
A STUDY ON TRAVELING WAVE SOLUTIONS IN THE

SHALLOW-WATER-TYPE SYSTEMS

by

TING LUO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2017



Copyright c© by Ting Luo 2017

All Rights Reserved



ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my advisor Dr. Yue Liu for

his inspiration, encouragement and invaluable guidance in both academics and life

throughout my four years of study. From the discussions with him, I learnt what

should be like as a good mathematician and how the good mathematical research is

done. It has been a great honor to work with him.

I wish to thank Dr. Jianzhong Su, Dr. Gaik Ambartsoumian, Dr. Guojun Liao

and Dr. Tuncay Aktosun for their interest in my research and for taking time to

serve in my comprehensive committee and dissertation committee.

I would like to thank Lona, Angel, Jamie, Danelle, Michael and Shanna for

their time and assistance throughout my graduate career. Thanks to my friends Jie,

Yong, Gul, Emel, Deizhi, Jia, Junwei and many other friends at UTA, for their help

and encouragement during my four year as a graduate student here.

I would also like to extend my appreciation to Dr. Changzheng Qu, who is my

master advisor in Northwest University. He lead me to the road of PDE. I thank

Shuanghu Zhang, Guilong Gui, Xiaochuan Liu, Fei Guo, Lili Fan, Ying Wang, Robin

Ming Chen. I am benefited from talking to them during their visits.

Finally, I am extremely grateful to my parents, sister and husband for their

sacrifice, encouragement and patience. Without their love, I would not have gone

that far.

July 17, 2017

iii



ABSTRACT

A STUDY ON TRAVELING WAVE SOLUTIONS IN THE

SHALLOW-WATER-TYPE SYSTEMS

Ting Luo, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Yue Liu

The study of water waves reveals the physical principles of many phenomena of

scientific and engineering interest. In this dissertation I consider three models: two-

component Camassa-Holm system(2CH), generalized two-component Camassa-Holm

equation(g2CH) and rotation-Camassa-Holm equation(R-CH). In the first part, we

consider the stability of the Camassa-Holm peakons and antipeakons in the dynamics

of the two-component Camassa-Holm system. The second part shows that the train

of N -smooth traveling waves of this system is dynamically stable to perturbations in

energy space with a range of parameters. In the third part, we formally derive the

simplified phenomenological models with the Coriolis effect due to the Earth’s rotation

and justify rigorously that the solutions of these models are well approximated by

the solutions of the rotation-Camassa-Holm equation. Furthermore, we demonstrate

nonexistence of the Camassa-Holm-type peaked solution and classify various localized

traveling-wave solutions to the rotation-Camassa-Holm equation.
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CHAPTER 1

INTRODUCTION

This dissertation is composed of some results on traveling-wave solution of three

different models: two-component Camassa-Holm equation, generalized two-component

Camassa-Holm equation, rotation-Camassa-Holm equation. I will introduce these

models and their problem setting in this chapter.

1.1 Two-component Camassa-Holm system.

The two-component Camassa-Holm (2CH) system arising from the shallow-

water waves with a background of constant vorticity [20, 54, 57] has the following

form
ut − uxxt + κux + 3uux − (2uxuxx + uuxxx) + ρρx = 0, t > 0, x ∈ R, κ ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,
(1.1)

where u(t, x) represents the horizontal velocity component and ρ(t, x) is related

to the free surface elevation. The interaction between the free surface and the

horizontal velocity component causes the wave-breaking phenomena, see for example

[12, 30, 34, 35, 36, 37, 38, 59]. It was also shown in [53, 59] that the system captures

smooth traveling wave with a single crest profile and presenting exponential decay at

spatial infinity.

It is known that the 2CH system is formally integrable [42, 57]. Through the

integrability, system (1.1) can be written as a compatibility condition of two linear

systems (Lax pair) with a spectral parameter ζ, that is

1



Ψxx =

[
−ζ2ρ2 + ζ

(
u− uxx +

κ

2

)
+

1

4

]
Ψ, Ψt =

(
1

2ζ
− u
)

Ψx +
1

2
uxΨ,

and has a bi-Hamiltonian structure corresponding to the following Hamiltonian

functionals

H1(u, ρ) =

∫ (
u2 + u2

x + ρ2
)
dx, H2(u, ρ) =

∫ (
u3 + uu2

x + uρ2 + κu2
)
dx.

By using the functional H2, system (1.1) has the following abstract Hamiltonian form:

∂t

u
ρ

 = JH ′2(u, ρ), (1.2)

where H ′2(u, ρ) = (δH2/δu, δH2/δρ)T represents the variational derivative of the

functional H2 and J is a closed skew symmetric operator performing as

J =
1

2

−∂x(1− ∂2
x)
−1 0

0 −∂x

 .

Also system (1.1) admits two Casimirs:
∫
ρ dx and

∫
(u− uxx) dx.

While letting ρ = 0, the 2CH system (1.1) reduces to the classical Camassa-Holm

(CH) equation [8, 31]

ut − uxxt + κux + 3uux − 2uxuxx − uuxxx = 0, (1.3)

which is a model proposed for the unidirectional propagation of long water waves in

the shallow-water approximation to the Euler equations of inviscid incompressible fluid

flow [8, 21, 44]. Equation (1.3) is completely integrable using the inverse scattering

transformation [15, 19, 22] and it has bi-Hamiltonian structure [8, 54]. This model

has attracted so much attention in more than two decades since it employs two

remarkable features. One feature is that the CH equation (1.3) has wave breaking
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phenomena [8, 14, 17, 18, 49], i.e. the solution remains bounded while its slope

becomes unbounded in finite time [58]. In [5] and [6], the authors showed that the

solutions can be uniquely continued after breaking as either global conservative or

global dissipative weak solution. Another important feature is that it admits peaked

traveling waves [8, 46, 47], when κ = 0. The wave profile of so-called “peakon” is

shaped like ϕc(t, x) = c e−|x−ct|, c > 0. In particular, when c < 0, it is recognized as

“antipeakon”. The first derivative of such peaked wave is smooth except at the peak,

where it has a jump discontinuity.

In view of the CH equation (1.3), when κ = 0 and p0
1, · · · , p0

N > 0 and q0
1 <

· · · < q0
N , the 2CH system (1.1) possesses the multi-peakons profile (ψ(t, x), 0) on R

with

ψ(t, x) =
N∑
i=1

pi(t)e
−|x−qi(t)|,

where pi(t) and qi(t) satisfy the Hamiltonian system
ṗi =

N∑
j=1

pipjsign(qi − qj)e−|qi−qj |,

q̇i =
N∑
j=1

pje
−|qi−qj |,

(1.4)

with the corresponding initial data pi(0) = p0
i and qi(0) = q0

i , i = 1, · · · , N . In

[3] (see also [4, 41]), the asymptotic behavior of the multipeakons is investigated,

including the limits as t tends to +∞ and −∞ of pi(t) and q̇i(t) as well as the

qualitative properties. If p0
1, · · · , p0

k are negative real numbers and p0
k+1, · · · , p0

N are

positive real numbers, it admits the multi-antipeakon-peakons profile (ϑ(t, x), 0),

where ϑ(t, x) =
∑N

i=1 pi(t)e
−|x−qi(t)|, pi(t) and qi(t) satisfy the Hamiltonian system

(1.4), p1(t), · · · , pk(t) < 0, pk+1(t), · · · , pN(t) > 0 and q1(t) < · · · < qN(t). It is

worthwhile to mention that (ψ(t, x), 0) and (ϑ(t, x), 0) are not classical solutions of

the 2CH system (1.1) due to non-smoothness. They should be regarded as weak

solutions, since system (1.1) with κ = 0 can be written in the following form

3




ut + uux + ∂xp ∗

(
u2 + 1

2
u2
x + 1

2
ρ2
)

= 0,

ρt + (ρu)x = 0,

(1.5)

where p(x) = e−|x|/2 is the corresponding kernel of the convolution operator (1− ∂2
x)
−1

.

The associated Hamiltonian functionals for (1.5) are

E(u, ρ) =

∫ (
u2 + u2

x + ρ2
)
dx and F (u, ρ) =

∫ (
u3 + uu2

x + uρ2
)
dx. (1.6)

Inspired by the similarity between the 2CH system (1.5) and the CH equation

(1.3) with κ = 0, we are wondering how much the dynamical properties of a variety

of the CH traveling waves under the 2CH evolution processing has in common with

those in the scalar equation, especially on the stability issue. The orbital stability of

the CH peakons ϕc(t, x) [23, 24, 25], multi-peakons ψ(t, x) [27] and multi-antipeakon-

peakons ϑ(t, x) [28] seems to suggest the analogous result to the wave profiles (ϕc, 0),

(ψ, 0) and (ϑ, 0) for the 2CH system (1.5). However, the interaction between two

components u and ρ in (1.5) and (1.6) makes it non-trivial to verify. To extend

the theory from a scalar equation to a system we have the following difficulties.

Firstly, the parameter ρ may affect the translation of the N -peakons while using

the modulation argument. Secondly, with two components, the energy functional

has different formula, which provides the challenge to show the almost monotonicity.

Thirdly, it is complicate to extend local and global estimates from a scalar to a

vector. By using the two conservation laws and a fine analysis carefully, we overcome

these difficulties with suitable initial condition. It is worth noticing that in [12], the

variational characterization and the orbital stability of the wave patterns (ϕc, 0) in

the dynamics of the 2CH system are established. In this article, we are concerned

with the orbital stability of multi-wave patterns (ψ, 0) and (ϑ, 0) under the 2CH

dynamics.
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According to the collision theory between two peakons [4, 8, 9, 41], it follows

that the multipeakons finally will be well ordered. Therefore, with well-posedness

results, we focus on the stability of ordered trains of the N -CH-peakons (
∑N

i=1 ϕci , 0)

first. The case for (ϑ, 0) can be treated similarly. It is worth recalling that the general

framework for the proof of the stability of the N -smooth traveling waves has two

principal ingredients [26, 29, 50, 51]: one is the almost monotonicity of the functionals

which describe the energy at the right of ith bump, for i = 1, 2, · · · , N , the other one

is the local coercivity of the Hessian operator of ciEi − Fi around (ϕci , 0), where Ei

and Fi are localized conservation laws (defined in (2.31)). In [50], the orbital stability

of the trains of N smooth traveling waves of the 2CH system was proved. However,

the proof of the stability of the trains of the N -CH-peakons does not fit into the

general framework, due to the non-differentiability of (ϕci , 0), which fails the spectral

analysis.

The method that we adopt here to prove the orbital stability of the trains of

ordered N -CH-peakons has the flavor in the Lyapunov sense. This direct approach is

initially introduced in [24] for the stability of single peakon solution to CH equation

(1.3). In view of the conservation law E in (1.6), we expect the orbital stability

of these kind wave pattern in the energy space X = H1(R) × L2(R) with small

perturbation. To fill the gap mentioned above, we construct a so-called localized

Lyapunov function P (Mi;u, ρ), where Mi = maxx u is the local maximum near i-th

bump. Furthermore, P (Mi;u, ρ) gives the following estimate

(Mi + 2ci)(Mi − ci)2 .
3

2
| (Ei(u, ρ)− Ei(ϕci , 0))Mi|+

3

2
|Fi(u, ρ)− Fi(ϕci , 0)|.

After applying the almost monotonicity of the localized energy functions and the

conservation laws E and F , we achieve that
∑N

i=1 ci|Mi − ci| is small enough, which

implies the stability result. As to the CH-multi-antipeakon-peakons, by taking

advantage of the invariance of the system with respect to the change of u(x, t) 7→
5



−u(−x, t), ρ(x, t) 7→ −ρ(−x, t), we apply the same approach to the N -CH-peakons

and N -CH-antipeakons separately, then combine them together to prove the orbital

stability of the ordered trains of the N -CH-antipeakon-peakons.

1.2 Generalized two-component Camassa-Holm system.

The generalized two-component Camassa-Holm (g2CH) system arising from

the shallow-water theory with nonzero constant vorticity [11, 42] can be written in

the form
ut − uxxt − Aux + 3uux − σ (2uxuxx + uuxxx) + ρρx = 0, t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,
(1.7)

where u(x, t) is connected with the horizontal velocity and ρ(x, t) is related to the free

surface elevation from equilibrium (or scalar density) with the boundary conditions

u→ 0 and ρ→ 1 as |x| → ∞. The scalar constant A > 0 features a linear underlying

shear flow, which implies the system (1.7) describes the interaction between surface

gravity wave and a mean flow. The parameter σ, a real dimensionless constant,

provides the competition in the fluid convection between nonlinear steepening and

the amplification due to stretching.

Our motivation is to investigate the stability issue for multi-solitary waves to

system (1.7) with an effect of the parameter σ. It was shown in [13] that there exist

smooth traveling waves ϕc (defined in Definition 3.1.1, Chapter 3) of system (1.7)

if the parameter σ ≤ 1, c > −A+
√
A2+4

2
and these single traveling waves are orbitally

stable in the energy space by spectral analysis. Inspired by an approach in [29] to

deal with stability of N -smooth traveling waves of the CH equation, our goal in this

chapter is to study the orbital stability of a train of N -smooth traveling waves in the

dynamics of the g2CH system.

6



For integrability, we will adopt another form of the g2CH system (1.7), where

η
def
= ρ− 1, that is,

ut − utxx − Aux + 3uux − σ (2uxuxx + uuxxx) + (1 + η) ηx = 0,

ηt + ((1 + η)u)x = 0.

(1.8)

In view of the conservation laws for system (1.8),

E(u, η) =
1

2

∫
R

(
u2 + u2

x + η2
)
dx, (1.9)

F (u, η) =
1

2

∫
R

(
u3 + σuu2

x + 2uη + uη2 − Au2
)
dx, (1.10)

we expect the orbital stability of N -smooth traveling waves of the g2CH system

in the sense of the energy space X = H1(R) × L2(R). Note that existence for the

smooth traveling waves and their stability naturally rely on the particular σ and A.

By choosing σ = 1, the orbital stability of N -smooth traveling waves for system (1.1)

is included while discussing the same topic on the g2CH system.

To establish the stability result for N -smooth traveling waves of the g2CH

system, we develop the approaches employed in [29] for the CH equation and combine

with the general strategy initiated in [51] for generalized KdV case. It is worth

recalling that the general framework requires three principal ingredients: modulation

argument, almost monotonicity and local coercivity. Note that the stability issue of

the multi-solitons of system (1.8) is more subtle than the CH case, because of the

interaction between the two components u and η of solution u in system (1.8). To deal

with these difficulties, one needs to provide a new and effective approach to control

the superposition of the error terms with respect to the solution u and each smooth

traveling wave ϕci in the local energy space. Intrigued by the classical method, we

expect to find the orbit of N -smooth traveling waves by the modulation argument, i.e.

for each instant t there exist a series of translation {x̃i}Ni=1 such that
∑N

i=1ϕci(x− x̃i)
7



lies close to u(x) in X-norm under certain assumptions. Fortunately, the implicit

function theorem, which is crucial to the modulation argument, works regardless of

the dimension of the space and it also provides a new orthogonal condition connected

with both elements in the remaining term of the solution. For the property of almost

monotonicity, a more delicate work is needed to compare with the CH equation, not

only because the energy function is in terms of both u and η, but also because it

depends on the two parameters σ and A > 0. As to the local coercivity, we focus

on the second differential operator of cE − F around a traveling wave ϕc which is a

2× 2 matrix. In order to apply the spectral analysis to this operator, restriction on

σ is required. Hence, as long as one can extend the proof of these ingredients from

a scalar to a vector, and choose the parameters properly, it is possible to establish

Theorem 3.1.6.

1.3 Rotation-Camassa-Holm equation.

It is observed that in certain ranges of scales in the geophysical water waves

fluid dynamics is primarily influenced by the interaction of gravity and the Earth’s

rotation. Consider now that water flows are incompressible and inviscid with a

constant density ρ and no surface tension, and the interface between the air and the

water is a free surface. Then such a motion of water flow occupying a domain Ωt

in R3 under the influence of the gravity g and the Coriolis force due to the Earth’s

rotation can be described by the Euler’s equations [32], namely,


~ut + (~u · ∇) ~u+ 2~Ω× ~u = −1

ρ
∇P + ~g, x ∈ Ωt,

∇ · ~u = 0, x ∈ Ωt,

~u|t=0 = ~u0, x ∈ Ω0,

(1.11)

8



where ~u = (u, v, w)T is the fluid velocity, P (t, x, y, z) is the pressure in the fluid,

~g = (0, 0,−g)T with g ≈ 9.8m/s2 the constant gravitational acceleration at the

Earth’s surface, and ~Ω = (0, Ω0 cosφ,Ω0 sinφ)T , with the rotational frequency

Ω0 ≈ 73 · 10−6rad/s and the local latitude φ, is the angular velocity vector which

is directed along the axis of rotation of the rotating reference frame. We adopt a

rotating framework with the origin located at a point on the Earth’s surface, with

the x-axis chosen horizontally due east, the y-axis horizontally due north and the

z-axis upward. We now focus on two-dimensional flows, moving in the zonal direction

along the equator independent of the y-coordinate, in other words, v ≡ 0 throughout

the flow. In 2D case, consider here waves at the surface of water with a flat bed, and

assume that Ωt = {(x, z) : 0 < z < h0 + η(t, x)}, where h0 is the typical depth of the

water and η(t, x) measures the deviation from the average level. Under the f -plane

approximation (sinφ ≈ 0, φ� 1), the motion of inviscid irrotational fluid near the

Equator in the region 0 < z < h0 + η(t, x) with a constant density ρ is described by

the Euler’s equations in two dimensions [16, 32],
ut + uux + wuz + 2Ω0w = −1

ρ
Px,

wt + uwx + wwz − 2Ω0u = −1
ρ
Pz − g,

(1.12)

the incompressibility of the fluid,

ux + wz = 0, (1.13)

and the irrotational condition,

uz − wx = 0. (1.14)

The pressure is written as

P (t, x, z) = Pa + ρg(h0 − z) + p(t, x, z),

9



where Pa is the constant atmosphere pressure, and p is a pressure variable measuring

the hydrostatic pressure distribution.

The dynamic condition posed on the surface z = h0 + η yields P = Pa. Then

there appears that

p = ρgη. (1.15)

Meanwhile, the kinematic condition on the surface is given by

w = ηt + uηx, when z = h0 + η(t, x). (1.16)

Finally, we pose ”no-flow” condition at the flat bottom z = 0, that is,

w|z=0 = 0. (1.17)

There are many shallow water models as appropriate approximations to the full

Euler dynamics when the water depth is small compared to the horizontal wavelength

scale [2, 21]. We denote the amplitude parameter ε and the shallowness parameter µ

respectively by

ε = a/h0, µ = h2
0/λ

2, (1.18)

where a is the typical amplitude of the wave and λ is the typical wavelength. It is

known that the KdV and BBM models provide good asymptotic approximations of

unidirectional solutions of the irrotational two-dimensional water waves problem in

(1.11) without the Coriolis effect on the Boussinesq regime µ� 1, ε = O(µ) [1]. To

describe more accurately the motion of these unidirectional waves, it is shown in

[21] that the Camassa-Holm (CH) equation in the Camassa-Holm scaling, µ � 1,

ε = O(
√
µ), could be valid higher order approximations to the governing equation

for full water waves in the long time scaling O(1
ε
). The CH equation [8, 31] (see also

[21, 43]) has brought up much attention recently, since it is completely integrable with

infinity conservation laws [8, 31] and can present the phenomenon of wave breaking

10



[14, 18] (i.e. the solution remains bounded, but its slope becomes unbounded in finite

time).

Analogous to the CH equation, there is a model equation with the Coriolis

effect called the rotation-Camassa-Holm (R-CH) equation which is recently derived

from the irrotational two-dimensional shallow water [40].

According to the magnitude of the physical quantities, we introduce dimension-

less quantities as follows

x→ λx, z → h0z, η → aη, t→ λ√
gh0

t,

and

u→
√
gh0u, w →

√
µgh0w, p→ ρgh0p.

And under the influence of the Earth rotation, we introduce

Ω =

√
h0

g
Ω0. (1.19)

Furthermore, considering whenever ε→ 0,

u→ 0, w → 0, p→ 0,

that is, u,w and p are proportional to the wave amplitude. In this case, we choose a

scaling

u→ εu, w → εw, p→ εp. (1.20)

Therefore the governing equations become

ut + ε(uux + wuz) + 2Ωw = −px in 0 < z < 1 + εη(t, x), (1.21a)

µ (wt + ε(uwx + wwz))− 2Ωu = −pz in 0 < z < 1 + εη(t, x), (1.21b)

ux + wz = 0 in 0 < z < 1 + εη(t, x), (1.21c)

uz − µwx = 0 in 0 < z < 1 + εη(t, x), (1.21d)

11



p = η on z = 1 + εη(t, x), (1.21e)

w = ηt + εuηx on z = 1 + εη(t, x), (1.21f)

w = 0 on z = 0. (1.21g)

Choosing the suitable independent variables ξ
def
= ε

1
2 (x − ct), τ def

= ε
3
2 t, where c

def
=

√
1 + Ω2−Ω, it was derived in [40], after a double asymptotic expansion with respect

to ε and µ, that the free surface η = η(τ, ξ) is governed by the equation

2(Ω + c)ητ + 3c2ηηξ +
c2

3
µηξξξ + A1εη

2ηξ + A2ε
2η3ηξ + A5ε

3η4ηξ

= εµ
[
A3ηξηξξ + A4ηηξξξ

]
+O(ε4, µ2)

(1.22)

withA1
def
= 3c2(c2−2)

(c2+1)2
, A2

def
= − c2(2−c2)(c6−7c4+5c2−5)

(c2+1)4
, A3

def
= −c2(9c4+16c2−2)

3(c2+1)2
, A4

def
= −c2(3c4+8c2−1)

3(c2+1)2
,

A5
def
= c2(c2−2)(3c10+228c8−540c6−180c4−13c2+42)

12(c2+1)6
, and the function η = η(τ, ξ) with respect

to the horizontal component of the velocity u under the Camassa-Holm regime

ε = O(
√
µ) is given by

η =
1

c
u+ γ1εu

2 + γ2ε
2u3 + γ3ε

3u4 + γ4εµuξξ +O(ε4, µ2), (1.23)

where γ1 = 2−c2
2c2(c2+1)

, γ2 = (c2−1)(c2−2)(2c2+1)
2c3(c2+1)3

, γ3 = − (c2−1)2(c2−2)(21c4+16c2+4)
8c4(c2+1)5

, and

γ4 = −(3c4+6c2−5)
12c(c2+1)2

. By this crucial relation between the velocity component u and the

free surface component η, it then enables us to formally derive the R-CH equation

[40] in the form

∂tu− βµ∂tuxx + cux + 3αεuux − β′µuxxx + ω1ε
2u2ux + ω2ε

3u3ux

= αβεµ(2uxuxx + uuxxx), (1.24)

where α
def
= c2

1+c2
, β′

def
= c(c4+6c2−1)

6(c2+1)2
, β

def
= 3c4+8c2−1

6(c2+1)2
, ω1

def
= −3c(c2−1)(c2−2)

2(1+c2)3
, andω2

def
=

(c2−2)(c2−1)2(8c2−1)
2(1+c2)5

satisfying c → 1, β → 5
12

, β′ → 1
4
, ω1, ω2 → 0 and α → 1

2
when

Ω→ 0.
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Let m
def
= (1 − βµ∂2

x)u. We now rewrite the above equation in terms of the

evolution of m, namely,

∂tm+ αε(umx + 2mux) + cux − β′µuxxx + ω1ε
2u2ux + ω2ε

3u3ux = 0, (1.25)

which has the following two conserved quantities

E(u) =
1

2

∫
R
u2 + βµu2

x dx,

and

F (u) =
1

2

∫
R
cu2 + αεu3 + β′µu2

x +
ω1ε

2

6
u4 +

ω2ε
3

10
u5 + αβεµuu2

x dx.

Denote that

B1
def
= ∂x(1− βµ∂2

x), and

B2
def
= ∂x((αεm+

c

2
)·) + (αεm+

c

2
)∂x − β′µ∂3

x +
2

3
ω1ε

2∂x(u∂
−1
x (u∂x·))

+
5

8
ω2ε

3∂x(u
3
2∂−1

x (u
3
2∂x·)).

A simple calculation then reveals that the R-CH equation (1.24) can be written as

mt = −B1
δF

δm
= −B2

δE

δm
,

where B1 and B2 are two skew-symmetric operators. It is shown in [40] that the

solutions of the R-CH equation (1.24) are uniformly bounded in suitable Sobolev

norms for all small values of ε and µ defined in (1.18) with a valid time scale O(1
ε
).

It is the first subject of present study to investigate whether or not the R-CH

equation is a valid approximating model to the governing equations for water waves

with the Coriolis effect. Our aim is to prove the relevance of the R-CH equation as

a good model for the propagation of shallow-water waves with effect of the Coriolis

forcing. To this end, we first use formal asymptotic procedures to derive the Green-

Naghdi equations with the Coriolis effect in the shallow-water scaling (µ� 1, without

13



any assumptions on ε) from the governing equations of water waves (1.12) for one-

dimensional surfaces and flat bottoms. This enables us to derive the KdV and BBM

equations with effect of the Earth’s rotation in the long-wave regime (ε = O(µ)). Our

investigation will first focus on the study that under what conditions the unidirectional

solutions of the rotational KdV-type equation is well approximated by the solutions

of the R-CH equation. To justify the R-CH approximation, one can use the solution

of the R-CH equation to rewrite the corresponding rotation-KdV equation with the

residual term, then show rigorously that the approximation error to the difference of

the two solutions remains small up to O(µ2) in the solution space over a long time

scale. The argument can be approached by establishing the uniform boundedness

of the solution up to the long time scaling O(1
ε
). On the other hand, we will give a

rigorous justification of solution of the classical CH as an approximation to that of the

R-CH equations in a long time scale when the effect of the Earth’s rotation vanishes.

This can be done by showing that, for any given time interval, solutions of the R-CH

equation are the Cauchy sequences in terms of the small rotation parameters using

the conservation laws and the uniform bounded estimates of the solution.

Anther interesting issue to investigate here is concerned with the traveling-wave

solutions of (4.55) in the form u(t, x) = ϕσ(x − σt), σ ∈ R for the function ϕσ :

R→ R such that ϕσ → 0 as |x| → ∞. It is known that the traveling-wave solution

of the classical CH equation appears to be a weakly peaked soliton [8], which is one

of interesting features for the CH-type equation. It was also found that the mCH

equation, as the dual equation of the mKdV equation, admits peaked solitons [39].

As one can see that the R-CH equation (4.55) can be regarded as a perturbation of

the CH equation by the weak Coriolis forcing. A natural question remains that how

the Coriolis forcing affects the propagation of the traveling waves, in particular, the

peaked solitons. To this end, it is of interest to study and classify the traveling wave
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solutions of (1.24), leading to some new types of nonanalytic traveling wave solutions,

but nonexistence of the classical CH-type peaked solitons.

Later Lenells [46, 47] used a suitable framework for weak solutions to classify

all weak traveling waves of the CH equation. However it is unclear whether the

R-CH equation (1.24) with the weak Coriolis effect supports traveling waves with

singularities. Using a natural weak formulation of (1.24), we can define exactly in

what sense the peaked and cusped traveling waves are solutions. In fact, it turns out

that the equation for ϕ takes the form ϕ2
x = R(ϕ), where R is a rational function. A

standard phase-plane analysis determines the behavior of solution near the zeros and

poles of R. In fact, peaked traveling waves exist when R has a removable pole and

cusped traveling waves correspond to when R has a non-removable pole. Due to the

added rotational term, the numerator of R contains cubic polynomial f(ϕ) whose

root distribution is quite complicated. By analyzing each possible case carefully, we

show here peaked and cusped traveling waves do exist for (1.24), but the CH-type

peakon does not exist.

15



CHAPTER 2

STABILITY OF THE CAMASSA-HOLM MULTI-PEAKONS IN

TWO-COMPONENT CAMASSA-HOLM SYSTEM

2.1 Stability of multipeakons

2.1.1 Basic definitions and results

In this chapter, we focus on the following Cauchy problem for system (1.5)

written as 
ut + uux + ∂xp ∗

(
u2 + 1

2
u2
x + 1

2
ρ2
)

= 0,

ρt + (ρu)x = 0, t ∈ R, x ∈ R,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R,

(2.1)

Prior to a discussion of the stability issue should be the well-posedness results.

Actually, the local and global well-posedness results in varies cases were established

in [30, 35, 37]. Hence, we recall the following result without proof, which suffices to

develop the stability theory here.

Proposition 2.1.1. [37] Let (u0, ρ0) ∈ Hs(R) × Hs−1(R), s > 3/2. Then there

exists a time T > 0 such that the initial-value problem of system (2.1) has a unique

solution (u, ρ) ∈ C([0, T );Hs(R)×Hs−1(R)) ∩ C1([0, T );Hs−1(R)×Hs−2(R)) with

(u(0), ρ(0)) = (u0, ρ0). The solution (u, ρ) depends continuously on the initial value

(u0, ρ0) and the maximal time of existence T > 0 is independent of s. If ρ0(x) > 0

for all x ∈ R, then T = +∞ and the solution (u, ρ) is global. In additional, the

functionals E(u, ρ) and F (u, ρ) defined in (1.6) are independent of the existence time

t.
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The following definition of the orbital stability of a single traveling wave solution

to the 2CH system was introduced in [12].

Definition 2.1.1. Let (ϕc, ψc) be a traveling wave of (1.5) with speed c > 0. Then

(ϕc, ψc) is orbitally stable if for all ε > 0 there exists a δ > 0 such that for any

(u0, ρ0) ∈ Hs(R) ×Hs−1(R), s > 3/2, with ‖(u0, ρ0) − (ϕc, ψc)‖H1(R)×L2(R) ≤ δ, the

corresponding solution (u(t), ρ(t)) of (1.5) with initial data (u0, ρ0) satisfies

sup
0<t<T

inf
r∈R
‖(u(t, ·), ρ(t, ·))− (ϕc(· − r), ψc(· − r))‖H1(R)×L2(R) ≤ ε,

where T is the maximal existence time.

One of the main purpose in this chapter is to prove the orbital stability of the

N -peaked traveling waves (
∑N

i=1 ϕci , 0) = (
∑N

i=1 cie
−|x|, 0) of system (1.5) in energy

space H1(R)× L2(R) with small perturbation.

Theorem 2.1.2. Let c1, · · · , cN be N velocities such that 0 < c1 < · · · < cN . There

exist A > 0, L0 > 0 and ε0 > 0 such that if (u0, ρ0) ∈ Hs(R)×Hs−1(R) for s > 3/2

and

‖u0 −
N∑
i=1

ϕci(· − z0
i )‖H1(R) + ‖ρ0‖L2(R) ≤ ε2, (2.2)

for some 0 < ε < ε0 and z0
i − z0

i−1 ≥ L, where L > L0, then for the corresponding

solution (u, ρ) ∈ C([0, T );Hs(R)×Hs−1(R)) ∩ C1([0, T );Hs−1(R)×Hs−2(R)) of the

Cauchy problem for the 2CH system (1.5) with initial data (u, ρ)|t=0 = (u0, ρ0), there

exist ξ1(t), · · · , ξN(t) ∈ R, such that

sup
0<t<T

(
‖u(t, ·)−

N∑
i=1

ϕci(· − ξi(t))‖H1(R) + ‖ρ(t, ·)‖L2(R)

)
≤ A
√
ε, (2.3)

where ξi(t)− ξi−1(t) > L/2 and T depends only on initial data (u0, ρ0).

Remark 1. Notice that it is not a regular proof of Lyapunov stability [55]. A direct

computation infers that the difference between ‖u0−
∑N

i=1 ϕci(·−z0
i )‖2

H1(R) +‖ρ0‖2
L2(R)

and ‖u(t, ·)−
∑N

i=1 ϕci(· − ξi(t))‖2
H1(R) + ‖ρ(t, ·)‖2

L2(R) is
N∑
i=1

ci|Mi − ci|. The estimate
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on Lyapunov function P (Mi;u, ρ) shows that
∑N

i=1 ci|Mi − ci| = O(ε) if the initial

distance is bounded by O(ε2). Hence, the later distance is bounded by O(
√
ε). No

matter what the order is for the initial data, the later distance should always be

controlled by the 1
4

of the initial order.”.

Due to the collision theory between two peakons, stability of the trains of

peakons provides the stability result on multipeakons.

