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ABSTRACT

AN INTELLIGENT MULTIMODAL UPPER-LIMB REHABILITATION

ROBOTIC SYSTEM

Alexandros Lioulemes, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Dr. Fillia Makedon

A traffic accident, a battlefield injury, or a stroke can lead to brain or mus-

culoskeletal injuries that impact motor and cognitive functions and can drastically

change a person’s life. In such situations, rehabilitation plays a critical role in the

ability of the patient to partially or totally regain motor function, but the optimal

training approach remains unclear. Robotic technologies are recognized as powerful

tools to promote neuroplasticity and stimulate motor re-learning. Moreover, they

deliver high-intensity, repetitive, active and task-oriented training; in addition, they

provide objective measurements for patient evaluation.

The primary focus of this research is to investigate the development of a safe

human-robot interaction assessment and training system by utilizing physiological,

kinematic and dynamic modalities. Such system places the user in the robot’s control

loop, by feeding back a patient’s biomechanical, physiological and cognitive states.

A proposed vision-based upper-limb monitoring system and a developed adaptive

haptic guidance control mechanism will involve human intentions to generate adap-

tive perception and behaviors for the Barrett WAM robotic arm. To facilitate this,
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a combined integration of computer vision, artificial intelligence, and human-robot

interaction research are employed on the multi-sensing robotic platform.

Computational methods for a multimodal upper-limb robot-aided system are

proposed in this dissertation; first, a virtual reality environment that assesses the

user’s physiological and psychological stages; second, an interface capable of estimat-

ing a patient’s performance utilizing motion analysis and pattern recognition methods;

third, an unobtrusive method for reconstructing upper-limb kinematics during robot-

aided tasks with end-effector machines using Microsoft Kinect’s skeletal tracking is

presented and experimentally validated; fourth, an adaptive haptic guidance robotic

controller is employed to modulate the complexity of the assigned motor tasks and

increase the hand coordination abilities of the user. Finally, we show seven applica-

tions of robots in assistive environments, and we present the human-robot interaction

usability case studies that are critical evaluation components of this thesis.
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CHAPTER 1

Introduction

1.1 Motivation

A job or traffic accident, a misfortune event or an unforeseen stroke can lead to

brain or musculoskeletal injuries, that impact motor and cognitive functions. Modern

physical rehabilitation has proven to be instrumental in the ability to partially or

fully heal patients with impaired motor capabilities. During the last two decades,

the use of robotic instruments for upper-limb rehabilitation has increased, as they

provide an accurate evaluation of motor recovery and automate simple tasks that

burden caregivers. However, what is poorly faced in the design of current robotic

rehabilitation instruments, is the incorporation of the user in the robot’s control loop

to be able to adapt the training procedure.

Contemporarily, as the number of people that require physical rehabilitation

has increased, there is a growing need for new computational methods to evoke the

effectiveness of robot-based therapy, as a complementary rehabilitation method that

can accurately quantify, track, and personalize rehabilitation over time. Also, the

need has arisen to create low-cost home-based robotic instruments that are simple to

use, accessible and provide smart assessment and adaptable training. Finally, artificial

intelligence research has reached to the point of constructing intelligent agents that

are able to perceive and act independently, emulating the human reasoning system.
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1.2 Proposed System

In this thesis, a modular intelligent robotic rehabilitation system that can ad-

just the rehabilitation regimen and monitors the user performance with an engaging,

unobtrusive and safe way, is presented. Our work heads towards a multisensing upper-

limb robotic rehabilitation system, able to adapt its behavior according to the user’s

global performances.

Figure 1.1: Physical configuration of our proposed robotic rehabilitation system.

Figure 1.1 shows the physical configuration of our system, which is expected to

provide personalized rehabilitation exercises by adjusting its resistive and supportive

behavior according to an intelligence controller. The system will detect the user’s

physical weaknesses and will interact with the user based on the rehabilitation regi-

men. The most interesting feature of this system is its potential to emulate a human

therapist’s reasoning skills and modify treatment routines accordingly using artificial

intelligence.
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Figure 1.2: Proposed architecture for the robotic rehabilitation system.

Figure 1.2 depicts our modular proposed architecture, which is consisted of the

following modules:

1. The human-robot interaction, where the user is attached to the robotic arm and

perform exercises.

2. The monitoring system, which extracts the user’s physiological and psycholog-

ical data, and tracks the user arm’s and eye’s motions.

3. The therapist, who defines the rehabilitation regimen based on abstract rules

in a linguistic manner and records exercises in the 3D space (trajectories).

4. The Virtual Interface, which is used for tele-rehabilitation scenario and displays

exergames and serious games.

5. The robot control regulates the robot’s input torques signal based on the exercise

and therapy requirements.
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6. The Artificial intelligence acts as a high intelligence system that shifts the

robot’s gain and resistance during the exercises, and assesses the user weak-

nesses based on his global performances.

7. Last, a detailed technical description of the evaluation issues, challenges and

solutions of the proposed architecture has been simulated and analyzed.

1.3 Multimodal Modular System

Figure 1.3: Software architecture schema of the proposed system.

This multimodal modular system has been developed integrating the Unity 3D

[73] cross platform with the sensors required for the rehabilitation robotic system.

Particularly, a robotic platform and five other monitoring sensors have been con-

nected in a multi-class hierarchy using inter-process communication protocols. Such
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a modular architecture allows the incorporation as well as the integration of more

devices in the future. This proposed architecture was developed integrating three

programming languages running on two operating systems (Fig. 1.3). The robotic

arm and its haptic controller were executed in the real-time operating system, called

Xenomai, which is a Linux machine. The game interface along with the physiological

and monitor sensing devices are running in a Windows 10 operating system under

C programming language. Finally, the analysis as well as the adaptive controller is

deployed in a Matlab environment and is communicating with the Unity interface

through local socket integration.

1.4 Dissertation structure

This dissertation thesis is constructed as follows:

• In Chapter 1, we present our proposed intelligent multimodal upper-limb reha-

bilitation robotic system.

• In Chapter 2, the need for upper-limb rehabilitation is presented and the tra-

ditional methodologies for stroke rehabilitation and evaluation are discussed.

Also, the state of the art on rehabilitation robotics is analyzed and the main

technologies and techniques are presented.

• In Chapter 3, the functional components such as sensors, robotic device and

graphical user interfaces for user data acquisition and processing as well as for

the extraction of the performance indicators are described.

• In Chapter 4, a reliable method for reconstructing the upper-limb kinematics

and dynamics of a patient during end-effector robot-based exercises is presented.

The experimental tests with ground truth data and the correlation of the upper-

limb dynamics with electromyographic data are reported.
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• In Chapter 5, the application of the Haptic, force-fields robot controller for the

user hand coordination is demonstrated. Also, different control strategies and

protocols for intelligent adaptive robot-based exercises are presented.

• In Chapter 6, Artificial Intelligence techniques such as Machine Learning, Pat-

tern Recognition, and Fuzzy Inference System are utilized in order to assess

the user’s performances, identify the user’s errors and adjust the rehabilitation

treatment.

• In Chapter 7, we present seven applications that were developed in part of this

thesis in order to study safe human-robot interaction cases and usability user

studies.

• In Chapter 8, conclusions and future work are reported.

1.5 Research Questions

During our work, four research questions arise with the development of this

thesis:

1. Can a multisensing framework assess the user’s cognitive and physical perfor-

mances?

