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ABSTRACT

Image Reconstruction from Incomplete Radon Data and Generalized Principal

Component Analysis

Sl-ghi Choi, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Gaik Ambartsoumian

Image reconstruction in various types of tomography requires inversion of the

Radon transform and its generalizations. While there are many stable and robust

algorithms for such inversions from reasonably well sampled data, most of these algo-

rithms fail when applied to limited view data. In the dissertation we develop a new

method of stable reconstruction from limited view data for functions, whose support

is a union of finitely many circles. Such images, among other things, are good approx-

imations of tomograms of certain types of tumors in lungs. Our method is based on

a modified version of GPCA (Generalized Principal Component Analysis) and some

results from algebraic geometry.
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CHAPTER 1

INTRODUCTION

1.1 Computerized Tomography

The computerized axial tomography (CAT or CT) is recovering internal images

of a patient by using X-ray beams measurements. When an X-ray beam passes

through the patient, the CT scanner measures the input and output intensities. Using

these intensities and Beer’s law, one can obtain the integrals of X-ray attenuation

coefficient of the patient’s body along various lines corresponding to the trajectories

of the beams. These integrals are then used to recover the attenuation coefficient,

which in its turn is used to generate an internal image of the patient. Below we

describe this procedure in detail.

Suppose an X-ray passes through some medium located between the position x

and the position x+△x (here x is a vector). Let f(x) be the attenuation coefficient

of the medium located at x and let I(x) be the intensity of the beam at x. Then the

Beer’s Law states that the loss of intensity from x to x+△x is

△I ≈ −f(x)× I(x)×△x (1.1)

and as |△x| → 0, we have the following differential equation:

dI

dx
= −f(x)× I(x). (1.2)

Integrating both sides of this equation we obtain

−
∫
l

dI

I
=

∫
l

fds, (1.3)

where l is the line corresponding to the X-ray beam and ds is the length measure

along that line.
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Moving the X-ray source and receiver around the medium one can measure

integrals of f(x) along different lines.

1.2 The Radon Transform and Related Concepts

Definition 1.2.1. For t ∈ R and θ ∈ [0, 2π], denote by lt,θ the line that passes through

the point (t cos θ, t sin θ) and is perpendicular to the unit vector −→n = ⟨cos θ, sin θ⟩.

Figure 1.1. Line l using t and θ.

Figure 1.2. lt,θ and l−t,θ+π.
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Using this definition, we parameterize each line by its signed distance t from

the origin and the polar angle θ of the normal to the line. However, we have to keep

in mind that, for each line there are two ways to parameterize it, lt,θ and l−t,θ+π (see

Figure (1.2)).

Definition 1.2.2. For a given function f , whose domain is the plane, the Radon

transform of f is defined, for real number t and θ ∈ [0, 2π] by

Rf(t, θ) :=

∫
lt,θ

fds =

∫ +∞

s=−∞
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))ds. (1.4)

Figure 1.3. Radon transform of f .

Notice from Figures (1.2) and (1.3), that any point P on lt,θ can be represented

in the form of t · −→n + s · −→n ⊥ = (t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) by choosing

appropriate value of s ∈ (−∞,+∞), where −→n ⊥ is the normal unit vector to −→n .
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Using this definition, the data measured by CAT scanner corresponds to the

Radon transform of the X-ray absorption coefficient. Hence, to recover the absorption

coefficient and generate images using CAT, one needs to find an inverse of the Radon

transform.

There are many ways to invert the Radon transform. One of the standard

options is the so-called filtered back projection formula. To explain that formula we

first need to define the concept of back projection.

Definition 1.2.3. Let h = h(t, θ) be a function defined on the set of lines in the

plane, i.e. a function with independent variables t ∈ R and θ ∈ [0, 2π]. The back

projection of h at the point (x1, x2) is defined by

Bh(x1, x2) :=
1

π

∫ π

θ=0

h(x1 cos(θ) + x2 sin(θ), θ)dθ. (1.5)

Figure 1.4. Back projection of h at (x1, x2).

From Figure (1.4) it is easy to notice, that Bh(x1, x2) is the average value of

h(x1, x2) over the set of all lines that are passing through the point (x1, x2).
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Last we introduce the Fourier transform and inverse Fourier transform which

are used in the inversion of the Radon transform.

Definition 1.2.4. For a given function F such that
∫∞
−∞ |F (t)|dt < ∞, the Fourier

transform of f is defined, for each real number ω, by

FF (ω) :=

∫ ∞

−∞
F (t)e−iωtdt (1.6)

Definition 1.2.5. For a function G for which
∫∞
−∞ |G(ω)|dω < ∞, the inverse Fourier

transform of G is defined, for each real number t, by

F−1G(t) :=
1

2π

∫ ∞

−∞
G(ω)eiωtdω (1.7)

1.3 The Filtered Back Projection and Local Tomography Formulas

There are many different formulas for inversion of the Radon transform. The

most famous and commonly used one is the so-called Filtered Back Projection (FBP)

formula. FBP is formed by the Radon transform, Fourier transform, inverse Fourier

transform and back projection as follows:

Theorem 1.3.1. [6][9] For a suitable function f defined in the plane and real numbers

x1 and x2,

f(x1, x2) =
1

2
B[F−1[|ω|F(Rf)(ω, θ)]](x1, x2). (1.8)

Remark 1. Here the Fourier transform is applied to Rf with respect to the first

variable t, while the second variable θ is treated as a parameter. Similarly, the inverse

Fourier is applied with respect to the first variable.

Remark 2. Notice, that before applying the back projection operator one has to switch

from polar to Cartesian coordinates.
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Remark 3. In the above theorem, the expression “suitable function” means that the

integrals in the Radon, Fourier and inverse Fourier transforms are convergent.

Figure 1.5. [2] Image reconstruction using the filtered back projection formula. (a)
is the original image f(x), (b) is the reconstruction of f(x) using discretized version
of full data θ ∈ [0, 2π] and t ∈ [−

√
2,
√
2] and (c) is the reconstruction of f(x) using

discretized partial data θ ∈ [0, π
2
] and t ∈ [−

√
2,
√
2].

Filtered back projection formula can recover the image from full Radon data,

i.e. the Radon transform of the function should be known for a reasonably well

sampled set of θ ∈ [0, 2π] and t ∈ [−
√
2,
√
2]. With partial data, e.g. when the

Radon transform is not known for a large interval of angles θ, (see Figure (1.5) part

(c)), the back projection formula will give us an image with high distortion and it will

be far different from the original image (e.g. see [11]). Therefore, we need another

method for the image reconstruction in the case, when only limited data is available.

Such cases are common in medical imaging, e.g. due to presence of medical implants

in the body, which obstruct measurements. In some other cases one may deliberately

avoid sending x-rays through certain parts of the body sensitive to radiation.
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In many applications typically it suffices to locate the boundaries (discontinu-

ities) of f(x) instead of recovering the whole f(x). One possible method to recover

the boundary of f(x) is the use of the so-called local tomography formula

Λf(x1, x2) = −1

2
B[∂

2(Rf)

∂t2
(t, θ)](x1, x2). (1.9)

It is well known, that while Λf is not equal to f , it is however a fairly good

approximation of f (e.g. see [2, 8, 10, 12]). Namely, when applied to full Radon data,

Λf has singularities exactly in the same locations where f does, hence it correctly

catches the major features of the image, including the shapes and edges. Moreover,

the edges in Λf are more emphasized in comparison to those of f .

Figure 1.6. [2] Image reconstruction using local tomography formula.

In Figure (1.6) (a) is −∂2(Rf)
∂t2

which emphasizes the boundary of Rf . (b) is

the graph of Λf(x1, x2), when we use local tomography formula with full Radon data

θ ∈ [0, 2π] and t ∈ [−
√
2,
√
2]. We can see the boundary of f(x) is emphasized. (c) is

the graph of Λf(x1, x2), when we use local tomography formula with partial Radon

data θ ∈ [0, π
2
] and t ∈ [−

√
2,
√
2].
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CHAPTER 2

FORMULATION OF THE PROBLEM AND MAIN RESULTS

2.1 Problems of Limited View Reconstruction of Nodular Images

One of the major problems in modern image reconstruction is related to usage of

prior information to improve the inversion process. In this dissertation we study the

problem of using the partial Radon data to recover so-called nodular images. These

types of images are represented by characteristic functions of finite unions of circles,

which among other things, are good approximations for certain types of tumors in

lungs.

Figure 2.1. [2] (a) The original image of f , (b) the Radon transform of f , (c) the
negative 2-nd derivative of Rf . It is easy to notice that in (b) the boundary of the
sinogram does not stand out (has poor contrast), while in (c) the boundary of the
sinogram is emphasized (has excellent contrast).
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In the case of nodular images, even when using partial data, a part of the

boundary of f(x) can be reconstructed without much distortion. However, if we try

to recover the boundary of f(x) using sample points from Λf(x1, x2), it will require

non-linear clustering and regression. Namely, the algorithm should be able to organize

the points of the boundary of the domain into groups according to the circles to which

they belong (non-linear clustering). Then after this separation has been accomplished,

one would have to generate the circles from sample points corresponding to each one

of them (non-linear regression). These tasks are nontrivial, unstable and very time

consuming (e.g. see [1, 5] and the references there).

However, if instead of working in the image domain of (x1, x2) one does the work

in the Radon data domain of (t, θ) these tasks can be handled in a linear fashion.

First let us recall that the set of lines on the plane parameterized by (t, θ) can be

naturally represented by points on a cylinder [0, 2π]× R in R3.

Figure (2.2) shows the correspondence of a line lt,θ in the (x1, x2) plane and a

point on the cylinder [0, 2π]×R. We first match a line lt,θ to a point (t, θ) on the (θ, t)-

plane and then we “glue” the two vertical lines t = 0 and t = 2π. Then the point

(θ, t) will be on a cylinder with new coordinates (cos θ, sin θ, t). This cylinder has

radius 1 and infinite height t ∈ (−∞,∞). Since the line lt,θ can be also represented

by l−t,θ+π, one line lt,θ will now correspond to two points on this cylinder.

Theorem 2.1.1. [2] The set of lines tangentially touching a circle in the plane is

represented on the manifold of lines by points of intersections of a cylinder and two

parallel planes.

9



Figure 2.2. Correspondence of a line on x1x2-plane and a point on the cylinder.

Proof. Consider a circle with a center P (a, b) and radius r. Let ω = (a cos θ, b sin θ)

be the unit normal vector to tangent line L, t is the distance from the origin to the

line L (see Figure (2.3)). Then we have the following two equations.

r + ⟨P, ω⟩ .
= r + a cos θ + b sin θ = t (2.1)

when using (θ, t) for line L and

r − ⟨P, ω⟩ .
= r − a cos θ − b sin θ = −t (2.2)

10



when using (θ + π,−t) for line L.

Based on equations (2.1) and (2.2), we will have intersection of two parallel

planes

ax̃+ bỹ − z̃ = −r

and

ax̃+ bỹ − z̃ = r

and the cylinder x̃ = cos θ, ỹ = sin θ and z̃ = t.

Figure 2.3. [2] Parametrization of lines tangentially touching a circle.

Based on Theorem (2.1.1), when we convert the lines tangent to a circle to

points on the cylinder, those points are located on the intersection of the cylinder

with two parallel planes. If we can recover an equation of one of these planes, then

we will immediately get the parameters (a, b, r) of the circle, hence uniquely recover

f(x).

