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ABSTRACT 

A MATHEMATICAL MODEL OF HEPATITIS C VIRUS INFECTION INCORPORATING 

IMMUNE RESPONSES AND CELL PROLIFERATION 

 

HUDA AMER HADI, M.S. 

The University of Texas at Arlington, 2017 

Supervising Professor: Hristo Kojouharov 

            This thesis introduces a mathematical model of differential equations for the chronic 

hepatitis C virus (HCV) infection, which is a contagious disease that infects the liver cells. 

Firstly, we present the early mathematical models for the basic dynamics of virus infection that 

developed and analyzed to understand the dynamics of human immunodeficiency virus (HIV), 

hepatitis B virus (HBV), and some other viruses. Next, we present the extended model of the 

basic HCV virus dynamics that incorporate the effectiveness of a treatment. After that, the 

mathematical model that includes proliferation terms for both infected and uninfected 

hepatocytes is discussed. Lastly, the mathematical model that is considering the interaction 

between HCV virus and immune responses in a host is introduced.  

        In this thesis, we formulate an ordinary differential equations (ODE) model to describe the 

interactions between the hepatitis C (HCV) virus and the immune system in a human body under 

treatment, taking into consideration the proliferation for both infected and uninfected 

hepatocytes. Analysis of the model reveals the existence of multiple equilibrium states: the 

disease-free steady state in which no virus is present, an infected state with no immune 
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responses,  an infected steady state with immune responses in which virus and infected cells are 

present, an infected steady state with dominant CTLs responses in which no antibody (B-cell) is 

present, an infected steady state with dominant antibody responses in which no CTLs is present, 

and an infected steady state with coexistence responses in which all are present. Finally, we run 

simulations and compare our model to other models in the literature. In addition, several 

different scenarios were numerically simulated to demonstrate the practical applications of the 

mathematical model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background Information 

         The liver is the biggest organ in the body, and it plays an important role in all metabolic 

processes in the body [19]. The main job of the liver is to filter the blood, fight infections among 

other functions. Once the liver is infected, its functions are affected too.  Illnesses, some 

medications, heavy alcohol usage, and toxins can cause hepatitis. However, viruses, which are 

small infectious agents, are able to replicate inside the living cells of an organism; they are the 

most popular cause for hepatitis that is why it is often called ‘viral hepatitis’ [9]. There are 

numerous kinds of viral hepatitis such as A, B, C, D, and E. The most well-known sorts of viral 

hepatitis will be hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis C virus (HCV).   

         Hepatitis C virus infection emerged after most blood transfusion infections were associated 

with either hepatitis A (HAV) or hepatitis B (HBV) virus [12]. It was first identified in 1989 

when a team of Choo, Qui Lim [7] isolated this single stranded RNA from the serum of infected 

chimpanzees. They re-named the Non-A, Non-B hepatitis as hepatitis C. 

         In this thesis, we are interested in studying chronic hepatitis C virus (HCV) since it is a 

very dangerous disease and widely spread that may cause serious health problems, such as 

cirrhosis and hepatocellular carcinoma. Hepatitis C is an infectious liver disease that is caused by 

a small RNA virus [18]. It transmits through direct contact with the blood of an infected person 

with hepatitis C virus, e.g. blood transfusions and organ transplants, inadequate cleaning of 

medical equipment, sharing needles, or other equipment to inject drugs. Worldwide, about 185 

million people are chronically infected with hepatitis C virus [24], and approximately 700,000 
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people die every year from hepatitis C virus in relation to liver diseases [43].  For HCV 

infection, the vaccine does not exist yet, but the active research is ongoing. 

         Hepatitis C virus infection emerged after most blood transfusion infections were associated 

with either hepatitis A (HAV) or hepatitis B (HBV) virus [12]. It was first identified in 1989 

when a team of Choo [7] isolated this single stranded RNA from the serum of infected 

chimpanzees. They re-named the Non-A, Non-B hepatitis as hepatitis C. 

             After exposure to HCV, a strong host immune response is launched [36]. Thus, in some 

patients with hepatitis C virus infection will naturally clear the virus during the early phase of 

infection without medical intervention. They will become better on their own after several weeks 

to several months. However, the response fails to eradicate the virus, leading to chronic infection 

in which the body’s immune system does not naturally clear the virus [21]. Hoofnagle (2002) 

[18] asserts that about 55% to 85% of HCV patients do not clear the virus themselves and 

develop chronic hepatitis C infection. The slow progressing liver disease is caused by a chronic 

HCV infection [10]. In a majority of people, the chronic HCV infection can cause severe liver 

problems, such as cirrhosis (scarring of the liver), liver cancer, or death [3]. Hepatitis C 

progresses to become chronic HCV infection due to the weak immune response against HCV 

[16]. When hepatitis becomes a chronic or long-period illness, the infection may need to be 

treated with specific medications called antivirals [39]. Antiviral therapy has been used to cure 

chronically HCV infected patients. It is currently the only available treatment because of the lack 

of an HCV vaccine [38]. Nevertheless, research to discover the HCV vaccine is outgoing. For 

several years, combinations of antivirals such as interferon-𝛼 (IFN- 𝛼) and ribavirin (RBV), 

pegylated-interferon (PEG-INF) and ribavirin (RVB) have been established as effective in viral 

clearance. In other words, they have been used as medication to reduce the levels of HCV-RNA. 
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Newly, direct-acting antivirals (DAAs) is the most common way that is used to give treatments 

that target particular steps of the life cycle of the HCV. However, antiviral therapy is expensive, 

associated with side effects, and not effective in all patients. Dahari et al., and Jirillo (2007, 

2008) [8, 21] asserted that the virus is not eliminated in about 50% of patients that have a chronic 

HCV and that are treated with a  combination treatment of Peg-IFN and RBV. [8, 21]. The goal 

of treatment is to cure the infection rather than suppress the virus. Additional details about these 

types of treatments can be found in [8, 21, 17, 26, 37]. 
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1.2 Immune Responses 

          The complex system of cells, organs, proteins, and tissues that protect our body versus 

foreign pathogens ex. certain fungi, bacteria, germs, and viruses, is called the immune system. 

The immune system has been classified into two nature types of responses against foraying 

pathogens [42, 11]. The first nature type of response is innate or non-specific immune, and the 

second nature type of response is specific or adaptive immune [6]. Thus, both types, innate and 

adaptive immunity, are important features of the immune system and each feature varies in its 

response and how fast it responds. The first line of protect versus infections is the innate immune 

responses including sneezing, fever, and coughing. Hence, the innate immune response 

represents an essential character in the early recognition of foraying pathogens [27]. The innate 

immune system cells such as natural killer (NK) and macrophages are always ready to fight 

microbes and all other pathogens in a non-specific way, no matter what kind of pathogen they 

are fighting. However, this kind of response cannot recognize some pathogens and then eliminate 

infectious organisms [20]. Oppositely, the adaptive immune responses are more complex than 

the innate immune responses [27]. They are responsible for recognizing the physical structure of 

a pathogen [42]. Once an antigen has been recognized, the adaptive immune system is able to 

create an army of immune cells for neutralizing or eliminating the antigen. The adaptive 

responses can perceive proteins that are shaped from the pathogen. When the adaptive responses 

are activated, they begin to divide in numbers. The lymphocytes, which are white blood cells, are 

the most paramount factor of the adaptive immune system. They can be grouped into two 

important kinds of cells; B-lymphocytes, which is called B-cells, and T-lymphocytes, which is 

called T-cells [42, 11]. 
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         B-cells and T-cells are the fundamental players in the host immune response. B-cells 

produce antibodies. They are named as B-cells because they are produced in the human’s bone 

marrow [11]. They are distinct from other cells because they have a protein (antibody) on their 

surface called the B-cell receptor [11]. This receptor is able to recognize and bind to specific 

pathogen such as bacteria and viruses interaction which makes a figure similar to a lock and key 

[11, 32]. It is worthy to mention that one microliter of human blood includes approximately 2500 

lymphocytes, and in adult human, totally there are about 1012 lymphocytes [32]. The immune 

system is capable of making billions of different types of antibodies with a limited number of 

genes by rearranging DNA segments during B-cell development [37]. In fact, there is a specific 

antibody molecule that can recognize any pathogen that enters the body [32].  

     When a pathogen like HCV enters the human body, there are some specific B-cells receptors 

which can recognize this foreign intruder and are able to bind some viral proteins. However, 

some B-cells do not have the specific receptors to recognize this foreign antigen. An operation 

known as endocytosis starts when a B-cell is bound to the virus particle. In this operation, the 

virus is broken into pieces and part of it is given in association with the so-called major 

histocompability complex type II (MHC II), which is a molecule on the B-cell surface [42, 11, 

32].  

