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Abstract

MULTI-OBJECTIVE TWO-STAGE STOCHASTIC PROGRAMMING FOR ADAPTIVE

INTERDISCIPLINARY PAIN MANAGEMENT WITH PLN TRANSITION MODELS

Gazi Md Daud Iqbal

The University of Texas at Arlington, 2017

Supervising Professor: Jay M. Rosenberger

Pain is the most common symptom when a patient visits a physician. People experience pain

throughout their lifetime at different degrees. If short term pain is not treated properly, then it

can become long term pain, which is also known as chronic pain. The Eugene McDermott Center

for pain management at UT Southwestern Medical Center conducts a two-stage pain management

program for chronic pain. This research uses a two-stage stochastic programming approach to

optimize personal adaptive treatment strategies for pain management. The goal is to generate

adaptive treatment strategies using statistics based optimization approaches that can be used by

physicians to prescribe treatment to the patients. Transition models predict how a patient with

certain characteristics will react to treatments. This research uses Piecewise Linear Networks (PLN)

to represent transition models. A mixed integer linear program is developed to integrate those PLN

transition models into an optimization problem.

In this research we have considered five pain outcomes. To balance between different pain

outcomes in the objective, we developed a survey for physicians, which is actually a pairwise

comparison of different levels of different pain outcomes. Survey inputs are subjective and vary

from physician to physician. In other words, inputs from multiple surveys are not entirely consistent.

To get consistent weights for different levels of different pain outcomes in the two-stage stochastic

program, we developed a convex quadratic programming model.

To speed up the solution process, we developed additional constraints based upon 3-way treat-

ment interactions. These 3-way treatment interaction constraints are totally consistent with two-

way treatment interaction constraints. These additional constraints do not eliminate real integer

solutions, but they may eliminate fractional solutions in the branch-and-bound algorithm. We then

solved the original MILP with these additional logical style constraints to see the improvement in

MILP.
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Chapter 1

Introduction

Everyone throughout their lifetime will experience pain at various times and to varying degrees.

Indeed, pain is the most common reason for people to seek medical assistance [1]. “Pain is always

something that hurts” [2]. When a patient visits a physician, the most common symptom is pain,

which is highly subjective, and the perception of pain involves various brain-peripheral feedback

mechanisms.

The pain experience involves three interactive domains: physiological, psychological, and social

(i.e., the biopsychosocial model) as shown in Figure 1.1. Treatment of pain involves dealing with

the complex biopsychosocial changes of patients. For example, pain and depression are related to

each other; people who have depression report more pain than non-depressed individuals. There-

fore, many biopsychosocial factors are involved for treatment when a patient complaining with pain

visits a physician. Some of these factors determine the causes of pain, duration, pain intensity, etc.

Pain can be short-term or long-term, and its type and level can differ from patient to patient.

Short-term pain that lasts a maximum 6 months is also known as acute pain. If short-term pain is

not appropriately treated, then it can persist and become chronic, which is also known as chronic

pain. Research shows that two-thirds of elderly people suffer from at least two chronic conditions

[3]. Acute pain is fast, intense, and localized, while chronic pain is slow, diffuse, and prolonged

[4]. People with chronic pain require more treatment than patients with acute pain. Chronic pain

reduces a person’s quality-of-life, and working capability as well [5]. Many patients are somewhat

afraid to report pain because they fear: having a surgery; long-term treatment; losing social in-

dependence; etc. In some cases, they are not able to verbalize their pain condition to physicians.

Surgery, cancer, fractures, etc. are directly responsible for causing acute pain. Arthritis, cancer,

diabetic neuropathy, and back pain syndrome are responsible for chronic pain [6]. Chronic pain is

related to medical and physical conditions as well. In most instances, the best solution for pain

management is when drug and non-drug therapies can be used together in a coordinated manner.

A total of 65 million people have low back pain in the United States [7]. In the next 30 years,

the number of older adults in the United States is expected to double [8]. Two-thirds of older

adults are suffering from back pain. For example, Cooner and Amorosi conducted a telephone pool

in New York City, which showed that almost 50% of elderly people suffered from chronic pain and
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Figure 1.1: The Three Biopsychosocial Domains of Pain

had taken pain medications. It should also be noted that 51.4 million inpatient surgical procedures

were performed in 2010 [9], and more than 25 million outpatient surgeries are performed each year

in 5300 certified surgery centers in the U.S. [10]. Many of the surgeries are conducted on older

adults. Among these, 80-85% are experiencing some health problems that contribute to the pain.

In order to get rid of this unwanted pain, 45% of older adults visit at least three physicians [11].

The Eugene McDermott Center for Pain Management at UT Southwestern Medical Center

administers an interdisciplinary two-stage pain management program for chronic pain. Figure 1.2

demonstrates that, at the beginning of the program, a patient goes through a preliminary treatment

evaluation, which includes review of past medical records, the patient’s demographic information,

and biopsychosocial examinations.

Figure 1.2: Two-stage Interdisciplinary Pain Management Program [12]

Based on these evaluations, physicians prescribe a treatment plan for the patient, which is

the beginning of Stage 1. After a certain period of time, patients visit the Center again and go

through another evaluation, which is called the mid-treatment evaluation. Physicians then review

the pain outcomes of the evaluation and prescribe a new set of treatments to the patients if needed,

which is the end of Stage 1 and beginning of Stage 2. The post treatment evaluation, where final

pain outcomes are measured, ends the two-stage pain management program. Patients go through

another evaluation program after one year of this two stage pain management program. In this
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research, we will not consider this last evaluation. It should also be noted, that time duration

between each stage varies from patient to patient. For some patients it is 6 months, and for some

it is 1 year.

A number of pain outcome measures are used to identify the intensity of pain. These include :

the Beck Depression Inventory (BDI); Dallas Pain Questionnaire (DPQ); Oswestry Pain Disability

Index (OSW); Pain Drawing Analogue (PDA); Multidimensional Pain Inventory (mpi); 36-item

Short Form Survey Physical Component Score (SF36pcs); and 36-item Short Form Survey Mental

Component Score (SF36mcs). In this present study, we consider the OSW, PDA, BDI, SF36pcs,

and SF36mcs pain outcome measures.

(a) OSW label
(b) PDA label

(c) BDI label (d) SF36pcs/mcs label

Figure 1.3: Different Pain Outcomes and their Labels

The OSW is a measurement of perceived functional disability that happens because of pain. It

is most widely used for assessing the disability level of back pain. It has different score levels. The

OSW has 10 sections, and each section has score range of 0-5, with a maximum possible score of

50 (1.3a). A raw score of 0-10 reflects minimal disability (No Treatment Necessary); 11-20 signifies

mild disability (Conservative treatment recommended); 21-30 signifies severe disability (Detailed

Investigation required); 31-40 signifies Crippling Disability (Severe Intervention required); and 41-

50 signifies Bed bound [13]. For the PDA scale, patients are asked to mark their level of pain on a

10-cm visual analogue scale as show in Figure 1.3b. This PDA outcome which ranges from 0-10,

and was classified in to five levels: PDA value 0-2 means no pain; 3-4 means a little pain; 5-6 means

considerable pain; 7-8 means a lot of pain; and 9-10 means worse possible pain. The BDI is a
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self-reported measure of symptoms of depression. It has a total of 21 questions, and each question

has score range of 0-3, with a possible maximum score of 63 (1.3c). Score 0-10 signifies normal; 11

signifies mild depression; 12-14 signifies moderate depression; 15-30 signifies severe depression; and

31-63 signifies severe depression. SF-36 pcs/mcs score is a patient-reported health status measure.

Its score ranges from 0-100; a mean score of 50-100 is assumed to be indicative of good for health

(1.3d).

In the next section, we present a literature review of the research done for pain management,

multi-objective health care optimization, and piece-wise linear network models. Then, we discuss

the mathematical models that we have used to generate adaptive treatment strategies for patients,

which include – stochastic programming formulation, convex quadratic formulation to get weights,

mixed integer linear programming formulation for piece-wise linear network models, and lineariza-

tion of three-way treatment interaction constraints. Next, we present the computational results

based on previous models. Then, we discuss the conclusions and future works.
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Chapter 2

Literature Review

This chapter provides the literature review on background of pain management research and opti-

mization modeling for health care services. Section 2.1 discusses previous researches that has been

done for managing pain. Section 2.2 focuses on multi-objective approaches used for health care

optimization. Section 2.3 discuses peice-wise linear network modeling approaches to generate state

transition models.