Figure (2.6) shows the process of reconstructing f(x). We first use the points

on the cylinder to reconstruct the equation of the plane. This is done using a modified

version of the GPCA (Generalized Principal Component Analysis). Using Theorem

11



Figure 2.4. [2] Tangent lines of circles and representation on the cylinder.

(2.1.1) and the equations of parallel planes, we obtian the parameters (a, b, r) of the

circle, hence recovering f(x) on x1x2-plane.

In the case when f(x) is a characteristic function of a union of more than one

circle, we will have to recover multiple planes at the same time. This process will

require linear regression and linear clustering.

2.2 Circular Radon Transform

Definition 2.2.1. For a given function f , whose domain is the plane, the circular

Radon transform of f is defined, for real numbers t ∈ [0, 2] and θ ∈ [0, 2π] by

RCf(t, θ) :=

∫
Ct,θ

f ds, (2.3)

where Ct,θ is the circle of radius t centered at (cos θ, sin θ) and ds is the elementary

arc length.

12



Figure 2.5. A tangent line corresponds to two points on the cylinder coordinate
system.
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Figure 2.6. Reconstruction process.

Theorem 2.2.1. Let S be the set of circles centered on the boundary of the unit disc,

which tangentially touch another circle located inside the unit disc. Then S can be

represented in a 4-dimensional Euclidean space by points located on intersections of

2 hyper-planes and a fixed smooth surface of co-dimension 2.

14



Notice, that although these hyper-planes are not parallel, their intersection

happens only at z̃ = 0, i.e. for t = 0, which is outside of our region of interest. We

assume that all phantoms are supported away from the unit circle.

Proof. Consider a circle P with a center (a, b) and radius r. Let θ be the angle of the

unit vector to the center of the tangent circle C from x1-axis. t is the radius of the

circle C. (see Figure (2.7) and (2.8)). Then we have the following two equations.

(cos θ − a)2 + (sin θ − b)2 = (t+ r)2 (2.4)

when using a circle C that does not contain circle P and

(cos θ − a)2 + (sin θ − b)2 = (t− r)2 (2.5)

when using a circle C that contains circle P .

Based on equations (2.4) and (2.5), we will have 2 hyper-planes that intersect

with a fixed smooth surface of co-dimension 2 such as

−2ax̃− 2bỹ − γ̃ + 2rz̃ = r2 − a2 − b2 − 1

and

−2ax̃− 2bỹ − γ̃ − 2rz̃ = r2 − a2 − b2 − 1

where x̃ = cos θ, ỹ = sin θ, z̃ = t and γ̃ = t2.

2.3 Generalized Principal Component Analysis

In order to recover the equations of planes from the points on the cylinder,

we use a modified version of the Generalized Principal Component Analysis(GPCA).

15



Figure 2.7. Circle C that does not contain circle P .

In the description of the standard GPCA below we closely follow the exposition of

the material in dissertation [13]. At the same time we explain which parts of the

standard method do not work for our problem and what modifications we introduce

to overcome those limitations.

Suppose X = xj ∈ RKN
j=1 is a collection of points on the cylinder. We will

call xj’s as sample points. Let the (unknown) number of hyper-planes be n > 1 and

Si’s denote these hyper-planes in R3 for i = 1, . . . , n. GPCA consists of the three

following steps.

1. Identify the number of subspaces n.

2. Identify a basis (or a set of principal components) for each hyper-plane Si

(or equivalently S⊥
i ).

16



Figure 2.8. Circle C that contains circle P .

3. Group or segment the given N data points into the subspace(s) to which

they belong.

Parts (1) and (3) are essentially equivalent to linear clustering, while (2) corre-

sponds to linear regression.

To explain the essence of our method, in the text that follows we will consider a

few examples, one with K = 3 and another with K = 4. For part (2) we will identify

a normal vector S⊥
i for each hyper-plane Si.

Figure (2.9) illustrates GPCA for 3 hyper-planes in R3.

17



Figure 2.9. [13] K=3 and n=3.

We will look at the details of three steps of GPCA in order to apply this in

our case. First, finding number of hyperplanes. Let bi be a normal vector for each

hyper-plane Si. For each Si, we can describe using bi.

Si = {x ∈ RK : bT
i x = 0}.

Therefore, if x is in one of the hyper-planes Si, then it should satisfy the following

(bT
1 x = 0)

∨
(bT

2 x = 0)
∨

· · ·
∨

(bT
nx = 0)

or

pn(x) =
n∏

i=1

(bT
i x) = 0.

Definition 2.3.1. [13] Given n andK, the Veronese map of degree n, νn : RK → RMn ,

is defined as:

νn : [x1, x2, . . . , xK ]
T 7→ [. . . ,xn, . . .]T , (2.6)

18



where xn is a monomial of the form xn1
1 xn2

2 · · · xnK
K with n chosen in the degree-

lexicographic order and Mn =
(
n+K−1

n

)
.

Here we will give an order to the pn(x) using Veronese map.

pn(x) = νn(x)
Tcn =

∑
cn1,n2,...,nK

xn1
1 xn2

2 · · · xnK
K = 0.

We consider a matrix Lncn where j-th row is pn(x
j).

Lncn =



νn(x
1)T

νn(x
2)T

...

νn(x
N)T


cn = 0, (2.7)

where Ln ∈ RN×Mn . Recovering the coefficients of pn(x), cn1,n2,...,nK
is directly related

to recovering the normal vectors bi’s. But before we recover cn1,n2,...,nK
from Lncn = 0,

we need to know the number of hyperplanes, n. By applying the following lemma,

we can derive n.

Lemma 2.3.1. [13] Assume that a collection of N ≥ Mn − 1 sample points {xj}Nj=1

on n different K − 1 dimensional subspaces of RK is given. Let Li ∈ RN×Mi be the

matrix defined in (2.3), but computed with the Veronese map νi(x) of degree i. If the

sample points are in general position and at least K − 1 points correspond to each

hyperplane, then:

rank(Li) =


> Mi − 1, i < n,

= Mi − 1, i = n,

< Mi − 1, i > n.

(2.8)

Here general position is when N ≥
∑n

i=1 ki sample points are in
∪n

i=1 Si and ki points

span Si.

Once we find the number of hyper-planes, we will know which Ln to use. We

can compute cn from Lncn = 0 and we should have a unique solution cn, if we can find

19



n that satisfies Lemma (2.3.1). The second step of GPCA is recovering the normal

vectors bi’s from cn. We will first recover the last two entries of each vector bi and

then the remaining K − 2 entries. We consider all the coefficients of pn(x) that are

related to last two entries of bi’s which are last n + 1 coefficients of pn(x) or entries

of cn.

[c0,...,0,n,0, c0,...,0,n−1,1, · · · , c0,...,0,0,n]T ∈ Rn+1.

Add all terms that use that coefficient then,

∑
c0,...,0,nK−1,nK

x
nK−1

K−1 x
nK
K =

n∏
i=1

(biK−1xK−1 + biKxK).

Where nK−1 + nK = n. Here, we divide by xn
K and let t = xK−1

xK
then we have

qn(t) = c0,...,0,n,0t
n + c0,...,0,n−1,1t

n−1 + · · ·+ c0,...,0,0,n =
n∏

i=1

(biK−1t+ bK).

Based on the roots of qn(t), we can derive (biK−1, biK)’s. Roots of qn(t) depend on

the first coefficients of qn(t). There are three possible cases for the coefficient and for

each we can find (biK−1, biK)’s in the following way.

1. If c0,...,0,n,0 ̸= 0 then we will have n roots form qn(t)
c0,...,0,n,0

and we can conclude

as (biK−1, biK) = (1,−ti) for each root ti where i = 1, ldots, n.

2. If c0,...,0,n,0 = 0 then let l+1 to be the first coefficients of qn(t) that is not zero

and ti’s are the roots of qn(t) divided by the (l+1)-st coefficient where i = l+1, . . . , n.

Then we conclude as (biK−1, biK) = (0, 1) for i = 1, ldots, l and (biK−1, biK) = (1,−ti)

for each root ti where i = l + 1, . . . , n.

3. If all the coefficients of qn(t) are zero then we conclude as (biK−1, biK) = (0, 0)

for all i = 1, . . . , n.

Using (biK−1, biK)’s, we will derive the rest of the K−2 entries of bi’s. Suppose

we know bij for i = 1, . . . , n, j = J + 1, . . . , K where J starts from K − 2. Here we
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consider the partial derivatives of pn(x) with respect to xJ evaluated at x1 = x2 =

· · · = xJ = 0 then

∑
c0,...,0,nJ+1,...,nK

x
nJ+1

J+1 · · · xnK
K =

n∑
i=1

biJg
J
i (x), (2.9)

where

gJi (x)
i−1∏
l=1

(
K∑

j=J+1

bljxj

)
n∏

l=i+1

(
K∑

j=J+1

bljxj

)
. (2.10)

Let VJ
i be the coefficient vector of gJi (x). By (2.9), we get

[
VJ
1 VJ

2 · · · VJ
n

]


b1J

b2J
...

bnJ


=



c0,...,0,1,n−1,0,...,0

c0,...,0,1,n−2,1,...,0

...

c0,...,0,1,0,0,...,n−1


Since we know bij for i = 1, . . . , n, j = J+1 . . . , K, we also know the vectors {VJ

i }ni=1

and we can derive {biJ}ni=1. This concludes the finding of normal vectors bi’s.

Our main purpose of using the GPCA is for finding the hyper-planes equations,

which is done by finding the normal vectors. However, there are two problems in the

process of applying GPCA to our case.

Problem (1) Our hyper-planes never pass through the origin.

Problem (2) Sample points must satisfy the so-called Brill’s equations in order

to apply Lemma (2.3.1).

Problem (1) can be solved by increasing the dimension of the sample points

and hyper-planes. First, increase the dimension of sample points by adding 1 at

the last element. For example, our sample points are in R3 and are in the form of

xJ = {x1, x2, x3}. For each sample point xJ , we consider new sample point xJ
1 =

{x1, x2, x3, 1} that are from R4. We apply our new sample points X1 = {xJ
1 ∈ R4}Nj=1

at GPCA and we will have hyper-planes {S ′
i}ni=1 from R4. Each S ′

i contains Si and if
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we project S ′
i on R3, we can compute Si. For example, let a1x1+a2x2+a3x3+a4x4 = 0

be the hyper-plane equation of S ′
i then a1x1+ a2x2+ a3x3+ a4 = 0 will be the hyper-

plane equation of Si.

One of the main part is finding the number of hyper-planes by Lemma (2.3.1).

However, one of the hypothesis of this lemma is that sample points needs to satisfy

Brill’s equations.

Example 2.3.1. Consider two circles C1: (x+1)2+(y+1)2 = 1 and C2: (x−1)2+(y+

1)2 = 1. Then by (2.1.1) we will have two hyper-planes for each circle on the cylinder.

Here we choose one hyper-plane for one circle using ax̃+bỹ− z̃ = r. Then we will have

S1: −x− y− z = 1 and S2: x− y− z = 1 two hyper-planes in R3. For sample points,

suppose we have x1(2, 3,−6), x2(3, 5,−9), x3(5, 7,−13), x4(7, 11,−19) from S1 and

choose x5(11, 13,−3), x6(13, 17,−5), x7(17, 19,−3), x8(19, 23,−5), x9(23, 2, 20) from

S2.

In what follows we assume only the knowledge of sample points, and describe

our strategy to find the total number of hyper-planes to which the sample points

belong, then find the normals to these hyper-planes and cluster the points.