       B-cells begin to divide into memory and effector cells once they are activated. These new B-

cells are repetitions with the same certain receptors that can recognize HCV. The memory B-

cells will stay in the system in case HCV enters the host in the future, but they take no action [11, 

32]. On the other hand, the effector B-cells, which are called plasma cells, are responsible for the 

release of new antibodies. At that point, these antibodies bind to the infection particles and mark 

them as foreign pathogens for disposal by a macrophage [11].  
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       T-cells come into two different types of cells, T-helper cells and T-killer cells (cytotoxic T-

lymphocytes (CTLs)). T-helper cells are considered an essential part in the activation of the B-

cells and, in this way, in the release of antibodies. On the other hand, CTLs can recognize the 

infected cells and then kill them. T-helper cells are also called CD4+ T cells because they release 

the CD4 protein on their surfaces [11]. CTLs are also called CD8+ T cells because they release 

the CD8 glycoprotein at their surfaces [11]. When a cell has been infected, it produces a new 

virus. Inside the infected cell the viral proteins are introduced on the surface in a blend with the 

major histocompability complex type I (MHC I), which is introduced basically in each cell of the 

human body. The T-cell receptor with specific CTL is able to recognize these introduced 

proteins on the infected cells surface and then it will link to the cell. After that, the CTLs will 

split into memory and effector cells. The job of memory cells is to remain in the host in case of 

new infection occurring in the future. On the other hand, the job of effector cells is to eliminate 

infected cells. The two types of immune system responses are shown in Figure 1. The 

explanation of the process of the immune system responses are shown in Figure 2.  
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Figure 1: A schematic illustration of the two different kinds of immune system responses: the 

adaptive and the innate responses. The most paramount factor of the adaptive responses is the 

lymphocytes that can be grouped into B-cells and T-cells. 

 

 

 

 



8 
 

 

 

 

                 

 

 

 

 

 

 

 

 

Figure 2: A schematic illustration of the adaptive responses. The adaptive responses can be 

classified into B-cells and T-cells. The job of B-cells is producing antibodies that can help to 

neutralize virus particles. CTLs eliminate infected cells. Phagocytes are immune cells group can 

find and eat virus particles that have been controlled by antibodies. 
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          The interactions between pathogens and immune responses can be viewed as a predator-

prey system. The predator is the immune cells like the B-cells and T-cells and the prey is the 

virus. The predator types can minimize the sustenance resource to levels that are too low for 

other predator types to survive. In other words, antibodies can reduce the virus load to very low 

levels to activate the CTLs when they are more efficient in capturing the virus. This result will be 

called the dominant responses of antibodies. Similarly, CTLs can reduce the virus load to very 

low levels to activate the antibodies when they are more efficient in killing the pathogen. This 

result will be called the dominant responses of CTLs. Further details about the immune 

responses can be found in [11, 32].  
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CHAPTER 2 

A REVIEW OF THE RELEVANT LITERATURE 

 

         In this section, we first consider the early basic ordinary differential equation (ODE) model 

that has been applied to virus dynamics in-vivo. Then, we show the original mathematical model 

of viral dynamics in-vivo under antiviral therapy. This model had proved very successful in 

understanding the pathogenesis and guiding therapy for hepatitis C virus (HCV) infection. After 

that, we introduce the extended model of the original model that considers the proliferation of 

liver cells. Finally, we proceed to introduce the model that shows the interaction between the 

immune response and hepatitis C virus (HCV).   

         Mathematical modeling is a useful tool in the study of virus dynamics because it helps to 

understand the biological mechanisms involved and interpret the experimental results. The early 

mathematical model for the basic dynamics of virus in-vivo was developed and analyzed in [2, 

31, 33, 35] to understand the dynamics of HIV, hepatitis B (HBV) and some other viruses 

infection. The basic principles of the early virus dynamics model in-vivo are shown in Figure 3. 

The model design is based on three variables: the number of uninfected or target cells, 𝑇, that 

infected when they meet free viruses, 𝑉, the number of infected cells, 𝐼, that produce new virus 

particles that leave the cell and find other uninfected cells.  
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Figure 3: A schematic diagram of the basic model of viral infection. 

 

        The basic model of virus dynamics can be written in the chemical reaction notation 

𝑇 + 𝑉 → 𝐼 → 𝑘𝑉 

        The uninfected cells, 𝑇, over its lifespan is assumed to produce viral particles, 𝑘 [25]. The 

equations that describe the interaction between these cells and virus particles are given by 

ordinary differential equations (1): 

𝑑𝑇

𝑑𝑡
= 𝑠 − 𝑑𝑇 − 𝛽𝑉𝑇                                                   

                  
𝑑𝐼

 𝑑𝑡
= 𝛽𝑉𝑇

−  𝛿𝐼                                                                                         (1)   

𝑑𝑉

𝑑𝑡
= 𝑘𝐼 − 𝑐𝑉                                                              

        This model assumes that uninfected cells, T, are produced at a rate,  𝑠, and they are subject 

to natural death at a rate, 𝑑𝑇, and become infected by the interaction with virus at a rate,  𝛽𝑉𝑇. 

Infected cells, I , are naturally die at a rate, 𝛿𝐼. Free virus is produced by infected cells at a rate, 

𝑘𝐼, and clearance at a rate, 𝑐𝑉. Thus, the average lifetime of an infected cell is 
1

𝛿
; the average 
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lifetime of a free virus particle is 
1

𝑐
; the total number of virus particles produced from one 

infected cell is 
𝑘

𝛿
.  

         After the discovery of hepatitis virus type C, it became significant to study the dynamics of 

the virus in-vivo. In literature, various models have been utilized to depict hepatitis C virus 

(HCV) dynamics [8, 29, 41]. Thus, with a chronic hepatitis C virus (HCV), it was necessary to 

understand the dynamics of the virus in-vivo and to determine the need for treatment for a 

disease with such a long progression term. For several years, antiviral therapy has been used as a 

treatment to reduce the levels of HCV- RNA. Around then, mathematical modeling of virus 

dynamics in-vivo under treatment assumed an extremely valuable part to comprehend the 

pathogenesis and controlling treatment of chronic HCV. Perelson et al., 2005 [34] said that the 

modeling of the virus kinetics has assumed a critical part in the analysis of HCV-RNA decay 

through antiviral therapy. The first mathematical model, which is inspired from (1), is utilized to 

examine the dynamic of chronic HCV- RNA and the antiviral impact of interferon alfa (IFN-𝛼) 

in 1996 [45]. The authors in [45] considered two ordinary differential equations; one for the 

infected hepatocytes, and the other one for the free virus. They observed that the IFN-α treatment 

can be blocking new infection with 100% efficacy or blocking viral production with 100% 

efficacy, and most patients showed a biphasic viral decline [45, 46].  

       Neumann et al., (1998) [29] extended the previous model in [45] by including a separate 

differential equation for healthy hepatocytes. This model, which is called original model, also 

describes the viral kinetics in HCV patients during IFN-α treatment (Figure 4). 

 

 

                                                                

 

 

 

Figure 4: A schematic diagram of the original viral kinetic model under treatment. 
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           Treatment is assumed to act by blocking new infection with an effectiveness, η, or by 

blocking virus production with an effectiveness, ε. The remaining parameters are defined 

similarly to the model (1). 

         The original model during treatment is given by the following system of ordinary 

differential equations (2): 

𝑑𝑇

𝑑𝑡
= 𝑠 − 𝑑𝑇 − (1 − 𝜂)𝛽𝑉𝑇                                                      

𝑑𝐼

𝑑𝑡
= (1 − 𝜂)𝛽𝑉𝑇 − 𝛿𝐼                                                                           (2) 

𝑑𝑉

𝑑𝑡
= (1 − 𝜀)𝑘𝐼 − 𝑐𝑉                                                                 

          This model assumes that the possible effects of IFN-𝛼 in this model act by blocking either 

the production of virus from infected cells through fraction (1 − 𝜀), or the new infection by 

fraction (1 − 𝜂). In other words, 𝜀 is the efficacy of the drug in blocking production of the virus 

from infected cells and 𝜂 is the efficacy of the drug in stopping infection. The remaining 

parameters are defined similarly to the basic model (1). The authors observed that daily IFN-𝛼 

doses of 5, 10, and 15 mIU on 23 patients were correlated to release the viral and production 

blocking efficacy of 81, 95 and 96% efficacy respectively.  Moreover, they asserted that the half-

life of the virus (𝑡1
2⁄
) was on average 2.7 hours, and eliminate 1012 viruses per day. Also, they 

said that the expected death rate of the infected cell showed a big interpatient difference 

(comparing 𝑡1
2⁄
= 1.7 to 70 days). It was inversely with baseline virus load, and was positively 

with alanine aminotransferase levels (ALT), which is an enzyme that spilled into the blood 

stream when the liver is injured [29]. They concluded that it is important to control the dynamic 

of HCV virus in the early phase of their stage to help to guide treatment because it has a very 

high dynamic. After that, several articles were published to use this model to better understand 

HCV infection.  

           As mentioned before, the original model (2) of chronic HCV infection under treatment 

that has been proposed by Neumann et al. (1998), which expects a constant population of healthy 

cells with a rate, s, was applied to estimate the rates of virus clearance and infected cell death. 
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The decay of HCV-RNA noticed in patients in the first 14 days of treatment [29]. However, this 

original model is definitely not ready to explain some watched HCV-RNA dynamic profiles 

under therapy [8].  