2.1 Background of Pain Management Research

Wang [14] developed a two-stage stochastic programming model for adaptive pain management,

where transition models that are used as constraints are non-convex and quadratic. These non-

convex quadratic models are then refitted using a piecewise linear approximation. Prediction accu-

racy of the refit model was higher than the original model, and at the same time, the refit models

maintain all of the original model’s assumptions. By using these mathematical models, they found

an optimal adaptive treatment strategies for patients. The treatment policy generated by approxi-

mated Mixed Integer Linear Program (MILP) is better than the original non-convex MINLP model

in terms of solution quality and time required for optimization. They showed that policy generated

by the refitted MILP model is 5.7 times more likely to achieve normal pain level compared to the

observational dataset. The objective value achieved by the MILP in 6 minutes is less than the

objective value from the Mixed Integer Non-Linear Program (MINLP), which takes 15 minutes.

Lin [12] employed a stochastic dynamic programming approach, which considers the expected final

outcomes when determining treatment. They employed approximate dynamic programming (ADP)

solution methods where transition models are constructed empirically, and the future value function

is approximated using state space discretization based on a Latin hypercube design. By using ADP,

they were able to identify a recommended treatment regime very fast, which minimizes pain while

penalizing excessive costs. LeBoulluec [15] developed a process based on the Inverse Probability of

Treatment Weighted method to address the endogeneity that handles the complexity of the data

set. Endogeneity happens when an independent variable is correlated with error terms. In pain

management data, endogeneity occurs because of correlation of state and decision variables. Treat-
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ment affects will be biased with the presence of endogeneity. Unbiased estimatation of the casual

effect of treatment on the outcome cannot be achieved because of endogeneity. They overcome

this endogeneity issue using logistic regression. Treatments can be independent or correlated. Two

methodologies were developed to overcome endogeneity that happened because of independent and

correlated treatments.

2.2 Multi-Objective Health Care Optimization

Generally, preventive health care programs are used to identify serious medical conditions in early

stage, which can save money and lives. Wei et al. [16] developed a bi-objective model that uses

interchange algorithms to find optimal locations for preventive health care facilities. The two ob-

jectives of their optimization model were efficiency of the facility locations and coverage of patients.

Optimal preventive health care facility locations always maximize participation. Accessibility of

health care service is the key player in participation. Wei et al. [16] developed a new accessibility

measurement. In traditional approaches, accessibility is measured based on distance, while Wei et

al. [16] used a combination of distance, two-step floating catchment area method, and a Huff–based

model as an accessibility measurement. Research has been done to develop a decision support tool

that can be used to identify the optimal required workforce in hospitals. Ahmed and Alkhamis [17]

developed a framework, which used simulation and optimization. The objective function was to

maximize patient throughput and reduce patient waiting time. A deterministic budget constraint

and stochastic patient waiting time was used as a constraint. They considered five decision aspects,

which are required number of treatment room nurses, emergency room nurses, receptionists, doc-

tors, and lab technicians. A decision support tool was applied to a hospital in Kuwait. It shows

that a patient’s waiting time can be reduced to 40%, and a 28% increase in patients dismissed per

unit time can be gained.

Baesler and Sepulveda [18] developed a methodology for a cancer treatment center in Florida,

where a simulation model was incorporated in to a multi-objective optimization technique. They

considered treatment chairs, the number of nurses who draw blood from patients, laboratory capac-

ity, and pharmacy capacity as control variables. Four objectives were considered in this simulation

optimization model. The objectives include minimization of patients waiting time and closing time,

and maximization of chairs and nurse utilization. The resulted solutions of their approach was com-

pared with the existing configuration of the system. They found an 18-25% improvement of the

solutions. Rosen et al. [19] developed a simulation optimization method that considers different

performance measures.

In this research we have considered minimization of treatment cost and pain outcomes in our

optimization model. Five pain outcomes have been considered. All of these pain outcomes are

generated from questionnaires. Questionnaires are widely used to identify treatment outcomes in

chronic pain. These types of questionnaires may consist of more than 300 questions, which is too

long for the patients to complete. Huang et al.[20] used machine learning to find out the best

9



subset of questions from the questionnaire. Their classification results shows the subsets have

high relationships with treatment outcomes. Thus, they reduced irrelevant questions from the

questionnaire for patients with pain. Ali et al. [21] developed an automated delivery system for

clinical guidelines (DSCG) to assist physicians in diagnosing and treating patients with chest pain.

These guidelines, which are selected from a knowledge based server, are used to improve efficiency in

both diagnostic and treatment stages. The delivery system recommends optimal treatment plans

based on most probable diagnosis, which improve patient outcomes. Computer based protocols

in emergency departments have been used to forecast myocardial infarction. Goldman et al. [22]

found that computer based protocols reduces the admission of patients to emergency department

by 11.5%.

2.3 Piecewise Linear Network Model

A piecewise linear network (PLN), shown in Figure 2.1, uses the divide and conquer approach

in solving a problem. The input vector space is divided into several clusters, which comprise of

a Voronoi tessellation. A linear mapping for each cluster is independently trained. The overall

network is a piecewise linear mapping that may not be continuous [23]. PLN consists of K cluster

center vectors mk, each of dimension N , where 1 ≤ k ≤ K. There are K weight matrices Wk, each

of dimension M×(N+1), for storing trained weights for each cluster. A weighted distance measure

d(), which can be used to determine cluster membership for patterns while deemphasizing the less

important features in the pattern vector. Weights for the distance measure are stored in an array b

of length N . The distance measure d() is a function of two vectors and yields a value quantifying the

distance between the two. Distance measures are used by clustering methods to determine proximity

of patterns to each other, and by piecewise linear networks to select a network with which to process

an incoming pattern. The weighted L1 norm formula, d(x,m) =
∑N

n=1 b(n) |x(n)−m(n)| can be

used to calculate the distance measure.

Figure 2.1: Structure of Piecewise Linear Network [23]
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Several research papers have been done in health care to develop state transition models using

Piecewise linear network models. Matthews et al. [24] studied the changes in risk factors of coronary

heart disease in midlife women using a piecewise linear model, which was consistent with ovarian

aging, and a linear model, which was consistent with chronological aging. The piecewise linear

model provided a better fit. Reynolds and Chiu [25] used a piecewise regression model in their

study of understanding thermoregulatory transitions during hemorrhage in rats, where the model

was constrained to the critical transition point.

2.4 Contribution

This research proposes a multi-objective two-stage stochastic programming (2SP) optimization

approach to find optimal treatment strategies for adaptive pain management, where transition

models, which have been used as constraints in the 2SP model are Piecewise Linear Network

(PLN) models. We developed a mixed integer program to integrate these PLN models into the 2SP

optimization. To see the relationship between different pain outcomes, we developed a survey, which

shows the pairwise comparison of different levels of different pain outcomes. Pain management

experts filled out the survey. However, the survey results are not entirely consistent because survey

input is subjective and varies from expert to expert. To get weights to penalize different pain

outcomes, we developed a convex quadratic programming model that attempts to find a consensus

within the surveys.

Then we developed equivalent mixed integer linear programming (MILP) model by using some

linearization techniques. We used AMPL/CPLEX to solve this MILP. Result shows that, the MILP

gives optimal solution for most of the patients within 6 minutes. Then we compare the results with

Wang’s [14] results, who used regression approach to developed transition models. To speed up

the solution process, we developed additional constraints based upon 3-way treatment interactions.

These 3-way treatment interaction constraints are totally consistent with two-way treatment inter-

action constraints. These additional constraints do not eliminate real integer solutions, but they

may eliminate fractional solutions in the branch-and-bound algorithm. We then solved the original

MILP with these additional logical style constraints to see the improvement in MILP.
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Chapter 3

Mathematical Model

This chapter describes the mathematical models that have been used in this research to generate

adaptive treatment strategies. Section 3.1 shows the formulation of two-stage stochastic program-

ming. Convex quadratic programming formulation to get penalty weights is shown in section 3.2.

Section 3.3 discusses mixed integer linear programming formulation to integrate piece-wise linear

network models into original optimization problem. Finally, section 3.4 discuss the linearization of

three-way treatment interaction constraints.

3.1 Stochastic Programming Formulation

The goal of this research is to find adaptive treatment strategies for patients using a statistics-

based optimization approach. Treatments should be prescribed in such a way that can minimize a

patient’s pain outcome and treatment cost as well. The objective function consists of two parts–a

penalty function of pain outcomes and a cost function of treatment usage. Let P (•) be the penalty

function on pain outcomes and C(•) be the treatment cost function . Let N be the set of pain

outcomes (indexed by i), and Ni is the set of levels of each pain outcome i ∈ N (indexed by j).

