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Abstract 

 
ANALYSIS OF COMPOSITE STRUCTURES WITH CURVATURE 

 UNDER TEMPERATURE ENVIRONMENT 

 

Muthu Ram Prabhu Elenchezhian, MS Aerospace Engineering 

 

The University of Texas at Arlington, 2017 

 

 

Supervising Professor: Wen S Chan 

 

Composite structures are frequently exposed to environments with change in 

temperatures during their service life. The thermal behaviours of the laminated composite 

structures are more pronounced than that of the structures made of isotropic materials. For the 

structures under thermal environment, extensive studies have been conducted to investigate 

the induced thermal stresses and deformation of composite laminated plates by linear/non-

linear analysis and composite structures by finite element analysis.   

 

The main focus of this study is concentrated on development of an analytical method 

for analyzing composite thin shells and/or moderate curved beam structures under temperature 

environment. This includes the derivation of closed form expression for evaluating 

deformation/stresses of composite laminates and curved beams using a modified Classical 

Lamination Plate Theory with curvature, respectively. The present results are validated by 2D 

and 3D finite element models. Parametric study was done on the thermal stresses of curved 

beams with varying boundary conditions, ply stacking sequence, radius of beam curvature 

under various temperatures 
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Chapter 1  

INTRODUCTION 

1.1 Introduction to Composite Materials 

The Term "Composite" signifies "comprised of two or more different parts." A composite 

material contains at least two or more elements which are combined together in a 

macroscopic scale. The material formed has the properties and performance greater than 

those of the constituent material acting independently. The composite materials have the 

fibers and matrix as the main phases. As the stiffness and strength are provided by fibers to 

the composite material, matrix binds them together providing the load transfer strength. 

Also, the matrix accounts for the shear strength and in-plane transverse strength. The fiber 

matrix Interphase plays a significant factor in controlling the delamination of the material, 

failure mechanisms, fracture toughness, stress-strain behavior and failure propagation.  

Composite materials have the advantages of being lightweight, possessing excellent 

corrosion resistance, fatigue resistance and high strength to weight ratio compared to the 

conventional materials. Advanced Composites are extensively used as a substitute to 

metallic structures. 

Composite structures are used in a variety of applications such as civil constructions, 

aerospace, automotive, marine, biomedical industries and sports products. 

The characteristics of composites such as high specific strength, low density, and high 

specific stiffness make composites highly advantageous in primary and secondary load 

carrying structures of military and civil aircrafts. The recognition of composites in civil 

aviation is by its use in the world largest airliner, Airbus A380 and in Boeing 787. Nearly 

50% of the weight of the Boeing 787, including its fuselage and wings are made up of 

composites. 
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In 1960's, assuming the stress in each ply of laminate to be planar, a theory was 

developed to analyze the stress-strain of each laminae. This phenomenon is widely referred 

as the “Classical Lamination Theory”. However, the different material properties between 

each layer of laminates produce significant inter-laminar stresses. Even in fragile plate, the 

inter-laminar stresses are three-dimensional near the edges. Henceforth, as the plane 

stress condition is assumed in CLT, it is not applicable in the locality of the free edge. 

Shell - a thin-walled body, with the middle of the surface being curved in at least one 

direction. A cylindrical shell, as well as conical shell, has its middle surface curved because 

it has only one direction.  But, in the case of a spherical shell curvature exists in both 

directions. Such mundane shells as a front fender of a car or an egg shell are an example 

of double curvature in shells. Shell theory is significantly complicated, compared to beam 

and plate theory because of this curvature. Then to complicate the shell theory with all of 

the material complexities associated with laminated composite materials makes shell theory 

of composite materials very complicated, and a great challenge. 

Design and analysis of the composite structure are validated on their performance by 

the following methodologies – finite element method, analytical solutions, and experimental 

testing. Although it is a time consuming, expensive and tedious process, composites are 

typically certified by experimental test methods and not through analysis. In such instances, 

finite element method takes upper hand as it is compatible with large convoluted structures 

with high accuracy. It is also necessary to come up an efficient analytical method to analyze 

the composite structures. Therefore, a simplified method can be used to carry out the initial 

analysis using the analytical or theoretical results. Also, once the parameters are input into 

the coding software such as MATLAB, it can be comfortably modified and the new analysis 

results can be obtained. After validation of analytical solution with finite element model, 

more complexities can be added to the model and complex analysis can be done. This 

ensures managing time and saves cost.  
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1.2 Motivation and Background 

The composite structures are frequently exposed to situations with change in 

temperature throughout their life. The material change behavior of the laminated 

composites due to thermal effects are more articulated than isotropic materials. In addition, 

stresses due to thermal loads are induced between and within laminas even when no 

constraints are applied. Analysis of composites beam structures is often conducted by 

using finite element method which is time consuming and expensive in design process. 

Efforts were done by developing analytical method for design validation. Most available 

analytical methods are complicated to use for a designers and analysts. There is a need for 

a simple but accurate method for conducting analysis for design variation and optimization 

studies. 

 

1.3 Literature Review  

Hyer and Vogl [1] discussed on the normal, circumferential and axial displacements of 

elliptical composite cylinders due to a spatially uniform temperature change. They followed 

the Kantorovich technique and minimization of the total potential energy. They showed that 

the displacements are characterized by the presence of a circumferential component, 

lamination sequence and the boundary conditions at ends of the cylinder.  

Dano and Hyer [2] presented a method to predict the out of plane displacements 

components of flat unsymmetrical epoxy matrix composite laminates as they are cooled 

from their elevated cure temperature. Instead of using the approximation for displacements, 

their theory directly uses approximations for laminate mid-plane strains. Experimental 

results were presented to confirm the predictions of the theory.  

Hyer [3] in his book Stress Analysis of Fiber-Reinforced Composite Materials, has 

described the basics of composite materials, Plane stress assumption, Classical Lamination 
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Theory and various cases of the environmentally induced stresses in the laminates, which 

served as the basis for the Classical Lamination Theory derivation.  

Duan et.al. [4] presented the finite element method model for predicting the large 

thermal deflection in the composite plates embedded with pre-strained shape memory 

alloys. For the large thermal deflections, the in-plane strain and the curvature vectors are 

defined from von Karman strain displacement relation. 

Khdeir et.al. [5] researched on the analytical method using the state space approach in 

conjunction with Levy method for doubly curved cylindrical and spherical shells. Various 

Boundary conditions were analyzed. The third order theory (HSDT), first order theory 

(FSDT) and classical theory (CST) were used to obtain the governing equations.  

Patel et.al. [6] determined the relationship between the maximum deflection and 

temperature rise to evaluate the minimum temperature parameter that causes a bifurcation 

of shell deformation from axisymmetric deformation mode to the asymmetric one in cross-

ply laminated composite conical shells by finite deflection analysis. 12 conclusions were 

made from this research work, which has a significant impact on the conical shells analysis.  

Chitikela et.al. [7] developed an analytical method for predicting the critical buckling 

temperature and natural frequency of symmetric composite box-beam subjected to the 

temperature gradient. The governing equations were obtained by the small deflection 

theory and the D Alembert's method. It is inferred that the change in the ply orientation 

angle cannot overcome the effect of the thermal stress on the natural frequency of a 

composite box-beam.  

Chang et.al. [8] derived the governing equations for nonlinear thermal buckling and 

post buckling of cross-ply laminated composite beams subjected to temperature rise. The 

equations were derived based on the Reddys higher order shear deformation plate theory 

and Von Karman’s geometry nonlinear theory. Their theoretical and numerical results show 
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that the different thermal expansion coefficient ratio, elastic moduli ratio, and shear stiffness 

ratio will influence the non-dimension critical buckling temperature.  

Xiang and Chen [9] studied on the thermal bending response of laminated composite 

plates subjected to sinusoidal temperature distribution. 

Mackerle [10] developed a bibliography that has the finite elements analysis of the 

sandwich structures – for isotropic and composite materials from the theoretical as well as 

practical points of view. He included the special finite elements developed for the analysis 

of sandwich beams, plates, panels, and shells. He also concentrated on topics like 

increased temperature, thermal expansion, degradation of elastic properties and 

viscoelastic effect.  

Li and Zhao [11] has derived the exact solutions for the In-Plane displacements of 

Curved Beams under thermal Load with various end restrictions. Their work included a real 

multi-span curved bridge subjected to concentrated loads caused by friction force on top of 

bridge piers and thermal load due to the temperature difference.  

Roos, Hormann and Behrens [12] has done immense work on the shell and solid 

modeling of the composite structures as a base for simulation driven optimization 

processes.  

Aggarwal and Sivaneri [13] has formulated a higher order finite element method for 

generating the accurate distributions of the stresses and strains in the curved beams. They 

also proposed a unique curved-beam finite element.  

Chan and his students have done a plenty of work on the composite curved beams and 

composite tubular structures. 

Demirhan and Chan [14] derived two analytical models for evaluating the stiffness 

matrix of the composite tubes by mapping the tubular wall laminates into an equivalent 

laminate using the laminated plate theory and laminated shell theory. The curvature and 

stacking sequence effects on axial and bending stiffness were studied.  
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Wei-Su and Chan [15] derived the closed form solutions for tubular and rectangular 

cross sections for evaluating the thermal induced stresses.  

Nguyen and Chan [16] investigated on the laminate stresses in a curved laminated 

beam subjected to pure bending moments. A closed form relationship of the laminate 

constitutive equations was developed. They also developed a FEM Model for the isotropic 

and orthotropic material and researched on the variation of the tangential and radial stress 

on changing in curvature, stacking sequence and fiber orientation.  

Mahadev and Chan [17] developed a novel mathematical framework to predict the key 

structural characteristics such as axial stiffness, bending stiffness and centroid for thin 

walled composite shells. They also incorporated the design and manufacturing of a novel 

ad-hoc test- fixture setup to experimentally characterize the extension-bending behavior in 

open cross-section curved composite strips. 

1.4 Objective of the Thesis 

The primary purpose of the thesis is to obtain the analytical solution for calculating the 

thermal deformation of the curved beam and to investigate the effect of the deformation of 

various laminate sequences and different thickness of the curved beam. Also, the effect of 

the change in thickness of the curved beam along the circumferential direction is 

investigated for various temperatures.  

 

1.5 Outline of the Thesis 

Chapter 1 is introduction of composites, its applications, need for the study and 

literature review.  

Chapter 2 gives a brief review of the classical lamination theory for a plate. It also 

includes the analytical solution for the deflection of the composite under thermal load. 

Lastly, finite element 2D modeling of a composite plate, subjected to thermal load is 

developed and the thermal deformations are obtained.  
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Chapter 3 describes the curved beam theory, composite shell theory and analytical 

solution for the deflection of the semi-circular beam and curved beam under thermal loading 

conditions. It also includes the 3D-solid finite element modeling of the semi-circular beam 

and curved beam subjected to the thermal load and the deflection of the beams.  

Chapter 4 evaluates the results obtained from the analytical and finite element solutions 

of the plate and the curved beam from Chapters 2 and 3. The deformation change due to 

the variation of the thickness under the thermal environment is also included. 

Chapter 5 comprises of conclusions and future work for the research. 
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Chapter 2  

LAMINATES 

 

This chapter includes the review of the Classical Lamination Theory for a plate. Later 

the analytical solution for the evaluation of the deformation of the plate under thermal load is 

discussed. Finally, a 2D shell and 3D solid finite element model are developed to validate the 

deformation.  

 

2.1 Review of the Classical Lamination Theory 

 
2.1.1 Lamina Constitutive Equation 

The composite analysis has two coordinate systems – the x-y-z depicts the global 

coordinate system, and the 1-2-3 coordinate illustrate the local coordinate system. The fiber 

direction, transverse fiber direction and direction perpendicular to in-plane ply are indicated by 

the 1, 2 & 3 in the local coordinates. 

