would allow state variable-specific weights for the CB penalty term. Such 

relaxation of α, however, is beyond the scope of this study and is left as a future endeavor. 

11 ]ˆ[  HH
T

ZHHHWZX
TT 111* ˆ]ˆ[  
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For complete derivation, the reader is referred to Appendix A which provides the technical 

context for CBPKF and also includes additional details omitted in Seo (2013) in notations 

that are consistent with this thesis to avoid confusion. Note in Eqs.(1) through (5) that, if α=0 

(i.e., no penalty for Type-II CB), Eqs.(1) and (2) reduce to the Fisher solution. Because 

Eqs.(3) through (5) require a priori knowledge of ΨXX and ΨZX, Eqs.(1) and (2) do not 

represent a Fisher solution but a hybrid solution that combines Bayesian and Fisher 

estimation (see Appendix A). The CB-penalized formulation above may also be considered 

as a form of regularization in which the a priori information of ΨXX and ΨZX is added to the 

objective function through a quadratic penalty for Type-II CB. 

Noting strong resemblance of Eqs.(1) and (2) to the Fisher solution of 

 and , one may arrive at CBPKF by 

analogy with KF. Appendix B provides the derivation which is largely of technical nature. 

Appendix C provides an alternative expression for CBPKF based on factorization of  

which juxtaposes with KF for direct comparison and to obtain additional positive semidefinite 

conditions for specific elements of the filter. In the following, is present the resulting CBPKF 

algorithm in the context of the following state-space representation of the dynamical model 

and observation equation in direct analogy with the standard KF algorithm (Schweppe 1973, 

Bras and Rodriguez-Iturbe 1985): 

      (6) 

       (7) 

where Xk and Xk-1 denote the (mx1) state vectors at time steps k and k-1, 

respectively, Φk-1 denotes the (m×m) state transition matrix between time steps k-1 and k, 

11 ][  HRH
T

Fisher ZRHHRHX
TT

Fisher

111* ][ 

1

1111   kkkkk wGXX

kkkk VXHZ 
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Gk-1 denotes the (m×m) scaling matrix for the (mx1) random error vector, wk-1 with the (m×m) 

model error covariance matrix, , Zk denotes the (nx1) observation 

vector, Hk denotes the (n×m) structure matrix and Vk denotes the (nx1) observation error 

vector with the (n×n) observation  error covariance matrix, . In the above, it is 

assumed that Xk-1 and wk-1 as well as Xk and Vk are independent. From Appendices B and C, 

then have the following CBPKF algorithm for estimation of the state at time step k and its 

error variance: 

1) At k=1, prescribe the initial conditions for the state and its error covariance,  

and . 

2) Make one step-ahead predictions for the state and its error covariance: 

       (8) 

     (9) 

3) Set initial α, or α0, that satisfies  (see (B7)). 

4) Evaluate the (m×n), (n×n) and (m×m) modified covariance matrices, ,  and 

, and invert : 

       (10) 

      (11) 

       (12) 
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5) Check for positive semi-definiteness of . If α does not satisfy Eq.(13) below, 

reduce α according to  where  and  denotes the value 

of α at the i-th iteration, and go back to Step 4. If α satisfies Eq.(13), proceed 

with Step 6.     (13) 

6) Evaluate the (m×m), (n×m) and (n×n) matrices, ,  and , and invert : 

       (14) 

        (15) 

      (16) 

7) Check for positive semi-definiteness of  and . If 

either constraint is violated, reduce α according to and go back 

to Step 4. If both constraints are met, proceed to Step 8. 

       (17) 

       (18) 

8) Evaluate the (m×m) updated error covariance matrix, : 

    (19) 

11
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9) Evaluate the (m×n) conditional bias-penalized Kalman (CBPK) gain matrix, Kk: 

   (20) 

10) Evaluate the (mx1) updated state vector, : 

    

 (21) 

11) Go to Step 2 for the next time step and repeat. 

Computationally, CBPKF can be significantly more expensive than KF if the size of the 

state and/or the observation vector is large. Note that, in addition to solving an (m×n) linear 

system for the gain matrix in Step 9 as in KF, it is also necessary in CBPKF to solve (n×n) 

and (m×m) linear systems for inversion of  in Step 4 and  in Step 6, respectively. An 

obvious strategy to minimize the number of iterations while satisfying the positive semi-

definiteness conditions is to start in Step 3 with a value of α near the upper bound of the 

feasible region of [0, 0.618] and reduce α incrementally until all constraints are satisfied as 

close to the equality conditions as possible. In this way, the resulting α represents the largest 

possible weight for the CB penalty that yields a valid CBPKF solution. The above strategy is 

guaranteed to succeed in that, if α has to be reduced all the way to zero, CBPKF simply 

becomes KF. For incremental reduction of α, different strategies of varying complexity are 

possible. In this work, it is employed that a very simple iterative procedure in which α is 

reduced geometrically according to  where  and  denotes the 

value of α at the i-th iteration. A smaller c would satisfy the constraints in fewer iterations but 

at the expense of potentially over-reducing α. A larger c would produce a larger α but at the 

expense of increasing the number of iterations. Depending on the size of the DA problem, 

][])[( 2111
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some experimentation may be necessary to choose a satisfactory c. Development of a more 

efficient scheme for iteration is left as a future endeavor. 