The penalty function of pain outcomes is used to keep pain within an acceptable limit. Let uij be

the penalty weights of pain outcome i ∈ N for level j ∈ Ni. The purpose of the cost function in the

objective is to put higher cost on treatment usage to avoid over medication. The cost function used

in this research is from [14]. Parameter ρ is a treatment cost coefficient, which is used to maintain

a balance between the pain outcomes and the treatment cost function. Let variables Yi1(εi1) and

Yi2(εi1, εi2) be pain outcome i in at stages 1 and 2 with uncertainties εi1 and εi2. Both uncertainties

in stage 1 and stage 2 follow a normal distribution with mean 0 and some standard deviation. Let

xt, x
p
t , st and Γt be decision variables, type-p treatments, state variables, and feasible decision

spaces at stage t, respectively. The set Λ is the set of treatment interaction restrictions.

Traditional two-stage stochastic programming (2SP) optimization includes an objective func-

tion with potentially non-convex constraints (3.1a)—(3.1f). 2SP is a mixed integer non-linear

programming model (MINLP), which is given below.
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min :
∑
i∈N

∑
j∈Ni

E
(
Puij (Yi2(ε1, ε2))

)
+ ρ
(∑

C(x1) +
∑

E(C(x2(ε1)))
)

(3.1a)

subject to: Yi1(εi1) = h1(s1, x1, εi1) ∀i ∈ N (3.1b)

Yi2(εi1, εi2) = h2(s2(εi1), x2(εi1), εi2) ∀i ∈ N (3.1c)

xi1 ∗ x
j
1 = 0, xi2(ε1) ∗ x

j
2(ε1) = 0 ∀(xi, xj) ∈ Λ (3.1d)

s2(ε1) =
[
s1, x1, Y1(ε1)

]
∀i ∈ N (3.1e)

x1 ∈ Γ1, x2(ε1) ∈ Γ2 (3.1f)

Constraint set (3.1b) shows transition models for all pain outcomes at the end of stage 1, while

constraint set (3.1c) is for transition models at the end of stage 2 for all pain outcomes. Equation

(3.1d) ensures that some treatments that have adverse interaction are not assigned to patients

simultaneously. The state variables in stage 2 include the set of stage 1 state variables, stage 1

decision variables, and pain outcomes of stage 1, which is shown in equation (3.1e). This equation

carries information from stage 1 to stage 2. Equation (3.1f) ensures that the decision variables in

both stages 1 and 2 are within a feasible treatment region.

Using only constraint sets (3.1b) and (3.1c), it is possible that pain outcomes can be negative

at the end of each stage. However, pain outcomes are non-negative in practice. Let Ȳi1 & Ȳi2 be

truncating variables that are the maximum of each of Yi1 & Yi2 and 0 at the end of stage 1 and

2 for each pain outcome i ∈ N . These truncating variables, defined in (3.2b) & (3.2c), make sure

that non-negative pain outcomes are used in the next stage. We replaced final pain outcomes in

(3.1a) by these truncating variables (4.1a).

min :
∑
i∈N

∑
j∈Ni

E
(
Puij (Ȳi2(ε1, ε2))

)
+ ρ
(∑

C(x1) +
∑

E(C(x2(ε1)))
)

(3.2a)

subject to: (3.1b)− (3.1f)

Ȳi1(εi1) = max
(

0, Yi1(εi1)
)

∀i ∈ N (3.2b)

Ȳi2(εi1, εi2) = max
(

0, Yi2(εi1, εi2)
)

∀i ∈ N (3.2c)

3.2 Convex Quadratic Programming Formulation to get Weights

As mentioned previously, we have considered 5 pain outcomes in this research, which are OSW,

PDA, BDI, sf36pcs, and sf36mcs. It is necessary to strike a balance between the different pain

outcomes. We develop a survey to determine the relationships among these pain outcomes (Tables

3.6–3.9). The survey is a pairwise comparison of different levels of different pain outcomes. Pain

Management experts filled out the survey to input the relationship between different levels of
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different pain outcomes. We acquire weights from multiple surveys and merge them to get consistent

weights. However, the survey results are not consistent. To minimize survey inconsistency, we

develop a convex quadratic programming model.

The following is a description of the sets used in the model.

• N = the set of pain outcomes (indexed by i).

• Ni = the set of levels of each pain outcome i ∈ N (indexed by j).

• Q = the set of surveys (indexed by k)

The parameters used in the model are:

• σ = a targeted weight ratio between consecutive levels of the same pain outcome.

• ωijîĵk = the relative importance of jth level of pain outcome i with ĵth level of pain outcome

î, ∀ (i, î) ∈ N, î > i, j ∈ Ni, ĵ ∈ Nî, k ∈ Q.

The variables of the model are as follows:

• uij = the weights of pain outcome i ∈ N for level j ∈ Ni.

• sij = the inconsistency of weights between consecutive levels of pain outcome i.

• tijîĵk = the inconsistency of the weights between the jth level weight of pain outcome i and

ĵth level of pain outcome î, ∀ (i, î) ∈ N, î > i, j ∈ Ni, ĵ ∈ Nî, k ∈ Q.

min
∑
i∈N

( ∑
j∈Ni\{|Ni|}

s2ij +
∑
j∈Ni

∑
î∈N
:̂i>i

∑
ĵ∈Nî

∑
k∈Q

t2
ijîĵk

)
(3.3a)

subject to:

1 ≤ ui1 ∀i ∈ N (3.3b)

uij ≤ ui(j+1) ∀i ∈ N, j ∈ Ni \ {|Ni|} (3.3c)

σuij ≤ ui(j+1) + sij ∀i ∈ N, j ∈ Ni \ {|Ni|} (3.3d)

ωijîĵkuij − uîĵ = tijîĵk ∀(i, î) ∈ N, î > i, j ∈ Ni, ĵ ∈ Nî, k ∈ Q (3.3e)

uij , sij , tijîĵk ≥ 0 ∀(i, î) ∈ N, î > i, j ∈ Ni, ĵ ∈ Nî, k ∈ Q (3.3f)

The objective is to minimize the inconsistency of the surveys. Constraint set (3.3b) shows

that the first level weights of each pain outcome should be greater than or equal to 1. Since we

want to minimize pain outcomes for the patients, we put less weight on the lower levels of pain in

the optimization model, while more weight is on higher levels of pain. Consequently, the weight
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for next level of pain should be greater than or equal to previous level for each pain outcome.

Constraint set (3.3c) includes hard constraints, which ensure that the relationship of weight values

between different levels for each pain outcome is non-decreasing. Constraint set (3.3d) includes

soft constraints, which indicates that the consecutive levels within the same pain outcome should

increase by at least σ. When this increase is unmet, the variable sij is non-negative and penalized

in the objective function. In the case study, we used σ = 3. Constraint set (3.3e) shows that the

jth level weight of ith pain outcome is ωijîĵk times more important than the ĵth level of the îth

pain outcome for each survey k ∈ Q. This pairwise comparison of different levels of different pain

outcomes is treated as a soft constraint. Survey inconsistency tijîĵk is also included in constraint

set (3.3e). Constraint set (3.3f) shows the bounds for decision variables.

3.3 Mixed Integer Linear Programming for Piecewise Linear Net-

work Models

State transition models for pain outcomes, h1 and h2, are in constraints (3.1b) and (3.1c), in this

two-stage stochastic programming optimization model. In this research, we use piecewise linear

network (PLN) models to predict transitions. PLN models mitigate multicollinearity of multiple

response variables by breaking up the space into multiple networks. Each network has a centroid and

a set of linear regression models for the response variables. To determine the predicted responses

for a set of independent variables, a weighted L1 distance measure determines to which network

centroid the set of independent variables is closest. Then the linear regression models within the

selected network determine the predicted responses. To incorporate these piecewise linear network

transition models, in place of h1 and h2, into our optimization model, we must introduce additional

MILP variables and constraints.