         The liver is an organ that is regenerate because of the homeostatic system in-vivo [15, 28]. 

Thus, any loss in the hepatocytes can be compensated by the proliferation of the existing 

hepatocytes [15, 28].  The previous model (2) ignores the proliferation of both infected I and 

uninfected T cells [8]. Therefore, Dahari et al. (2007) [8] extended the original model (2) by 

adding a proliferation terms r for both infected and uninfected hepatocytes (Figure 5) that allow 

the total number (𝑇 + 𝐼) of liver cells to reach a maximum size, 𝑇𝑚𝑎𝑥.  

 

 

 

                                                                

 

 

 

Figure 5: A schematic diagram that illustrates the extended model accounting for hepatocyte 

proliferation. Both uninfected and infected liver cells proliferate logistically with maximum rate, 

r, until the total number of hepatocytes reaches𝑇𝑚𝑎𝑥. 
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            The corresponding differential equations of the extended mathematical model (2) are 

given by: 

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇 (1 −

𝑇 + 𝐼

𝑇𝑚𝑎𝑥
) − 𝑑𝑇 − (1 − 𝜂)𝛽𝑉𝑇      

   
𝑑𝐼

𝑑𝑡
= (1 − 𝜂)𝛽𝑉𝑇 +  𝑟𝐼 (1 −

𝑇+𝐼

𝑇𝑚𝑎𝑥
) − 𝛿𝐼                                      (3) 

                      
𝑑𝑉

𝑑𝑡
= (1 − 𝜀)𝑘𝐼 − 𝑐𝑉                                                                           

            In this model, 𝑟 represents the maximum proliferation rate of the uninfected, 𝑇, and 

infected, 𝐼 , hepatocytes, which means that 𝑇 and I hepatocytes can proliferate under a blind 

homeostasis process, in which there is no distinction between infected and uninfected cells in the 

density-dependent term.  Dahari et al. (2007) [8] confirmed that the maximum rate of the spread 

of  𝑟, can be different for the infected and uninfected cells, and will continue this circular life 

anywhere else. The number (𝑇 +  𝐼) represents the total hepatocyte population which can 

increase up to a maximum of 𝑇𝑚𝑎𝑥. The remaining parameters are defined similarly to the 

original model (2). The presentation of the hepatocytes proliferation in this model (3) is the new 

advantage that has demonstrated an important role in understanding the viral dynamics later on. 

Also, their views are very essential in the results of my thesis.  

          It is worth to mention that the previous mathematical models ignore the responses of the 

immune system which is considered the most important factor in stimulating therapeutic cells. 

The immune system interacts against viruses through viral infection [14]. Nowak and Bangham 

(1996) [31] emphasize that immune responses have a significant role to reduce the virus load. 

Miao et al. (2016) [14] said that the CTL and the antibody both have the ability in prohibition 

and controlling infections. The immune response of the CTL is responsible to ban the 

reproduction of the virus, and the immune response of the antibody is responsible to neutralize 

the virus in-vivo [14]. Therefore, Wodarz (2003) [41] proposed a model that deals with the 

interaction between HCV and immune responses in a host. This model extended to model (1), 

given by adding two differential equations, one represents the number of CTLs and is denoted by 

Z, and the other one represents the number of the antibody response and is denoted by W. Figure 

6 illustrates the immune system responses. 
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Figure 6: A schematic diagram that illustrates the immune system responses. 

 

         Consider the extension of (1) given by the system of ordinary differential equations (4)  

𝑑𝑇

𝑑𝑡
= 𝑠 − 𝑑𝑇 − 𝛽𝑉𝑇                                                                                                

𝑑𝐼

𝑑𝑡
= 𝛽𝑉𝑇 − 𝛿𝐼 − 𝑝𝐼𝑍                                                                                            

𝑑𝑉

𝑑𝑡
= 𝑘𝐼 − 𝑐𝑉 − 𝑞𝑉𝑊                                                                                      (4) 

𝑑𝑍

𝑑𝑡
= µ𝐼𝑍 − 𝑏𝑍                                                                                                         

𝑑𝑊

𝑑𝑡
= 𝑔𝑉𝑊 − ℎ𝑊                                                                                                      

            Here, pIZ represents the rate of killing the infected cells by the CTL response, and the 

qVW represents the rate of neutralized virus particles by the antibody. In response to virus 

antigen that is produced from infected cells, I, at a rate µIZ, CTLs increase.  Also, CTLs decay at 
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rate bZ in the lack of antigenic stimulation. In response to virus particles, antibodies progress at a 

rate 𝑔𝑉𝑊. In addition, antibody decay at a rate ℎ𝑊. Properties of the solutions such as 

positivity, boundedness, non-periodicity, and limiting behavior, as well as the stability analysis 

of the model were discussed in [44]. The model in [41] showed that the infected cells can be 

controlled by the antibody responses and the persistent infection can activate the antibody 

responses while the levels of the CTLs responses are not preserved at high levels. However, the 

result of facing the persistent infection can change the immune responses’ balance and lead to 

increase the weak CTLs levels more than the antibody responses [41]. This change can cause to 

develop the virus and it is led to chronic liver pathology [41]. Thus, it was concluded that the 

immune response balance plays a crucial role in controlling the virus as it develops over time.  

However, the role of the antibody and CTLs is not completely understood yet [14, 23].  
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CHAPTER 3 

The New Mathematical Model of Hepatitis C Virus Infection  

3.1 Mathematical Model Description 

        In this thesis we are interested in understanding the interactions between the hepatitis C 

virus and the immune system under treatment, taking into consideration the proliferation for both 

infected and uninfected hepatocytes.  

       The aim is to combine model (3) and model (4) to obtain a new mathematical model of HCV 

that incorporates the immune system and cell proliferation. Figure 7 is a depiction of this model.  

 

 

 

 

 

 

 

 

 

Figure 7: A schematic diagram that illustrates a combination of model (3) and model (4). 
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        The new mathematical model is as follows:  

   
𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇 (1 −

𝑇 + 𝐼

𝑇𝑚𝑎𝑥
) − 𝑑𝑇 − (1 − 𝜂)𝛽𝑉𝑇    

                                        
𝑑𝐼

𝑑𝑡
= (1 − 𝜂)𝛽𝑉𝑇 + 𝑟𝐼(1 −

𝑇 + 𝐼

𝑇𝑚𝑎𝑥
 ) − 𝛿𝐼 − 𝑝𝐼𝑍                             (5) 

                     
𝑑𝑉

𝑑𝑡
= (1 − 𝜀)𝑘𝐼 − 𝑐𝑉 − 𝑞𝑉𝑊                                                      

                                 
𝑑𝑍

𝑑𝑡
= 𝜇𝐼𝑍 − 𝑏𝑍                                                                                           

                             
𝑑𝑊

𝑑𝑡
= 𝑔𝑉𝑊 − ℎ𝑊                                                                                    

 

         The parameters that are used in the model (5) are defined similarly to models (3) and (4) 

and listed with their units in Table 1.  

 

Table 1: The interpretation of the parameters used in model (5) and their units. 

Parameters Interpretation Units 

Tmax maximum size of growth of the liver cells ml-1 

s natural production rate of healthy cells (T) cells ml-1day-1 

r the maximum proliferation rate of the uninfected (T) and 

infected (I) cells  

day-1 
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d natural death rate of healthy cells (T)  day-1 

𝛽 the rate at which virus (V) infects healthy cells (T) ml day-1 virions-1 

𝛿 natural death rate of infected cells (I) day-1 

p the rate at which CTLs (Z) kills infected cells (I) day-1 

k production rate of the virus particles (V) from infected cells 

(I) 

virions cells-1 

day-1 

c natural clearance rate of virus particles (V) day-1 

q the rate at which antibody (W) neutralized the virus particles 

(V)  

day-1 

𝜇 expand rate of CTLs (Z) in response to virus antigen derived 

from infected cells (I) 

day-1 

b natural decay rate of CTLs (Z) in the absence of antigenic 

stimulation  

day-1 

g development   rate of antibody (W)  in response to virus 

particles (V) 

day-1 

h natural decay rate of antibody (W) day-1 

𝜀 the efficacy of the drug in blocking virus production from 

infected cells (I) 

unit less 

η the efficacy of the drug in stopping new infection unit less  
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3.2 Equilibria and their Stability 

       3.2.1 Equilibrium solutions 

           To determine the stability of the above model (5), we evaluate the equilibrium points or 

steady states of this model. Equilibrium points of model (5) can be found by setting the right-

hand side of the equations to zero and then solve for the values of 𝑇, 𝐼, 𝑉, 𝑍, and 𝑊. 