2. Can a vision-based system, such as the Kinect camera, identify the users’ wrist

position when they interact with external objects, like a robotic arm?

3. Can an end-effector robotic arm derive the user’s upper-limb joints’ torque?

4. Can a robotic manipulator adapt its control parameters according to the user

performance?
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1.6 Ethical Concerns

It is a well-known fact that human-robot interaction research studies the ways

that human can use robots in their life for the different type of applications that are

tedious, risky and requires precision. Especially this is a high priority for medical

and health care applications. For example, right now Artificial Intelligence diagnosis

tumors, patients are taking charge of their health with vital sensors, virtual reality

makes possible to treat patients in a continent ways. These disruptive technologies

are changing healthcare entirely. However, there are many ethical concerns about the

future of health care [64]. Ethicists have raised their concerns about the prospect

ways that intelligence, autonomy and robots will take care of elderly in the future.

Different questions ask if robots will replace the nurses, if robots could deliver the

same quality of attention and even more concerns.

Shortly, the growing number of the elderly population and the existing shortage

of therapists and caregivers who assist disabled individuals tends to be increased

and will impose serious problems as well as various challenges for the society. This

requires a higher number of professional health care staff and more space for medical

institutions leading to higher costs in general. It seems inevitable that medical robots,

automation, and artificial intelligence will fill the gap by complementing the burden

of therapists and be able to execute repetitive tasks with high precision. That does

not mean that will replace many jobs in healthcare but will take over some tasks that

make healthcare slower and more expensive. Moreover, new incredible opportunities

will emerge in medicine if only physicians can acquire new skills and improve the

existing once. Many specialists will have more time for patients and better insight

into the disease; it’s up to each of us to hold our skills and make ourselves irreplaceable

in this brave disruptive new world of healthcare.
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CHAPTER 2

Robot-assisted Rehabilitation

In the near future, the growing number of the elderly population and the ex-

isting shortage of therapists and caregivers who assist disabled individuals tends to

be increased and will impose serious problems as well as various challenges for the

society. This requires a higher number of professional health care staff and more

space for health care institutions leading to higher costs in general. The demands for

therapist will be bigger and this will lead to big waiting list or burden therapist work.

Figure 2.1: Demands for therapists

It is estimated that by 2020 the gap between patient visits and the primary care

capacity will be 159, 300 ∗ PCPs shorter, as Figure 2.1 shows below. The assistive
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robotic devices have the potential to address these problems and can be successfully

exploited to augment therapists skills in promoting neuroplasticity and stimulating

motor re-learning since they allow administering high-intensity, repetitive, active and

task-oriented training.

2.1 Stroke Rehabilitation

Stroke is a serious health-care problem observable all around the world [78].

Approximately 16 million people experience a stroke worldwide per year, of which

about two-thirds survive. 85 percent of stroke survivors recover partially, and about

35 percent of them suffer from a major disability [37]. The most popular impairment

caused by stroke is motor impairment, which can be regarded as a loss of muscle

function control, or limitations in limb movements or mobility. [45]

In recent years, a variety of methods have been introduced to deal with motor

impairment in the upper-limb; these include the following:

• Electrical Stimulation is used in the treatment of hemiparesis to enhance sensory

awareness, strengthen a weakened body part (such as the arm) and improve

range of motion [69].

• Cortical stimulation is the electrical stimulation of the brain cortex [32].

• Modified constrain-induced therapy (mCIT) is an intensive motor practice that

consists in restricting the use of the unimpaired limb and forcing the patient to

use the affected limb [28].

• Motor imagery is the process of imagining the movement of the affected limb.

This mental practice activates some motor areas of the brain and some muscles

as if the patient is really doing an activity [71].

Traditional motor rehabilitation for stroke patients consists of individual ses-

sions with a physical/occupational therapist that manages repetitive motor exercises
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and assists the patient. The interaction between therapist and patient has been clas-

sified into four main classes [48]:

• Passive movement, where the patient remains relaxed, while the therapist moves

his/her joints. This approach mainly aims at maintaining range of motion at

joints and flexibility in muscles and connective tissues.

• Active-assisted movement, where the patient attempts to move a joint or the

affected limb, and the therapist assists the patient as needed. This approach is

used when the patient cannot complete the desired movement independently.

• Active-Resistive movement, where the patient has to perform a movement with

some degree of resistance (gravity, additional weights, elastic band, or the ther-

apist). This approach is used with mild-moderate patients.

• Bilateral movement, where the patient moves the impaired limb imitating the

simultaneous movement of the unimpaired limb.

2.2 Rehabilitation Robotics

Rehabilitation robotics, or even better can be called, rehabilitation intelligent

mechanical training devices that assist the sensorimotor functions (e.g. arm, hand,

leg, ankle) of impaired individuals. They are used mainly as therapy tools that

boost the therapeutic training and assessment of the patient suffering from motor

impairment, especially due to a stroke. The use of robots offers several potential

advantages in stroke rehabilitation since it enables:

• high-intensity, repetitive, active and task-oriented training;

• movement constraints’ application;

• repeatability and precisely controllable assistance or resistance;

• labour-intensive and patient independent training;
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• the acquisition of objective kinematic and dynamic metrics that can be exploited

for:

1. the evaluation of patient residual motor capabilities and therapy outcomes,

2. the administration of patient-tailored therapies that adapt the assistance

to subject motor outcomes,

3. the investigation on pathology-related planning and motor strategies;

• the use of game scenarios for augmenting patient involvement.

Therefore, robotic technologies can be exploited to augment therapist skills and can

be seen as advanced tools available to therapists. Moreover, it must be considered that

robotic systems cannot replace those abilities that are typical of a human operator.

In line with the types of patient-therapist interaction, robotic devices can be

programmed in different ways for applying forces that guide, stimulate or contrast

patient movement [39]:

1. in passive mode, the robotic device moves the arm of the patient along a pre-

planned trajectory, while the patient remains relaxed

2. in active-assisted mode, the robotic device provides assistance during patient

motion if the patient is not able to complete the movement

3. in active-resisted mode, the robotic device opposes a pre-determined resistance

to the movement executed by the patient.

Robots that help patient for upper-limb rehabilitation can be grouped into two

categories [47] as Figure 2.2 shows:

1. End-effector robots, where the physical contact with the patient is restricted to

the user’s wrist (Figure 2.3);

2. Exoskeleton robots, where the patient is wearing the machine and the physical

contact is all along the arm or part of it (Figure 2.4).
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Figure 2.2: Upper-limb rehabilitation robot categories.

Due to their straightforward design, the end-effector robots were the first devices

to be utilized in stroke rehabilitation research. On the other hand, the exoskeleton

robots enable both accurate measurement and application of torques to specific joints,

as well as accurate recording and monitoring of individual joint motion trajectories.

Unfortunately, the latter constrains the user’s range of motion due to the device

configurations and are not simple to use. The former one, can not determine the

posture of the upper limb with only one interface. Finally, according to clinical trials,

which compared these two types of rehabilitation robots, proved that the end-effector

devices offer better arm recovery rather than the exoskeleton arms.
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Figure 2.3: Examples of end-effector robots.