Consider the following sets, parameters, and variables. Let N ′ be the set of networks and J ′

be the set of variable features. Let parameter xi
′
j′ be the centroid value for network i′ and feature

j′. For each j′ ∈ J ′, let decision variable xj′ be the value of feature j′, and for each i′ ∈ N ′, let

decision variables yi′ and wi′j′ be binary variables such that

yi′ =

1 if xj′ is in Network i′

0 otherwise;
wi′j′ =

1 if xj′ ≥ xi
′
j′

0 otherwise.
(3.4)

For each network i′ ∈ N ′, each pain outcome i ∈ N , and each feature j′ ∈ J ′, let parameter

βi
′
ij′ be the weight coefficient. Similarly, let βi

′
i0 be the intercept coefficient for each pain outcome

i ∈ N and each network i′ ∈ N ′. For each feature j′ ∈ J ′, let parameter bj′ be the distance measure

weight. Let variable Yi be the outcome of the PLN transition models for each pain outcome i ∈ N ,

and parameter M is a big number. For each network i′ ∈ N ′ and each feature j′ ∈ J ′, let variables

xi
′+
j′ and xi

′−
j′ be the value of decision variable xj′ , whether it is greater than or less than the centroid

of network i′, respectively. The MILP transition constraints can be formulated by the following:
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−M(1− yi′) + βi
′
i0 +

∑
j′∈J ′

βi
′
ij′xj′ + εi ≤ Yi ≤ βi

′
i0

+
∑
j′∈J ′

βi
′
ij′xj′ + εi +M(1− yi′) ∀i ∈ N, i′ ∈ N ′ (3.5a)

∑
i′∈N ′

yi′ = 1 (3.5b)∑
j′∈J ′

di′j′ ≤
∑
j′∈J ′

dk′j′ +M(1− yi′) ∀(i′, k′) ∈ N ′, k′ 6= i′ (3.5c)

xi
′
j′wi′j′ ≤ xi

′+
j′ ≤Mwi′j′ ∀i′ ∈ N ′, j′ ∈ J ′ (3.5d)

−M(1− wi′j′) ≤ xi
′−
j′ ≤ x

i′
j′(1− wi′j′) ∀i′ ∈ N ′, j′ ∈ J ′ (3.5e)

xj′ = xi
′+
j′ + xi

′−
j′ ∀i′ ∈ N ′, j′ ∈ J ′ (3.5f)

di′j′ = bj′(x
i′
j′ − 2xi

′
j′wi′j′ + xi

′+
j′ − x

i′−
j′ ) ∀i′ ∈ N ′, j′ ∈ J ′ (3.5g)

yi′ ∈ {0, 1} ∀i′ ∈ N ′ (3.5h)

wi′j′ ∈ {0, 1} ∀i′ ∈ N ′, j′ ∈ J ′ (3.5i)

Yi, xj′ , x
i′+
j′ , x

i′−
j′ ∈ (−∞,+∞) ∀ i ∈ N, i′ ∈ N ′, j′ ∈ J ′ (3.5j)

If the decision variables xj′ , j
′ ∈ J ′, are in network i′ then constraint set (3.5a) ensures the

pain outcomes Yi, i ∈ N , are equal to the regression models within the network i′; otherwise, a big

M is used to relax the constraints (3.5a). Constraint (3.5b) guarantees only one network is used.

Constraint set (3.5c) ensures that for each network pair (i′, k′) ∈ N ′ and each feature variable

j′ ∈ J ′, the sum of the weighted distance variables di′j′ , defined in equation (3.5g), is less than or

equal to the sum of the weighted distances of all other networks k′ where k′ 6= i′. Consequently, this

constraint set determines the selected network. Constraints (3.5d)–(3.5f) link the decision variable

xj′ to variables xi
′+
j′ and xi

′−
j′ based upon whether xj′ is greater than or less then centroid values

xi
′
j′ . Constraints (3.5a)—(3.5j) can be used in place of constraints (3.1b) and (3.1c).

16



3.4 Three-way Treatment Interaction Constraints

A description of the treatment variables are shown in Table 3.1. From equation (3.1d) we see that

treatment i and j cannot be assign simultaneously because of their adverse interaction. These two-

way treatment interactions are shown in Table 3.2. Checkmark (X) indicates they have no adverse

interaction, and Crossmark (7) means they have adverse interaction. However, it is well known in

mathematical programming optimization that if additional logical style constraints can be added to

an MILP problem, then often times the solution process is faster. These additional constraints do

not eliminate real integer solutions, but they may eliminate fractional solutions in the branch-and-

bound algorithm. We then developed constraints based upon 3-way treatment interactions. These

3-way treatment interaction constraints are totally consistent with two-way treatment interaction

constraints. From table 3.2, we determine that three types of 3-way treatment interactions are

possible. Table 3.3 shows the first type of 3-way treatment interactions. For example, RxGr1 &

RxGr3 interact with each other, but they do not interact with RxGr2. Table 3.4 shows the second

type of 3-way treatment interactions. For example, RxGr1 interacts with both RxGr3 & RxGr7,

but RxGr3 & RxGr7 do not interact with each other. Table 3.5 shows the third type of 3-way

treatment interaction. For example, RxGr1, RxGr3 & RxGr4 all interact with each other.
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Table 3.1: Description of Variables

Variable

type

Variable

Name

Description Values

pre PDA PDA measure at the initial point Continuous

pre OSW OSW measure at the initial point Continuous

pre BDI BDI measure at the initial point Continuous

pre SF36-

pcs

SF36-pcs measure at the initial point Continuous

pre SF36-

mcs

SF36-mcs measure at the initial point Continuous

Age Patient’s age Continuous

Children Children Continuous

Onset Time (in months) since the first onset of pain Continuous

Duration Duration Continuous

Status Status of condition 1: acute (< 3

months), 2:acute

(< 6 months),

3:acute (< 9

months)

Race 1 Race of Patient 0:no, 1:Caucasian

Race 2 Race of Patient 0:no, 1:African

American

State

Variables

Litigate Pending litigation related to pain? 0:no, 1:yes

Gender Patient’s gender 0:male, 1:female

phydx1 Physical Dx1/Facial 784.0 0:no, 1:yes

phydx3 Physical Dx3/Headache 784.0 0:no, 1:yes

phydx4 Physical Dx4/Cervical 723.1 0:no, 1:yes

phydx5 Physical Dx5/Thoracic 724.1 0:no, 1:yes

phydx6 Physical Dx6/Lumbar 724.2 0:no, 1:yes

phydx7 Physical Dx7/Myofascial-Fibromyalgia 729.1 0:no, 1:yes

phydx8 Physical Dx8/Abdominal 789.0 0:no, 1:yes

phydx11 Physical Dx11/Upper Extremity 729.5 0:no, 1:yes

phydx12 Physical Dx12/Low Extremity 729.5 0:no, 1:yes

phydx14 Physical Dx14/Osteoarthritis 716.9 0:no, 1:yes

phydx15 Physical Dx15/Sacro-illitis 724.6 0:no, 1:yes

phydx20 Physical Dx20/Neuralgia, Neuritis, Unspeci-

fied

0:no, 1:yes

Continued on next page
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Table 3.1 – Continued from previous page

Variable

type

Variable

Name

Description Values

phydx31 Physical Dx/Cervical Spondylosis W/O

Myelopathy (721.0)

0:no, 1:yes

ProcGr1 0 Injection in stage 0 0:no, 1:yes

ProcGr2 0 Block Procedure in stage 0 0:no, 1:yes

ProcGr4 0 Stimulation Procedure in stage 0 0:no, 1:yes

ProcGr9 0 Psychotherapy in stage 0 0:no, 1:yes

ProcGr10 0 Physical Therapy in stage 0 0:no, 1:yes

ProcGr11 0 Number of Additional Procedures in stage 0 0:no, 1:yes

pastdx3 Past Dx3/Headache 784.0 0:no, 1:yes

pastdx4 Past Dx4/Cervical 723.1 0:no, 1:yes

pastdx5 Past Dx5/Thoracic 724.1 0:no, 1:yes

pastdx6 Past Dx6/Lumbar 724.2 0:no, 1:yes

pastdx7 Past Dx7/Myofascial-Fibromyalgia 729.1 0:no, 1:yes

pastdx8 Past Dx8/Abdominal 789.0 0:no, 1:yes

pastdx11 Past Dx11/Upper Extremity 729.5 0:no, 1:yes

pastdx12 Past Dx12/Low Extremity 729.5 0:no, 1:yes

pastdx14 Past Dx14/Osteoarthritis 716.9 0:no, 1:yes

pastdx15 Past Dx15/Sacro-illitis 724.6 0:no, 1:yes

pastdx20 Past Dx20/Neuralgia, Neuritis, Unspecified 0:no, 1:yes

pastdx32 Past Dx/Number of Additional Diagnoses 0:no, 1:yes

SghxGr1 Surgical History/Unspecified discectomy 0:no, 1:yes

SghxGr3 Surgical History/Percutaneous discectomy 0:no, 1:yes

SghxGr5 Surgical History/Unspecified fusion 0:no, 1:yes

SghxGr6 Surgical History/Anterior fusion 0:no, 1:yes

SghxGr11 Surgical History/Hardware removal 0:no, 1:yes

RxGr1 0 Tramadol in stage 0 0:no, 1, 2,3

RxGr2 0 NSAIDs in stage 0 0:no, 1, 2,3

RxGr3 0 Narcotic in stage 0 0:no, 1, 2,3

RxGr4 0 Muscle Relaxant in stage 0 0:no, 1, 2,3

RxGr5 0 Antidepressant in stage 0 0:no, 1, 2,3

RxGr6 0 Tranquilizer in stage 0 0:no, 1, 2,3

RxGr7 0 Sleeping Pills in stage 0 0:no, 1, 2,3

RxGr8 0 Others in stage 0 0:no, 1, 2,3

marital 1 Marital Status of Patient 0:no, 1:single

marital 2 Marital Status of Patient 0:no, 1:married

Continued on next page
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Table 3.1 – Continued from previous page