For stationary processes, i.e., , , Qk-1, Hk and Rk in Eqs.(6) and (7) are time-

invariant, there may exist a better  than ~0.6 in Step 3. For example, if all iteratively-

reduced α which satisfies the inequality conditions of Eqs.(13), (17) and (18) is smaller than 

 at all time steps, one should use the new smaller value of  in Step 3 to avoid 

unnecessary iterations in real-time implementation. If the combination of model prediction 

and observation is very informative so that CB is not very large, α may have to be reduced to 

a level well below ~0.6. In such cases, it is necessary to optimize α to avoid overcorrecting 

CB. Numerical experiments with one-dimensional examples (see the Results Section) 

suggest that one may chose α such that the quantile-quantile plot (qqplot) of the CBPKF 

estimates vs. the verifying observations closely approaches the diagonal line, i.e., the 

CBPKF estimates have a similar marginal probability distribution as the verifying 

observations. If the qqplot lies above the diagonal line over the range of the truth greater 

than its median, it is an indication that α is too large. Numerical experiments of this study 

also indicate that an optimized α may range between 0.25 and 0.50 for a wide range of 

conditions that may be encountered in real-world applications. If the KF estimates exhibit 

only a very small CB but reduction of CB is still desired, it may be necessary to reduce α to 

below 0.15. The information content of an observation and the number of observations 

available, n, also impact the choice of α. If n is very small, the observational information 

content may be too small for CBPKF to offer significant benefits. In such cases, the CBPKF 

results will be very similar to the KF results. If the individual observations are informative and 

the number of available observations increases, one may expect the performance of both KF 

and CBPKF to improve. Numerical experiments of this study suggest that CBPKF in such 
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cases very often provides significant improvement over KF for estimation of extremes if the 

processes modeled are not very predictable. Because the qqplots of the filtered estimates do 

not in general form straight lines, it may not be readily possible to determine whether the 

optimization of α is completely satisfactory or not based solely on the qqplot. For this reason, 

it may be necessary to examine additionally conditional error statistics such as the 

conditional root mean square error (RMSE) as well as relative performance measures such 

as the relative percent reduction in RMSE in optimizing α. In the Results Section, is provided 

the examples of the above cases.  

In this work, CBPKF is described in the context of state space estimation involving 

linear dynamical and observation models only. In most real-world applications, the dynamical 

model and possibly the observation model as well would be nonlinear. It is hence expected 

that CBPKF would be applied in most applications in the form of an ensemble filter, or 

ensemble CBPKF (EnCBPKF), to nonlinear dynamical and linear observation models 

analogously to ensemble KF (EnKF). Description and evaluation of EnCBPKF, however, is 

beyond the scope of this paper. This work focus on comparative evaluation of CBPKF under 

idealized conditions via synthetic experiments. The motivation for such evaluation is two-

fold. The first is that real-world applications would reflect not only the comparative 

performance between CBPKF and KF but also other factors such as the degree and extent 

to which the assumptions of linearity and normality may be met, the performance of the 

dynamical model and the quality of the uncertainty modeling involved. As such, with real-

time applications it would be very difficult to isolate the comparative performance due solely 

to the filter formulations. The second is that, without applying to many diverse state 

estimation and prediction problems, it would not be possible to identify easily from real-world 

applications the conditions under which CBPKF may offer significant benefits over KF. The 

evaluation carried out in this work, on the other hand, allows performance comparisons 
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under the idealized conditions of linear dynamical and observation models, normally 

distributed observation and model errors, and perfectly known uncertain parameters so that 

we may attribute the difference in performance solely to that in the filters. Also, the wide-

ranging conditions considered in this work allow the user to assess the potential benefits of 

CBPKF to diverse applications that may be encountered in environmental science and 

engineering. 

Chapter 3 Evaluation  

To comparatively evaluate CBPKF with KF, the study carried out a set of one-

dimensional (1D) numerical experiments in which the dynamics of the true state is given by 

the state space model in Eq.(22) and the states are observed via the linear observation 

equation in Eq.(23): 

      (22) 

        (23) 

where Xk and Xk-1 denote the true states at time steps k and k-1, respectively, φk-1 

denotes the state transition coefficient at time step k-1, σw,k-1 denotes the input coefficient at 

time step k-1 for the serially uncorrelated random error, , Zk denotes the (nx1) 

observation vector, U denotes the (nx1) unit vector and Vk denotes the (nx1) observation 

error vector,  , with . Note that, if the 

process in Eq.(22) is stationary, φk-1 denotes the constant lag-1 serial correlation of the state 

variable and σw,k-1 denotes the constant standard deviation of the random error, . 

The number of observations, n, is assumed to be time-invariant for simplicity. The 
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observation errors are assumed to be independent among themselves and of the true state. 

Then is applied KF and CBPKF to obtain  and , and verify them against the 

assumed truth. Under the above experimental design, the impact of CB on filtering and 

prediction depends on the choices of φk-1, σw,k-1, σv,k and n, where φk-1 represents the 

predictability of the process, σw,k-1 represents the magnitude of the model error, and σv,k and 

n represent the information content of the observations. The one-step prediction equations 

for Eq.(22) are given by  and  where 

 and  denote the predicted or estimated state and its error variance, 

respectively, valid at time step k given all available information through time step k-1. To 

assess comparative performance of CBPKF under widely varying conditions, two types of 

experiments were carried out, stationary and nonstationary. In the stationary experiment, 

different values of time-invariant φk-1 is used and n while time-invariant σw,k-1 and σv,k remain 

fixed. In the two nonstationary experiments, φk-1, σw,k-1 and σv,k are randomly perturbed 

according to Eqs.(24) through (26) and used only those deviates that satisfy the bounds 

imposed below: 

,     (24) 

,      (25) 

,      (26) 

In the above, the superscript p signifies that the variable superscripted is a 

perturbation,  and  denote the standard normal random deviates, and ,  and 
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 denote the standard deviation of the normally-distributed random perturbations added to 

,  and , respectively. Table 3.1 summarizes the parameter settings used in 

all experiments. The ranges of values in Table 3.1 are chosen to encompass less 

predictable (small φk-1) to more predictable (large φk-1) processes, certain (small σw,k-1) to 

uncertain (large σw,k-1) model dynamics, and informative (small σv,k) to non-informative (large 

σv,k) observations. The above parameters may be explained in real-world terms using real-

time streamflow forecasting as an example, in which autoregressive-1 and state-space 

models are used for stationary and nonstationary cases, respectively. A small/large φk-1 

would represent the predictability of streamflow for a small/large catchment (and hence of 

short/large system memory) or that for any catchment in high/low flow conditions. A 

large/small σw,k-1 would represent a large/small collective model error, or hydrologic 

uncertainty (Krzysztofowicz 1999, Seo et al. 2006), associated with imperfect model 

structures and parameters, initial conditions and input. The number of observations, n, would 

represent the number of available real-time streamflow observations valid at the time of 

filtering in which the observations are made repeatedly at the same location to reduce 

sampling uncertainty. A large/small σv,k would represent a large/small collective 

measurement or estimation error in streamflow observation due to lack of precision in the 

instrument, representativeness (e.g., point vs. cross-sectional area) errors, errors in the 

rating curve if estimated from stage observations, etc. The bounds for  in Eq. (24) is 

based on the range of lag-1 serial correlation that represents moderate to high predictability 

(25 to ~90% of variance explained) where CBPKF and KF are most likely to differ in 

performance. Note that, if the process is not very predictable, no filter may be expected to 

perform well, and that, if it is extremely predictable, any reasonable filter would perform well. 