We start with Lemma (2.3.1) to find the number of hyper-planes.

First we will check for which i we have rank(Li) = Mi(K) − 1 and that i will

be the number of hyper-planes.

1) i = 1 then
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L1 =



V1(2, 3,−6, 1)

V1(3, 5,−9, 1)

V1(5, 7,−13, 1)

V1(7, 11,−19, 1)

V1(11, 13,−3, 1)

V1(13, 17,−5, 1)

V1(17, 19,−3, 1)

V1(19, 23,−5, 1)

V1(23, 2, 20, 1)



=



2 3− 6 1

3 5 −9 1

5 7 −13 1

7 11 −19 1

11 13 −3 1

13 17 −5 1

17 19 −3 1

19 23 −5 1

23 2 20 1


where V1(x) = (x1, x2, x3, x4)

∴ rank(L1) = 4 > 3 = M1 − 1

2) i = 2 then
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L2 =



V2(2, 3,−6, 1)

V2(3, 5,−9, 1)

V2(5, 7,−13, 1)

V2(7, 11,−19, 1)

V2(11, 13,−3, 1)

V2(13, 17,−5, 1)

V2(17, 19,−3, 1)

V2(19, 23,−5, 1)

V2(23, 2, 20, 1)



=



4 6 −12 2 9 −18 3 36 −6 1

9 15 −27 3 25 −45 5 81 −9 1

25 35 −65 5 49 −91 7 169 −13 1

49 77 −133 7 121 −209 11 361 −19 1

121 143 −33 11 169 −39 13 9 −3 1

169 221 −65 13 289 −85 17 25 −5 1

289 323 −51 17 361 −57 19 9 −3 1

361 437 −95 19 529 −115 23 25 −5 1

529 46 460 23 4 40 2 400 20 1


where V2(x) = (x2

1, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4)

∴ rank(L2) = 9 = M2 − 1

For i = 2, we have rank(L2) = 9 = M2 − 1. Therefore we have checked there

are two hyper-planes and now we will use the basis of rank(L2) to find the normal

vectors for each hyper-planes.
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Here C is the basis of rank(L2).

C = (−0.2500, 0.0000, 0.0000, 0.0000, 0.2500, 0.5000, 0.5000, 0.2500, 0.5000, 0.2500)

= (c2,0,0,0, c1,1,0,0, c1,0,1,0, c1,0,0,1, c0,2,0,0, c0,1,1,0, c0,1,0,1, c0,0,2,0, c0,0,1,1, c0,0,0,2)

By considering the coefficient of ∂pn(x)
∂xJ

and using the last three elements of C,

we can find the last two elements of two normal vectors bi’s.

1

x4
2
(b13x3 + b14x4)(b23x3 + b24x4)

=
1

x4
2
(b13b23x3

2 + (b13b24 + b14b23)x3x4 + b14b24x
2
4)

=
1

x4
2
(c0,0,2,0x3

2 + c0,0,1,1x3x4 + c0,0,0,2x
2
4)

= (c0,0,2,0t
2 + c0,0,1,1t+ c0,0,0,2) (∵ t =

x3

x4

)

= q2(t) = 0.25t2 + 0.5t+ 0.25

Here q2(t) has one real roots t1 = −1.

∴ (b13, b14) = (1, 1), (b23, b24) = (1, 1)
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Now we will use (b13, b14) and (b23, b24) to find rest of the first 3 entries of bi’s.

(1) J=2, (page 61)

g21(x) =
2∏

l=2

(
4∑

j=3

bljxj) = b23x3 + b24x4

g22(x) =
1∏

l=1

(
4∑

j=3

bljxj) = b13x3 + b14x4

b23 b13

b24 b14


b12
b22

 =

 c0,1,1,0
c0,0,2,0

c0,1,0,1
c0,0,2,0


1 1

1 1


b12
b22

 =

2
2


∴ b12 = 1, b22 = 1

(2) J=1, (page 61)

g11(x) =
2∏

l=2

(
4∑

j=2

bljxj) = b22x2 + b23x3 + b24x4

g12(x) =
1∏

l=1

(
4∑

j=2

bljxj) = b12x2 + b13x3 + b14x4


b22 b12

b23 b13

b24 b14


b11
b21

 =


c1,1,0,0
c0,0,2,0

c1,0,1,0
c0,0,2,0

c1,0,0,1
c0,0,2,0


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
1 1

1 1

1 1


b11
b21

 =


0

0

0


∴ b11 = 1, b21 = −1

The two normal of vector of hyperplane are (1, 1, 1, 1) and (−1, 1, 1, 1).

2.4 Brill’s Equations

The question of whether a homogeneous polynomial of multiple variables can

be factored into a product of first order polynomials has been studied by multiple

authors, e.g. see [3][4][7]. The answer is non-trivial and requires a lot of tedious

work. In short, such a factorization can be accomplished (over the field of complex

numbers) if a special polynomial built using the original one is identically zero. This

special polynomial is called Brill’s covariant, and below we describe the algorithm of

deriving the Brill’s covariant.

Let f(x) be a polynomial of degree n in K variables. We decompose f(x+y) =∑n
i=0 f

(i)(x;y), where f (i)(x;y) is the part that is homogeneous of degree i in x. Let

E(u) =
∑n

i=0Ciu
i where its coefficients are Ci(f ;x; z) = (−1)if (i)(x; z)f(z)i−1. We

compute Pf,z(x) = (Cn)
n∑n

k=1 u
n
k where uk’s are the n roots of E(u). We use Pf,z(x)

to derive Brill’s Covariant

B(f ;x;y; z) =
1

n+ 1

n∑
i=0

(−1)ii!(n− 1)!f (i)(x;y)P
(i)
f,z(y;x).

Theorem 2.4.1. [7] A form f(x) is a product of linear forms if and only if the

polynomial B(f ;x;y; z) is identically equal to 0.
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Based on theorem (2.4.1), we let each coefficient of Brill’s Covariant to be 0

and we collect all non-trivial equations. These are the Brill’s equations.

Example 2.4.1. Find Brill’s equation(s) for n = 2 degree in K = 3 dimension.

Here f(x) is a polynomial of degree 2 in 3 variables. For convenience here we

will denote the coefficients of the polynomial by single letters a, b, c, etc. instead of

the notation with multiple indices.

f(x) = c2,0,0x
2
1 + c1,1,0x1x2 + c1,0,1x1x3 + c0,2,0x

2
2 + c0,1,1x2x3 + c0,0,2x

2
3

= ax2
1 + bx1x2 + cx1x3 + dx2

2 + ex2x3 + fx2
3

We will be using f(x+ y).

f(x+ y) = a(x1 + y1)
2 + b(x1 + y1)(x2 + y2) + c(x1 + y1)(x3 + y3)

+d(x2 + y2)
2 + e(x2 + y2)(x3 + y3) + f(x3 + y3)

2

= f(x)+(2ay1x1+by1x2+by2x1+cy1x3+cy3x1+2dy2x2+ey2x3+ey3x2+2fy3x3)+f(y)

Let f (i)(x;y) be the part that is homogeneous of degree i in x. Then we can

group f(x+ y) into three parts: f(0), f(1) and f(2).

f (0)(x;y) = f(y),

f (1)(x;y) = 2ay1x1 + by1x2 + by2x1 + cy1x3 + cy3x1 +2dy2x2 + ey2x3 + ey3x2 +2fy3x3

= (2ay1 + by2 + cy3)x1 + (by1 + 2dy2 + ey3)x2 + (cy1 + ey2 + 2fy3)x3

= (2ax1 + bx2 + cx3)y1 + (bx1 + 2dx2 + ex3)y2 + (cx1 + ex2 + 2fx3)y3
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f (2)(x;y) = f(x)

Since our f(x) is of degree 2, we consider quadratic polynomial

E(u) = C2u
2 + C1u+ C0

where

Ci(f ;x; z) = (−1)if (i)(x; z)f(z)i−1

Three coefficients Ci are

C1(f ;x; z) = −f (1)(x; z), C0(f ;x; z) = 1 and C2(f ;x; z) = f(x)f(z).

Let ui’s be the root of E(u). Then we can derive pk’s.

p2 = Pf,z = (C2)
2(u2

1 + u2
2) = (C1)

2 − 2C0C2

We will express Pf,z(x) using x and z instead of using C ′
is

Pf,z(x) = (f (1)(x; z))2 − 2f(x)f(z)

We consider Pf,z(y+ x).

Pf,z(y+ x) = (f (1)((y+ x); z))2 − 2f(y+ x)f(z)

= ((2az1 + bz2 + cz3)(y1 + x1) + (bz1 + 2dz2 + ez3)(y2 + x2)

+(cz1 + ez2 + 2fz3)(y3 + x3))
2 − 2f(y+ x)f(z)

= (Z1(y1 + x1) + Z2(y2 + x2) + Z3(y3 + x3))
2 − 2f(y+ x)f(z)

P
(2)
f,z (y;x) = Z2

1y
2
1 + 2Z1Z2y1y2 + 2Z1Z3y1y3 +Z2

2y
2
2 + 2Z2Z3y2y3 +Z2

3y
2
3 − 2f(y)f(z),
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P
(1)
f,z (y;x) = 2Z1Z1y1x1 + 2Z1Z2y1x2 + 2Z1Z3y1x3 + 2Z2Z1y2x1 + 2Z2Z2y2x2

+2Z2Z3y2x3 + 2Z3Z1y3x1 + 2Z3Z2y3x2 + 2Z3Z3y3x3

−2((2ax1 + bx2 + cx3)y1 + (bx1 + 2dx2 + ex3)y2 + (cx1 + ex2 + 2fx3)y3)f(z),

P
(0)
f,z (y;x) = Z2

1x
2
1+2Z1Z2x1x2+2Z1Z3x1x3 +Z2

2x
2
2+2Z2Z3x2x3+Z2

3x
2
3− 2f(x)f(z)

Now we can write B(f ;x;y; z) using f (i)(x;y) and P (i)f,z(y;x) and we can

derive Brill’s equation(s) by letting each coefficient of B(f ;x;y; z) to be zero.

B(f ;x;y; z) =
1

1 + n

n∑
i=0

(−1)ii!(n− i)!f (i)(x;y)P
(i)
f,z(y;x)

=
1

3

(
2f (0)(x;y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f (2)(x;y)P

(2)
f,z (y;x)

)
=

1

3

(
2f(y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f(x)P

(2)
f,z (y;x)

)
We need to compute the coefficients of B(f ;x;y; z) but there are too many

terms to check. Therefore we will reduce the case by letting z = (1, 0, 0) (see [3]).

Here are P
(i)
f,z(y+ x)’s using z = (1, 0, 0).