2.3 Robot-based Assessment

The traditional evaluation of stroke motor and functional impairment performed

through clinical scales suffers from serious of drawbacks, such as therapists’ decision

which can be objective. For example, the rehabilitation therapists may change the

parameters of the exercise or activities (commonly referred to as grading) between

or during treatment sessions, based on confounding patient factors such as pain or

fatigue. However, rehabilitation robots are equipped with sensors that can allow ac-

curate measurements of movement kinematics (e.g. limb trajectories) and kinetics

(interaction forces). These measures can be fruitfully exploited for quantitatively

assessing patient motion performance through opportune indicators that can be com-

bined with clinical scores for a more exhaustive evaluation of the patient.
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Figure 2.4: Examples of exoskeleton robots.

Robot-based performance indicators can be grouped into three categories [4]:

• Kinematic indicators, where they quantify spatial and temporal features of pa-

tient movement and are defined either in the Cartesian space or in the arm joint

space.

• Kinetic indicators, where they quantify force, work, energy consumption and

power related to patient movement.

• Neuromechanical indicators, where they quantify, for example, the viscoelastic

properties or the mechanical impedance of the upper limb at rest.

For clarity of presentation, it must be pointed out that this dissertation is essen-

tially focused on point-to-point tasks, in which the patient hand has to move along a

line/trajectory between known start and end points.
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Several indicators currently used in rehabilitation robotics for quantifying motor

performance and each of them is relative to a specific feature of patient motor ability.

• Accuracy is a measure of the difference between the trajectory performed by

the patient and the desired path. This kinematic measure can be calculated for

any movement for which the desired movement path can be defined.

• Target error is a quantification of patient capability to move in the direction of

the target.

• Duration measures the time employed by the patient to perform the task.

• Path length is the measure of the trajectory traveled by the patient to reach

the target and is considered a measure of movement efficiency.

• Smoothness is a measure of how gradually a movement is changing. Smoothness

is a typical feature of healthy motion; it often lacks in stroke subjects’ motion

that is characterized by a velocity profile with multiple peaks and deep valleys

(arrest phases).

• Movement coordination is the quantification of the spatial and/or temporal

coordination between different upper limb joints during multijoint tasks.

• Amount of assistance is a measure that quantifies the patient ability to execute

the motor task without the robot assistance.

• Force direction error quantifies the patient ability to exert force in the desired

direction (target direction).
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CHAPTER 3

Data Acquisition

In this chapter, the functional components such as sensors, robotic device and

graphical user interfaces for user data acquisition and processing as well as for the

extraction of the performance indicators are described.

3.1 Data Acquisition

The proposed system is receiving as input motion, force, physiological and psy-

chological data.

3.1.1 Motion Data

User motion data are acquired by exploiting the sensory system embedded in

the robotic machine. In particular, on the basis of the type of employed robotic

machine:

• if an anthropomorphic exoskeleton robot is used, hand pose data and arm joint

angles are easily provided by the robot;

• if an end-effector machine is employed, only hand motion data are available

from the robotic device.

In this second case, a developed method for reconstructing the entire upper-

limb kinematics (i.e. shoulder, elbow and wrist position) during robot-aided tasks

with end-effector robot is applied and it is presented in Chapter 4.
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3.1.2 Force data

The sensory system needed to the acquisition of the user and robot interaction

forces is either fully or partly embedded in the robotic machine. Therefore, depending

on the type of robot used (exoskeleton versus end-effector robot) and/or the type of

sensors embedded in the robotic machine, it has been chosen to exploit:

• the robot force sensors at the end-point level;

• the robot torque sensors at the joint level.

In order to obtain the interaction forces in the Cartesian space, the robot statics

relation is applied, i.e.:

~τ = JT (~q)~F (3.1)

where ~τ represents the joint torque vector and ~F is the corresponding force/torque

vector in the Cartesian space which can be represented as:

~F =

fc
tc

 (3.2)

where fc = [fx, fy, fz]
T is the Cartesian forces and tc = [tx, ty, tz]

T is the Carte-

sian torques.

3.1.3 Physiological data

In order to evaluate the upper-limb muscular force, power and fatigue of user

undergoing robot-aided therapy, the surface electromyographic (EMG) activity of

couples of agonist-antagonist muscles of the upper-limb has been considered. The

raw EMG recording contains very important information that only a targeted signal

analysis can extract. Therefore, in order to extract those signal features that are

related to muscular performance, a carefully processing procedure has been designed.
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In particular, it has been chosen to consider signal information related to both the

time domain and the spectrum domain and, hence, two separated processing pro-

cedure have been applied. Moreover, physiological sensors receive heart rate, skin

temperature, galvanic skin response (GSR) using the Microsoft Band 2 device as we

will elaborate more in the next section.

3.1.4 Psychological data

The section below covers all the Graphical User Interfaces (GUIs), the Seri-

ous Games and Exergames that have been developed for cognitive and physical test

studies, during the integration of the proposed multimodal upper-limb rehabilitation

system.

Figure 3.1: Graphical User Interfaces, Serious Games and Exergames developed for
upper-limb robotic rehabilitation applications.
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3.1.4.1 Graphical User Interfaces for Medical Applications

A Tele-rehabilitation framework that enables interaction between therapists

and patients and is a combination of a graphical user interface and a high dexterous

robotic arm is presented. Our game consists of moving one hand to hit a sequence of

targets that are placed along an exercise gesture path. To make this more interesting,

we borrow the aesthetics from traditional ball-toss carnival games. In these games,

you toss a ball at a series of targets (cans, round target, or other visually intriguing

objects) in an attempt to knock them down or break them. This is nearly identical to

the actions we need the patients to complete. Additionally, as there are a wide variety

of visually distinct carnival games with similar goals, we can easily alter the visuals of

our virtual carnival game while keeping our gameplay the same. This provides more

visual and audio variety to the user keeping them interested for longer.

To provide a large degree of adaptability for therapy sessions, our system utilizes

two screens at the same time. One screen is for the patient and displays only the

game. This screen may be visible by the therapist depending on if he is in the same

location/facility as the patient. The second screen allows the therapist to adjust the

exercise program in real time by drag and drop of the exercise trajectories in the

exercise list on the right side of the screen. Running along the top of the therapist’s

screen is a horizontally scrollable section that visually shows the sequence of exercises

for this session as a series of pictures, placed sequentially in the order that they have

been or will be completed. The exercises that have been completed are located on

the left side of the list. The exercise currently being performed by the patient is after

the completed exercises and is indicated by a yellow border. The exercises that have

yet to be completed are located on the right side of the list, after the current exercise.

These uncompleted exercises are changeable and can be reorganized at will.
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3.1.4.2 Cognitive and physical therapy

Cognitive therapy is generally used to assess and retrain specific brain functions

that may have been impaired due to physical injuries, congenital abnormalities, or

degenerative diseases. Examples of such cases are strokes, traumatic brain injuries

(TBI), cerebral palsy (CP), and Alzheimer’s disease; all of which share similar symp-

toms of depression, cognitive impairment, social difficulties and often communication-

related issues [68][70][79]. Over the past few decades, computer-based cognitive ther-

apy has been developed and employed to aid in the rehabilitation process [80]. In

a previous experiment [80], a computer-aided program was implemented to allevi-

ate symptoms of certain mental health issues, such as depression and anxiety. In

addition to computer-aided cognitive therapy, there are many types of technology-

assisted physical therapy. Recent examples include robot-aided rehabilitation, which

is commonly used for the repair of upper-limb movement following a stroke [40].

Furthermore, extensive use of virtual reality games involves flight simulators or phys-

ical coordination tasks, such as grasping an object and placing it into a basket [57].