The purpose of bounding the perturbed values  and  in Eqs. (25) and (26), 
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respectively, in the nonstationary experiments is to avoid the observational or model 

prediction uncertainty becoming near zero which is not possible in reality. An unrealistically 

small  and  would render the information content in the model prediction, , 

and the observations, Zk, respectively, extremely large which would keep the filters operating 

in extremely favorable conditions for extended periods of time, thereby inflating performance.  

To provide additional context for the range of parameter values used in this work, is 

used below the KF solution under stationarity to relate the parameter settings to the weight 

given to the observations in the KF process of optimally combining the observations, Zk, with 

the model prediction, . Under stationarity, the KF solution for Eqs.(22) and (23) is 

given by (Schweppe 1973, Bras and Rodriguez-Iturbe 1985): 

  (27) 

 (28) 

     (29) 

where the time indices have been dropped from the time-invariant parameters and 

 denotes the i-th observation, i=1,…,n, in Zk. In Eq.(27), the first and second terms in the 

denominator represent the information content in the observations, Zk, and the model 

prediction, . Note that the uncertainty in , , decreases as the number of 

observations, n, increases, the observation uncertainty,  decreases, the predictability of 
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the process, φ, increases, or the model uncertainty, , decreases. The rightmost column 

of Table 3.1 shows the range of values for  for all cases considered based on the 

parameter settings in Table 3.1 under the assumption of stationarity and the bounds in 

Eqs.(24) through (26). One may interpret  in Eq.(29) as the contribution of the 

observations relative to the model prediction in reducing the uncertainty in the filtered 

estimate. Table 3.1 shows that the stationary experiment allows variations of  up to 

about 0.60, and that the first nonstationary experiment with only φk-1 perturbed allows only a 

rather limited range of whereas all other nonstationary cases encompass effectively all 

possible ranges of . Because not all cases encompass all possible ranges of , it 

might seem that the above experiments may not be sufficiently realistic. It is easy to see in 

Eq.(29), however, that the reduced ranges of  arise from the realistic ranges of the 

parameter settings employed. Note that φ=1,  or  would yield  but 

none of them is achievable in reality. For all cases, the simulation horizon was set at 

1,000,000 time steps which produced 1,000,000 data points for each case. For the scatter- 

and qqplots in the Results Section, it is only displayed the first 100,000 to limit the size of the 

plots. To evaluate the relative performance between CBPKF and KF, then is calculated the 

RMSE conditional on the true state exceeding some threshold between 0 and the largest 

truth, and percent reduction in conditional RMSE by CBPKF over KF. To identify the specific 

attributes that CBPKF improves or does not improve over KF, also was carried out mean 

square error (MSE) decomposition (Murphy and Winkler 1987, Nelson et al. 2010). Lastly, 

the accuracy of uncertainty estimates was assessed by comparing the CBPKF and KF error 

variances with the observed error squared in the mean sense. 
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Table 3.1 Parameter settings used in the synthetic experiments 

Experiment 
type 

φk-1 σw,k-1 σv,k n ϒφ ϒw ϒv w 1 
obs 

Stationary 0.5, 0.1 1.5 1, 10, 0 0 0 [0.01,0.60] 

0.7, 20, 30 
0.8, 

0.9, 

0.95 

Non- 
stationary 1 

 
 

 
0.7 

 
 

 
0.1 

 
 

 
1.5 

 
 

 
10 

0.1, 

0.2, 
0.4, 
0.8 

0 0 [0.09,0.33] 

0 0.05, 

0.1, 
0.15 

0 [0.00,1.00] 

0 0 0.4, 

0.8, 
1.2, 
1.6 

[0.00,1.00] 

Non- 0.1, 0.01, 0.4, [0.00,1.00] 

stationary 2 0.8 0.1, 0.2 1.2 
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Chapter 4 Results  

In this section, is presented the results from the three experiments listed in Table 4.1. 

here is presented only a limited number of figures due to space limitations, but are 

summarized the results for all cases considered so that the reader may gauge performance 

under the full range of the parameter settings shown in Table 4.1. Figure 4.1 shows the KF 

(in black) vs. CBPKF (in red) results for the stationary cases of φk-1 of 0.8 and 0.9, 

respectively, while all other parameters are kept constant as indicated in the plots. Being 

stationary, the initial conditions have an impact only until steady-state error variance is 

reached. The optimized values of α are 0.54, 0.54, 0.50 and 0.44 for φk-1 of 0.7, 0.8, 0.9 and 

0.95 which represent predictability levels (i.e., 100 ) of 49, 64, 81 and 90% of the 

variance explained, respectively. Note that, as φk-1 increases, the optimized α tends to 

decrease, a reflection of the fact that CB in the KF estimates decreases as predictability 

increases. At φk-1 of 0.7 (or ~50% of variance explained), the CBPKF estimates are not very 

much different from the KF estimates, suggesting that, at this level of predictability, CBPKF 

is not able to reduce CB very significantly. For larger φk-1, it is readily seen in Figure 4.1 

Scatter plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the stationary 

cases of a) φk-1=0.8 and b) φk-1=0.9, while all other parameters are kept constant (see 

Table 4.1). that CBPKF significantly reduces CB, particularly over the tail ends of the 

distribution of the truth. For φk-1 of 0.7 and 0.8, α was found to be 0.54 as obtained by 

running CBPKF initially with α~0.6 and identifying the lower bound above which all 

iteratively-reduced α values lie at all time steps as described in the Methodology Section. 