Corollary 2.1.3. Let p0
1, · · · , p0

N be N positive real numbers, and q0
1 < · · · < q0

N . For

any ε > 0 there exists δ > 0 such that if (u0, ρ0) ∈ Hs(R)×Hs−1(R), s > 3
2

satisfies

‖u0 −
N∑
j=1

p0
je
|·−q0j |‖H1(R) + ‖ρ0‖L2(R) ≤ δ, and ρ0(x) > 0, (2.4)

then

∀t ∈ R, inf
0<p1<···<pN ,q1<···<qN

‖u(t, ·)−
N∑
j=1

pje
|·−qj |‖H1(R) + ‖ρ‖L2(R) ≤ ε, (2.5)

where pi(t) and qi(t) satisfy the Hamiltonian system (1.4).

Moreover, there exists T > 0, such that

∀t ≥ T, inf
q1<···<qN

‖u(t, ·)−
N∑
j=1

λje
|·−qj |‖H1(R) + ‖ρ‖L2(R) ≤ ε, (2.6)

and

∀t ≤ −T, inf
q1<···<qN

‖u(t, ·)−
N∑
j=1

λN+1−je
|·−qj |‖H1(R) + ‖ρ‖L2(R) ≤ ε, (2.7)

where 0 < λ1 < · · · < λN are the eigenvalues of the matrix
(
p0
je
−|q0i−q0j |/2

)
1≤i,j≤N

.

2.1.2 Preliminary lemmas

Inspired by the idea adopted in [24, 27], we present the general strategy of the

proof to establish Theorem 2.1.2 as follows. For α > 0 and L > 0, we define the
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following neighborhood of (
∑N

i=1 ϕci , 0) with spatial shifts xi that satisfies xi−xi−1 ≥ L

for i = 1, · · · , N ,

U(α,L) =

{
(u, ρ) ∈ H1×L2, inf

xi−xi−1>L

(
‖u−

N∑
i=1

ϕci(· − xi)‖H1(R) + ‖ρ‖L2(R)

)
< α

}
.

The purpose is to prove that there exist A > 0, L0 > 0 and ε0 > 0 such that for any

L > L0, 0 < ε < ε0 and any initial data (u0, ρ0) ∈ Hs(R)×Hs−1(R), s > 3/2 satisfying

(2.2), then the corresponding solution (u(t), ρ(t)) belongs to U
(
A(
√
ε+ L−1/8), L/2

)
for all t ∈ [0, T ), where T is the maximal existence time and A is independent of

time.

By the continuity of the map t 7→ (u(t), ρ(t)) from [0, T ) into Hs(R)×Hs−1(R)

where Hs(R) ×Hs−1(R) ⊂ H1(R) × L2(R), to prove Theorem 2.1.2 is sufficient to

prove that if (u0, ρ0) satisfies (2.2) and if for some 0 < t∗ < T ,

(u(t), ρ(t)) ∈ U
(
A(
√
ε+ L−1/8), L/2

)
, ∀t ∈ [0, t∗], (2.8)

then

(u(t∗), ρ(t∗)) ∈ U
(
A

2
(
√
ε+ L−

1
8 ),

2L

3

)
. (2.9)

Henceforth, we assume (2.8) holds for some 0 < ε < ε0 and L > L0, where A, ε0 and

L0 are specified later, and demonstrate (2.9).

The proof of Theorem 2.1.2 relies on a series of lemmas. Firstly, we will show

that the solution (u, ρ) of system (1.5) satisfying (2.8) has the following properties:

u(t) remains close to the sum of N modulated peakons in H1(R) where each peakon

is away from others for t ∈ [0, t∗] by using a modulation argument, and ρ(t) is around

0 in L2(R) according to the conservation law (1.6).
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Lemma 2.1.4. Let the initial data (u0, ρ0) satisfy the assumption (2.2) in Theorem

2.1.2. There exist α0 > 0 and L0 > 0 depending only on {ci}Ni=1 such that if 0 < α < α0

and L > L0, the corresponding solution (u(t), ρ(t)) satisfies for some 0 < t∗ < T

(u(t), ρ(t)) ∈ U
(
α,
L

2

)
,∀t ∈ [0, t∗], (2.10)

then there exist unique C1 functions x̃i(t) : [0, t∗]→ R, i = 1, · · · , N, such that denote

v(t, x) by

v(t) = u(t)−
N∑
i=1

Ri(t), where Ri(t, ·) = ϕci(· − x̃i(t)),

we have the orthogonal condition as∫
R
v(t)∂xRi(t) dx = 0, (2.11)

and the following properties for all i ∈ {1, 2, · · · , N} and t ∈ [0, t∗] :

‖v(t)‖H1(R) ≤ O(
√
α), (2.12)

∣∣ ˙̃xi(t)− ci∣∣ ≤ O(
√
α) +O(L−1), (2.13)

x̃i(t)− x̃i−1(t) ≥ 3L

4
+

(ci − ci−1)

2
· t, i ≥ 2. (2.14)

Furthermore, defining Ji(t) = [yi(t), yi+1(t)], with

y1 = −∞, yN+1 = +∞ and yi(t) =
x̃i−1(t) + x̃i(t)

2
, i = 2, · · · , N, (2.15)

it holds

|ξi(t)− x̃i(t)| = O(1), (2.16)

where ξi(t) are any points such that

u(t, ξi(t)) = max
x∈Ji(t)

u(t, x), t ∈ [0, t∗], i = 1, · · · , N. (2.17)
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Proof. We use the standard modulation argument to discover the translations of

N -peakons. Let Z = (z1, · · · , zN) ∈ RN be fixed such that zi − zi−1 > L/2 for some

L > 0. Set RZ(·) =
∑N

i=1 ϕci(· − zi). For 0 < δ0 < 1, we define the function

Y :
N∏
i=1

(−δ0, δ0)×BH1(RZ , δ0)→ RN ,

(y1, · · · , yN , u) 7−→
(
Y 1(y1, · · · , yN , u), · · · , Y N(y1, · · · , yN , u)

)
,

with

Y j(y1, · · · , yN , u) =

∫
R

(
u−

N∑
i=1

ϕci(· − zi − yi)

)
∂xϕcj(· − zj − yj) dx,

where BH1(RZ , δ0) is the ball in H1(R) with center RZ and radius δ0. Notice that,

due to ρ is around ground state, its effect on the translations of N -peakons can

be neglected. To apply the implicit function theorem, two facts are needed. One

fact is that function Y should be C1 mapping which can be proved by dominated

convergence theorem. The other fact is that the matrix of the first partial derivatives

at (0, · · · , 0, RZ) should be invertible. For j = 1, · · · , N

∂Y j

∂yj
(y1, · · · , yN , u) =

∫
R

(
ux −

N∑
i=1,i 6=j

∂xϕci(· − zi − yi)

)
∂xϕcj(· − zj − yj) dx,

∂Y j

∂yi
(y1, · · · , yN , u) =

∫
R
∂xϕci(· − zi − yi)∂xϕcj(· − zj − yj) dx, where i 6= j.

Hence,

∂Y j

∂yj
(0, · · · , 0, RZ) = ‖∂xϕcj‖2

L2(R) ≥ c2
1,

and

∂Y j

∂yi
(0, · · · , 0, RZ) =

∫
R
∂xϕci(· − zi) · ∂xϕcj(· − zj) dx ≤ O(e−

L
4 ).

Thus, there exists L0 > 0 such that if L > L0, we have

D(y1,··· ,yN )Y (0, · · · , 0, Rz) = D + P,
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where D is an invertible diagonal matrix with ‖D−1‖ ≤ (c1)−2 and ‖P‖ ≤ O(e−L/4),

which implies D(y1,··· ,yN )Y (0, · · · , 0, RZ) is invertible with an inverse matrix of norm

smaller than 2(c1)
−2. Therefore, by the implicit function theorem, there exist 0 <

β0 < δ0 and C1 functions (y1(u), · · · , yN(u)) from BH1(RZ , β0) to a neighborhood of

(0, · · · , 0) which are uniquely determined, such that

Y (y1(u), · · · , yN(u), u) = 0, ∀u ∈ BH1(RZ , β0).

Moreover, there exists K0 > 0 such that if u ∈ BH1(RZ , β) with 0 < β < β0, then

N∑
i=1

|yi(u)| ≤ K0β, (2.18)

where K0 and β0 depends on c1 and L0. For u ∈ BH1(RZ , β0), setting x̃i(t) = zi + yi

and β0 ≤ min{L0/(8K0), δ0} infers

x̃i(u)− x̃i−1(u) = zi − zi−1 + yi(u)− yi−1(u) ≥ L

2
− 2K0β0 ≥

L

4
. (2.19)

Then, we define the modulation of (u, ρ) ∈ U(α,L/2) for L > L0 and 0 < α < α0 at

a fix time t. Indeed, for 0 < α < α0, U(α,L/2) can be covered as follows

U

(
α,
L

2

)
⊂

⋃
Z∈RN ,zi−zi−1>

L
2

BH1(RZ , 2α)×BL2(0, 2α).

Additionally, the modulation of u is uniquely defined due to the uniqueness in the

implicit function theorem.

Thus, we can define the modulation of the solution (u(t), ρ(t)) of the 2CH

system satisfying (u(t), ρ(t)) ∈ U(α,L/2) for all t ∈ [0, t∗] by setting i = 1, · · · , N

and

x̃i(t) = x̃i(u(t)), v(t) = u(t)−
N∑
i=1

ϕci(· − x̃i(t)),

where v satisfies the orthogonal condition 〈v, ∂xRi〉H−1,H1 = 0, that is∫
R

(
u(t)−

N∑
i=1

ϕci(· − x̃i(t))
)
∂xϕci(· − x̃i(t)) dx = 0, i = 1, · · · , N.
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According to the translation x̃i(t) defined above, using (2.18), triangle inequality,

the following estimate holds

‖v(t)‖H1(R) ≤ ‖u(t)−
N∑
i=1

ϕci(· − zi)‖H1(R) +
N∑
i=1

‖ϕci(· − zi)− ϕci(· − zi − yi)‖H1(R)

≤ α +
N∑
i=1

(
‖ϕci(· − zi)‖2

H1(R) + ‖ϕci(· − zi − yi)‖2
H1(R)

− 2

∫
R
ϕci(· − zi)ϕci(· − zi − yi) dx

− 2

∫
R
∂xϕci(· − zi)∂xϕci(· − zi − yi) dx

) 1
2

≤ α + 2
N∑
i=1

|ci| · |yi(u)|
1
2

≤ O(
√
α).

Attention is now turn to the speed of x̃i. In order to show it stays close to ci,

we adopt the following property of a single peakon

∂2
xRj(t) = Rj(t)− 2 cj δ(x̃j(t)). (2.20)

Differentiating orthogonality condition with respect to t, we derive that∫
R
vt∂xRi = ˙̃xi〈∂2

xRi, v〉H−1,H1 = ˙̃xi〈Ri − 2ciδ(x̃i(t)), v〉H−1,H1

≤ ˙̃xiO(‖v‖H1(R))

≤ ( ˙̃xi − ci)O(‖v‖H1(R)) +O(‖v‖H1(R)).

(2.21)

Substituting u by v +
∑N

i=1Ri in the first equation of system (1.5) leads to

(
1− ∂2

x

)
vt +

N∑
i=1

(1− ∂2
x)∂tRi

= −1

2
(1− ∂2

x)∂x

(
(v +

N∑
i=1

Ri)
2

)
− ∂x

(
(v +

N∑
i=1

Ri)
2 +

1

2
(vx +

N∑
i=1

∂xRi)
2 +

1

2
ρ2

)
.
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Since (Ri, 0) is a solution to system (1.5), there holds

∂tRi + ( ˙̃xi − ci)∂xRi +Ri∂xRi + (1− ∂2
x)
−1∂x

(
R2
i +

1

2
(∂xRi)

2

)
= 0.

Combining the two identities mentioned above, we infer that v satisfies the following

condition on [0, t∗],

vt −
N∑
i=1

( ˙̃xi − ci)∂xRi = −1

2
∂x

(
v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i

)
− (1− ∂2

x)
−1∂x

(
(v +

N∑
i=1

Ri)
2

−
N∑
i=1

R2
i +

1

2
(vx +

N∑
i=1

∂xRi)
2 − 1

2

N∑
i=1

(∂xRi)
2

)
− (1− ∂2

x)
−1∂x(

1

2
ρ2) .

Taking the L2-inner product with ∂xRi, then using integration by parts, the exponen-

tial decay of Ri and its first order derivative, we deduce∫
R

(
˙̃xi − ci

)
∂xRi · ∂xRi dx

=

∫
R
vt · ∂xRi dx−

∫
R

∑
j 6=i

(
˙̃xj − cj

)
∂xRj · ∂xRi dx

+
1

2

∫
R
∂x

(
(v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i

)
· ∂xRi dx

+

∫
R
(1− ∂2

x)
−1∂x

(
(v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i +

1

2
(vx +

N∑
i=1

∂xRi)
2

− 1

2

N∑
i=1

(∂xRi)
2
)
· ∂xRi dx

+

∫
R
(1− ∂2

x)
−1∂x(

1

2
ρ2) · ∂xRi dx

:=

∫
R
vt · ∂xRi dx−

∫
R

∑
j 6=i

(
˙̃xi − ci

)
∂xRj · ∂xRi dx+ V1 + V2 + V3.

(2.22)

We intend now to estimate V1, V2 and V3 in the following steps. Firstly, considering

V1 =
1

2

∫
R
∂x

(
(v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i

)
· ∂xRi dx, we denote

Q1 = v2 + 2v
N∑
j=1

Rj +

(
N∑
j=1

Rj

)2

−
N∑
j=1

R2
j . (2.23)
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Using integration by parts and (2.20), there holds

2V1 = 2ciQ1(t, x̃i(t))−
∫
R
Q1Ri(t) dx. (2.24)

According to the following embedding formula

‖v‖L∞(R) ≤
√

2

2
‖v‖H1(R) ≤ O(

√
α),

we know that Q1 and
∫
RQ1Ri(t) dx can be estimated as

|Q1| ≤
(
O(
√
α) +O(1)

)
O(
√
α) +O(e−

L
8 ),∫

R
Q1Ri(t) dx ≤

(
O(
√
α) +O(1)

)
O(
√
α) +O(e−

L
8 ).

Hence,

V1 ≤
(
O(
√
α) +O(1)

)
O(
√
α) +O(e−

L
8 ).

Secondly, for V2, using integration by parts and the decay of Ri and its first order

derivative, it performs as

V2 = −
∫
R
(1− ∂2

x)
−1∂2

x

(
( v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i +

1

2
(vx +

N∑
i=1

∂xRi)
2

− 1

2

N∑
i=1

(∂xRi)
2
)
·Ri dx.

In this case, let

P = (v +
N∑
i=1

Ri)
2 −

N∑
i=1

R2
i +

1

2
(vx +

N∑
i=1

∂xRi)
2 − 1

2

N∑
i=1

(∂xRi)
2.

From (2.12) and (1− ∂2
x)
−1P = 1

2
e−|x| ∗ P, which along with Höder’s inequality give

rise to

|V2| =
∣∣∣∣∫

R
Ri

[(
1− ∂2

x

)−1
P − P

]
dx

∣∣∣∣
≤ C

∫
R

(
v2 + vRX +

1

2
v2
x +

1

2
vRX,x

)
dx+O(L−1)

≤ O(‖v‖H1(R)) +O(L−1)

≤ O(
√
α) +O(L−1).

(2.25)
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Finally, the bound for V3 is determined as follows

V3 =

∫
R
(1− ∂2

x)
−1∂x(

1

2
ρ2)∂xRi dx ≤ C

∫
R
ρ2 dx ≤ O(α2). (2.26)

Combining (2.21) and (2.24)-(2.26), we obtain

| ˙̃xi − ci|
(
‖∂xRi‖2

L2(R) +O(
√
α)
)
≤ O(

√
α) +O(e−

L
8 ).

Taking α small enough and L large enough, it infers that | ˙̃xi− ci| ≤ O(
√
α) +O(e−L).

Furthermore, in light of z0
i − z0

i−1 ≥ L, there obtains

x̃i(t)− x̃i−1(t) = x̃i(0)− x̃i−1(0) +
(

˙̃xi(s)− ˙̃xi−1(s)
)
t

= x̃i(0)− x̃i−1(0) +
(

˙̃xi(s)− ci + ci−1 − ˙̃xi−1(s)
)
t+ (ci − ci−1)t

≥ 3L

4
+

1

2
(ci − ci−1)t,

which yields the estimate (2.14).

Let x = x̃i(t). From (2.12) and (2.14), we deduce

|u(t, x̃i(t))| = |ci|+O(
√
α) +O(e−

L
4 ) ≥ 3|ci|

4
.

On the other hand, for x ∈ [x̃i(t)− L
4
, x̃i(t) + L

4
] \ (x̃i(t)− 2, x̃i(t) + 2), the following

estimate holds

|u(t, x)| ≤ |ci|e−2 +O(
√
α) +O(e−

L
4 ) ≤ |ci|

2
.

In conclusion, ξi belongs to [x̃i(t)− 2, x̃i(t) + 2]. This completes the proof of Lemma

2.1.4.

Then effort is devoted to show functionals describing the energy at the right

side of i-th bump are almost monotonic, for i = 1, · · · , N . To prove this property, we

start with the introduction of weight functions. Let Ψ be a C∞ function, such that
0 < Ψ(x) < 1, Ψ′(x) > 0, x ∈ R,

|Ψ′′′(x)| ≤ 10Ψ′(x), x ∈ [−1, 1],

(2.27)
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and

Ψ(x) =


e−|x|, x < −1,

1− e−|x|, x > 1.

(2.28)

Set ΨK = Ψ(·/K), K > 0. Define the weight functions Φi = Φi(t, x), by

Φ1 = 1−Ψ2,K , ΦN = ΨN,K , Φi = Ψi,K −Ψi+1,K , i = 2, · · · , N − 1,

where Ψi,K = ΨK(x− yi(t)) with yi(t) defined in (2.15). Obviously,
∑N

i=1 Φi(t, x) = 1,

for t ∈ [0, t∗]. Taking L > 0 and L/K > 0 large enough, we have

|1− Φi| ≤ 4e−
L
4K , on

[
x̃i −

L

4
, x̃i +

L

4

]
, (2.29)

and

|Φi| ≤ 4e−
L
4K , on

[
x̃j −

L

4
, x̃j +

L

4

]
, for j 6= i. (2.30)

Then, we introduce the localized conservation laws of E and F in terms of

weight functions, for i = 1, · · · , N ,

Ei(u, ρ) =

∫
R

(
u2 + u2

x + ρ2
)

Φi dx, and Fi(u, ρ) =

∫
R

(
u3 + uu2

x + uρ2
)

Φi dx.

(2.31)

Moreover, for simplicity, we set

σ0 =
1

4
min(c1, c2 − c1, · · · , cN − cN−1). (2.32)

Lemma 2.1.5. Let (u, ρ) be a solution of system (1.5) such that (u, ρ) ∈ U(α, L
2
)

on [0, t∗] where {x̃i(t)}Ni=1 are defined in Lemma 2.1.4. Then there exist α0 > 0

and L0 > 0 only depending on {ci}Ni=1 such that if 0 < α < α0 and L > L0, for

4 ≤ K = O(L1/2), it follows that

Ij,K(t)− Ij,K(0) ≤ C
(
‖u0‖2

H1(R) + ‖ρ0‖2
L2(R)

) 3
2
e−

L
8K , (2.33)

for j = {2, · · · , N} and t ∈ [0, t∗], where Ij,K(t) =
∫
R (u2 + u2

x + ρ2) Ψj,K dx.
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Proof. We know system (1.5) can be written as the following abstract Hamiltonian

form  u

ρ


t

=
1

2

 −∂x(1− ∂2
x)
−1 0

0 −∂x


 F ′u

F ′ρ

 , (2.34)

where

F ′u = 3u2 − u2
x − 2uuxx + ρ2, and F ′ρ = 2uρ. (2.35)

Fixing j, differentiating Ij,K with respect to t and using (2.34), we get

d

dt
Ij,K(t) =− ẏj

∫
R
(u2 + u2

x + ρ2)∂xΨj,K dx+ 2

∫
R
u(ut − utxx)Ψj,K dx

− 2

∫
R
uutx∂xΨj,K dx+ 2

∫
R
ρρtΨj,K dx

= − ẏj
∫
R
(u2 + u2

x + ρ2)∂xΨj,K dx−
∫
R
uΨj,K∂xF

′
u dx

+

∫
R
u∂xΨj,K(1− ∂2

x)
−1∂2

xF
′
u dx−

∫
R
ρΨj,K∂xF

′
ρ dx

= − ẏj
∫
R
(u2 + u2

x + ρ2)∂xΨj,K dx+

∫
R
uxΨj,KF

′
u dx

+

∫
R
u∂xΨj,K(1− ∂2

x)
−1F ′u dx+

∫
R
ρxΨj,KF

′
ρ dx+

∫
R
ρ∂xΨj,KF

′
ρ dx

:= − ẏj
∫
R
(u2 + u2

x + ρ2)∂xΨj,K dx+ J1(t) + J2(t) + J3(t) + J4(t).

(2.36)

Substituting (2.35) into (2.36) and using integration by parts, J1(t), J2(t), J3(t) and

J4(t) become

J1(t) =

∫
R
uxΨj,K

(
3u2 − u2

x − 2uuxx + ρ2
)
dx

= −
∫
R
∂xΨj,Ku

3 dx+

∫
R
∂xΨj,Kuu

2
x dx+

∫
R

Ψj,Kuxρ
2 dx,

J2(t) =

∫
R
u∂xΨj,K(1− ∂2

x)
−1
(
3u2 − u2

x − 2uuxx + ρ2
)
dx

=

∫
R
∂xΨj,Ku

3 dx+

∫
R
u∂xΨj,K(1− ∂2

x)
−1
(
2u2 + u2

x + ρ2
)
dx,

J3(t) = 2

∫
R
ρxΨj,Kuρ dx = −

∫
R

Ψj,Kuxρ
2 dx−

∫
R
∂xΨj,Kuρ

2 dx,
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J4(t) = 2

∫
R
ρ∂xΨj,Kuρ dx = 2

∫
R
∂xΨj,Kuρ

2 dx.

Combining J1(t), J2(t), J3(t) and J4(t), we can rewrite (2.36) as follows

d

dt
Ij,K(t) =

d

dt

∫
R

(
u2 + u2

x + ρ2
)

Ψj,K dx

= −ẏj(t)
∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx+

∫
R

(
uu2

x

)
∂xΨj,K dx (2.37)

+

∫
R

(
uρ2
)
∂xΨj,K dx+

∫
R
u · ∂xΨj,K(1− ∂2

x)
−1
(
2u2 + u2

x + ρ2
)
dx.

In view of (2.9), ẏj(t) employs the following estimate

−ẏj(t) = −
˙̃xj(t)− cj

2
−

˙̃xj−1(t)− cj−1

2
− cj + cj−1

2

≤ − cj−1 + cj
2

+O(
√
α) +O(L−1) < −c1

2
,

which implies

d

dt
Ij,K(t) ≤ −c1

2

∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx+

∫
R
uu2

x · ∂xΨj,K dx

+

∫
R
uρ2 · ∂xΨj,K dx+

∫
R
u · ∂xΨj,K(1− ∂2

x)
−1
(
2u2 + u2

x + ρ2
)
dx

:= −c1

2

∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx+Q1(t) +Q2(t), (2.38)

whereQ1(t) =
∫
R u(u2

x+ρ
2)∂xΨj,K dx, Q2(t) =

∫
R u·∂xΨj,K(1−∂2

x)−1 (2u2 + u2
x + ρ2) dx.

For further estimates, we define the interval Dj by

Dj =

[
x̃j−1(t) +

L

4
, x̃j(t)−

L

4

]
,

and divide R by R = Dj ∪Dc
j . The two crucial estimates related to Dj and Dc

j are

listed in the following. For x ∈ Dj,

‖u(t)‖L∞(Dj) ≤
N∑
i=1

‖ϕci(· − x̃i(t))‖L∞(Dj) + ‖u−
N∑
i=1

ϕci(· − x̃i(t))‖L∞(Dj)

≤ O(e−
L
8 ) +O(

√
α). (2.39)
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For x ∈ Dc
j , by using (2.13), (2.15) and the definition of Ψj,K , we know

|x− yj(t)| ≥
x̃j(t)− x̃j−1(t)

2
− L

4
≥ (cj − cj−1)t

4
+
L

8
≥ σ0t+

L

8
,

which implies, for K = O(
√
L) and sufficiently large L0,∣∣∣∣x− yj(t)K

∣∣∣∣ ≥ σ0t+ L
8

K
> 1.

Hence, there holds

∂xΨj,K(t, x) =
1

K
Ψ′j,K(

x− yj(t)
K

) ≤ 1

K
e−

1
K

(σ0t+
L
8

), x ∈ Dc
j . (2.40)

Firstly, let us consider Q1(t) by splitting the domain into two parts. For x ∈ Dc
j ,

from the Sobolev embedding H1(R) ↪→ L∞(R) and (2.40), we deduce that∫
Dcj

u(u2
x + ρ2)∂xΨj,K dx ≤

1

K
e−

1
K

(σ0t+
L
8

) · ‖u‖L∞(R) ·
∫
Dcj

(u2
x + ρ2) dx

≤ C

K
(‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2 · e−

1
K

(σ0t+
L
8

).

For x ∈ Dj, by (2.39) we know∫
Dj

u(u2
x + ρ2)∂xΨj,K dx ≤ ‖u‖L∞(Dj) ·

∫
Dj

(u2
x + ρ2)∂xΨj,K dx

≤ (O(e−
L
8 ) +O(

√
α))(u2

x + ρ2)∂xΨj,K .

Thus, for α� 1 and L� 1, one obtains

Q1(t) ≤ c1

4

∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx+

C

K
(‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2 · e−

1
K

(σ0t+
L
8

).

(2.41)

Secondly, in order to analyze Q2(t), a method similar to the previous case is

applied here. For x ∈ Dc
j , by the property of convolution and (2.40), we know∫

Dcj

u · ∂xΨj,K(1− ∂2
x)
−1
(
2u2 + u2

x + ρ2
)
dx

≤ ‖u‖L∞(Dcj )
· e−

1
K

(σ0t+
L
8

) ·
∫
Dcj

(1− ∂2
x)
−1
(
2u2 + u2

x + ρ2
)
dx

≤ ‖u‖L∞(R) · e−
1
K

(σ0t+
L
8

) ·
∫
Dcj

e−|x| ∗
(
2u2 + u2

x + ρ2
)
dx

≤ C

K
(‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2 · e−

1
K

(σ0t+
L
8

).
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For x ∈ Dj, by the assumption (2.27), it is deduced that

(1− ∂2
x)∂xΨj,K(t, x) = ∂xΨj,K(t, x)− 1

K3
Ψ′′′
(
x− yj(t)

K

)
≥
(

1− 10

K2

)
∂xΨj,K(t, x),

which implies, for K ≥ 4,

(1− ∂2
x)
−1∂xΨj,K(t, x) ≤

(
1− 10

K2

)−1

∂xΨj,K(t, x).

Hence, for K ≥ 4 and Ψ′(x) > 0, we have∫
Dj

u
(
(1− ∂2

x)
−1(2u2 + u2

x + ρ2)
)
∂xΨj,K dx

≤ 2‖u‖L∞(Dj)

∫
R

(
u2 + u2

x + ρ2
)

(1− ∂2
x)
−1∂xΨj,K dx

≤ (O(
√
α) +O(e−

L
8 ))

∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx

≤ c1

4

∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx.

Consequently, for α� 1 and L� 1, there holds

Q2(t) ≤ c1

4

∫
R

(
u2 + u2

x + ρ2
)
∂xΨj,K dx+

C

K
(‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2 · e−

1
K

(σ0t+
L
8

).

(2.42)

Moreover, through (2.38), (2.41) and (2.42), one obtain

d

dt
Ij,K(t) ≤ C

K
(‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2 · e−

1
K

(σ0t+
L
8

).

By Gronwall’s inequality on [0, t∗], we know the following estimate holds

Ij,K(t)− Ij,K(0) ≤C
K

(‖u0‖2
H1(R) + ‖ρ0‖2

L2(R))
3
2

∫ t

0

e−
1
K (σ0s+L

8 ) ds

≤ C

σ0

(‖u0‖2
H1(R) + ‖ρ0‖2

L2(R))
3
2 e−

L
8K .

This completes the proof of Lemma 2.1.5.

Three lemmas regarding to the local and global estimates of the traveling waves

to system (1.5) are introduced in the following. The first lemma is to show the relation

between the localized conservation laws Ei, Fi defined in (2.31) and the localized

maximum of u at a fixed time.
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Lemma 2.1.6. Given N real numbers x̃1 < · · · < x̃N with x̃i − x̃i−1 ≥ 3L/4. Define

interval Ji as in (2.15). Assume for any fixed function (u, ρ) ∈ Hs(R) × Hs−1(R)

with s > 3/2, there exists ξi ∈ Ji, where i = 1, · · · , N , such that

u(ξi) = max
x∈Ji

u(x) := Mi and |ξi − x̃i| = O(1).

Then, for each i = 1, · · · , N , it holds

Fi(u, ρ) ≤MiEi(u, ρ)− 2

3
M3

i + (‖u0‖2
H1(R) + ‖ρ0‖2

L2(R))
3
2O(L−

1
2 ). (2.43)

Proof. Let i ∈ {1, · · · , N} be fixed. Following with the strategy in [24], we define

g(x) =


u(x)− ux(x), x < ξi,

u(x) + ux(x), x > ξi.

Using the integration by parts, we derive that∫
R
g2(x)Φi(x) dx =

∫ ξi

−∞
(u− ux)2Φi dx+

∫ ∞
ξi

(u+ ux)
2Φi dx

=

∫
R

(
u2 + u2

x

)
Φi dx− 2M2

i Φi(ξi) +

∫ ξi

−∞
u2∂xΦi dx

−
∫ ∞
ξi

u2∂xΦi dx,∫
R
u(x)g2(x)Φi(x) dx =

∫ ξi

−∞
u(u− ux)2Φi dx+

∫ ∞
ξi

u(u+ ux)
2Φi dx

=

∫
R

(
u3 + uu2

x

)
Φi dx−

4

3
M3

i Φi(ξi) +
2

3

∫ ξi

−∞
u3∂xΦi dx

− 2

3

∫ ∞
ξi

u3∂xΦi dx.

Then the localized conservation laws Ei and Fi have the following forms

Ei(u, ρ) =

∫
R

(
g2 + ρ2

)
Φi dx+ 2M2

i Φi(ξi)−
∫ ξi

−∞
u2∂xΦi dx+

∫ ∞
ξi

u2∂xΦi dx,

and

Fi(u, ρ) =

∫
R
u
(
g2 + ρ2

)
Φi dx+

4

3
M3

i Φi(ξi)−
2

3

∫ ξi

−∞
u3∂xΦi dx+

2

3

∫ ∞
ξi

u3∂xΦi dx.
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According to the definition of Mi and integration by parts, a direct computation

shows that

Fi(u, ρ) =

∫
Ji
u
(
g2 + ρ2

)
Φi dx+

∫
J ci
u
(
g2 + ρ2

)
Φi dx

+
4

3
M3

i Φi(ξi)−
2

3

∫ ξi

−∞
u3∂xΦi dx+

2

3

∫ ∞
ξi

u3∂xΦi dx

≤Mi

∫
R

(
g2 + ρ2

)
Φi dx+

∫
J ci
u
(
g2 + ρ2

)
Φi dx

+
4

3
M3

i Φi(ξi)−
2

3

∫ ξi

−∞
u3∂xΦi dx+

2

3

∫ ∞
ξi

u3∂xΦi dx

≤Mi

(
Ei(u, ρ)− 2M2

i Φi(ξi) +

∫ ξi

−∞
u2∂xΦi dx−

∫ ∞
ξi

u2∂xΦi dx

)
+

∫
J ci
u
(
g2 + ρ2

)
Φi dx+

4

3
M3

i Φi(ξi)−
2

3

∫ ξi

−∞
u3∂xΦi dx+

2

3

∫ ∞
ξi

u3∂xΦi dx

≤MiEi(u, ρ)− 2

3
M3

i Φi(ξi) +

∫
J ci
u
(
g2 + ρ2

)
Φi dx+Mi

∫ ξi

−∞
u2∂xΦi dx

−Mi

∫ ∞
ξi

u2∂xΦi dx−
2

3

∫ ξi

−∞
u3∂xΦi dx+

2

3

∫ ∞
ξi

u3∂xΦi dx. (2.44)

Due to the construction of Φi and the exponential decay of Ψ, taking K =
√
L/8,

there exists a constant C > 0, such that |∂xΦi| ≤ C/K = O(L−
1
2 ). On the other

hand, |ξi − x̃i| = O(1) implies

|1− Φi(ξi)| ≤ 4e−
L
4K ≤ O(L−

1
2 ).