Pf,z(y+ x) = (f (1)((y+ x); z))2 − 2f(x+ y)f(z)

= ((2az1 + bz2 + cz3)(y1 + x1) + (bz1 + 2dz2 + ez3)(y2 + x2)

+(cz1 + ez2 + 2fz3)(y3 + x3))
2 − 2f(x+ y)f(z)

= (2a(y1 + x1) + b(y2 + x2) + c(y3 + x3))
2 − 2af(x+ y)

P
(2)
f,z (y;x) = 4a2y21 + 4aby1y2 + 4acy1y3 + b2y22 + 2bcy2y3 + c2y23 − 2af(y)

= (4a2 − 2a2)y21 + (4ab− 2ab)y1y2 + (4ac− 2ac)y1y3
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+(b2 − 2ad)y22 + (2bc− 2ae)y2y3 + (c2 − 2af)y23

P
(1)
f,z (y;x) = 8a2y1x1 + 4aby1x2 + 4acy1x3 + 4aby2x1 + 2b2y2x2

+2bcy2x3 + 4acy3x1 + 2bcy3x2 + 2c2y3x3

−2a((2ax1 + bx2 + cx3)y1 + (bx1 + 2dx2 + ex3)y2 + (cx1 + ex2 + 2fx3)y3),

P
(0)
f,z (y;x) = 4a2x2

1 + 4abx1x2 + 4acx1x3 + b2x2
2 + 2bcx2x3 + c2x2

3 − 2af(x)

= (4a2 − 2a2)x2
1 + (4ab− 2ab)x1x2 + (4ac− 2ac)x1x3

+(b2 − 2ad)x2
2 + (2bc− 2ae)x2x3 + (c2 − 2af)x2

3

B(f ;x;y; (1, 0, 0)) =
1

1 + n

n∑
i=0

(−1)ii!(n− i)!f (i)(x;y)P
(i)
f,z(y;x)

=
1

3

(
2f (0)(x;y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f (2)(x;y)P

(2)
f,z (y;x)

)

=
1

3

(
2f(y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f(x)P

(2)
f,z (y;x)

)
Here is B(f ;x;y; (1, 0, 0)) after distribution.

=
1

3
((2ay21 + 2by1y2 + 2cy1y3 + 2dy22 + 2ey2y3 + 2fy23)

((2a2)x2
1 + (2ab)x1x2 + (2ac)x1x3 + (b2 − 2ad)x2

2 + (2bc− 2ae)x2x3 + (c2 − 2af)x2
3)

−((2ax1 + bx2 + cx3)y1 + (bx1 + 2dx2 + ex3)y2 + (cx1 + ex2 + 2fx3)y3)

(4a2y1x1 + 2aby1x2 + 2acy1x3 + 2aby2x1 + (2b2 − 4ad)y2x2

+(2bc− 2ae)y2x3 + 2acy3x1 + (2bc− 2ae)y3x2 + (2c2 − 4af)y3x3)

+(2ax2
1 + 2bx1x2 + 2cx1x3 + 2dx2

2 + 2ex2x3 + 2fx2
3)
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((2a2)y21 + (2ab)y1y2 + (2ac)y1y3 + (b2 − 2ad)y22 + (2bc− 2ae)y2y3 + (c2 − 2af)y23)

By using the above Brill’s covariant B(f ;x;y; (1, 0, 0)), we can check the Brill’s

equations corresponding to terms in Brill’s covariant with z21 . In order to check

the rest of the Brill’s equations, one must use recursive equations (see [3]). Let

bα,β,γ be the coefficient of the xαyβzγ term from Brill’s covariant. α, β, γ are the

vectors in RK for the total degree of x y z. For example, in n = 2, K = 3 case,

b(1,1,0),(0,2,0),(1,0,1) = x1x2y
2
2z1z3. Let us define a differential operator

△j =
∑
ω

(1 + ωj)Cω+ξj−ξ1

∂

∂Cω

,

where ξj is a vector in RK with j-th element 1 and rest of the elements 0. Then one

can find all remaining Brill’s equations from a recursive equations [3]

(1 + γj)bα,β,γ = △jbα,β,γ − (1 + αj)bα+ξj−ξ1,β,γ − (1 + βj)bα,β+ξj−ξ1,γ. (2.11)

The tables below show all equations obtained from making the coefficients of the

corresponding terms of Brill’s covariant equal to zero. Here 0 implies that the Brill’s

equation is 0 = 0 and * is when the Brill’s equations is c2d−4adf−bce+ae2+b2f = 0

1) z21 case

y21 y1y2 y1y3 y22 y2y3 y23

x2
1 0 0 0 0 0 0

x1x2 0 0 0 0 0 0

x1x3 0 0 0 0 0 0

x2
2 0 0 0 0 0 *

x2x3 0 0 0 0 * 0

x2
3 0 0 0 * 0 0
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2) z1z2 case

y21 y1y2 y1y3 y22 y2y3 y23

x2
1 0 0 0 0 0 0

x1x2 0 0 0 0 0 *

x1x3 0 0 0 0 * 0

x2
2 0 0 0 0 0 0

x2x3 0 0 * 0 0 0

x2
3 0 * 0 0 0 0

3) z1z3 case

y21 y1y2 y1y3 y22 y2y3 y23

x2
1 0 0 0 0 0 0

x1x2 0 0 0 0 * 0

x1x3 0 0 0 * 0 0

x2
2 0 0 * 0 0 0

x2x3 0 * 0 0 0 0

x2
3 0 0 0 0 0 0

4) z22 case
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y21 y1y2 y1y3 y22 y2y3 y23

x2
1 0 0 0 0 0 *

x1x2 0 0 0 0 0 0

x1x3 0 0 * 0 0 0

x2
2 0 0 0 0 0 0

x2x3 0 0 0 0 0 0

x2
3 * 0 0 0 0 0

5) z2z3 case

y21 y1y2 y1y3 y22 y2y3 y23

x2
1 0 0 0 0 * 0

x1x2 0 0 * 0 0 0

x1x3 0 * 0 0 0 0

x2
2 0 0 0 0 0 0

x2x3 * 0 0 0 0 0

x2
3 0 0 0 0 0 0

6) z23 case
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y21 y1y2 y1y3 y22 y2y3 y23

x2
1 0 0 0 * 0 0

x1x2 0 * 0 0 0 0

x1x3 0 0 0 0 0 0

x2
2 * 0 0 0 0 0

x2x3 0 0 0 0 0 0

x2
3 0 0 0 0 0 0

In other words, for the case when n=2, K=3 one gets only a single Brill’s

equation, namely:

c2d− 4adf − bce+ ae2 + b2f = 0 (2.12)

Example 2.4.2. Find Brill’s equation(s) for n = 2 degree in K = 4 dimension.

Here f(x) is a polynomial of degree 2 in 4 variables. For convenience here we

will denote the coefficients of the polynomial by single letters a1, a2, a3, etc. instead

of the notation with multiple indices.

f(x) = C2,0,0,0x
2
1 + C1,1,0,0x1x2 + C1,0,1,0x1x3 + C1,0,0,1x1x4 + C0,2,0,0x

2
2 + C0,1,1,0x2x3

+C0,1,0,1x2x4 + C0,0,2,0x
2
3 + C0,0,1,1x3x4 + C0,0,0,2x

2
4

= a1x
2 + a2x1x2 + a3x1x3 + a4x1x4 + a5x

2
2 + a6x2x3 + a7x2x4 + a8x

2
3 + a9x3x4 + a10x

2
4

We will be using f(x+ y).

f(x+y) = a1(x1+y1)
2+a2(x1+y1)(x2+y2)+a3(x1+y1)(x3+y3)+a4(x1+y1)(x4+y4)
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+a5(x2 + y2)
2 + a6(x2 + y2)(x3 + y3) + a7(x2 + y2)(x4 + y4) + a8(x3 + y3)

2

+a9(x3 + y3)(x4 + y4) + a10(x4 + y4)
2

Let f (i)(x;y) be the part that is homogeneous of degree i in x. Then we can

group f(x+ y) into three parts: f(0), f(1) and f(2).

f (0)(x;y) = f(y)

f (1)(x;y) = 2a1x1y1 + a2x1y2 + a2x2y1 + a3x1y3 + a3x3y1 + a4x1y4 + a4x4y1 + 2a5x2y2

+a6x2y3 + a6x3y2 + a7x2y4 + a7x4y2 + 2a8x3y3 + a9x3y4 + a9x4y3 + 2a10x4y4

= (2a1y1 + a2y2 + a3y3 + a4y4)x1 + (a2y1 + 2a5y2 + a6y3 + a7y4)x2

+(a3y1 + a6y2 + 2a8y3 + a9y4)x3 + (a4y1 + a7y2 + a9y3 + 2a10y4)x4

f (2)(x;y) = f(x)

Since our f(x) is of degree 2, we consider quadratic polynomial

E(u) = C2u
2 + C1u+ C0

where

Ci(f ;x; z) = (−1)if (i)(x; z)f(z)i−1

Three coefficients Ci are

C1(f ;x; z) = −f (1)(x; z), C0(f ;x; z) = 1 and C2(f ;x; z) = f(x)f(z).

Let ui’s be the root of E(u). Then we can derive pk’s.

p2 = Pf,z = (C2)
2(u2

1 + u2
2) = (C1)

2 − 2C0C2

We will express Pf,z(x) using x and z instead of using C ′
is
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Pf,z(x) = (f (1)(x; z))2 − 2f(x)f(z)

We consider Pf,z(y+ x).

Pf,z(y+ x) = (f (1)((y+ x); z))2 − 2f(y+ x)f(z)

= ((2a1z1 + a2z2 + a3z3 + a4z4)(y1 + x1) + (a2z1 + 2a5z2 + a6z3 + a7z4)(y2 + x2)

+(a3z1 + a6z2 + 2a8z3 + a9z4)(y3 + x3) + (a4z1 + a7z2 + a9z3 + 2a10z4)(y4 + x4))
2

−2f(y+ x)f(z)

Here we let 2a1z1 + a2z2 + a3z3 + a4z4 = Z1, a2z1 + 2a5z2 + a6z3 + a7z4 = Z2,

a3z1 + a6z2 + 2a8z3 + a9z4 = Z3 and a4z1 + a7z2 + a9z3 + 2a10z4 = Z4 then

Pf,z(y+x) = (Z1(y1+x1)+Z2(y2+x2)+Z3(y3+x3)+Z4(y4+x4))
2− 2f(y+x)f(z)

P
(2)
f,z (y;x) = Z2

1y
2
1 + 2Z1Z2y1y2 + 2Z1Z3y1y3 + 2Z1Z4y1y4 + Z2

2y
2
2

+2Z2Z3y2y3 + 2Z2Z4y2y4 + Z2
3y

2
3 + 2Z3Z4y3y4 + Z2

4y
2
4 − 2f(y)f(z)

P
(1)
f,z (y;x)

= 2Z2
1y1x1 + 2Z1Z2y1x2 + 2Z1Z3y1x3 + 2Z1Z4y1x4

+2Z2Z1y2x1 + 2Z2
2y2x2 + 2Z2Z3y2x3 + 2Z2Z4y2x4

+2Z3Z1y3x1 + 2Z3Z2y3x2 + 2Z2
3y3x3 + 2Z3Z4y3x4

+2Z4Z1y4x1 + 2Z4Z2y4x2 + 2Z4Z3y4x3 + 2Z2
4y4x4

−2((2a1y1 + a2y2 + a3y3 + a4y4)x1 + (a2y1 + 2a5y2 + a6y3 + a7y4)x2
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+(a3y1 + a6y2 + 2a8y3 + a9y4)x3 + (a4y1 + a7y2 + a9y3 + 2a10y4)x4)f(z)

P
(0)
f,z (y;x) = Z2

1x
2
1 + 2Z1Z2x1x2 + 2Z1Z3x1x3 + 2Z1Z4x1x4 + Z2

2x
2
2

+2Z2Z3x2x3 + 2Z2Z4x2x4 + Z2
3x

2
3 + 2Z3Z4x3x4 + Z2

4x
2
4 − 2f(x)f(z)

Now we can write B(f ;x;y; z) using f (i)(x;y) and P (i)f,z(y;x) and we can

derive Brill’s equation(s) by letting each coefficient of B(f ;x;y; z) to be zero.