For φk-1 of 0.9 and 0.95, the lower bound for iteratively-reduced α was zero, which meant 

that α had to be optimized by matching the qqplot of the CBPKF estimates with the diagonal 

line (see Figure 4.3 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth 

for the stationary case of φk-1=0.9, while all other parameters are kept constant (see Table 

2
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4.1). for φk-1 of 0.9). The optimal α values obtained in this way for φk-1 of 0.9 and 0.95 were 

0.5 and 0.44, respectively. At φk-1 of 0.95, the KF solutions are of very high quality and 

exhibit rather small CB. Accordingly, the optimal α for CBPKF is smaller than that at φk-1 of 

0.9. Figure 4.2 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the 

stationary case of φk-1=0.8, while all other parameters are kept constant (see Table 4.1). and 

Figure 4.3 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the 

stationary case of φk-1=0.9, while all other parameters are kept constant (see Table 4.1). 

show the qqplots corresponding to Figure 4.1 Scatter plots of the KF (in black) and CBPK (in 

red) estimates vs. the truth for the stationary cases of a) φk-1=0.8 and b) φk-1=0.9, while all 

other parameters are kept constant (see Table 4.1)., respectively. For φk-1 of 0.7, CBPK is 

not able to reduce CB very significantly. With increased predictability in Figure 4.2 QQ plots 

of the KF (in black) and CBPK (in red) estimates vs. the truth for the stationary case of φk-

1=0.8, while all other parameters are kept constant (see Table 4.1)., CBPKF significantly 

reduces CB. For φk-1 of 0.9 and 0.95, CBPKF is able to effectively eliminate CB. Figure 4.4 

Percent reduction in RMSE by CBPK over KF conditioned on the truth exceeding the value 

on the x-axis for the stationary cases of φk-1 of 0.7, 0.8 (Figs 4.1a, 4.2), 0.9 (Fig 4.1b, 4.3) 

and 0.95. shows the percent reduction in RMSE by CBPKF over KF conditioned on the truth 

exceeding the value shown on the x-axis. All results for percent reduction in RMSE 

presented in this paper is for truth  0 only. The minimum number of pairs of the estimates 

and the verifying observations used for calculation of percent reduction in RMSE presented 

in this paper is 10. At x=0 where x denotes the verifying truth, the y-axis in Figure 4.4 

Percent reduction in RMSE by CBPK over KF conditioned on the truth exceeding the value 

on the x-axis for the stationary cases of φk-1 of 0.7, 0.8 (Figs 4.1a, 4.2), 0.9 (Fig 4.1b, 4.3) 

and 0.95.represents the unconditional RMSE. That the percent reduction at x=0 is negative 

for all cases, i.e., the KF estimates have smaller unconditional RMSE than the CBPKF 
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estimates, is fully expected given that KF provides the minimum error variance solution. For 

x > 0.2, however, CBPKF improves over KF substantially for φk-1=0.8 or larger with a 

maximum reduction approaching 40%. 

Performance for stationary cases, however, is not a good indicator of how CBPKF may 

perform as a dynamic filter when the predictability of the processes modeled, accuracy of the 

model and/or the information content of the observations varies in time. Figure 4.5 Example 

scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when only w,k 1   

is assumed to vary in time., Figure 4.6 Example scatter plot of the KF (in black) and CBPKF 

(in red) estimates vs. the truth when only v,k  is assumed to vary in time. and Figure 4.7 

Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when 

only k 1 is assumed to vary in time show examples of the scatter plots of the KF (in black) 

and CBPKF (in red) estimates vs. the verifying observations when only one of the three 

parameters, ,  and , respectively, is assumed to vary in time. The figures 

show that the impact of the variations in ,  and  to the CBPKF estimates 

varies from one parameter to another. Examination of similar figures for all ranges of the 

parameter settings in Table 4.1 indicates that the variations in  and  have a larger 

impact than those in (see Table 4.1). The figures also suggest that both KF and CBPKF 

benefit greatly from the filtering results at the preceding time steps when the model error 

and/or the observation error is very small; they produce highly accurate filtered estimates 

with very small error variances which effectively reinitialize the filter with very accurate initial 

conditions. It is interesting to see in the figures, in particular in Figure 4.6 Example scatter 

plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when only v,k  is 

assumed to vary in time., how the CBPKF estimates differ from the KF estimates; CBPKF 
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estimates are progressively larger and smaller than the KF estimates as the truth increases 

and decreases, respectively, while tipping the cluster of the estimates to align more closely 

with the diagonal. The resulting CBPKF estimates above and below the diagonal line show 

much stronger tendencies to cancel each other out than the KF estimates regardless of the 

magnitude of the truth, thereby reducing CB. Figure 4.8 Percent reduction in RMSE by 

CBPKF over KF for 
w 

=0.05, 0.10 (Figure 4.5 Example scatter plot of the KF (in black) and 

CBPKF (in red) estimates vs. the truth when only w,k 1   is assumed to vary in time.), 0.15 

and 0.20, Figure 4.9 Percent reduction in RMSE by CBPKF over KF for 
v 

=0.4 (Figure 4.6 

Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when 

only v,k  is assumed to vary in time.), 0.8, 1.2 and 2.4. and Figure 4.10 Percent reduction in 

RMSE by CBPKF over KF for =0.1, 0.2, 0.4 and 0.8 (Figure 4.7 Example scatter plot of 

the KF (in black) and CBPKF (in red) estimates vs. the truth when only k 1 is assumed to 

vary in time). show the percent reduction in RMSE by CBPKF over KF for the scatter plots 

for all parameters settings of ,  and  in Table 4.1, respectively. The figures 

indicate that CBPKF reduces significantly to substantially conditional RMSE over KF whether 

the time-varying changes occur in predictability, model uncertainty or observational 

uncertainty, and that the percent improvement by CBPKF is the largest under the time-

varying model uncertainty and the smallest under the time-varying observational uncertainty. 

Note also that, whereas CBPKF increases unconditional RMSE by up to about 3% under 

varying observational uncertainty (Figure 4.9 Percent reduction in RMSE by CBPKF over KF 

for 
v 

=0.4 (Figure 4.6 Example scatter plot of the KF (in black) and CBPKF (in red) 

estimates vs. the truth when only v,k  is assumed to vary in time.), 0.8, 1.2 and 2.4.), the 

increase is less than 1.5% under varying model uncertainty or predictability, and that CBPKF 

1, kw kv, 1k
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is inferior to KF only over an extremely small region around the median of the true state. The 

above indicates that, for the filtering problems for which performance over non-median 

regions in the state space is important, CBPKF is clearly superior to KF.  