At the steady state, 

𝑑𝑇

𝑑𝑡
= 0,

𝑑𝐼

𝑑𝑡
= 0,

𝑑𝑉

𝑑𝑡
= 0,

𝑑𝑍

𝑑𝑡
= 0, 𝑎𝑛𝑑 

𝑑𝑊

𝑑𝑡
= 0 

 

where  

𝑠 + 𝑟𝑇 (1 −
𝑇 + 𝐼

𝑇𝑚𝑎𝑥
) − 𝑑𝑇 − (1 − 𝜂)𝛽𝑉𝑇 = 0                              (3.1)                     

             (1 − 𝜂)𝛽𝑉𝑇 + 𝑟 𝐼 (1 −
𝑇 + 𝐼

𝑇𝑚𝑎𝑥
 ) − 𝛿𝐼 − 𝑝𝐼𝑍 = 0                             (3.2)              

   (1 − 𝜀)𝑘𝐼 − 𝑐𝑉 − 𝑞𝑉𝑊 = 0                                                             (3.3)                         

𝜇𝐼𝑍 − 𝑏𝑍 = 0                                                                                        (3.4)                       

                𝑔𝑉𝑊 − ℎ𝑊 = 0                                                                                   (3.5)       
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          Like other mathematical models, this model has an equilibrium point called disease-free 

equilibrium. This represents the absence of virus (i.e., 𝑉0
∗ = 0). After solving Equations                 

(3.1) - (3.5), we obtain the uninfected equilibrium state which is given by: 

(𝑇0
∗, 𝐼0

∗, 𝑉0
∗, 𝑍0

∗,𝑊0
∗) = (

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] , 0,0,0,0), 

where 𝑟 > 𝑑 and 𝑠 ≤ 𝑑𝑇𝑚𝑎𝑥 with a specific aim to have a physiologically factual model (i.e., 

𝑇0 ≤ 𝑇𝑚𝑎𝑥). The same result is found in [8], in which there is no infection. Thus, all hepatic 

cells are uninfected (healthy) and 𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] is the number of liver 

cells in one healthy individual. 

          If 𝑉1
∗ ≠ 0, then the following infected equilibrium point solution is found by solving 

equations (3.4) and (3.5) in model (5) to obtain  𝑍1
∗ = 𝑊1

∗ = 0, which represents the absence of 

immune responses. As a result, model (5) converges to the second equilibrium point given by: 

(𝑇1
∗, 𝐼1

∗, 𝑉1
∗, 𝑍1

∗,𝑊1
∗) = (

1

2
[−𝐷 + √𝐷2 +

4𝑠𝑇𝑚𝑎𝑥

𝑟𝐴2 ] , 𝑇1
∗(𝐴 − 1) + 𝑇𝑚𝑎𝑥 − 𝐵,

(1−𝜀)𝑘𝐼1
∗

𝑐
, 0,0), 

where  

             A= 
(1−𝜂)(1−𝜀)𝑘𝛽𝑇𝑚𝑎𝑥

𝑐𝑟
, 

              B= 
𝛿𝑇𝑚𝑎𝑥

𝑟
, 

              D= 
1

𝐴
(𝑇𝑚𝑎𝑥 +

𝑑𝐵

𝛿𝐴
− 𝐵 (

1

𝐴
+ 1)). 
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This is called an infected equilibrium state with no immune responses; the same result is 

also shown in [8]. 

           Dominant CTLs response is the third infected equilibrium state observed. This represents 

the absence of antibody response (i.e., 𝑊2
∗ = 0).  

Solving equation (3.4) to obtain 

  𝐼2
∗ =

𝑏

𝜇
 ,                                                                                             (3.6) 

 and equation (3.5) to obtain 

 𝑊2
∗ = 0,                                                                                              (3.7) 

Then, substitute equations (3.6) and (3.7) in equation (3.3) to attain       

  𝑉2
∗ =

(1 − 𝜀)𝑘𝑏

𝜇𝑐
,                                                                             (3.8) 

Then, from (3.1) we achieve  

𝑠 + 𝑟𝑇 −
𝑟𝑇2 + 𝑟𝑇𝐼2

∗

𝑇𝑚𝑎𝑥
− 𝑑𝑇 − (1 − 𝜂)𝛽𝑉2

∗𝑇 = 0,               

         ⇒        (−
𝑟

𝑇𝑚𝑎𝑥
) 𝑇2 + (𝑟 −

𝑟𝐼2
∗

𝑇𝑚𝑎𝑥
− 𝑑 − (1 − 𝜂)𝛽𝑉2

∗) 𝑇 + 𝑠 = 0,             

After that, using the quadratic formula to obtain 𝑇2
∗ as following: 

𝑇2
∗ =

−(𝑟 −
𝑟𝐼2

∗

𝑇𝑚𝑎𝑥
− 𝑑 − (1 − 𝜂)𝛽𝑉2

∗) ± √(𝑟 −
𝑟𝐼2

∗

𝑇𝑚𝑎𝑥
− 𝑑 − (1 − 𝜂)𝛽𝑉2

∗)
2

− 4(−
𝑟

𝑇𝑚𝑎𝑥
) 𝑠

2 (−
𝑟

𝑇𝑚𝑎𝑥
)

,       (3.9) 
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⇒         𝑇2
∗ =

𝑇𝑚𝑎𝑥

2𝑟
(𝑟 − 𝑑 −

𝑟𝑏

𝜇𝑇𝑚𝑎𝑥
−

(1−𝜂)(1−𝜀)𝑘𝑏𝛽

𝜇𝑐
± √(𝑟 − 𝑑 −

𝑟𝑏

𝜇𝑇𝑚𝑎𝑥
−

(1−𝜂)(1−𝜀)𝑘𝑏𝛽

𝜇𝑐
)
2
+

4𝑟𝑠

𝑇𝑚𝑎𝑥
), 

   ∴  𝑇2
∗ =

𝑇𝑚𝑎𝑥

2𝑟
(𝐹 + √𝐹2 + 𝑄).                                                                                                   (3.10) 

where 

𝐹 = 𝑟 − 𝑑 −
𝑟𝑏

𝜇𝑇𝑚𝑎𝑥
−

(1−𝜂)(1−𝜀)𝑘𝑏𝛽

𝜇𝑐
 and  𝑄 =

4𝑟𝑠

𝑇𝑚𝑎𝑥
. 

Then, substitute equations (3.6), (3.8), and (3.10) in equation (3.2) to attain   

   ∴ 𝑍2
∗ =

(1 − 𝜂)𝛽𝑉2
∗𝑇2

∗ + 𝑟 𝐼2
∗ (1 −

𝑇2
∗ + 𝐼2

∗

𝑇𝑚𝑎𝑥
 ) − 𝛿𝐼2

∗

𝑝𝐼2
∗   .                                                            (3.11) 

        As a result, model (5) converges to the third equilibrium point given by: 

(𝑇2
∗, 𝐼2

∗, 𝑉2
∗, 𝑍2

∗,𝑊2
∗) = (

𝑇𝑚𝑎𝑥

2𝑟
(𝐹 + √𝐹2 + 𝑄) ,

𝑏

𝜇
, 

(1−𝜀)𝑘𝑏

𝜇𝑐
,
(1−𝜂)𝛽𝑉2

∗𝑇2
∗+𝑟 𝐼2

∗(1−
𝑇2
∗+𝐼2

∗

𝑇𝑚𝑎𝑥
 )−𝛿𝐼2

∗

𝑝𝐼2
∗ , 0). 

 

           Dominant antibody response is the fourth infected equilibrium state observed. This 

represents the absence of CTLs response ( i.e., 𝑍3
∗ = 0).  

Solving equation (3.4) to obtain 

𝑍3
∗ = 0,                                                                                                         (3.12) 

and equation (3.5) to obtain  

𝑉3
∗ =

ℎ

𝑔
 ,                                                                                                        (3.13) 
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Then, substitute equation (3.13) in equation (3.3) to find  

(1 − 𝜀)𝑘𝐼3
∗ =

𝑐ℎ + 𝑞ℎ𝑊3
∗

𝑔
,                                                                    

                    ⇒       𝐼3
∗ =

𝑐ℎ+𝑞ℎ𝑊3
∗

(1−𝜀)𝑘𝑔
.                                                                                     (3.14) 

Also, substitute equations (3.13) and (3.14) in equation (3.3) to obtain  

𝑊3
∗ =

(1 − 𝜀)𝑘𝐼3
∗ − 𝑐𝑉3

∗

𝑞𝑉3
∗ .                                                                         (3.15) 

Then, by using equation (3.9) we achieve   

𝑇3
∗ =

𝑇𝑚𝑎𝑥

2𝑟
(𝑟 − 𝑑 −

𝑟𝐼3
∗

𝑇𝑚𝑎𝑥
− (1 − 𝜂)(1 − 𝜀)𝛽𝑉3

∗

± √(𝑟 − 𝑑 −
𝑟𝐼3

∗

𝑇𝑚𝑎𝑥
− (1 − 𝜂)(1 − 𝜀)𝛽𝑉3

∗)
2

+
4𝑟𝑠

𝑇𝑚𝑎𝑥
),    (3.16)   

∴     𝑇3
∗ =

𝑇𝑚𝑎𝑥

2𝑟
(𝑈 + √𝑈2 + 𝑁).                                                               (3.17) 

where 

𝑈 = 𝑟 − 𝑑 −
𝑟𝐼3

∗

𝑇𝑚𝑎𝑥
− (1 − 𝜂)(1 − 𝜀)𝛽𝑉3

∗  and   𝑁 =
4𝑟𝑠

𝑇𝑚𝑎𝑥
. 