B(f ;x;y; z) =
1

1 + n

n∑
i=0

(−1)ii!(n− i)!f (i)(x;y)P
(i)
f,z(y;x)

=
1

3

(
2f (0)(x;y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f (2)(x;y)P

(2)
f,z (y;x)

)
=

1

3

(
2f(y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f(x)P

(2)
f,z (y;x)

)
We need to compute the coefficients of B(f ;x;y; z) but there are too many

terms to check. Therefore we will reduce the case by letting z = (1, 0, 0, 0)(see [3]).

Here are P
(i)
f,z(y+ x)’s using z = (1, 0, 0, 0).

Pf,z(y+ x) = (2a1(y1 + x1) + a2(y2 + x2) + a3(y3 + x3) + a4(y4 + x4))
2 − 2f(y+ x)a1

P
(2)
f,z (y;x) = 4a21y

2
1 + 4a1a2y1y2 + 4a1a3y1y3 + 4a1a4y1y4 + a22y

2
2

+2a2a3y2y3 + 2a2a4y2y4 + a23y
2
3 + 2a3a4y3y4 + a24y

2
4 − 2f(y)a1

= (2a21)y
2
1 + (2a1a2)y1y2 + (2a1a3)y1y3 + (2a1a4)y1y4 + (a22 − 2a1a5)y

2
2

+(2a2a3 − 2a1a6)y2y3 + (2a2a4 − 2a1a7)y2y4 + (a23 − 2a1a8)y
2
3

+(2a3a4 − 2a1a9)y3y4 + (a24 − 2a1a10)y
2
4

P
(1)
f,z (y;x)
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= 8a21y1x1 + 4a1a2y1x2 + 4a1a3y1x3 + 4a1a4y1x4

+4a2a1y2x1 + 2a22y2x2 + 2a2a3y2x3 + 2a2a4y2x4

+4a3a1y3x1 + 2a3a2y3x2 + 2a23y3x3 + 2a3a4y3x4

+4a4a1y4x1 + 2a4a2y4x2 + 2a4a3y4x3 + 2a24y4x4

−((4a21y1+2a1a2y2+2a1a3y3+2a1a4y4)x1+(2a1a2y1+4a1a5y2+2a1a6y3+2a1a7y4)x2

+(2a1a3y1+2a1a6y2+4a1a8y3+2a1a9y4)x3+(2a1a4y1+2a1a7y2+2a1a9y3+4a1a10y4)x4)

= (4a21)y1x1 + (2a1a2)y1x2 + (2a1a3)y1x3 + (2a1a4)y1x4

+(2a1a2)y2x1 + (2a22 − 4a1a5)y2x2 + (2a2a3 − 2a1a6)y2x3 + (2a2a4 − 2a1a7)y2x4

+(2a1a3)y3x1 + (2a2a3 − 2a1a6)y3x2 + (2a23 − 4a1a8)y3x3 + (2a3a4 − 2a1a9)y3x4

+(2a1a4)y4x1 + (2a2a4 − 2a1a7)y4x2 + (2a3a4 − 2a1a9)y4x3 + (2a24 − 4a1a10)y4x4

P
(0)
f,z (y;x) = 4a21x

2
1 + 4a1a2x1x2 + 4a1a3x1x3 + 4a1a4x1x4 + a22x

2
2

+2a2a3x2x3 + 2a2a4x2x4 + a23x
2
3 + 2a3a4x3x4 + a24x

2
4 − 2f(x)a1

= (2a21)x
2
1 + (2a1a2)x1x2 + (2a1a3)x1x3 + (2a1a4)x1x4 + (a22 − 2a1a5)x

2
2

+(2a2a3 − 2a1a6)x2x3 + (2a2a4 − 2a1a7)x2x4 + (a23 − 2a1a8)x
2
3

+(2a3a4 − 2a1a9)x3x4 + (a24 − 2a1a10)x
2
4

Using the above P
(i)
f,z(y+ x)’s we have

B(f ;x;y; z) =
1

1 + n

n∑
i=0

(−1)ii!(n− i)!f (i)(x;y)P
(i)
f,z(y;x)

=
1

3

(
2f (0)(x;y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f (2)(x;y)P

(2)
f,z (y;x)

)
=

1

3

(
2f(y)P

(0)
f,z (y;x)− f (1)(x;y)P

(1)
f,z (y;x) + 2f(x)P

(2)
f,z (y;x)

)
= 0.
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Here is B(f ;x;y; z) after distribution.

B(f ;x;y; z)

= (2a1y
2
1 + 2a2y1y2 + 2a3y1y3 + 2a4y1y4 + 2a5y

2
2

+2a6y2y3 + 2a7y2y4 + 2a8y
2
3 + 2a9y3y4 + 2a10y

2
4)

((2a21)x
2
1 + (2a1a2)x1x2 + (2a1a3)x1x3 + (2a1a4)x1x4 + (a22 − 2a1a5)x

2
2

+(2a2a3 − 2a1a6)x2x3 + (2a2a4 − 2a1a7)x2x4 + (a23 − 2a1a8)x
2
3

+(2a3a4 − 2a1a9)x3x4 + (a24 − 2a1a10)x
2
4)

−((2a1y1 + a2y2 + a3y3 + a4y4)x1 + (a2y1 + 2a5y2 + a6y3 + a7y4)x2

+(a3y1 + a6y2 + 2a8y3 + a9y4)x3 + (a4y1 + a7y2 + a9y3 + 2a10y4)x4)

((4a21)y1x1 + (2a1a2)y1x2 + (2a1a3)y1x3 + (2a1a4)y1x4

+(2a1a2)y2x1 + (2a22 − 4a1a5)y2x2 + (2a2a3 − 2a1a6)y2x3 + (2a2a4 − 2a1a7)y2x4

+(2a1a3)y3x1 + (2a2a3 − 2a1a6)y3x2 + (2a23 − 4a1a8)y3x3 + (2a3a4 − 2a1a9)y3x4

+(2a1a4)y4x1 + (2a2a4 − 2a1a7)y4x2 + (2a3a4 − 2a1a9)y4x3 + (2a24 − 4a1a10)y4x4)

(2a1x
2
1 + 2a2x1x2 + 2a3x1x3 + 2a4x1x4 + 2a5x

2
2

+2a6x2x3 + 2a7x2x4 + 2a8x
2
3 + 2a9x3x4 + 2a10x

2
4)

((2a21)y
2
1 + (2a1a2)y1y2 + (2a1a3)y1y3 + (2a1a4)y1y4 + (a22 − 2a1a5)y

2
2

+(2a2a3 − 2a1a6)y2y3 + (2a2a4 − 2a1a7)y2y4 + (a23 − 2a1a8)y
2
3

+(2a3a4 − 2a1a9)y3y4 + (a24 − 2a1a10)y
2
4)
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After checking 100 coefficients, we have six coefficients that are different from

others and not trivial.

The tables below show all equations obtained from making the coefficients of

terms of Brill’s covariant containing z21 equal to zero.

Term Equation Term Equation Term Equation Term Equation

y21x
2
1 0 = 0 y1y2x2x4 0 = 0 y1y4x1x3 0 = 0 x1x2y2y4 0 = 0

y21x1x2 0 = 0 y1y2x
2
3 0 = 0 y1y4x1x4 0 = 0 x1x2y

2
3 0 = 0

y21x1x3 0 = 0 y1y2x3x4 0 = 0 y1y4x
2
2 0 = 0 x1x2y3y4 0 = 0

y21x1x4 0 = 0 y1y2x
2
4 0 = 0 y1y4x2x3 0 = 0 x1x2y

2
4 0 = 0

y21x
2
2 0 = 0 y1y3x

2
1 0 = 0 y1y4x2x4 0 = 0 x1x3y

2
2 0 = 0

y21x2x3 0 = 0 y1y3x1x2 0 = 0 y1y4x
2
3 0 = 0 x1x3y2y3 0 = 0

y21x2x4 0 = 0 y1y3x1x3 0 = 0 y1y4x3x4 0 = 0 x1x3y2y4 0 = 0

y21x
2
3 0 = 0 y1y3x1x4 0 = 0 y1y4x

2
4 0 = 0 x1x3y

2
3 0 = 0

y21x3x4 0 = 0 y1y3x
2
2 0 = 0 x2

1y
2
2 0 = 0 x1x3y3y4 0 = 0

y21x
2
4 0 = 0 y1y3x2x3 0 = 0 x2

1y2y3 0 = 0 x1x3y
2
4 0 = 0

y1y2x
2
1 0 = 0 y1y3x2x4 0 = 0 x2

1y2y4 0 = 0 x1x4y
2
2 0 = 0

y1y2x1x2 0 = 0 y1y3x
2
3 0 = 0 x2

1y
2
3 0 = 0 x1x4y2y3 0 = 0

y1y2x1x3 0 = 0 y1y3x3x4 0 = 0 x2
1y3y4 0 = 0 x1x4y2y4 0 = 0

y1y2x1x4 0 = 0 y1y3x
2
4 0 = 0 x2

1y
2
4 0 = 0 x1x4y

2
3 0 = 0

y1y2x
2
2 0 = 0 y1y4x

2
1 0 = 0 x1x2y

2
2 0 = 0 x1x4y3y4 0 = 0

y1y2x2x3 0 = 0 y1y4x1x2 0 = 0 x1x2y2y3 0 = 0 x1x4y
2
4 0 = 0
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Term Equation

x2
2y

2
2 0 = 0

x2
2y2y3 0 = 0

x2
2y2y4 0 = 0

x2
2y

2
3 a23a5 − 4a1a5a8 − a2a3a6 + a1a

2
6 + a22a8 = 0

x2
2y3y4 a2a4a6 − 2a1a6a7 − 2a3a4a5 + 4a1a5a9 + a2a3a7 − a22a9 = 0

x2
2y

2
4 a24a5 − 4a1a5a10 − a2a4a7 + a1a

2
7 + a22a10 = 0

x2x3y
2
2 0 = 0

x2x3y2y3 a23a5 − 4a1a5a8 − a2a3a6 + a1a
2
6 + a22a8 = 0

x2x3y2y4 a2a4a6 − 2a1a6a7 − 2a3a4a5 + 4a1a5a9 + a2a3a7 − a22a9 = 0

x2x3y
2
3 0 = 0

x2x3y3y4 a23a7 − 4a1a7a8 − a3a4a6 + 2a1a6a9 − a2a3a9 + 2a2a4a8 = 0

x2x3y
2
4 a24a6 − 4a1a6a10 − a3a4a7 + 2a1a7a9 − a2a4a9 + 2a2a3a10 = 0

x2x4y
2
2 0 = 0

x2x4y2y3 a2a4a6 − 2a1a6a7 − 2a3a4a5 + 4a1a5a9 + a2a3a7 − a22a9 = 0

x2x4y2y4 a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 = 0

x2x4y
2
3 a23a7 − 4a1a7a8 − a3a4a6 + 2a1a6a9 − a2a3a9 + 2a2a4a8 = 0

x2x4y3y4 a24a6 − 4a1a6a10 − a3a4a7 + 2a1a7a9 − a2a4a9 + 2a2a3a10 = 0

x2x4y
2
4 0 = 0
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Term Equation

x2
3y

2
2 a23a5 − 4a1a5a8 − a2a3a6 + a1a

2
6 + a22a8 = 0

x2
3y2y3 0 = 0

x2
3y2y4 a23a7 − 4a1a7a8 − a3a4a6 + 2a1a6a9 − a2a3a9 + 2a2a4a8 = 0

x2
3y

2
3 0 = 0

x2
3y3y4 0 = 0

x2
3y

2
4 a24a8 − 4a1a8a10 − a3a4a9 + a1a

2
9 + a23a10 = 0

x3x4y
2
2 a2a4a6 − 2a1a6a7 − 2a3a4a5 + 4a1a5a9 + a2a3a7 − a22a9 = 0

x3x4y2y3 a23a7 − 4a1a7a8 − a3a4a6 + 2a1a6a9 − a2a3a9 + 2a2a4a8 = 0

x3x4y2y4 a24a6 − 4a1a6a10 − a3a4a7 + 2a1a7a9 − a2a4a9 + 2a2a3a10 = 0

x3x4y
2
3 0 = 0

x3x4y3y4 a24a8 − 4a1a8a10 − a3a4a9 + a1a
2
9 + a23a10 = 0

x3x4y
2
4 0 = 0

x2
4y

2
2 a24a5 − 4a1a5a10 − a2a4a7 + a1a

2
7 + a22a10 = 0

x2
4y2y3 a24a6 − 4a1a6a10 − a3a4a7 + 2a1a7a9 − a2a4a9 + 2a2a3a10 = 0

x2
4y2y4 0 = 0

x2
4y

2
3 a24a8 − 4a1a8a10 − a3a4a9 + a1a

2
9 + a23a10 = 0

x2
4y3y4 0 = 0

x2
4y

2
4 0 = 0

From the previous two tables, we have the following 6 non-trivial Brill’s equa-

tions out of 21 distinct equations.