For a layer, the stress/strain relationship is given as 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝛾13

𝛾23

𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆13 𝑆23 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆55 0
0 0 0 0 0 𝑆66]

 
 
 
 
 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏13

𝜏23

𝜏12]
 
 
 
 
 

                              (2.1) 

 

Figure 2.1 Coordinate Systems of the Lamina and Laminate 
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Since the lamina is thin in composites, plane stress condition is given as 

𝜎3 = 0                       𝜏23 = 0                       𝜏13 = 0                             (2.2) 

 
Hence, the relationship between stress and strain for a lamina can be simplified as  
 

[𝜀]1−2 = [

𝜀1

𝜀2

𝛾12

] = [
𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [

𝜎1

𝜎2

𝜏12

]                                                                (2.3) 

And  

𝜀3 = 𝑆13𝜎1 + 𝑆23𝜎2  ≠ 0                                                                              (2.4) 

 
 

The elements of the compliance matrix [ S ] are the functions of elastic constant of the 

composite lamina and are given as  

 

𝑆11 =
1

𝐸1
                                 𝑆12 = −

𝑣12

𝐸1
  

 

𝑆22 =
1

𝐸2
                                 𝑆13 = −

𝑣13

𝐸1
                                     (2.5) 

 

𝑆33 =
1

𝐸3
                                  𝑆23 = −

𝑣23

𝐸2
  

 

𝑆66 =
1

𝐺12
  

 
The reduced compliance matrix for a thin layer can be inverted to form the reduced stiffness 
matrix from equation 2.3 

[𝜎]1−2 = [

𝜎1

𝜎2

𝜏12

] [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1

𝜀2

𝛾12

]                                  (2.6) 

 
The stiffness matrix [ Q ]  elements are expressed as  

𝑄11 =
𝐸1

1−𝑣12𝑣21
  

𝑄22 =
𝐸2

1 − 𝑣12𝑣21
 

𝑄12 =
𝑣21𝐸1

1−𝑣12𝑣21
=

𝑣12𝐸2

1−𝑣12𝑣21
                                               (2.7) 

 

𝑄66 = 𝐺12 
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In equation 2.7, E1 and E2 represent Young’s modulus of the lamina, G12 represents the Shear 
modulus, and v12 represents the Poisson’s ratio of the lamina. 
 
2.1.2 Stress – Strain Transformation Matrices 

In general, the x-y global coordinate system of the lamina does not coincide with the 1-

2 local coordinate system. Hence, the transformation matrices are used to transform the 

stiffness matrix and strains or stresses from the local to the global coordinate system for an 

angle-ply. 

The stiffness matrix for an angle-ply with respect to global system can be obtained by 

rotating the stiffness matrix of 0° ply as follows 

[𝑄]̅̅ ̅
𝑥−𝑦 = [𝑇𝜎(−𝜃)][𝑄]1−2[𝑇(𝜃)]                                          (2.8) 

Where [𝑇𝜎] and [𝑇𝜀] are the transformation matrices for stress and strain, given by  

 

[𝑇𝜎] = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] 

(2.7) 

[𝑇𝜀] = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2

] 

 
Where 𝑚 = cos 𝜃  and 𝑛 = sin 𝜃 
 
2.1.3 Constitutive Equation for the Laminate 

The “Lamination Theory”, also called as the “Classical Laminated Plate Theory” or as 

the “Classical Lamination Theory”, abbreviated by CLPT or CLT, is the basic procedure to 

obtain the stiffness matrices for the laminate, mid-plane strains, and curvatures for the laminate, 

In-plane stresses and strains for each lamina. 

Basic Assumptions of the Classical Lamination Theory are  

1. Laminate is obtained by bonding several laminae of different fiber orientations 

2. Individual lamina of the laminate has its own principal coordinate system 

3. A reference coordinate system is introduced common to all the laminas which is set at 

the mid-plane of the laminate 
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4. The laminate is thin and wide, i.e., The Plane stress condition is enforced 

5. A perfect bond exists between the various laminas 

6. The cross-sectional plane of the laminate remains plane after deformation 

7. Each lamina and entire laminate behave linearly elastic 

 

 

Figure 2.2 Laminate Section under Deformation 

The lamina is assumed to bend without slipping over each other, and the cross-section of 

lamina remains unwrapped. Hence, the displacement of the mid-plane is assumed to be  

uo = uo (x,y) 

                                                                   vo = vo (x,y)                                                          (2.10)                                               

 wo = wo (x,y) 

The displacement at any point on the laminate is given by  

𝑢 = 𝑢0 − 𝑧
𝜕𝑤

𝜕𝑥
 

  

𝑣 = 𝑣0 − 𝑧
𝜕𝑤

𝜕𝑥
                                                  (2.11) 

𝑤 = 𝑤0  

Where 𝑢0 , 𝑣0 and 𝑤0 refer to the displacements in the x, y and z-direction but are the function 

of x and y only. These displacements are in the reference or mid-plane.  

From equation 2.11, The Strain-Displacement relation at any point can be given as  
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𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2   

𝜀𝑦 =
𝜕𝑣

𝜕𝑥
=

𝜕𝑣0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑦2                                                   (2.12) 

𝛾𝑦 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤0

𝜕𝑥𝜕𝑦
  

For simplicity, we rewrite the equation 2.12 in the matrix form 

[

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

] 

Where,  

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
 

𝜀𝑦
0 =

𝜕𝑣0

𝜕𝑥
  

𝛾𝑥𝑦
0 =

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑥
                                                         (2.13) 

𝜅𝑥 = −𝑧
𝜕2𝑤0

𝜕𝑥2   

𝜅𝑦 = −𝑧
𝜕2𝑤0

𝜕𝑦2   

𝜅𝑥𝑦 = −2𝑧
𝜕2𝑤0

𝜕𝑥𝜕𝑦
  

Where 2.13 represents the mid-plane strains and curvatures. 

2.1.4 Stress and Strain of Lamina in Laminate Coordinates 

The strains in the kth layer is given by  

[𝜀𝑥−𝑦]
𝑘

= [𝜀0] + 𝑧𝑘[𝜅]  

[

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

]

𝑘

= [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧𝑘 [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]                                                     (2.14) 
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The stresses of the kth layers in the laminate is given by  

[𝜎𝑥−𝑦]
𝑘𝑡ℎ = [𝑄̅𝑥−𝑦]𝑘𝑡ℎ . [𝜀𝑥−𝑦]𝑘𝑡ℎ 

(2.15) 

[𝜎𝑥−𝑦]
𝑘𝑡ℎ = [𝑄̅𝑥−𝑦]

𝑘𝑡ℎ([𝜀
0
𝑥−𝑦] + 𝑧𝑘𝑡ℎ[𝜅𝑥−𝑦]) 

2.1.5 Force and Moment Resultants of Laminate 

 

Figure 2.3 Composite Laminate with n-Layers 

 

The general relationship for the Force/Moments and Strain of the laminate is given by  

[𝑁̅
𝑀̅

] = [
𝐴 𝐵
𝐵 𝐷

] [𝜀
0

𝜅
]                                                (2.16) 

Where [𝜀°] and [𝜅]  represent the mid-plane strain and mid-plane curvatures respectively, given 

by equation 2.13 

The [𝑁] and [𝑀̅] are the Force and Moment matrices, are given by 

[𝑁̅
𝑀̅

] = [
𝑁
𝑀

] [𝑁
𝑇

𝑀𝑇]                                               (2.17) 
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Where [ N ] and [ M ] represent the applied load and applied moment due to mechanical forces 

respectively. They are given by the equation 

[𝑁] = ∑ ∫ [𝜎]𝑘. 𝑑𝑧
4

4−1
𝑛
𝑘=1   

(2.18) 

[𝑀] = ∑ ∫ [𝜎]𝑘. 𝑧. 𝑑𝑧
4

4−1
𝑛
𝑘=1   

The force and moment induced due to thermal loads are given by [ 𝑁𝑇 ] and [ 𝑀𝑇  ] as  

[𝑁𝑇] = {∑ [𝑄̅]𝑘. [𝛼𝑥−𝑦]𝑘. (ℎ𝑘 − ℎ𝑘−1)
𝑛
𝑘=1 }. Δ𝑇  

(2.19) 

[𝑀𝑇] =
1

2
{∑ [𝑄̅]𝑘. [𝛼𝑥−𝑦]𝑘. (ℎ

2
𝑘 − ℎ2

𝑘−1)
𝑛
𝑘=1 }. Δ𝑇  

In equation 2.19, [𝛼𝑥−𝑦]
𝑘
 represents the coefficient of thermal expansion (CTE), of kth 

ply transforming from laminae local to the global coordinate system. ΔT is the difference 

between applied temperature and room temperature. hk represents the distance to the top of kth 

ply as shown in Figure 2.3.  

 [A], [B], and [D] matrices given in equation 2.16 represents in-plane extensional 

stiffness matrix, extensional-bending coupling stiffness matrix, and bending stiffness matrix 

respectively. These are evaluated per unit width of the laminate and are given by 

[𝐴] = ∑ [𝑄̅]𝑘. (ℎ𝑘 − ℎ𝑘−1)
𝑛
𝑘=1   

[𝐵] =
1

2
∑ [𝑄̅]𝑘. (ℎ

2
𝑘 − ℎ2

𝑘−1)
𝑛
𝑘=1                                (2.20) 

[𝐷] =
1

3
∑ [𝑄̅]𝑘. (ℎ

3
𝑘 − ℎ3

𝑘−1)
𝑛
𝑘=1   

Where [𝑄̅]𝑘 is obtained from the transformed reduced stiffness matrix from equation 2.8.  
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From Equation 2.16,  

[
 𝜀°
𝜅

] = [
𝑎 𝑏
𝑏𝑇 𝑑

] [
 𝑁
  𝑀

 ]                                                 (2.21) 

Where  

[
𝑎 𝑏
𝑏𝑇 𝑑

] = [
𝐴 𝐵
𝐵 𝐷

 ]
−1

                                              (2.22) 

Equation 2.21 gives the strain and curvature at the mid-plane of the laminate.  

2.1.6 Thermal Strains  

Composites have their tendency to change their characteristics when exposed to 

temperature. These changes in their characteristics are due to their Coefficient of Thermal 

Expansion (CTE). In general observation, the characteristics of the change of structural 

response due to temperature are identical to the change of moisture. Hence, by changing the 

temperature terms to moisture, or by adding the same temperature terms with moisture 

coefficients, the composite laminate can be analyzed for hygro-thermal environments.  

The Thermal Strain of the laminate is given by  

𝜀𝑖
𝑇 = 𝛼𝑖Δ𝑇                                                      (2.23) 

Where 𝛼𝑖 represents the CTE and i =1,2 and 3 represents the normal components of the 

thermal strain and ΔT represents the difference in temperature.  

 

2.2 Analytical Method for Deformation in Laminate  

 As Discussed before, we obtain the [A], [B] and [D] Matrices from the Classical 

Lamination Theory.  

The relationship between load and deformation of laminate can be written in terms of the strain 

and curvature of mid-plane as  

[ 𝑁
  𝑀̅ 

 ] =   [
𝐴 𝐵
𝐵 𝐷

] [
 𝜀°
𝜅

]                                  (2.24) 
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[𝑁]= [N] + [N]T, where [𝑁] represents the total force applied, [N] is the mechanical force and 

[N]T is the Thermal Force applied.  

 

Similarly, [𝑀̅]  = [M] + [M]T, where [𝑀̅] represents the total bending moments applied per unit 

width, [M] is due to mechanical load and [M]T is due to the thermal load.   

 

From equation (2.24)  

                                                                      [
 𝜀°
𝜅

] = [
𝑎 𝑏
𝑏𝑇 𝑑

] [ 𝑁̅
  𝑀̅ 

 ]                                     (2.25)                                               

As there is no mechanical load applied, and only Thermal load is applied 

[N]M = [M]M = 0                                 (2.26) 

Hence equation (2.25) becomes        

                                                                                   [
 𝜀°
𝜅

] = [
𝑎 𝑏
𝑏𝑇 𝑑

] [  𝑁
𝑇

  𝑀𝑇 ]                                           (2.27)              

 

2.2.1 Plate A – Symmetrical Balanced Laminate 

 

 For a symmetrical balanced laminate only under the thermal Load,  

[B] = 0 ;     [M]T = 0 ;      [Nx]T ≠ 0 ;     [Ny]T ≠ 0 ;      [Nxy]T = 0 ; 

 

Substituting these conditions in (2.27), We get the mid-plane strains to be,  

                                               ε°x = a11Nx
T + a12Ny

T = 
𝜕𝑢𝑜

𝜕𝑥
                                        (2.28)         

                                    ε°y = a12Nx
T + a22Ny

T = 
𝜕𝑣𝑜

𝜕𝑦
                                    (2.29)     

                                                                 ɣ°xy = 0         (2.30) 
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Integrating Equations (2.28), (2.29) and (2.30) and solving using the boundary conditions, we 

get  

                                                          Uo = ( a11Nx
T +a12Ny

T ) x                                   (2.31)      

                                  Vo = ( a12Nx
T + a22Ny

T ) y                                 (2.32)             

Equations (2.31) and (2.32) gives the X and Y deformation for a symmetrical balanced laminate 

under the thermal Load.  