           This model (5) converges to the fourth equilibrium point given by: 

(𝑇3
∗, 𝐼3

∗, 𝑉3
∗, 𝑍3

∗,𝑊3
∗) = (

𝑇𝑚𝑎𝑥

2𝑟
(𝑈 + √𝑈2 + 𝑁),

ℎ

𝑔
,
𝑐ℎ+𝑞ℎ𝑊3

∗

(1−𝜀)𝑘𝑔
, 0,

(1−𝜀)𝑘𝐼3
∗−𝑐𝑉3

∗

𝑞𝑉3
∗ ). 
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           Coexistence is the fifth equilibrium state observed.  

Solving equation (3.4) to obtain  

                    𝑍4
∗ =  0,                                                                                                (3.18)  

and               𝐼4
∗ =

𝑏

𝜇
,                                                                                                  (3.19)                   

Also, solving equation (3.5) to find  

                    𝑊4
∗ = 0 ,                                                                                              (3.20)                 

and               𝑉4
∗ =

ℎ

𝑔
 ,                                                                                    (3.21) 

Then, by solving equation (3.3), we attain   

(1 − 𝜀)𝑘𝐼4
∗ − 𝑐𝑉4

∗ − 𝑞𝑉4
∗𝑊4

∗ = 0,         

                                            ⇒      (1 − 𝜀)𝑘𝐼4
∗ = (𝑐 + 𝑞𝑊4

∗)𝑉4
∗ ,       

                                            ⇒      
𝑘𝐼4

∗

𝑉4
∗ =

𝑐+𝑞𝑊4
∗

1−𝜀
, 

                                       ⇒      
𝑘𝐼4

∗(1−𝜀)

𝑉4
∗ = 𝑐 + 𝑞𝑊4

∗, 

                                       ⇒       𝑞𝑊4
∗ =

𝑘𝐼4
∗(1−𝜀)

𝑉4
∗ − 𝑐, 

                                       ⇒       𝑊4
∗ =

𝑘𝐼4
∗(1−𝜀)−𝑉4

∗𝑐

𝑉4
∗𝑞

.                                          (3.22) 
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After that, substitute equation  (3.19) and (3.21)  in equation (3.22) to achieve                  

                                                      𝑊4
∗ =

𝑘(
𝑏

𝜇
)(1−𝜀)−

ℎ

𝑔
𝑐

ℎ

𝑔
𝑞

, 

                                             ⇒     𝑊4
∗ =

𝑔𝑘(
𝑏

𝜇
)(1−𝜀)−ℎ𝑐

ℎ𝑞
, 

                                          ∴    𝑊4
∗ =

𝑔𝑘𝑏(1−𝜀)−ℎ𝑐𝜇

ℎ𝑞𝜇
.                                          (3.23) 

Now to find 𝑇2
∗ and 𝑍2

∗, we substitute equation (3.19)  and  (3.21)  in equation (3.9) to obtain  

𝑇4
∗ =

𝑇𝑚𝑎𝑥

2𝑟
(𝑟 − 𝑑 −

𝑟𝐼4
∗

𝑇𝑚𝑎𝑥
− (1 − 𝜂)(1 − 𝜀)𝛽𝑉4

∗

± √(𝑟 − 𝑑 −
𝑟𝐼4

∗

𝑇𝑚𝑎𝑥
− (1 − 𝜂)(1 − 𝜀)𝛽𝑉4

∗)
2

+
4𝑟𝑠

𝑇𝑚𝑎𝑥
), 

∴     𝑇4
∗ =

𝑇𝑚𝑎𝑥

2𝑟
(𝑀 + √𝑀2 + 𝐻).                                                   (3.24)             

where 

𝑀 = 𝑟 − 𝑑 −
𝑟𝑏

𝜇𝑇𝑚𝑎𝑥
−

(1−𝜂)𝛽ℎ

𝑔
, 𝐻 =

4𝑟𝑠

𝑇𝑚𝑎𝑥
. 

Then, substitute equations (3.19), (3.21), and (3.24) in equation (3.2) to solve 

   ∴     𝑍4
∗ =

(1 − 𝜂)𝛽𝑉4
∗𝑇4

∗ + 𝑟 𝐼4
∗ (1 −

𝑇4
∗ + 𝐼4

∗

𝑇𝑚𝑎𝑥
 ) − 𝛿𝐼4

∗

𝑝𝐼4
∗   .           (3.25) 
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This model (5) converges to the fifth equilibrium point given by: 

(𝑇4
∗, 𝐼4

∗, 𝑉4
∗, 𝑍4

∗,𝑊4
∗) = (

𝑇𝑚𝑎𝑥

2𝑟
(𝑀 + √𝑀2 + 𝐻),

𝑏

𝜇
,
ℎ

𝑔
,
(1−𝜂)𝛽𝑉4

∗𝑇4
∗+𝑟 𝐼4

∗(1−
𝑇4
∗+𝐼4

∗

𝑇𝑚𝑎𝑥
 )−𝛿𝐼4

∗

𝑝𝐼4
∗ ,

𝑔𝑘𝑏(1−𝜀)−ℎ𝑐𝜇

ℎ𝑞𝜇
). 

       

         By using Mathematica for solving model (5), we observed that this system has ten more 

equilibrium points that are too complicated to write all of them in this paper.  

 

3.2.2 Stability Analysis 

            The local stability of the equilibrium points can be determined by linearising the non-

linear equations of the mathematical model around each equilibrium point, and examining the 

corresponding eigenvalues of the characteristic equations [8]. By linearising the non-linear 

equations of model (5), the Jacobian matrix  𝐽( 𝑇,  𝐼,  𝑉,  𝑍,  𝑊) of this model is given by: 

                  𝐽( 𝑇,  𝐼,  𝑉,  𝑍,  𝑊) =

[
 
 
 
 
 
 𝑟 (1 −

𝐼+2𝑇

𝑇𝑚𝑎𝑥
) − 𝑑 − (1 − 𝜂)𝛽𝑉      

−𝑟𝑇

𝑇𝑚𝑎𝑥
                                − (1 − 𝜂)𝛽𝑇           0                0

(1 − 𝜂)𝛽𝑉 −
𝑟𝐼

𝑇𝑚𝑎𝑥
                      𝑟 (1 −

2𝐼+𝑇

𝑇𝑚𝑎𝑥
) − 𝛿 − 𝑝𝑍           (1 − 𝜂)𝛽𝑇       − 𝑝𝐼              0

     0                                                 (1 − 𝜀)𝑘                               − 𝑐 − 𝑞𝑊                 0       − 𝑞𝑉
        0                                                   𝜇𝑍                                              0                   𝜇𝐼 − 𝑏               0   

          0                                                    0                                                𝑔𝑊                        0         𝑔𝑉 − ℎ]
 
 
 
 
 
 

 . 

  

   3.2.2.1 Stability of the Disease-Free Equilibrium 

               In this section, we study the stability properties of the disease-free equilibrium 

(uninfected steady state). First, the local stability of the disease-free equilibrium (uninfected 
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steady state), (𝑇0
∗, 𝐼0

∗, 𝑉0
∗, 𝑍0

∗,𝑊0
∗) = (

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] , 0,0,0,0) is ruled by the 

eigenvalues of the Jacobian matrix  𝐽0 as follows:  

𝐽0(𝑇0
∗, 0,0,0,0) =

[
 
 
 
 
 
 𝑟 (1 −

2𝑇0
∗

𝑇𝑚𝑎𝑥
) − 𝑑        

−𝑟𝑇0
∗

𝑇𝑚𝑎𝑥
                  − (1 − 𝜂)𝛽𝑇0

∗                      0              0      

0                   𝑟 (1 −
𝑇0

∗

𝑇𝑚𝑎𝑥
) − 𝛿               (1 − 𝜂)𝛽𝑇0

∗                    0              0

     0                          (1 − 𝜀)𝑘                           − 𝑐                              0              0     
   0                                   0                                  0                            − 𝑏              0   

       0                                   0                                  0                                 0           − ℎ     ]
 
 
 
 
 
 

, 

                        =

[
 
 
 
 
 
 𝑟 (1 −

2𝑇0
∗

𝑇𝑚𝑎𝑥
) − 𝑑 − 𝜆        

−𝑟𝑇0
∗

𝑇𝑚𝑎𝑥
                  − (1 − 𝜂)𝛽𝑇0

∗             0                       0      

0                   𝑟 (1 −
𝑇0

∗

𝑇𝑚𝑎𝑥
) − 𝛿 − 𝜆               (1 − 𝜂)𝛽𝑇0

∗           0                       0

     0                          (1 − 𝜀)𝑘                           − 𝑐 − 𝜆                     0                       0     
   0                                   0                                         0                     − 𝑏 − 𝜆              0   

       0                                   0                                         0                          0           − ℎ − 𝜆     ]
 
 
 
 
 
 

, 

 

which gives  𝜆1 = −√(𝑟 − 𝑑)2 +
4𝑟𝑠

𝑇𝑚𝑎𝑥
 , 𝜆2 = −𝑏, and 𝜆3 = −ℎ  and the other two eigenvalues 

are solutions of the following characteristic polynomial of the next  𝐽0
∗ matrix: 

𝐽0
∗ = [

𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿 (1 − 𝜂)𝛽𝑇0

∗

(1 − 𝜀)𝑘 −𝑐

]. 