a23a5 − 4a1a5a8 − a2a3a6 + a1a
2
6 + a22a8 = 0

a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 = 0
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a24a8 − 4a1a8a10 − a3a4a9 + a1a
2
9 + a23a10 = 0

a22a9 − 4a1a5a9 + 2a1a6a7 + 2a3a4a5 − a2a4a6 − a2a3a7 = 0

a24a6 − 4a1a6a10 + 2a1a7a9 + 2a2a3a10 − a3a4a7 − a2a4a9 = 0

a23a7 − 4a1a7a8 + 2a1a6a9 + 2a2a4a8 − a3a4a6 − a2a3a9 = 0

By using the symmetry of Brill Covariant and Veronese map, we have 4 more

Brill’s equations from previous 6 Brill’s equations.

a26a10 − 4a5a8a10 − a6a7a9 + a27a8 + a29a5 = 0

a26a4 − 4a4a5a8 + 2a5a9a3 + 2a8a7a2 − a6a9a2 − a6a3a7 = 0

a27a3 − 4a3a5a10 + 2a5a9a4 + 2a10a2a6 − a7a9a2 − a7a4a6 = 0

a29a2 − 4a2a8a10 + 2a8a7a4 + 2a10a3a6 − a9a7a3 − a9a4a6 = 0

One can finish finding all the Brill’s equations using the recursive equations

(2.11).
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CHAPTER 3

EXAMPLES

3.1 Noise-free Data

Example 3.1.1. Consider two circles

(x− 3)2 + (y − 4)2 = 1

and

(x− 5)2 + (y − 12)2 = 4.

For sample points, consider the following 9 tangent lines to these two circles:

l1(π,−4),

l2(
3π

2
,−5),

l3(
4π

3
,−(1 + 5 cos(

π

3
− cos−1(

3

5
)))),

l4(
5π

4
,−(1 + 5 cos(cos−1(

3

5
)− π

4
))),

l5(
6π

5
,−(1 + 5 cos(cos−1(

3

5
)− π

5
)))

tangent to the circle (x− 3)2 + (y − 4)2 = 1 and
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l6(
7π

6
,−(2 + 13 cos(cos−1(

5

13
)− π

6
))),

l7(
8π

7
,−(2 + 13 cos(cos−1(

5

13
)− π

7
))),

l8(
9π

8
,−(2 + 13 cos(cos−1(

5

13
)− π

8
))),

l9(
10π

9
,−(2 + 13 cos(cos−1(

5

13
)− π

9
)))

tangent to the circle (x− 5)2 + (y − 12)2 = 4.

There are two hyperplanes corresponding to each circle and intersecting the

cylinder. Here we choose one hyperplane for each circle where the hyperplanes are in

the following form

ax̃+ bỹ − z̃ = r.

The two hyperplanes in R3 are

3x̃+ 4ỹ − z̃ = 1

and

5x̃+ 12ỹ − z̃ = 2.

The sample points in R3 will be

x1(−1, 0,−4),

46



x2(0,−1,−5, 1)

x3(−0.5,−0.866025403784438,−5.964101615137755),

x4(−0.707106781186548,−0.707106781186547,−5.949747468305833),

x5(−0.809016994374947,−0.587785252292473,−5.778191992294735),

x6(−0.866025403784439,−0.5,−12.330127018922193),

x7(−0.900968867902419,−0.433883739117558,−11.711449208922794),

x8(−0.923879532511287,−0.382683432365090,−11.211598850937513),

x9(−0.939692620785908,−0.342020143325669,−10.802704823837567).

Notice, that the two hyperplanes 3x̃ + 4ỹ − z̃ = 1 and 5x̃ + 12ỹ − z̃ = 2 are

not passing through the origin, i.e. these are affine spaces. Since GPCA works for

sample points corresponding to subspaces (not affine spaces), we need to modify our

setup to use GPCA. Therefore we consider new sample points in R4 by adding 1 to
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all points as a 4-th component. It is easy to notice that the new sample points will

belong to hyperplanes in R4 passing through the origin, i.e. to subspaces.

The two hyperplanes in R4 are 3x̃+ 4ỹ− z̃− w̃ = 0 and 5x̃+ 12ỹ− z̃ − 2w̃ = 0

and the 9 sample points are

x1(−1, 0,−4, 1),

x2(0,−1,−5, 1),

x3(−0.5,−0.866025403784438,−5.964101615137755, 1),

x4(−0.707106781186548,−0.707106781186547,−5.949747468305833, 1),

x5(−0.809016994374947,−0.587785252292473,−5.778191992294735, 1),

x6(−0.866025403784439,−0.5,−12.330127018922193, 1),

x7(−0.900968867902419,−0.433883739117558,−11.711449208922794, 1),

x8(−0.923879532511287,−0.382683432365090,−11.211598850937513, 1),

x9(−0.939692620785908,−0.342020143325669,−10.802704823837567, 1).
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As a first step of our modification of GPCA let us find the number of hyperplanes

using the 9 sample points from above. For i = 1, we have

L1 =



V1(−1, 0,−4, 1)

V1(0,−1,−5, 1)

V1(−0.5,−0.866025403784438,−5.964101615137755, 1)

V1(−0.707106781186548,−0.707106781186547,−5.949747468305833, 1)

V1(−0.809016994374947,−0.587785252292473,−5.778191992294735, 1)

V1(−0.866025403784439,−0.5,−12.330127018922193, 1)

V1(−0.900968867902419,−0.433883739117558,−11.711449208922794, 1)

V1(−0.923879532511287,−0.382683432365090,−11.211598850937513, 1)

V1(−0.939692620785908,−0.342020143325669,−10.802704823837567, 1)



L1 =



−1.000000000000000 0 −4.000000000000000 1

0 −1.000000000000000 −5.000000000000000 1

−0.500000000000000 −0.866025403784438 −5.964101615137755 1

−0.707106781186548 −0.707106781186547 −5.949747468305833 1

−0.809016994374947 −0.587785252292473 −5.778191992294735 1

−0.866025403784439 −0.500000000000000 −12.330127018922193 1

−0.900968867902419 −0.433883739117558 −11.711449208922794 1

−0.923879532511287 −0.382683432365090 −11.211598850937513 1

−0.939692620785908 −0.342020143325669 −10.802704823837567 1


where V1(x) = (x1, x2, x3, x4).
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We have rank(L1) = 4 > 3 = M1 − 1 =
(
4
1

)
− 1. Therefore, we conclude that

the number of hyperplanes n is greater than 1.

For i = 2, we have the matrix in (3.1).

L2 =



V2(−1, 0,−4, 1)

V2(0,−1,−5, 1)

V2(−0.5,−0.866025403784438,−5.964101615137755, 1)

V2(−0.707106781186548,−0.707106781186547,−5.949747468305833, 1)

V2(−0.809016994374947,−0.587785252292473,−5.778191992294735, 1)

V2(−0.866025403784439,−0.5,−12.330127018922193, 1)

V2(−0.900968867902419,−0.433883739117558,−11.711449208922794, 1)

V2(−0.923879532511287,−0.382683432365090,−11.211598850937513, 1)

V2(−0.939692620785908,−0.342020143325669,−10.802704823837567, 1)


where V2(x) = (x2

1, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4).

We have rank(L2) = 8 < 9 =
(
5
2

)
− 1 = M2 − 1. Therefore the number of

hyperplanes maybe two. To confirm that the number of hyperplanes is indeed two,

we need to make sure that there is a vector in Ker(L2) satisfying Brill’s equations.

Consider the following C1 and C2 which make a basis of Ker(L2)

C1 = (−0.146266519878173, 0.764434487275566,−0.109204926753680,

−0.150156774285714, 0.304203802979989,−0.218409853507136,

−0.273012316883171, 0.013650615844191, 0.040951847532400,

0.378326989229750)

= (a1,1, a1,2, a1,3, a1,4, a1,5, a1,6, a1,7, a1,8, a1,9, a1,10)
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Figure 3.1. .

and

C2 = (−0.563317835689615,−0.098065320807445, 0.014009331543937,

0.019262830872911,−0.621106328308222, 0.028018663087836,

0.035023328859776,−0.001751166442989,−0.005253499328940,

0.533548006158840)

= (a2,1, a2,2, a2,3, a2,4, a2,5, a2,6, a2,7, a2,8, a2,9, a2,10).
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Let us recall the Brill’s equations for the case n=2, K=4.

a23a5 − 4a1a5a8 − a2a3a6 + a1a
2
6 + a22a8 = 0

a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 = 0

a24a8 − 4a1a8a10 − a3a4a9 + a1a
2
9 + a23a10 = 0

a26a10 − 4a5a8a10 − a6a7a9 + a27a8 + a29a5 = 0

a22a9 − 4a1a5a9 + 2a1a6a7 + 2a3a4a5 − a2a4a6 − a2a3a7 = 0

a24a6 − 4a1a6a10 + 2a1a7a9 + 2a2a3a10 − a3a4a7 − a2a4a9 = 0

a23a7 − 4a1a7a8 + 2a1a6a9 + 2a2a4a8 − a3a4a6 − a2a3a9 = 0

a26a4 − 4a4a5a8 + 2a5a9a3 + 2a8a7a2 − a6a9a2 − a6a3a7 = 0

a27a3 − 4a3a5a10 + 2a5a9a4 + 2a10a2a6 − a7a9a2 − a7a4a6 = 0

a29a2 − 4a2a8a10 + 2a8a7a4 + 2a10a3a6 − a9a7a3 − a9a4a6 = 0
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If we check the Brill’s equations for C1 and C2, then both fail and we cannot

continue the algorithm. For example, using C1 in a23a5−4a1a5a8−a2a3a6+a1a
2
6+a22a8

we have

a23a5 − 4a1a5a8 − a2a3a6 + a1a
2
6 + a22a8 = −0.011175938533824 ̸= 0.

and if we apply C2 in a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 we have

a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 = −0.189097766457781 ̸= 0.