Figure 4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three 

selected cases from the 2nd nonstationary experiment (this is for first case)., Figure 4.12 

Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases 

from the 2nd nonstationary experiment (this is for second case). and Figure 4.13 Scatter 

plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases from the 

2nd nonstationary experiment (this is for third case). show selected results from the 2
nd

 

nonstationary experiment. The parameter values used are shown in the respective figures. 

The positive impact of CBPKF is readily seen particularly for estimation of extreme values. It 

is revealed here that Figure 4.1 Scatter plots of the KF (in black) and CBPK (in red) 

estimates vs. the truth for the stationary cases of a) φk-1=0.8 and b) φk-1=0.9, while all other 

parameters are kept constant (see Table 4.1)., shown in the Introduction Section to illustrate 

CB, are the KF estimates shown in Figure 4.12 Scatter plots of the CBPKF and KF estimates 

vs. the verifying truth for three selected cases from the 2nd nonstationary experiment (this is 

for second case).. For Figure 4.12 Scatter plots of the CBPKF and KF estimates vs. the 

verifying truth for three selected cases from the 2nd nonstationary experiment (this is for 

second case). and Figure 4.13 Scatter plots of the CBPKF and KF estimates vs. the verifying 

truth for three selected cases from the 2nd nonstationary experiment (this is for third case)., 

it was necessary to optimize α. Optimization was carried out by visually matching the qqplots 

closely to the diagonal as described above. Figure 4.14 QQ plots of the CBPKF and KF 

estimates vs. the verifying truth for three selected cases from the 2nd nonstationary 

experiment (this is for first case)., Figure 4.15 QQ plots of the CBPKF and KF estimates vs. 

the verifying truth for three selected cases from the 2nd nonstationary experiment (this is for 
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second case). and Figure 4.16 QQ plots of the CBPKF and KF estimates vs. the verifying 

truth for three selected cases from the 2nd nonstationary experiment (this is for third case). 

show the qqplots associated with Fig 4.11, fig 4.12 and fig 4.13 respectively. In practice, the 

qqplots may be too irregularly shaped to readily assess closeness to the diagonal line. 

Various synthetic and real-world experiments carried out thus far for the CBPK family of 

algorithms (Brown and Seo 2010, Seo 2013, Seo et al. 2014, Kim et al. 2016) suggests that 

a reasonable match, in which the main body of the qqplot of the CBPKF estimates lies close 

to the diagonal line, generally suffices, and elaborate optimization is usually not necessary. 

The above strategy, however, may not work well if the state variables are highly skewed. In 

such cases, a somewhat smaller α may be necessary to avoid over-correcting CB which 

may produce excessively large variability in the CBPKF estimates (see Seo 2013 for 

examples for stationary cases). If computational requirements are not an issue, one may 

choose to explicitly optimize α under the user-chosen performance criteria. Such an effort, 

however, is beyond the scope of this work and is left as a future endeavor. Figure 4.17 

Percent reduction in RMSE by CBPKF over KF conditional on the true state exceeding the 

value on the x-axis for all 12 cases in the 2nd nonstationary experiment. shows the percent 

reduction in RMSE by CBPKF over KF conditional on the truth exceeding the value on the x-

axis for all 12 cases in the 2
nd

 nonstationary experiment (see Table 4.1). In the figure, one 

may divide the 12 cases into Groups 1 (Cases 1 to 4), 2 (Cases 5 to 8) and 3 (Cases 9 to 

12), from the nearest to the origin (least skillful) to the farthest (most skillful). Groups 1 

through 3 are associated with , respectively. It might seem counter-

intuitive that adding largest perturbations to (Group 3) is associated with the largest 

skill. This is because, with large perturbations,  often hits the lower bound (see 

Eq.(25)) which reinitializes the filter with very accurate state and error covariance. Note in 

Figure 4.17 Percent reduction in RMSE by CBPKF over KF conditional on the true state 
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exceeding the value on the x-axis for all 12 cases in the 2nd nonstationary experiment. that, 

for most cases, CBPKF is able to reduce conditional RMSE over KF by 10% or more, that, 

for the majority of the cases, the reduction is 20% or larger, and that the increase in 

unconditional RMSE by CBPKF is only about 3% or less.  

Figure 4.18 MSE and MSE decomposition of the errors in the CBPK and KF estimates for 

a selected case (see text) in the 2nd nonstationary experiment shows the MSE and MSE 

decomposition of the CBPKF and KF estimates for the cases shown in Figure 4.13 Scatter 

plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases from the 

2nd nonstationary experiment (this is for third case). and Figure 4.16 QQ plots of the CBPKF 

and KF estimates vs. the verifying truth for three selected cases from the 2nd nonstationary 

experiment (this is for third case).. MSE decomposition is based on the following identity 

(Murphy and Winkler, 1987, Nelson et al. 2010): 

       

        (30a) 

     

      (30b) 

where N denotes the total number of pairs of the estimates and verifying 

observations, fj and oj denote the j-th estimate and truth, respectively, mf and mo denote the 

mean of the estimate and truth, respectively, (f and (o denote the standard deviation of the 

estimate and truth, respectively, and ρ denotes the correlation between the estimate and the 

truth. In Eq.(30b), the first and second terms measure biases in the mean and in the 

univariate variability of the estimate, respectively, and the third term measures the strength 
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of covariation between the estimate and the truth (the smaller, the stronger). Figure 4.18 

MSE and MSE decomposition of the errors in the CBPK and KF estimates for a selected 

case (see text) in the 2nd nonstationary experiment. indicates that CBPKF significantly 

reduces conditional RMSE, that the reduction in RMSE is due mostly to the reduction in 

conditional bias in the mean, but that the CBPKF estimates are slightly more conditionally 

biased in standard deviation and have a slightly smaller strength of covariation. The slightly 

increased conditional bias in standard deviation may seem odd in that in general the CBPKF 

estimates represent the variability of the truth significantly better than the KF estimates in the 

unconditional sense. If the system is uncertain and/or the observations are not very 

informative, however, the filtered estimates often cannot capture the peaks and valleys in the 

variations of the true state. The CBPKF estimates, which generally have larger variability, 

hence may make excursions well below the conditioning threshold for the true state, thereby 

introducing additional biases in the standard deviation conditional on the threshold. The 

above picture, however, varies among different cases and may not be generalized. Figure 