Traditionally, cognitive and physical therapy have been separated and often coun-

terproductive [1]. Multiple doctors often disagree with the medical plan of action

and the treatment centers are usually found in different locations, which causes more

distress for the individual. As the literature concerning the use of serious games in

rehabilitation develops, a consideration for the combination of both cognitive and

physical therapy in the same session should be addressed [40].

3.1.4.3 Eye-hand coordination

Eye-hand coordination is a combined physical and cognitive behavior that is

part of performing everyday tasks, and it has been studied in activities involving
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wooden block sets, archery, sporting performance, computing-games, and even tea-

making [36]. In its absence, most people would be unable to carry out even the sim-

plest of actions like picking up a book from a table or playing a video game. Clinical

assessment tools employ this control mechanism to assess the sensorimotor impair-

ment of stroke patients and to evaluate their recovery performance before and after

rehabilitation treatment [40]. Additionally, in Alzheimer patients, the timing of eye-

hand coordination tasks has been studied for its use of examining neuro-degeneration

over time [19]. Hereby, the evaluation of the eye-hand coordination makes it im-

portant to identify user’s behavior and agility.Traditionally, cognitive and physical

therapy have been separated and often counterproductive [1]. Multiple doctors often

disagree with the medical plan of action and the treatment centers are usually found

in different locations, which causes more distress for the individual. As the literature

concerning the use of serious games in rehabilitation develops, a consideration for the

combination of both cognitive and physical therapy in the same session should be

addressed [40].

3.1.4.4 Reaction and activity response time

Recent research has found that the combination of both cognitive and physical

exercises significantly increased reaction time in elderly populations [38]. This sug-

gests that the mind and body are connected through multiple facets. There are two

important response times that can be measured while using virtual reality in rehabil-

itation. When combined together, these response times could aid in both cognitive

and physical rehabilitation. The first time metric is the reaction time, which refers

to the period that the user needs to respond to the stimulus once presented. This

time is measured using the eye-tracker, and it is a measure of the user alertness. This

kind of time information is important and can be used to monitor the progress of
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users with cognitive impairment, especially when increasing the difficulty of a task.

For example, people with closed head injury (CHI) show a decrease in vigilance while

performing complex tasks [46]. The second time metric is the activity time, which is

the time needed to complete the task once the visual cues are recognized. This ac-

tivity time can be used in addition to the inertial measurement sensors embedded in

the robotic manipulator to evaluate the progress of a physically impaired user. This

metric can be applied to people suffering from a stroke since they require a longer

time to accomplish active tasks [23]. When combined together, these response times

could aid in both cognitive and physical rehabilitation.

3.1.4.5 Exergames

Exergames are the video games that are used exercising purposes. These games

utilize technology to track the user’s body parts, like the Kinect camera. According

to researchers, exergames provide real improvement to the users’ fitness, and they

aim to make the video gaming experience more fun.

3.2 Sensors

This section lists all the sensors and robotic equipments that have been utilized

for our proposed system.

3.2.1 Robotic Arm

Our work takes advantage of the advanced capabilities of the Barrett Arm in

dynamic adaptation, force-feedback, and torque sensing, in order to deliver a safe,

computer-guided physical therapy regimen. The Barrett Whole Arm Manipulator

(WAM) Arm is a highly dexterous backdrivable manipulator. It is the only commer-

cially available robotic arm with direct-drive capability supported by Transparent
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Dynamics between the motors and joints, so its joint-torque control is unmatched

and guaranteed stable. It is built to outperform today’s conventional robots by offer-

ing extraordinary dexterity, zero backlash, near-zero friction and spherical isometric

workspace approximately 2 meters in diameters (Figure 3.2. Finally, it is equipped

with the world’s smallest servomotor controller ”Puck” that offers incredibly low

power consumption and ultra-high brushless-servo performance enabling application

such as force-field enabled medical surgery.

Figure 3.2: The left figure depicts the Puck servomotor controller and the right figure
illustrates the spherical isometric workspace of the Barrett WAM Arm.

3.2.2 Force Sensing

The Barrett 6-Axis Force/Torque Sensor is a completely self-contained sensing

package that expands the force sensing capability of WAM and BarrettHand systems.

The Force/Torque Sensor is available as an option when purchasing a WAM Arm or

BarrettHand. The base of the sensor attaches to the tool plate of the WAM Arm

(4-DOF and 7-DOF)* and the top plate of the sensor attaches to the base of the

BarrettHand 28X series.
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Figure 3.3: Barrett Arm F/T sensor

As with the Barrett Puck, the Force/Torque Sensor is an entirely self-contained

unit. There is no need for an external cable or large controller unit; all of the necessary

amplification and processing electronics are built into one of the industry’s thinnest

packages. With the calibration data preloaded into the sensor’s non-volatile memory,

the onboard 32-bit DSP processes the signal from all the strain gages and outputs 3

forces and 3 torques. All that is needed to start taking measurements are Barrett?s

standard internal 48-V power and CANbus communications.

3.2.3 Microsoft Kinect

Figure 3.4: Microsoft Kinect 2.0

The Microsoft Kinect v2 is a

unique device produced essentially for

gesture recognition and is a more refined

version of Kinect v1. PrimeSensor device

is in its base [63] and in addition to VGA

resolution video (1920×480pixels), it can

also capture depth images (512 × 424)

resolution. A laser, and infrared camera

24



and the structured light beams are used

for capturing depth informations. Finally, The skeletal tracker of Kinect v2 truly

outperforms its previous version. It tracks 6 people instead of 3 and 26 joints rather

than 20 of Kinect v1. The utilization of the Kinect’s skeletal tracking data will be

important in our unobtrusive upper-limb kinematic model reconstruction and torque

data validation.

3.2.4 Microsoft Band

Figure 3.5: Microsoft Band 2

The Microsoft Band was a smart

band that was capturing the activity

features of the user. The ten sensors

(i.e. optical heart rate monitor, three-

axis accelerometer gyrometer, GPS, mi-

crophone, ambient light sensor, galvanic

skin response sensors, UV sensor, skin

temperature sensor, and capacitive sen-

sor) that were incorporated into the

band, were able to produce fitness tracking and suggest health plans. This band

will be used by our proposed system in order to incorporate user’s physiological data

into the closed-loop human-robot control architecture.
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3.2.5 Delsys - EMG

Figure 3.6: Trigno Wireless System.

The TrignoTM Wireless EMG Sys-

tem has been designed to detect the

muscle contraction using the EMG sig-

nals. The system provides real-time data

streaming from the EMG sensors inte-

grating 16 EMG and 48 accelerometer

analog channels. In our proposed sys-

tem, the EMG signals will verify the cor-

relation between the torque values ex-

tracted by our vision-based kinematic mechanism and the real muscle contraction

data.

3.2.6 Eye Tracking

Figure 3.7: User in front of an eye tracker.

Eye-tracking is a technology that

calculates the user’s eye gaze while he

is interacting with a computer monitor.

Such a device enables the user to interact

with their eyes instead of using mouses

or keyboards. Moreover, eye trackers col-

lect information about the user’s gaze

data and also the pupil dilation. In this

research, we used the eye tracking data

information to get users’ behavioral sig-

nature while they were interacting with our serious games as well as to develop meth-

ods for human-robot interactions. The Eye Tribe Tracker was utilized for the first
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set of experiments (Figure 3.7) and for the second set Dr. Christopher Mcmurrough

developed an head-mounted eye tracker.

3.2.7 NONIN Onyx

Figure 3.8: Nonin Pulse and Oximeter de-

vice.