Hence, in view of the conserved quantities E and F defined in (1.6), we have

Fi(u, ρ) ≤MiEi(u, ρ)− 2

3
M3

i + (‖u0‖2
H1(R) + ‖ρ0‖2

L2(R))
3
2O(L−

1
2 ),

which completes the proof of Lemma 2.1.6.

Next, we present a global identity to show the difference between the smooth

traveling wave (u, ρ) and N peaked traveling waves (
∑N

i=1 ϕci , 0) to system (1.5) in

energy space H1(R)× L2(R).
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Lemma 2.1.7. Let (z1, · · · , zN) ∈ RN such that zi − zi−1 > L/2 with L > 0, i =

1, · · · , N . Then for any solution (u, ρ) ∈ Hs(R)×Hs−1(R), s > 3
2

to system (1.5) ,

there holds

E(u, ρ)−
N∑
i=1

E(ϕci , 0) = ‖u(x)−
N∑
i=1

Rzi(x)‖2
H1(R)+‖ρ‖2

L2(R)+4
N∑
i=1

ci(u(zi)−ci)+O(e−
L
4 ).

(2.45)

Proof. With the integration by parts, it is deduced that

‖u(x)−
N∑
i=1

Rzi(x)‖2
H1(R) + ‖ρ‖2

L2(R)

=

∫
R

(
u(x)−

N∑
i=1

Rzi(x)

)2

+

(
u(x)−

N∑
i=1

Rzi(x)

)2

x

+ (ρ(x))2 dx

=

∫
R

(
u2 + u2

x + ρ2
)
dx+

∫
R

( N∑
i=1

Rzi(x)

)2

+

(
N∑
i=1

Rzi(x)

)2

x

+ 02

 dx

− 2
N∑
i=1

∫
R

(uϕci(· − zi) + ux∂xϕci(· − zi)) dx

= E(u, ρ) + E(
N∑
i=1

Rzi , 0)− 2
N∑
i=1

∫
R
uϕci(· − zi) dx

+ 2
N∑
i=1

∫ ∞
zi

uxϕci(· − zi) dx− 2
N∑
i=1

∫ zi

−∞
uxϕci(· − zi) dx

= E(u, ρ) + E(
N∑
i=1

Rzi , 0)− 4
N∑
i=1

ciu(zi). (2.46)

Notice that we have the facts
∫
RR

2
zi

+ (Rzi)
2
x dx = 2c2

i and zi − zi−1 >
L
2
, which infer

that

E(
N∑
i=1

Rzi , 0) =
N∑
i=1

E(Rzi , 0) +O
(
e−

L
4

)
= 2

N∑
i=1

c2
i +O

(
e−

L
4

)
. (2.47)

In conclusion, combining (2.46) and (2.47), there obtains the identity

E(u, ρ)−
N∑
i=1

E(ϕci , 0) = ‖u(x)−
N∑
i=1

Rzi(x)‖2
H1(R)+‖ρ‖2

L2(R)+4
N∑
i=1

ci(u(zi)−ci)+O
(
e−

L
4

)
.
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In view of the identity (2.45), one key to establish the stability result is to

control of the difference between the localized solution u(zi) and the maximum of

each single peakon, where the translation zi will be determined as ξi later.

Lemma 2.1.8. Let (u, ρ) be the solution of system (1.5) such that (u, ρ) ∈ U(α, L
2
)

on [0, t∗] with initial data (u0, ρ0) satisfying ‖u0−
N∑
i=1

ϕci(·−z0
i )‖H1(R) +‖ρ0‖L2(R) < ε2.

For i ∈ {1, · · · , N}, set

Mi(t) = max
x∈Ji(t)

u(t, x) = u(t, ξi(t)), ∀t ∈ [0, t∗].

Then, we have the estimate

N∑
i=1

ci |Mi − ci| ≤ O(ε) +O(L−
1
4 ), ∀t ∈ [0, t∗], (2.48)

where the constant O(·) depend on (ci)
N
i=1 and (‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2 .

Proof. Since RZ0 =
∑N

i=1 ϕci(· − z0
i ) and ‖u0 − RZ0‖H1(R) + ‖ρ0‖L2(R) < ε2, it is

deduced from Minkowski inequality that

|E(u0, ρ0)− E(RZ0 , 0)| = |‖u0‖2
H1(R) + ‖ρ0‖2

L2(R) − ‖RZ0‖2
H1(R)|

≤ ‖u0 −RZ0‖2
H1(R) + ‖ρ0‖2

L2(R) ≤ O
(
ε2
)
,

which implies

E(u, ρ) = E(u0, ρ0) ≤ |E(u0, ρ0)− E(RZ0 , 0)|+ E(RZ0 , 0)

≤
N∑
i=1

E(ϕci , 0) +O
(
ε2
)

+O
(
e−

L
4

)
.

(2.49)

According to Lemma 2.1.6, the following inequality holds, for i = 1, · · · , N

M3
i −

3

2
MiEi(u, ρ) +

3

2
Fi(u, ρ) ≤

(
‖u0‖2

H1(R) + ‖ρ0‖2
L2(R)

) 3
2
O
(
L−

1
2

)
. (2.50)

Define a cubic polynomial P with respect to y ∈ R, for (u, ρ) ∈ Hs ×Hs−1, s > 3
2
,

P (yi;u, ρ) = y3
i −

3

2
yiEi(u, ρ) +

3

2
Fi(u, ρ). (2.51)
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In particular, for Ei(ϕci , 0) = 2c2
i and Fi(ϕci , 0) = 4

3
c3
i , we obtain

P (yi;ϕci , 0) = y3
i −

3

2
yiEi(ϕci , 0) +

3

2
Fi(ϕci , 0) = y3

i − 3yic
2
i + 2c3

i . (2.52)

Taking yi(t) = Mi = u(t, ξi(t)) in (2.51) and (2.52), a direct calculation gives rise to

(Mi−ci)2(Mi+2ci) = P (Mi;u, ρ)+
3

2
(Ei(u, ρ)− Ei(ϕci , 0))Mi−

3

2
(Fi(u, ρ)− Fi(ϕci , 0)) .

Taking summation from i = 1 to N and using the estimate (2.50), there appears the

inequality

N∑
i=1

(Mi − ci)2(Mi + 2ci) ≤
N∑
i=1

3

2
(Ei(u, ρ)− Ei(ϕci , 0))Mi −

N∑
i=1

3

2
(Fi(u, ρ)− Fi(ϕci , 0))

+ (‖u0‖2
H1(R) + ‖ρ0‖2

L2(R))
3
2O
(
L−

1
2

)
≤ 3

2

N∑
i=1

(Ei(u, ρ)− Ei(u0, ρ0))Mi +
3

2

N∑
i=1

(Ei(u0, ρ0)− Ei(ϕci , 0))Mi

−
N∑
i=1

3

2
(Fi(u, ρ)− Fi(ϕci , 0)) + (‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2O
(
L−

1
2

)
:= K1 +K2 +K3 + (‖u0‖2

H1(R) + ‖ρ0‖2
L2(R))

3
2O
(
L−

1
2

)
. (2.53)

In view of (2.53), to proceed the proof of (2.48), attention is now given to the

estimates on K1, K2 and K3. Let us start with K1. Using the Abel transformation

and conservation law E, we deduce that

3

2

N∑
i=1

(Ei(u, ρ)− Ei(u0, ρ0))Mi =
3

2

(
MN ·

N∑
i=1

(Ei(u, ρ)− Ei(u0, ρ0))
)

− 3

2

N−1∑
j=1

(Mj+1 −Mj) ·
j∑
i=1

(Ei(u, ρ)− Ei(u0, ρ0))

= −3

2

N−1∑
j=1

(Mj+1 −Mj) · (Ij+1,K(t)− Ij+1,K(0)) .

Since N peakons are ordered, by the definition of Mj , we know
∑N−1

j=1 (Mj+1 −Mj) is

positive and bounded above. Let K = L1/2/8. From Lemma 2.1.5, it is derived that

|K1| ≤ O(e−
L
8K ) = O(L−

1
2 ). (2.54)
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For K2, from the assumption in Lemma 2.1.8, the exponential decay of ϕci and Φi

and the definition of Ei, we know

N∑
i=1

|Ei(u0, ρ0)− Ei(ϕci , 0)|

≤
N∑
i=1

∣∣∣∣ ∫
Ji

(u2
0 + u2

0x + ρ2
0)Φi dx−

∫
Ji

(ϕ2
ci

+ ϕ2
ci,x

) dx

∣∣∣∣+O(L−
1
2 )

≤
N∑
i=1

∣∣∣∣‖u0‖2
H1(Ji) − ‖ϕci‖

2
H1(Ji)

∣∣∣∣+O(ε2) +O(L−
1
2 )

≤
N∑
i=1

(
‖u0 −

N∑
i=1

ϕci(· − z0
i )‖H1(R) + 2

N∑
j=1

√
2c2
j

)

· (‖u0 −
N∑
i=1

ϕci(· − z0
i )‖H1(Ji(0)) +

N∑
j=1,j 6=i

‖ϕcj‖H1(Ji(0))) +O(ε2) +O(L−
1
2 )

≤ O(ε2) +O(L−
1
2 ). (2.55)

On the other hand, Mi(t) is bounded for any i = 1 · · · , N , since

M2
i (t) ≤ ‖u(t, x)‖2

L∞(R) ≤
1

2
E(u0, ρ0) ≤ 1

2

N∑
i=1

E(ϕci , 0) +O(ε2) +O(e−
L
4 ) ≤

N∑
i=1

c2
i .

(2.56)

Associating (2.54) with (2.56), there holds

|K2| ≤
3

2
·max

i
Mi ·

N∑
i=1

|Ei(u0, ρ0)− Ei(ϕci , 0)| ≤ O(ε2) +O(L−
1
2 ). (2.57)

As to K3, from the Sobolev embedding theorem and conservation law F , it is deduced

that∣∣∣∣F (u, ρ)− F (
N∑
i=1

ϕci(· − z0
i ), 0)

∣∣∣∣
=

∣∣∣∣ ∫
R
u3

0 + u0u
2
0,x + u0ρ

2
0 − (

N∑
i=1

ϕci(· − z0
i ))

3 − (
N∑
i=1

ϕci(· − z0
i ))(

N∑
i=1

ϕci(· − z0
i ))

2
x dx

∣∣∣∣
≤
∫
R

∣∣∣∣u3
0 − (

N∑
i=1

ϕci(· − z0
i ))

3

∣∣∣∣ dx+

∫
R

∣∣∣∣u0u
2
0,x − (

N∑
i=1

ϕci(· − z0
i ))(

N∑
i=1

ϕci(· − z0
i ))

2
x

∣∣∣∣ dx
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+

∫
R
|u0ρ

2
0| dx

≤
∫
R

∣∣∣∣(u0 −
N∑
i=1

ϕci(· − z0
i ))(u

2
0 + u0(

N∑
i=1

ϕci(· − z0
i )) + (

N∑
i=1

ϕci(· − z0
i ))

2)

∣∣∣∣ dx
+

∫
R

∣∣∣∣(u0 −
N∑
i=1

ϕci(· − z0
i ))u

2
0,x + (

N∑
i=1

ϕci(· − z0
i ))(u

2
0,x − (

N∑
i=1

ϕci(· − z0
i ))

2
x)

∣∣∣∣ dx
+

∫
R
|u0ρ

2
0| dx

≤ ‖u0 −
N∑
i=1

ϕci(· − z0
i )‖L∞(R) ·

3

2

∫
R
u2

0 + (
N∑
i=1

ϕci(· − z0
i ))

2 dx

+

∫
R

∣∣∣∣(u0 −
N∑
i=1

ϕci(· − z0
i ))u

2
0,x

∣∣∣∣ dx
+

∫
R

∣∣∣∣( N∑
i=1

ϕci(· − z0
i ))(u0,x −

N∑
i=1

ϕci,x(· − z0
i ))(u0,x +

N∑
i=1

ϕci,x(· − z0
i ))

∣∣∣∣ dx
+ ‖u0‖L∞(R)

∫
R
ρ2

0 dx

≤ 3

2
‖u0 −

N∑
i=1

ϕci(· − z0
i )‖L∞(R)

(
‖u0‖2

L2 + ‖
N∑
i=1

ϕci(· − z0
i )‖2

L2(R)

)
+ ‖u0 −

N∑
i=1

ϕci(· − z0
i )‖L∞(R)‖u0‖H1(R)

+ ‖
N∑
i=1

ϕci(· − z0
i )‖L∞(R)‖u0,x −

N∑
i=1

ϕci,x(· − z0
i )‖2

L2(R)‖u0,x +
N∑
i=1

ϕci,x(· − z0
i )‖2

L2(R)

+ ‖u0‖L∞(R)‖ρ0‖2
L2(R).

Due to the Sobolev embedding H1(R) ↪→ L∞(R) and u0,
∑N

i=1 ϕci are in H1(R), by

(2.2) and (2.12), we derive that

|F (u0, ρ0)− F (
N∑
i=1

ϕci(· − z0
i ), 0)| ≤ O(ε2),

which along with z0
i − z0

i−1 ≥ L/2 gives rise to

|K3| ≤
3

2

∣∣∣ N∑
i=1

(
Fi(u, ρ)− Fi(ϕci , 0)

)∣∣∣
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≤ 3

2

∣∣∣F (u0, ρ0)− F
( N∑
i=1

ϕci(· − z0
i ), 0

)∣∣∣+
3

2

∣∣∣F( N∑
i=1

ϕci(· − z0
i ), 0

)
− F

( N∑
i=1

ϕci , 0
)∣∣∣

≤ O(ε2) +O(e−
L
4 ) (2.58)

Consequently, substituting (2.54),(2.57) and (2.58) into (2.53), we have

N∑
i=1

(Mi − ci)2(Mi + 2ci) ≤ O(ε2) +O(L−
1
2 ).

Then the desired result in Lemma 2.1.8 follows.

2.1.3 Proof of stability theorem

With the preparation in the previous subsections, the proof of stability of

the trains of N -peakons in system (1.5) is provided as well as the conclusion on

multipeakons through the asymptotic analysis.

Proof of Theorem 2.1.2. In light of (2.9), it suffices to show that there exist

z1 < · · · < zN satisfying zi − zi−1 > L/2 and a constant C > 0 independent of A at

t = t∗ such that

‖u(t∗, x)−
N∑
i=1

ϕci(x− zi(t∗))‖H1(R) + ‖ρ(t∗, x)‖L2(R) ≤ C(
√
ε+ L−

1
8 ).

Let zi = ξi. By (2.14) and (2.16) in lemma 2.1.4, we have

ξi(t
∗)− ξi−1(t∗) ≥ x̃i(t

∗)− x̃i−1(t∗) + |ξi(t∗)− x̃i(t∗)| − |ξi−1(t∗)− x̃i−1(t∗)|

≥ 3L

4
− L

6
>

2L

3
.

By (2.45) in Lemma 2.1.7 and (2.48) in Lemma 2.1.8, there holds

‖u(t∗, x)−
N∑
i=1

ϕci(x− ξi(t∗))‖2
H1(R) + ‖ρ(t∗, x)‖2

L2(R)

= E(u(t∗), ρ(t∗))−
N∑
i=1

E(ϕci , 0)− 4
N∑
i=1

ci(Mi − ci) +O(e−
L
4 )
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≤ E(u0, ρ0)−
N∑
i=1

E(ϕci , 0) + 4
N∑
i=1

ci|Mi − ci|+O(e−
L
4 )

≤ O(ε2) +O(ε) +O(L−
1
4 )

≤ O(ε) +O(L−
1
4 ).

Hence, for 0 < ε < ε0, L > L0 where 0 < ε0 � 1, L0 � 1 are depending only on

(ci)
N
i=1, we conclude that

‖u(t∗, x)−
N∑
i=1

ϕci(x− ξi(t∗))‖H1(R) + ‖ρ(t∗, x)‖L2(R) ≤ C(
√
ε+ L−

1
8 ).

where C is independent of A. Then taking A = 2C concludes the proof of Theorem

2.1.2.

Proof of Corollary 2.1.4. Since p0
1, · · · , p0

N are positive real numbers and q0
1 <

· · · < q0
N , then we know that these relations hold for any time t and different peakons

never overlap [41]. From the asymptotics of pi and qi [4], we deduce that there exists

T > 0 such that qi(T )− qi−1(T ) > L and qi(−T )− qi−1(−T ) > L with L > L0 large

enough. Hence, according to the invariant transformation (t, x) 7→ (−t,−x) of system

(1.5) and the continuity argument while proving Theorem 2.1.2, there exists δ > 0

such that if (u0, ρ0) satisfies initial condition (2.4), then for any time t, it holds

‖u(t, x)−
N∑
j=1

pje
|·−qj |‖H1(R) + ‖ρ(t, x)‖L2(R) ≤

ε

2A
,

which implies the orbital stability result (2.5). Furthermore, it is shown in [4] that

lim
t→+∞

pi(t) = lim
t→+∞

q̇i(t) = λi (2.59)

and

lim
t→−∞

pi(t) = lim
t→−∞

q̇i(t) = λN+1−i, (2.60)

where 0 < λ1 < · · · < λN are the eigenvalues of the matrix
(
pj(0)e−|qi(0)−qj(0)|/2)

i,j
.

Hence, it is straight forward to obtain (2.6) and (2.7).
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2.2 Stability of multi-antipeakons-peakons

2.2.1 Basic definitions and results

As outlined in the introduction, equation (1.3) admits peakon as well as an-

tipeakon when κ = 0. Inspired by the stability of N -antipeakon-peakons concerned

in [28], we now show the stability results of antipeakons and peakons in a dynamic

system (1.5).

Theorem 2.2.1. Let c1, · · · , cN be N non-vanishing velocities such that c1 < · · · <

ck < 0 < ck+1 < · · · < cN . There exist A > 0, L0 > 0 and ε0 > 0 such that if

(u, ρ) ∈ C([0, T );Hs(R)×Hs−1(R)) ∩ C1([0, T );Hs−1(R)×Hs−2(R)), for s > 3
2

is a

solution of the 2CH system (1.5) with initial data (u, ρ)|t=0 = (u0, ρ0) satisfying

‖u0 −
N∑
i=1

ϕci(· − z0
i )‖H1(R) + ‖ρ0‖L2(R) ≤ ε2, (2.61)

for some 0 < ε < ε0 and z0
i−z0

i−1 ≥ L, with L > L0, then there exist ξ1(t), · · · , ξN (t) ∈

R, such that

sup
0<t<T

(
‖u(t, ·)−

N∑
i=1

ϕci(· − ξi(t))‖H1(R) + ‖ρ(t, ·)‖L2(R)

)
≤ A(

√
ε+ L−

1
8 ), (2.62)

where ξi(t)− ξi−1(t) > L
2

and T depends only on initial data (u0, ρ0).

Moreover, the analogue stability result of CH-multi-antipeakon-peakons for the

system (1.5) is discovered as well.

Corollary 2.2.2. Let p0
1, · · · , p0

k be k negative real numbers, p0
k+1, · · · , p0

N be N − k

positive real numbers and q0
1 < · · · < q0

N be N real numbers. For any ε > 0 there

exists δ > 0 such that if (u0, ρ0) ∈ Hs(R)×Hs−1(R), s > 3
2

satisfies

‖u0 −
N∑
j=1

p0
j exp(· − q0

j )‖H1(R) + ‖ρ0‖L2(R) ≤ δ, and ρ0(x) > 0,

then

∀t > 0, inf
p1<···<pk<0<pk+1<···<pN ,q1<···<qN

‖u(t, ·)−
N∑
j=1

pj exp(·−qj)‖H1(R)+‖ρ(t, ·)‖L2(R) ≤ ε,
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where pi(t) and qi(t) satisfy the Hamiltonian system (1.4).

Moreover, there exists T > 0, such that

∀t ≥ T, inf
q1<···<qN

‖u(t, ·)−
N∑
j=1

λj exp(· − qj)‖H1(R) + ‖ρ(t, ·)‖L2(R) ≤ ε,

where λ1 < · · · < λN are the eigenvalues of the matrix
(
p0
je
−|q0i−q0j |/2

)
1≤i,j≤N

.

2.2.2 Preliminary lemmas

The proof of Theorem 2.2.1 will be based on a series of lemmas. Firstly, we

present the translation of each peakon and antipeakon analogous to Lemma 2.1.4.

The detailed proof refers to Lemma 2.1.4 as well.

Lemma 2.2.3. Let (u0, ρ0) be the initial value to system (1.5) satisfying (2.61).

There exist α0 > 0 and L0 > 0 such that for all 0 < α < α0 and 0 < L0 < L,

if (u, ρ) ∈ U(α, L
2
) on [0, t∗] for some 0 < t∗ < T , then there exist C1 functions

x̃1(t), · · · , x̃N(t) ∈ R defined on [0, t∗] such that for all t ∈ [0, t∗],

‖u(t, ·)−
N∑
i=1

ϕci(· − x̃i(t))‖H1(R) + ‖ρ(t, ·)‖L2(R) = O(
√
α), (2.63)

| ˙̃xi(t)− ci| ≤ O(
√
α) +O(L−1), i = 1, · · · , N, (2.64)

and

x̃i(t)− x̃i−1(t) ≥ 3L

4
+

(ci − ci−1)t

2
, i ≥ 2. (2.65)

Moreover, for i = 1, · · · , N , it holds

|ξi(t)− x̃i(t)| = O(1). (2.66)

where ξi(t) ∈ [x̃i(t)− L
4
, x̃i(t) + L

4
] is any point such that

|u(t, ξi(t))| = max
[x̃i(t)−L4 ,x̃i(t)+

L
4

]
|u(t)| . (2.67)
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Secondly, we state the almost monotonicity of energy functionals which are

different with those in Lemma 2.1.5. Due to (2.43) is no longer hold, where Mi = 0 for

antipeakon part, we will consider all positive bumps and negative bumps separately.

Define the energy functionals Ij,λ(t) as follows

Ij,λ(t) = Ij,λ,K(u, ρ) =

∫
R

[(
u2 + u2

x + ρ2
)
− λ

(
u3 + uu2

x + uρ2
)]

Ψj,Kdx, (2.68)

where Ψj,K(t, x) = ΨK(x− yj(t)), j = k + 1, · · · , N , with yj(t) defined by

yk+1(t) = x̃k+1(0) + ck+1t/2− L/4, yN+1(t) = +∞,

and

yi(t) =
x̃i−1(t) + x̃i(t)

2
, i = k + 2, · · · , N.

To prove the almost monotonicity property, we start with the following lemma.

Lemma 2.2.4. Assume g is a smooth space function. Then there holds

d

dt

∫
R
(u3 + uu2

x + uρ2)gdx

=

∫
R
(
1

4
u4 + u2u2

x)g
′dx+

∫
R
u2hg′dx+

∫
R
(h2 − h2

x)g
′dx+

∫
R
u2ρ2g′dx,

(2.69)

where h = (1− ∂2
x)
−1(u2 + 1

2
u2
x + 1

2
ρ2).

Proof. Since g is a smooth space function, using integration by parts and (2.34), we

obtain

d

dt

∫
R
(u3 + uu2

x + uρ2)gdx

=

∫
R

3u2utgdx+

∫
R
utu

2
xgdx+

∫
R

2uuxuxtgdx+

∫
R
utρ

2gdx+

∫
R

2uρρtgdx

= 2

∫
R
ut(u

2 +
u2
x

2
)gdx+

∫
R
(ut − utxx)u2gdx−

∫
R
utxu

2g′dx+

∫
R
utρ

2gdx

+

∫
R

2uρρtgdx

= 2

∫
R
ut(u

2 +
u2
x

2
+
ρ2

2
)gdx+

∫
R
(ut − utxx)u2gdx−

∫
R
utxu

2g′dx+

∫
R

2uρρtgdx

:= I1 + I2 + I3 + I4.
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Notice that (2.35) implies F ′u = (1− ∂2
x)u

2 + 2u2 + u2
x + ρ2. It follows that I1 can be

written as:

I1 = 2

∫
R
ut(u

2 +
u2
x

2
+
ρ2

2
)gdx

= 2

∫
R

[
−uux − (1− ∂2

x)
−1∂x

(
u2 +

u2
x

2
+
ρ2

2

)]
(u2 +

u2
x

2
+
ρ2

2
)gdx.

From h = (1− ∂2
x)
−1
(
u2 + u2x

2
+ ρ2

2

)
, it is deduced that

I1 = − 2

∫
R
uux(u

2 +
u2
x

2
+
ρ2

2
)gdx− 2

∫
R
ghx(1− ∂2

x)hdx

= − 2

∫
R
u3uxgdx−

∫
R
uu3

xgdx−
∫
R
uuxρ

2gdx− 2

∫
R
hhxgdx+ 2

∫
R
hxhxxgdx

=
1

2

∫
R
u4g′dx−

∫
R
uu3

xgdx−
∫
R
uuxρ

2gdx+

∫
R
(h2 − h2

x)g
′dx.

According to integration by parts and the abstract Hamiltonian structure (2.34) of

system (1.5), I2 performs as follows:

I2 =

∫
R

[
−3

2
(u2)x +

1

2
(u2)xxx −

1

2
(u2

x)x −
1

2
(ρ2)x

]
u2gdx

= − 3

∫
R
u3uxgdx−

1

2

∫
R
∂x(u

2
x)u

2gdx+
1

2

∫
R
∂3
x(u

2)u2gdx− 1

2

∫
R
(ρ2)xu2gdx

=
3

4

∫
R
u4g′dx+

∫
R
uu3

xgdx+
1

2

∫
R
u2u2

xg
′dx− 1

2

∫
R
∂2
x(u

2)∂x(u
2)gdx

− 1

2

∫
R
∂2
x(u

2)u2g′dx− 1

2

∫
R
(ρ2)xu

2gdx

=
3

4

∫
R
u4g′dx+

∫
R
uu3

xgdx+
1

2

∫
R
u2u2

xg
′dx− 1

4

∫
R
(∂x(u

2))2g′dx

+

∫
R
∂x(u

2)uuxg
′dx+

1

2

∫
R
∂x(u

2)u2g′′dx− 1

2

∫
R
(ρ2)xu

2gdx

=
3

4

∫
R
u4g′dx+

∫
R
uu3

xgdx+
1

2

∫
R
u2u2

xg
′dx+

∫
R
u2u2

xg
′dx

+ 2

∫
R
u2u2

xg
′dx+

∫
R
u3uxg

′′dx− 1

2

∫
R
(ρ2)xu

2gdx

=
3

4

∫
R
u4g′dx− 1

4

∫
R
u4g′′′dx+

7

2

∫
R
u2u2

xg
′dx+

∫
R
uu3

xgdx−
1

2

∫
R
(ρ2)xu

2gdx.
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Proceeding similarly, we derive that

I3 =

∫
R
∂x

[
uux + (1− ∂2

x)
−1∂x

(
u2 +

1

2
u2
x +

1

2
ρ2

)]
u2g′dx

=

∫
R
∂x(uux)u

2g′dx+

∫
R
(1− ∂2

x)
−1∂x

(
u2 +

1

2
u2
x +

1

2
ρ2

)
u2g′dx

= − 2

∫
R
u2u2

xg
′dx−

∫
R
u3uxg

′′dx−
∫
R
u2

(
u2 +

1

2
u2
x +

1

2
ρ2

)
g′dx+

∫
R
u2hg′dx

= − 2

∫
R
u2u2

xg
′dx+

1

4

∫
R
u4g′′′dx−

∫
R
u4g′dx− 1

2

∫
R
u2u2

xg
′dx− 1

2

∫
R
u2ρ2g′dx

+

∫
R
u2hg′dx

= − 5

2

∫
R
u2u2

xg
′dx+

1

4

∫
R
u4g′′′dx−

∫
R
u4g′dx− 1

2

∫
R
u2ρ2g′dx+

∫
R
u2hg′dx.

From (2.35), I4 employs the following structure

I4 = −
∫
R

2uρ(ρu)xgdx− 2

∫
R
uρ(ρux + ρxu)gdx = −2

∫
R
uuxρ

2gdx− 2

∫
R
u2ρρxgdx

= −
∫
R
u2(ρ2)xgdx+

∫
R
u2(ρ2)g′dx− 2

∫
R
u2ρρxgdx =

∫
R
u2ρ2g′dx.

In conclusion, combining I1, I2, I3 and I4, one obtains

I1+I2 + I3 + I4

=
1

2

∫
R
u4g′dx−

∫
R
uu3

xgdx−
∫
R
uuxρ

2gdx+

∫
R
(h2 − h2

x)g
′dx

=
3

4

∫
R
u4g′dx− 1

4

∫
R
u4g′′′dx+

7

2

∫
R
u2u2

xg
′dx+

∫
R
uu3

xgdx−
1

2

∫
R
(ρ2)xu

2gdx

− 5

2

∫
R
u2u2

xg
′dx+

1

4

∫
R
u4g′′′dx−

∫
R
u4g′dx− 1

2

∫
R
u2ρ2g′dx+

∫
R
u2hg′dx

+

∫
R
u2ρ2g′dx

=
1

4

∫
R
u4g′dx+

∫
R
u2u2

xg
′dx+

∫
R
u2ρ2g′dx+

∫
R
u2hg′dx+

∫
R
(h2 − h2

x)g
′dx.

Hence, the proof of Lemma 2.2.4 is completed.

Lemma 2.2.5. Let (u, ρ) ∈ Hs(R) × Hs−1(R) with s > 3
2

be a solution of system

(1.5) satisfying (2.63) on [0, t∗]. There exist α0 > 0 and L0 > 0 only depending on
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ck+1, ck+2, · · · , cN such that, if 0 < α < α0 and L > L0, then for any 4 ≤ K = O(L1/2)

and 0 ≤ λ ≤ 2
ck+1

, there holds

Ij,λ,K(t)− Ij,λ,K(0) ≤ O(e−
σ0L
8K ), for j ∈ {k + 1, · · · , N} and t ∈ [0, t∗]. (2.70)

Proof. Similar to the almost monotonicity studied in previous section, the estimate

on d
dt
Ij,λ,K(t) is crucial. Denote h = (1− ∂2

x)−1(u2 +
1

2
u2
x +

1

2
ρ2). Applying g = Ψj,K ,

j ≥ k + 1 to Lemma 2.2.4, which along with (2.37) gives rise to

d

dt
Ij,λ,K =

d

dt

∫
R

Ψj,K

[
(u2 + u2

x + ρ2)− λ(u3 + uu2
x + uρ2)

]
dx

=− ẏj
∫
R
∂xΨj,K

[
(u2 + u2

x + ρ2)− λ(u3 + uu2
x + uρ2)

]
dx

+

∫
R
uu2

x∂xΨj,Kdx+

∫
R
uρ2∂xΨj,Kdx+ 2

∫
R
uh∂xΨj,Kdx

− λ
[ ∫

R
(
1

4
u4 + u2u2

x)∂xΨj,Kdx+

∫
R
u2h∂xΨj,Kdx

+

∫
R
(h2 − h2

x)∂xΨj,Kdx+

∫
R
u2ρ2∂xΨj,Kdx

]
=− ẏj

∫
R
∂xΨj,K(u2 + u2

x + ρ2)dx− λ
∫
R
∂xΨj,K(h2 − h2

x)dx

+

∫
R
∂xΨj,K(2u− λu2)hdx+

∫
R
∂xΨj,K

[
u(u2

x + ρ2)

+ λ

(
ẏj(u

3 + uu2
x + uρ2)− (

1

4
u4 + u2u2

x + u2ρ2)

)]
dx

:=− ẏj
∫
R
∂xΨj,K(u2 + u2

x + ρ2)dx+ J1 + J2 + J3

≤− ck+1

2

∫
R
∂xΨj,K(u2 + u2

x + ρ2)dx+ J1 + J2 + J3,

where

J1 =− λ
∫
R
∂xΨj,K(h2 − h2

x)dx, J2 =

∫
R
∂xΨj,K(2u− λu2)hdx,

J3 =

∫
R
∂xΨj,K

[
u(u2

x + ρ2) + λ

(
ẏj(u

3 + uu2
x + uρ2)− (

1

4
u4 + u2u2

x + u2ρ2)

)]
dx.
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By repeating the same procedure in Lemma 2.1.5, one obtain J3 ≤ 0 and Ji ≤
ck+1

4

∫
R Ψ′j,K(u2 + u2

x + ρ2)dx+ C
K
e−

1
K

(σ0t+L/8), where i = 1, 2, which implies

d

dt
Ij,λ,K ≤

C

K

(
‖u0‖2

H1(R) + ‖ρ0‖2
L2(R)

)
e−

1
K

(σ0t+
L
8

),

Hence

Ij,λ,K(t)− Ij,λ,K(0) ≤ O(e−
σ0L
8K ). (2.71)

This then completes the proof of Lemma 2.2.4.

Thirdly, we establish the local and global estimates analogous to Lemma 2.1.6,

Lemma 2.1.7 and Lemma 2.1.8.