 

2.2.2 Plate B – Symmetrical Un-Balanced Laminate 

For a symmetrical un-balanced laminate only under the thermal load,  

[B] = 0 ;     [M]T = 0 ;      [Nx]T ≠ 0 ;     [Ny]T ≠ 0 ;      [Nxy]T ≠ 0 ; 

Substituting these conditions in (2.27), we get the mid-plane strains to be,  

ε°x = a11Nx
T + a12Ny

T + a16Nxy
T            (2.33)                                          

ε°y = a12Nx
T + a22Ny

T + a26Nxy
T                                  (2.34)                      

ɣ°xy = a16Nx
T + a26Ny

T + a66Nxy
T            (2.35)  

Integrating equations (2.33), (2.34) and (2.35) and solving using the boundary conditions, we 

get  

                                                         Uo = ε°x x + 0.5 ɣ°xy y                                          (2.36)                               

                      Vo = ε°y y + 0.5 ɣ°xy x                                         (2.37)                            

The Equations (2.36) and (2.37) gives the X and Y deformation for a Symmetrical Un-Balanced 

Laminate under the Thermal Load.  

2.2.3 Plate C & D – Unsymmetrical Laminates  

For an un-symmetrical laminate only under the thermal load,  

 [M]T ≠ 0 ;      [Nx]T ≠ 0 ;     [Ny]T ≠ 0 ;      [Nxy]T ≠ 0 ; 
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Hence (2.27) becomes  

                                                         [
 𝜀°
𝜅

] = [ 𝑎 ∗ 𝑁𝑇 + 𝑏 ∗ 𝑀𝑇

𝑏𝑇 ∗ 𝑁𝑇 + 𝑑 ∗ 𝑀𝑇]                                  (2.38)                                                                                                   

Integrating Equations in (2.28) and solving using the boundary conditions, we get  

                                                         Uo = ε°x x + 0.5 ɣ°xy y                                          (2.39)              

                     Vo = ε°y y  + 0.5 ɣ°xy x                                           (2.40)

                                     Wo = - ( 0.5 κx x2 + 0.5 κy y2 + 0.5 κxy x y )                     (2.41)     

Equations (2.39), (2.40) and (2.41) gives the X, Y and Z deformation for an un-symmetrical 

laminate under the thermal load.  

2.2.4 Thickness Change of Laminate under Thermal Load 

For a given kth layer of the laminate, the strain in the thickness direction can be written as  

 

𝜀3,𝑘 = 𝑆13,𝑘𝜎1,𝑘 + 𝑆23,𝑘𝜎2,𝑘+𝛼3,𝑘∆𝑇                            (2.42) 

Where 𝑆13,𝑘 and 𝑆23,𝑘 are given in equation (2.5). 𝜎1,𝑘 𝑎𝑛𝑑 𝜎2,𝑘 can be obtained from the in-

plane analysis of the laminate under NT and/or MT. 

 

The thickness change of the kth layer is  

𝛥𝑡𝑘 = 𝜀3,𝑘𝑡𝑘                                                        (2.43) 

tk is the thickness of the kth layer. The total thickness change 𝛥𝑡𝑡𝑜𝑡𝑎𝑙 can be 

𝛥𝑡𝑡𝑜𝑡𝑎𝑙 = ∑ 𝛥𝑡𝑘                                                     𝑛
𝑘=1 (2.44) 

and the average strain in the thickness direction can be written as  

𝜀3 =
𝛥𝑡𝑡𝑜𝑡𝑎𝑙

∑ 𝑡𝑘
𝑛
𝑘=1

                                               (2.45) 

 

 



 

19 

2.3 Finite Element Modelling 

 
This Chapter describes the geometry of the structures, materials used in the model, 

construction and meshing of the model and the boundary conditions used in every structure. 

ANSYS Mechanical APDL 17.0 and 17.2 were used to develop the 2-D and 3-D Finite Element 

Model. 2-D model is a smeared model and 3-D model is a solid layer by layer model. 

 

2.3.1 Material Used 

2.3.1.1 Material Selection 

 The material used is IM7/8552 – Graphite Fiber-Epoxy Prepreg Manufactured by the 

Hexcel. Hexcel’s HexTow IM7/8552 is the preferred carbon fiber for the most advanced 

aerospace and industrial applications including Airbus A350 XWB, Eurofighter Typhoon, Boeing 

787 and GEnx Engines. It is used in the primary and secondary aircraft applications, space and 

defense operations in the missiles and space launchers. The cured ply thickness is 0.0072 inch.  

2.3.1.2 Material Properties  

 The material properties used throughout the analysis for all laminates and structures 

are given in Table 2.1 Below. These properties are obtained for 0° ply laminae at the 72°F room 

temperature.  

 The fiber direction, transverse direction and the out of plane direction is indicated by the 

subscripts 1, 2 and 3 respectively. The young’s moduli of the composite ply lamina are 

represented by constants E1, E2 and E3.  The constants ν12, ν13 and ν23 represent the Poisson’s 

ratio. The constants G12, G13 and G23 indicate the shear moduli with respect to 1-2, 1-3 and 2-3 

planes respectively. The constants α1, α2 and α3 are the coefficients of the thermal expansion of 

the ply.  
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Table 2.1 Lamina Properties for IM7/8552 

Lamina Properties for IM7/8552 Gr/Ep at 72°F 

E1 23.35 Msi 

E2 1.65 Msi 

E3 1.65 Msi 

ν12 0.32 

ν13 0.32 

ν31 0.436 

G12 0.75 Msi 

G13 0.75 Msi 

G23 0.58 Msi 

tply 0.0072 inch 

α 1 -5.5 x 10-8 / °F 

α 2 17.22 x 10-6 / °F 

α 3 17.22  10-6 / °F 

 
2.3.2 Laminate Sequence 

 There are four different stacking sequences which are being considered for the analysis 

of the structures. Each laminate is made up of 8 plies.  They are listed below in Table 2.2 

Table 2.2 Laminate Stacking Sequence 

Model Name Type Sequence 

A Symmetric Balanced [ 45 / -45 / 0  ]S 

B Symmetric Un-Balanced [ 452 / 0 ]S 

C Un-Symmetric Balanced [ 45 / -45 / 0 ]2T 

D Un-Symmetric Un-Balanced [452 / 0 ]2T 
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2.3.3 Element Type 

The element types that are used for modeling of composite materials in ANSYS are 

SHELL181, SHELL281, SOLSH190, SOLID185 Structural / Layered Solid, and SOLID186 

Structural / Layered Solid. Based on our need, application and type of results desired, the 

corresponding element can be chosen. These data regarding the elements are obtained from 

ANSYS documentation. – ANSYS APDL Element Reference Manual [22].   

  

“SHELL181 and SHELL 281 

SHELL 181 is a 4-node 3-D shell element with 6 degrees of freedom at each node, whereas 

SHELL 281 is an 8-node element. SHELL 181 element has capabilities of full nonlinear 

including large strain and allows 255 layers. SHELL 281 can analyze thin to moderately thick 

structures. It is also used for linear, large rotation and/or large stain nonlinear applications 

SOLSH190 -- 3-D Layered Structural Solid Shell 

An 8-node 3-D solid shell component with three degrees of freedom for each node. The 

element can be utilized for simulating shell structures with an extensive variety of thickness 

(from thin to modestly thick). It has full nonlinear capabilities including analysis of large strains. 

The element can be stacked to demonstrate through-the-thickness discontinuities. 

SOLID185 Layered Solid  

 3-D 8-Node Layered Solid utilized for 3-D modeling of solid structures. It is characterized by 

eight nodes with 3 DOF at each node. It has plasticity, hyper-elasticity, stress stiffening, creep, 

large deflection, and large strain capabilities. It also has mixed formulation capability for 

simulating deformations of nearly incompressible elasto-plastic materials, and fully 

incompressible hyper elastic materials. The component is also considered for prism and 

tetrahedral degenerations when used in irregular regions. Different element technologies such 

as B-bar, uniformly reduced integration, and enhanced strains are supported. SOLID278 is a 

companion thermal element. 
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SOLID186 Layered / Structural Solid  

A higher-order version of the SOLID185 element. SOLID279 is a companion thermal element. 

 

In this research work, we choose SHELL 281 for the 2D plate modelling and SOLID186 

for the 3D modelling. Each of these elements is discussed here in detail. SHELL 281 is 

modelled as a shell section with smeared properties, whereas the SOLID186 is used to model 

solid layers of orthotropic plies, layer by layer. 

 

SHELL281 

SHELL281 is suiTable for analyzing thin to moderately-thick shell structures. It is an 8 

noded element with 6 degrees of freedom at each node: translations in the x, y, z - axes, and 

rotations about the x, y, z-axes. (When using the membrane option, the element has 

translational degrees of freedom only). SHELL281 is good for linear, large rotation, and/or large 

strain nonlinear applications. Change in shell thickness is accounted for in nonlinear analyses.  

SHELL281 may be used for layered applications for modeling composite shells or sandwich 

construction. The accuracy in modeling composite shells is governed by the first-order shear-

deformation theory (usually referred to as Mindlin-Reissner shell theory). The element 

formulation is based on logarithmic strain and true stress measures. The element kinematics 

allow for finite membrane strains (stretching). However, the curvature changes within a time 

increment are assumed to be small. 

 

Figure 2.4 SHELL281 Geometry 
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SHELL281 Assumptions and Restrictions 

• Zero thickness elements or elements tapering down to a zero thickness at any corner 

are not allowed (but zero thickness layers are allowed). 

• If multiple load steps are used, the number of layers may not change between load 

steps. 

• When the element is associated with pre-integrated shell sections, additional 

restrictions apply.  

• No slippage is assumed between the element layers. Shear deflections are included in 

the element; however, normal to the center plane before deformation are considered to 

remain straight after deformation. 

• The transverse shear stiffness of the shell section is estimated by an energy 

equivalence procedure. The accuracy of this calculation may be adversely affected if 

the ratio of material stiffness’s (Young's moduli) between adjacent layers is very high. 

• The calculation of interlaminar shear stresses is based on simplifying assumptions of 

unidirectional, uncoupled bending in each direction. If accurate edge interlaminar shear 

stresses are required, shell-to-solid sub modeling should be used. 

• The section definition permits use of hyperplastic material models and elastoplastic 

material models in a laminate definition. However, the accuracy of the solution is 

primarily governed by fundamental assumptions of shell theory. The applicability of 

shell theory in such cases is best understood by using a comparable solid model. 

• The through-thickness stress, SZ, is always zero. 

• The thickness of the shell is assumed to remain constant even in a large-strain 

analysis. 
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Due to these assumptions and constrains we need to have a 3D model to analyze the 

Strain in the third direction, i.e., the Thickness direction.  

 

SOLID186 

SOLID186 is a higher-order 3-D 20-node solid element that exhibits quadratic 

displacement behavior. It supports plasticity, hyper-elasticity, creep, stress stiffening, large 

deflection, and large strain capabilities. It also has mixed formulation capability for simulating 

deformations of nearly incompressible elasto-plastic materials, and fully incompressible hyper-

elastic materials. SOLID186 is available in two forms: homogeneous structural solid and 

layered structural solid.  

In SOLID186, we use the homogeneous structural solid to form orthotropic layers. 

using the layered structural solid will produce a smeared model with smeared results. hence, 

the homogeneous structural solid will produce more accurate results on deformation of each 

lamina.” [22] 

 

Figure 2.5 SOLID186 Geometry 

 

2.3.4 Development of 2D - Finite Element Model 

  

For 2D modelling, a thin plate was to be modelled. The element type was chosen as 

SHELL 281. As it was a composite layup, the storage of layer data K8 value was set to All 

Layers in the options.  
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Layup of Laminate 

 Select Sections – Shell – layup – add/edit to create the stacking sequence. The 

thickness value for each ply and the Angle of fiber orientation of each ply was inputted for all 

the eight layers. The Plot Section command will display the following Figure 2.6 

 

Figure 2.6 Layer Stacking Sequence for Model A 

                                    

Modelling of the Plate  

 A Rectangular plate of 2 inches x 1.5 inches was modelled by using the create - area 

command, keeping the center point as origin (0,0) on the x-y plane as shown in Figure 2.7. The 

Direction in which the area is created should be taken care. The normal direction should be 

upwards as per the right-hand rule. If it’s vice versa, the results will vary.  

 
Figure 2.7 2-D Model of the Plate 
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Meshing  

 The Meshing was performed by defining the line element size as required along the 

breadth and width of the plate. Line Element size was set in such a way that the ratio of the 

thickness of element to any other dimension of the element is not 1:10. 

 

Boundary and Loading Conditions 

 Displacement   

 ANSYS requires the structure to be fixed. Hence, the center (0,0) was constrained in all 

degrees of freedom, so that there will be no transitional motion and no rotational motion at 

origin on x, y and z direction. ( Ux = Uy = Uz = 0 ; Rx = Ry = Rz = 0 )  

 Temperature 

A uniform temperature load of 172 °F was applied, such that difference between load 

temperature and room temperature was 100°F.  the model was solved. 