Nonin Medical provides a finger

pulse oximetry device with scientifically

proven accuracy in challenging situations

such as patients with small dark skin

tones. The device that we used in our

research was the Onyx 9500 (Fig. 3.8)

and managed to provide data qualifica-

tion regarding the data of the Microsoft

Band 2.0.
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CHAPTER 4

Upper-limb Kinematics and Dynamics using Kinect

This chapter introduces a unique design for an unobtrusive reconstruction of

the upper-limb kinematics and dynamics of users during rehabilitation tasks with

end-effector robotic arm.

4.1 Kinect Skeletal Tracking Applications and Limitations

Shotton et al. [67], describe a system that assigns a discrete label w = {1, ..., 31},

indicating which of 31 body parts is present at each pixel based on a depth image x.

The resulting distribution of labels is an intermediate representation in a system that

proposes a possible configuration of the 3D joint positions in the Microsoft Kinect

gaming system (Figure 4.1). The classification was based on a forest of decision

trees: the final probability Pr(w|x) is an average (i.e., a mixture) of the predictions

from a number of different classification trees. The goal is to mitigate against biases

introduced by the greedy method with which a single tree is trained.

Within each tree, the decision about which branch a data point travels down is

based on the difference in measured depths at two points, each of which is spatially

offset from the current pixel. The offsets are inversely scaled by the distance to the

pixel itself, which ensures that they address the same relative positions on the body

when the person moves closer or further away to the depth camera. The system was

trained from a very large data set of 900,000 depth images which were synthesized

based on motion capture data and consisted of three trees of depth 20. Remarkably,
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Figure 4.1: From an single input depth image, a per-pixel body part distribution is
inferred. Picture captured by [67].

the system is capable of assigning the correct label 59%, of the time and this provides

a very solid basis for the subsequent joint proposals.

Kinect recognizes human motions utilizing research ideas from machine learning

and computer vision. One of the major challenges of this technology is noiseless as well

as the incompleteness of some human postures which is caused from the occlusions

of some body parts with other body parts or external objects. For that particular

reason, some of the Kinect’s application requires the users to face direct the sensor

which is not possible real life scenarios. To solve this problem, we came up with user’s

upper limb kinematic model that can predict the user motion when the are occlusion

with an external object, such as a robotic manipulator is our care.
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4.2 Upper-limb Kinematics

A novel system that can demonstrate the potential to track and estimate the

torques that affect the human arm of an individual that performs rehabilitation exer-

cises with the use of Kinect v2, is described. The system focuses on eliminating the

jerky motions captured by the Kinect with the incorporation of robotic mechanics

methodologies that have been applied in the field of robotic mechanical design. In

order to achieve this results, the system takes full advantage of the dynamic and kine-

matic formulas that describe the motion rigid bodies. Lastly, a simulation experiment

is depicted to demonstrate the results of the system.

As adaptive rehabilitation and personalized therapy becomes increasingly es-

sential for the reintegration of traumatized individuals to society, the need has arise

to create accurate and safe motion analysis systems that doesn’t rely on wearable

sensors. To be more elaborative, with the data collected from the Kinect, the system

provides a precise estimation of the motion parameters (position, velocity and accel-

eration) and torques that affect the shoulder and elbow of the patient. The system

emphasizes the use of the Microsoft Kinect v2 as opposed to other systems that re-

quire a plethora of different sensors such as embedded accelerometers, EMGs or even

wearable exoskeleton arms [22] [76] and mechanical manipulators [49].

A considerable amount of research has been conducted in the fields of com-

puter vision, human-computer and human-robot interaction to track the human body.

Whereas for entertainment or rehabilitation applications [2][30][43], each of the above

fields utilizes different technologies and diverse methodologies to track the state of

human body[82]. In our work, we combined a variety of these techniques to track

and calculate the motion parameters and torques that affect the shoulder and elbow

of an individual who performs rehabilitation exercises. Specifically, research in the

area of human exoskeletons shows that the human arm can be mathematically rep-
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resented as a kinematic chain[59][60] of seven degrees of freedom (DOF), much like a

mechanical manipulator. By making this assumption, we can express the relationship

of the human joint’s rotation and translation in relevance to a world frame by using

the Denavit-Hartenberg (DH) parameters [15]. Moreover, we can derive the forward

and inverse kinematic equations of the human arm to obtain a relationship between

the position and orientation of the end effector (wrist) with the rotation of the joints.

These set of equations are extremely useful, because we can calculate the rotational

position, velocity and acceleration of the joints over a specific trajectory. This makes

the estimation of the torques that affect the human arm feasible with the use of the

(RNE) method, which is a method commonly mentioned in the relevant bibliography

[26] [74].

In comparison to other studies, to obtain the necessary positions for our cal-

culations we have considered an alternative marker-less and low-cost solution [67].

Our system takes advantage of the Kinect v2 skeleton tracking algorithm to track

the position of the wrist. Unfortunately, due to the probabilistic nature of the Kinect

skeleton tracker, the positions are collected with certain inaccuracies under specific

circumstances [77]. For this reason, the system eliminates jerky data obtained from

the Kinect, though a polynomial fitting process in the joint space that is derived

from the inverse kinematic equations of our human kinematic model. Thus, the pro-

posed system utilizes techniques in computer vision and robotic mechanics to solve

the human arm tracking problem.

4.2.1 Human Arm Kinematic model

In this section, we provide a thorough analysis of the biomechanical model

that the proposed system utilizes to track the human arm. As mentioned above, the

human arm can be represented as a kinematic chain, much like a robotic arm. Since
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Figure 4.2: 4 DOF Kinematic Model of the Human Arm

the system focuses in the behavior of the shoulder and elbow, we designed a 4 DOF

kinematic chain to express the shoulder glenohumeral rotation and the elbow flexion.

Figure 1 above, provides a graphical illustration of the developed human arm model.

A summary of the frames description can be seen in Table 1. The kinematic

chain begins from frame {K}, which acts as the world frame of the model. Notice

that frame {K} denotes where the Kinect is stationed, meaning that when we derive

the forward and inverse kinematic equations of the model, all the frame positions are

related to the Kinect directly. Next, frame {C} represents the chest of the human

who is positioned l0 meters along the zk axis of the Kinect. As expected, frames

{S1},{S2} and {S3} describe the glenohumeral rotation of the shoulder. Frame {S1}

and {S2} rotate around the axis z1 and z2 as shown in Figure 1. Note, that to avoid

the formation of an Euler gimlock in the shoulder, which would make the solution

of the inverse kinematics extremely complicated, frame S3 rotates around the axis
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x3 [15]. Frame {E} follows by representing the flexion of the elbow around z4 axis.

Finally, the position of the end effector or wrist {W} is located along the axis x4 of

the elbow frame.

4.2.2 DH table parameters

Before we formulate the forward and inverse kinematic equations of the human

arm kinematic chain, we have to derive the DH parameters, which provide a relation

between the frames of the model. Table 2 depicts the modified DH parameters as

described in the previous section and in Figure1.