Lemma 2.2.6. Given N − k real numbers yk+1 < · · · < yN with yi − yi−1 ≥ 2L
3

,

for i = k + 1, · · · , N . Define interval Ji = (yi − L
4
, yi+1 + L

4
). Assume for any

fixed function (u, ρ) ∈ Hs(R) × Hs−1(R) with s > 3/2, there exists ξi ∈ Ji, where

i = k + 1, · · · , N , such that

u(ξi) = max
x∈Ji

u(x) := Mi and |ξi − x̃i| = O(1).

Then, for each i = k + 1, · · · , N , there holds

Fi(u, ρ) ≤MiEi(u, ρ)− 2

3
M3

i + (‖u0‖2
H1(R) + ‖ρ0‖2

L2(R))
3
2O(L−

1
2 ). (2.72)

Lemma 2.2.7. For any (ξ1, · · · , ξN) ∈ RN , with ξk < yk+1 − L
4

and ξi − ξi−1 >
L
2

,

i = k + 1, · · · , N , and any (u, ρ) ∈ Hs(R)×Hs−1(R), s > 3
2
, we have

Ei (u, ρ)−E (ϕci , 0) = Ei (u−RX , ρ)+4ci (Mi − ci)+
(
‖u‖2

H1(R) + ‖ρ‖2
L2(R)

)
O(L−1/2).

(2.73)

Lemma 2.2.8. Let (u, ρ) be the solution of system (1.5) such that (u, ρ) ∈ U(α, L
2
)

on [0, t∗], with initial data (u0, ρ0) satisfying (2.61). Denote Mi(t) = max
x∈Ji(t)

u(t, x) =

u(t, ξi(t)), for all t ∈ [0, t∗] and i ∈ k + 1, · · · , N . Then we have

N∑
i=k+1

ci |Mi − ci| ≤ O(ε) +O(L−
1
4 ), for all t ∈ [0, t∗], (2.74)
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where O(·) depends on (ci)
N
i=k+1 and

(
‖u‖2

H1(R) + ‖ρ‖2
L2(R)

) 3
2
.

2.2.3 Proof of stability theorem

The following presents the detail proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. In view of the continuity argument, our attention will

focus on the estimate at t = t∗ in the following procedure. Let K =
√
L/8. Taking

summation for i from k + 1 to N of (2.73), from Lemma 2.2.8, it is deduced that

Ik+1,0(t∗)−
N∑

i=k+1

E(ϕci , 0) =
N∑

i=k+1

Ei
(
u(t∗)−RX(t∗), ρ(t∗)− 0

)
+O(ε) +O(e−

L
4 ).

(2.75)

The monotonicity of Ik+1,0(t∗) respect to t ensures that

N∑
i=k+1

Ei(u(t∗)−RX(t∗), ρ(t∗)− 0) ≤ Ik+1,0(0)−
N∑

i=k+1

E(ϕci , 0) +O(ε) +O(e−
L
4 ).

In view of (2.63), we reveal

N∑
i=k+1

Ei(u(t∗)−RX(t∗), ρ(t∗)− 0) ≤ O(ε) +O(e−
L
4 ). (2.76)

Finally, following (2.75) and (2.76), it is deduced that

Ik+1,0(t∗) =
N∑

i=k+1

E(ϕci , 0) +O(ε) +O(e−
L
4 ). (2.77)

It is worth noticing that the system (1.5) is invariant by the change of u(x, t) 7→

−u(−x, t) and ρ(x, t) 7→ −ρ(−x, t). Then for any (u, ρ) ∈ Hs(R)×Hs−1(R), there

holds

I−k,0(t∗) :=

∫
R

Ψ(yk(t
∗)−x)[u2(x)+u2

x(x)+ρ2(x)] dx, yk(t
∗) = x̃k(0)+ckt

∗/2+L/4,

where u describes only negative bumps. With the same process used above, we

establish the following two estimates

k∑
i=1

Ei(u(t∗)−RX(t∗), ρ(t∗)− 0) ≤ O(ε) +O(e−
L
4 ), (2.78)
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and

I−k,0(t∗) =
k∑
i=1

E(ϕci , 0) +O(ε) +O(e−
L
4 ). (2.79)

Hence, from (2.77) and (2.79), it is derived that

I−k,0(t∗) + Ik+1,0(t∗) =
N∑
i=1

E(ϕci , 0) +O(ε) +O(e−
L
4 ) = E(u0, ρ0) +O(ε) +O(e−

L
4 )

= E(u(t∗), ρ(t∗)) +O(ε) +O(e−
L
4 ),

which implies∫
R

[1−Ψ(yk(t
∗)− x)−Ψ(x− yk+1(t∗))] (u2 + u2

x + ρ2) dx = O(ε) +O(e−
L
4 ).

It is worth to remark that the way how we construct Ψ infers |1−Ψ(yk(t
∗)− x)−

Ψ(x− yk+1(t∗))| ≤ O(e−
L
2 ) for x ∈ (−∞, yk − L

4
] ∪ [yk+1 + L

4
,+∞). In addition, the

exponential decay of ϕci and Lemma 2.2.3 lead to∫ yk+1+L/4

yk−L/4
|RX |2 + |∂xRX |2 dx ≤ O(e−

L
4 ).

Hence, we obatin∫
R

(
1−Ψ(yk(t

∗)− x)−Ψ(x− yk+1(t∗))
) (

(u−RX)2 + (ux − ∂xRX)2 + (ρ2 − 0)
)
dx

= O(ε) +O(e−
L
4 ).

(2.80)

By using (2.76), (2.78) and (2.80), we conclude

E
(
u(t∗)−RX(t∗), ρ(t∗)− 0

)
= C(ε+ e−

L
4 ),

where the positive C depends only on {ci}Ni=1 and E(u0, ρ0), not on A. Consequently,

the theorem is proved by choosing A = 2C.

With Theorem 2.2.1 in hand, by repeating the asymptotic analysis in the proof

of Corollary 2.1.3, we may readily prove Corollary 2.2.2. We omit the details of the

proof of this result.
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CHAPTER 3

STABILITY OF THE TRAINS OF N -SMOOTH TRAVELING WAVE TO THE

GENERALIZED TWO-COMPONENT CAMASSA-HOLM SYSTEM

3.1 Basic definition and results

In this chapter, we mainly consider the Cauchy problem of the two-component

CH system on the real line, that is
ut − uxxt − Aux + 3uux − σ (2uxuxx + uuxxx) + (1 + η) ηx = 0,

ηt + ((1 + η)u)x = 0, t > 0, x ∈ R,

(u(x, 0), η(x, 0)) = (u0(x), η0(x)) .

(3.1)

Denote

p(x) :=
1

2
e−|x|, x ∈ R.

Then for all f ∈ L2(R),

(1− ∂2
x)
−1f = p ∗ f, (3.2)

where ‘∗’ denotes the spatial convolution. Using this notation, system (1.8) can be

now written in the following form
ut + σuux + ∂xp ∗

(
−Au+ 3−σ

2
u2 + σ

2
u2
x + 1

2
(1 + η)2) = 0,

ηt + ((1 + η)u)x = 0.

(3.3)

Logically, prior to a discussion of stability as formulated above in terms of

perturbations of the initial data should be a theory for the initial-valued problem

itself. This is a subject that has attracted a lot of attention and it is not our purpose

to provide a survey of results. The following local existence result suffices for the
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stability theory developed here (see [11]). More subtle results are available in some

cases but these do not concern us here.

Proposition 3.1.1. [11] Let (u0, η0) ∈ Hs×Hs−1, s > 3
2
. Then there exist a maximal

time T = T (u0, η0) > 0 and a unique solution (u, η) of (3.1) in C([0, T );Hs×Hs−1)∩

C1([0, T );Hs−1 ×Hs−2). Moreover, the solution depends continuously on the initial

data and T is independent of s. In addition, the functionals E(u, η) and F (u, η)

defined in (1.9) and (1.10) are independent of the existence time t.

In the case σ = 0, we have the following global existence of the solutions.

Proposition 3.1.2. [13] Let σ = 0. If (u0, η0) ∈ Hs×Hs−1 with s > 3
2
, then there ex-

ist a unique global solution (u, η) of (3.1) in C ([0,∞);Hs ×Hs−1)∩C1([0,∞);Hs−1×

Hs−2). Moreover, the solution depends continuously on the initial data. In addition,

the functionals E(u, η) and F (u, η) defined in (1.9) and (1.10) are independent of the

existence time t.

Next, we provide the definition of traveling wave of system (3.3) and the

condition for existence of traveling waves.

Definition 3.1.1. A vector function is a traveling wave of (3.3) if it has the form

ϕc(x, t) = (ϕc(x− ct), ψc(x− ct)) ∈ H1(R)×H1(R), c ∈ R

with ϕc and ψc vanishing at infinity along with their first and second derivatives.

One can check that a traveling wave of (3.3) satisfies
(
− cϕ+ σ

2
ϕ2 + p ∗

(
−Aϕ+ 3−σ

2
ϕ2 + σ

2
ϕ2
x + 1

2
(1 + ψ)2

) )
x

= 0,(
− cψ + (1 + ψ)ϕ

)
x

= 0.

(3.4)

Integrating the above system and applying (1− ∂2
x) to the first equation, we have

−(c+ A)ϕ+ cϕxx + 3
2
ϕ2 = σϕϕxx + σ

2
ϕ2
x − 1

2
(1 + ψ)2 + 1

2
,

−cψ + (1 + ψ)ϕ = 0.

(3.5)
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The following result on existence of traveling waves of (3.3) was given in [13].

Proposition 3.1.3. [13] Let σ ≤ 1 and assume c > −A+
√
A2+4

2
. Then there exists a

smooth traveling wave ϕc = (ϕc, ψc) of (3.3), which decays exponentially to zero at

infinity.

Remark 2. The smooth traveling wave ϕc exists either c > A1 or c < A2, where A1

and A2 are two roots of the equation y2 +Ay − 1 = 0. Without loss of generality, we

only consider the case c > A1 = −A+
√
A2+4

2
in this article.

Moreover, we introduce those results associated with the stability of single

smooth traveling wave of (3.3). Begin with the dual space ofX: X∗ = H−1(R)×L2(R),

we can define a natural isomorphism I from X to X∗

I =

 1− ∂2
x 0

0 1

 .

Then combining the map I and the definition of H1(R) norm and L2(R) norm, the

pair 〈·, ·〉 between X and X∗ can be presented as

〈Iu,v〉 = (u, v)H1(R) + (η, w)L2(R),

where u = (u, η) ∈ X,v = (v, w) ∈ X∗.

According to the definition of norm in X, the quantity E(u), which is an

invariant functional of (3.1) with respect to time, can be written as

E(u) =
1

2
(u,u) =

1

2
‖u‖2

X , u ∈ X.

Furthermore, taking advantage of the conservation law F (u), system (3.3) has

following abstract Hamiltonian form:

∂tu = JF ′(u), (3.6)
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where J is a closed skew symmetric operator given by

J =

 −∂x(1− ∂2
x)
−1 0

0 −∂x

 ,

and F ′(u) : X → X∗ is the variational derivative of F in X at u.

Attention is now given to the definition of orbital stability of a single traveling

wave.

Definition 3.1.2. The traveling wave ϕc of (3.3) is stable in X if for any ε > 0,

there exists δ > 0 and s0 ∈ R such that for any u0 ∈ X satisfying

‖u0 −ϕc(· − s0)‖X < δ,

and if u ∈ C ([0, T );X) for some 0 < T ≤ ∞ is a solution of (3.3) with u(0) = u0,

then

inf
s∈R
‖u(t)−ϕc(· − s)‖X < ε, ∀ t ∈ [0, T ).

Otherwise, the traveling wave ϕc is said to be unstable in X.

One key to the stability of a single traveling wave is the coercivity of Hc which

is the second differential operator of cE − F around single traveling wave ϕc. We

here rephrase their results and refer the readers to [13] for details.

Lemma 3.1.4. [13]. Assume σ ≤ 1 and c > A1. Let ϕc(x, t) be a smooth traveling

wave of (3.3). Then there exists a constant k = k(c) > 0 such that

〈Hc(ψ),ψ〉 ≥ k ‖ψ‖2
X , (3.7)

for all ψ ∈ X satisfying (ϕc,ψ) = (ϕ′c,ψ) = 0.

Lemma 3.1.5. [13]. Let σ ≤ 1 and c > A1. All those smooth traveling waves of

(3.3) are orbitally stable in the energy space X.
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Remark 3. The exactly form of Hc in (3.7) is

Hc = cE ′′(ϕc)− F ′′ (ϕc) =

 Lc −(1 + η)

−(1 + η) c− ϕ

 ,

where

Lc = −∂x ((c− σϕ)∂x)− 3ϕ+ σϕxx + c+ A.

The proofs of Lemma 3.1.4 and Lemma 3.1.5 are based on the spectrum analysis of Hc

and the convexity of d(c) = cE(ϕc)− F (ϕc) both requiring σ ≤ 1. In the following

section, we will show the property of local coercivity via Lemma 3.1.4. Therefore,

σ ≤ 1 is a prerequisite to establish the stability of the train of N -smooth traveling

waves.

The goal of this chapter is to show the orbital stability of the trains of N -smooth

traveling waves with the assumption on initial profile which guarantees the existence

of solution.

The N -smooth traveling waves
∑N

i=1ϕci of system (1.8) can be shown to be

orbitally stable in the energy space X, which is the principal result of the present

paper.

Theorem 3.1.6. (Main Result) Suppose σ ≤ 1. Let c1, c2, · · · , cN be N speeds, such

that 0 < max{−A+
√
A2+4

2
, A+

√
A2+2
2

} < c1 < · · · < cN . Let s > 3
2
. If M > 0, L0 > 0

and ε0 > 0, such that for any u0 = (u0, η0) ∈ Hs(R)×Hs−1(R) satisfies∥∥∥∥∥u0 −
N∑
i=1

ϕ(· − z0
j )

∥∥∥∥∥
H1(R)×L2(R)

≤ ε, (3.8)

for some 0 < ε < ε0 and z0
j − z0

j−1 ≥ L with L ≥ L0, then for the correspond-

ing solution u = (u, η) ∈ C([0, T );Hs × Hs−1) ∩ C1([0, T );Hs−1 × Hs−2) of the
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Cauchy problem for the g2CH system (1.8) with initial data u|t=0 = u0, there exist

x̃1(t), x̃2(t), · · · , x̃N(t) ∈ R, such that

sup
0<t<T

∥∥∥∥∥u(t, ·)−
N∑
i=1

ϕ(· − x̃i(t))

∥∥∥∥∥
H1(R)×L2(R)

≤M(
√
ε+ L−

1
8 ), (3.9)

where T depends only on initial data u0.

Remark 4. It is noted that the assumptions in Theorem 3.1.6 ensures that the train

of N -smooth traveling waves of different speeds is arranged in increasing order and

sufficiently decoupled and as time goes by the phase between two traveling waves will

be enlarged.

Remark 5. In Theorem 3.1.6, the life-time span T may be infinite if σ = 0, since we

have the global solution in that situation according to Proposition 3.1.2.

3.2 Preliminary lemmas

For α > 0 and L > 0, we define the following neighborhood of N -smooth

traveling waves
∑N

i=1ϕci with spatial shifts xi that satisfies xi − xi−1 ≥ L for every

i = 1, · · · , N ,

U(α,L) =

{
u ∈ H1(R)× L2(R), inf

xi−xi−1>L

∥∥∥∥∥u−
N∑
i=1

ϕci(· − xi)

∥∥∥∥∥
X

< α

}
.

We want to prove that there exist M > 0, L0 > 0 and ε0 > 0 such that for any L > L0,

0 < ε < ε0 and any initial data u0 ∈ Hs(R)×Hs−1(R), s > 3
2

satisfies initial condition

(3.8), then the corresponding solution u(t) belongs to U
(
M(
√
ε+ L−

1
8 ), L

2

)
for all

t ∈ [0, T ), where T is the maximal existence time and M is independent of time

t. By the continuity of the map t 7→ u(t) from [0, T ) into Hs(R)×Hs−1(R) where

Hs(R)×Hs−1(R) ⊂ H1(R)× L2(R), one can demonstrate Theorem 3.1.6 as long as

the following proposition is proved.
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Proposition 3.2.1. Let σ, c1, c2, · · · , cN meet the assumption in Theorem 3.1.6.

There exist M > 0, L0 > 0 and ε0 > 0 such that for any u0 ∈ Hs(R)×Hs−1(R) with

s > 3
2
, if ∥∥∥∥∥u0 −

N∑
i=1

ϕ(· − z0
j )

∥∥∥∥∥
X

≤ ε,

for some 0 < ε < ε0 and z0
j − z0

j−1 ≥ L with L ≥ L0 and if for some 0 < t∗ < T , the

solution u ∈ C([0, T );Hs×Hs−1)∩C1([0, T );Hs−1×Hs−2) of Cauchy problem (3.1)

with initial value u|t=0 = u0 satisfies

u(t) ∈ U
(
M(
√
ε+ L−

1
8 ),

L

2

)
, ∀t ∈ [0, t∗], (3.10)

then

u(t∗) ∈ U
(
M

2
(
√
ε+ L−

1
8 ),

2L

3

)
. (3.11)

where M , L0 and ε0 are independent of t∗.

We briefly prove that Proposition 3.2.1 implies the stability result in The-

orem 3.1.6. Let M,L0, ε0 be chosen as in Proposition 3.2.1 and let u0 satisfy

the initial condition (3.8). Then, by continuity of u(t) ∈ Hs × Hs−1, we have

u(t) ∈ U
(
M(
√
ε+ L−

1
8 ), L

2

)
for t ∈ [0, κ] for some κ > 0. Let

t∗ = sup

{
t ≥ 0,u(t′) ∈ U

(
M(
√
ε+ L−

1
8 ),

L

2

)
,∀t′ ∈ [0, t]

}
.

Assume t∗ < T . According to Proposition 3.2.1, we have ∀t ∈ [0, t∗],u(t) ∈

U
(
M
2

(
√
ε+ L−

1
8 ), 2L

3

)
. By continuity, there exists τ > 0 such that ∀t ∈ [0, t∗ +

τ ],u(t) ∈ U
(
M
2

(
√
ε+ L−

1
8 ), 2L

3

)
, which contradicts the definition of t∗. Hence, we

conclude t∗ ≥ T which implies the stability consequence of the trains of N -smooth

traveling waves.

In this part, three properties of system (3.3) are established. We start with the

modulation argument that as long as u stays in the neighborhood U(α, L
2
) of the sum

56



of N modulated traveling waves, where α = O(
√
ε+ L−

1
8 ), it can be decomposed as

the sum of N modulated traveling waves plus a vector function v = (v, w) which is

an infinitesimal in H1(R)× L2(R), that is,
u(t, x) =

∑N
i=1 ϕci(· − x̃i(t)) + v(t, x),

η(t, x) =
∑N

i=1 ψci(· − x̃i(t)) + w(t, x).

Lemma 3.2.2. Let α0 > 0 and L0 > 0. For any 0 < α < α0 and L > L0, if the

initial data u0 = (u0, η0) satisfies the assumption (3.8) given in Theorem 3.1.6 and

the solution u ∈ U(α, L
2
) on [0, t∗], then there exist C1 functions x̃i(t) : [0, t∗] →

R, i = 1, · · · , N and t ∈ [0, t∗], such that∫
R
v(t)(1− ∂2

x)∂xRi(t) dx+

∫
R
w(t)∂xPi(t) dx = 0, (3.12)

where Ri(t, x) = (Ri(t, x), Pi(t, x)) = (ϕci(x− x̃i(t)), ψci(x− x̃i(t))) = ϕi(t, x),

‖v(t)‖X ≤ O(
√
α), (3.13)

∣∣ ˙̃xi(t)− ci∣∣ ≤ O(
√
α) +O(L−1), (3.14)

x̃i(t)− x̃i−1(t) ≥ 3L

4
+

(ci − ci−1)

2
· t, i ≥ 2, (3.15)

where ˙̃xi(t) means the derivative of x̃i(t) respect to time t.

Proof. We use the standard modulation argument to discover the translations of N -

smooth traveling waves. Let Z = (z1, · · · , zN ) ∈ RN be fixed such that zi − zi−1 >
L
2

and set RZ(·) =
∑N

i=1ϕci(· − zi). For 0 < δ0 < 1, we define the function

Y :
N∏
i=1

(−δ0, δ0)×BH1(RZ , δ0)×BL2(PZ , δ0)→ RN ,

(y1, · · · , yN , u, η) 7−→
(
Y 1(y1, · · · , yN , u, η), · · · , Y N(y1, · · · , yN , u, η)

)
,
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with

Y j(y1, · · · , yN , u, η) =

∫
R

(
u−

N∑
i=1

ϕci(· − zi − yi)

)
(1− ∂2

x)∂xϕcj(· − zj − yj) dx

+

∫
R

(
η −

N∑
i=1

ψci(· − zi − yi)

)
∂xψcj(· − zj − yj) dx.

where BH1(RZ , δ0) is the ball in H1(R) with center RZ and radius δ0, BL2(PZ , δ0)

is the ball in L2(R) with center PZ and radius δ0. To apply the implicit function

theorem, two facts are needed. One fact is that function Y should be C1 mapping

which can be proved by dominated convergence theorem. The other fact is that the

matrix of all first-order partial derivatives of function Y at (0, · · · , 0, RZ , PZ) should

be invertible. For j = 1, · · · , N ,

∂Y j

∂yj
(y1, · · · , yN , u, η) =

∫
R

(
ux −

N∑
i=1,i 6=j

∂xϕci(· − zi − yi)

)
(1− ∂2

x)∂xϕcj(· − zj − yj) dx

+

∫
R

(
ηx −

N∑
i=1,i 6=j

∂xψci(· − zi − yi)

)
∂xψcj(· − zj − yj) dx,

∂Y j

∂yi
(y1, · · · , yN , u, η) =

∫
R
∂xϕci(· − zi − yi)(1− ∂2

x)∂xϕcj(· − zj − yj) dx

+

∫
R
∂xψci(· − zi − yi)∂xψcj(· − zj − yj) dx, where i 6= j,

∂Y j

∂u
(y1, · · · , yN , u, η) =

∫
R
(1− ∂2

x)∂xϕcj(· − zj − yj) dx,

∂Y j

∂η
(y1, · · · , yN , u, η) =

∫
R
∂xψcj(· − zj − yj) dx.

Hence,

∂Y j

∂yj
(0, · · · , 0, RZ , PZ) = ‖∂xϕcj‖2

H1(R) + ‖∂xψcj‖2
L2(R),

∂Y j

∂yi
(0, · · · , 0, RZ , PZ) =

(
∂xϕci(· − zi), ∂xϕcj(· − zj)

)
H1(R)

+
(
∂xψci(· − zi), ∂xψcj(· − zj)

)
L2(R)

.
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Furthermore, there exists L0 > 0 such that if L > L0 large enough, we have

D(y1,··· ,yN )Y (0, · · · , 0, Rz, PZ) = D + P 6= 0,

where D is an invertible diagonal matrix with

‖D−1‖ ≤ min
j=1,··· ,N

(
‖∂xϕcj‖2

H1(R) + ‖∂xψcj‖2
L2(R)

)−1

,

and P is a matrix with

‖P‖ ≤ O(e−
L
4 ),

which implies D(y1,··· ,yN )Y (0, · · · , 0, RZ , PZ) is invertible. Therefore, by the implicit

function theorem, there exist 0 < β0 < δ0 and C1 functions (y1(u, η), · · · , yN(u, η))

from B(RZ , δ0) to a neighborhood of (0, · · · , 0) which are uniquely determined, such

that

Y (y1(u, η), · · · , yN(u, η), u, η) = 0, ∀(u, η) ∈ BH1(RZ , β0)×BL2(PZ , β0).

Moreover, there exists K0 > 0 such that if (u, η) ∈ BH1(RZ , β0)×BL2(PZ , β0) with

0 < β < β0 the following holds,

N∑
i=1

|yi(u)| =
N∑
i=1

|yi(u, η)| ≤ K0β, (3.16)

where K0 and β0 depends on c1 and L0. For (u, η) ∈ BH1(RZ , β0) × BL2(PZ , β0),

setting x̃i(u) = zi + yi(u) and β0 ≤ min{ L0

8K0
, δ0} infers

x̃i(u)− x̃i−1(u) = zi − zi−1 + yi(u)− yi−1(u) ≥ L

2
− 2K0β0 ≥

L

4
. (3.17)

Then, we define the modulation of u = (u, η) ∈ U(α, L
2
) for L > L0 and 0 < α < α0

at a fix time t. Indeed, for 0 < α < α0, U(α, L
2
) can be covered as follows

U

(
α,
L

2

)
⊂

⋃
Z∈RN ,zi−zi−1>

L
2

BH1(RZ , 2α)×BL2(PZ , 2α).
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Additionally, the modulation of u is uniquely defined due to the uniqueness in the

implicit function theorem.

Thus, we define the modulation of the solution u(t) = (u(t), η(t)) of system

(3.3) satisfying u(t) ∈ U(α, L
2
) for all t ∈ [0, t∗] by setting i = 1, · · · , N and

x̃i(t) = x̃i(u(t)), v(t) = u(t)−
N∑
i=1

ϕci(· − x̃i(t)),

where v satisfies the orthogonal condition∫
R
v(t)(1− ∂2

x)∂xRi(t) dx+

∫
R
w(t)∂xPi(t) dx = 0,

According to the translation x̃i(t) defined above, using (3.16), triangle inequality

and the smoothness of ϕci , the following estimate holds

‖v(t)‖X ≤‖u(t)−
N∑
i=1

ϕci(· − zi)‖X +
N∑
i=1

‖ϕci(· − zi)−ϕci(· − zi − yi(u(t)))‖X

≤ α +
N∑
i=1

(
4E(u)− 2

∫
R
ϕci(· − zi)ϕci(· − zi − yi(u(t))) dx

− 2

∫
R
∂xϕci(· − zi)∂xϕci(· − zi − yi(u(t))) dx

− 2

∫
R
ψci(· − zi)ψci(· − zi − yi(u(t))) dx

) 1
2

≤ α +O(
N∑
i=1

|yi(u)|
1
2 ) ≤ O(

√
α).

Attention is now turn to the speed of x̃i(t). In order to show it stays close to

ci, we differentiate the orthogonality condition with respect to t,∣∣∣∣∫
R
vt(1− ∂2

x)∂xRi dx+

∫
R
wt∂xPi dx

∣∣∣∣ =

∣∣∣∣ ˙̃xi(∫
R
v(1− ∂2

x)∂
2
xRi dx+

∫
R
w∂2

xPi dx

)∣∣∣∣
≤
∣∣ ˙̃xi∣∣O(‖v‖X)

≤
∣∣ ˙̃xi − ci∣∣O(‖v‖X) +O(‖v‖X). (3.18)
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Substituting u by v +
∑N

i=1Ri in the system (3.3) leads to

(
1− ∂2

x

)
vt +

N∑
i=1

(1− ∂2
x)∂tRi = −σ

2
(1− ∂2

x)∂x

(
(v +

N∑
i=1

Ri)
2

)

− ∂x

(
− A(v +

N∑
i=1

Ri) +
3− σ

2
(v +

N∑
i=1

Ri)
2 +

σ

2
(vx +

N∑
i=1

∂xRi)
2

+ (w +
N∑
i=1

Pi) +
1

2
(w +

N∑
i=1

Pi)
2

)
, (3.19)

and

wt +
N∑
i=1

∂tPi = −∂x

(
(v +

N∑
i=1

Ri) + (v +
N∑
i=1

Ri)(w +
N∑
i=1

Pi)

)
. (3.20)

Since Ri satisfies (3.4), i.e.

(1− ∂2
x)∂tRi + ( ˙̃xi − ci)(1− ∂2

x)∂xRi =− σ

2
(1− ∂2

x)∂x(R
2
i ) + A∂xRi −

3− σ
2

∂x(R
2
i )

− σ

2
(∂xRi)

2 − ∂xPi − Pi∂xPi, (3.21)

and

∂tPi + ( ˙̃xi − ci)∂xPi + ∂xRi + ∂x(RiPi) = 0, (3.22)

combining (3.19)-(3.22), we infer that v(t) = (v(t), w(t)) satisfies the following

conditions on [0, t∗],

(
1− ∂2

x

)
vt −

N∑
i=1

( ˙̃xi − ci)(1− ∂2
x)∂xRi = −σ

2
(1− ∂2

x)∂x

[
(v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i

]

− ∂x

[
3− σ

2

(
(v +

N∑
i=1

Ri)
2 −

N∑
i=1

R2
i

)
− Av +

σ

2

(
(vx +

N∑
i=1

∂xRi)
2

−
N∑
i=1

(∂xRi)
2
)

+ w +
1

2
(w +

N∑
i=1

Pi)
2 − 1

2

N∑
i=1

P 2
i

]
, (3.23)

and

wt −
N∑
i=1

( ˙̃xi − ci)∂xPi = −∂x

(
v + (v +

N∑
i=1

Ri)(w +
N∑
i=1

Pi)−
N∑
i=1

RiPi

)
. (3.24)
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Taking L2-inner product for (3.23) with ∂xRi and (3.24) with ∂xPi, respectively, then

using integration by parts, the exponential decay of Ri and its derivatives to simplify

these two equations. By (3.13),(3.17) and (3.18), letting α0 small enough and L0 > σ2

large enough, there holds

| ˙̃xi − ci|(‖∂xRi‖X +O(α)) ≤ O(
√
α) +O(e−L).

Consequently, we demonstrate (3.14).

Furthermore, by the assumption z0
j − z0

j−1 ≥ L given in Theorem 3.1.6, it is

deduced that

x̃i(t)− x̃i−1(t) = x̃i(0)− x̃i−1(0) +
(

˙̃xi(s)− ˙̃xi−1(s)
)
t

= x̃i(0)− x̃i−1(0) +
(

˙̃xi(s)− ci + ci−1 − ˙̃xi−1(s)
)
t+ (ci − ci−1)t

≥ 3L

4
+

1

2
(ci − ci−1)t.

Hence, we complete the proof of Lemma 3.2.2.

Next, we prove the almost monotonicity of the functionals which describe the

energy at the right of ith bump, for i = 1, 2, · · · , N . To construct these functionals,

we begin with the introduction of weight functions.

Let Ψ be a C∞ function, such that


0 < Ψ(x) < 1, Ψ′(x) > 0, x ∈ R,

|Ψ′′′(x)| ≤ 10Ψ′(x), x ∈ [−1, 1],

(3.25)

and

Ψ(x) =


e−|x|, x < −1,

1− e−|x|, x > 1.

(3.26)

Set ΨK = Ψ(·/K), K > 0. Define the weight functions Φi = Φi(t, x), by

Φ1 = 1−Ψ2,K , ΦN = ΨN,K , Φi = Ψi,K−Ψi+1,K , i = 2, · · · , N −1. (3.27)
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where Ψi,K = ΨK(x− yi(t)) with yi(t) defined

y1 = −∞, yN+1 = +∞ and yi(t) =
x̃i−1(t) + x̃i(t)

2
, i = 2, · · · , N. (3.28)

Obviously,
∑N

i=1 Φi(t, x) = 1, for t ∈ [0, t∗]. Taking L > 0 and L/K > 0 large enough,

we have

|1− Φi| ≤ 4e−
L
4K , on

[
x̃i −

L

4
, x̃i +

L

4

]
, (3.29)

and

|Φi| ≤ 4e−
L
4K on

[
x̃j −

L

4
, x̃j +

L

4

]
, for j 6= i. (3.30)

Then, we introduce the localized conservation laws of E and F in terms of

weight functions, for i = 1, · · · , N ,

Ei(u) = Ei(u, η) =
1

2

∫
R

(
u2 + u2

x + η2
)

Φi dx, (3.31)

Fi(u) = Fi(u, η) =
1

2

∫
R

(
u3 + σuu2

x + 2uη + uη2 − Au2
)

Φi dx. (3.32)

Moreover, for simplicity, we set

σ0 =
1

4
min(c1, c2 − c1, · · · , cN − cN−1). (3.33)

Lemma 3.2.3. Let u be the solution of the system (3.3) such that u ∈ U(α, L
2
)

on [0, t∗] where {x̃i(t)}Ni=1 are defined in Lemma 3.2.2. There exist α0 > 0 and

L0 > 0 depending on {ci}Ni=1 and σ such that if 0 < α < α0 and L > L0, for

max{4, σ2} ≤ K = O(L1/2), it follows that

Ij,K(t)− Ij,K(0) ≤ O(e−
L
4K ), (3.34)

for all j = 2, · · · , N and t ∈ [0, t∗], where Ij,K = 1
2

∫
R (u2 + u2

x + η2) Ψj,K dx.