Variable

type

Variable

Name

Description Values

marital 3 Marital Status of Patient 0:no, 1:divorced

marital 4 Marital Status of Patient 0:no, 1:widow

ProcGr1 1 Injection in stage 1 0:no, 1:yes

ProcGr2 1 Block Procedure in stage 1 0:no, 1:yes

ProcGr4 1 Stimulation Procedure in stage 1 0:no, 1:yes

ProcGr9 1 Psychotherapy in stage 1 0:no, 1:yes

ProcGr10 1 Physical Therapy in stage 1 0:no, 1:yes

Decision

Variables

ProcGr11 1 Number of Additional Procedures in stage 1 0:no, 1:yes

RxGr1 1 Tramadol in stage 1 0:no, 1, 2

RxGr2 1 NSAIDs in stage 1 0:no, 1, 2, 3

RxGr3 1 Narcotic in stage 1 0:no, 1, 2, 3

RxGr4 1 Muscle Relaxant in stage 1 0:no, 1, 2, 3

RxGr5 1 Antidepressant in stage 1 0:no, 1, 2, 3

RxGr6 1 Tranquilizer in stage 1 0:no, 1, 2, 3

RxGr7 1 Sleeping Pills in stage 1 0:no, 1, 2

RxGr8 1 Others in stage 1 0:no, 1, 2

ProcGr1 2 Injection in stage 2 0:no, 1:yes

ProcGr2 2 Block Procedure in stage 2 0:no, 1:yes

ProcGr4 2 Stimulation Procedure in stage 2 0:no, 1:yes

. ProcGr9 2 Psychotherapy in stage 2 0:no, 1:yes

ProcGr10 2 Physical Therapy in stage 2 0:no, 1:yes

RxGr1 2 Tramadol in stage 2 0:no, 1, 2, 3

RxGr2 2 NSAIDs in stage 2 0:no, 1, 2, 3

RxGr3 2 Narcotic in stage 2 0:no, 1, 2, 3

RxGr4 2 Muscle Relaxant in stage 2 0:no, 1, 2, 3

RxGr5 2 Antidepressant in stage 2 0:no, 1, 2, 3

RxGr6 2 Tranquilizer in stage 2 0:no, 1, 2, 3

RxGr7 2 Sleeping Pills in stage 2 0:no, 1, 2

RxGr8 2 Others in stage 2 0:no, 1, 2,3
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Table 3.2: Two-way Treatment Interaction Table

RxGr1 RxGr2 RxGr3 RxGr4 RxGr5 RxGr6 RxGr7 RxGr8 ProcGr1 ProcGr2

RxGr1 X 7 7 7 7 7 X 7 X
RxGr2 X X X 7 X 7 7 7

RxGr3 7 7 7 X X X X
RxGr4 X 7 7 7 X X
RxGr5 7 7 X 7 7

RxGr6 7 X X X
RxGr7 7 X X
RxGr8 7 7

Table 3.3: Three-way treatment interaction:Type I

RxGr2 (RxGr1, RxGr3), (RxGr1, RxGr4), (RxGr1, RxGr5)
(RxGr1, RxGr7)

RxGr3 (RxGr2, RxGr8), (RxGr2, ProcGr1), (RxGr2, ProcGr2)

RxGr5 (RxGr4, RxGr8)

RxGr7 (RxGr2, ProcGr1), (RxGr2, ProcGr2)

RxGr8 (RxGr5, RxGr6)

ProcGr1 (RxGr3, RxGr4), (RxGr6, RxGr7)

ProcGr2 (RxGr3, RxGr4), (RxGr6, RxGr7)

3.4.1 Linearization of Continuous Treatment Interaction Constraints

First, we consider treatment interaction variables as continuous as shown in Figure 3.1. Then the

linearization techniques are as follows. For all (xi, xj , xk) ∈ Λ, let parameter li, lj , and lk and ui,

uj , and uk be the lower and upper bound of decision variables xi, xj , and xk in both stages, and

let decision variables w
′
i , w

′
j , and w

′
k be binary variables such that

w
′
i =

1 if xi ≥ 1

0 otherwise
w

′
j =

1 if xj ≥ 1

0 otherwise
w

′
k =

1 if xk ≥ 1

0 otherwise
(3.6)

Original Two-Way Interaction: Suppose xi and xj interact with each other, then

Table 3.4: Three-way treatment interaction:Type II

RxGr1 (RxGr3, RxGr7), (RxGr3, ProcGr1), (RxGr4, RxGr5)
(RxGr4, ProcGr1), (RxGr6, ProcGr1)

RxGr2 (RxGr6, RxGr8), (RxGr6, ProcGr1), (RxGr6, ProcGr2)
(ProcGr1, ProcGr2)

RxGr3 (RxGr4, RxGr5)

RxGr4 (RxGr6, RxGr8)

RxGr5 (RxGr6, ProcGr1), (RxGr6, ProcGr2), (RxGr7, ProcGr1)
(RxGr7, ProcGr2)

RxGr8 (ProcGr1, ProcGr2)
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Table 3.5: Three-way treatment interaction:Type III

RxGr1 (RxGr3, RxGr4), (RxGr3, RxGr5), (RxGr3, ProcGr6)
(RxGr4, RxGr6), (RxGr4, RxGr7), (RxGr5, RxGr7)

(RxGr5, ProcGr1), (RxGr6, RxGr7)

RxGr2 (RxGr8, ProcGr1), (RxGr8, ProcGr2)

RxGr3 (RxGr4, RxGr6), (RxGr5, RxGr6)

RxGr4 (RxGr6, RxGr7), (RxGr7, RxGr8)

RxGr5 (RxGr6, RxGr7)

(a) xi interact with xk, but xi and xk doesn’t interact
with xj . The shaded region is feasible.

(b) xk interact with both xi and xj , but xi and xj
does not interact. The shaded region and the xk axis
are feasible.

(c) xi, xj , and xk interact among all. Only the axis
are feasible.

Figure 3.1: Three-way treatment interaction: Continuous
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xi − li ≤ w
′
i(ui − li), xj − lj ≤ w

′
j(uj − lj), w

′
i + w

′
j ≤ 1.

Three-way Type I: Suppose xi interacts with xk, but xi and xk do not interact with xj , then

xi − li ≤ w
′
i(ui − li), xj − lj ≤ w

′
j(uj − lj), xk − lk ≤ w

′
k(uk − lk), 2w

′
i +w

′
j + 2w

′
k ≤ 3.

Three-way Type II: Suppose xk interacts with both xi and xj , but xi and xj do not interact,

then

xi − li ≤ w
′
i(ui − li), xj − lj ≤ w

′
j(uj − lj), xk − lk ≤ w

′
k(uk − lk), w

′
i + w

′
j + 2w

′
k ≤ 2.

Three-way Type III: Suppose xi, xj , and xk all interact with each other (i.e. a three-way inter-

action), then

xi − li ≤ w
′
i(ui − li), xj − lj ≤ w

′
j(uj − lj), xk − lk ≤ w

′
k(uk − lk), w

′
i + w

′
j + w

′
k ≤ 1.

(a) xi interact with xk, but xi and xk doesn’t interact
with xj .

(b) xk interact with both xi and xj , but xi and xj
does not interact.

(c) xi, xj , and xk interact among all.