 

Figure 2.8 Meshed Plate with Load             

                For thickness option, the element view can be selected in options and plate can be 

viewed along thickness. 
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Figure2.9 2-D plate with Thickness 

Post Processing 

 The X, Y and Z component of deformation are obtained for each model.  As it is a plate, 

the 4 nodal points which are the four corners of the rectangle are taken into consideration for 

comparison with the theoretical values. Plate A and B, which are symmetrical does not have the 

Z component of deformation, and the Plates C and D has the Z component of deformation due 

to curvature.  

 

2.3.5 Development of 3D- Finite Element Model 

 
To study the thickness variation of the plates due to thermal load, and include the third 

dimensional properties in the calculations, a 3D solid model is being created. This will produce 

more accurate results than the 2D model, as in the 2D analytical and FEM Models, the strain in 

z-direction is being ignored. 

 

Element type 

The SOLID186 – structural solid element is utilized for the 3D modelling of the plate. Each solid 

layer is been created layer by layer.  
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Modelling of the Plate 

A rectangular volume of 2 inches x 1.5 inches x 0.0072 inch is being created by creating the 

key points and the volume command. The same command is repeated for five times, to totally 

create a 6-layer laminate. A single ply and the laminate volume are shown in Figure 2.11. 

 

Orientation of the Plate 

Since the plate is made up of 6-layers of solid elements, the orientation of each layer is defined 

by creating local coordinate systems. While meshing, the local coordinate systems are 

assigned to each layer. 

 
 

Figure 2.10 Orientation of Each Layer by Local Coordinate System 

 

Figure 2.11 Single Ply Laminae and 6-ply Laminate 

Meshing  

Each ply is meshed individually with respects to its material orientation. Each line of the volume 

is being selected and the line element size is being defined. Since it is a composite laminate, 
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the line element size for Z- Direction line is always 1, as the composite plies are not split into 

elements in the thickness direction. Once the volume attributes and the line element attributes 

are defined, the volume is meshed. The same procedure is repeated for all the plies. The 

meshing for a laminae and the laminate is shown in Figure 2.12.  

 

Figure 2.12 Mesh of Each Individual Laminae and Total Laminate 

 Boundary and Loading Conditions 

For the case of 2D plate element, the model was fixed at the center of reference. But for the 3-

D solid elements, fixing it only at the center of the plate makes it less constrained. Hence the 

model was fixed in center of origin in all directions ( UX = 0 ; UY = 0 ; UZ = 0 ) and also the 

nodes through the thickness direction of the center element ( x = 0 ; y = 0 ; z varies ) was 

constrained in the X and Y directions ( UX = 0 ; UY = 0 ) .  

Also, the temperature load of 172 °F was being applied with the room temperature set to 72 °F, 

hence a temperature difference of 100°F is obtained. The model is solved. 

The boundary conditions are shown in Figures 2.15(a) and 2.15(b) respectively. 
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Figure 2.13 Boundary Conditions for a 3-D Model 

2.3.5.1 Mesh Convergence  

The finite element method is the concept of sub-dividing a body into small discrete 

elements, which are called as the finite elements. Each finite element has its nodes and 

interpolation functions. Governing equations are developed for each element, the elements are 

combined together, and the global governing equation and matrix is obtained. The 

displacement solutions are obtained by applying the boundary conditions and loads. The 

general issue that always arises is on the requirement of how small is it need to make the 

elements so that we can trust the solution. An exact firm answer is not yet available to this 

issue. Hence, mesh convergence test is necessary. In this mesh convergence test, the model is 

first meshed with particular size and results are obtained. The mesh is refined to a smaller size 

than previous and results are obtained. Both the results are compared. If the results have less 

error percentage, then the first mesh is accepted to be good enough for that particular 

geometry, loading and boundary conditions. If the results have large error percentage, it will be 

necessary to try a finer mesh. Finer the mesh is, more is cost, calculation time and memory 

requirements (both disk and RAM). It is necessary to find the minimum number of elements that 

delivers a converged solution. 

The Convergence requirements can be classified into three groups:  
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• Completeness: - The elements must possess strong approximation power that captures the 

analytical solution within the limits of mesh refinement.  

• Compatibility: - The displacement continuity between elements should be provided by the 

shape functions. This is to insure that no material gaps appear as the elements deform. 

Such gaps would multiply and might absorb or release spurious energy as the mesh 

refinement continues.  

• Stability: - The finite element system must satisfy certain conditions that preclude 

nonphysical zero-energy modes in elements and the absence of excessive element 

distortion.  

Consistency of FEM is defined by completeness and compatibility between the discrete and 

mathematical models.  A Consistent finite element model is that which passes both 

completeness and continuity requirements. This is the FEM analog of the famous Lax-Wendroff 

theorem, which says that consistency and stability imply convergence. Convergent solutions 

are obtained only using right approach methods as discussed below: 

• Proper element type must be chosen. 

• Use a fine mesh 

• Thin long elements should be avoided 

• Stress accuracy must be verified 

• Rigid body motion must be prevented 

• Reaction forces must be verified  

• Inter-element connectivity must be checked 

In general practice, the ratio to the thickness to any other side must not be greater than 10. 

For the mesh convergence study of laminates, 5 models of meshes are been developed and 

the values of displacements and stress obtained at the node 2, (x = 1, y = -0.75, z=-0.002216) 

was obtained. For each model, the number of elements were increased.  
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Table 2.3 Mesh Convergence of Laminates 

Model 
Ratio of 

L : B : H 
No of Nodes No of Elements 

Displacement 

at Node 2 

 ( Usum ) 

Error % 

A 20 : 20 : 1 4273 840 
1.7428E-3 

- 

B 16 : 12 :1 9481 1944 
1.7363E-3 0.373 

C 8 : 6 :1 32585 6936 
1.7491E-3 0.737 

D 4 : 3 :1 135113 29400 
1.7500E-3 0.051 

E 2 : 1 :1 781941 172224 
1.7500E-3 0.000 

 

 
2.3.5.2 Validation of the 3-D Finite Element Model 

The 3-D finite element model was first validated by using the isotropic material 

properties. Aluminum AL6061-T6 was chosen as the isotropic material and its properties were 

used. The properties of the aluminum are 

E = 10 Msi ; v = 0.33 ; α  = 14 x 10-6 ; G = 3.75 Msi 

The Deformations in X, Y, Z directions were obtained from the Finite Element Model 

and compared with the Analytical Solutions.  

Deformation of an Isotropic Plate – Analytical Solution 

 
Figure 2.14 Deformation of Isotropic material 

When a material undergoes heating or cooling, it undergoes deformation and hence 

there is a change in length of the material by an amount proportional to the original length and 

the change in temperature. This change in length is termed as linear thermal expansion, which 

is given by 

                                                              dl = L0 α (t1 - t0)                         ( 2.46 ) 
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where 

dl = change in length of material (inches) 

L0 = material’s initial length (inches) 

α =  linear expansion coefficient ( in/inoF)  

t0 = initial temperature on material (oF) 

t1 = final temperature on material (oF) 

Deformation of an Isotropic Plate – 3D Finite Element Model 

The X, Y and Z components of deformation of the 3D plate is shown in Figures 2.17 a, 

b and c respectively.. 

 

Figure 2.15  Deformation of X, Y, Z direction  

Results 

The analytical and finite element results are compared in the following Table.  

Table 2.4 Comparison of the Analytical and FEM Deformations of the Isotropic Laminate 

 Since the error percentages are very negligible, the finite element results agree with the 

theoretical results. Hence, this 3-D model can be used for the composite plates.  

 
Initial Length 

( inches ) 

Change in 

Length ( dl )  

Analytical 

Change in 

Length  FEM 
Error % 

X (Breadth) 2 2.8E-3 2.799E-3 0.035 % 

Y (Height) 1.5 2.1E-3 2.0998E-3 0.0095 % 

Z (Thickness) 0.0432 0.0604E-3 0.0604E-3 0 % 
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Chapter 3  

CURVED BEAMS 

 

This chapter begins with the theory on the curved beams, deriving the analytical 

solution for stresses and deformation of the curved beam laminates. Later the Finite Element 

Model of the 2D curved plate and 3D curved beam are being developed.  

 

3.1 Geometry of the Curved Beam  

 
Figure 3.1 Model of Curved Beam  

The curved beam section of radius 2 inch and angle of rotation 30 degrees was 

considered for the analysis. The thickness of each ply was 0.0072 inches, and hence the total 

thickness of the beam was 0.0432 inches. The mean radius Rm was 2.0216 inches. The length 

of the curved beam was different for each ply, and it depends on the radius of that ply. The 

radius of each ply and its corresponding length are given in the Table 3.1  

 

Figure 3.2 Coordinate System of Curved Beam  
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Ply Radius (inches) Length (inches) 

1 

2 

3 

4 

5 

6 

2 1.0472 

2.0072 1.0509 

2.0144 1.0547 

2.0216 1.0586 

2.0288 1.0622 

2.036 1.0660 

2.0432 1.0698 

 

Table 3.1 Radius and Length of Each Ply 

 
As shown in Figure 3.2, the curvature of the beam is along the fiber direction – x direction. 

Hence each ply has bending along the fiber direction.  

 

3.2 Analytical Solution for Curved Beam 

 
3.2.1 Classical Lamination Plate Theory for Curved Beams 

 
 In the previous chapter, we discussed the classical lamination theory for plates. In this 

Section, the Classical Lamination Plate theory was being used in thin curved beams to derive 

the strains and curvatures of the laminate. The deformations are obtained from the strains and 

curvatures by the kinematics equations.  
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According to the kinematics equations from the bending theory of cylindrical shells [25], 

𝜀𝜃 =
1 

𝑅

𝜕𝑢0

𝜕𝜃
−

𝑧

𝑅(𝑅+𝑧)

𝜕2𝑤

𝜕𝜃2 +
𝑤

𝑅+𝑧
  

 

𝜀𝑦 =
𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2                                             (3.1) 

𝛾𝑦𝜃 =
1

𝑅 + 𝑧

𝜕𝑣0

𝜕𝜃
+

𝑅 + 𝑧

𝑅

𝜕𝑢0

𝜕𝑦
− (

𝑧

𝑅
+

𝑧

𝑅 + 𝑧
) 

𝜕2𝑤

𝜕𝑦𝜕𝜃
 

 

A curved beam is regarded as thin when the ratio h/R is less than 0.1 and higher order terms in 

the binomial expansion of the term, i.e., (1 +
𝑧

𝑅
)

−1

 can be neglected.  

On further Simplifying equation 3.1 and neglecting z2 terms, we get  

𝜀𝜃 =
1

𝑅

𝜕𝑢0

𝜕𝜃
−

𝑧

𝑅2

𝜕2𝑤

𝜕𝜃2
+

𝑤(1−
𝑧

𝑅
)

𝑅
  

 

𝜀𝑦 =
𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
                                           (3.2) 

 

𝛾𝑦𝜃 =
(1−

𝑧

𝑅
)

𝑅

𝜕𝑣0

𝜕𝜃
+ (1 +

𝑧

𝑅
)

𝜕𝑢0

𝜕𝑦
−

2𝑧

𝑅

𝜕
2
𝑤

𝜕𝑦𝜕𝜃
  

 
where 𝜀𝜃,𝜀𝑦 𝑎𝑛𝑑 𝛾𝑦𝜃 represents the tangential strain, lateral strain, and shear strain respectively 

and u,v and w represent the displacements in the shell direction respectively.  

The strain components are expressed as the sum of the mid-plane strains and mid-plane 

curvature as  

{

𝜀𝜃

𝜀𝑦

𝛾𝜃𝑦

} =  {

𝜀𝜃
0

𝜀𝑦
0

𝛾𝜃𝑦
0

} + 𝑧 {

𝜅𝜃

𝜅𝑦

𝜅𝜃𝑦

}                                           (3.3) 

 

The mid-plane strains and curvatures are given from 3.3 by  

𝜀𝜃
0 =

1

𝑅

𝜕𝑢0

𝜕𝜃
+

𝑤

𝑅
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𝜀𝑦
0 =

𝜕𝑣0

𝜕𝜃
  

𝛾𝑦𝜃
0 =

1

𝑅
(
𝜕𝑣0

𝜕𝜃
+

𝜕𝑢0

𝜕𝑦
)                                          (3.4)  

𝜅𝜃 = −
1

𝑅2 (𝑤 +
𝜕2𝑤

𝜕𝜃2)  

𝜅𝑦 = −
𝜕2𝑤

𝜕𝑦2   

𝜅𝜃𝑦 =
2

𝑅
(
𝜕𝑢0

𝜕𝑦
−

𝛾𝜃𝑦
0

2
−

𝜕2𝑤

𝜕𝑦𝜕𝜃
)  

The first three terms of the equation 3.4 represent mid-plane strains and the last three terms 

represent the curvatures. 