Proof. We know system (3.3) can be written in abstract Hamiltonian form as (3.6),

that is  u

η


t

=

 −∂x(1− ∂2
x)
−1 0

0 −∂x


 F ′u

F ′η

 , (3.35)
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where

F ′u =
3

2
u2 − σ

2
u2
x − σuuxx − Au+ η +

1

2
η2, F ′η = u+ uη. (3.36)

Fixing j, differentiating Ij,K with respect to t and using (3.35), we get

d

dt
Ij,K(t) =− ẏj

2

∫
R
(u2 + u2

x + η2)∂xΨj,K dx+

∫
R
u(ut − utxx)Ψj,K dx

−
∫
R
uutx∂xΨj,K dx+

∫
R
ηηtΨj,K dx

= − ẏj
2

∫
R
(u2 + u2

x + η2)∂xΨj,K dx−
∫
R
uΨj,K∂xF

′
u dx

+

∫
R
u∂xΨj,K(1− ∂2

x)
−1∂2

xF
′
u dx−

∫
R
ηΨj,K∂xF

′
η dx (3.37)

= − ẏj
2

∫
R
(u2 + u2

x + η2)∂xΨj,K dx+

∫
R
uxΨj,KF

′
u dx

+

∫
R
u∂xΨj,K(1− ∂2

x)
−1F ′u dx+

∫
R
ηxΨj,KF

′
η dx+

∫
R
η∂xΨj,KF

′
η dx

:= − ẏj
2

∫
R
(u2 + u2

x + η2)∂xΨj,K dx+ J1(t) + J2(t) + J3(t) + J4(t).

Substituting (3.36) into (3.37) and using integration by parts, J1(t), J2(t), J3(t) and

J4(t) become

J1(t) =

∫
R
uxΨj,K

(
3

2
u2 − σ

2
u2
x − σuuxx − Au+ η +

1

2
η2

)
dx

= − 1

2

∫
R
∂xΨj,Ku

3 dx+
σ

2

∫
R
∂xΨj,Kuu

2
x dx+

A

2

∫
R
∂xΨj,Ku

2 +

∫
R

Ψj,Kuxη dx

+
1

2

∫
R

Ψj,Kuxη
2 dx,

J2(t) =

∫
R
u∂xΨj,K(1− ∂2

x)
−1

(
3

2
u2 − σ

2
u2
x − σuuxx − Au+ η +

1

2
η2

)
dx

=

∫
R
u∂xΨj,K(1− ∂2

x)
−1

(
3

2
u2 +

σ

2
u2
x −

σ

2
(u2)xx − Au+ η +

1

2
η2

)
dx

=

∫
R
u∂xΨj,K(1− ∂2

x)
−1

(
3− σ

2
u2 +

σ

2
u2
x − Au+ η +

1

2
η2

)
dx

+
σ

2

∫
R
∂xΨj,Ku

3 dx,

J3(t) =

∫
R
ηxΨj,K (u+ uη) dx
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= −
∫
R

Ψj,Kuxη dx−
∫
R
∂xΨj,Kuη dx−

1

2

∫
R

Ψj,Kuxη
2 dx− 1

2

∫
R
∂xΨj,Kuη

2 dx,

J4(t) =

∫
R
η∂xΨj,K (u+ uη) dx =

∫
R
∂xΨj,Kuη dx+

∫
R
∂xΨj,Kuη

2 dx.

Combining J1(t), J2(t), J3(t) and J4(t), we can simplify J(t) = J1(t) + J2(t) + J3(t) +

J4(t) as follows

J(t) =
A

2

∫
R
u2∂xΨj,K dx− A

∫
R
u∂xΨj,K(1− ∂2

x)
−1u dx

+
1

2

∫
R
u∂xΨj,K

(
(σ − 1)u2 + σu2

x + η2
)
dx+

∫
R
u∂xΨj,K(1− ∂2

x)
−1η dx

+

∫
R
u∂xΨj,K(1− ∂2

x)
−1

(
3− σ

2
u2 +

σ

2
u2
x +

1

2
η2

)
dx (3.38)

=
A

2

∫
R
u2∂xΨj,K dx− A

∫
R
u∂xΨj,K(1− ∂2

x)
−1u dx+Q1(t) +Q2(t) +Q3(t).

To deal with the first two terms in (3.38), we adopt the same trick in [29].

Setting h = (1− ∂2
x)
−1u infers

−A
∫
R
u∂xΨj,K(1− ∂2

x)
−1u dx =− A

∫
R
h∂xΨj,K(1− ∂2

x)h dx

= − A
∫
R
(h2 + h2

x)∂xΨj,K dx+
A

2

∫
R
h2∂3

xΨj,K dx.

According to the definition of h, the following identity holds∫
R
u2Ψj,K dx =

∫
R
(h2 + h2

xx + 2h2
x)∂xΨj,K dx−

∫
R
h2∂3

xΨj,K dx.

Then for m > A
2
, we have

−A
∫
R

(
h2 + h2

x

)
∂xΨj,K dx =

(
−A

2
+m

)∫
R

(
h2 + h2

x

)
∂xΨj,K dx

−
(
m+

A

2

)∫
R

(
h2 + h2

x

)
∂xΨj,K dx

≤
(
−A

2
+m

)∫
R
u2∂xΨj,K dx+

(
−A

2
+m

)
·∫

R
h2∂3

xΨj,K dx−
(
m+

A

2

)∫
R

(
h2 + h2

x

)
∂xΨj,K dx,
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which implies

−A
∫
R
u∂xΨj,K(1− ∂2

x)
−1u dx ≤(−A

2
+m)

∫
R
u2∂xΨj,K dx+m

∫
R
h2∂3

xΨj,K dx

− (m+
A

2
)

∫
R
h2∂xΨj,K dx.

It follows from (3.25) that for K > 0, if

10m

K2
≤ (m+

A

2
)⇔ K ≥

√
10m

m+ A
2

,

then

−A
∫
R
u∂xΨj,K(1− ∂2

x)
−1u dx ≤ (−A

2
+m)

∫
R
u2∂xΨj,K dx. (3.39)

To consider the upper bound for Q1, Q2 and Q3, we divide R into two parts:

Dj ∪Dc
j , where Dj = [x̃j−1 + L

4
, x̃j − L

4
]. The two crucial estimates related to Dj and

Dc
j are listed in the following. For x ∈ Dj,

‖u(t)‖L∞(Dj)
≤

N∑
i=1

‖ϕci(· − x̃i(t))‖L∞(Dj)
+ ‖u−

N∑
i=1

ϕci(· − x̃i(t))‖L∞(Dj)

≤ O(e−
L
8 ) +O(

√
α),

(3.40)

For x ∈ Dc
j , taking advantage of (3.14), (3.28) and the definition of Ψj,K , we know

|x− yj(t)| ≥
x̃j(t)− x̃j−1(t)

2
− L

4
≥ (cj − cj−1)t

4
+
L

8
≥ σ0t+

L

8
,

which implies, for K = O(
√
L) and sufficiently large L0,∣∣∣∣x− yj(t)K

∣∣∣∣ ≥ σ0t+ L
8

K
> 1.

Hence, there holds

∂xΨj,K(t, x) =
1

K
Ψ′j,K(

x− yj(t)
K

) ≤ 1

K
e−

1
K

(σ0t+
L
8

), x ∈ Dc
j . (3.41)

For α0 > 0 small enough and L0 > σ2 large enough, since ∂xΨj,K , u
2, u2

x, η
2 are

all positive, then

Q1(t) =
1

2

∫
Dj

u∂xΨj,K

(
(σ − 1)u2 + σu2

x + η2
)
dx
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+
1

2

∫
Dcj

u∂xΨj,K

(
(σ − 1)u2 + σu2

x + η2
)
dx

≤ 1

2
max{|σ − 1|, |σ|, 1} ‖u(t)‖L∞(Dj)

∫
Dj

∂xΨj,K

(
u2 + u2

x + η2
)
dx

+
1

2
max{|σ − 1|, |σ|, 1} ‖u(t)‖L∞(Dcj )

sup
x∈Dcj
|∂xΨj,K(x− yj(t))| ·∫

Dcj

(
u2 + u2

x + η2
)
dx

≤ C

K
‖u0‖3

X e
−σ0t+

L
8

K +
σ0

8

∫
R
∂xΨj,K

(
u2 + u2

x + η2
)
dx.

For Q2(t), by Cauchy inequality and Hölder’s inequality we know∫
R
u∂xΨj,K(1− ∂2

x)
−1η dx =

∫
R
u∂xΨj,Kp ∗ η dx

≤ 1

2a

∫
R
u2∂xΨj,K dx+

a

2

∫
R
∂xΨj,K(p ∗ η)2 dx

≤ 1

2a

∫
R
u2∂xΨj,K dx+

a

4

∫
R
∂xΨj,K(p ∗ η2) dx,

(3.42)

where

(p ∗ η)2 (x) =

[
1

2

∫
R
e−|x−y|η(y) dy

]2

≤ 1

4

(∫
R
e−|x−y| dy

)(∫
R
e−|x−y|η2(y) dy

)
=

1

2

(
p ∗ η2

)
(x).

For x ∈ Dc
j , by the property of convolution and (3.41), the following inequality holds∫

Dcj

∂xΨj,Kp ∗ η2 dx ≤ sup
x∈Dcj
|∂xΨj,K |

∫
Dcj

p ∗
(
u2 + u2

x + η2
)
dx

≤ 1

2
sup
x∈Dcj
|∂xΨj,K |

∫
R
e−|x|dx

∫
R

(
u2 + u2

x + η2
)
dx

≤ C

K
‖u0‖2

X e
−σ0t+

L
8

K .

(3.43)

By the given condition (3.25), we have

(
1− ∂2

x

)
∂xΨj,K ≥

(
1− 10

K2

)
∂xΨj,K .
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which is equivalent to

(
1− ∂2

x

)−1
∂xΨj,K ≤

(
1− 10

K2

)−1

∂xΨj,K , for K ≥ 4. (3.44)

Hence, for x ∈ Dj,∫
Dj

∂xΨj,K(p ∗ η2) dx ≤
∫
Dj

η2
(
1− ∂2

x

)−1
∂xΨj,K dy

≤
(

1− 10

K2

)−1 ∫
R
η2∂xΨj,K dx.

(3.45)

Combining (3.42), (3.43) and (3.45), we obtain

Q2(t) ≤ 1

2a

∫
R
u2∂xΨj,K dx+

a

4

(
1− 10

K2

)−1 ∫
R
η2∂xΨj,K dx+

C

K
‖u0‖2

X e
−σ0t+

L
8

K .

Q3(t) can be treated with the same process. For x ∈ Dc
j , we deduce from (3.41)

that∫
Dcj

u∂xΨj,K

(
1− ∂2

x

)−1
(

3− σ
2

u2 +
σ

2
u2
x +

1

2
η2

)
dx

≤ 1

2
max{|3− σ| , |σ| , 1} ‖u‖L∞ sup

x∈Dcj
|∂xΨj,K(x− yj(t))|

∫
R
p ∗
(
u2 + u2

x + η2
)
dx

=
1

4
max{|3− σ| , |σ| , 1} ‖u‖L∞ sup

x∈Dcj
|∂xΨj,K(x− yj(t))|

∫
R
e−|x| ∗

(
u2 + u2

x + η2
)
dx

≤ C

K
‖u0(t)‖3

X e
−σ0t+

L
8

K .

For x ∈ Dj, using equation (3.40) and taking L0 > σ2 large enough, we infer∫
Dj

u∂xΨj,K

(
1− ∂2

x

)−1
(

3− σ
2

u2 +
σ

2
u2
x +

1

2
η2

)
dx

≤ 1

2
max{|3− σ| , |σ| , 1} ‖u‖L∞

∫
Dj

∂xΨj,K

(
1− ∂2

x

)−1 (
u2 + u2

x + η2
)
dx

≤ 1

4
max{|3− σ| , |σ| , 1} ‖u‖L∞

∫
R
∂xΨj,Ke

−|x| ∗
(
u2 + u2

x + η2
)
dx

≤ σ0

8

∫
R
∂xΨj,K

(
u2 + u2

x + η2
)
dx.

Thus, the estimates on Dc
j and Dj guarantee that

Q3(t) ≤ C

K
‖u0‖3

X e
−σ0t+

L
8

K +
σ0

8

∫
R
∂xΨj,K

(
u2 + u2

x + η2
)
dx.
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Substituting the estimates of Q1(t), Q2(t), and Q3(t) and (3.39) into (3.38), we

derive that

J(t) ≤C
K

(
‖u0(t)‖3

X + ‖u0(t)‖2
X

)
e−

σ0t+
L
8

K +
σ0

4

∫
R
∂xΨj,K

(
u2 + u2

x + η2
)
dx

+

(
m+

1

2a

)∫
R
u2∂xΨj,K dx+

a

4

(
1− 10

K2

)−1 ∫
R
η2∂xΨj,K dx.

For α0 > 0 small enough and L0 > σ2 large enough, by the definition of σ0 in (3.33)

and equation (3.14), we have

− ẏj(t)
2

= −
˙̃xj−1(t)− cj−1

4
−

˙̃xj(t)− cj
4

− cj−1 + cj
4

≤ −c1 + σ0

2
.

Associating the above estimate with J(t) and (3.37), there obtains the inequality

d

dt
Ij,K(t) ≤ C

K

(
‖u0(t)‖3

X + ‖u0(t)‖2
X

)
e−

σ0t+
L
8

K − σ0

4

∫
R
∂xΨj,K

(
u2 + u2

x + η2
)
dx

+

(
−c1

2
+
a

4

(
1− 10

K2

)−1
)∫

R
η2∂xΨj,K dx

+

(
m− c1

2
+

1

2a

)∫
R
u2∂xΨj,K dx.

Let m and a satisfy the following conditions

m− c1

2
+

1

2a
≤ 0, −c1

2
+
a

4

(
1− 10

K2

)−1

≤ 0, m >
A

2
. (3.46)

Then

d

dt
Ij,K(t) ≤ C

K
e−

σ0t+
L
8

K − σ0

4

∫
R
∂xΨj,K

(
u2 + u2

x + η2
)
dx.

The desired results (3.34) now follows by applying Gronwall’s inequality.

Remark 6. We can find such m and a to meet the conditions in (3.46) as follows. Let

f(x) =
A+ x+

√
(A+ x)2 + 2

2
.

Since c1 >
A+
√
A2+2
2

= f(0) and f(x) is increasing for x > 0, then there exists ε0 > 0

such that

f(0) < f(ε0) < c1, 0 < ε0 <
c1 − A

2
, ε0 → 0.
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Choose m = A
2

+ ε0, then from the first two condition in (3.46), to find such a, we

need to show the following inequality is true

1

c1 − A− 2ε0
≤ 2c1(1− 10

K2
).

Actually, since c1 >
A+
√
A2+2
2

, taking K ≥
√

20c1(c1−A−2ε0)
2c1(c1−A−2ε0)−1

, we have the inequality

mentioned above holds, which implies such m and a exist.

In the next lemma, we present another version of Lemma 3.7 in [13], where

the assumption is not strictly orthogonal. This is helpful while proving the local

coercivity of the linear operator Hc : X → X∗ at ϕc, ∀c ∈ {ci}Ni=1.

Lemma 3.2.4. Assume δ > 0, σ ≤ 1 and ϕc = (ϕc, ψc) is a smooth traveling wave

of (3.3). There exists a constant Cδ > 0 such that

〈Hcζ, ζ〉 ≥ Cδ ‖ζ‖2
X ,

for all ζ ∈ X satisfying |〈ζ,ν〉|+ |〈ζ, ∂xν〉| ≤ δ ‖ζ‖X ,where ν = ((1− ∂2
x)ϕc, ψc).

Proof. According to the spectrum analysis of Hc, let ∂cϕ be decomposed into a0χ+

b0ϕ
′ + a0p0 with a0 > 0, where χ is the eigenvector of negative eigenvalue, i.e

Hcχ = − |λ1|χ, ϕ′ is the eigenvector of eigenvalue 0, i.e. Hcϕ
′ = 0, p0 is the positive

subspace of Hc. Without loss of generality, we assume ‖χ‖ = 1. Therefore,

〈Hc∂cϕ, ∂cϕ〉 =〈Hc (a0χ+ b0ϕ
′ + a0p0) , a0χ+ b0ϕ

′ + a0p0〉

= a2
0〈Hcχ,χ〉+ a2

0〈Hcp0,p0〉

= − a2
0 |λ1|+ a2

0〈Hcp0,p0〉.

Since 〈Hc∂cϕ, ∂cϕ〉 = −d′′(c) < 0, then 〈Hcp0,p0〉 < |λ1|. Let ε > 0, such that

〈Hcp0,p0〉 ≤
1

1 + ε
|λ1| .

By the assumption we know |(ζ,ϕ)H1×L2|+|(ζ,ϕ′)H1×L2| = |〈ζ,ν〉|+|〈ζ, ∂xν〉| ≤

δ ‖ζ‖X . Then there exists ε = ε(δ) such that ζ has the decomposition aχ+ εϕ′ + p1
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with p1 in the positive subspace of Hc. If a = 0, then ζ = εϕ′ + p1. It is easily to

check that 〈Hcζ, ζ〉 ≥ Cδ ‖ζ‖2
X . If a 6= 0, then ζ = aχ + εϕ′ + ap with p in the

positive subspace of Hc. Differentiating 〈cE ′(ϕc)− f ′(ϕc), ζ〉 = 0 with respect to c,

we have 〈Hc∂cϕ, ζ〉+ 〈E ′(ϕc), ζ〉 = 0, i.e.

〈Hc∂cϕ, ζ〉 = 〈−a0 |λ1|χ+ a0Hcp0, aχ+ εϕ′ + ap〉,

which implies

|〈Hcp0,p〉| ≤ |λ1|+
δ ‖ζ‖X
|aa0|

.

Consequently,

〈Hcζ, ζ〉 = 〈Hc (aχ+ εϕ′ + ap) , aχ+ εϕ′ + ap〉

= − a2 |λ1|+ a2〈Hcp,p〉

≥ − a2 |λ1|+ a2 〈Hcp0,p〉2

〈Hcp0,p0〉

≥ εa2 |λ1| = ε |λ1| ‖aχ‖2
X .

In fact, the function Γ(f, g) = 〈Hcf, g〉 is a nonnegative sesquilinear form on positive

subspace of Hc. Thus, we have the Cauchy-Schwarz inequality

|Γ (f, g)|2 ≤ 〈Hcf, f〉〈Hcg, g〉.

On the other hand, in view of p in the positive subspace of Hc, there exists λ3 > 0,

such that 〈Hcp,p〉 ≥ λ3 ‖p‖2
X for all p orthogonal to χ and ϕ′, which implies

〈Hcζ, ζ〉 ≥ − |λ1| ‖aχ‖2
X + λ3 ‖ap‖2

X .

Then, it follows that for k = ε
ε+2

min{|λ1| , λ3},

〈Hcζ, ζ〉 ≥ k
(
‖aχ‖2

X + ‖ap‖2
X

)
.

Since ε and δ are small enough comparing with k, we obtain

〈Hcζ, ζ〉 ≥ Cδ ‖ζ‖2
X ,
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which completes the proof of this lemma.

Now, it remains to show the last property in this subsection. Taking advantage

of Lemma 3.2.4, we will prove that Hci is a local coercive operator as follows.

Lemma 3.2.5. There exist σ ≤ 1, δ > 0, Cδ > 0 and C > 0 depending only on c1,

such that for all c ≥ c1, Θ ∈ C2(R) > 0 and ζ = (ζ, ξ) ∈ X satisfying∣∣∣〈√Θζ,ν〉
∣∣∣+
∣∣∣〈√Θζ, ∂xν〉

∣∣∣ ≤ δ ‖ζ‖X ,

and ∣∣∣∣(Θ′)2

4Θ

∣∣∣∣+ c |σΘ′|+
∣∣∣∣Θ′′2

∣∣∣∣ ≤ min

{
1

4
,

Cδ
4(c+ c|σ|)

}
Θ,

where ν = ((1− ∂2
x)ϕc, ψc), it holds

∫
R

[
Θ
(
(c− σϕc) (∂xζ)2 + (−3ϕc + σϕc,xx + c+ A) ζ2

)
− 2Θ

c

c− ϕ
ζξ

+ Θ (c− ϕ) ξ2 + σΘ′ζ2ϕc,x

]
dx ≥ C

∫
R

Θ
(
ζ2 + ζ2

x + ξ2
)
dx.

(3.47)

Proof. Following with the strategy in [29], we have

〈Hc

√
Θζ,
√

Θζ〉L2×L2 = 〈Hc

√
Θ

 ζ

ξ

 ,
√

Θ

 ζ

ξ

〉L2×L2

= 〈

 (−∂x ((c− σϕc)∂x)− 3ϕc + σϕc,xx + c+ A)
√

Θζ − c
c−ϕ

√
Θξ

− c
c−ϕ

√
Θζ + (c− ϕ)

√
Θξ

 ,

 √Θζ
√

Θξ

〉L2×L2

=

∫
R

Θ
[
(c− σϕc) (∂xζ)2 + (−3ϕc + σϕc,xx + c+ A) ζ2

]
dx+

∫
R

c− σϕc
4

(Θ′)2

Θ
ζ2 dx

+

∫
R

(c− σϕc) Θ′ζ∂xζ dx− 2

∫
R

Θ
c

c− ϕc
ζξ dx+

∫
R

Θ (c− ϕc) ξ2 dx

=

∫
R

[
Θ
(
(c− σϕc) (∂xζ)2 + (−3ϕc + σϕc,xx + c+ A) ζ2

)
− 2Θ

c

c− ϕc
ζξ + Θ (c− ϕc) ξ2

+ σΘ′ζ2ϕc,x

]
dx+

∫
R

[
(c− σϕc)

(
(Θ′)2

4Θ
− Θ′′

2

)
− σ

2
ϕc,xΘ

′
]
ζ2 dx
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:= Λ +

∫
R

[
(c− σϕc)

(
(Θ′)2

4Θ
− Θ′′

2

)
− σ

2
ϕc,xΘ

′
]
ζ2 dx,

and ∥∥∥∥∥∥∥
√

Θ

 ζ

ξ


∥∥∥∥∥∥∥

2

X

=

∫
R

(√
Θζ
)2

+
(
∂x

(√
Θζ
))2

+
(√

Θξ
)2

dx

=

∫
R

Θ
(
ζ2 + (∂xζ)2 + ξ2

)
dx+

∫
R

(
(Θ′)2

4Θ
− Θ′′

2

)
ζ2 dx.

Due to Lemma 3.2.4, there exist δ > 0 and Cδ > 0, such that if for c ≥ c1

|〈ζ,ν〉L2×L2|+ |〈ζ, ∂xν〉L2×L2| ≤ δ ‖ζ‖X , where ν =
((

1− ∂2
x

)
ϕc, ψc

)
, (3.48)

then

〈Hcζ, ζ〉L2×L2 ≥ Cδ ‖ζ‖2
X . (3.49)

Hence, taking ζ =
√

Θζ, integrating with the conditions that ϕc is bounded by

0 and c− A1, |ϕ′c| is bounded by c− A1 and∣∣∣∣(Θ′)2

4Θ

∣∣∣∣+ c |σΘ′|+
∣∣∣∣Θ′′2

∣∣∣∣ ≤ min

{
1

4
,

Cδ
4(c+ c ‖σ‖)

}
Θ,

we deduce the following inequality

Λ+
Cδ
4

∫
R

Θζ2 dx ≥ Cδ

∫
R

Θ
(
ζ2 + (∂xζ)2 + ξ2

)
dx−min

{
1

4
,

Cδ
4(c+ c|σ|)

}∫
R

Θζ2 dx,

which implies there exists C such that

Λ ≥ C

∫
R

Θ
(
ζ2 + (∂xζ)2 + ξ2

)
dx.

This completes the proof of Lemma 3.2.5.

According to Proposition 3.2.1, to prove the main theorem is to prove inequality

(3.11), where xi(t) are taken as x̃i(t) in Lemma 3.2.2 and M will be determined later.

Indeed, the following three lemmas contribute to the estimate of v at time t = t∗.
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When there is no ambiguity, we write u = u(t∗), X = (x̃1, · · · , x̃N) =

(x̃1(t
∗), · · · , x̃N(t∗)), Ei(u) = Ei(u(t∗)), Fi(u) = Ei(u(t∗)) and so forth. Define

µi = (µi, τi) ∈ X, for i = 1, 2, · · · , N , by

u = (1 + ai)RX + µi, satisfying 〈E ′i(RX),µi〉L2×L2 = 0, (3.50)

where

RX =(RX , PX) =
N∑
i=1

Ri = (
N∑
i=1

Ri(·),
N∑
i=1

Pi(·))

=

(
N∑
i=1

ϕci(· − x̃i(t∗)),
N∑
i=1

ψci(· − x̃i(t∗))

)
.

By (3.29) and (3.30), and the exponential decay of ϕci , we have

〈E ′i(RX),RX〉 =〈E ′i(ϕci),ϕci〉+O(e−
L
4 )

= ‖ϕci‖
2
X +O(e−

L
4 )

>
1

2
‖ϕci‖

2
X ,

(3.51)

which implies µi (i = 1, . . . , N) are well defined.

We also set v = (v, w) = u − RX . The goal of this subsection is to show

‖v‖X ≤ O(
√
ε + e−

L
8 ). If ‖v‖X ≤

√
ε + e−

L
8 , then we can set M = 2 to reach the

conclusion (3.11). Hence, we subsequently assume ‖v‖X ≥
√
ε+ e−

L
8 .

By computing the variational derivatives of localized conservation laws Ei and

Fi, we know 
(Ei)

′′
uu = Φi (1− ∂xx)− Φ′i∂x,

(Ei)
′′
uη = (Ei)

′′
ηu = 0,

(Ei)
′′
ηη = Φi,
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and 
(Fi)

′′
uu = (3u− σux∂x − σuxx − σu∂2

x − A) Φi − σ (uxΦ
′
i + uΦ′i + ∂x) ,

(Fi)
′′
uη = (Fi)

′′
ηu = (η + 1) Φi,

(Fi)
′′
ηη = uΦi.

Then the localized Hessian operator Hci has following form:

Hci = ciE
′′(ϕci)− F ′′ (ϕci) =

 Lci −Φi(1 + ψci)

−Φi(1 + ψci) Φi (ci − ϕci)

 , (3.52)

where

Lci = −∂x (Φi(ci − σϕci)∂x) + Φi (−3ϕci + σϕci,xx + ci + A) + σ∂xϕci .

For abbreviation, we use Hi instead of Hci , Li instead of Lci .

The following lemma gives the estimate of ai and µi through the almost

monotonicity property.

Lemma 3.2.6. Let u = RX +v = (1+ai)RX +µi satisfy 〈E ′i(RX),µi〉 = 0. Assume

‖v‖X ≥
√
ε+ e−

L
8 . Then for i = 1, · · · , N ,

|ai| ≤ O(‖v‖2
X), (3.53)

and

‖µi‖X ∼ ‖v‖X . (3.54)

Proof. From the definition of localized conservation laws (3.31) and (3.32) and the

property of Φi (3.29) and (3.30), we know

Ij,K (u(t∗)) =
N∑
j=i

Ej (u(t∗)) , for i = 2, · · · , N, (3.55)

E (u(t∗)) =
N∑
j=1

Ej (u(t∗)) . (3.56)
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In light of Taylor formula and equation (3.50), we infer that for t = t∗

N∑
j=1

Ej (u) =
N∑
j=1

Ej (RX) +
N∑
j=1

〈E ′j (RX) ,v〉+O(‖v‖2
X)

=
N∑
j=1

Ej
(
ϕcj
)

+
N∑
j=1

aj〈E ′j (RX) ,RX〉+O(‖v‖2
X).

(3.57)

Moreover, the way how we construct Ψj,K implies

Ej (Rk) ≤ O(e−
L
4 ), for j 6= k, and Ej (Rj) = E

(
ϕcj
)

+O(e−
L
4 ). (3.58)

Note that the conservation law E(u) and almost monotonicity of Ij,K provide

Ij,K(u(t∗)) ≤Ij,K(u0) +O(e−
L
4 ) ≤

N∑
j=i

E
(
ϕcj
)

+O(e−
L
4 ) +O(ε),

E (u(t∗)) = E (u0) =
N∑
j=1

E
(
ϕcj
)

+O(e−
L
4 ) +O(ε).

(3.59)

Hence, from (3.55)-(3.59), we deduce

N∑
j=i

aj〈E ′j (RX) ,RX〉 ≤ O(‖v‖2
X) i = 1, · · · , N. (3.60)

Similarly, in view of conservation law F (u) and Taylor’s formula, it follows that

for t = t∗

F (u(t∗)) =
N∑
i=1

Fi (u(t∗)) =
N∑
i=1

Fi (RX) +
N∑
i=1

〈F ′i (RX) ,v〉+O(‖v‖2
X)

=
N∑
i=1

Fi (ϕci) +
N∑
i=1

〈F ′i (RX) ,v〉+O(‖v‖2
X) +O(e−

L
4 ),

(3.61)

and

F (u(t∗)) = F (u0) =
N∑
j=1

F
(
ϕcj
)

+O(e−
L
4 ) +O(ε). (3.62)

Thus, from equation (3.61) and (3.62), there holds

N∑
i=1

〈F ′i (RX) ,v〉 = O(‖v‖2
X). (3.63)
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On the other hand, by the identity F ′ (ϕc) = cE ′ (ϕc), (3.29) and (3.30), we know

‖F ′i (RX)− ciE ′i (RX)‖X∗ ≤ ‖F
′ (ϕci)− ciE ′ (ϕci)‖X∗ +O(e−

L
4 ) ≤ O(e−

L
4 ),

which implies

N∑
i=1

〈F ′i (RX) ,v〉 =
N∑
i=1

〈F ′i (RX)− ciE ′i (RX) ,v〉+
N∑
i=1

〈ciE ′i (RX) ,v〉

=
N∑
i=1

〈F ′i (RX)− ciE ′i (RX) ,v〉+
N∑
i=1

ciai〈E ′i (RX) ,RX〉

=
N∑
i=1

ciai〈E ′i (RX) ,RX〉+O(‖v‖2
X).

(3.64)

Hence, combining (3.63) and (3.64), we obtain

N∑
i=1

ciai〈E ′i (RX) ,RX〉 = O(‖v‖2
X).

Using the Abel Transformation, the above estimate yields

N∑
i=1

(ci − ci−1)
N∑
j=i

aj〈E ′j (RX) ,RX〉+ c1

N∑
i=1

ai〈E ′i (RX) ,RX〉 = O(‖v‖2
X). (3.65)

Furthermore, associating (3.60) with (3.65), we infer

|ai〈E ′i (RX) ,RX〉| ≤ O(‖v‖2
X),∀i = 1, · · · , N,

which implies

|ai| ≤ O(‖v‖2
X).

Consequently, by (3.50), we have

‖µi‖X ∼ ‖v‖X .

This competes the proof of Lemma 3.2.6.

The lemma in the following shows that Ei(µi) is bounded above by the property

of local coercivity of Hi.

77



Lemma 3.2.7. Let ai and µi satisfy Lemma 3.2.6. We have

〈Hi(RX)µi,µi〉 ≥ CδEi (µi) , i = 1, · · · , N, (3.66)

where Ei and Hi are defined in (3.31) and (3.52), respectively.

Proof. Notice that (3.66) is equivalent to (3.47) while letting Θ = Φi, ζ = µi,

ν = ((1− ∂2
x)Ri, Pi) and Hc = Hi in Lemma 3.2.5. Hence, in order to apply this

lemma, we claim that for ν = ((1− ∂2
x)Ri, Pi),∣∣∣〈√Φiµi, ∂xν〉

∣∣∣+
∣∣∣〈√Φiµi,ν〉

∣∣∣ ≤ (O(
√
ε) +O(e−

L
8 )
)
‖µi‖X .

In fact,〈√
Φiµi, ∂xν

〉
=
〈
µi, ∂xν

〉
+
〈(√

Φi − 1
)
µi, ∂xν

〉
=
〈
µi, (1− ∂2

x)∂xRi

〉
+
〈
τi, ∂xPi

〉
+
〈(√

Φi − 1
)
τi, ∂xPi

〉
+
〈(√

Φi − 1
)
µi, (1− ∂2

x)∂xRi

〉
= − ai

〈
Ri, (1− ∂2

x)∂xRi

〉
− ai

〈
Pi, ∂xPi

〉
+
〈(√

Φi − 1
)
τi, ∂xPi

〉
+
〈(√

Φi − 1
)
µi, (1− ∂2

x)∂xRi

〉
,

Then, by (3.29) and (3.30), we deduce∣∣∣〈√Φiµi, ∂xν
〉∣∣∣ ≤ (O(

√
ε) +O(e−

L
8 )
)
‖µi‖X .