 

              The characteristic polynomial of the system is given by the following equation:  

      𝑃2(𝜆) = 𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) 

                  = 𝜆2 − 𝑇𝑟(𝐽0
∗)𝜆 + det (𝐽0

∗), 
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      𝑃2(𝜆) = 𝜆2 − (𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿 − 𝑐) 𝜆 − 𝑐 (𝑟 −

𝑟𝑇0
∗

𝑇𝑚𝑎𝑥
− 𝛿) − (1 − 𝜀)(1 − 𝜂)𝑘𝛽𝑇0

∗         (3.2.2.1)    

      𝑃2(𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎2       

with coefficients given by:  

            𝑎1 = −(𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿 − 𝑐), 

           𝑎2 = −𝑐 (𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿) − (1 − 𝜀)(1 − 𝜂)𝑘𝛽𝑇0

∗. 

              If   𝑎1 and 𝑎2 are both positive, then the eigenvalues have negative real part (by the 

Routh-Hurwitz criterion) [1], which implies the asymptotic stability of this equilibrium.  

1)  𝑎1 > 0,      −(𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿 − 𝑐) > 0   

This condition is satisfied if and only if     

                                     𝑟 − 
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿 < −𝑐 

                            ⇒     𝑟 − 
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
+ 𝑐 < 𝛿 

                            ⇒      
1

𝛿
(𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
) + 𝑐) < 1.  

2)  𝑎2 > 0,     −𝑐 (𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿) − (1 − 𝜀)(1 − 𝜂)𝑘𝛽𝑇0

∗ > 0 

This condition is satisfied if and only if  

                              −𝑐 (𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿) − (1 − 𝜀)(1 − 𝜂)𝑘𝛽𝑇0

∗ > 0, 
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                            ⇒       𝑟 (1 −
𝑇0

∗

𝑇𝑚𝑎𝑥
) − 𝛿 < −

(1−𝜂)(1−𝜀)𝛽𝑘𝑇0
∗

𝑐
, 

                            ⇒      
1

𝛿
(𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
) +

(1−𝜂)(1−𝜀)𝛽𝑘𝑇0
∗

𝑐
) < 1. 

 

          Accordingly for stability, this happens if and only if the coefficients of (3.2.2.1) are 

positive, which hold true as long as the stability condition follows: 

                                 −𝑐 (𝑟 −
𝑟𝑇0

∗

𝑇𝑚𝑎𝑥
− 𝛿) − (1 − 𝜀)(1 − 𝜂)𝑘𝛽𝑇0

∗ > 0, 

                                ⇒   𝑟 (1 −
𝑇0

∗

𝑇𝑚𝑎𝑥
) − 𝛿 < −

(1−𝜂)(1−𝜀)𝛽𝑘𝑇0
∗

𝑐
, 

                          ⇒    
1

𝛿
(𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
) +

(1−𝜂)(1−𝜀)𝛽𝑘𝑇0
∗

𝑐
) < 1.                                           (3.2.2.2) 

            The equilibrium of a model is considered asymptotically stable if all the eigenvalues of the 

Jacobian have negative real part [4]. Therefore, the disease-free equilibrium 

(𝑇0
∗, 𝐼0

∗, 𝑉0
∗, 𝑍0

∗,𝑊0
∗) = (

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] , 0,0,0,0) is locally asymptotically 

stable under this condition (3.2.2.2).  

          A similar result to Condition (3.2.2.2) is found in [8] for the case of no immune system 

and a combined drug efficacy. Also, by assuming that there is no proliferation term and no 

antiviral therapy (i.e., 𝑟 = 𝜀 = 𝜂 = 0), we obtain the following simplified form of Condition 

(3.2.2.2): 

𝛽𝑘𝑇0
∗

𝛿𝑐
< 1 
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which was also established in paper [36] as  𝑅0, which is the basic reproductive number. More 

details about 𝑅0 can be found in [13]. 

 

3.2.3 Successful Drug Therapy 

         Since it was believed that HIV may be killed by antiviral treatment, the idea of a critical 

drug efficacy, 𝜀𝑐, was presented in [40,5]. The definition of the critical drug efficacy was 

observed. Thus, if the efficacy of a drug, 𝜀, which acts to block the production of the virus from 

infected cells, was greater than the value of the critical drug efficacy (i.e., 𝜀 > 𝜀𝑐), viral levels 

persistently decay on treatment eventually prompting eradication. If the efficacy of a drug, η, 

which acts to block the new infection, was less than the value of the critical drug efficacy (i.e., 

𝜀 < 𝜀𝑐), viral levels in any case would decay, but in the end, they would balance at a nonzero 

steady state in spite of proceeding with treatment. This discovery demonstrated that the idea of 

𝜀𝑐 applies to HCV dynamic models in which healthy cells (target cells), T, levels are permitted to 

vary. Therefore, for the model given by (5) and its disease-free steady state condition (3.2.2.2) 

that described  in the previous section, one can realize that the successful drug therapy, can lead 

to decrease in viral load and then eradicate the virus, such that:  

 
1

𝛿
(𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
) +

(1 − 𝜂)(1 − 𝜀)𝛽𝑘𝑇0
∗

𝑐
) < 1 

⇒    
1

𝛿
(
(1 − 𝜂)(1 − 𝜀)𝛽𝑘𝑇0

∗

𝑐
) < 1 −

1

𝛿
(𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
)) 

 ⇒   (
(1 − 𝜂)(1 − 𝜀)𝛽𝑘𝑇0

∗

𝑐
) < 𝛿 − 𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
) 
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⇒   ((1 − 𝜂)(1 − 𝜀)𝛽𝑘𝑇0
∗) < 𝑐𝛿 − 𝑐 (𝑟 (1 −

𝑇0
∗

𝑇𝑚𝑎𝑥
)) 

⇒  (1 − 𝜂)(1 − 𝜀) <
𝑐𝛿 − 𝑐𝑟 +

𝑐𝑟𝑇0
∗

𝑇𝑚𝑎𝑥

𝛽𝑘𝑇0
∗  

⇒ (1 − 𝜂)(1 − 𝜀) <
𝑐(𝛿𝑇𝑚𝑎𝑥 − 𝑟𝑇𝑚𝑎𝑥 + 𝑟𝑇0

∗)

𝑇𝑚𝑎𝑥𝛽𝑘𝑇0
∗  

⇒  (1 − 𝜂)(1 − 𝜀)  <
𝑐𝛿 − 𝑐𝑟 +

𝑐𝑟𝑇0
∗

𝑇𝑚𝑎𝑥

𝛽𝑘𝑇0
∗  

                ⇒ (1 − 𝜂)(1 − 𝜀)  <
𝑐(𝛿𝑇𝑚𝑎𝑥 − 𝑟𝑇𝑚𝑎𝑥 + 𝑟𝑇0

∗)

𝑇𝑚𝑎𝑥𝛽𝑘𝑇0
∗  

    

        Therefore, when we fix η  as a constant to be equal to 𝜂∗ i.e., 𝜂 = 𝜂∗, we obtain the value of 

the efficacy of a drug, 𝜀, as follows:  

1 −
1

1 − 𝜂∗

𝑐𝛿𝑇𝑚𝑎𝑥 − 𝑐𝑟𝑇𝑚𝑎𝑥 + 𝑐𝑟𝑇0
∗

𝑇𝑚𝑎𝑥𝛽𝑘𝑇0
∗  <  𝜀 

        So, the critical drug efficacy in blocking the virus production is defined as: 

                                                 1 −
1

1−𝜂∗

𝑐𝛿𝑇𝑚𝑎𝑥−𝑐𝑟𝑇𝑚𝑎𝑥+𝑐𝑟𝑇0
∗

𝑇𝑚𝑎𝑥𝛽𝑘𝑇0
∗ = 𝜀𝑐 . 

𝜀𝑐 < 𝜀 
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        Also, when we fix 𝜀  as a constant to be equal to 𝜀∗ i.e., 𝜀 = 𝜀∗, we obtain the value of the 

efficacy of a drug, 𝜂, as follows: 

1 −
1

1 − 𝜀∗

𝑐𝛿𝑇𝑚𝑎𝑥 − 𝑐𝑟𝑇𝑚𝑎𝑥 + 𝑐𝑟𝑇0
∗

𝑇𝑚𝑎𝑥𝛽𝑘𝑇0
∗  <  𝜂 

        So, the critical drug efficacy in reducing new infections is defined as:        

                                           1 −
1

1−𝜀∗

𝑐𝛿𝑇𝑚𝑎𝑥−𝑐𝑟𝑇𝑚𝑎𝑥+𝑐𝑟𝑇0
∗

𝑇𝑚𝑎𝑥𝛽𝑘𝑇0
∗ = 𝜂 𝑐. 