 The Classical Lamination Plate Theory (CLPT) and the Classical Lamination 

Shell Theory (CLST) are the two theories that were primarily used to derive the mid-plane 

strains and curvature of the curved composite beams. These theories were very well discussed 

earlier by Chan with Demirham (1997), Chia (2007) and Mahadev (2015). Although these 

theories were analyzed for mechanical stresses and strains, The thermal terms are being 

included in this present work. The main difference between the CLPT and the CLST is the 

Curvature Factor (1 +
𝑧"

𝑅𝑚
) of the cylindrical shell, which is used only in the Shell theory for 

calculating the Stiffness and the load matrices. Mahadev (2015) has stated that the influence of 

curvature factor plays a major role for closed section cylindrical shells, but in the case of open 

cross- sectional cylindrical shells, the error difference between the CLPT and CLST Stiffness 

matrices are negligible. In addition, the curvature factor has less effect compared to the plate 

theory for the larger radius. Hence, for a simple approach, we use the Classical Lamination 

Plate Theory for curved beams in our work. 

In the laminated plate approach, an infinitesimal composite cylindrical plate element of 

a curved beam is rotated into a position which is parallel to the reference axis ( as shown in 
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Figure 3.4 ). The rotated element is then translated to the reference axis. The stiffness of the 

beam is integrated by the element stiffness from the end of the beam to the other end.  

 

Figure 3.3 Plate rotated at angle 𝜃 

3.2.2.1 Transformation Matrices  

The shell element is considered to be rotated at an angle 𝜃 with respect to the y axis 

and each ply is orientated at an angle β with respect to the z axis. Hence, it is vital to transform 

the matrices from the local coordinate system to the global coordinate system to obtain the 

material properties in the global coordinate system. Transformation of matrices should be 

accomplished for the Stiffness matrices and the Thermal coefficient of expansion matrices.  

For 𝜃 Transformation about the y axis,  

[𝑇𝜎]𝑦 = [
𝑚2 0 0
0 1 0
0 0 𝑚

]                                                                            (3.5) 

[𝑇𝜀]𝑦 = [
𝑚2 0 0
0 1 0
0 0 𝑚

]                                                                           (3.6) 

For β Transformation about z axis 

[𝑇𝜎]𝑧 = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

]        (3.7) 

[𝑇𝜀]𝑧 = [
𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2

] 

Where m = cos 𝜃, n = sin 𝜃 
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The stiffness Matrix is transformed first about the z axis and then about the y axis.  

[𝑄′] = [𝑇𝜎(−𝛽)]𝑧[𝑄][𝑇𝜀(𝛽)]𝑧                                              (3.8) 

Then the Q’ matrix is transformed about the y axis as follows.  

[𝑄]̅̅ ̅̅ " = [𝑇𝜎(−𝜃)]𝑦[𝑄′][𝑇𝜀(𝜃)]𝑦                                            (3.9)  

 Similarly, the Coefficients of the thermal expansion are also transformed about the z 

axis and then the y axis as follows.  

[𝛼′12] = [𝑇𝜀(−𝜃)]𝑧 [𝛼12]                                                (3.10) 

   [𝛼𝑥𝑦] = [𝑇𝜀(−𝜃)]𝑦 [𝛼′12]                                                (3.11) 

3.2.2.2 Constitutive equation  

Considering Nx'', Ny'', Nxy'' as the applied resultant mechanical loads per unit width 

and Mx'', My'', Mxy'' as the applied resultant moments per unit width acting on the composite 

tube differential element; axial, transverse and shear stresses can be associated to resultant 

force and moment components by 

𝑁"𝑥 = ∑ ∫ 𝜎𝑥
𝑧𝑘−1

𝑧𝑘

𝑛
𝑘=1  𝑑𝑧                               𝑀"𝑥 = ∑ ∫ 𝜎𝑥

𝑧𝑘−1

𝑧𝑘

𝑛
𝑘=1  𝑧" 𝑑𝑧  

𝑁"𝑦 = ∑ ∫ 𝜎𝑦
𝑧𝑘−1

𝑧𝑘

𝑛
𝑘=1  𝑑𝑧                              𝑀"𝑦 = ∑ ∫ 𝜎𝑦

𝑧𝑘−1

𝑧𝑘

𝑛
𝑘=1 𝑧" 𝑑𝑧              (3.12)                         

𝑁"𝑥𝑦 = ∑ ∫ 𝜏𝑥𝑦
𝑧𝑘−1

𝑧𝑘

𝑛
𝑘=1  𝑑𝑧                           𝑀"𝑥𝑦 = ∑ ∫ 𝜏𝑥𝑦

𝑧𝑘−1

𝑧𝑘

𝑛
𝑘=1  𝑧" 𝑑𝑧  

 Necessary assumption taken in regards about geometry of the composite tube is the 

existence of a uni-curvature around the circumference. The curvature is assumed to be absent 

along the y’ plane as the tube span is extensively larger compared to tube mean radius. 

Furthermore, transverse shear stress effects are neglected since the laminate wall thickness 

assumed to be small. 

The relation between the mechanical stress to strains in terms of the double 

transformed stiffness matrix can be given as  
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[

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

= [

𝑄"̅
11

𝑄"̅
12

𝑄"
16

𝑄̅"
12

𝑄"̅
22

𝑄"̅
26

𝑄"̅
61

𝑄"̅
62

𝑄"̅
66

]*[[

𝜀°
𝑋

𝜀°
𝑌

𝛾°
𝑋𝑌

] + 𝑧 ∗ [

𝐾𝑋

𝐾𝑌

𝐾𝑋𝑌

] − [

𝛼𝑥
𝛼𝑦

𝛼𝑥𝑦

]

𝑘

∗ ΔT]       (3.13) 

 

 
Incorporating the mechanical stress from equation 3.13 into equation 3.12, we obtain  

[

𝑁"𝑥

𝑁"𝑦

𝑁"𝑥𝑦

] = [[

𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

]] [

𝜀°
𝑋

𝜀°
𝑌

𝛾°
𝑋𝑌

] + [[

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝐾𝑋

𝐾𝑌

𝐾𝑋𝑌

]] − [

𝑁𝑇
𝑋

𝑁𝑇
𝑌

𝑁𝑇
𝑋𝑌

]                 (3.14)

  [

𝑀"𝑥

𝑀"𝑦

𝑀"𝑥𝑦

] = [[

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

]] [

𝜀°
𝑋

𝜀°
𝑌

𝛾°
𝑋𝑌

] + [[

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝐾𝑋

𝐾𝑌

𝐾𝑋𝑌

]] − [

𝑀𝑇
𝑋

𝑀𝑇
𝑌

𝑀𝑇
𝑋𝑌

]                  (3.15)                               

Equations 3.14 gives the resultant force deformation and equation 3.15 gives the moment 

deformation. Combining 3.14 and 3.15 we get equation 3.16 
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                     (3.16) 

                             
 

In our analysis, we only have the thermal forces and moment, and no mechanical forces or 

moments. Hence we can remove N” and M” terms. Hence equation 3.16 becomes 

 

[
 
 
 
 
 
 
𝑁𝑇

𝑋

𝑁𝑇
𝑌

𝑁𝑇
𝑋𝑌

𝑀𝑇
𝑋

𝑀𝑇
𝑌

𝑀𝑇
𝑋𝑌]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16 
𝐴12 𝐴22 𝐴26 
𝐴16 𝐴26 𝐴66 

 

 𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

  

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66 ]
 
 
 
 
 

[
 
 
 
 
 
 
𝜀°

𝑋

𝜀°
𝑌

𝛾°
𝑋𝑌

𝐾𝑋

𝐾𝑌

𝐾𝑋𝑌 ]
 
 
 
 
 
 

                         (3.17) 

 
 

Equation 3.17 gives constitutive equation for the curved beam element as per CLPT.  
 

Where the terms are given below in 3.18,  
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[𝐴] = ∑ ∫ [𝑄"𝑥𝑦]
𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑧𝑘−1

𝑧𝑘

𝑛

𝑘=1

 𝑑𝑧 =  ∑[𝑄"𝑥𝑦]̅̅ ̅̅ ̅̅ ̅̅
𝑘

𝑛

𝑘=1

(𝑧𝑘 − 𝑧𝑘−1) 

[𝐵] = ∑ ∫ [𝑄"𝑥𝑦]
𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑧𝑘−1

𝑧𝑘

𝑛

𝑘=1

 𝑧 𝑑𝑧 =
1

2
 ∑[𝑄"𝑥𝑦]̅̅ ̅̅ ̅̅ ̅̅

𝑘

𝑛

𝑘=1

(𝑧2
𝑘 − 𝑧2

𝑘−1) 

[𝐷] = ∑ ∫ [𝑄"𝑥𝑦]
𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑧𝑘−1

𝑧𝑘

𝑛

𝑘=1

 𝑧2 𝑑𝑧 =
1

3
 ∑[𝑄"𝑥𝑦]̅̅ ̅̅ ̅̅ ̅̅

𝑘

𝑛

𝑘=1

(𝑧3
𝑘 − 𝑧3

𝑘−1) 

[𝑁𝑇] = ∑ ∫ [𝑄"𝑥𝑦]
𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑧𝑘−1

𝑧𝑘

𝑛

𝑘=1

∗ [𝛼𝑥𝑦]
𝑘

∗ ∆𝑇 𝑑𝑧 =  ∑[𝑄"𝑥𝑦]̅̅ ̅̅ ̅̅ ̅̅
𝑘

∗ [𝛼𝑥𝑦]
𝑘

∗ ∆𝑇 

𝑛

𝑘=1

(𝑧𝑘 − 𝑧𝑘−1) 

[𝑀𝑇] = ∑ ∫ [𝑄"𝑥𝑦]
𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑧𝑘−1

𝑧𝑘

𝑛

𝑘=1

∗ [𝛼𝑥𝑦]
𝑘

∗ ∆𝑇 ∗ 𝑧 𝑑𝑧 =
1

2
 ∑[𝑄"𝑥𝑦]̅̅ ̅̅ ̅̅ ̅̅

𝑘
∗ [𝛼𝑥𝑦]𝑘 ∗ ∆𝑇 

𝑛

𝑘=1

(𝑧𝑘 − 𝑧𝑘−1) 

  

3.2.2.3 Constitutive Equation for the Curved Beam Element in Global System 

To transform the element stiffness matrices and force, moment terms to the global 

coordinate system, two steps are being followed. First, the terms are implemented in the 

parallel axes theorem and next they are being integrated over the entire circumference of the 

tube for the infinitesimal element. 

Hence by Parallel Axes Theorem, the stiffness matrices are  

[𝐴̂] =  [𝐴] 

[𝐵̂] = [𝐵] + 𝑅𝑚 ∗ cos 𝜃 ∗ [𝐴]                                                   (3.19) 

[𝐷̂] = [𝐷] + 2 ∗ 𝑅𝑚 ∗ cos 𝜃 ∗ [𝐵] + (𝑅𝑚 ∗ cos 𝜃)2 ∗  [𝐴] 

 

By Parallel Axes Theorem, the force matrices are  

[𝑁𝑇̂] =  [𝑁𝑇] 

[𝑀𝑇̂] = [𝑀𝑇] + 𝑅𝑚 ∗ cos 𝜃 ∗ [𝑁𝑇]                                                   (3.20) 
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Next by integrating the elements over the entire circumference, we obtain, 

[𝐴]̅̅ ̅̅ =  ∫ [𝐴̂] ∗  𝑅𝑚
−𝛼

𝛼
∗ 𝑑𝜃                           [𝑁𝑇]̅̅ ̅̅ ̅̅ =  ∫ [𝑁𝑇̂] ∗  𝑅𝑚

−𝛼

𝛼
∗ 𝑑𝜃                                              

[𝐵]̅̅ ̅̅ =  ∫ [𝐵̂] ∗  𝑅𝑚
−𝛼

𝛼
∗ 𝑑𝜃                           [𝑀𝑇]̅̅ ̅̅ ̅̅ =  ∫ [𝑀𝑇̂] ∗  𝑅𝑚

−𝛼

𝛼
∗ 𝑑𝜃                 (3.21)                                                                                                                                               

[𝐷]̅̅ ̅̅ =  ∫ [𝐷̂] ∗  𝑅𝑚
−𝛼

𝛼
∗ 𝑑𝜃                                                                                               

 Substituting the global stiffness and force terms into equation 3.17, we obtain the global 

constitutive equation. The Mid-Plane strains and curvature terms are obtained from it, and the 

strain components, deformation, and in-plane stress can be calculated 

{
𝜀"𝑜

𝜅"𝑜
} = [ 𝑎̅ 𝑏̅

𝑏𝑇̅̅ ̅ 𝑑̅
]
6∗6

∗ {𝑁
𝑀̅

}
6∗1

                                                (3.23) 

Where 𝑎̅, 𝑏̅ 𝑎𝑛𝑑 𝑑̅ are the global compliance matrices related with a thin-walled 

cylindrical composite tube, obtained by a direct inversion of the 6*6 global stiffness matrices. 