On the other hand, adopting the same method, we have〈√
Φiµi,ν

〉
=
〈
µi,ν

〉
+
〈(√

Φi − 1
)
µi,ν

〉
=
〈
µi, (1− ∂2

x)Ri

〉
+
〈
τi, Pi

〉
+
〈(√

Φi − 1
)
µi, (1− ∂2

x)Ri

〉
+
〈(√

Φi − 1
)
τi, Pi

〉
= 〈E ′i(RX),µi〉 −

∫
R

(1− Φi) (µiRi + ∂xµi∂xRi + τiPi) dx

−
N∑

j=1,j 6=i

∫
R

(1− Φi) (µiRj + ∂xµi∂xRj + τiPj) dx

+
〈(√

Φi − 1
)
µi, (1− ∂2

x)Ri

〉
+
〈(√

Φi − 1
)
τi, Pi

〉
,
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which infers ∣∣∣〈√Φiµi,ν
〉∣∣∣ ≤ (O(

√
ε) +O(e−

L
8 )
)
‖µi‖X .

Hence, according to Lemma 3.2.5, we know (3.66) holds, which implies the proof of

Lemma 3.2.7 is compete.

In the last lemma, we prove that
∑N

i=1〈Hi(RX)µi,µi〉, which is the upper bound

of Ei(µi), can be controlled by an infinitesimal with the application of conservation

laws and Taylor formula.

Lemma 3.2.8. Let ai and µi satisfy Lemma 3.2.6. If Ei, Fi are the two localized

conservation laws of system (3.3) and Hi is defined in (3.52), then

N∑
i=1

〈Hi(RX)µi,µi〉 = O(‖v‖3
X) +O(e−

L
4 ) +O(ε). (3.67)

Proof. By Taylor formula, we know

N∑
i=1

(ciEi(u)− Fi(u)) =
N∑
i=1

(ciEi(RX)− Fi(RX)) +
N∑
i=1

〈ciE ′i(RX)− F ′i (RX),vi〉

+
1

2

N∑
i=1

〈ciE ′′i (RX)− F ′′i (RX),v2
i 〉

+O(‖v‖3
X) +O(e−

L
4 )

=
N∑
i=1

(ciEi(RX)− Fi(RX)) +
1

2

N∑
i=1

〈ciE ′′i (RX)− F ′′i (RX),v2
i 〉

+O(‖v‖3
X) +O(e−

L
4 ).

More precisely, the decomposition of v and (3.50) ensure

N∑
i=1

(ciEi(u)− Fi(u)) =
N∑
i=1

(ciEi(RX)− Fi(RX)) +
1

2

N∑
i=1

〈Hi(RX)µi,µi〉

+
N∑
i=1

ai〈Hi(RX)RX ,µi〉+
N∑
i=1

a2
i

2
〈Hi(RX)RX ,RX〉

+O(‖v‖3
X) +O(e−

L
4 ).
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which implies

N∑
i=1

〈Hi(RX)µi,µi〉 =
N∑
i=1

2 [ciEi(u)− ciEi(RX)]−
N∑
i=1

2 [Fi(u)− Fi(RX)]

−
N∑
i=1

2ai〈Hi(RX)RX ,µi〉 −
N∑
i=1

a2
i 〈Hi(RX)RX ,RX〉

+O(‖v‖3
X) +O(e−

L
4 ).

(3.68)

For the first term on the left side of (3.68), Abel’s transformation infers

N∑
i=1

ciEi(u) =
N∑
i=2

(ci − ci−1)
N∑
j=i

Ej(u) + c1

N∑
j=1

Ej(u)

=
N∑
i=2

(ci − ci−1) Ii(t
∗,u(t∗)) + c1E(u(t∗))

≤
N∑
i=2

(ci − ci−1) Ii(0,u0) + c1E(u0) +O(e−
L
4 )

≤
N∑
i=2

(ci − ci−1)
N∑
j=i

E(ϕcj) + c1

N∑
j=1

E(ϕcj) +O(e−
L
4 ) +O(ε)

≤
N∑
i=1

ciE(ϕci) +O(e−
L
4 ) +O(ε)

≤
N∑
i=1

ciEi(RX) +O(e−
L
4 ) +O(ε). (3.69)

For the second term on the left side of (3.68), by conservation law we obtain

N∑
i=1

Fi(u) =
N∑
i=1

Fi(u0) =
N∑
i=1

Fi(RX) +O(e−
L
4 ) +O(ε). (3.70)

The estimates for the third term and fourth term on the left side of (3.68) follow

with Lemma 3.2.6,

N∑
i=1

ai〈Hi(RX)RX ,µi〉 = O(‖v‖3
X) +O(e−

L
4 ) +O(ε), (3.71)

and
N∑
i=1

a2
i 〈Hi(RX)RX ,RX〉 = O(‖v‖3

X) +O(e−
L
4 ) +O(ε). (3.72)
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In consequence, substituting (3.69)-(3.72) into (3.68), we complete the proof of Lemma

3.2.8.

3.3 Proof of stability theorem

Proof of Theorem 3.1.6. According to equation (3.66) and (3.67), we have

N∑
i=1

Ei(µi) ≤
N∑
i=1

〈Hi(RX)µi,µi〉 = O(‖v‖3
X) +O(e−

L
4 ) +O(ε). (3.73)

Meanwhile, by the definition of µi (3.50) and the property of (3.53) the following

estimate holds
N∑
i=1

Ei(µi) =
N∑
i=1

Ei(v) +O(‖v‖3
X). (3.74)

Hence, in light of
N∑
i=1

Ei(v) = E(v) = ‖v‖2
X , (3.75)

there exists a constant C, such that

‖v‖X ≤ O(e−
L
8 ) +O(

√
ε) ≤ C(e−

L
8 +
√
ε). (3.76)

Let M be 2C in (3.10). This then concludes the result of Proposition 3.2.1. Conse-

quently, the proof of Theorem 3.1.6 is complete.
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CHAPTER 4

A SHALLOW-WATER MODELING WITH THE CORIOLIS EFFECT AND

TRAVELING WAVES

4.1 Model equations in the rotational shallow water

In this chapter, we consider the incompressible geophysical fluid dynamics with

the Coriolis effect. We will first establish the Green-Naghdi equations with effect of

the Coriolis forcing in shallow water.

4.1.1 Derivation of the rotation-Green-Naghdi equations

It is known that the Green-Naghdi equations (or the Serre-Green-Naghdi

equations) [33, 56] are the first order approximation of the 2D governing water

wave equations in the shallow-water scaling (µ � 1, ε = O(1)) [2, 33]. It is the

one-dimensional surface wave system coupled with free surface elevation η to the

vertically averaged horizontal component of the velocity ū in the form
ηt + ((1 + εη)ū)x = 0,

ūt + ηx + εūūx = µ
3(1+εη)

((1 + εη)3(ūxt + εūūxx − εū2
x))x +O(µ2).

It is our purpose here to establish equations with the effect of the Earth rotation

analogous to the classical Green-Naghdi equations. This is the starting point our

derivation of other lower order approximation models with the Coriolis effect. These

equations, so called the rotation-Green-Naghdi (R-GN) equations, are now proposed

in the following.
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ηt + ((1 + εη)ū)x = 0,

ūt + ηx + εūūx + 2Ωηt = µ
3(1+εη)

((1 + εη)3(ūxt + εūūxx − εū2
x))x +O(µ2).

(4.1)

It is noted that the R-GN model in (4.1) (for the solution (η, ū)) is locally well-posed

in the Sobolev space Hs(R) × Hs+1(R) with s > 3
2

[10], while the case of without

the Coliolis effect was studied in [48]. In what follows, we are going to formally

demonstrate derivation of the R-GN equations (4.1) in the above approximated from

the governing equations in the f -plane (1.12).

4.1.1.1 The first equation of the rotation-Green-Naghdi equations

This is the same as in the classical Green-Naghdi equations [33]. Let ū be the

average horizontal velocity,

ū(t, x)
def
=

1

h

∫ h

0

u(t, x, z) dz, (4.2)

where h = h(t, x) = 1 + εη(t, x). We multiply (4.2) by h and differentiate it with

respect to x to find

(hū)x =

∫ h

0

ux dz + εηxuh,

where uh = u(t, x, z)|z=h. According to (1.21c), ux can be substituted by −wz. Then

with the information provided by (1.21f) and (1.21g), the above equation can be

written as

ηt + (hū)x = 0, (4.3)

or

ht + ε(hū)x = 0. (4.4)
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4.1.1.2 The second equation of the rotation-Green-Naghdi equations

In this subsection, we will derive the second equation of the R-GN model

equations, where the assumptions on the pressure field play the crucial role. To this

end, we require the shallowness parameter µ� 1, but without any assumption on ε.

The process will be divided into two parts. Firstly, let

u(t, x, z) = u0(t, x, z) + µu1(t, x, z) +O(µ2). (4.5)

We are going to present u,w, p in terms of u0, h, z and find the equation related to

u0 and h only. For the linear problem (µ → 0), the expression in (1.21d) implies

u0,z = 0. Hence, u0 is a function independent of z, i.e. u0 = u0(x, t). From (1.21c)

and (1.21d), we have

µuxx + uzz = 0,

which implies

µ0 : u0,zz = 0,

µ1 : u0,xx = −u1,zz.

(4.6)

Considering u0 = u0(t, x), the equation of order µ1 implies

u1 = −z
2

2
u0,xx + zΨ(t, x),

where Ψ(t, x) is an arbitrary function. Therefore,

u = u0 − µ
z2

2
u0,xx + µzΨ(t, x) +O(µ2). (4.7)

Applying (4.7), (1.21c) and (1.21g) to the identity w = w|z=0 +
∫ z

0
wz′ dz

′, we obtain

w = −zu0,x + µ
z3

6
u0,xxx − µ

z2

2
Ψx(t, x) +O(µ2). (4.8)

Now substituting u and w into (1.21b) gives

−pz = −µz(u0,xt + εu0u0,xx − εu2
0,x)− 2Ωu0 + µΩz2u0,xx − 2ΩµzΨ +O(µ2).
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In light of this equation, (1.21e) and the identity p = p|z=h −
∫ h
z
pz′ dz

′, we get

p = η − µ

2
(h2 − z2)(u0,xt + εu0u0,xx − εu2

0,x)− 2Ω(h− z)u0

+
µ

3
Ω(h3 − z3)u0,xx − µΩ(h2 − z2)Ψ +O(µ2).

So far the expressions of u,w, p are discovered. To find the equation related to u0 and

h relies on these expressions and (1.21a). Actually, on the one hand, we differentiate

the equation above by x, which yields

px = ηx−
µ

2
(h2 − z2)(u0,xt + εu0u0,xx − εu2

0,x)x − µhhx(u0,xt + εu0u0,xx − εu2
0,x)

− 2Ωhxu0 − 2Ω(h− z)u0,x + µΩh2hxu0,xx +
µ

3
Ω(h3 − z3)u0,xxx

− 2µΩhhxΨ− µΩ(h2 − z2)Ψx +O(µ2).

On the other hand, we use (4.7) and (4.8) in (1.21a) to deduce

u0,t − µ
z2

2
u0,xxt + µzΨt + εu0u0,x + εµ

z2

2
(u0,xu0,xx − u0u0,xxx) + εµzu0Ψx

−2Ωzu0,x + µ
Ωz3

3
u0,xxx − µΩz2Ψx = −px +O(µ2).

Combining the last two equations, we have

u0,t + µzΨt + εu0u0,x + εµzu0Ψx + ηx =
µ

2
h2(u0,xt + εu0u0,xx − εu2

0,x)x

+ µhhx(u0,xt + εu0u0,xx − εu2
0,x) + 2Ω(hxu0 + hu0,x)− µΩh2hxu0,xx

− µ

3
Ωh3u0,xxx + 2µΩhhxΨ + µΩh2Ψx +O(µ2).

Then integrating the above equation with respect to z from 0 to h, we find the

equation related to u0, η, h, i.e.

u0,t + µ
h

2
Ψt + εu0u0,x + εµ

h

2
u0Ψx + ηx =

µ

2
h2(u0,xt + εu0u0,xx − εu2

0,x)x

+ µhhx(u0,xt + εu0u0,xx − εu2
0,x) + 2Ω(hxu0 + hu0,x)− µΩh2hxu0,xx

− µ

3
Ωh3u0,xxx + 2µΩhhxΨ + µΩh2Ψx +O(µ2). (4.9)
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Secondly, to reveal this is the second equation of the R-GN equations, we will introduce

the average horizontal velocity ū to replace u. The relation between ū and u0 is

ū = u0 − µ
h2

6
u0,xx + µ

h

2
Ψ +O(µ2), (4.10)

which can be obtained by using the function u’s expression (4.7) in the definition of

ū (4.2). Now we show more facts about ū and u0.

1. Invoking (4.10), we obtain

µū = µu0 +O(µ2), (4.11)

ūt = u0,t − µ
h2

6
u0,xxt − µ

hht
3
u0,xx + µ

ht
2

Ψ + µ
h

2
Ψt +O(µ2). (4.12)

Similarly,

µ

3h

(
h3(ūxt + εūūxx − εū2

x)
)
x

=
µ

3h

(
h3(u0,xt + εu0u0,xx − εu2

0,x)
)
x

+O(µ2). (4.13)

2. Next, we show the fact that

εūūx = εu0u0,x + µ
hht
3
u0,xx − µ

ht
2

Ψ + εµ
h

2
u0Ψx

− µh
2

6
(εu0u0,xx − εu2

0,x)x +O(µ2). (4.14)

To confirm this, we start with (4.10), which implies

εūūx = εu0u0,x − εµ
h2

6
u0u0,xxx − εµ

hhx
3
u0u0,xx + εµ

hx
2
u0Ψ

+ εµ
h

2
u0Ψx − εµ

h2

6
u0,xu0,xx + εµ

h

2
u0,xΨ +O(µ2).

Now according to Eq.(4.4), we have

−µht
2

Ψ =
µ

2
Ψ(εhxū+ εhūx) =

εµ

2
hxu0Ψ +

εµ

2
hu0,xΨ +O(µ2). (4.15)

The form of εūūx then becomes
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εūūx = εu0u0,x − εµ
h2

6
u0u0,xxx − εµ

hhx
3
u0u0,xx − µ

ht
2

Ψ

+ εµ
h

2
u0Ψx − εµ

h2

6
u0,xu0,xx +O(µ2),

which in turn implies that

εūūx = εu0u0,x − εµ
h2

6
u0u0,xxx − εµ

h2

3
u0,xu0,xx − εµ

hhx
3
u0u0,xx

+εµ
h2

6
u0,xu0,xx − µ

ht
2

Ψ + εµ
h

2
u0Ψx +O(µ2).

In addition, it is inferred from (4.4) that

µ
hht
3
u0,xx = −εµh

2

3
u0,xu0,xx − εµ

hhx
3
u0u0,xx +O(µ2). (4.16)

Consequently, we get (4.14) by plugging (4.16) into the expression of εūūx.

3. By (4.3) and (4.10), it is found that

−2Ωηt = 2Ω(hū)x =2Ω(hu0)x − µΩh2hxu0,xx −
µ

3
Ωh3u0,xxx

+ 2µΩhhxΨ + µΩh2Ψx +O(µ2).

(4.17)

With these facts in hand, we will establish the second equation in the R-GN equations

as follows. To this end, subtracting µ
6
h2(u0,xt + εu0u0,xx − εu2

0,x)x on both sides of

(4.9), we get

u0,t −
µ

6
h2(u0,xt + εu0u0,xx − εu2

0,x)x + µ
h

2
Ψt + εu0u0,x + εµ

h

2
u0Ψx + ηx

=
µ

3
h2(u0,xt + εu0u0,xx − εu2

0,x)x + µhhx(u0,xt + εu0u0,xx − εu2
0,x)

+ 2Ω(hu0)x − µΩh2hxu0,xx −
µ

3
Ωh3u0,xxx + 2µΩhhxΨ + µΩh2Ψx +O(µ2),

which is equivalent to

u0,t − µ
h2

6
u0,xxt − µ

hht
3
u0,xx + µ

ht
2

Ψ + µ
h

2
Ψt

+ εu0u0,x + µ
hht
3
u0,xx − µ

ht
2

Ψ + εµ
h

2
u0Ψx − µ

h2

6
(εu0u0,xx − εu2

0,x)x + ηx

=
µ

3
h2(u0,xt + εu0u0,xx − εu2

0,x)x + µhhx(u0,xt + εu0u0,xx − εu2
0,x)

+ 2Ω(hu0)x − µΩh2hxu0,xx −
µ

3
Ωh3u0,xxx + 2µΩhhxΨ + µΩh2Ψx +O(µ2).

87



In light of (4.12), (4.13), (4.14) and (4.17), the second equation of R-GN equations

has the form as

ūt + ηx + εūūx + 2Ωηt =
µ

3(1 + εη)

(
(1 + εη)3(ūxt + εūūxx − εū2

x)
)
x

+ O(µ2).

With the transport equation in (4.3), there appears the R-GN equations (4.1).

Remark 7. It is observed that presumably from the irrotational condition (1.21d),

(4.7) and (4.8), the function Ψ appeared in the expression of (4.10) could be zero.

For simplicity, we will drop the superscript ‘bar’ in ū in the following subsections.

4.1.2 The rotation-Korteweg-de Vries and the rotation-Benjamin-Bona-Mahony

equations

In view of the derivation of the R-GN equations in the previous subsection,

our attention is now to turned to the cases for the Korteweg-de Vries (KdV) and

the Benjamin-Bona-Mahony (BBM) equations. We derive the rotation-Korteweg-de

Vries (R-KdV) and the rotation-Benjamin-Bona-Mahony (R-BBM) equations in this

subsection. With the expression of εv and the second equation in (4.30), we obtain

ut + cux + ε
3c2

2(c2 + 1)
(u2)x − µ

c2

3 (c2 + 1)
uxxt = O(ε2, εµ, µ2), (4.18)

which is actually the R-BBM equation. Replacing uxxt by −cuxxx +O(ε, µ), it is the

R-KdV equation, namely

ut + cux + ε
3

2
· c2

c2 + 1
(u2)x + µ

c3

3(c2 + 1)
uxxx = O(ε2, εµ, µ2). (4.19)

4.1.2.1 Assume η = 1
c
u+ εv and determine the expression of v

In view of the R-GN equations in (4.1), we readily check that the leading

order expansion with respect to two small independent parameters ε and µ gives the

following Boussinesq system with the Earth rotation
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ηt + ((1 + εη)u)x = 0,

ut + ηx + εuux + 2Ωηt = µ
3
uxxt +O(εµ, µ2).

(4.20)

Consider now the linear terms in (4.20) in terms of ε and µ given by
ηt + ux = O(ε, µ),

ut + ηx + 2Ωηt = O(ε, µ).

(4.21)

This formula in turn implies that
ηtt − ηxx − 2Ωηxt = O(ε, µ),

utt − uxx − 2Ωuxt = O(ε, µ).

(4.22)

Solving the second order linear partial differential equation, we have the following

relations 
η = η1(x− ct) + η2(x+ (c+ 2Ω)t) +O(ε, µ),

u = u1(x− ct) + u2(x+ (c+ 2Ω)t) +O(ε, µ),

(4.23)

where c =
√

1 + Ω2 − Ω. For simplicity, we only consider the waves move towards to

the right side, i.e. 
η = η (x− ct) +O(ε, µ),

u = u (x− ct) +O(ε, µ),

(4.24)

which implies 
ηt = −cηx +O(ε, µ),

ut = −cux +O(ε, µ).

(4.25)

According to (4.21) and (4.24), we let

η =
1

c
u+ εv. (4.26)

Since v = v(u, ux, · · · ), we conclude the relation between vt and vx from (4.25) by

vt = −cvx +O(ε, µ). (4.27)
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Therefore, (4.20) can be converted to
(

1
c
u+ εv

)
t
+
((

1 + ε
(

1
c
u+ εv

))
u
)
x

= O(µ2),

ut +
(

1
c
u+ εv

)
x

+ εuux − 2Ω
((

1 + ε(1
c
u+ εv)

)
u
)
x
− µ

3
uxxt = O(εµ, µ2).

(4.28)

Multiplying the first equation in (4.28) by c and reorganizing the system with order

of parameters ε and µ, we have
ut + cux + ε (cvt + (u2)x) + ε2c (uv)x = O(µ2),

ut + cux + εvx + εuux − ε2Ω
c

(u2)x − ε2 2Ω (uv)x −
µ
3
uxxt = O(εµ, µ2).

(4.29)

Using the relation between c and Ω, and truncating the system up to order of O(ε, µ),

the system (4.29) is then simplified as
ut + cux + ε (cvt) + ε (u2)x = O(ε2, µ2),

ut + cux + εvx + ε3c2−2
2c2

(u2)x −
µ
3
uxxt = O(ε2, εµ, µ2).

(4.30)

We now derive the expression of εv. To this end, using the first equation in (4.30) to

subtract the second equation in (4.30) gives

ε (cvt − vx) + ε
2− c2

2c2

(
u2
)
x

+
µ

3
uxxt = O(ε2, εµ, µ2). (4.31)

Plugging (4.27) into (4.31) yields

−ε
(
c2 + 1

)
vx + ε

2− c2

2c2

(
u2
)
x

+
µ

3
uxxt = O(ε2, εµ, µ2). (4.32)

Consequently, integrating (4.32) with respect to x, we have

εv = ε
2− c2

2c2(c2 + 1)
u2 +

µ

3 (c2 + 1)
uxt +O(ε2, εµ, µ2). (4.33)

With the expression of εv and the second equation in (4.30), we obtain

ut + cux + ε

(
1

2 (c2 + 1)
+

2Ω

c (c2 + 1)

)(
u2
)
x

+
µ

3 (c2 + 1)
uxxt

+ε

(
1

2
− 2Ω

c

)(
u2
)
x
− µ

3
uxxt = O(ε2, εµ, µ2).

(4.34)
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which implies

ut + cux + ε

(
1

2
+

1

2 (c2 + 1)
− 2Ωc

(c2 + 1)

)(
u2
)
x

−µ
(

1

3
− 1

3 (c2 + 1)

)
uxxt = O(ε2, εµ, µ2).

(4.35)

This is actually the R-BBM equation

ut + cux + ε

(
3

2

c2

c2 + 1

)(
u2
)
x
− µ

(
c2

3 (c2 + 1)

)
uxxt = O(ε2, εµ, µ2). (4.36)

If replace uxxt by −cuxxx +O(ε, µ), it is the R-KdV equation in the following form

ut + cux + ε

(
3

2

c2

c2 + 1

)(
u2
)
x

+ µ

(
c3

3 (c2 + 1)

)
uxxx = O(ε2, εµ, µ2), (4.37)

Adopting the system (4.30), taking derivative with respect to x of the first

equation, and taking derivative with respect to t of the second equation, we have
uxt + cuxx + ε (cvtx) + ε (u2)xx = O(ε2, εµ, µ2),

utt + cuxt + εvxt + ε3c2−2
2c2

(u2)xt −
µ
3
uxxtt = O(ε2, εµ, µ2).

(4.38)

After cancelling uxt, we deduce

utt−c2uxx+ε
(
1− c2

)
vxt+ε

3c2 − 2

2c2

(
u2
)
xt
−εc

(
u2
)
xx
−µ

3
uxxtt+O(ε2, εµ, µ2). (4.39)

Applying (4.25) and (4.33) to the above equation, one can also derive the following

rotation-improved-Boussinesq equation in the unidirectional case.

utt − c2uxx + ε
(1− c2)(2− c2)

2c2(c2 + 1)

(
u2
)
xt

+
µ (1− c2)

3 (c2 + 1)
uxxtt

+ε
3c2 − 2

2c2

(
u2
)
xt
− εc

(
u2
)
xx
− µ

3
uxxtt = O(ε2, εµ, µ2).

(4.40)

4.2 Justification of the rotation-Camassa-Holm equation

4.2.1 Uniform estimates for the solutions of the Rotation-Camassa-Holm equation

Our attention in this section is now turned to the uniform boundedness of the

solution to the R-CH equation. Denote

‖f‖2
Xs+1
µ

def
= ‖f‖2

Hs + µβ‖fx‖2
Hs , where µ > 0, β > 0,
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and the KdV regime

KC0,C′0,C
′′
0

= {(ε, µ)| 0 < C0µ ≤ ε ≤ C ′0µ ≤ C ′′0},

for some given constants C0, C
′
0, C

′′
0 > 0, and the Camassa-Holm regime

Pµ0,M = {(ε, µ) | 0 < µ ≤ µ0, 0 < ε ≤M
√
µ} ,

for given constants µ0,M > 0. The uniform estimate for the solution of the R-CH

equation (1.24) was established already in [21] for a more general CH equation.

Proposition 4.2.1. ([21]) Assume that µ0 > 0, M > 0, s > 3
2
, Ω > 0, c =

c(Ω) =
√

1 + Ω2 − Ω, α = c2

c2+1
, β > 0, β − 1

c
β′ = 1

3
c2

c2+1
, , ω1, ω2 ∈ R, and

u0 ∈ Hs+1(R). Then there exists a positive time T > 0 and a unique family of

solutions {uε,µ}(ε, µ)∈Pµ0,M to the Cauchy problem of the R-CH equation (1.24) with the

initial value u0 = u0 bounded in C
(
[0, T

ε
];Xs+1

µ (R)
)
∩ C1

(
[0, T

ε
];Xs

µ(R)
)
. Moreover,

there holds for all t ∈ [0, T
ε
]

‖uε,µ(t)‖Hs + ‖uε,µt (t)‖Hs−1 ≤ C,

with the constant C independent of ε and µ.

In view of the proof of Proposition 4.2.1, one can establish the similar uniform

boundedness result for the R-KdV case.

Proposition 4.2.2. Assume that C0 > 0, C ′0 > 0, C ′′0 > 0, s > 3
2
, c = c(Ω) =

√
1 + Ω2−Ω, Ω > 0, and u0 ∈ Hs+1(R). Then there exists a unique family of solutions

{uε,µ}(ε, µ)∈KC0,C
′
0,C
′′
0
∈ C(R;Hs+1(R))∩C1(R;Hs−2(R)) to the Cauchy problem of the

R-KdV equation (4.37) with the initial value u(0) = u0. Moreover, there exists a

positive time T > 0 such that for all t ∈ [0, T
ε
]

‖uε,µ(t)‖Hs+1 + ‖uε,µt (t)‖Hs−2 ≤ C,

with the constant C independent of ε and µ.

92



We now turn next to the uniform boundedness of the solution to the R-CH

equation (1.24), which needs the following lemma.

Lemma 4.2.3 (Commutator estimates [45]). Let Λs := (1− ∂2
x)−

s
2 with s > 0. Then

the following two estimates are true:

(i) ‖[Λs, f ]g‖L2(R) ≤ C(‖f‖Hs‖g‖L∞(R) + ‖fx‖L∞(R)‖g‖Hs−1(R));

(ii) ‖[Λs, f ]g‖L2(R) ≤ C‖fx‖Hq0 (R)‖g‖Hs−1(R), ∀ 0 ≤ s ≤ q0 + 1, q0 >
1
2
,

where all the constants Cs are independent of f and g.

Lemma 4.2.4. Given ε > 0, µ > 0. Let u0 ∈ Xs+1
µ (R) with s > 3

2
. Assume that

u ∈ C([0, T ∗);Xs+1
µ (R)) ∩ C1([0, T ∗);Xs

µ(R)) is the solution of the R-CH equation

(1.24) with initial data u0. Then there is a positive constant Ω1 > 0 and 0 < T0 < T ∗

such that ∀ 0 ≤ Ω ≤ Ω1 and ∀ 0 ≤ t ≤ T0/ε, there holds

‖u(t)‖Xs+1
µ
≤ ‖u0‖Xs+1

µ
e
C‖u0‖Xs+1

µ
(1+‖u0‖2

Xs+1
µ

)εt
, (4.41)

where the positive constant C is independent of Ω.

Proof. Notice that βµ(2uxuxx + uuxxx) = βµ∂2
x(uux) − 1

2
βµ∂x(u

2
x). We rewrite the

R-CH equation (1.24) in the form,

∂tu− βµuxxt + c∂xu+
3ε c2

c2 + 1
uux − β′µuxxx + ω1ε

2u2ux + ω2ε
3u3ux

− αβεµ∂2
x(uux) +

αβεµ

2
(u2

x)x = 0.

(4.42)

Hence, applying the operator Λs to equation (4.42) and then taking the L2-inner

product with Λsu yield

1

2

d

dt
(‖Λsu‖2

L2 + βµ‖∂xΛsu‖2
L2)

= − 3ε c2

c2 + 1

∫
R

Λs(uux) · Λsu dx−
∫
R
(ω1ε

2Λs(u2ux) + ω2ε
3Λs(u3ux)) Λsu dx

+ αεβµ

∫
R

Λs∂2
x(uux) · Λsu dx+

αβεµ

2

∫
R

Λs(u2
x)Λ

sux dx ≡
4∑
i=1

Ii.

(4.43)
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Thanks to the commutator process, we can estimate to obtain∣∣∣∣ ∫
R

Λs(uux) · Λsu dx

∣∣∣∣ =

∣∣∣∣ ∫
R
uΛs∂xu · Λsu dx+

∫
R
[Λs, u]ux · Λsu dx

∣∣∣∣
≤ 1

2
‖ux‖L∞‖Λsu‖2

L2 + ‖[Λs, u]ux‖L2‖Λsu‖L2 . ‖ux‖L∞‖Λsu‖2
L2 ,

(4.44)

where use has been made of the commutator estimates in Lemma 4.2.3 to deal with

the commutator term ‖[Λs, u]ux‖L2 . It thus transpires that

|I1| ≤ Cε‖ux‖L∞‖u‖2
Hs .

Similarly, we may get that for s > 3/2, n = 2, 3,∣∣∣∣ ∫
R

Λs(unux) · Λsu dx

∣∣∣∣ ≤ 1

2

∣∣∣∣ ∫
R
(un)x(Λ

su)2 dx

∣∣∣∣+ ‖Λsu‖L2‖[Λs, un]ux‖L2

≤ C‖(un)x‖L∞‖u‖2
HS + C‖un‖Hs‖ux‖L∞‖u‖Hs ≤ C‖u‖n+2

Hs .

It thus follows that

|I2| ≤ Cε(‖u‖2
Hs + ε‖u‖3

Hs)‖u‖2
Hs .

For I3, we deduce from integration by parts and Lemma 4.2.3 that∣∣∣∣ ∫
R

Λs∂2
x(uux) · Λsu dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
R

Λs(u2
x) · Λsux dx

∣∣∣∣+

∣∣∣∣ ∫
R

Λs(uuxx) · Λsux dx

∣∣∣∣
≤ ‖Λsux‖L2‖Λs(u2

x)‖L2 +
1

2
‖ux‖L∞‖Λsux‖2

L2 + ‖[Λs, u](ux)x‖L2‖Λsux‖L2

. ‖ux‖L∞‖Λsux‖2
L2 ,

which gives rise to

|I3| ≤ Cαβεµ‖ux‖L∞‖Λsux‖2
L2 ≤ Cαβεµ‖ux‖2

Hs‖u‖Hs .

While for I4, applying Hölder’s inequality gives

|I4| ≤ Cαβεµ‖u2
x‖Hs‖ux‖Hs ≤ Cαβεµ‖ux‖2

Hs‖u‖Hs .

In consequence, it is found from all the estimates above that for s > 3/2,

d

dt
(‖u‖2

Hs + βµ‖ux‖2
Hs) ≤ Cε‖u‖Hs(1 + ‖u‖2

Hs)(‖u‖2
Hs + βµ‖ux‖2

Hs). (4.45)
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Taking T0 > 0, such that
√

2C‖u0‖Xs+1
µ

(1 + 2‖u0‖2
Xs+1
µ

)εT0 < ln 3
2
, we claim that

‖u(t)‖2
Hs + βµ‖ux‖2

Hs ≤ 2‖u0‖2
Xs+1
µ
,∀t ∈ [0, T0]. (4.46)

By using the bootstrap argument, it thus follows from (4.45) that ∀t ∈ [0, T0],

‖u(t)‖2
Hs + βµ‖ux(t)‖2

Hs ≤ ‖u0‖2
Xs+1
µ
eCε

∫ t
0 (‖u(t)‖Hs+‖u‖3Hs )dτ

≤ ‖u0‖2
Xs+1
µ
e

√
2C‖u0‖Xs+1

µ
(1+2‖u0‖2

Xs+1
µ

)εt
≤ 3

2
‖u0‖2

Xs+1
µ
,

which implies (4.2.4). This completes the proof of Lemma 4.2.4.