Figure 3.2: Three-way treatment interaction: Integer
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3.4.2 Linearization of Integer Treatment Interaction Constraints

In Section , we assumed that the treatment variables were continuous. However, many treatments

are prescribed at certain discrete levels. In this section, we assume that the treatments are discrete

integer variables. Figure 3.2 shows the corresponding feasible regions of each type of three way

interaction with discrete treatment variables. Consider the following linearization techniques. Let

ri be the set of discrete integer levels for treatment i in feasible decision space in Γ. For all i ∈ Γ

and p ∈ ri, let xip be a binary variable such that,

xip =

1 if treatement i is treated at level p

0 otherwise
(3.7)

Original Two-way: Suppose xi and xj interact with each other, then ∀i ∈ Γ, (i, j) ∈ Λ, i 6= j∑
p∈ri xip = 1, xi =

∑
p∈ri p xip,

∑
p∈ri\0 xip +

∑
q∈rj\0 xjq ≤ 1.

Three-way Type I: Suppose xi interacts with xk, but xi and xk do not interact with xj , then

∀i ∈ Γ, (i, j, k) ∈ Λ, i 6= j 6= k∑
p∈ri xip = 1, xi =

∑
p∈ri p xip, 2

∑
p∈ri\0 xip +

∑
q∈rj\0 xjq + 2

∑
r∈rk\0 xkr ≤ 3.

Three-way Type II: Suppose xk interacts with both xi and xj , but xi and xj do not interact,

then ∀i ∈ Γ, (i, j, k) ∈ Λ, i 6= j 6= k∑
p∈ri xip = 1, xi =

∑
p∈ri p xip,

∑
p∈ri\0 xip +

∑
q∈rj\0 xjq ≤ 2 xk0.

Three-wayType III: Suppose xi, xj , and xk have a three-way interaction, then ∀i ∈ Γ, (i, j, k) ∈
Λ, i 6= j 6= k∑

p∈ri xip = 1, xi =
∑

p∈ri p xip,
∑

p∈ri\0 xip +
∑

q∈rj\0 xjq +
∑

r∈rk\0 xkr ≤ 1.
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Table 3.6: Questionnaire for OSW vs. PDA

Objective
Pairs

Pain outcome level If pain out-
come level
(a) and (b)
are equally
impor-
tant, then
check this
column.

If one is important than other one between (a) and (b),
then check the important one in pain outcome level col-
umn. After that check one of the columns from below
to show how important that checked pain outcome level
compare to other one.

(a) (b) Slightly
more im-
portant

moderately
more impor-
tant

strongly
more
important

extremely
more
important

OSW(0-10)
vs. PDA

� OSW(0-10) � PDA(0-2) � � � � �
� OSW(0-10) � PDA(3-4) � � � � �
� OSW(0-10) � PDA(5-6) � � � � �
� OSW(0-10) � PDA(7-8) � � � � �
� OSW(0-10) � PDA(9-10) � � � � �

OSW(11-
20) vs.
PDA

� OSW(11-20) � PDA(0-2) � � � � �
� OSW(11-20) � PDA(3-4) � � � � �
� OSW(11-20) � PDA(5-6) � � � � �
� OSW(11-20) � PDA(7-8) � � � � �
� OSW(11-20) � PDA(9-10) � � � � �

OSW(21-
30) vs.
PDA

� OSW(21-30) � PDA(0-2) � � � � �
� OSW(21-30) � PDA(3-4) � � � � �
� OSW(21-30) � PDA(5-6) � � � � �
� OSW(21-30) � PDA(7-8) � � � � �
� OSW(21-30) � PDA(9-10) � � � � �

OSW(31-
40) vs.
PDA

� OSW(31-40) � PDA(0-2) � � � � �
� OSW(31-40) � PDA(3-4) � � � � �
� OSW(31-40) � PDA(5-6) � � � � �
� OSW(31-40) � PDA(7-8) � � � � �
� OSW(31-40) � PDA(9-10) � � � � �

OSW(41-
50) vs.
PDA

� OSW(41-50) � PDA(0-2) � � � � �
� OSW(41-50) � PDA(3-4) � � � � �
� OSW(41-50) � PDA(5-6) � � � � �
� OSW(41-50) � PDA(7-8) � � � � �
� OSW(41-50) � PDA(9-10) � � � � �

Table 3.7: Questionnaire for OSW vs. sf36pcs

Objective
Pairs

Pain outcome level If pain out-
come level
(a) and (b)
are equally
impor-
tant, then
check this
column.

If one is important than other one between (a) and (b),
then check the important one in pain outcome level col-
umn. After that check one of the columns from below
to show how important that checked pain outcome level
compare to other one.

(a) (b) Slightly
more im-
portant

moderately
more impor-
tant

strongly
more
important

extremely
more
important

OSW(0-10) vs.
sf36pcs

� OSW(0-10) � sf36pcs≥50) � � � � �
� OSW(0-10) � sf36pcs<50) � � � � �

OSW(11-20)
vs. sf36pcs

� OSW(11-20) � sf36pcs≥50) � � � � �
� OSW(11-20) � sf36pcs<50) � � � � �

OSW(21-30)
vs. sf36pcs

� OSW(21-30) � sf36pcs≥50) � � � � �
� OSW(21-30) � sf36pcs<50) � � � � �

OSW(31-40)
vs. sf36pcs

� OSW(31-40) � sf36pcs≥50) � � � � �
� OSW(31-40) � sf36pcs<50) � � � � �

OSW(41-50)
vs. sf36pcs

� OSW(41-50) � sf36pcs≥50) � � � � �
� OSW(41-50) � sf36pcs<50) � � � � �
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Table 3.8: Questionnaire for OSW vs. BDI

Objective
Pairs

Pain outcome level If pain out-
come level
(a) and (b)
are equally
impor-
tant, then
check this
column.

If one is important than other one between (a) and (b),
then check the important one in pain outcome level col-
umn. After that check one of the columns from below
to show how important that checked pain outcome level
compare to other one.

(a) (b) Slightly
more im-
portant

moderately
more impor-
tant

strongly
more
important

extremely
more
important

OSW(0-10)
vs. BDI

� OSW(0-10) � BDI(0-10) � � � � �
� OSW(0-10) � BDI(11-14) � � � � �
� OSW(0-10) � BDI(15-18) � � � � �
� OSW(0-10) � BDI(19-30) � � � � �
� OSW(0-10) � BDI(31-63) � � � � �

OSW(11-
20) vs.
BDI

� OSW(11-20) � BDI(0-10) � � � � �
� OSW(11-20) � BDI(11-14) � � � � �
� OSW(11-20) � BDI(15-18) � � � � �
� OSW(11-20) � BDI(19-30) � � � � �
� OSW(11-20) � BDI(31-63) � � � � �

OSW(21-
30) vs.
BDI

� OSW(21-30) � BDI(0-10) � � � � �
� OSW(21-30) � BDI(11-14) � � � � �
� OSW(21-30) � BDI(15-18) � � � � �
� OSW(21-30) � BDI(19-30) � � � � �
� OSW(21-30) � BDI(31-63) � � � � �

OSW(31-
40) vs.
BDI

� OSW(31-40) � BDI(0-10) � � � � �
� OSW(31-40) � BDI(11-14) � � � � �
� OSW(31-40) � BDI(15-18) � � � � �
� OSW(31-40) � BDI(19-30) � � � � �
� OSW(31-40) � BDI(31-63) � � � � �

OSW(41-
50) vs.
BDI

� OSW(41-50) � BDI(0-10) � � � � �
� OSW(41-50) � BDI(11-14) � � � � �
� OSW(41-50) � BDI(15-18) � � � � �
� OSW(41-50) � BDI(19-30) � � � � �
� OSW(41-50) � BDI(31-63) � � � � �

Table 3.9: Questionnaire for OSW vs. sf36mcs

Objective
Pairs

Pain outcome level If pain out-
come level
(a) and (b)
are equally
impor-
tant, then
check this
column.

If one is important than other one between (a) and (b),
then check the important one in pain outcome level col-
umn. After that check one of the columns from below
to show how important that checked pain outcome level
compare to other one.