Table 4.1: DH Table (modified) for 4-DOF Human Arm

i αi−1 ai di θi
0 0 0 l0 0
1 0 l1 0 θ1
2 90 0 0 θ2
3 θ3 0 0 0
4 0 l2 0 θ4
e 0 l3 0 0

4.2.2.1 Forward Kinematics

Based on the modified DH table (Table 2) we can determine the rotation and

translation of frame i− 1 to i according to the following matrix :

Ti−1
i =



cθi −sθi 0 αi−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθiαi−1 cαi−1 cαi−1di

0 0 0 1


(4.1)
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Tke = Tk0 ∗ T01 ∗ T12 ∗ T23 ∗ T34 ∗ T4e (4.2)

In the above equations, cθ stands for the cosine of θ and sθ stands for the sine

of θ. Based on the multiplication that are shown above the general transformation

from the Kinect frame to the human’s wrist is:

Tke =


r11 r12 r13 ler11 + l2c1c2 + l1

r21 r22 r23 ler21 + l2s1c2

r31 r32 r33 ler31 + l2s2 + l0

 (4.3)



r11 = c1c2c4 − c1s2c3s4 + s1s3s4

r12 = −c1c2s4 − c1s2c3c4 + s1s3c4

r13 = c1s2s3 + s1c3

r21 = s1c2c4 − s2s2c3s4 − c1s3s4

r22 = −s1c2s4 − s1s2c3c4 − c1s3c4

r23 = s1s2s3 − c1c3

r31 = s2c4 + c2c3s4

r32 = −s2s4 + c2c3c4

r33 = −c2s3

(4.4)

4.2.2.2 Inverse Kinematics

For the derivation of the inverse kinematic equations we consider the positions of

the wrist and elbow as the known variables and the joint angles as unknown variables.

Traditionally, in robotics the orientation and position of the end effector is the only

known. However, in this particular case, instead of using the wrist’s orientation, we
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also use the position of the elbow to find the joint angles, because we can directly

obtain it from the Kinect.

Tke =



r11 r12 r13 xe

r21 r22 r23 ye

r31 r32 r33 ze

0 0 0 1


(4.5)

Tk4 =



r11 r12 r13 x4

r21 r22 r23 y4

r31 r32 r33 z4

0 0 0 1


(4.6)

Position of Elbow: 
x4 = l2 ∗ c1 ∗ c2 + l1

y4 = l2 ∗ s1 ∗ c2

z4 = l2 ∗ s2 + l0

(4.7)

Position of Wrist (End Effector):

xe = l3 ∗ (c1 ∗ c2 ∗ c4 − c1 ∗ s2 ∗ c3 ∗ s4+

s1 ∗ s3 ∗ s4) + l2 ∗ c1 ∗ c2 + l1

ye = l3 ∗ (s1 ∗ c2 ∗ c4 − s1 ∗ s2 ∗ c3 ∗ s4−

c1 ∗ s3 ∗ s4) + l2 ∗ s1 ∗ c2

ze = l3 ∗ (s2 ∗ c4 + c2 ∗ c3 ∗ s4) + l2 ∗ s2 + l0

(4.8)
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Angles Derivation (θ1, θ2, θ3, θ4):
s2 = z4−l0

l2

c2 = ±
√

(1− s22)

θ2 = atan2(s2, c2)

(4.9)


s1 = y4

l2∗c2

c1 = ±
√

(1− s1)

θ1 = atan2(s1, c1)

(4.10)


c4 =

l22+l23+
√

((xe−x1)2+(ye−y1)2+(ze−z1)2)
2∗l2∗l3

s4 = ±
√

(1− c24)

θ4 = atan2(s4, c4)

(4.11)


c3 = ze−z4

l3

s3 = ±
√

(1− c23)

θ3 = atan2(s3, c3)

(4.12)

4.2.2.3 Recursive Newton Euler (RNE)

In robotics dynamics,the Recursive Newton Euler method is often used to solve

the inverse dynamics problem. Specifically, it is used to provide an estimation of the

torques that affect the robot’s joints given the angles, velocities and accelerations of

the joints [15][24]. However, the RNE method can be applied to every kinematic chain,

as long as the motion parameters and the mass of the links are known. In our case,

since we are measuring the torques that affect the human arm, we estimated the mass

of the human upper limbs by taking into consideration the relative relation between
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the human weight and the weight of the human arm. [21] Figure 2 in the next page

depicts the analogies of anthropomorphic data that were taken into consideration in

the scope of this study.

The RNE method is divided into two steps as seen below. In the first step

(Outward iteration), the method calculates the relative angular and linear motion

parameters from the starting joint to the end effector. The second step (Inwards

iteration) iterates backwards and provides an estimation of the moments and torques

that affect the joints.

4.2.2.4 Outward iteration

0→ 3

ω : relative angular velocity of joints

θ̇ : joint angular velocity

θ̈ : joint angular acceleration

Ẑ : the axis of rotation

P : matrix indicating the direction of the center of mass

m : mass of link

c : center of mass

F : linear Force applied in the center of mass

N : moments
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ωi+1
i+1 = Ri+1

i ∗ ωi i + θ̇i+1 ∗ Ẑi+1
i+1

ω̇i+1
i+1 = Ri+1

i ∗ ω̇i i + Ri+1
i

i ∗ ωi × θ̇i+1 ∗ Ẑi+1
i+1+

θ̈i+1 ∗ Ẑi+1
i+1

υ̇i+1
i+1 = Ri+1

i ( ω̇i × Pi i+1 + ωi i × ( ωi i × Pi i+1) + υ̇i i)

υ̇i+1
Ci+1

= ω̇i+1
i+1 × Pi+1

Ci+1
+ ωi+1

i+1 × ( ωi+1
i+1×

Pi+1
Ci+1

) + υ̇i+1
i+1

Fi+1
i+1 = mi+1 ∗ υ̇i+1

C i+1

Ni+1
i+1 = ICi+1

i+1 ∗ ω̇i+1
i+1 + ωi+1

i+1 × ICi+1
i+1∗

ωi+1
i+1

(4.13)

4.2.2.5 Inward iteration

f : Force Propagation

τ : Torque applied to the joints

n : Accumulative torque applied to the joints

4→ 1



fi i = Rii+1 ∗ fi+1
i+1 + Fi i

ni i = Ni i + Rii+1 ∗ ni+1
i+1 + Pi C i

× Fi i + Pi i+1×

Rii+1 ∗ fi+1
i+1

τ i = ni T
i ∗ Ẑi i

(4.14)
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Figure 4.3: Anthropomorphic data for the human body segments captured by [21]
.

4.2.3 System Overview

A block diagram of the proposed subsystem can be seen in Figure 4.4. The

diagram summarizes the majority of the processes that compose the overall system.

As an input to the system, the user must capture the person who is performing the

exercise with the Kinect, according to the configuration that Figure 1 suggests. Once

the trajectory of the subject’s arm has been captured, the Kinect passes the cartesian

positions of the chest, shoulder, elbow and wrist frames to the first unit of the system

that reconstruct raw model. The raw model provides an abstract illustration of the

physical configuration that was captured by the Kinect.

The system then applies a median filter to the raw data to eliminate any abnor-

mal behavior from the skeleton tracking algorithm of the Kinect. This result of this

module produces a smooth trajectory that is used by the system’s Inverse Kinematics

Solver (IK Solver) to provide an estimation of the angles of the human arm joints.

Note that this unit utilized the inverse kinematics equations that where described in
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Figure 4.4: Vision-based subsystem overview

the previous section. At this point the system has produced the first estimation in

joint space. In the next iteration, the system must make sure that all data in joint

space are characterized by a polynomial profile. This happens because the motion

of all rigid bodies, such as our model, must be expressed with a polynomial function

that can produce a second, third or even forth derivative (jerk)[15].