3.2.2.4 In-Plane Stress calculation 

The total strain of each ply is obtained using mid-plane strain and curvature, multiplied 

by the ply coordinate. Then, the mechanical strain is obtained by subtracting the thermal strain 

from the total strain of each ply. Finally, the ply stress can be obtained from product of the 

stiffness matrix of that ply and the mechanical strain. The ply stress is expressed as below 

[𝜀𝑥−𝑦
𝑇𝑜𝑡𝑎𝑙]

𝑘
= [𝜀0] + (𝑅 + 𝑧′). 𝑐𝑜𝑠𝜃. [𝜅] 

 

[𝜀𝑥−𝑦
𝑀 ]𝑘 = [𝜀𝑥−𝑦

𝑇𝑜𝑡𝑎𝑙]𝑘 − [𝛼𝑥−𝑦]𝑘. Δ𝑇                                                                     (3.24) 

[𝜎𝑥−𝑦]𝑘 = [𝑄]̂𝑘. [𝜀𝑥−𝑦
𝑀 ]𝑘  

 

3.3 Finite Element Modelling of Curved Beam 

 
The same material properties, element type and layup of the laminates were used that 

was discussed in Chapter 2.  
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3.3.1 Development of 2D - Finite Element Model of Curved Beam 

 
 For 2D Modelling, a curved shell was modelled. The element type was chosen as 

SHELL281. As it was a composite layup, the storage of layer data K8 value was set to All 

Layers in the options. The Shell section is defined as in Chapter 2. 

 

Modelling of the Curved Beam 

 A curved area is created with the inner radius of 2 inches and angle of 30 degrees. The 

width of the curved shell is 0.25 inches.  

 

Figure 3.4 2-D Model of the Curved shell 

Meshing  

 The meshing was performed by defining the line element size as required along the 

breadth and width of the curved area. Line element size was set in such a way that the ratio of 

thickness of element to any other dimension of element is not 1:10. The line element size was 

determined by mesh convergence criteria. 
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Figure 3.5 Mesh of the Curved Beam 

Boundary and Loading Conditions 

 ANSYS requires the structure to be fixed. Hence the center (0,0) was constrained in all 

degrees of freedom, so that there will be no transitional motion and no rotational motion at 

origin on x, y and z-direction. ( Ux = Uy = Uz = 0 ). A uniform temperature load of 172 °F was 

applied, such that difference between load temperature and room temperature was 100°F. The 

model was solved. 

 

Figure 3.6 Loading Conditions for the 2D Curved Shell             

                For thickness option, the element view can be selected in options and plate can be 

viewed along thickness. 
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Figure 3.7 Curved Shell with Thickness Option 

Post Processing 

 The X, Y and Z component of deformation are obtained for each model.  As it is a 

curved shell, the 4 nodal points which are the four corners of the curved shell are taken into 

consideration for comparison with the theoretical values. 

 

3.3.2 Development of 3D- Finite Element Model of Curved Beam 

 
To study the thickness variation of the curvature due to thermal load, and to include the 

third dimensional properties in the calculations, a 3D solid model of curved beam is being 

created layer by layer. This will produce more accurate results than the 2D model, as in the 2D 

analytical and FEM Models, the strain in z-direction is being ignored. The same SOLID186 

element was used as in laminates.  

Modelling of the 3D Curved Beam 

The curved beam was created by creating areas on the x-y plane and rotating it around z-axis 

to form volumes. The additional volumes were deleted to obtain a curved beam of 30 degrees. 

In the SOLID Model, each layer of curved beam is of different lengths. The Element orientation 

for each layer is given by creating local coordinates.  
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Figure 3.8 3D – Curved Beam 

Meshing  

Each ply is meshed individually with respects to its material orientation. Each line of the volume 

is being selected and the line element size was defined. Since it is a composite laminate, the 

line element size for Z- direction line is always 1, as the composite plies are not split into 

elements in the thickness direction. Once the volume attributes and the line element attributes 

are defined, the volume is meshed. Similar procedure is repeated for all the plies. Curved 

lamina mesh and curved laminate mesh are shown in following Figure 3.9 

 

Figure 3.9 Mesh of Curved Laminates 

Boundary and Loading Conditions 

For the case of 2D curved shell element, the model was fixed at the center of reference. But for 

the 3-D solid elements, fixing it only at the center of the plate makes it less constrained. Hence 

the model was fixed in center of origin in all directions ( UX = 0 ; UY = 0 ; UZ = 0 ) and also the 

nodes through the thickness direction of the center element ( x = 0 ; y = 0 ; z varies ) was 

constrained in the X and Y directions ( UX = 0 ; UY = 0 ) . Also, the temperature load of 172 °F 
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was being applied with the room temperature set to 72 °F. Hence a temperature difference of 

100°F is obtained. The model is solved. 

The boundary conditions are shown in Figure 3.10. 

 

Figure 3.10 Boundary Conditions for a 3-D Model 

Post Processing 

Certain nodal points are selected where the displacement is needed to be calculated. 

The z component of deformation is calculated at these points, and the change in the thickness 

of the element is computed. The nodal points which are selected for calculation are shown in 

Figure 3.11 

 

Figure 3.11 Nodes for Obtaining Results 

3.3.2.1 Mesh Convergence  

The Importance of mesh convergence was discussed in detail in Chapter 2. The same 

methodology was repeated to determine the finer mesh model for the curved beam. The 

Number of elements was increased by varying the element size of the length and breadth of the 
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curved beam. The line element size along the thickness direction was always 1. The 

Displacement values were obtained at the inner surface of the curved beam edge.  

Model 
Ratio 

L : B : H 
No. of Nodes 

No. of 

elements 

Usum at Node 

selected 
Error % 

A 16 : 12 : 1 1373 240 
7.3036E-4 - 

B 8 : 6 : 1 3409 648 
7.4808E-4 2.37 

C 4 : 3 : 1 12637 2592 
7.5395E-4 0.78 

D 2 : 1 : 1 70105 15096 
7.5558E-4 0.22 

E 1: 1: 1 139517 29784 
7.5594E-4 0.05 

  

Table 3.2 Mesh Convergence for 3D Curved Beam 

3.3.2.2 Validation of the 3-D Finite Element Model of curved beam 

The 3-D finite element model which is created was first validated by using the isotropic 

material properties. Aluminum AL6061-T6 was chosen as the isotropic material and its 

properties were used. The properties of the aluminum are 

E = 10 Msi ; v = 0.33 ; α  = 14 x 10-6 ; G = 3.75 Msi 

The Deformations in X, Y, Z directions were obtained from the Finite Element Model 

and compared with the Analytical Solutions.  

Deformation of an Curved Beam – 3D Finite element model 

The X, Y, Z and total components of deformation of the 3D Curved Beam is shown in 

Figures 3.13. The Change in length is calculated by selecting the nodal points of the line and 

calculating through its deformations.  
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Figure 3.12 Top Right, Top Left, Bottom Right, Bottom Left   – represents X, Y, Z  and Total 

Deformation of Isotropic Curved Beam respectively  

Results 

The analytical and finite element results are compared in the following Table. The Deformation 

value is obtained at the inner radius of the curved beam 

 Table 3.3 Analytical and Finite Element Deformations of the Isotropic Plate 

 

 Since the error percentages are very negligible, the finite element results agree with the 

theoretical results. Hence this 3-D model can be used for calculating the deformations of the 

composite curved beams. 

 
Initial Length 

(inches) 

Change in 

Length (dl)  

 Analytical 

Change in 

Length   

2D FEM 

Change in 

Length   

3D FEM 

3D - Error  

% 

X (Breadth) 1.0472 1.466E-4 1.466E-4 1.449E-4 2.22 % 

Y (Height) 0.25  0.35E-4 0.35E-4 0.35E-4 0 % 

Z (Thickness) 0.0432 0.6048E-4 0.6048E-4  0.5836E-4 2.50 % 
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Chapter 4  

RESULTS AND DISCUSSIONS 

In the previous chapter 2 and 3, we had the derived the deformation of the composite 

laminates and curved beams by both analytical and finite element model. This chapter verifies 

the results of the analytical and finite element method, and studies the change of thickness of 

the plate and curved beams due to the thermal loads.  

4.1 Laminates 

4.1.1 Nodal Points (NP) 

 For comparing the results, four points at the corners are the plates are chosen, and the 

deformation at those points are being obtained.  

Table 4.1 Points where deflection is obtained 

Point X Y 

1 -1 -0.75 

2 1 -0.75 

3 1 0.75 

4 -1 0.75 

  

4.1.2 Plate A – Symmetric Balanced Laminate 

The deformation of plate A is given by Equations 2.31 and 2.32 from Chapter 2. These 

deformations are compared with the deformations obtained from the 2-D finite element 

modelling.  

 Table 4.2 X and Y Deformations of Plate A 

 Analytical Results (in) FEA Results (in) Deformation 
in X 

Deformation 
in Y 

NP U0 V0 UX UY Error % Error % 

1 0.1459E-4 -0.3076E-3 0.1459E-4 -0.3076E-3 0 % 0 % 

2 -0.1459E-4 -0.3076E-3 -0.1459E-4 -0.3076E-3 0 % 0 % 

3 -0.1459E-4 0.3076E-3 -0.1459E-4 0.3076E-3 0 % 0 % 

4 0.1459E-4 0.3076E-3 0.1459E-4 0.3076E-3 0 % 0 % 
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 Figure 4.1 X and Y Component of Deformation of Plate A 

 Since the Z component of deformation cannot be obtained from 2-D model, the 3-D 

model was used to study the deformation in the Z direction. The thickness change is also 

evaluated from FEM model.  

The Z component of deformation varies based on X and Y Locations. The actual thickness of 

plate is 0.0432 inch.  

Table 4.3 Z component of Deformation and Thickness Change - A 

Nodal Location   

X (in) Y (in) Z (in) 
Deformation in Z 

(in) 
Change in 

thickness (in) 

1 0.75 -0.0216 -5.9567E-5 
1.1913E-4 

1 0.75 0.0216 5.9568E-5 

1 -0.75 -0.0216 -2.3353E-5 
0.4670E-4 

1 -0.75 0.0216 2.3353E-5 

-1 -0.75 -0.0216 -5.9567E-5 
1.1913E-4 

-1 -0.75 -0.0216 5.9567E-5 

-1 0.75 -0.0216 -2.3353E-5 
0.4670E-4 

-1 0.75 0.0216 2.3353E-5 
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 Figure 4.2 Z and In Detailed - Z Component of Deformation of Plate A 

4.1.3 Plate B – Symmetric Unbalanced Laminate 

The deformation of Plate B is given by Equations 2.36 and 2.37 from Chapter 2. These 

deformations are compared with the deformations obtained from the 2-D finite element 

modelling.  
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 Figure 4.3 X and Y Component of Deformation of Plate B 

 Table 4.4 X and Y Deformations of Plate B 

 Analytical Results (in) FEA Results (in) Deformation 
in X 

Deformation in 
Y 

 U0 V0 UX UY Error % Error % 

1 0.3579E-3 -0.2462E-3 0.3579E-3 -0.2462E-3 0.0004 % 0.00067 % 

2 0.5629E-3 -1.4741E-3 0.5629E-3 -1.4742E-3 0.00002 % 0 % 

3 -0.3579E-3 0.2462E-3 -0.3579E-3 0.2462E-3 0.0004 % 0.00067 % 

4 -0.5629E-3 1.4741E-3 -0.5629E-3 1.4742E-3 0.00002 % 0 % 

 Since the Z component of deformation cannot be obtained from 2-D model, the 3-D 

Model was used to study the deformation in the Z direction. The thickness change is also 

evaluated from FEM Model.  

The Z component of deformation varies based on X and Y Locations.  

Table 4.5 Z component of Deformation and Thickness Change - B 

Nodal Location   

X (in) Y (in) Z (in) 
Deformation in Z 

(in) 
Change in 

thickness (in) 

1 0.75 -0.0216 -4.056E-5 
0.8113E-4 

1 0.75 0.0216 4.056E-5 

1 -0.75 -0.0216 -3.022E-5 
0.6045E-4 

1 -0.75 0.0216 3.022E-5 

-1 -0.75 -0.0216 -4.056E-5 
0.8113E-4 

-1 -0.75 -0.0216 4.056E-5 

-1 0.75 -0.0216 -3.022E-5 
0.6045E-4 

-1 0.75 0.0216 3.022E-5 
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Figure 4.4 Z and In Detailed - Z Component of Deformation of Plate B 

From the results of plate A and plate B, which are both symmetrical laminates, we can 

observe that the deformation in the X, Y and Z direction are also symmetrical in manner.  