Let us check if we can find scalars k1 and k2 such that k1C1+k2C2 satisfies the

Brill’s equations.

Let

d1 = k1a1,1 + k2a2,1

d2 = k1a1,2 + k2a2,2

d3 = k1a1,3 + k2a2,3

d4 = k1a1,4 + k2a2,4

d5 = k1a1,5 + k2a2,5

d6 = k1a1,6 + k2a2,6

d7 = k1a1,7 + k2a2,7

d8 = k1a1,8 + k2a2,8

d9 = k1a1,9 + k2a2,9
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d10 = k1a1,10 + k2a2,10

After we plug in (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10) into above Brill’s equations

we get six equations in terms of k1 and k2. Since Brill’s equations are homogeneous

of degree 3, we can reorder with k3
1, k

2
1k2, k1k

2
2, k

3
2 terms.

From here we get six Brill’s equation. After reordering and using k1
k2

= x we

have the following equations.

E1 = x3 + 2.271653148339396x2

+1.023165363024656x− 0.170752308808336 = 0

and three roots are

−1.5299456735200716,−0.8699922689250938,

and

0.1282847941057694

.

E2 = x3 + 1.6953341565236044x2 − 1.6647781622525613x− 2.9341505530393284 = 0

and three roots are

−1.5299456735201447,−1.4700124796328748,

and

1.3046239966294175

.

E3 = x3 + 2.884613457839037x2 + 1.882327849483978x− 0.291057272189508 = 0
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and three roots are

−1.5299456735202328,−1.4829525784245736,

and

0.12828479410576987

.

E4 = x3 + 2.301747105931861x2 + 1.065346886088750x− 0.176658812720654 = 0

and three roots are

−1.5299456735200976,−0.9000862265175333,

and

0.12828479410576998

.

E5 = x3 + 2.661668445993830x2 + 1.569834548120250x− 0.247300129890861 = 0

and three roots are

−1.529945673519751,−1.2600075665797306,

and

0.1282847941056522

.

E6 = x3 + 2.990018426001852x2 + 2.030069869853704x− 0.311744975191658 = 0

and three roots are

−1.5883575465874809,−1.5299456735201429,
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and

0.12828479410577767

.

E7 = x3 + 1.27337608531049x2 − 0.3760805430393185x+ 0.025178298199436247 = 0

and three roots are

−1.5299456735199217, 0.12828478920302763,

and

0.1282847991591374

.

E8 = x3+1.273376085317707x2−0.37608054303341537x+0.025178298198560056 = 0

and three roots are

−1.529945673522462, 0.12828478374340213,

and

0.12828480465948586

.

E9 = x3 + 2.540485553480424x2 − 1.399977228429608x− 0.223515713151144 = 0

and three roots are

−1.5299456735201225,−1.1388246740661232,

and

0.12828479410582
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.

E10 = x3+1.2733760853076657x2−0.3760805430436313x+0.025178298200036035 = 0

and three roots are

−1.529945673520135,−0.9000862265175333,

and

0.12828479410576998

.

From six equations we have one common root x = −1.5299456735.

Now that we have verified that there are exactly two hyperplanes, we will find

the normals to these hyperplanes.

Let k1 = −1.5299456735 then

A = k1C1 +C2

= (−0.339538006421189,−1.267608557304117, 0.181086936757790,

0.248994538041047,−1.086521620545763, 0.362173873515199,

0.452717341892833,−0.022635867094692,−0.067907601283783,

−0.045271734189034)

= (c2,0,0,0, c1,1,0,0, c1,0,1,0, c1,0,0,1, c0,2,0,0, c0,1,1,0, c0,1,0,1, c0,0,2,0, c0,0,1,1, c0,0,0,2).

Let the two normal vectors be (b11, b12, b13, b14) and (b21, b22, b23, b24). Then we have
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the following equation.

(b11x1 + b12x2 + b13x3 + b14x4)(b21x1 + b22x2 + b23x3 + b24x4)

= c2,0,0,0x
2
1 + c1,1,0,0x1x2 + c1,0,1,0x1x3 + c1,0,0,1x1x4 + c0,2,0,0x

2
2

+c0,1,1,0x2x3 + c0,1,0,1x2x4 + c0,0,2,0x
2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4 = p2(x) (3.1)

From the equation we can see that last two elements of normals correspond to

only the last three terms of p2(x).

(b13x3 + b14x4)(b23x3 + b24x4) = c0,0,2,0x
2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4

Now, if we factor our x4, we get a quadratic equation in terms of t = x3

x4
, namely:q2(t)

Therefore using q2(t) we will derive (b13, b14) and (b23, b24).

1

x4
2
(b13x3 + b14x4)(b23x3 + b24x4)

=
1

x4
2
(b13b23x3

2 + (b13b24 + b14b23)x3x4 + b14b24x
2
4)

=
1

x4
2
(c0,0,2,0x3

2 + c0,0,1,1x3x4 + c0,0,0,2x
2
4)

= (c0,0,2,0t
2 + c0,0,1,1t+ c0,0,0,2)

= q2(t) = t2 + 2.999999999987050t+ 1.999999999984536

Here q2(t) has two real roots t1 = −2 and t2 = −1.

∴ (b13, b14) = (1, 2), (b23, b24) = (1, 1)
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Now we will try to solve for the first 2 entries of each bi. Using the above

equation (3.1) for p2(x) we get

(b12x2 + b13x3 + b14x4)(b22x2 + b23x3 + b24x4)

= c0,2,0,0x
2
2c0,1,1,0x2x3 + c0,1,0,1x2x4 + c0,0,2,0x

2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4

Hence

b23 b13

b24 b14


b12
b22

 =

 c0,1,1,0
c0,0,2,0

c0,1,0,1
c0,0,2,0


1 1

1 2


b12
b22

 =

−16.000000000005596

−19.999999999955527


∴ b12 = −12.000000000055664, b22 = −3.999999999949932

If we check the nonlinear equation,

b12b22 = 47.999999999621842 ≈ 48.000000000024166 =
c0,2,0,0
c0,0,2,0

Continue the previous step using

(b11x1 + b12x2 + b13x3 + b14x4)(b21x1 + b22x2 + b23x3 + b24x4)

= c2,0,0,0x
2
1 + c1,1,0,0x1x2 + c1,0,1,0x1x3 + c1,0,0,1x1x4 + c0,2,0,0x

2
2

+c0,1,1,0x2x3 + c0,1,0,1x2x4 + c0,0,2,0x
2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4
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
b22 b12

b23 b13

b24 b14


b11
b21

 =


c1,1,0,0
c0,0,2,0

c1,0,1,0
c0,0,2,0

c1,0,0,1
c0,0,2,0



−3.999999999949932 −12.000000000055664

1 1

1.0002299290618177 1.9997696752754424


b11
b21

 =


56.000000000060290

−8.000000000011205

−10.999999999975021


∴ b11 = −4.999733698582360, b21 = −3.000084995146104

If we check the nonlinear equation,

b11b21 = 14.999626048843272 ≈ 15.000000000035739 =
c2,0,0,0
c0,0,2,0

The computed two normal vectors of hyperplanes are

(−4.999733698582360,−12.000000000055664, 1, 1.9997696752754424)

and

(−3.000084995146104,−3.999999999949932, 1, 1.0002299290618177)

which are very close to the true values (−5,−12, 1, 2) and (−3,−4, 1, 1).
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3.2 Noisy Data

For the previous example, we were able to recover the two normal vectors using

the GPCA. However, if we have noise in the sample points we might not be able to

compute the correct rank(L2). Next we demonstrate how to recover the two normal

vectors when there is noise in the sample points. Here we have the sample points

from the previous example.

x1(−1, 0,−4, 1),

x2(0,−1,−5, 1),

x3(−0.5,−0.866025403784438,−5.964101615137755, 1),

x4(−0.707106781186548,−0.707106781186547,−5.949747468305833, 1),

x5(−0.809016994374947,−0.587785252292473,−5.778191992294735, 1),

x6(−0.866025403784439,−0.5,−12.330127018922193, 1),

x7(−0.900968867902419,−0.433883739117558,−11.711449208922794, 1),

x8(−0.923879532511287,−0.382683432365090,−11.211598850937513, 1),
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x9(−0.939692620785908,−0.342020143325669,−10.802704823837567, 1).

Now we will add small random numbers (of the order 10−8) to the values of

sample points. Then the new 9 sample points are

x′1(−1,−1.576130813606815× 10−8,−3.999999960777298, 1),

x′2(9.571669483070567× 10−8,−0.999999999999995,−4.999999934452211, 1),

x′3(−0.499999930693677,−0.866025443798459,−5.964101598019086, 1),

x′4(−0.707106771153668,−0.707106791219427,−5.949747397701224, 1),

x′5(−0.809016969584441,−0.587785286413677,−5.778191989111450, 1),

x′6(−0.866025357997659,−0.500000079305021,−12.330126991229895, 1),

x′7(−0.900968833529828,−0.433883810492971,−11.711449204305655, 1),

x′8(−0.923879495793097,−0.382683521010629,−11.211598841224335, 1),
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x′9(−0.939692598358254,−0.342020204945137,−10.802704741491784, 1).

We have emphasized with the red font the randomly changed digits. We will

now check the number of hyperplanes using these new 9 sample points.

For i = 1, we have

L′
1 =

V1(−1.000000000000000,−1.576130813606815× 10−8,−3.999999960777298, 1)

V1(9.571669483070567× 10−8,−0.999999999999995,−4.999999934452211, 1)

V1(−0.499999930693677,−0.866025443798459,−5.964101598019086, 1)

V1(−0.707106771153668,−0.707106791219427,−5.949747397701224, 1)

V1(−0.809016969584441,−0.587785286413677,−5.778191989111450, 1)

V1(−0.866025357997659,−0.500000079305021,−12.330126991229895, 1)

V1(−0.900968833529828,−0.433883810492971,−11.711449204305655, 1)

V1(−0.923879495793097,−0.382683521010629,−11.211598841224335, 1)

V1(−0.939692598358254,−0.342020204945137,−10.802704741491784, 1)



L′
1 =



−1.000000000000000 −0.000000015761308 −3.999999960777298 1

0.000000095716695 −0.999999999999995 −4.999999934452211 1

−0.499999930693677 −0.866025443798459 −5.964101598019086 1

−0.707106771153668 −0.707106791219427 −5.949747397701224 1

−0.809016969584441 −0.587785286413677 −5.778191989111450 1

−0.866025357997659 −0.500000079305021 −12.330126991229895 1

−0.900968833529828 −0.433883810492971 −11.711449204305655 1

−0.923879495793097 −0.382683521010629 −11.211598841224335 1

−0.939692598358254 −0.342020204945137 −10.802704741491784 1


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where V1(x) = (x1, x2, x3, x4). We have rank(L′
1) = 4 > 3 = M1 − 1 =

(
4
1

)
− 1.

Therefore, we conclude that the number of hyperplanes n is greater than 1.