4.2.2 Justification of the approximation between the R-KdV equation and the R-CH

equation

This subsection contains two parts. The first part is to justify rigorously the

approximation between the solution of R-KdV equation and the solution of R-CH

equation (1.24). The second part concerns the limit issue as Ω → 0 for the R-CH

equation. The justification result could be stated in the following.

Theorem 4.2.5. Assume that µ0 > 0, M > 0, C0 > 0, C ′0 > 0, C ′′0 > 0, β > 0,

β − 1
c
β′ = 1

3
c2

c2+1
, c = c(Ω) :=

√
1 + Ω2 − Ω, w > 0, α = 1

2
c

Ω+c
, and Ω > 0. Let

u0 ∈ Hs+6(R) with s > 1
2
, (ε, µ) ∈ KC0,C′0,C

′′
0

, and uε,µ and vε,µ be the strong solutions

of the R-CH equation (1.24) and the R-KdV equation (4.37) with the same initial

value u0, respectively. Then there exists the time T > 0 such that

‖uε,µ(t)− vε,µ(t)‖Hs ≤ Cµ2t, (4.47)

for all t ∈ [0, T
ε
].

Proof. For fixed (ε, µ) ∈ KC0,C′0,C
′′
0
, let rε,µ(t)

def
= vε,µ(t)− uε,µ(t), rε,µ0 ≡ 0. Owing to

Propositions 4.2.1 and 4.2.2, it is noted that the guaranteed existence time for uε,µ

is T
ε

for some positive time T independent of ε and µ. For simplicity, we drop the

indices ε and µ in u, v and r.
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By the definition of r, it is observed that r(t) solves that
rt + crx + 3ε c2

c2+1
(urx + rvx) + µ c3

3(c2+1)
rxxx + µ(β′ + c3

3(c2+1)
)uxxx

+βµuxxt = ω1ε
2u2ux + ω2ε

3u3ux − αβεµ(2uxuxx + uuxxx),

r|t=0 = 0.

(4.48)

Notice that u satisfies

ut + cux = −3ε
c2

c2 + 1
uux + µβ′uxxx + µβuxxt − (ω1ε

2u2ux + ω2ε
3u3ux)

+ αβεµ(2uxuxx + uuxxx) ≡ F.

We then deduce from the identity β − 1
c
β′ = 1

3
c2

c2+1
that

µ

(
β′ +

c3

3(c2 + 1)

)
uxxx + βµuxxt =cµβuxxx + µβuxxt = µβ(ut + cux)xx = µβ Fxx.

It then follows that

rt+crx + 3ε
c2

c2 + 1
(urx + rvx) + µ

c3

3(c2 + 1)
rxxx

= −µβ Fxx + ω1ε
2u2ux + ω2ε

3u3ux − αβεµ(2uxuxx + uuxxx).

(4.49)

Energy estimate implies that ∀ s > 1
2
,

1

2

d

dt
‖Λsr‖2

L2 =− 3ε
c2

c2 + 1

(∫
R

Λs (u rx) · Λsr dx+

∫
R

Λs (rvx) · Λsr dx

)
− µβ〈ΛsFxx,Λ

sr〉L2 + 〈ω1ε
2Λs(u2ux) + ω2ε

3Λs(u3ux),Λ
sr〉L2

− αβεµ〈Λs (2uxuxx + uuxxx) ,Λ
sr〉L2 . (4.50)

Thanks to∫
R

Λs (u rx) · Λsr dx =

∫
R
uΛsrx · Λsr dx+

∫
R
[Λs, u]rx · Λsr dx

= − 1

2

∫
R
ux (Λsr)2 dx+

∫
R
[Λs, u]rx · Λsr dx,

and Lemma 4.2.3, we can estimate as above that∣∣∣∣∫
R

Λs(urx) · Λsr dx

∣∣∣∣ .‖ux‖L∞‖ΛsrR|2L2 + ‖Λsr‖L2 · ‖ux‖Hs‖rx‖Hs−1 . ‖ux‖Hs‖r‖2
Hs .
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On the other hand, the Hölder inequality and Moser-type estimate [52] show that∣∣∣∣∫
R

Λs (rvx) · Λsr dx

∣∣∣∣ . ‖rvx‖Hs ‖r‖Hs . ‖r‖2
Hs ‖vx‖Hs ,

|〈Λs (unux) ,Λ
sr〉L2 | . ‖unux‖Hs ‖r‖Hs . ‖u‖nHs ‖ux‖Hs ‖r‖Hs (forn = 2, 3),

|〈Λs (2uxuxx + uuxxx) ,Λ
sr〉L2| . (‖ux‖Hs ‖uxx‖Hs + ‖u‖Hs ‖uxxx‖Hs) ‖r‖Hs ,

and

|〈ΛsFxx,Λ
sr〉L2| . ‖r‖Hs

(
ε ‖u‖Hs+2 ‖ux‖Hs+2 + µ ‖uxxx‖Hs+2 + µ ‖uxxt‖Hs+2

+ ε2 ‖u‖2
Hs+2 ‖ux‖Hs+2 + εµ (‖ux‖Hs+2 ‖uxx‖Hs+2 + ‖u‖Hs+2 ‖uxxx‖Hs+2)

)
.

It thus follows from Propositions 4.2.1 and 4.2.2 that

d

dt
‖r‖2

Hs ≤ Cε(‖u‖Hs+1 + ‖v‖Hs+1) ‖r‖2
Hs

+ C(ε2 + µ2)‖r‖Hs

(
‖u‖4

Hs+5 + ‖u‖Hs+5 + ‖ut‖Hs+4

)
≤ C

(
ε ‖r‖2

Hs +
(
ε2 + µ2

)
‖r‖Hs

)
.

As ‖r0‖Hs = 0, Gronwall’s inequality in turn implies that ∀ t ∈ [0, T
ε
]

‖r(t)‖Hs ≤ ε2 + µ2

ε
(e

εtC
2 − 1) ≤ Ce

εtC
2 t(ε2 + µ2) ≤ Ct(ε2 + µ2),

where the constants C and C ′ are independent of ε and µ. This then allows the

conclusion from the definition of T ε,µ0 that

‖r(t)‖Hs ≤ C
(
ε2 + µ2

)
t ≤ Cµ2t, ∀ 0 < t ≤ T

ε
,

which gives rise to (4.47), and ends the proof of Theorem 4.2.5.

A similar conclusion is also valid for the lower order approximations to the

R-BBM equation. This result is given in the following.
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Corollary 4.2.6. Assume that µ0 > 0, M > 0, C0 > 0, C ′0 > 0, C ′′0 > 0, β > 0,

β − 1
c
β′ = 1

3
c2

c2+1
, c = c(Ω) :=

√
1 + Ω2 − Ω, ω1, ω2 ∈ R, α = c2

c2+1
, and Ω > 0. Let

u0 ∈ Hs+6(R) with s > 1
2
, (ε, µ) ∈ KC0,C′0,C

′′
0

, and uε,µ and vε,µ be the strong solutions

of the R-CH equation (1.24) and the R-BBM equation with the same initial data u0,

respectively. Then there exists T > 0 such that

‖uε,µ(t)− vε,µ(t)‖Hs ≤ Cµ2t, (4.51)

for all t ∈ [0, T
ε
].

Next, our attention will be turned to the limit issue as Ω → 0 for the R-CH

equation. In the case Ω = 0, the R-CH equation is reduced to the CH equation in

the following form,

(1− 5

12
µ∂2

x)ut + ∂xu+
3

2
εuux −

1

4
µuxxx =

5

24
εµ(2uxuxx + uuxxx) (4.52)

We may get the convergence theorem of the R-CH equation (1.24) as follows.

Theorem 4.2.7. Let u0 ∈ Hs(R) with s ≥ 3. Assume that uc and u are solutions of

the R-CH equation (1.24)and the CH equation (4.52) with the same initial value u0.

Then, for any fixed common existence time T0 > 0, there hold

uc ⇀ u weak ∗ in L∞([0, T0];Hs), as Ω→ 0,

and

uc → u in C([0, T0];Hs′) (∀ 0 ≤ s′ < s) as Ω→ 0.

The following lemma is crucial to achieve the result in Theorem 4.2.7.

Lemma 4.2.8. Let u0 ∈ Hs(R) with s ≥ 3. Assume that two functions u(1), u(2) ∈

C([0, T0];Hs)∩C1([0, T0];Hs−1) for a positive time T0 > 0 are solutions of the R-CH

equation (1.24) with the same initial data u0 and the different rotation parameters Ω1

and Ω2 respectively. Then there holds that

‖u(1) − u(2)(t)‖C([0,T0];H1) = O(|Ω1 − Ω2|).
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Proof. Notice that u(i), ∀ i = 1, 2, solves the equation

∂tu
(i) − µβiu(i)

xxt + ciu
(i)
x + 3ε

c2
i

c2
i + 1

u(i)u(i)
x − µβ′iu(i)

xxx + ωi1ε
2
(
u(i)
)2

u(i)
x

+ ωi2ε
3
(
u(i)
)3

u(i)
x = αiβiεµ

(
2u(i)

x u
(i)
xx + u(i)u(i)

xxx

)
where ci = c(Ωi), βi = β(Ωi), β

′
i = β′(Ωi), ω

i
1 = ω1(Ωi), ω

i
2 = ω2(Ωi) and αi = α(Ωi).

Denote that u(1,2) def
= u(1) − u(2). It is then found that

∂tu
(1,2) − µβ1u

(1,2)
xxt + c1u

(1,2)
x − µβ′1u(1,2)

xxx + h(1,2)u(1,2)
x + h(1,2)

x u(1,2)

+

(
3ε

(c1 − c2)(c1 + c2)

(c2
1 + 1)(c2

2 + 1)
u(2) + ε2(ω1

1 − ω2
1)(u(2))2 + ε3(ω1

2 − ω2
2)(u(2))3

)
u(2)
x

+ (c1 − c2)u(2)
x − µ(β′1 − β′2)u(2)

xxx − µ(β1 − β2)u
(2)
xxt

= α1β1εµ
(

2u(1,2)
x u(1)

xx + 2u(2)
x u(1,2)

xx + u(1,2)u(1)
xxx + u(2)u(1,2)

xxx

)
+ εµ

(
(α1 − α2)β1 + α2(β1 − β2)

)(
2u(2)

x u(2)
xx + u(2)u(2)

xxx

)
,

with u(1,2)|t=0 = 0, where h(1,2) = 3ε
2

c21
c21+1

v(1,2) + ω1ε2

3
q(1,2) + ω2ε3

4
w(1,2) with v(1,2) def

=

u(1) + u(2), q(1,2) def
= (u(1))2 + u(1)u(2) + (u(2))2, and w(1,2) def

= (u(1))3 + (u(1))2u(2) +

u(1)(u(2))2 + (u(2))3.

Taking the L2-inner product between (4.53) and u(1,2), and then using integra-

tion by parts, we get

1

2

d

dt
(‖u(1,2)‖2

L2 + µβ1‖u(1,2)
x ‖2

L2)

=

∫
R

(
((α1 − α2)β1 + α2(β1 − β2))εµ(2u(2)

x u(2)
xx + u(2)u(2)

xxx)− (c1 − c2)u(2)
x

)
u(1,2) dx dx

+

∫
R

(
µ(β′1 − β′2)u(2)

xxx + µ(β1 − β2)u
(2)
xxt − 3ε

(c1 + c2)(c1 − c2)

(c2
1 + 1)(c2

2 + 1)
u(2)u(2)

x

)
u(1,2) dx

−
∫
R

(
ε2(ω1

1 − ω2
1)(u(2))2u(2)

x − ε3(ω1
2 − ω2

2)(u(2))3u(2)
x

)
u(1,2) dx

− 1

2

∫
R
(u(1,2))2h(1,2) dx+

1

2
α1β1εµ

∫
R
u(2)
xxx(u

(1,2))2 − u(2)
x (u(1,2)

x )2 dx.
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Using the uniform boundedness estimate of the solution in (4.2.4) with the parameters

Ω1 and Ω2 , it is then deduced that

d

dt
(‖u(1,2)‖2

L2 + µβ1‖u(1,2)
x ‖2

L2)

≤C|Ω1 − Ω2|‖u(1,2)‖L2

(
(1 + ‖u(2)‖3

L∞)‖u(2)
x ‖H2 + β2µ‖u(2)

xxt‖L2

)
+ C(‖u(1,2)‖2

L2 + µβ1‖u(1,2)
x ‖2

L2)
(

(1 + ‖u(1)‖3
W 1,∞ + ‖u(2)‖3

W 1,∞ + β2µ‖u(2)
xxx‖L∞

)
≤C0

(
‖u(1,2)‖2

L2 + µβ1‖u(1,2)
x ‖2

L2

)
+ C2|Ω1 − Ω2|‖u(1,2)‖L2 .

Therefore, using Gronwall’s inequality for fixed T0 > 0 yields

‖u(1,2)(t)‖2
L2 + µβ1‖u(1,2)

x (t)‖2
L2 ≤ C|Ω1 − Ω2|2 ∀ t ∈ [0, T0],

which follows that

‖u(1,2)‖C([0,T0];H1) ≤ C|Ω1 − Ω2|.

We thus finish the proof of the lemma.

Proof of Theorem 4.2.7. Thanks to Lemma 4.2.8, we deduce from the interpolation

inequality that ∀ 0 < s′ < s

‖u(c1) − u(c2)‖C([0,T ];Hs′ ) ≤ C‖u(c1) − u(c2)‖
s−s′
s

C([0,T ];L2)‖u
(c1) − u(c2)‖

s′
s

C([0,T ];Hs)

≤ C|Ω1 − Ω2|1−
s′
s ,

(4.53)

which in turn implies that

{uc(Ω)}Ω>0 is a Cauchy net in C([0, T ];Hs′), as Ω→ 0, for any 0 < s′ < s.

Therefore, there exists a function u ∈ C([0, T ];Hs′) (with 0 ≤ s′ < s), such that

u(c) → u in C([0, T ];Hs′), as Ω→ 0.

Furthermore, by the Banach algebra estimate and uniform boundedness for u and uc

in Hs′(R), we get for any 5
2
< s′ < s∥∥∥∥ c2

c2 + 1
ucucx −

1

2
uux

∥∥∥∥
Hs′−1
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≤ c2

c2 + 1
‖uc(ucx − ux)‖Hs′−1 +

∥∥∥∥( c2

c2 + 1
uc − 1

2
u

)
ux

∥∥∥∥
Hs′−1

+

∥∥∥∥( c2

c2 + 1
uc − 1

2
u

)
ux

∥∥∥∥
Hs′−1

≤ C(‖uc‖Hs′−1‖uc − u‖Hs′ + ‖u‖Hs′‖uc − u‖Hs′−1)

≤ C‖uc − u‖Hs′ ,

which yields

3ε
c2

c2 + 1
uc∂xu

c → 3

2
εu∂xu in C([0, T ];Hs′−1), as Ω→ 0.

Similarly,

cucx + ω1ε
2(uc)2ucx + ω2ε

3(uc)3ucx → ux in C([0, T ];Hs′−1), as Ω→ 0,

µβ′ucxxx + αβεµ(2ucxu
c
xx + ucucxxx)→

1

4
µuxxx +

5

24
εµ(2uxuxx + uuxxx)

in C([0, T ];Hs′−3), as Ω→ 0,

which along with the R-CH equation (1.24) gives rise to

∂tu
c →− (1− 5

12
µ∂2

x)
−1

(
∂xu+

3

2
εuux −

1

4
µuxxx −

5

24
εµ(2uxuxx + uuxxx)

)
in C([0, T ];Hs′−1), as Ω→ 0.

(4.54)

On the other hand, from the R-CH equation, it is deduced that

{∂tuc}Ω>0 is uniformly bounded in C([0, T ];Hs−1), and

{uc}Ω>0 is uniformly bounded in C([0, T ];Hs),

which along with the Banach-Alaoglu Theorem yields that there is a subsequence

{∂tuci}∞i=0 (with ci = c(Ωi) and Ωi → 0) of {∂tuc}Ω>0 and a function v∗ ∈ L∞([0, T ];Hs)

such that

∂tu
ci ⇀ ∂tv

∗ weakly ∗ in L∞([0, T ];Hs−1), and

uci ⇀ v∗ weakly ∗ in L∞([0, T ];Hs).

By the uniqueness of the distribution limit, we have v∗ = u, which along with

(4.54) implies that u ∈ C([0, T ];Hs′) ∩ L∞([0, T ];Hs) solves the CH equation (4.52)
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with initial value u(0) = u0. By using a standard approximation argument and the

uniqueness of the solution to (4.52) (see also Proposition 4.2.1), we may get the limit

function u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1) solves the CH equation (4.52). This

completes the proof of Theorem 4.2.7.

4.3 Traveling-wave solutions

It is known there are two prominent features on the CH equation, wave breaking

and wave peaking [8]. It is intriguing to know how these two effects manifest in

the R-CH model. Our attention in this section is now turned to analyzing smooth

and non-smooth localized traveling-wave solutions to the R-CH equation (1.24) with

certain Coriolis effect.

4.3.1 Nonexistence of single peaked solution

Applying the transformation

uε,µ(t, x) = αεu(
√
βµ t,

√
βµx) to (1.24), then uε,µ(t, x) solves

ut − uxxt + cux + 3uux −
β0

β
uxxx +

ω1

α2
u2ux +

ω2

α3
u3ux = 2uxuxx + uuxxx. (4.55)

Our purpose here is to demonstrate the nonexistence of single CH-type peaked

solution to the R-CH equation (4.55), which particularly has the form

u(t, x) = a(σ, t)e−|x−σt|, σ ∈ R and a(σ, t) ∈ C(R× [0, T )). (4.56)

Note it is a weak function in H1(R). The weak solution of the R-CH equation (4.42)

is defined in distribution sense.
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Definition 4.3.1. Given initial data u0 ∈ H1(R), the function u ∈ C([0, T );H1(R))

is said to be a weak solution to the initial-value problem
ut − uxxt + cux + 3uux − β0

β
uxxx + ω1

α2u
2ux + ω2

α3u
3ux = 2uxuxx + uuxxx,

u(0, x) = u0(x), x ∈ R,

u→ 0, as |x| → ∞,

(4.57)

if it satisfies the following identity:∫ T

0

∫
R

[
uϕt +

1

2
u2ϕx +

β0

β
uϕx + p ∗

(
(c− β0

β
)u+ u2 +

1

2
u2
x +

ω1

3α2
u3

+
ω2

4α3
u4
)
· ϕx
]
dxdt+

∫
R
u0(x)ϕ(0, x)dx = 0,

for any smooth test function ϕ(t, x) ∈ C∞c ([0, T ) × R). If u is a weak solution on

[0, T ) for every T > 0, then it is called a global weak solution.

Theorem 4.3.1. There is no any nonzero weak solution of (4.57) in the form (4.56).

Proof. The proof of this theorem contains two cases. If the rotation parameter

Ω = 0 (i.e. c = 1), the equation only has smooth traveling-wave solutions only

[9]. We now consider the case of Ω 6= 0. We will give a proof in this case by

a contradictory argument. Suppose that the R-CH equation admits the peaked

solution in the form (4.56). Then, for all t ∈ R+, in the sense of distribution

and ∂xua(t, x) = − sign(x − σt)ua(t, x) belongs to L∞(R). For any test function

ϕ(·) ∈ C∞c (R), by using integration by parts, we have∫
R

sign(y)e−|y|ϕ(y)dy =

∫ 0

−∞
−eyϕ(y)dy +

∫ +∞

0

e−yϕ(y)dy =

∫
R
e−|y|ϕ′(y)dy.

Note that

∂tua(t, x) = ∂ta(σ, t)e−|x−σt| + σ sign(x− σt)ua(t, x) ∈ L∞(R) for all t ≥ 0. (4.58)
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Hence, by integration by parts, we deduce that∫ ∞
0

∫
R

(
uaϕt +

1

2
u2
aϕx +

β0

β
uaϕx

)
dxdt+

∫
R
ua(0, x)ϕ(0, x)dx

= −
∫ ∞

0

∫
R
ϕ
[
∂tua + ua · ∂xua +

β0

β
∂xua

]
dxdt

= −
∫ ∞

0

∫
R
ϕ
[

sign(x− σt)ua · σ + ∂ta(σ, t)e−|x−σt| − sign(x− σt)u2
a

− β0

β
· sign(x− σt)ua

]
dxdt (4.59)

= −
∫ ∞

0

∫
R
ϕ · sign(x− σt)ua ·

[
σ − β0

β
− ua

]
+ ϕ · ∂ta(σ, t)e−|x−σt|dxdt.

On the other hand, we know

u = (1− ∂2
x)
−1m = p ∗m, where p(x) =

1

2
e−|x|,

and the notation “ ∗ ” denotes the convolution product on R, defined by(
f ∗ g

)
(x) =

∫
R
f(y)g(x− y)dy.

Hence,∫ ∞
0

∫
R

[
(1− ∂2

x)
−1
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
· ∂xϕ

]
dxdt

= −
∫ ∞

0

∫
R

[
ϕ · ∂xp ∗

(
(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)]
dxdt

(4.60)

It is noted that ∂xp(x) = −1
2

sign(x)e−|x| for x ∈ R. A simple computation reveals

that

∂xp ∗
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
(t, x)

= −1

2

∫ +∞

−∞
sign(x− y)e−|x−y| ·

[
(c− β0

β
)a(σ, t)e−|y−σt| + a2(σ, t)e−2|y−σt|

+
1

2
sign2(y − σt)a2(σ, t)e−2|y−σt| +

ω1

3α2
a3(σ, t)e−3|y−σt|

+
ω2

4α3
a4(σ, t)e−4|y−σt|

]
dy. (4.61)

104



When x > σt, we split the right hand side of (4.61) into the following three

parts.

∂xp ∗
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
(t, x)

= −1

2

(∫ σt

−∞
+

∫ x

σt

+

∫ +∞

x

)
sign(x− y)e−|x−y| ·

[
(c− β0

β
)a(σ, t)e−|y−σt|

+ a2(σ, t)e−2|y−σt| +
1

2
sign2(y − σt)a2(σ, t)e−2|y−σt| +

ω1

3α2
a3(σ, t)e−3|y−σt|

+
ω2

4α3
a4(σ, t)e−4|y−σt|

]
dy

=: I1 + I2 + I3.

In the case that −∞ < y < σt < x, it follows that

I1 =− 1

2

∫ σt

−∞
e−x+y

[
(c− β0

β
)a(σ, t)ey−σt +

3

2
a2(σ, t)e2(y−σt)

+
ω1

3α2
a3(σ, t)e3(y−σt) +

ω2

4α3
a4(σ, t)e4(y−σt)

]
dy

=− 1

2
(c− β0

β
)a(σ, t)e−x−σt

∫ σt

−∞
e2ydy − 3

4
a2(σ, t)e−x−2σt

∫ σt

−∞
e3ydy

− ω1

6α2
a3(σ, t)e−x−3σt

∫ σt

−∞
e4ydy − ω2

8α3
a4(σ, t)e−x−4σt

∫ σt

−∞
e5ydy

=− 1

4

[
(c− β0

β
)a(σ, t) + a2(σ, t) +

ω1

6α2
a3(σ, t) +

ω2

10α3
a4(σ, t)

]
e−x+σt.

For σt < y < x, a direct computation gives that

I2 =− 1

2

∫ x

σt

e−x+y
[
(c− β0

β
)a(σ, t)e−y+σt +

3

2
a2(σ, t)e2(−y+σt)

+
ω1

3α2
a3(σ, t)e3(−y+σt) +

ω2

4α3
a4(σ, t)e4(−y+σt)

]
dy

=
[
− 1

2
(c− β0

β
)a(σ, t) · (x− σt)− 3

4
a2(σ, t)− ω1

12α2
a3(σ, t)− ω2

24α3
a4(σ, t)

]
e−x+σt

+
3

4
a2(σ, t)e−2x+2σt +

ω1

12α2
a3(σ, t)e−3x+3σt +

ω2

24α3
a4(σ, t)e−4x+4σt.
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For σt < x < y < +∞, we have

I3 =
1

2

∫ +∞

x

ex−y
[
(c− β0

β
)a(σ, t)e−y+σt +

3

2
a2(σ, t)e2(−y+σt)

+
ω1

3α2
a3(σ, t)e3(−y+σt) +

ω2

4α3
a4(σ, t)e4(−y+σt)

]
dy

=
1

4
(c− β0

β
)a(σ, t)e−x+σt +

1

4
a2(σ, t)e−2x+2σt +

ω1

24α2
a3(σ, t)e−3x+3σt

+
ω2

40α3
a4(σ, t)e−4x+4σt.

Combining I1, I2 and I3, for x > σt, we have

∂xp ∗
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
(t, x)

=
[
− 1

2
(c− β0

β
)a(σ, t) · (x− σt)− a2(σ, t)− ω1

8α2
a3(σ, t)− ω2

15α3
a4(σ, t)

]
e−x+σt

+ a2(σ, t)e−2x+2σt +
ω1

8α2
a3(σ, t)e−3x+3σt +

ω2

15α3
a4(σ, t)e−4x+4σt.

When x ≤ σt, we split the right hand side of (4.61) into the following three

parts.

∂xp ∗
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
(t, x)

= −1

2

(∫ x

−∞
+

∫ σt

x

+

∫ +∞

σt

)
sign(x− y)e−|x−y| ·

[
(c− β0

β
)a(σ, t)e−|y−σt|

+ a2(σ, t)e−2|y−σt| +
1

2
sign2(y − σt)a2(σ, t)e−2|y−σt| +

ω1

3α2
a3(σ, t)e−3|y−σt|

+
ω2

4α3
a4(σ, t)e−4|y−σt|

]
dy

=: II1 + II2 + II3.

For −∞ < y < x ≤ σt, a simple computation shows that

II1 =− 1

2

∫ x

−∞
e−x+y

[
(c− β0

β
)a(σ, t)ey−σt +

3

2
a2(σ, t)e2(y−σt)

+
ω1

3α2
a3(σ, t)e3(y−σt) +

ω2

4α3
a4(σ, t)e4(y−σt)

]
dy

=− 1

4
(c− β0

β
)a(σ, t)ex−σt − 1

4
a2(σ, t)e2x−2σt − ω1

24α2
a3(σ, t)e3x−3σt

− ω2

40α3
a4(σ, t)e4x−4σt.
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For x < y < σt, it is found that

II2 =
[1

2
(c− β0

β
)a(σ, t) · (σt− x) +

3

4
a2(σ, t) +

ω1

12α2
a3(σ, t) +

ω2

24α3
a4(σ, t)

]
ex−σt

− 3

4
a2(σ, t)e2x−2σt − ω1

12α2
a3(σ, t)e3x−3σt − ω2

24α3
a4(σ, t)e4x−4σt.

For x ≤ σt < y < +∞, it is easy to check that

II3 =
[1

4
(c− β0

β
)a(σ, t) +

1

4
a2(σ, t) +

ω1

24α2
a3(σ, t) +

ω2

40α3
a4(σ, t)

]
ex−σt.

Combining II1, II2 and II3, in the case x ≤ σt gives

∂xp ∗
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
(t, x)

=
[1

2
(c− β0

β
)a(σ, t) · (σt− x) + a2(σ, t) +

ω1

8α2
a3(σ, t) +

ω2

15α3
a4(σ, t)

]
ex−σt

− a2(σ, t)e−2x+2σt − ω1

8α2
a3(σ, t)e−3x+3σt − ω2

15α3
a4(σ, t)e−4x+4σt.

It is then inferred from these two cases that

∂xp ∗
(

(c− β0

β
)ua + u2

a +
1

2
u2
a,x +

ω1

3α2
u3
a +

ω2

4α3
u4
a

)
(t, x)

=



[
− 1

2
(c− β0

β
)a(σ, t) · (x− σt)− a2(σ, t)− ω1

8α2
a3(σ, t)− ω2

15α3
a4(σ, t)

]
e−x+σt

+ a2(σ, t)e−2x+2σt +
ω1

8α2
a3(σ, t)e−3x+3σt +

ω2

15α3
a4(σ, t)e−4x+4σt, if x > σt,[1

2
(c− β0

β
)a(σ, t) · (σt− x) + a2(σ, t) +

ω1

8α2
a3(σ, t) +

ω2

15α3
a4(σ, t)

]
ex−σt

− a2(σ, t)e−2x+2σt − ω1

8α2
a3(σ, t)e−3x+3σt − ω2

15α3
a4(σ, t)e−4x+4σt, if x ≤ σt.

On the other hand, we have

sign(x−σt)ua
[
σ−β0

β
−ua

]
(t, x) =


(σ − β0

β
)a(σ, t)e−x+σt − a2(σ2)e−2x+2σt, if x > σt,

−(σ − β0
β

)a(σ, t)ex−σt + a2(σ2)e2x−2σt, if x ≤ σt.
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If the function in the form (4.56) is a weak solution of equation (4.55), then

adding (4.59) to (4.60) together yields that

[
∂ta(σ, t)− 1

2
(c− β0

β
)a(σ, t) · (x− σt) + (σ − β0

β
)a(σ, t)− a2(σ, t)− ω1

8α2
a3(σ, t)

− ω2

15α3
a4(σ, t)

]
e−x+σt +

ω1

8α2
a3(σ, t)e−3x+3σt +

ω2

15α3
a4(σ, t)e−4x+4σt = 0, if x > σt,[

∂ta(σ, t) +
1

2
(c− β0

β
)a(σ, t) · (σt− x)− (σ − β0

β
)a(σ, t) + a2(σ, t) +

ω1

8α2
a3(σ, t)

+
ω2

15α3
a4(σ, t)

]
ex−σt − ω1

8α2
a3(σ, t)e−3x+3σt − ω2

15α3
a4(σ, t)e−4x+4σt = 0, if x ≤ σt.

By the linear independence of the functions e−x+σt, ex−σt, e−3x+3σt and e−4x+4σt, the

above condition holds if and only if

a(σ, t) = 0,

which provides a trivial solution of equation (4.55), ua(t, x) = 0, thereby concluding

the proof of Theorem 4.3.1.

4.3.2 Classification of traveling-wave solutions

We now classify the traveling-wave solutions to the R-CH equation (4.55). For

a traveling wave solution ϕ(t, x) = ϕ(x− σt) with speed σ, equation (4.55) takes the

form

−σϕx+σϕxxx+cϕx+3ϕϕx−
β0

β
ϕxxx+

ω1

α2
ϕ2ϕx+

ω2

α3
ϕ3ϕx = 2ϕxϕxx+ϕϕxxx. (4.62)

Integrating respect to spatial variable gives

(c− σ)ϕ+
3

2
ϕ2 +

ω1

3α2
ϕ3 +

ω2

4α3
ϕ4 + (σ − β0

β
)ϕxx −

1

2
(ϕx)

2 − ϕϕxx = 0, (4.63)

for |x| → ∞, ϕ, ϕx, ϕxx → 0.

It is observed that

[(ϕ− σ +
β0

β
)2]xx = 2ϕ2

x + 2ϕϕxx − 2(σ − β0

β
)ϕxx.
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Equation (4.63) may take the following form

[(ϕ− σ +
β0

β
)2]xx = ϕ2

x + 3ϕ2 +
2ω1

3α2
ϕ3 +

ω2

2α3
ϕ4 + 2(c− σ)ϕ. (4.64)

Inspired by the approach of classification of the traveling-wave solutions to

the classical Camassa-Holm equation [46], we can establish a similar result in the

following lemma, which is related to the regularity of the traveling waves.

Lemma 4.3.2. If ϕ is a traveling wave of equation (4.55) and ϕ ∈ H1(R), then

(ϕ− σ +
β0

β
)k ∈ Cj(R \ ϕ−1(σ − β0

β
)), for k ≥ 2j.

Furthermore, we conclude

ϕ ∈ C∞(R \ ϕ−1(σ − β0

β
)).

Proof. Let v = ϕ− σ + β0
β

. Then equation (4.64) infers

(v2)xx = v2
x + p(v),

where p(v) is a polynomial in v, more precisely

p(v) = 2(c−σ)(v+σ− β0

β
) + 3(v+σ− β0

β
)2 +

2ω1

3α2
(v+σ− β0

β
)3 +

ω2

3α3
(v+σ− β0

β
)4.

From the assumption, we know v ∈ H1
loc(R), which gives rise to v2

x + p(v) ∈ L1
loc(R)

and (v2)xx ∈ L1
loc(R). Thus, (v2)x ∈ W 1,1

loc (R). This implies that (v2)x is absolutely

continuous, and v2, v3 are belongs to C1(R \ v−1(0)). Moreover,

(vk)xx =[(vk)x]x = [kvk−1vx]x = [
k

2
vk−2(2vvx)]x =

k

2
(vk−2)x(v

2)x +
k

2
vk−2(v2)xx

=k(k − 2)vk−2v2
x +

k

2
vk−2[v2

x + p(v)] = k(k − 3

2
)vk−2v2

x +
k

2
vk−2p(v).