4.1.4 Plate C – Un-Symmetric Balanced Laminate  

 As discussed in chapter two, the un-symmetric laminates have curvature, and 

hence the Z-component of deformation exists in both 2D and 3D plates. Hence a better 

comparison was obtained with the 2D and 3D finite element results.  

Table 4.6 Analytical and FEA Deformation of Plate C 

 Analytical Results (in) FEA Results (in) 

NP U0 V0 W0 UX UY UZ 

1 -2.9483E-5 -3.7491E-4 -7.2785E-3 -0.2948E-4 -0.3749E-3 -0.7278E-2 

2 -2.2583E-5 -3.0549E-4 2.7164E-3 -0.2258E-4 -0.3054E-3 0.2716E-2 

3 2.9483E-5 3.7491E-4 -7.2785E-3 0.2948E-4 0.3749E-3 -0.7278E-2 

4 2.2583E-5 3.0549E-4 2.7164E-3 0.2258E-4 0.3054E-3 0.2716E-2 

 

Table 4.7 Error % for Deformations in Plate C 

Deformation in X Deformation in Y Deformation in Z 

Error % Error % Error % 

0.013 % 0.0026 % 0 % 

0.0031 % 0 % 0.0011 % 

0.013 % 0.0026 % 0 % 

0.0031 % 0 % 0.0011 % 



 

55 

 

Figure 4.5 X and Y Component of Deformation in Plate C 

  

Figure 4.6 Z component Deformation in 2D – Plate C 

 For more accurate values of the Z – component deformation and the thickness change 

of the plate, the results from the 3D FEA model are shown in the below Table.  

The results from Table 4.8 clearly indicates that the thickness of the unsymmetrical 

balanced laminate changes in each corner and are found to be the same in opposite corners. 

The deformation values in Z direction indicates that the laminate curves upwards in opposite 

corners and downwards in the other two corners. 
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Table 4.8 3D – Z Component of Deformation 

Nodal Point Location Analytical 
Results (in) 

3D FEA 
results (in) 

Error % Change in 
thickness 

(in) 

X (in) Y (in) Z (in) 

1 0.75 -0.0216 -7.2785E-3 -7.4112E-3 1.82 % 0.831E-4 

1 0.75 0.0216 -7.4943E-3 2.96 % 

1 -0.75 -0.0216 2.7164E-3 2.8279E-3 4.10 % 0.619E-4 

1 -0.75 0.0216 2.7660E-3 1.82 % 

-1 -0.75 -0.0216 -7.2785E-3 -7.4112E-3 1.82 % 0.831E-4 

-1 -0.75 -0.0216 -7.4943E-3 2.96 % 

-1 0.75 -0.0216 2.7164E-3 2.8279E-3 4.10 % 0.619E-4 

-1 0.75 0.0216 2.7660E-3 1.82 % 

 

  

 

 Figure 4.7 Z component deformation of the 3D Plate C – (Side and Top View) 

 
4.1.5 Plate D – Un-Symmetrical Un-Balanced Laminate  

In the previous section, un-symmetrical balanced laminate was studies. In this section, 

we will discuss how the Z component of deformation varies for an un-symmetrical and un-

balanced laminate. The analytical results are obtained from equations 2.29, 2.30 and 2.31.  
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Table 4.9 Analytical and FEA Deformation of Plate D 

 Analytical Results (in) FEA Results (in) 

NP U0 V0 W0 UX UY UZ 

1 3.1510E-4 -0.2286E-3 -0.3574E-3 0.3151E-3 -0.2286E-3 -0.3574E-3 

2 6.1892E-4 -1.473E-3 6.358E-3 0.6189E-3 -1.474E-3 6.3584E-3 

3 -3.1510E-4 0.2286E-3 -0.3574E-3 -0.3151E-3 0.2286E-3 -0.3574E-3 

4 -6.1892E-4 1.473E-3 6.358E-3 -0.6189E-3 -1.474E-3 6.3584E-3 

 

Table 4.10 Error % for Deformations in Plate D 

Deformation in X Deformation in Y Deformation in Z 

Error % Error % Error % 

0.0009 % 0.0013 % 0.0025 % 

0.0008 % 0.067 % 0.0062 % 

0.0009 % 0.0013 % 0.0025 % 

0.0008 % 0.067 % 0.0062 % 

 

Figure 4.8 X and Y Component of Deformation in Plate D 

 

Figure 4.9 Z component Deformation in 2D – Plate D 



 

58 

 For more accurate values of the Z – component deformation and the thickness change 

of the plate, the results from the 3D FEA model are shown in the below Table.  

Table 4.11 3D – Z Component of Deformation – Plate D 

Nodal Point Location 

Analytical Results 
(in) 

3D FEA results 
(in) 

Error % 
Change in thickness 

(in) 

X(in) Y(in) Z(in) 

1 0.75 -0.0216 
-0.3574E-3 

-0.3160E-3 
10.42 

% 0.6465E-4 

1 0.75 0.0216 -0.3806E-3 6.49 % 

1 -0.75 -0.0216 
6.358E-3 

6.4653E-3 1.68 % 
0.7460E-4 

1 -0.75 0.0216 6.3907E-3 0.51 % 

-1 -0.75 -0.0216 
-0.3574E-3 

-0.3160E-3 
10.42 

% 0.6465E-4 

-1 -0.75 -0.0216 -0.3806E-3 6.49 % 

-1 0.75 -0.0216 
6.358E-3 

6.4653E-3 1.68 % 
0.7460E-4 

-1 0.75 0.0216 6.3907E-3 0.51 % 

 

  

The results from the above Table 4.11 indicate higher error values for results observed from 

two corners for the 2D and 3D model, but a similar pattern and range of values are observed for 

2D and 3D models and the overall results for the other two corners, the results obtained for 

other laminates, proves that the 3D model is accurate. From the above results, the un-

symmetrical un-balanced laminate has the thickness change and curvature similar in the 

opposite corners of the plate. 

 

From the overall results of all the laminates, it can be concluded that the thickness variation is 

not uniform due to the thermal load, and it follows a symmetric pattern over the diagonal length 

of the plate. Hence, more accurate conclusion can be given by studying on the square plates 

and by varying the dimensions for the rectangular plates.  
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 Figure 4.10 Z component Deformation of the 3D Plate D ( Side and Top View ) 

 
4.2 Curved Beams  

 

4.2.1 Stresses at Node 

 From the theoretical solution of curved beams, the stress value is obtained for the 

laminate top layer, at an angle of 15 degree and Y = 0. The stress value is obtained as per 

equation 2.32.  The values are compared and verified with the 2D and 3D finite element model 

to prove the model. Later the deformation in Z direction and change in thickness for the 3D 

finite element model is studied.  

 

4.2.2 Curved Beam A – Symmetric Balanced Layup  

The stressed from the analytical and FEM models for a symmetric balanced layup of 

composite curved beam is given in the following Table. The layup sequence is [ 45 / -45 / 0 ]S.  

Stress (psi) Analytical 2D FEM 3D FEM 

σX 450.79 451.21 450.36 

σY 1081.9 1080.6 1081.2 

γXY 3186.4 3191.5 3187.8 

 

Table 4.12 Stress Comparison for Curved Beam A  
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The deformation in X, Y and Z component for the 3D curved beam A is shown in Figure 4.11.  

 

 

Figure 4.11 X, Y and Z Component Deformation for Curved Beam A 

 

4.2.3 Curved Beam B – Symmetric Un-Balanced Layup  

The stressed from the Analytical and FEM models for a symmetric un-balanced layup 

of composite curved beam is given in the following Table. The layup sequence is [ 45 / 45 / 0 ]S.  

Stress (psi) Analytical 2D FEM 3D FEM 

σX -1112.1 -1117.5 -1113.32 

σY 453.37 453.07 453.24 

γXY 462.43 461.88 462.58 

 

Table 4.13 Stress Comparison for Curved Beam B 
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The deformation in X, Y and Z component for the 3D curved beam B is shown in Figure 4.12.  

 

 

Figure 4.12 X, Y and Z Component Deformation for Curved Beam B 

4.2.4 Curved Beam C – Un-Symmetric Balanced Layup  

The stressed from the analytical and FEM models for an un-symmetric balanced layup 

of  curved beam is given in the following Table. The layup sequence is [ 45 / -45 / 0 ]2T.  

Stress (Psi) Analytical 2D FEM 3D FEM 

σX -1023.7 -1025.3 -1023.6 

σY -1724.0 -1724.6 -1725.9 

γXY 268.1 267.6 267.3 

 

Table 4.14 Stress Comparison for Curved Beam C 
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The deformation in X, Y and Z component for the 3D curved beam C is shown in Figure 4.13.  

 

 

Figure 4.13 X, Y and Z Component Deformation for Curved Beam C 

4.2.5 Curved Beam D – Un-Symmetric Un-Balanced Layup  

The stressed from the analytical and FEM Models for an un-symmetric un-balanced 

layup of composite curved beam is given in the following Table. The layup sequence is [ 45 / 45 

/ 0 ]2T.  

Stress (psi) Analytical 2D FEM 3D FEM 

σX -1183.6 -1179.3 -1182.5 

σY -152.1 -151.2 -151.8 

γXY -139.2 -139.4 -138.6 

 

Table 4.15 Stress Comparison for Curved Beam D 
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The deformation in X, Y and Z component for the 3D curved beam D is shown in Figure 4.14.  

 

 

Figure 4.14 X, Y and Z Component Deformation for Curved Beam D 

4.2.6 Change in Length/Radius  

4.2.6.1 Nodes and Lines along X Direction 

For obtaining the change in the length or radius of the curved beam, the lines are 

selected and the change in length is calculated from X component displacement the nodes 

connecting the lines. The lines, which are taken for analysis and the nodal points connecting 

them, are listed in the Table and Figure as below.  

Table 4.16 Lines and Nodes used for Calculating Change in Length 

Line Node 1 Node 2 

1 100 15200 

2 119384 118941 

3 119236 118942 

4 101 7759 
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Figure 4.15 Lines used for Calculation of Change in Length / Radius 

4.2.6.2 Results 

The change in length (in inches) for the selected lines are given in Table 4.17 below.  

Table 4.17 Change in Length of the Curved Beam ( in inches ) 

Models 
A B C D 

Lines 

1 0.0439E-4 1.6574E-4 2.2624E-4 9.4552E-4 

2 0.2371E-4 1.7408E-4 0.6119E-4 4.5621E-4 

3 0.2371E-4 1.7408E-4 0.6119E-4 4.5621E-4 

4 0.0439E-4 1.6574E-4 2.2624E-4 9.4552E-4 

 

4.2.7 Change in Width of the Beam  

4.2.7.1 Nodes and Lines along Y Direction 

For obtaining the change in the width of the curved beam, the lines are selected and 

the change in length is calculated from Y component displacement the nodes connecting the 

lines. The lines, which are taken for analysis and the nodal points connecting them, are listed in 

the Table and Figure as below.  

Table 4.18 Lines and Nodes used for Calculating Change in Width 

Line Node 1 Node 2 

1 100 101 

2 15307 7833 

3 15200 7759 

4 118941 118942 

5 119310 119089 

6 119384 119236 
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Figure 4.16 Lines 1-6 used for Calculation of Change in Width 

4.2.6.2 Results 

The change in width ( in inches ) for the selected lines are given in Table 4.19 below.  

Table 4.19 Change in width of the Curved Beam ( in inches ) 

Models 
A B C D 

Lines 

1 1.6264E-4 2.5575E-4 0.9887E-4 2.2431E-4 

2 1.1082E-4 2.84E-4 0.7055E-4 2.585E-4 

3 1.6264E-4 2.5575E-4 0.9887E-4 2.2431E-4 

4 1.4429E-4 2.5924E-4 2.5872E-4 3.2172E-4 

5 1.0811E-4 2.8132E-4 2.2544E-4 3.261E-4 

6 1.4429E-4 2.5924E-4 2.5872E-4 3.2172E-4 

 

4.2.8 Change in Thickness of the Beam  

4.2.8.1 Nodes and Lines along Z Direction 

For obtaining the change in the thickness of the curved beam, the lines are selected 

and the change in length is calculated from Z component displacement the nodes connecting 

the lines. The lines which are taken for analysis and the nodal points connecting them are listed 

in the Table and Figure as below.  