4.19 Filtered variance from CBPKF vs. that from KF for the nonstationary case shown in 

Figure 4.12 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three 

selected cases from the 2nd nonstationary experiment (this is for second case).. shows the 

filtered variance from CBPKF vs. that from KF for the nonstationary case shown in Figure 

4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three selected 

cases from the 2nd nonstationary experiment (this is for first case).. Also, shown for 

reference is the one-to-one line. Note that the CBPKF error variance is very close to the KF 

error variance when the latter is small, but is progressively larger than the KF error variance 

as the latter increases. To assess the accuracy of the error variance estimates, is shown in 

Fig 4.20, fig 4.21 and fig 4.22 the box-and-whisker plots, from left to right in each figure, of 

the absolute error of the KF estimate, the KF error standard deviation, the absolute error of 

the CBPKF estimate, and the CBPKF error standard deviation conditional on the true state 



 

28 
 

exceeding the 99
th
 percentile (i.e., the largest 1%) for the three nonstationary cases shown 

in Figure 4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three 

selected cases from the 2nd nonstationary experiment (this is for first case)., Figure 4.12 

Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases 

from the 2nd nonstationary experiment (this is for second case). and Figure 4.13 Scatter 

plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases from the 

2nd nonstationary experiment (this is for third case)., respectively. Similar plots for all ranges 

of the true state show little difference between KF and CBPKF and are not shown. If the 

error variance estimates are unbiased, one should see in Fig 4.20, fig 4.21 and fig 4.22 the 

mean of the absolute error of the filtered estimate match the mean of the estimated error 

standard deviation. Fig 4.20, fig 4.21 and fig 4.22 indicates that, for the filtering results for 

the largest 1% of truth, the CBPKF error variances are more accurate than the KF error 

variances for all three cases of Fig 4.20, fig 4.21 and fig 4.22, but that, for the less than very 

skillful cases of Fig 4.20, fig 4.21, both KF and CBPKF significantly underestimate error 

variance for the largest 1% of the events. 

 

 

 

 

 



 

29 
 

Table 4.1 Parameter settings used in the synthetic experiments 

Experiment 
type 

φk-1 σw,k-1 σv,k n ϒφ ϒw ϒv w 1 
obs 

Stationary 0.5, 0.1 1.5 1, 10, 0 0 0 [0.01,0.60] 

0.7, 20, 30 
0.8, 

0.9, 

0.95 

Non- 
stationary 1 

 
 

 
0.7 

 
 

 
0.1 

 
 

 
1.5 

 
 

 
10 

0.1, 

0.2, 
0.4, 
0.8 

0 0 [0.09,0.33] 

0 0.05, 

0.1, 
0.15 

0 [0.00,1.00] 

0 0 0.4, 

0.8, 
1.2, 
1.6 

[0.00,1.00] 

Non- 0.1, 0.01, 0.4, [0.00,1.00] 

stationary 2 0.8 0.1, 0.2 1.2 
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Figure 4.1 Scatter plots of the KF (in black) and CBPK (in red) estimates vs. the 

truth for the stationary cases of a) φk-1=0.8 and b) φk-1=0.9, while all other parameters are 

kept constant (see Table 4.1). 
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Figure 4.2 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the 

stationary case of φk-1=0.8, while all other parameters are kept constant (see Table 4.1). 

 

Figure 4.3 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the 

stationary case of φk-1=0.9, while all other parameters are kept constant (see Table 4.1). 
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Figure 4.4 Percent reduction in RMSE by CBPK over KF conditioned on the truth exceeding 

the value on the x-axis for the stationary cases of φk-1 of 0.7, 0.8 (Figs 5.1a, 5.2), 0.9 (Fig 5.1b, 5.3) 

and 0.95. 

 

Figure 4.5 Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth 

when only w,k 1   is assumed to vary in time. 
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Figure 4.6 Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth 

when only v,k  is assumed to vary in time. 

 

Figure 4.7 Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth 

when only k 1 is assumed to vary in time 
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Figure 4.8 Percent reduction in RMSE by CBPKF over KF for 
w 

=0.05, 0.10 (Figure 5.5), 

0.15 and 0.20 

 

Figure 4.9 Percent reduction in RMSE by CBPKF over KF for 
v 

=0.4 (Figure 5.6), 0.8, 1.2 

and 2.4. 
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Figure 4.10 Percent reduction in RMSE by CBPKF over KF for =0.1, 0.2, 0.4 and 

0.8 (Figure 5.7). 

 

Figure 4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three 

selected cases from the 2nd nonstationary experiment (this is for first case). 
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Figure 4.12 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three 

selected cases from the 2nd nonstationary experiment (this is for second case). 

 

Figure 4.13 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three 

selected cases from the 2nd nonstationary experiment (this is for third case). 
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Figure 4.14 QQ plots of the CBPKF and KF estimates vs. the verifying truth for three selected 

cases from the 2nd nonstationary experiment (this is for first case). 

 

Figure 4.15 QQ plots of the CBPKF and KF estimates vs. the verifying truth for three selected 

cases from the 2nd nonstationary experiment (this is for second case). 
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Figure 4.16 QQ plots of the CBPKF and KF estimates vs. the verifying truth for three selected 

cases from the 2nd nonstationary experiment (this is for third case). 

 

Figure 4.17 Percent reduction in RMSE by CBPKF over KF conditional on the true state 

exceeding the value on the x-axis for all 12 cases in the 2nd nonstationary experiment. 

 



 

39 
 

 

Figure 4.18 MSE and MSE decomposition of the errors in the CBPK and KF estimates for a 

selected case (see text) in the 2nd nonstationary experiment. 
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Figure 4.19 Filtered variance from CBPKF vs. that from KF for the nonstationary case shown in 

Figure 5.12. 