Once the polynomial fitting process is completed, the system recreates the kine-

matic model according to the forward kinematic equations and calculates the veloc-

ities and accelerations of the human arm joints. Lastly, the system provides an

estimation of the torques that affect the subject’s arm with the RNE method and

presents all of the results in the graphical user interface as denoted in Figure 4.4.
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Figure 4.5: Captured Elbow and Wrist positions by the Kinect (blue line). Filtered
Elbow data (red line)

4.2.3.1 Assumptions

Before we continue to the experimental results section, we must mention certain

assumptions that led to the system’s development. The following hypothesis are

centered around the idea that we try to estimate the kinematic and dynamic properties

of the human arm with techniques that have been applied to mechanical manipulators.

Our assumptions can be summarized as follows:

• First of all, since our study focuses on tracking the human shoulder and elbow,

we disregarded the degrees of freedom that the human wrist provides. Tradi-

tionally, the human arm is represented with 7 DOFs (3 at the wrist, 1 at the

elbow and 3 at the shoulder). However our kinematic model is limited to only

4 DOFs. The inclusion of a 7 DOF model in our system would be extremely

challenging, due to the Kinect’s inability to provide an accurate estimation of

the wrist’s rotation.

• Second, we did not include in our calculations any external forces that are

extruded to the human arm. The reason behind this decision is the absent of a
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wrist frame, which would suggest the incorrect propagation of the external force

in the kinematic chain by the RNE unit of the system. Additionally, our model

doesn’t consider any relevant friction between the joint links as it is difficult to

simulate the effects of muscle fatigue.

• Last but not least, the assumption that the human arm can be abstracted as a

rigid body kinematic chain is incorrect, because on of the key principles of rigid

body dynamics is that the modeled body does not succumb to deformation.

This is clearly an incorrect statement in our case.

4.2.4 Experimental Motion Results

The team conducted various exercises using the Barret WAM arm robotic ma-

nipulator in order to extensively validate the behavior of the system. The robotic

arm was used in the experiment as an ad hoc simulator of various rehabilitation exer-

cises. Figure 4.6 shows the physical configuration of the experiment and the captured

Kinect skeleton tracker. The results indicate that the system greatly improved the

initial estimation of the Kinect. Specifically, in Figure 4.6 the upper four sub figures

show the gradual evolution of the captured Kinect trajectories of the human wrist

and elbow in blue and red colors. It can be clearly seen from the rapid fluctuations of

the trajectories that the Kinect does not regard the physical properties of the human

arm as these trajectories doesn’t correlate with the motion of the real human arm.

However, the four bottom sub pictures of Figure 4.6, that demonstrate the final esti-

mation of the system in equivalent time frames provide a more accurate description

of the actual physical trajectory that the human arm followed in the exercise.

It is our omission not to refer to the predominant reason that causes these

inaccurate readings of the Kinect v2. Traditionally, if in this particular instance

the human arm was performing a free motion without any wearable attachment to
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Figure 4.6: The above images present four frames for a particular exercise, where
jerky motions from the kinect is inevitable. Note, that the Kinect doesn’t estimate
precisely the position of the left arm, because of the same depth information with the
rest of the body.

the wrist, the Kinect should be more accurate and without fluctuations. But in

this setup, since the participant is grabbing the end-effector of the robotic arm, the

Kinect’s depth sensor regards the robotic arm as a natural extension of the human’s

arm and thus provides false readings in certain frames.

Up to this point, the user of the system can perceive how the system obtained

the raw data from the Kinect and produced an accurate estimation of the real motion.

We will further enrich the experimental results section, by providing additional details

for the intermediate steps of the system, which are detrimental for the final derivation

of the torque calculations. Starting from the manipulation of the raw Kinect data,

the system applies a median filter to eliminate any irregular variation in collected

data. Figure 4.5 describe how the median filter is applied in the current experimental

set up. Obviously, the median filter removed certain values in the captured elbow and
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Figure 4.7: The top four diagrams show the evolution of the exercise motion for the
raw Kinect model. The bottom four diagrams present the corrected motion based on
the polynomial fitting motion estimation.

wrist trajectory that would otherwise make the derivation of the inverse kinematics

solution unsolvable. After the trajectory filtering is done, the system performs the

polynomial fitting process in the joint space obtained from the solution of the inverse

kinematic equations and the filtered trajectories. The left side of Figure 4.8 shows

analytically polynomial fitting process of the raw angles obtained from the solution

of the inverse kinematics equations and the filtered trajectories. Furthermore, the

systems derives the velocities and accelerations through the derivation of the joint

space trajectories. The results are shown in the right side Figure 4.8 and 4.9.

To conclude with the experimentation results section, we have to present the

torque estimations of the system in this particular experiment. Figure 4.10 provides

an illustration of the torque history that was estimated from the RNE module, ac-

cording to the motion parameters and has already been presented. Note that as we

mentioned in section 3, the RNE method also requires the mass of the upper and
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Figure 4.8: The image of the left side depicts the polynomial fitting of the estimated
joint angles from the IK solver. The fitted solutions are shown in red color, while the
raw angles are in blue. The right image shows the velocities of the fitted joint angles

lower section of the human arm. According to Figure 4.3 we derived the equivalent

link’s masses (m) of the participant. At this point, the user of the system should get

an intuitive understanding of the gravitational forces that the arm succumbs to as it

performs the trajectory of the exercise. To be more specific, it is clear from the torque

history that the torque values in the shoulder are higher than the torque values in the

elbow, because the shoulder supports all the weight of the arm. Also, it is clear that

when the arm moves from an initial semi flexion position to a full upwards flexion

position and the back to original state, a proportion of the gravitational force that is

extruded upon the arm shift from joint 1 to joint 2 and then back at joint 1. Lastly,

it can be seen than since the arm performs small pronation movements, there is little

to no torque applied to arm’s third joint.

4.3 Quantitative Analysis

We evaluated the computational effectiveness of the motion analysis system

through a series of physical experiments that involve the Microsoft Kinect v2 and the
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Figure 4.9: Angular accelerations for the four joints

VICON system. As seen from Figure 4.11, the participant was called to perform 10

different rehabilitation exercises with the Barret Arm, while his upper right limb was

captured by the Kinect and VICON system simultaneously. The data collection from

the three devices was deemed possible via network socket programming. From the

Kinect and VICON recorded data, we measured the cartesian position and velocity

of the participant’s wrist and elbow and we compared them against the estimations

of our motion analysis system.

The VICON is able to track the position and orientation of multiple rigid struc-

tures equipped with reflected markers at a rate of 100 Hz with sub-millimeter accuracy

[72]. To achieve this precision level, we placed the VICON markers on top of custom

made 3D printed mounts, which were then attached on the participant’s right body

as seen in the Figure 4.11. The mounts were designed as collars that surrounded
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Figure 4.10: Estimated Torques (N/m) for the four joints

the participant’s limbs. Each mount carried three markers placed in a triangular

configuration around the mount, so that the triangle centroid points at the joint’s

origin (approximately). As a final note, the Kinect and VICON world frames where

placed manually as the configuration Figure 4.11 suggests. This means that there is

a small offset value (less than half of a cm) in between the Kinect and VICON world

frames, since it is practically impossible to place the VICON wand in exactly the

same location as the Kinect.