(a) (b) Slightly
more im-
portant

moderately
more impor-
tant

strongly
more
important

extremely
more
important

OSW(0-10) vs.
sf36mcs

� OSW(0-10) � sf36mcs≥50) � � � � �
� OSW(0-10) � sf36mcs<50) � � � � �

OSW(11-20)
vs. sf36mcs

� OSW(11-20) � sf36mcs≥50) � � � � �
� OSW(11-20) � sf36mcs<50) � � � � �

OSW(21-30)
vs. sf36mcs

� OSW(21-30) � sf36mcs≥50) � � � � �
� OSW(21-30) � sf36mcs<50) � � � � �

OSW(31-40)
vs. sf36mcs

� OSW(31-40) � sf36mcs≥50) � � � � �
� OSW(31-40) � sf36mcs<50) � � � � �

OSW(41-50)
vs. sf36mcs

� OSW(41-50) � sf36mcs≥50) � � � � �
� OSW(41-50) � sf36mcs<50) � � � � �
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Chapter 4

Solution Approach

This chapter details the computational results based on mathematical models discussed in chapter

3. Section 4.1 describes the description of data set, decision variables, and state variables. Analysis

of weights from convex quadratic programming model as discussed in section 4.2. Section 4.3

shows the procedure to select an appropriate value for treatment cost coefficient, ρ. Section 4.4

describes the methods to choose appropriate sample size for this scenario based two-stage stochastic

programming problem. Treatment analysis among this research, Wang [14], and observed data in

both stages are shown in section 4.5. Final pain outcome comparisons among this research, observed

data, and Wang [14] are shown in section 4.6. Finally, results from different types of additional

3-way treatment interaction constraints are shown in section 4.7.

4.1 Case Study

The data set used in this research was provided by the Eugene McDermott Center for pain man-

agement at UT Southwestern Medical Center. It has 294 observations, which means 294 patients

completed both stage 1 and stage 2. Data was then divided into training and testing datasets

consisting of 235 and 59 observations, respectively. The data set consists of 62 state variables, 5

mid-pain outcomes, 5 post-pain outcomes, 14 stage 1 decision variables, and 13 stage 2 decision

variables. In stage 1, there are 8 pharmaceutical treatment variables and 6 procedural treatment

variables, while in stage 2, there are 8 pharmaceutical variables and 5 procedural variables. Pro-

cedural variables are binary, while pharmaceutical variables are discrete level categorical. The

description of the variables is shown in Table 3.1. We have used Pain Drawing Analogue (PDA),

Oswestry Pain Disability Questionnaire (OSW), Beck Depression Inventory (BDI), Short Form 36

Physical Component Summary (sf36-pcs), and Short Form 36 Mental Health Component Summary

(sf36-mcs) pain outcomes in this optimization model. Mid-PDA, mid-OSW, mid-BDI, mid-sf36-

pcs, and mid-sf36-pcs are used to measure the pain outcomes at the end of stage 1, and post-PDA,

post-OSW, post-BDI, post-sf36-pcs, and post-sf36-pcs are used to measure the pain outcomes at

the end of stage 2. We used a two-stage feature selection method to find optimal features [26].

These features fit a PLN model to the data, and remove useless inputs. We then ran the optimiza-

27



tion problem to determine treatment policy, and compared the treatment policy with observed data

and policies found in Wang [14]. A 6-minute time was used for the computational experiments.

4.2 Weights from Convex Quadratic Programming

To know the relationship between the multiple pain outcomes, we developed a survey for experts.

The survey results are then put as parameters in a convex quadratic programming model that is

described in section 3.2. After solving the convex quadratic model, we get the weights for OSW,

PDA, BDI, SF36-pcs, and SF36-mcs. Figure 4.1 shows the weights for all five pain outcomes.

From Figures 4.1a-4.1c, we can see that higher pain outcomes have more penalty weights com-

pare to lower scores for OSW, PDA, and BDI. As we already mentioned previously, if SF36 pain

outcome scores are greater than 50, then it is in the normal level. Figures 4.1a and 4.1c show that

sf36 pain outcomes have high penalty weights if their average score is less than 50, because the

patients with an sf36 score of less than 50 need medication.

4.3 Treatment Cost Coefficient

We have used treatment cost coefficient parameter (ρ) in the 2SP objective function 3.1a to make

sure that cost function does not dominate pain outcomes. It is necessary to identify the appropriate

value of ρ. We try with different ρ values. We solve 2SP problems with a same sample size in both

stages without any treatment interaction. Table 4.1 shows the treatment cost and average pain

outcomes for different ρ values.

Table 4.1: Determination of Treatment Coefficient

Treatment coefficient, ρ
0.01 0.05 0.1 0.5

Treatment Cost 184.11 147.01 131.19 82.02
Avg. PDA 4.99 5 5.02 5.06
Avg. OSW 8.14 8.73 9.49 11.58
Avg. BDI 3.19 3.56 3.81 5.1

Avg. SF36pcs 44.5 42.11 42.23 40.04
Avg. SF36mcs 50.35 50.27 50.2 49.79

Treatment cost decreased with increasing value of ρ, while average pain outcome scores are

increasing for PDA, OSW, BDI and decreasing for SF36pcs and SF36mcs (higher score of SF36 is

better). Treatment cost is lowest for ρ value of 0.5, but for this value of ρ, we usually don’t get any

treatment for patients. This is because we are giving too much penalty on treatment. We choose

0.05 as a treatment cost coefficient. All the results below are based on ρ = 0.05.
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(a) Weights for OSW (b) Weights for PDA

(c) Weights for BDI (d) Weights for SF36-pcs

(e) Weights for SF36-mcs

Figure 4.1: Penalty weights for OSW, PDA, BDI, SF36-pcs, and SF36-mcs

4.4 Sample size determination

In two-stage stochastic programming, discrete sampled scenarios are used to represent uncertainty,

and it is important to identify an appropriate sample size. We ran the optimization software with

sample sizes of 15, 20, 25, and 30 for each stage. Average CPU times for policy generator, which

is an equivalent deterministic model obtained bydiscretizing each random variable at each stage

into n points, for different sample sizes for optimizing both the training and testing datasets are

shown in figure 4.2. It is clear that CPU time increases along with increasing number of scenarios
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(a) CPU time for Training Dataset (b) CPU time for Testing Dataset

Figure 4.2: Average CPU time in different scenarios in Training and Testing data

(sample2). For a small number of scenarios, CPU time is low. However, these small scenario sizes

may not be able to represent the uncertainty in the two-stage stochastic programming model. We

choose to use 625 scenarios (sample size of 25), because it takes an average of 300 seconds per

patient to get the treatment policy, which is a reasonable waiting time.

(a) Objective values for Training Dataset (b) Objective values for Testing Dataset

Figure 4.3: Average Objectives in different scenarios

Average objective values for both the training and testing dataset in case of policy generation

is shown in figure 4.3 in the purple color line. The objective value is lower in for policy generation

with 900 scenarios compared to other scenarios. However, as we have discussed before, using

900 scenarios takes an average of 360 seconds to give the treatment policy, and provably optimal

solutions were not found for most of the patients. This is another reason for choosing 625 scenarios

for policy generation. We then evaluated this policy using 625 and 900 scenarios. Evaluation is

done using following mathematical equations to see the quality of the solution that is generated

in policy generation stage. Let x∗1(n) be the optimal decision from policy generation model with

sample size n.
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min :
∑
i∈N

∑
j∈Ni

E
(
Puij (Ȳi2(ε1, ε2))

)
+ ρ
(∑

C(x1) +
∑

E(C(x2(ε1)))
)

(4.1a)

subject to: (3.1b)—(3.1f), & (3.2b)—(3.2c) with sample size m

x1 = x∗1(n) (4.1b)

The evaluated objective values are shown in red and green for 625 and 900 scenarios, respectively,

in Figure 4.3. We choose 625 scenarios for evaluation because that gives the minimum objective

values for 625 scenarios policy generation. Another reason is 625 scenarios for evaluation with 625

policy generations gives better pain outcomes, which is described in 4.6.

4.5 Treatment Analysis

This section compares treatment usage in different scenarios, and treatment usage frequency among

this research, Wang [14], and observed data in both stages.

(a) First Stage Treatment usage with a different num-
ber of scenarios.

(b) First Stage Treatment Usage analysis in Observed
dataset, Wang [14] (2SP Regression), and in this re-
search (2SP PLN).

Figure 4.4: First Stage Treatment Analysis

4.5.1 First Stage Treatment Usage in different Scenario

Figure 4.4a shows the frequency of treatment usage in the first stage for a different sets of scenarios

in this research. This figure demonstrates that Muscle Relaxant (RxGr4 1) is the most frequently

used treatment, and Cognitive Behavior Therapy (ProcGr9 1) is the second most used treatment in

almost all of the scenario sets in first stage. Tramadol (RxGr1 1), Narcotic (RxGr3 1), Tranquilizer

(RxGr6 1), Sleeping Pills (RxGr7 1), Other Treatments (RxGr8 1), Injection (ProcGr1 1), and Block

Procedures (ProcGr1 1) are applied to patients with low frequency (< 10%) in all the scenario sets.