For k = 3, the right-hand side of the above equation is in L1
loc(R). Therefore,

we have

v3 ∈ C1(R) \ v−1(0)).
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Similarly, for k ≥ 4, we obtain (vk)xx = k
4
(k− 3

2
)vk−4[(v2)x]

2 + k
2
vk−2p(v). Since

v2 ∈ C1(R) \ v−1(0)), it follows that

vk ∈ C2(R) \ v−1(0)), k ≥ 4.

For k ≥ 8, we have vk−2p(v) ∈ C2(R) \ v−1(0)), by previous conclusion as well

as v4, vk−4 ∈ C2(R) \ v−1(0)). Since vk−2v2
x = 1

4
(v4)x

1
k−4

(vk−4)x ∈ C1(R) \ v−1(0)),

we have

vk ∈ C3(R) \ v−1(0)), k ≥ 8.

Extending these arguments to higher values of k, we prove that

vk ∈ Cj(R \ v−1(0)), for k ≥ 2j.

This completes the proof of Lemma 4.3.2.

We may rewrite equation (4.63) by multiplying by ϕx and integrating on (−∞, x]

(c− σ)ϕ2 + ϕ3 +
ω1

6α2
ϕ4 +

ω2

10α3
ϕ5 + (σ − β0

β
)ϕ2

x − ϕϕ2
x = 0,

which implies, if ϕ 6= σ − β0
β

for all x,

ϕ2
x =

ϕ2[ ω2

10α3ϕ
3 + ω1

6α2ϕ
2 + ϕ+ (c− σ)]

ϕ− σ + β0
β

=
ϕ2f(ϕ)

ϕ− σ + β0
β

:= F (ϕ). (4.65)

Applying the similar arguments as introduced in [46], we have the following

conclusion.

1. When ϕ approaches a simple zero m of F (ϕ) so that F (m) = 0 and F ′(m) 6= 0,

the solution ϕ of (4.65) satisfies

ϕ2
x = (ϕ−m)F ′(m) +O((ϕ−m)2), as ϕ→ m, (4.66)

where f = O(g) as x→ a means |f(x)
g(x)
| is bounded in some interval [a− ε, a+ ε] with

ε > 0. Then, we have

ϕ(x) = m+
1

4
(x− x0)2F ′(m) +O((x− x0)4), as x→ x0, (4.67)
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where ϕ(x0) = m.

2. If F (ϕ) has a double zero at ϕ = 0 such that F (0) = F ′(0) = 0 and F ′′(0) > 0,

then

ϕ2
x = ϕ2F ′′(0) +O(ϕ3), as ϕ→ 0. (4.68)

Hence,

ϕ = O
(

exp(−
√
F ′′(0)|x|)

)
, as |x| → ∞, (4.69)

which implies ϕ→ 0 exponentially as x→∞.

3. If ϕ approaches a simple pole ϕ(x0) = σ − β0
β

of F (ϕ), then

ϕ(x)− σ +
β0

β
= λ|x− x0|2/3 +O((x− x0)4/3), as x→ x0, (4.70)

ϕx =


2
3
λ|x− x0|−1/3 +O((x− x0)1/3), as x ↓ x0,

−2
3
λ|x− x0|−1/3 +O((x− x0)1/3), as x ↑ x0,

(4.71)

for some constant λ.

4. Peaked traveling waves occur when ϕ suddenly changes direction: ϕx 7→ −ϕx

according to equation (4.65).

Based on discussion above on traveling wave solution of equation (4.55), we

will classify the various travelling-wave solutions to (4.65).

In view of the expression of the function of f, one should consider the following

three different cases.√√
19− 4

3
< c <

1√
8
,

1√
8
< c < 1 and c =

1√
8
,

corresponding to ω2 < 0, ω2 > 0 and ω2 = 0, respectively.

Let us start with

f(ϕ) = a3ϕ
3 + a2ϕ

2 + a1ϕ+ a0, a3 6= 0,
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where

a3 =
ω2

10α3
, a2 =

ω1

6α2
, a1 = 1, a0 = c− σ.

Define that η = ϕ + a2
3a3
, that is, ϕ = η − 5

9

αω1

ω2

. Then, by the property of cubic

polynomial [7], we can rewrite

f(ϕ) = f(η) =
ω2

10α3
(η3 + 3pη + 2q), (4.72)

where

p =
3a3a1 − a2

2

9a2
3

=
10

3

α3

ω2

− 25

81

α2ω2
1

ω2
2

, (4.73)

q =
2a3

2 − 9a3a2a1 + 27a2
3a0

54a3
3

=
125

729

α3ω3
1

ω3
2

− 25

9

α4ω1

ω2
2

+ 5(c− σ)
α3

ω2

. (4.74)

The determinator of equation f(η) = 0 is defined by

D = q2 + p3 =
1000

27

α9

ω3
2

− 625

243

α8ω2
1

ω4
2

− 250

9
(c− σ)

α7ω1

ω3
2

+
1250

729
(c− σ)

α6ω3
1

ω4
2

+ 25(c− σ)2α
6

ω2
2

.

(4.75)

Case I:
√√

19−4
3

< c < 1√
8
. The restriction on c then yields that

α > 0, β0 < 0, β > 0, ω1 < 0, ω2 > 0.

Consider D = 0 as a quadratic equation of c− σ, that is

A(c− σ)2 +B(c− σ) + C = 0, (4.76)

where

A =
25α6

ω2
2

, B =
1250

729

α6ω3
1

ω4
2

− 250

9

α7ω1

ω3
2

, and C =
1000

27

α9

ω3
2

− 625

243

α8ω2
1

ω4
2

.

It is obviously that A > 0. It is also observed from c ∈ (
√√

19−4
3

, 1√
8
) that 8−139c2 < 0

and 8c2 − 1 < 0. This then implies that

B =
250

9

α6ω1

ω3
2

c2(8− 139c2)

18(c2 + 1)(8c2 − 1)
< 0.

112



For C, it is easy to see that

C =
125

27

α8

ω3
2

(128c4 − 21c2 + 10)

2(c2 + 1)(8c2 − 1)
< 0.

Hence, the quadratic equation D = 0 has a negative solution y1 and a positive solution

y2, where

y1 =
5

9

αω1

ω2

− 25

729

ω3
1

ω2
2

− 1

2

√
∆ < 0,

y2 =
5

9

αω1

ω2

− 25

729

ω3
1

ω2
2

+
1

2

√
∆ > 0, and

∆ =
( 50

729

ω3
1

ω2
2

− 10

9

αω1

ω2

)2

− 4
(40

27

α3

ω2

− 25

243

α2ω2
1

ω2
2

)
> 0.

In addition, we know

1), If y1 < c− σ < y2, then D < 0;

2), If c− σ = y1 or c− σ = y2, then D = 0;

3), If c− σ < y1 or c− σ > y2, then D > 0.

The following theorem provides the classification of traveling wave solution to

equation (4.55) when D > 0 and
√√

19−4
3

< c < 1√
8
, i.e. f(ϕ) has exactly one real

root, which takes the form of η1 = 3

√
−q +

√
q2 + p3 + 3

√
−q −

√
q2 + p3.

Theorem 4.3.3. Assume that
√√

19−4
3

< c < 1√
8
.

(1) Suppose σ > c− y1.

• If σ − β0
β

= η1 − 5
9
αω1

ω2
, then there is a peaked traveling wave solution ϕ > 0

with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

• If σ − β0
β
> η1 − 5

9
αω1

ω2
, then there is a smooth traveling wave solution ϕ > 0

with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

• If σ − β0
β
< η1 − 5

9
αω1

ω2
, then there is a cusped traveling wave solution ϕ > 0

with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

(2) Suppose σ < min{β0
β
, c− y2} and γ2 = ω2

10α3 (5
9
αω1

ω2
− η1) > 0.

• If σ − β0
β

= η1 − 5
9
αω1

ω2
, then there is an antipeaked traveling wave solution
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ϕ < 0 with min
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

• If σ − β0
β
< η1 − 5

9
αω1

ω2
, then there is a smooth traveling wave solution ϕ < 0

with min
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

• If σ − β0
β
> η1 − 5

9
αω1

ω2
, then there is an anticusped traveling wave solution

ϕ < 0 with min
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

Proof. Since β0
β

= c(c4+6c2−1)
3c4+8c2−1

, this implies c− β0
β

= 2c3(c2+1)
3c4+8c2−1

> 0, for c ∈ (
√√

19−4
3

, 1√
8
).

The decay of ϕ(x) at infinity gives a necessary condition for the existence of traveling

wave is

lim
|x|→∞

ω2

10α3ϕ
3 + ω1

6α2ϕ
2 + ϕ+ (c− σ)

ϕ− σ + β0
β

≥ 0,

which implies  c− σ ≥ 0,

β0
β
− σ > 0,

or

 c− σ ≤ 0,

β0
β
− σ < 0,

i.e. σ < β0
β

or σ ≥ c (when σ = c, D < 0).

By the property of cubic equation, it is thereby inferred from D > 0 that

f = 0 has one real root and two complex roots. Based on necessary condition for

the existence of traveling wave, we will discuss the following two cases for D > 0:

σ > c and σ < β0
β
.

If σ > c, then

p =
10

3

α3

ω2

− 25

81

α2ω2
1

ω2
2

=
5

3

α2c2

ω2

[ (91c2 − 2)

6(c2 + 1)(8c2 − 1)

]
< 0,

q =
125

729

α3ω3
1

ω3
2

− 25

9

α4ω1

ω2
2

+ 5(c− σα
3

ω2

)

=
25

9

α3ω1

ω2
2

[ c2(8− 139c2)

18(c2 + 1)(8c2 − 1)

]
+ 5(c− σ)

α3

ω2

< 0,

where ω1 < 0, ω2 > 0, c− σ < 0, 8c2 − 1 < 0, 91c2 − 2 > 0 and 8− 139c2 < 0, since

c ∈ (
√√

19−4
3

, 1√
8
).
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It then follows from the Cardano Formula that the real root of f(η) = 0 can be

expressed as

η1 =
3

√
−q +

√
q2 + p3 +

3

√
−q −

√
q2 + p3. (4.77)

Denote u = 3

√
−q +

√
q2 + p3 and v = 3

√
−q −

√
q2 + p3. Then the other two roots

can be expressed as

η2 = u(−1

2
+

√
3

2
i) + v(−1

2
−
√

3

2
i),

η3 = u(−1

2
−
√

3

2
i) + v(−1

2
+

√
3

2
i).

Hence,

f(η) =
ω2

10α3
(η − η1)(η − η2)(η − η3),

where η1 > 0 and (η − η2)(η − η3) > 0. Substituting η by ϕ+ 5
9
αω1

ω2
implies

f(ϕ) =
ω2

10α3
(ϕ+

5

9

αω1

ω2

− η1)(ϕ+
5

9

αω1

ω2

− η2)(ϕ+
5

9

αω1

ω2

− η3),

where η1 − 5
9
αω1

ω2
> 0 and (ϕ+ 5

9
αω1

ω2
− η2)(ϕ+ 5

9
αω1

ω2
− η3) > 0.

Let

γ1 =
ω2

10α3
(
5

9

αω1

ω2

− η1) < 0, (4.78)

and

Q(ϕ) = (ϕ+
5

9

αω1

ω2

− η2)(ϕ+
5

9

αω1

ω2

− η3). (4.79)

Then equation (4.65) can be written as the following form

ϕ2
x =

ϕ2( ω2

10α3ϕ+ γ1)Q(ϕ)

ϕ− σ + β0
β

=

ω2

10α3ϕ
2
[
ϕ− (η1 − 5

9
αω1

ω2
)
]
Q(ϕ)

ϕ− σ + β0
β

:= G1(ϕ).

Hence, if σ − β0
β

= η1 − 5
9
αω1

ω2
, then ϕ suddenly changes direction from ϕx to

−ϕx at ϕ = σ − β0
β

and ϕ → 0 exponentially as |x| → ∞, which give rise to the

existence of a peaked traveling wave solution ϕ > 0 with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

115



If σ − β0
β
> η1 − 5

9
αω1

ω2
, then G1(ϕ) has a simple zero at ϕ = η1 − 5

9
αω1

ω2
and a

double zero at ϕ = 0. In view of (4.66)-(4.69), there exists a smooth traveling wave

solution ϕ > 0 with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
and ϕ→ 0 exponentially as |x| → ∞.

If σ − β0
β
< η1 − 5

9
αω1

ω2
, then G1(ϕ) has a pole at ϕ = η1 − 5

9
αω1

ω2
and a double

zero at ϕ = 0. It then implies from (4.68)-(4.71) that there exists a cusped traveling

wave solution ϕ > 0 with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
and ϕ→ 0 exponentially as |x| → ∞.

In the case of σ < β0
β

, it is inferred from equation (4.72) that p < 0. From the

property of ϕ decaying at infinity, we require ω2

10α3 · q = c−σ > 0, which implies q > 0.

Equation (4.65) then can be written as

ϕ2
x =

ϕ2( ω2

10α3ϕ+ γ2)Q(ϕ)

ϕ− σ + β0
β

=

ω2

10α3ϕ
2
[
ϕ− (η1 − 5

9
αω1

ω2
)
]
Q(ϕ)

ϕ− σ + β0
β

:= G2(ϕ),

where γ2 = ω2

10α3 (5
9
αω1

ω2
− η1) > 0, η1 − 5

9
αω1

ω2
< 0, and η1 < 0 in this case.

Hence, if σ − β0
β

= η1 − 5
9
αω1

ω2
, then ϕ suddenly changes direction from ϕx to

−ϕx at ϕ = σ − β0
β

and ϕ → 0 exponentially as |x| → ∞, which gives rise to the

existence of an antipeaked traveling wave solution ϕ < 0 with min
x∈R

ϕ = η1 − 5
9
αω1

ω2
.

If σ − β0
β
< η1 − 5

9
αω1

ω2
, then G1(ϕ) has a simple zero at ϕ = η1 − 5

9
αω1

ω2
and a

double zero at ϕ = 0. In view of (4.66)-(4.69), there exists a smooth traveling wave

solution ϕ < 0 with min
x∈R

ϕ = η1 − 5
9
αω1

ω2
and ϕ→ 0 exponentially as |x| → ∞.

If σ − β0
β
> η1 − 5

9
αω1

ω2
, then G1(ϕ) has a pole at ϕ = η1 − 5

9
αω1

ω2
and a double

zero at ϕ = 0. It is then deduced from (4.68)-(4.71) that these is ϕ < 0 with

min
x∈R

ϕ = η1 − 5
9
αω1

ω2
and ϕ→ 0 exponentially as |x| → ∞. This completes the proof

of Theorem 4.3.3.

Remark 8. Since the existence of peaked traveling wave solution requires σ > c−y1 and

σ = β0
β

+ η1(σ)− 5
9
αω1

ω2
in Case (1). Due to c > β0

β
, which implies σ < c+ η1(σ)− 5

9
αω1

ω2
,

then the necessary condition becomes c+ η1(σ)− 5
9
αω1

ω2
> c− y1. As η1 is positive, the
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above condition can be simplified as y1 >
5

9

αω1

ω2

, where y1 = 5
9
αω1

ω2
− 25

729

ω3
1

ω2
2
− 1

2

√
∆.

This requires

0 < ∆ <

(
−50

729

ω3
1

ω2
2

)2

. (4.80)

Actually,

50

729

ω3
1

ω2
2

=− 50

54

c3(c2 − 2)(c2 + 1)

(c2 − 1)(8c2 − 1)2
, (4.81)

∆ =

(
−50

54

c3(c2 − 2)(c2 + 1)

(c2 − 1)(8c2 − 1)2
+

10

3

c3(c2 + 1)

(c2 − 1)(8c2 − 1)

)2

− 4

(
80

27

c6(c2 + 1)

(c2 − 2)(c2 − 1)2(8c2 − 1)
− 25

27

c6(c2
1)2

(c2 − 1)2(8c2 − 1)2

)
. (4.82)

The leading order of ∆−
(

50
729

ω3
1

ω2
2

)2

is (8c2 − 1)3 and it has the following form

−500

162

c6(c2 − 2)(c2 + 1)2

(c2 − 1)2(8c2 − 1)3
< 0, when c→ 1√

8

−
,

which implies (4.80) holds. This guarantees the existence of peaked traveling wave

solution.

Case II: 1√
8
< c ≤ 1. It is observed that the restriction on c gives that α > 0, β0 <

0, β > 0, ω1 < 0, and ω2 < 0. In this case, equation (4.76) has a negative solution

y1 and a positive solution y2. We could follow the similar proof in Theorem 4.3.3 to

obtain the following results.

Theorem 4.3.4. Assume 1√
8
< c ≤ 1.

(1) If σ > c− y1, then there is a smooth traveling wave solution ϕ < 0 with min
x∈R

ϕ =

−10α3

ω2
γ3 where γ3 = ω2

10α3

(
5
9
αω1

ω2
− 3

√
−q +

√
q2 + p3− 3

√
−q −

√
q2 + p3

)
and a cusped

traveling wave solution ϕ > 0 with max
x∈R

ϕ = σ − β0
β

.

(2) If σ < min{β0
β
, c − y2} and γ4 > 0, then there is a smooth traveling wave

solution ϕ > 0 with max
x∈R

ϕ = −10α3

ω2
γ4, where γ4 = ω2

10α3

(
5
9
αω1

ω2
− 3

√
−q +

√
q2 + p3 +

3

√
−q −

√
q2 + p3

)
and an anticusped traveling wave solution ϕ < 0 with min

x∈R
ϕ =

σ − β0
β

.
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Proof. According to the decay of ϕ(x) at infinity, a necessary condition for the

existence of traveling wave is that σ ≥ c or σ < β0
β

, since c > β0
β

for 1√
8
< c ≤ 1. Note

that σ = c is not included since D < 0 when σ = c.

Case (1). If σ > c, we know p < 0 and q > 0 from (4.73) and (4.74). Then equation

(4.65) has the following form

ϕ2
x =

ϕ2( ω2

10α3ϕ+ γ3)Q(ϕ)

ϕ− σ + β0
β

=

ω2

10α3ϕ
2
[
ϕ− (η1 − 5

9
αω1

ω2
)
]
Q(ϕ)

ϕ− σ + β0
β

:= G3(ϕ),

where γ3 = ω2

10α3 (5
9
αω1

ω2
− η1) < 0, η1 − 5

9
αω1

ω2
< 0, and η1 < 0 in this case.

Hence, for ϕ < 0, G3(ϕ) has a simple zero at ϕ = η1 − 5
9
αω1

ω2
and a double zero

at ϕ = 0. According to (4.66), (4.67), (4.68), (4.69), there is a smooth traveling wave

solution ϕ < 0 with min
x∈R

ϕ = η1 − 5
9
αω1

ω2
and ϕ→ 0 exponentially as |x| → ∞.

For ϕ > 0, G3(ϕ) has a pole at ϕ = σ − β0
β

and a double zero at ϕ = 0. From

(4.68)-(4.71), there is a cusped traveling wave solution ϕ > 0 with max
x∈R

ϕ = σ − β0
β

and ϕ→ 0 exponentially as |x| → ∞.

Case (2). If σ < β0
β

, then we know p < 0 in (4.73). It then follows from the property

of ϕ decaying at infinity that

q < 0 and
ω2

10α3

(5

9

αω1

ω2

− 3

√
−q +

√
q2 + p3 − 3

√
−q −

√
q2 + p3

)
> 0.

Similar to Case (1), we have

ϕ2
x =

ϕ2( ω2

10α3ϕ+ γ4)Q(ϕ)

ϕ− σ + β0
β

=

ω2

10α3ϕ
2
[
ϕ− (η1 − 5

9
αω1

ω2
)
]
Q(ϕ)

ϕ− σ + β0
β

:= G4(ϕ),

where γ4 = ω2

10α3 (5
9
αω1

ω2
− η1) < 0, η1 − 5

9
αω1

ω2
> 0, and η1 > 0 in this case.

Consequently, for ϕ > 0, G4(ϕ) has a simple zero at ϕ = η1− 5
9
αω1

ω2
and a double

zero at ϕ = 0. From (4.66)-(4.69), there is a smooth traveling wave solution ϕ > 0

with max
x∈R

ϕ = η1 − 5
9
αω1

ω2
and ϕ→ 0 exponentially as |x| → ∞.
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For ϕ < 0, G4(ϕ) has a pole at ϕ = σ − β0
β

and a double zero at ϕ = 0. It is

then deduced from (4.68)-(4.71) there is a cusped traveling wave solution ϕ < 0 with

min
x∈R

ϕ = σ − β0
β

and ϕ→ 0 exponentially as |x| → ∞. This completes the proof of

Theorem 4.3.4.

Case III: c = 1√
8
. In this case, we have

α =
1

9
, β0 = −5

√
2

648
, β =

1

162
, ω1 = −35

√
2

81
, ω2 = 0,

which implies

ω1

6α2
= −35

√
2

6
, c =

√
2

4
,

β0

β
= −5

√
2

4
.

Hence, equation (4.65) can be simplified as

ϕ2
x =

ϕ2[ϕ2 − 3
√

2
35
ϕ− 3

√
2

35
(
√

2
4
− σ)]

3
√

2
35

[(σ + 5
√

2
4

)− ϕ]
, (4.83)

where f(ϕ) = ϕ2 − 3
√

2
35
ϕ− 3

√
2

35
(
√

2
4
− σ). The following discussion enlists all possible

distribution of the roots of f .

(a) f(ϕ) has no zeros: If σ > 19
√

2
70

, then (3
√

2
35

)2 + 4 · 3
√

2
35
· (
√

2
4
− σ) < 0. Hence,

f(ϕ) > 0.

(b) f(ϕ) has a double zero: If σ = 19
√

2
70

, then (3
√

2
35

)2 + 4 · 3
√

2
35
· (
√

2
4
− σ) = 0. Hence,

f(ϕ) = (ϕ− 3
√

2
70

)2.

(c) f(ϕ) has two simple zeros: If σ < 19
√

2
70

, then (3
√

2
35

)2 + 4 · 3
√

2
35
· (
√

2
4
−σ) > 0. Hence,

f(ϕ) = (ϕ−M1)(ϕ−M2), where

M1 =
3
√

2

70
− 1

2

√(3
√

2

35

)2

+ 4 · 3
√

2

35
·
(√2

4
− σ

)
,

M2 =
3
√

2

70
+

1

2

√(3
√

2

35

)2

+ 4 · 3
√

2

35
·
(√2

4
− σ

)
,

and M1 < M2, M1 +M2 > 0. In addition, if σ >
√

2
4

, then M1M2 > 0; If σ =
√

2
4

, then

M1 = 0, M2 = 3
√

2
35

; If σ <
√

2
4

, then M1M2 < 0.
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In view of equation (4.83), it is found from decay of ϕ at infinity that a necessary

condition for the existence of traveling wave solution is

lim
|x|→∞

ϕ2 − 3
√

2
35
ϕ− 3

√
2

35
(
√

2
4
− σ)

(σ + 5
√

2
4

)− ϕ
≥ 0,

which implies σ < −5
√

2
4

or σ ≥
√

2
4

.

With the results established above, we are in the position to classify all traveling

waves of equation (4.55) when ω2 = 0 for various σ.

Theorem 4.3.5. Let c = 1√
8
.

(1) If σ < −5
√

2
4

, i.e. f(ϕ) has a negative root and a positive root, then:

(1a) If σ + 5
√

2
4
< M1 < 0, then there is a smooth traveling wave solution ϕ > 0 with

max
x∈R

ϕ(x) = M2;

(1b) If M1 < σ + 5
√

2
4
< 0, then there is an anticusped traveling wave solution ϕ < 0

with min
x∈R

ϕ(x) = σ + 5
√

2
4

;

(1c) If σ + 5
√

2
4

= M1, then there is an antipeaked traveling wave solution ϕ < 0 with

min
x∈R

ϕ(x) = M1 = σ + 5
√

2
4

.

(2) If σ =
√

2
4

, i.e. f(ϕ) has two simple roots: M1 = 0, M2 = 3
√

2
35

, there is no traveling

wave solution.

(3) If
√

2
4
< σ < 19

√
2

70
, i.e. f(ϕ) has two simple roots: M1 > M2 > 0, M2 = 3

√
2

35
, then

there is a smooth traveling wave ϕ > 0 with max
x∈R

ϕ(x) = M1.

(4) If σ = 19
√

2
70

, i.e. f(ϕ) has a double roots: M1 = M2 = 3
√

2
70

, then there is a smooth

traveling wave ϕ > 0 with max
x∈R

ϕ(x) = M1 = M2 and a cusped traveling wave solution

ϕ > 0 with max
x∈R

ϕ(x) = 213
√

2
140

.

(5) If σ > 19
√

2
70

, i.e. f(ϕ) > 0 for all ϕ(x) ∈ R, then there is a cusped traveling wave

solution ϕ > 0 with max
x∈R

ϕ(x) = σ + 5
√

2
4

.
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Proof. Case (1), If σ < −5
√

2
4

, then f(ϕ) has two simple roots M1 and M2 satisfying

M2 > 0 > M1, which implies

ϕ2
x =

ϕ2(ϕ−M1)(ϕ−M2)
3
√

2
35

[(σ + 5
√

2
4

)− ϕ]
:= F1(ϕ), where σ +

5
√

2

4
< 0. (4.84)

From (4.84) we know that ϕ can not oscillate around zero near infinity. Let us

consider the following two cases.

(1.1) ϕ(x) > 0 near −∞. Then there is some x0 sufficiently large negative so

that ϕ(x0) = ε > 0, with ε sufficiently small, and ϕx(x0) > 0. Since
√
F1(ϕ) is locally

Lipschitz in ϕ for ϕ > 0. Hence, there is a local solution to
ϕx =

√
F1(ϕ),

ϕ(x0) = ε.

on [x0−L, x0 +L] for some L > 0. Therefore from (4.66), (4.67), (4.68) and (4.69) we

see that in this case we can obtain a smooth traveling wave solution with maximum

height ϕ = M2 and an exponential decay to zero at infinity

ϕ(x) = O
(

exp
(
−

√√√√ 3
√

2
35

(
√

2
4
− σ)

σ + 5
√

2
4

∣∣∣x∣∣∣)) as |x| → ∞. (4.85)

(1.2) ϕ(x) < 0 near −∞. Then there is some x0 sufficiently large negative

so that ϕ(x0) = −ε < 0, with ε sufficiently small, and ϕx(x0) < 0. Since
√
F1(ϕ)

is locally Lipschitz in ϕ for σ + 5
√

2
4
< ϕ < 0, we an continue the local solution to

(−∞, x0 − L] with ϕ(x)→ 0 as x→ −∞. As for x ≥ x0 + L, we can solve the initial

value problem 
ϕx = −

√
F1(ϕ),

ϕ(x0) = −ε.

If M1 < σ + 5
√

2
4

< 0, the initial value problem can be solved all the way until

ϕ = σ + 5
√

2
4

, which is a simple pole of F1(ϕ). From (4.68), (4.69), (4.70) and (4.71)
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we know that we can construct an anticusped solution with a cusp singularity at

ϕ = σ + 5
√

2
4

and ϕ→ 0 exponentially as |x| → ∞;

If M1 = σ + 5
√

2
4

< 0, then ϕ suddenly changes direction from ϕx to −ϕx at

ϕ = M1 = σ + 5
√

2
4

, which implies the existence of an antipeaked solution ϕ < 0 with

min
x∈R

ϕ(x) = M1 = σ + 5
√

2
4

and ϕ→ 0 exponentially as |x| → ∞.

Case (2), If σ =
√

2
4

, then f(ϕ) has two simple roots M1 = 0 and M2 = 3
√

2
35

,

which implies

ϕ2
x =

ϕ3(ϕ− 3
√

2
35

)
3
√

2
35

[3
√

2
2
− ϕ]

:= F2(ϕ). (4.86)

Notice that ϕ(x) < 0 near −∞. Because ϕ(x) → 0 as x → −∞, there is some

x0 sufficiently negative so that ϕ(x0) = −ε < 0 with ε > 0 sufficiently small, and

ϕx(x0) < 0. From standard ODE theory, we can generate a unique local solution ϕ(x)

on [x0 − L, x0 + L] for some L > 0. Due to

F ′2(ϕ) =
ϕ2
[
− 3ϕ2 + 216

√
2

35
ϕ− 27

35

]
3
√

2
35

(3
√

2
2
− ϕ)2

< 0, for ϕ < 0,

we know F2(ϕ) decreases for ϕ < 0. Since ϕx(x0) < 0, ϕ decreases near x0, which

implies F2(ϕ) increases near x0. Hence, by F ′2(ϕ), ϕx decreases near x0, and then ϕ

and ϕx both decrease on [x0 − L, x0 + L]. Since
√
F1(ϕ) is locally Lipschitz in ϕ for

ϕ < 0, we can continue the local solution to all R and obtain that ϕ(x) → −∞ as

x → ∞, which fails to be in H1. Thus, there is no traveling wave solution in this

case.

Case (3), If
√

2
4
< σ < 19

√
2

70
, then f(ϕ) has two simple roots M2 and M1, which

implies

ϕ2
x =

ϕ2(ϕ−M1)(ϕ−M2)
3
√

2
35

[(σ + 5
√

2
4

)− ϕ]
:= F3(ϕ), where 0 < M1 < M2 < σ +

5
√

2

4
. (4.87)

Similar to Case (1), we know that ϕ can not be oscillated around zero near infinity.

Let us consider the following two cases.
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(3.1) ϕ(x) > 0 near −∞. Then the same analysis as used in the proof of Case

(1.1) leads to the conclusion that there is a smooth traveling wave solution with

maximum height ϕ = M1 and an exponential decay to zero at infinity.

(3.2) ϕ(x) < 0 near −∞. A directly computation shows that F ′3(ϕ) < 0, if

ϕ < 0, where

F ′3(ϕ) =

[
4ϕ3 − 3(M1 +M2)ϕ2 + 2M1M2ϕ

]
(σ + 5

√
2

4 )− 3ϕ4 + 2(M1 +M2)ϕ3 − 2M1M2ϕ
2

(3
√

2
35 )2

[
(σ + 5

√
2

4 − ϕ)
]2 .

Arguing as Case (2), there is no traveling wave solution in this case.

Case (4), If σ = 19
√

2
70 , then f(ϕ) has a double root M1 = M2 = 3

√
2

70 , which implies

ϕ2
x =

ϕ2(ϕ− 3
√

2
70 )2

3
√

2
35 [213

√
2

140 − ϕ]
:= F4(ϕ). (4.88)

(4.1) ϕ(x) > 0 near −∞. By the standard ODE theory in Case (1), if ϕ reaches

its absolutely maximum at ϕ = M1 = M2, then there exists a smooth traveling wave

solution with maximum height ϕ = M1 = M2 and an exponential decay to zero at infinity;

if ϕ = M1 = M2 is not an absolutely maximum, then we obtain a cusped traveling wave

solution with maximum height ϕ = 213
√

2
140 .

(4.2) ϕ(x) < 0 near −∞. From

F ′4(ϕ) =

(
− 3ϕ3 + 876

√
2

140 ϕ2 − 3582
4900ϕ+ 7668

√
2

686000

)
ϕ

3
√

2
35 (213

√
2

140 − ϕ)2
,

one can check that F ′5(ϕ) < 0 for ϕ < 0. Hence, similar to Case (2), there is no traveling

wave solution in this case.

Case (5), If σ > 19
√

2
70 , then there is no real roots for f(ϕ) and we know f(ϕ) > 0 for

all ϕ(x) ∈ R. Denote

ϕ2
x =

ϕ2f(ϕ)
3
√

2
35 [(σ + 5

√
2

4 )− ϕ]
:= F5(ϕ). (4.89)

The discussion in the previous section shows that there is no smooth traveling waves in this

case and since f(ϕ) has no zeros for ϕ ∈ R, there can only exist cuspons or anticuspons. It

is then inferred from (4.89) that ϕ can not oscillate around zero near infinity.
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(5.1) ϕ(x) > 0 near −∞. Then there is some x0 sufficiently large negative so that

ϕ(x0) = ε > 0, with ε sufficiently small, and ϕx(x0) > 0.
√
F5(ϕ) is locally Lipschitz in ϕ

for 0 < ϕ < σ + 5
√

2
4 , then σ + 5

√
2

4 becomes a pole of F5(ϕ). Thus we obtain a traveling

wave solution with a cusp at ϕ = σ + 5
√

2
4 and decay exponentially.

(5.2) ϕ(x) < 0 near −∞. A directly computation shows that F ′5(ϕ) < 0 for ϕ < 0.

It is then adduced from the argument applied in Case (2) that there is no traveling-wave

solution. Hence, the proof of Theorem 4.3.5 is completed.
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