For i = 2, we have the matrix in (3.2)

L′
1 =

V2(−1.000000000000000,−1.576130813606815× 10−8,−3.999999960777298, 1)

V2(9.571669483070567× 10−8,−0.999999999999995,−4.999999934452211, 1)

V2(−0.499999930693677,−0.866025443798459,−5.964101598019086, 1)

V2(−0.707106771153668,−0.707106791219427,−5.949747397701224, 1)

V2(−0.809016969584441,−0.587785286413677,−5.778191989111450, 1)

V2(−0.866025357997659,−0.500000079305021,−12.330126991229895, 1)

V2(−0.900968833529828,−0.433883810492971,−11.711449204305655, 1)

V2(−0.923879495793097,−0.382683521010629,−11.211598841224335, 1)

V2(−0.939692598358254,−0.342020204945137,−10.802704741491784, 1)


where V2(x) = (x2

1, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4). Using these sample

points, now the rank(L′
2) = 9 = M2 − 1 =

(
5
2

)
− 1.

Consider C′
1 which is a basis of Ker(L′

2)

C′
1 = (−0.577350244951306,−0.000000254494387, 0.000000036356339,

0.000000049991779,−0.577350394922908, 0.000000072713188,

0.000000090893635,−0.000000004544585,−0.000000013634128,

0.577350167694568).

If we check the Brill’s equations for C′
1, it does not satisfy Brill’s equations

and we cannot continue the algorithm. For example, using C′
1 in a24a5 − 4a1a5a10 −

a2a4a7 + a1a
2
7 + a22a10 we have
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Figure 3.2. .

a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 = 0.769800358919500 ̸= 0.

Because of the noise, rank(L′
2) maybe larger than rank(L2).

Let L′′
2 be a new matrix obtained by adding one 0 row at the bottom of L′

2. If

we check the eigenvalues of L′
2, we will have one eigenvalue that is exactly equal to

0, and another one very close to zero, namely equal to 0.0000001350072. Here are all

eigenvalues in the decreasing order of magnitude

123.1812669555284

0.5733274537547 + 0.026931470031760i

0.5733274537547− 0.026931470031760i

−0.5437894833168

0.4362298613775
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0.0497281593562

−0.0192161331569

−0.0020145967624

−0.0000001108077

0

One can introduce a threshold value of accuracy, below which all numbers are

considered to be 0. For example, in this case let us choose the accuracy threshold to

be 10−6.

We will interpret this as the rank(L′
2) being “approximately” 8.

This means number of hyperplanes may be equal to 2, depending on whether

any vector of the kernel satisfies Brill’s equations. Therefore, we continue with GPCA

using basis of “approximate” Ker(L2), i.e. the span of eigenvectors corresponding to

the smallest two eigenvalues.

Consider the following C1 and C2 eigenvectors of −0.0000001108077 and 0

where

C1 = (−0.206525641293860,−0.680300981723725, 0.097184598891111,

0.133622263511375,−0.607416783149077, 0.194370177246331,

0.242955244820273,−0.012148145384769,−0.036444965502194,

0.000000000000000)

= (a1,1, a1,2, a1,3, a1,4, a1,5, a1,6, a1,7, a1,8, a1,9, a1,10)

and
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C2 = (−0.577350269017577,−0.000000001805945, 0.000000000257993,

0.000000000354870,−0.577350270081916, 0.000000000516019,

0.000000000645168,−0.000000000032252,−0.000000000096780,

0.577350268469384)

= (a2,1, a2,2, a2,3, a2,4, a2,5, a2,6, a2,7, a2,8, a2,9, a2,10).

If we check the Brill’s equations for C1 and C2, then both fail and we cannot

continue the algorithm. For example, using C1 in a23a5−4a1a5a8−a2a3a6+a1a
2
6+a22a8

we have

a23a5 − 4a1a5a8 − a2a3a6 + a1a
2
6 + a22a8 = −0.0002151831461315815 ̸= 0.

using C2 in a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 we have

a24a5 − 4a1a5a10 − a2a4a7 + a1a
2
7 + a22a10 = −0.769800358919501 ̸= 0.

Let us check if we can find scalars k1 and k2 such that k1C1+k2C2 satisfies the

Brill’s equations.

Let

d1 = k1a1,1 + k2a2,1
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d2 = k1a1,2 + k2a2,2

d3 = k1a1,3 + k2a2,3

d4 = k1a1,4 + k2a2,4

d5 = k1a1,5 + k2a2,5

d6 = k1a1,6 + k2a2,6

d7 = k1a1,7 + k2a2,7

d8 = k1a1,8 + k2a2,8

d9 = k1a1,9 + k2a2,9

d10 = k1a1,10 + k2a2,10

After we plug in (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10) into above Brill’s equations

we get six equations in terms of k1 and k2. Since Brill’s equations are homogeneous

of degree 3, we can reorder with k3
1, k

2
1k2, k1k

2
2, k

3
2 terms.

From here we get six Brill’s equation. After reordering and using k1
k2

= x we

have the following equations.

E1 = x3 + 20.58728416313517x2 − 75.27321450097105x

−1.9984216840966619× 10−7 = 0

and have three roots

−23.755896045743782,−2.6548908478191776× 10−9

and

3.1686118852635046.
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E2 = x3 + 70.37135394189214x2 + 1141.6962355517692x

+809.8344680934741 = 0

and have three roots

−45.862452029778744,−23.765909201191526

−0.7429927109218613.

E3 = x3 + 61.74603821492648x2 + 902.6984922715698x

+2.396565965036748 ∗ 10−6 = 0

and have three roots

−37.975470557584444,−23.770567654687138

and

−2.654890847819178× 10−9.

E4 = x3 + 20.307048099855663x2 − 82.14352009679232x

+2.1808207985575776× 10−7 = 0

and have three roots

−23.763725030752187, 2.65489085130413× 10−9

and

3.456676928241635.

E5 = x3 + 7.8830252291184735x2 − 376.51993331444237x

69



−9.998527545870223× 10−7 = 0

and have three roots

−23.741902887557863,−2.6555108138097653× 10−9

and

15.858877661094898.

E6 = x3 + 40.292941118755664x2 + 392.7683353484685x

+1.0427315880158164× 10−6 = 0

and have three roots

−23.76751194208549,−16.52542917401535

and

−2.654825999083357× 10−9.

E7 = x3 + 23.749340648505118x2 + 1.261104134416643× 10−7x

+1.6741344557652653× 10−16 = 0

and have three roots

−23.749340643195058,−2.6555401470890325× 10−9

and

−2.654519417479263× 10−9.

E8 = x3 + 23.861236221690845x2 + 1.2658146096349668× 10−7x

70



+1.6787530197063586× 10−16 = 0

and have three roots

−23.861236216385947,−2.655207254844815× 10−9

and

−2.6496922821511506× 10−9.

E9 = x3 + 15.75992266009988x2 − 190.22445627684752x

−5.049830808481658 ∗ 10−16 = 0

and have three roots

−23.764489866960627,−2.654669597862996×−18

and

8.004567206860747.

E10 = x3 + 23.76524420403986x2 + 1.2617784396817842× 10−7x

+1.6748037937687166 ∗ 10−16 = 0

and have three roots

−23.765244198730517,−2.6546717320891496× 10−9 − 2.584218023965645× 10−13i

and

−2.6546717320891496× 10−9 + 2.584218023965645× 10−13.

From six equations, the closest common root is x = −23.7.
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Now that we have verified that there are exactly two hyperplanes, we will find

the normals to these hyperplanes.

Let k1 = −23.7 then

A = k1C1 +C2

= (4.317307429646905, 16.123133265046338,−2.303274993461338,

−3.166847644864717, 13.818427490551208,−4.606573200222025,

−5.758039301595302, 0.287911045586773, 0.863745682305218,

0.577350268469384)

= (c2,0,0,0, c1,1,0,0, c1,0,1,0, c1,0,0,1, c0,2,0,0, c0,1,1,0, c0,1,0,1, c0,0,2,0, c0,0,1,1, c0,0,0,2).

Let the two normal vectors be (b11, b12, b13, b14) and (b21, b22, b23, b24). Then we

have the following (3.1) equation.

(b11x1 + b12x2 + b13x3 + b14x4)(b21x1 + b22x2 + b23x3 + b24x4)

= c2,0,0,0x
2
1 + c1,1,0,0x1x2 + c1,0,1,0x1x3 + c1,0,0,1x1x4 + c0,2,0,0x

2
2

+c0,1,1,0x2x3 + c0,1,0,1x2x4 + c0,0,2,0x
2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4 = p2(x)

From the equation we can see that last two elements of normals correspond to only

the last three terms of p2(x).

(b13x3 + b14x4)(b23x3 + b24x4) = c0,0,2,0x
2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4

Now, if we factor our x4, we get a quadratic equation in terms of t = x3

x4
, namely:

q2(t). Therefore using q2(t) we will derive (b13, b14) and (b23, b24).
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1

x4
2
(b13x3 + b14x4)(b23x3 + b24x4)

=
1

x4
2
(b13b23x3

2 + (b13b24 + b14b23)x3x4 + b14b24x
2
4)

=
1

x4
2
(c0,0,2,0x3

2 + c0,0,1,1x3x4 + c0,0,0,2x
2
4)

= (c0,0,2,0t
2 + c0,0,1,1t+ c0,0,0,2)

= q2(t) = t2 + 3.000043574378584t+ 2.005307810586855

Here q2(t) has two real roots

t1 = −1.9947515633860582

and

t2 = −1.0052920109925259.

∴ (b13, b14) = (1, 1.9947515633860582), (b23, b24) = (1, 1.0052920109925259)

Now we will try to solve for the first 2 entries of each bi. Using the above

equation (3.1) for p2(x) we get

(b12x2 + b13x3 + b14x4)(b22x2 + b23x3 + b24x4)

= c0,2,0,0x
2
2c0,1,1,0x2x3 + c0,1,0,1x2x4 + c0,0,2,0x

2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4

Hence
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b23 b13

b24 b14


b12
b22

 =

 c0,1,1,0
c0,0,2,0

c0,1,0,1
c0,0,2,0


 1 1

1.005292010992525 1.9947515633860582


b12
b22

 =

−15.999987742164127

−19.999369214405135


∴ b12 = −12.043576030579342, b22 = −3.956411711584783

If we check the nonlinear equation,

b12b22 = 47.661810617308099 ≈ 47.992693106428113 =
c0,2,0,0
c0,0,2,0

Continue the previous step using

(b11x1 + b12x2 + b13x3 + b14x4)(b21x1 + b22x2 + b23x3 + b24x4)

= c2,0,0,0x
2
1 + c1,1,0,0x1x2 + c1,0,1,0x1x3 + c1,0,0,1x1x4 + c0,2,0,0x

2
2

+c0,1,1,0x2x3 + c0,1,0,1x2x4 + c0,0,2,0x
2
3 + c0,0,1,1x3x4 + c0,0,0,2x

2
4


b22 b12

b23 b13

b24 b14


b11
b21

 =


c1,1,0,0
c0,0,2,0

c1,0,1,0
c0,0,2,0

c1,0,0,1
c0,0,2,0



−3.956411711584783 −12.043576030579342

1 1

1.005292010992525 1.9947515633860582


b11
b21

 =


56.000398429267683

−7.999953557763584

−10.999396144773009


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∴ b11 = −4.976075610989117, b21 = −3.014960108149451

If we check the nonlinear equation,

b11b21 = 15.004571503207352 ≈ 14.993152939820282 =
c2,0,0,0
c0,0,2,0

The computed two normal vectors of hyperplanes are

(−4.976075610989117,−12.043576030579342, 1, 1.9947515633860582)

and

(−3.014960108149451,−3.956411711584783, 1, 1.005292010992525).

which are very close to the true values (−5,−12, 1, 2) and (−3,−4, 1, 1).
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