 



 

66 

Table 4.20 Lines and Nodes used for Calculating Change in Thickness 

Line Node 1 Node 2 

1 100 119384 

2 15307 119310 

3 15200 118941 

4 7759 118942 

5 7833 119089 

6 101 119236 

 

 

Figure 4.17 Lines 1-6 used for Calculation of Change in Thickness 

 

4.2.8.2 Results 

The change in thickness ( in inches ) for the selected lines are given in Table 4.21 below.  

Table 4.21 Change in thickness of the Curved Beam ( in inches ) 

Models 
A B C D 

Lines 

1 1.0332E-4 0.7811E-4 0.7953E-4 1.2154E-4 

2 0.9493E-4 0.8523E-4 0.7724E-4 0.7725E-4 

3 0.4708E-4 0.5981E-4 0.973E-4 1.494E-4 

4 1.0332E-4 0.7811E-4 0.7953E-4 1.2154E-4 

5 0.9493E-4 0.8523E-4 0.7724E-4 0.7725E-4  

6 0.4708E-4 0.5981E-4 0.973E-4 1.494E-4 
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4.3 Parametric Study on Curved Beams 

 

For better understanding on the Z-direction deformation and the thickness change of 

the curved beams, parametric analysis was carried out on the 3D FEM model. Different cases 

were considered, and the change in the deformation and thickness for every case was 

analyzed.  

 

Rules are followed for parametric study :- 

1. Since the model geometry is changed for each case, the mesh should be maintained in 

the ratio of 2 : 1 : 1  for the length, breadth and thickness of each element.  

2. The mesh convergence criteria was carried out to verify that the model is fully 

constrained.  

3. The model was validated again with the isotropic material properties.  

 

4.3.1 Varying Radius of Curvature for Different Temperature Loads.  

 Assuming the same boundary conditions which was used for our preliminary analysis, 

the inner radius of the curved beams is varied by r = 2, 3 and 4 inches. The temperature load is 

applied as a steady state increase, in the range of ∆T = 50°F, 100°F and 150°F, respectively.  

 

4.3.1.1 Change in Thickness  

The change in the thickness for each case is calculated for the lines along the 

thickness direction, as shown in Figure 4.17 and Table 4.20  

In observation, the change in the thickness values of line 4, 5 and 6 are same as 1, 2 

and 3 respectively. This indicates that the values are symmetric about the diagonal axis. Hence, 

for simpler observation, the change in thickness of line 1, 2 and 3 are calculated and is depicted 

as follows.  
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Line 1 – Upper Right Corner of the Curved Beam 

Line 2 – Upper Middle Line of the Curved Beam 

Line 3 – Upper Left Corner of the Curved Beam 

Line 4 – Lower Left Corner of the Curved Beam 

Line 5 – Lower Middle Line of the Curved Beam 

Line 6 – Lower Right Corner of the Curved Beam 

Results from          Line 1 = Line 4 

Line 2 = Line 5  

Line 3 = Line 6 

 

Figure 4.18 Change in Thickness of Line 1 for Case 1  
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Figure 4.19 Change in Thickness of Line 2 for Case 1 

 

Figure 4.20 Change in Thickness of Line 3 for Case 1 
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 From Figures 4.26, 4.27 and 4.28, we can observe that the change in thickness 

of the curved beam at the middle does not change for increase in radius. Observing line 1 and 

2, the thickness change is negligible for models A and B which are symmetrical laminates. 

There is quite change in thickness observed for model C – un-balanced symmetrical laminate 

and huge thickness difference for model D – un-balanced un-symmetrical laminate. The effect 

of temperature difference gives us a linear relationship. The observation is same for all the 

three temperature ranges.  

4.3.1.2 Z – Component Deformation 

The Z component deformation of the inner area of the curved beam is observed for all 

the cases mentioned above. Four nodal points at the four corners of the inner radius is 

selected.  

Table 4.22 Location of the Nodes for Case 1  

Node X (in) Y (in) Z (in) Location 

100 0.51764 0.12500 -0.89478E-1 Right Back ( RB ) 

101 0.51764 -0.12500 -0.89478E-1 Right Front ( RF ) 

7759 -0.51764 -0.12500 -0.89478E-1 Left Front ( LF ) 

15200 -0.51764 0.12500 -0.89478E-1 Left Back ( LB ) 

 

 

 Figure 4.21 Nodes for Z-Component Deformation for Case 1 

Again, In observation, the deformation at nodes 100 and 101 are identical with nodes 

7759 and 15200, respectively, proving the symmetrical nature about the diagonal of the curved 

beam.  

Node 100 = Node 7759 

Node 101 = Node 15200 
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Figure 4.22 Z component Deformation at node 100,7759 for case 1 

 

Figure 4.23 Z Component deformation at node 101, 15200 for case 1 
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Although the values differ for the Figures 4. And 4. , the pattern of the deformation of 

the nodes of the inner area are same. The curved beams A and B has the negative component 

of deformation on both nodes, indicating that the inner radius decreases. The curved beam C – 

un-symmetrical balanced laminate has both negative and positive components of deformation 

in Z direction. The change in the deformations for increase in the radius of curvature is also 

observed. For curved beam D – un-symmetrical un-balanced laminate, the deformation towards 

the positive Z direction and the change in deformation increases rapidly with increase in radius.  

 

4.3.2 Varying Width of the Curved Beam for Different Temperature Loads 

This case study involves the analysis of curved beam, by varying the width of the curved beam.  

By varying the width, the width to thickness ratio is also varied, hence the curved beam is 

changed from the narrow beam to wide beam for width = 0.4 inch. The thickness of curved 

beam is 0.0432 inch.  

Table 4.23 Varying Widths and W/T Ratio for Case 2 

Width (in) Width/Thickness  

0.1 2.32 

0.2 4.63 

0.25 5.78 

0.3 6.95 

  

 

4.3.2.1 Change in Thickness of Curved Beam due to w/t ratio 

The lines that were used for this parametric study are shown in Figure 4.24. The results 

obtained from line 1 and 2 are equal to the results from line 4 and 5 indicating that they are 

symmetrical about the diagonal axes. Line 3 is the line at the center of the curved beam.  
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Figure 4.24 Lines for observing Change in Thickness for Case 2 

 

 

Figure 4.25 Change in Thickness of Line 1 and 4 for Case 2 
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Figure 4.26 Change in Thickness of Line 2 and 5 for Case 2 

 

Figure 4.27 Change in Thickness of line 3 for Case 2 
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Similar to the previous case, the change in thickness with varying width of the curved 

beam for Model A and Model B are negligible. Also the there is no increase of change in 

thickness at the center of the curved beam. The change in thickness for Models C and D are a 

linear relationship, it increases or decreases based on the location of the line.  

 

4.3.2.2 Z- Component Deformation of Nodes 

 

As discussed in Case 1, the deformation at nodes 100 and 101 are identical with nodes 7759 

and 15200 respectively, proving the Symmetrical nature about the diagonal of the curved beam. 

 

 

Figure 4.28 Z component Deformation of Node 100 and 7759 for Case 2 
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Figure 4.29 Z Component Deformation of Node 101 and 15200 for Case 2 

 
 The Z Component deformation of the curved beam for Models C and D decrease at 

node 100,7759, increases at node 101,15200 for the change in the width of the curved beam. 

The symmetrical pattern of the deformation along the diagonal of the curved beam is well 

observed for all values of temperature.  
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Figure 4.30 Curved Beam with Width of 0.1 inch for Case 2  

 

Figure 4.31 Curved Beam with Width 0.2 inch for Case 2 
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Figure 4.32 Curved Beam with Width 0.3 inch for Case 2 

4.3.3 Fixed on Both Edges Parallel to Y-Z Plane 

 

Figure 4.33 Boundary Conditions, Lines and Node for Case 3 

In this study, the curved beam is constrained completely on the edges that are parallel to the Y-

Z plane. The change in thickness is calculated in lines 1,2 and 3 which are the lines on the 

front, back and middle edge surfaces parallel to the X-Y plane. It was observed that the results 

from lines 1 and 2 are the same. The Z-component deformation was obtained at Node 134559, 

which is the center node on the top surface of the curved beam.  
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Figure 4.34 Z-Component Deformation of Curved Beams for Case 3 

 4.3.3.1 Change in Thickness for Case 3 

 

Figure 4.35 Change in Thickness of Line 1 and 2 for Case 3 
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Figure 4.36 Change in Thickness of line 3 for Case 3 

4.3.3.2 Z-Component Deformation for Case 3 

 

Figure 4.37 Z Deformation at Mid-center Node of Upper Surface for Case 3 
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 There is not much change in difference of the thickness with increase in radius of the 

curved beam, when the curved beam is constrained in the edges parallel to the Y-Z Plane. The 

maximum deformation of the curved beam as observed at the mid-center of the upper surface, 

increases with the increase in the inner radius of curvature. The increase is observed to be 

large for the un-balanced laminates B and D than the balanced laminates A and C.  

 

4.3.4 Fixed on Both Edges Parallel to X-Z Plane 

In this study, the curved beam is constrained completely on the edges that are parallel to the X-

Z plane. The change in thickness is calculated in lines 1,2 and 3 which are the lines on the 

front, back and middle edge surfaces parallel to the X-Z plane. It was observed that the results 

from lines 1 and 2 are the same. The Z-Component deformation was obtained at Node 134559, 

which is the center node on the top surface of the curved beam 

 

 

Figure 4.38 Boundary Conditions, Lines and Node for Case 4 
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Figure 4.39 Z-Component Deformation of Curved Beams for Case 4 
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4.3.4.1 Change in thickness for Case 4 

 

Figure 4.40 Change in Thickness of Line 1 and 2 for Case 4 

 

Figure 4.41 Change in Thickness of Line 3 for Case 4 
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4.3.4.2 Z-Component Deformation for Case 4 

 

Figure 4.42 Z-Component Deformation at Mid-Center Node of Upper Surface for Case 4 

 
When the curved beam is constrained in the edges parallel to the X-Z plane, there is no 

increase of change in thickness for increase in radius for the models A and B. For model C and 

D, there is a curvilinear increase of change in thickness with the increase in radius. The Z –

component of the deformation as observed at the mid-center node 134559, decreases for all 

the models with increase in radius, which is inverse to the previous case.  
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Chapter 5  

CONCLUSION AND FUTURE WORK 

  

This research work focuses on the deformation effects in the composite structures due 

to the thermal environments. Flat laminates and curved beams are the composite structures 

that are considered for the analysis. The analytical solution for determining the deformation and 

stresses of the laminates and curved beams under temperature environment are derived by 

using the modified Classical Lamination Plate Theory. The constitutive equation for the curved 

beam element was converted to the global constitutive equation for curved beam by the parallel 

axes theorem and integrating over the circumference of the element. The stresses, mid-plane 

strain and curvature values were obtained and the displacement was calculated. Since the 

laminated plate/curved beam used in this study are thin, the plane stress condition are 

assumed. Because of this, only 2-D in-plane properties were used to determine the in-plane 

deformation. For determining the deformation in thickness direction, the 3rd dimensional 

properties were used. 2D and 3D finite element modelling was done in Ansys 17.0 and 17.2 

versions. 2D shell model was created which was a smeared model. 3D model was created as a 

layer by layer model, to obtain more accurate results on the deformation of each individual ply 

and the structure. Mesh convergence analysis was carried out and the finite element model was 

validated using the isotropic material properties.  

 

After validating the results from the analytical and finite element models, parametric 

studies was carried out on the curved beams with increasing the radius of curvature, change in 

the temperature environments, and change in the width to thickness ratio of the curved beams 

and by applying fixed constraints on the edges of the curved beam.  
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The conclusions that are observed in this thesis are  

• The Z component of deformation for symmetrical laminates is uniform 

throughout the region of the laminate and the curved beam except near its 

edge, since the 3rd dimensional stresses exist at the edge.  

• The Z component of deformation for unsymmetrical laminates  is not uniform 

throughout the region of the laminate and curved beam, due to bending and 

curvature effects.  

• The X, Y and Z component of deformation are equal at equi-distant point of a 

line which passes through the center of the composite structure. 

• The 3D layer by layer finite element model gives more accurate results of 

deformation and ply stresses than that of the 2D smeared shell finite element 

model. 

• The change in the thickness of the curved beam is constant with increase in the 

radius of the curvature or increase in width to thickness ratio for the 

symmetrical layup, and increases or decreases for the un-symmetrical layup of 

plies.  

• The Z component of deformation increases with increase in radius of curvature, 

when the curved beam edges parallel to Y-Z plane are constrained and 

decreases with increase in radius of curvature, when the curved beam edges 

parallel to X-Z plane are constrained.  

 

Future work can be done on the double curvature curved beam models, obtaining 

analytical expressions using the classical lamination shell theory and the beam theory, 

changing the stacking sequences.  Experimental verification of the results is also 

recommended. Thermal analysis including time dependent properties can also be done.  
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