𝜂 𝑐 < 𝜂 

where 𝑇0
∗ is the total number of the uninfected cells. We found that the values of the efficacy of a 

drug 𝜀 and 𝜂 are required to be greater than the values of the critical drug efficacy 𝜀𝑐 (i.e., 𝜀𝑐 < 𝜀 

and 𝜂 𝑐 < 𝜂) for successful antiviral therapy tends to decrease in viral load and then eradicate the 

virus.  
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CHAPTER 4 

NUMERICAL SIMULATIONS 

          In this chapter, we use numerical solutions to illustrate the theoretical results that were 

defined in Chapter 3 for model (5), to show the drug effectiveness, and to compare our model (5) 

with other models. Parameter values have been chosen from [36, 8] to give an illustration of the 

behavior of the model (5). The numerical values depend on the particular units that are chosen, 

which have been discussed in Chapter 3. We use the same values of the parameters, as shown in 

Table 2, in all numerical simulations. 

 

Table 2: The values of parameters. 

Parameters         Values 

Tmax 1.0*10^(7) 

s 1.0*10^(5) 

r 0.1 

d 1.0*10^(-2) 

𝛽 2.0*10^(-7) 

𝛿 1.0*10^(-1) 

p 6.4*10^(-4) 

k 4.0*10^(0) 

c 5.0*10^(0) 

q 2.0*10^(0) 
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𝜇 4.4*10^(-7) 

b 1.0*10^(-2) 

g 1.0*10^(-5) 

h 1*10^(-2) 

𝜀 0.7-0.9 

𝜂 0.7-0.9 

 

4.1 Disease-Free Equilibrium Simulations  

           For numerical solutions of the model (5), we run simulations using  the parameter values 

listed in Table 2 that guarantee condition (3.2.2.2) is satisfied, and the initial conditions: T= 

1.0*10^(4), I=2.0*10^(0), V= 3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0). The numerical 

simulation results are presented in Figure 8(a, b, c, d) and show that the uninfected cells 𝑇(𝑡) 

converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 while the other four populations 

converge to zero. Therefore, the disease-free equilibrium is locally asymptotically stable under 

condition (3.2.2.2).  
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Figure 8a: Numerical solution curve for the uninfected cells in 100 days. 

 

 

Figure 8b: Numerical solution curve for the infected cells and virus particles in 100 days. 
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Figure 8c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 

 

 

Figure 8d: Numerical simulation of the HCV model in 100 days. 
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4.2 System Behavior with no Immune Responses and no Drug (i.e., q=p=η=ε=0). 

         We run simulations using again the parameter values listed in Table 2 but in the absence of 

immune responses and drug i.e., q=p=η=ε=0. Therefore, condition (3.2.2.2) is not satisfied. We 

use the initial conditions: T= 1.0*10^(4), I=2.0*10^(0), V= 3.0*10^(0), Z=1.0*10^(0), and 

W=1.5*10^(0). The numerical simulation results are presented in Figure 9(a, b, c, d) and show 

that the uninfected cells 𝑇(𝑡) do not converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 

and the other four populations do not converge to zero. Therefore, the disease-free equilibrium is 

unstable.  

 

 

Figure 9a: Numerical solution curve for the uninfected cells in 100 days. 
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Figure 9b: Numerical solution curve for the infected cells and free virus in 100 days. 

 

Figure 9c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 
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Figure 9d: Numerical simulation of the HCV model in 100 days. 

 

4.3 System Behavior with Drug but no Immune Responses (i.e., q=p=0; η=ε=0.9).  

         We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0), V= 

3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2, but in 

the absence of immune responses i.e., q=p=0. When drug acts to block both the new HCV 

infections and the production or release of viruses by infected cells, I, i.e., η=ε=0.9, then 

condition (3.2.2.2) is satisfied. The numerical simulation results are presented in Figure 10(a, b, 

c, d) and show that the uninfected cells 𝑇(𝑡) converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 +

√(𝑟 − 𝑑)2 +
4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 while the other four populations converge to zero. Therefore, the 

disease-free equilibrium is locally asymptotically stable.  
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Figure 10a: Numerical solution curve for the uninfected cells in 100 days. 

 

 

Figure 10b: Numerical solution curve for the infected cells and the free virus in 100 days. 
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Figure 10c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 

 

 

Figure 10d: Numerical simulation of the HCV model in 100 days. 
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4.4 System Behavior with Drug and no Immune Responses (i.e., q=p=0; η=0.9, ε=0). 

          We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0), V= 

3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2, but in 

the absence of immune responses i.e., q=p=0. When drug acts to block new HCV infections 

(η=0.9, ε=0), then condition (3.2.2.2) is not satisfied. The numerical simulation results are 

presented in Figure              11(a, b, c, d) and show that the uninfected cells 𝑇(𝑡) do not converge 

to                                            𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 and the other four 

populations do not converge to zero. Therefore, the disease-free equilibrium is unstable. 

 

 

Figure 11a: Numerical solution curve for the uninfected cells in 100 days.  



45 
 

 

Figure 11b: Numerical solution curve for the infected cells and the free virus in 100 days.  

 

 

Figure 11c: Numerical solution curve for the CTLs and the antibody responses in 100 days.  
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Figure 11d: Numerical simulation of the HCV model in 100 days. 

 

4.5 System Behavior with Drug but no Immune Responses (i.e., q=p=0; η=0, ε=0.9). 

          We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0), V= 

3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2, but in 

the absence of immune responses i.e., q=p=0. When drug acts to block the production or release 

of viruses by infected cells, I, i.e., η=0, ε=0.9, then condition (3.2.2.2) is not satisfied. The 

numerical simulation results are presented in Figure 12(a, b, c, d) and show that the uninfected 

cells 𝑇(𝑡) do not converge to 𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 and the other four 

populations do not converge to zero. Therefore, the disease-free equilibrium is unstable. 
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Figure 12a: Numerical solution curve for the uninfected cells in 100 days. 

 

 

Figure 12b: Numerical solution curve for the infected cells and the free virus in 100 days. 
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Figure 12c: Numerical solution curve for the CTLs and the antibody responses in 100 days.  

 

 

Figure 12d: Numerical simulation of the HCV model in 100 days. 



49 
 

4.6 System Behavior with Drug and no Immune Responses (i.e., q=p=0; η=0.7, ε=0.8).  

         We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0), V= 

3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2, but in 

the absence of immune responses i.e., q=p=0. When drug acts to block both the new HCV 

infections and the production or release of viruses by infected cells, I, i.e., η=0.7, ε=0.8, then 

condition (3.2.2.2) is satisfied.  The numerical simulation results are presented in Figure 13(a, b, 

c, d) and show that the uninfected cells 𝑇(𝑡) converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 +

√(𝑟 − 𝑑)2 +
4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 while the other four populations converge to zero. Therefore, the 

disease-free equilibrium is stable. 

 

 

 

Figure 13a: Numerical solution curve for the uninfected cells in 150 days. 



50 
 

 

Figure 13b: Numerical solution curve for the infected cells and free virus in 150 days. 

 

 

Figure 13c: Numerical solution curve for the CTLs and the antibody responses in 150 days. 
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Figure 13d: Numerical simulation of the HCV model in 150 days. 

 

4.7 System Behavior with Drug and no Immune Responses (i.e., q=p=0; η=0.8, ε=0.6).  

           We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0),                            

V= 3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2, but 

in the absence of immune responses i.e., q=p=0. When drug acts to block both the new HCV 

infections and the production or release of viruses by infected cells, I, i.e., η=0.8, ε=0.6), then 

condition (3.2.2.2) is satisfied. The numerical simulation results are presented in Figure 14(a, b, 

c, d) and show that the uninfected cells 𝑇(𝑡) converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 +

√(𝑟 − 𝑑)2 +
4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 while the other four populations converge to zero. Therefore, the 

disease-free equilibrium is stable. 
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Figure 14a: Numerical solution curve for the uninfected cells in 100 days. 

 

 

Figure 14b: Numerical solution curve for the infected cells and free virus in 100 days. 
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Figure 14c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 

 

 

Figure 14d: Numerical simulation of the HCV model in 100 days. 
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4.8 System Behavior with Drug and no Immune Responses (i.e., q=p=0; η=0.7, ε=0.6). 

         We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0),                               

V= 3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2, but 

in the absence of immune responses i.e., q=p=0. When drug acts to block both the new HCV 

infections and the production or release of viruses by infected cells, I, i.e., η=0.7, ε=0.6, then 

condition (3.2.2.2) is not satisfied. The numerical simulation results are presented in Figure           

15(a, b, c, d) and show that the uninfected cells 𝑇(𝑡) do not converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 +

√(𝑟 − 𝑑)2 +
4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106 and the other four populations do not converge to zero. Therefore, the 

disease-free equilibrium is unstable. 

 

 

Figure 15a: Numerical solution curve for the uninfected cells in 100 days. 
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Figure 15b: Numerical solution curve for the infected cells and free virus in 100 days. 

 

 

Figure 15c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 
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Figure 15d: Numerical simulation of the HCV model in 100 days. 