 

Figure 4.20 Box-and-whisker plots of the absolute error of the KF estimate (black left), KF 

error standard deviation (black right), absolute error of the CBPKF estimate (red left) and CBPKF error 

standard deviation (red right) for the case in Fig 5.11. 
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Figure 4.21 Box-and-whisker plots of the absolute error of the KF estimate (black left), KF 

error standard deviation (black right), absolute error of the CBPKF estimate (red left) and CBPKF error 

standard deviation (red right) for the case in Fig 5.12. 

 

Figure 4.22 Box-and-whisker plots of the absolute error of the KF estimate (black left), KF 

error standard deviation (black right), absolute error of the CBPKF estimate (red left) and CBPKF error 

standard deviation (red right) for the case in Fig 5.13. 
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Chapter 5 Conclusion and Future Recommendation 

Being a least squares solution, Kalman filter (KF) is subject to conditional biases (CB) 

that arise from the error-in-variable, or attenuation, effects. These effects occur if the model 

dynamics are highly uncertain, the observations have large errors and/or the system is not 

very predictable. In modeling and observation of environmental systems, the above effects 

are the norm rather than the exception. As such, KF or its variants often suffer from CB with 

potentially very large negative impact on estimation and prediction of extremes. In this work, 

CB-penalized Kalman filter is introduced, or CBPKF, for improved state estimation and 

prediction of extremes. CBPKF results from CB-penalized linear estimation which minimizes 

a weighted sum of error covariance and expectation of Type-II CB squared, 

CBEVJ   , where 
EV , 

CB  and α denote the error covariance, the quadratic 

penalty for Type-II CB, and the weight for the latter, respectively (Seo 2013). One may 

consider CB-penalized linear estimation as an extension of classical Fisher estimation 

(Schweppe 1973) from which KF results in that for minimization of 
EV , the a priori 

covariance of the state vector is assumed non-informative as in Fisher estimation, but for 

minimization of 
CB , the prior is assumed informative. To comparatively evaluate CBPKF 

with KF, we designed and carried out a set of synthetic experiments for one-dimensional 

(1D) state estimation under the idealized conditions of normality and linearity. 

The results show that CBPKF reduces root mean square error (RMSE) over KF by 

10 to 20% or more over the tails of the distribution of the true state, and that, as expected, 

the improvement comes from reduced CB. For dynamical cases, it was found that CBPKF 

performs comparably to KF in the unconditional sense; CBPKF increases RMSE over all 

ranges of the true state only by 3% or less. The results indicate that CBPKF may be 

expected to significantly improve analysis and prediction of extreme states in uncertain 
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systems with little deterioration in unconditional performance, and should be favored over KF 

if improved performance over the tails of the distribution of the true state is desired. CBPKF 

are not without disadvantages, however. In its current form, CBPKF additionally requires 

inversion of (mxm) and (nxn) matrices, which KF does not, where m and n denote the 

number of state variables and observations, respectively. Additional research is needed to 

explore computationally more efficient reformulation or approximation. For maximum 

performance, it is necessary in CBPKF to optimize the weight, α, which requires hindcasting. 

If computational requirements are not an issue, one may optimize α explicitly under the 

performance criteria desired by the user. In this work, is used a very simple procedure for 

iterative reduction of α. Additional research is needed to develop efficient procedures for 

iterative reduction and optimization of α. It may also be possible to avoid hindcasting and 

optimization by specifying α based on (near) real-time assessment of CB using real-time 

observations for which additional research is needed. In the current formulation of CBPKF, α 

is assumed to be a scaler. Additional work is needed to generalize the formulation to allow α 

in a matrix form. The evaluation of CBPKF in this work was limited only to 1D synthetic 

experiments under the idealized conditions of linearity and normality. Multi-dimensional 

synthetic and real-world experiments are needed to assess performance for a wide range of 

higher-dimensional problems and under real-world conditions. Lastly, as with KF, CBPKF 

may be cast into extended and ensemble formulations.  
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APPENDIX A 

Derivation of Conditional Bias-Penalized Fisher-Like Linear Estimator 

 

Here is derived the Fisher-like CB-penalized linear estimator in the context of 

CBPKF (see Appendix B) with additional details that were not presented in Seo (2013). The 

estimator sought is of the form, where  denotes the (mx1) vector of the 

estimated states, W denotes the (mx(n+m)) weight matrix and Z denotes the ((n+m)x1) 

observation vector. The particular choice of the dimensionality of Z is to relate to CBPKF. 

Here we assumed the following linear observation equation: 

Z=HX+V       (A1) 

where X denotes the (mx1) vector of the true state with E[X]=MX and Cov[X,X
T]=ΨXX, 

H denotes the ((n+m)xm) linear observation equation matrix, and V denotes the ((n+m)x1) 

zero-mean measurement error vector with Cov[V,V]=R. Assuming Cov[X,V]=0, the Bayesian 

estimator for X, or , is given by (Schweppe 1973): 

     (A2) 

where W denotes the (mx(n+m)) weight matrix that minimizes the error covariance. 

The error covariance matrix for , , where the 

variables subscripted denote the random variables on which the expectations operate, is 

given by: 

WZX * *
X

*
X

)(*
ZX MZWMX 

*
X

]))([( **

, *

T

XXEV XXXXE 
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         (A3) 

The quadratic penalty due to Type-II CB, , is given by: 

  (A4) 

Using (A2), we may rewrite the CB in (A4) as: 

  (A5) 

We model  in (A5) using the Bayesian estimator again as: 

    (A6) 

where . With the above, we may now write  as: 

   (A7) 

where  and . In CB-penalized estimation, we minimize 

 where α is some positive weighting coefficient: 

 (A8) 

The weighting coefficient, α, may be made into an (mxm) matrix if it is necessary to 

give different weights to the CB penalty for different state variables. In this work, it is 
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assumed for simplicity that the weights are the same for all state variables. Differentiating Σ 

with respect to W and setting it to 0, we have: 

   (A9) 

Replacing W in (A8) with (A9), we have for the estimation variance for the CB-

penalized estimate: 

   (A10) 

where 

     (A11) 

  (A12) 