Since we have choose 625 scenarios (sample size 25) for policy generation, we will use the treatment

policy for 625 scenarios for the remainder of this discussion.
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4.5.2 First Stage Treatment Comparison

Figure 4.4b shows first-stage treatment frequency in the observed data, in the 2SP regression from

Wang [14], and 2SP PLN approach in this dissertation. It is clear that there is disagreement in

the selected treatments across the 3 solutions. The most used treatment in stage 1 in the observed

dataset is cognitive behavior therapy (ProcGr9 1), which is recommended to 76% of the patients.

This treatment has been recommended in this research (2SP with PLN transition models) to 75%

patients, which is pretty similar to observed data. However, the treatment policy from Wang [14]

recommended this treatment to only 10% of the patients. Physical therapy (ProcGr10 1) is the

second most used treatment in the observed data, while it was applied to 17% of the patients

in this research, and only 2% of the patients in Wang [14]. One thing to notice is that the 2SP

regression from Wang [14] seldom recommended procedural treatments, while the observed data

and this research select most of the procedural treatments. The reason is that when a physician

recommends treatment to patients, they consider all the aspects of pain. Even in this research we

also considered 5 pain outcomes including Beck Depression Inventory, which is mostly treated with

procedural treatments. As we mentioned earlier, Wang [14] considered only OSW as pain outcome,

which is why procedural treatments were not recommended in her results.

In this research, the most used treatment is Muscle Relaxant (RxGr4 1). It is recommended to

30% of patients in the observed data, while it was never been recommended in Wang [14]. NSAID

(RxGr2 1) is the only treatment that has been recommended to more than 30% of the patients in

this research (48%), 33% in the observed data set, and 83% in Wang [14].

4.5.3 Second Stage Treatment Usage in different Scenario

Figure 4.5a shows the frequency of treatment usage in the second stage for different scenarios in

this research. Similar types of treatment with slightly different frequency has been suggested in

case of all scenario sets. Since we have choosen sample size 25 for policy generation, we will use

the treatment profile of 625 scenarios to compare it with observed data and Wang [14].

4.5.4 Second-Stage Treatment Comparison

Treatment usage frequency of second stage in observed data, 2SP with regression from Wang [14],

and in this research are shown in Figure 4.5b. In the observed dataset, we see all of the 13

treatments were recommended to patients. Block procedure (ProcGr2 2) was the least frequently

used treatment in the observed dataset, but it was the most frequently used treatment (97%) in

this research. In Wang [14], Block Procedure was the most frequently used treatment as well.

Cognitive behavior therapy (ProcGr9 2) treatment is most frequently used in the observed dataset,

but it was recommended to only 1 patient both in this research and in Wang [14]. Physical therapy

(ProcGr10 2) is the second most frequently recommended treatment in the observed dataset, while

it is recommended as a treatment to only one patient in this research. However, it was never

recommended in Wang [14]. Block Procedure (ProcGr2 2) is the most frequently used treatment
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(a) Second Stage Treatment usage in different scenario

(b) Second-stage treatment usage analysis in the ob-
served dataset, Wang [14] (2SP Regression), and in
this research (2SP PLN)

Figure 4.5: Second Stage Treatment Analysis

both in this research (98%) and in Wang (28%) [14], while it was recommended to only 3% of the

patients in the observed data. Sleeping pills (RxGr7 2) is the only treatment that was used to more

than 10% of the patients in the observed data, in this research and in Wang [14].

4.6 Final Pain Outcome Comparison

We conduct odds ratio analysis to compare the performance of the optimization model with the

observed data. Let, S1i be the set of patients from observed data that required treatment after pre-

evaluation for each pain outcome i ∈ N . Let S2i and S3i be the set of patients that achieve normal

levels after post-evaluation for each pain outcome i ∈ N in the observed data and optimization,

where (S2i, S3i) ∈ S1i . The odds of the observed data, O1i, for each pain outcome i ∈ N is

calculated using O1i =
(

|S2i|
|S1i|−|S2i|

)
, and odds of optimization, O2i, for each pain outcome i ∈ N

is calculated using O2i =
(

|S3i|
|S1i|−|S3i|

)
. The odds ratio is the ratio of two odds. Since we want to

see how the optimization model performs over the observed data for each pain outcome i ∈ N , we

use ORi =
(
O2i
O1i

)
formula to calculate odds ratio.

Table 4.2 shows the number of patients requiring treatment in the beginning of the two-stage

pain management program, and the number of patients that achieve normal pain level at the end

of program for all five pain outcomes. In Figure 1.3, we showed the breakpoint of different levels of

different pain outcomes. In this research, we consider the normal level of pain outcomes for PDA,

OSW, and BDI are less than 6, less than 12, and less than 13 respectively; a mean score greater

than 40 for SF36 is considered normal. If patients’ pain outcomes are in these within these ranges,

then they are assumed to be normal patients with limited pain [27]. From the observed data, we

see that 84, 38, 149, 30, and 77 patients are in normal levels in the beginning of pain management

program for PDA, OSW, BDI, SF36-pcs, and SF36-mcs pain outcomes respectively. We then find

the final pain outcomes for the rest of the patients in the observed data and optimization results.
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Table 4.2: Pain Outcome Comparison

No. of Patients No. of Patients in normal Odds
Required trt. Pain level after trt. Ratio

PDA
Optimization

PLN 210 201 4.62
Regression 210 198 3.4

Observed data 210 174 -

OSW
Optimization

PLN 256 112 2.84
Regression 256 103 2.46

Observed data 256 55 -

BDI
Optimization

PLN 145 142 36.37
Regression 145 139 17.79

Observed data 145 82 -

SF36-pcs
Optimization

PLN 264 48 0.74
Regression 264 53 0.83

Observed data 264 61 -

SF36-mcs
Optimization

PLN 217 131 2.06
Regression 217 122 1.74

Observed data 217 92 -

Table 4.2 shows that 2SP with PLN policy gives better results compared to the observed data

set in case of PDA, OSW, BDI, and SF36-mcs, while the SF36-pcs pain outcome in observed data

is better compared to the results of 2SP PLN. This research achieves 4.62, 2.84, 36.37, 0.74, and

2.06 times more likely normal pain level for all the pain outcomes compared to the observed data.

We also evaluated Wang’s [14] first-stage treatment policies in our evaluation model to see which

treatment policy is better in terms of number of patients with normal pain outcomes after thre pain

management program. From table 4.2, this research has higher odds ratios for PDA, OSW, BDI,

and SF36-mcs than Wang [14]. However, Wang’s [14] treatments better for SF36-pcs. However,

the observed data outperforms both this research and [14] in SF36-pcs.

4.7 Results from Additional 3-way Treatment Interaction Con-

straints

Table 4.3 and 4.4 shows prelimiary results from adding additional 3-way treatment interaction

constraints for continuous and discrete treatments variables to the original 2SP problem.

Table 4.3: Three-way treatment interaction Results: Continuous

2-way 3way type I 3way type II 3way type III 3way all types

No. optimal* 147 238 147 141 138

Avg. CPU time 301.61 264.75 305.67 300.4 305.69

Using 3-way Type I interaction constraints, discussed in 3.4.2, along with 2-way treatment

interaction constraints results in finding optimal treatments for almost 80% of the patients, and
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the average CPU time in this case is 264.75 seconds. Other types of additional 3-way treatment

constraints did not yield better solutions compared to using only two-way treatment interactions.

Table 4.4: Three-way treatment interaction Results: Integer

2-way 3way type I 3way type II 3way type III 3way all types

No. of patients
get optimal solu-
tion*

88 88 49 100 44

Avg. CPU time 320.72 320.8 338.61 317.30 340.0

Table 4.4 shows that 3-way treatment constraints for discrete treatment variables do not give

better solutions compared with those of the continuous treatment variables.
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Chapter 5

Conclusion and Future Work

Pain management is a major health problem for many people. In this research we developed a

multi-objective two-stage stochastic programming model, where our objective was minimizing a

combination of pain outcomes and treatment cost as well. We have considered five pain outcomes

in our optimization. We developed a survey to find penalty weights from the pain management

experts. To ensure that weights are consistent, we developed a convex quadratic programming

model. State transition models are non-convex Piecewise Linear Network (PLN) models, which

are used as constraints in optimization model. To integrate these PLN models into optimization,

we developed a mixed integer linear program. To speed up the solution process, we developed

additional constraints based upon 3-way treatment interactions. Finally, we solved that MILP

with AMPL/CPLEX. We compared our results with [14], who used non-convex quadratic transition

models, and with the observed data set.

In future, we will work on generating a survey of treatment preferences for the physicians.

Because some physicians prefer some treatments. We want to include those treatment preferences

in the optimization model.
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