 

4.9 Increase the Cell Proliferation Rate (i.e., r=0.5) with Immune Responses and Drug.  

         We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0),                                  

V= 3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2. By 

increasing the cell proliferation rate i.e., r=0.5, then condition (3.2.2.2) is not satisfied. The 

numerical simulation results with drug i.e., η=0.8, ε=0.7 are presented in Figure 16(a, b, c, d) and 

show that the uninfected cells 𝑇(𝑡) do not converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 + √(𝑟 − 𝑑)2 +

4𝑟𝑠

𝑇𝑚𝑎𝑥
] =

106 and the other four populations do not converge to zero. Therefore, the disease-free 

equilibrium is unstable. 
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Figure 16a: Numerical solution curve for the uninfected cells in 150 days. 

 

 

Figure 16b: Numerical solution curve for the infected cells and free virus in 150 days. 
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Figure 16c: Numerical solution curve for the CTLs and the antibody responses in 150 days. 

 

 

Figure 16d: Numerical simulation of the HCV model in 150 days. 
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 4.10 Increase the Cell Proliferation Rate (i.e., r=2) with Immune Responses and Drug.  

          We run simulations using the initial conditions: T= 1.0*10^(4), I=2.0*10^(0),                             

V= 3.0*10^(0), Z=1.0*10^(0), and W=1.5*10^(0) and the parameter values listed in Table 2. By 

increasing the cell proliferation rate i.e., r=0.2, then condition (3.2.2.2) is not satisfied. The 

numerical simulation results with drug i.e., η=0.7, ε=0.7 are presented in Figure 17(a, b, c, d) and 

show that the uninfected cells 𝑇(𝑡) does not converge to  𝑇0
∗ =

𝑇𝑚𝑎𝑥

2𝑟
[𝑟 − 𝑑 +

√(𝑟 − 𝑑)2 +
4𝑟𝑠

𝑇𝑚𝑎𝑥
] = 106  and the other four populations do not converge to zero. Therefore, the 

disease-free equilibrium is unstable. 

 

 

Figure 17a: Numerical solution curve for the uninfected cells in 100 days. 
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Figure 17b: Numerical solution curve for the infected cells and free virus in 100 days. 

 

 

Figure 17c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 
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Figure 17d: Numerical simulation of the HCV model in 100 days. 

 

4.11 Dominant CTL Responses Simulation  

          In this section, we want to illustrate the dominant CTL response. The value of parameters 

were chosen to illustrate this scenario from Table 2, but we change the parameters of p and q to              

p = 8.4* 10-4 and q = 5.0*10-1.  To indicate the case of a chronic infection, we chose large values 

for the initial conditions of the viral load and infected cells. Initial conditions: T(0) = 1.0*104; 

I(0) =2.0*105; V (0) = 3.0*105; Z(0) = 1.0*100; W(0) = 1.5*100. The numerical simulation results 

are presented in Figure 18(a, b, c, d) and show that a strong proliferation of CTL leads to an 

extinction of the antibody response. In other word, the proliferation rate of CTLs is much 

stronger than the natural production rate of antibody.  
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Figure 18a: Numerical solution curve for the uninfected cells in 100 days. 

 

 

Figure 18b: Numerical solution curve for the infected cells and free virus in 100 days. 
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Figure 18c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 

 

 

Figure 18d: Numerical simulation of the HCV model shows the dominant CTLs response in 100 

days. 
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4.12 Dominant Antibody Response Simulation 

        In this section, we want to illustrate the dominant antibody response. The value of 

parameters were chosen to illustrate this scenario from Table 2, but we change the parameters of 

p and q to p = 5.0* 10—1 and q = 8.4*10-4.   To indicate the case of a chronic infection, we chose 

large values  for the initial conditions of the viral load and infected cells. Initial conditions: T(0) 

= 1.0*104; I(0) =2.0*105; V (0) = 3.0*105; Z(0) = 1.0*100; W(0) = 1.5*100. The numerical 

simulation results are presented in Figure 19(a, b, c, d) and show that a strong proliferation of 

antibody leads to an extinction of the CTL response. In other word, the proliferation rate of 

antibody is much stronger than the natural production rate of CTLs.  

 

 

Figure 19a: Numerical solution curve for the uninfected cells in 100 days. 
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Figure 19b: Numerical solution curve for the infected cells and the free virus in 100 days. 

 

 

Figure 19c: Numerical solution curve for the CTLs and the antibody responses in 100 days. 
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Figure 19d: Numerical simulation of the HCV model shows the dominant antibody response in 

100 days. 

 

4.13 Coexistence 

           In this section, we want to illustrate the CTL and antibody responses are equally 

recognized. The value of parameters were chosen to illustrate this scenario from Table 2, but we 

change the parameters of p and q to p = 5.4* 10-4 and q = 5.0*10-1.   To indicate the case of a 

chronic infection, we chose large values for the initial conditions of the viral load and infected 

cells. Initial conditions: T(0) = 1.0*104; I(0) =2.0*105; V (0) = 3.0*105; Z(0) = 1.0*100; W(0) = 

1.5*100. The numerical simulation results are presented in Figure 20(a, b, c, d) and show that 

both CTL and antibody responses are equally determined. The two immune responses CTLs (T-

cells) and antibody (B-cells) contend with each other to removal of the infection.  
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Figure 20a: Numerical solution curve for the uninfected cells in 100 days. 

 

 

Figure 20b: Numerical solution curve for the infected cells and the free virus in 100 days. 
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Figure 20c: Numerical solution curve for the CTLs and the antibody response in 100 days. 

 

 

Figure 20d: Numerical simulation of the HCV model shows the Coexistence in 100 days. 
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5. CONCLUSSION 

           Hepatitis C is a dangerous disease caused by the hepatitis C infection (HCV) that 

essentially influences the liver. In this thesis, we have formulated a mathematical model (5) of 

ordinary differential equations for hepatitis C dynamic. This model is a combination of 

proliferation model (3) and immune responses model (4). Our model is considering the immune 

response to the HCV infection and accounts of the proliferation for the uninfected and infected 

hepatocytes. Also, it considers the mechanisms of cell death and killing by CTLs and antibody.  

            To determine the stability of the model, we evaluated the equilibrium points or steady 

states. In section 3.2.1, five equilibrium points of the model have been found explicitly. There are 

more equilibrium points that have been found by using Mathematica, but they are too 

complicated to write all of them in this thesis. The first equilibrium is called disease-free 

equilibrium which represents the absence of the virus. The next four equilibrium points are 

called the infected equilibria. The second equilibrium represents the absence of immune 

responses. Dominant CTLs response is represented by the third infected equilibrium. The fourth 

equilibrium represents the dominant antibody response. Coexistence is represented by the fifth 

infected equilibrium.  

            In section 3.2.2, we studied the stability properties of the disease-free equilibrium 

(uninfected steady state). The local stability of the disease-free equilibrium is ruled by five 

eigenvalues of the Jacobian matrix for this equilibrium. We found three eigenvalues directly, 

while the other two eigenvalues are solutions of the characteristic polynomial of a sub-Jacobian 

matrix of the system. Using the Routh-Hurwitz criteria, the two eigenvalues have negative real 

part since the coefficients of the characteristic polynomial are positive.  This implies that the 

Routh-Hurwitz criteria condition is satisfied and the disease-free equilibrium is locally 
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asymptotically stable under this condition (3.2.2.2), which is found in section 3.2.2.1. Moreover, 

we found the values of the critical drug efficacy 𝜀𝑐 and 𝜂 𝑐 for successful drug therapy. 

          Next, we run simulations to verify the theoretical results in Chapter 3. Also, we showed 

the drug effectiveness and compared our model with other models. We predicted the behavior of 

the system under different drug effects, cells proliferation rate, and immune responses. We 

noticed that when drug and immune responses are zero, the disease-free equilibrium is unstable. 

Furthermore, when the drug effect is less than the critical drug efficacy, the disease-free 

equilibrium is again unstable. Also, if we increase the proliferation rate, the disease-free 

equilibrium is unstable.  

         Finally, we illustrated the dominant CTL response and the dominant antibody response. We 

changed the parameters of the neutralized rate of virus particles to be bigger than the killing rate 

of the infected cells. This showed that the proliferation rate of CTLs is much stronger than the 

natural production rate of antibody. Hence, the CTLs response increases and the antibody 

response become ineffective. Likewise, we changed the parameters of the neutralized rate of 

virus particles to be less than the killing rate of the infected cells. This showed the proliferation 

rate of antibody is stronger than the natural production rate of CTLs. Thus, the antibody response 

increases and the CTLs response become ineffective. Then, we made the parameters of the 

neutralized rate of virus particles and the killing rate of the infected cells to be equal. This 

showed that both CTL and antibody responses are equally determined. The two immune 

responses CTLs and antibody contend with each other to clearance of the infection.  

        The proposed model here represents HCV RNA decay under variety of treatment and takes 

into consideration both the immune system and cell proliferation. The study provides useful tools 
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not only for fitting HCV infections but also for modeling other similar infections with 

hepatocytes viruses, such as hepatitis A and B virus. This model allows predicting the viral 

decay and can help in understanding the kinetics of the HCV under different treatment. It can be 

used for better understanding the viral kinetics in patients.  
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