Using the matrix inversion lemma, we may rewrite  in (A10) as: 

    (A13) 

Replacing W in (A2) with (A9) and after some matrix manipulations, we have for 

: 

  (A14) 

where 

1])[(  CRHHAHW
T

XX

TT

XX 

XX

T

XX

T

XXXX HHHH   ˆ]ˆˆ[ˆ)1( 1
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TT
HH  1ˆ 

T
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   (A15) 

To render the Bayesian solution to a Fisher solution, we let  vanish in (A12) 

and (A14) in the brackets only, which are associated exclusively with the penalty for error 

covariance in (A3), and arrive at the following intermediate solution for CB-penalized Fisher-

like linear estimation: 

      (A16) 

    (A17) 

where 

     (A18) 

To obtain the estimator of the form, , we impose the unbiasedness 

condition, , or equivalently: 

       (A19) 

It is readily seen in (A17) that the above unbiasedness condition is satisfied by 

replacing  with  and dropping ∆.  The Fisher-like solution for CB-

penalized linear estimation is hence given by: 

      (A20) 

XXXZX
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     (A21) 

The development above indicates that CB-penalized Fisher-like linear estimation is 

analogous to Fisher estimation in which the observation matrix, H, and the measurement 

error covariance matrix, R, are modified by the a priori knowledge of ΨXX and ΨXZ, and the 

estimation variance is scaled by a factor of B. Because (A20) and (A21) are not based on 

explicit constrained minimization, they may not represent the optimal solution in the least 

squares sense. It can be shown, however, that for m=1 and α=0.5 with perfect observations 

(A21) is identical to the conditional bias-penalized kriging (CBPK) estimate which is based 

on explicit constrained minimization (Seo 2013, Seo et al. 2014, Kim et al. 2016), and that 

(A20) converges to the CBPK estimation variance as . 

APPENDIX B 

Derivation of Conditional Bias-Penalized Kalman filter (CBPKF) 

Here we derive CBPKF from the Fisher-like solution of Appendix A for estimation of 

the (mx1) true state, , using the (nx1) observation, Zk, and (mx1) model prediction, 

,  and their (nxn) and (mxm) error covariances, , and , 

respectively. The observation equation is given by  where it is assumed 

that the true state, , is independent of the measurement error, Vk, or the model prediction 

error, , so that we may write, e.g., . Decomposing the 

structure matrix H in (A1) into the first submatrix that relates the observations to the true 

states, H1=Hk, and the second submatrix that relates the model-predicted states to the true 

ZHHHX
TT 111* ˆ]ˆ[  

n
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ˆ

kkX ][ T
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states, H2=I, we have for the mx(n+m) modified structure matrix,  in 

(A11): 

   (B1) 

    (B2) 

where the (mxn) and (mxm) covariance matrices,  and , denote 

 and , respectively. An obvious choice for  in practice is 

 obtained from propagating  using the dynamical model with model errors as 

appropriate. With , the (nxn), (nxm), (mxn) and (mxm) submatrices, Λ11, Λ12, 

Λ21 and Λ22, of the (n+m)x(n+m) revised error covariance matrix,  in (A12), are given by: 

    (B3) 

     (B4) 

     (B5) 

     (B6) 

CBPKF requires that Λ11 and Λ22 to be positive semidefinite (see Appendix C) which 

yields the following constraint for α from (B3) and (B6): 
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  (B7) 

where Tr[ ] denotes the trace of the symmetric matrix bracketed and the second 

term in the upper bound is ~0.618. Note in (B7) that, if the states are perfectly observed so 

that we have , α is reduced to zero and hence CBPKF becomes KF. Similarly, if 

the model forecast is diffuse so that we have , CBPKF is again reduced to KF. 

The (mx(n+m)) non-normalized weight matrix,  in (A21), where  

and  are the (mxn)  and  (mxm) non-normalized weight submatrices for Zk and , 

respectively, may be evaluated by: 

   (B8) 

   (B9) 

In the above, the inverse of the (n+m)x(n+m) modified error covariance matrix Γ is 

given by:  (B10) 

where  

     (B11) 

The (mxm) matrix,  in (A20) and (A21), is given by: 
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 (B12) 

Positive semidefiniteness of  and nonnegativity of the CBPK gain (see 

B20) require: 

     (B13) 

      (B14) 

From (A20), we then have for the filtered variance: 

   (B15) 

where 

    (B16) 

In (B15),  is positive semidefinite if the following holds: 

 

    (B17) 

Noting that the minimum for the right-hand side of (B20) is zero, we may reduce 

(B20) to  which is identical to the positive semidefiniteness conditions for 

(B6). As such, (B7) suffices. 
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From (A21), we have for the filtered estimate: 

    (B18) 

It can be easily shown using the matrix inversion lemma that (B18) can be rewritten 

in the more familiar form: 

    (B19) 

In the above, the CBPK gain, , is given by: 

  (B20) 

APPENDIX C 

Alternative Form of Conditional Bias-Penalized Kalman filter (CBPKF) 

 

Here we express CBPKF in an alternative form for direct comparison with KF by 

factorizing  in (A20) and (A21) as follows: 
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    (C1) 

In the above, we could have factorized  such that the first and third matrices are 

lower and upper matrices, respectively, which would have yielded an alternative but 

equivalent expression. With (C1), it can be easily shown that the CBPKF error covariance 

and estimate,  and , respectively, are given by: 

      

       (C2) 

      

       (C3) 

In the above, ,  and  denote the “pseudo” updated error covariance, 

updated states and forecast error covariance, respectively, defined solely to render the 

CBPKF solution to look like the familiar KF solution below: 

       

        (C4) 
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       (C5) 

      

       (C6) 

In the above, the forecast error covariance is given by: 

   (C7) 

Positivity of the CBPK gain in (C6) requires that  in (B3), (from the 

alternative expression for (C1)) in (B6) and  in (C7), respectively, are positive 

semidefinite. The third condition is already identified in (B14). The first two conditions are 

used in (B7). The alternative development described above indicates that CBPKF is a 

combination of KF with modified measurement and model forecast error covariances as 

shown in (C4), (C6) and (C7), and adjustment to the resulting KF solution according to (C2) 

and (C3). 
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