4.3.1 Analysis of Results

According to the above experimental set-up, in this subsection we will present

two different exercises that can be used for our quantitative evaluation process with

ground truth data. Specifically, Figure 4.12 and Figure 4.14 provide an illustration
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Figure 4.11: Physical Experimental Setup: VICON markers are attached in the 3D
printed mounts, which are wrapped around the participant’s joints. The mounts were
placed on the wrist, elbow, shoulder and chest.

of these exercises. We selected these two, because in the first one the participant’s

arm performs a free occlusion-less motion, while in the second the user’s elbow and

shoulder are partially blocked from his wrist and the robotic arm end effector. This

is particularly important to note, because traditionally the Kinect predictions are

not characterized by sudden fluctuations. However, in the event of an occlusion, the

Kinect probabilistic skeleton tracker provides inaccurate predictions.

For the first exercise, the three upper graphs of Figure 4.12 show the evolution of

the participant’s motion according to the Kinect data, the estimations of our system’s

Kinematic Model and the VICON system. Since the VICON system is our ground
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Figure 4.12: Simple exercise: In each subfigure, the above three images show the
motion of the human arm from the Kinect, System and VICON scope. The lower
subfigures show the skeleton tracker, the polynomial fitting process of the system and
the physical set-up of the exercise.

truth, we have to numerically calculate how close to the VICON’s trajectory are the

estimations of our system and the Kinect.

In Figure 4.13, the blue line stands for the absolute difference between the

position of the system’s Kinematic Model and the position of the VICON data, |

PM(t)− PV (t) |, while the red line represent | PK(t)− PV (t) |, which is the absolute

difference between the Kinect and the VICON positions. As expected, for the entire

history of these two graphs, the System’s position estimation stands bellow, meaning

that our System’s predictions are closer to the VICON data. Nevertheless, we notice

that during the last section of the exercise after frame 70, the System’s and Kinect’s

predictions are almost aligned.
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Figure 4.13: Simple Exercise: Distance and velocity comparison

As explained above, the Kinect can predict human motion accurately in oc-

clusion free environments. Moreover, Figure 4.13 shows the velocity profiles of the

VICON data, the Kinect data and our system’s estimation. Although it is difficult

to precisely determine which velocity profiles are closely related, it is very clear that

the Kinect’s velocity profile is characterized by sudden fluctuations that deviate from

the VICON. This happens, because our system interpolates a polynomial function in

the joint space data that have been captured by the Kinect, as seen from the lower

graph of Figure 4.12 .

To continue with the analysis of the second and more complex exercise in Figure

4.14, we notice in Figure 4.15 that the distance between the Kinect and the VICON

positions greatly differentiate from that of our Model and the VICON for the entire

history of the two trajectories. As expressed earlier, we anticipated this result, because

this exercise is not occlusion-free, which has a detrimental effect on the Kinect’s

accuracy.
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Figure 4.14: Complex exercise: In each subfigure, the above three images show the
motion of the human arm from the Kinect, System and VICON scope (Zoom in).
The lower subfigures show the skeleton tracker, the polynomial fitting process of the
system and the physical set-up of the exercise.

Furthermore, in Figure 4.15 it becomes very clear that the abnormal behaviors

of the Kinect around occlusions results in even greater fluctuations in the velocity

profile history. Lastly, as part of the evaluation process, it is paramount to mention

that certain fluctuations in both VICON velocity profiles in Figures 4.13 and 4.15,

are a result of down sampling the VICON data from 100 fps to 30 fps in order to

much to the Kinect’s frame rate.

4.3.2 Algorithm

Algorithm 1 presents the steps for the extraction of the human arm kinematics

and dynamics from a Kinect camera. As an input, the system must capture the person

who is performing the exercise with the Kinect, according to the configuration that
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Figure 4.15: Complex Exercise: Distance and velocity comparison

Figure 4.2 suggests. Once the trajectory of the subject’s arm has been captured, the

Kinect passes the cartesian positions of the chest, shoulder, elbow and wrist frames

to the first unit of the system.

The system then applies a median filter to the Kinect data to eliminate any

abnormal behavior from the skeleton tracking algorithm of the Kinect. The result

of this module produces a smooth cartesian trajectory that is used by the Inverse

Kinematics Solver (IK Solver) to provide an estimation of the angles of the human

arm joints. Afterward, the system produces the first estimation in joint space. In the

next iteration, the system makes sure that all data in joint space are characterized by

a polynomial profile function. This happens because the motion of all rigid bodies,

such as our Kinematic Model, must be expressed with a polynomial function that can

produce a second, third or even forth derivative (jerk)[15]. Lastly, as an output, the

system provides an estimation of the torques that affect the subject’s arm with the

RNE method.
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Algorithm 1 Steps to calculate human arm dynamics using Kinect camera system

and a robotic arm
1: INPUT1: A sequence {Pt}Nt=1 of frames recordings from Kinect, where each

Pt = (PWt , PEt , PSt , PCt) consists of the cartesian position of the wrist, elbow,

shoulder and chest.

2: INPUT2: Import user height and weight and extract anthropomorphic data for

the human body segments for the length and mass of the upper and lower section.

3: INPUT3: Add the external forces fB robot from the robotic arm that are exerted

to the user’s wrist.

4: Reconstruct a raw model from the captured {Pt}Nt=1 frames according to the

proposed kinematic model using the Homogeneous transformations in equations

4.3 and 4.7.

5: Apply a moving median filter to the raw position data.

6: Utilize the proposed Inverse Kinematics (IK Solver) to generate an estimation of

the joint angles {θr(t)}Nt=1 and r = [1, ..., 4]

7: Apply a higher-order polynomials to the θr(t) in order to fit the joints estimation

θe(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 to the trajectory sequence (exercise).

8: Generate estimated angles: {θe(t)}Nt=1 and e = [1, ..., 4]

9: Recreate the kinematic model according to the forward kinematic equations 4.3

and 4.7.

10: Apply the Recursive Newton-Euler [20] dynamics algorithm (RNE) and propagate

the external force fB robot from the robotic arm to the user wrist joint.

11: OUTPUT: Export the human arm joint velocity, acceleration and torque profiles

(q, q̇, q̈) for the recorded trajectory sequence with the applied forces of the robotic

arm.
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4.4 Joint torque evalaution

Joint torques are of main importance for physicians and occupational thera-

pists to analyze the effects of rehabilitation and to obtain an indicator of patient’s

functional capacity to perform a motion [5]. A joint’s strength is assessed through

the measurement of the maximal joint torque, which represents the resultant action

of all muscles crossing the joint. Manual muscle testing (MMT) is a measure of upper

and lower body strength that occupational and physical therapists often complete as

part of a clinical evaluation and to measure progress in therapy. MMT is a graded

scale (typically on a scale from zero to five) that is used to assess patients with neu-

rological or orthopedic impairments [16]. A score of zero indicates that there is not

any muscle contraction to five indicates that strong pressure can be applied. Many

issues arise because MMT can be subjective based on many factors. The validity and

reliability of MMT are dependent upon a variety of factors including training of the

therapist; the patient’s diagnosis, pain level, and other physiologic issues; which mus-

cle is tested; the position of the patient; hand placement of therapist during testing;

and variability between therapists [35].

The rehabilitation therapists may change the parameters of the exercise or ac-

tivities (commonly referred to as grading) between or during treatment sessions, based

on confounding patient factors such as pain or fatigue [17]. For example, the thera-

pist may change the number of repetitions, the number of sets, and/or the amount of

resistance given to the patient. These parameters may remain consistent over time

or need to be changed during each session based on the patient?s performance and

muscle fatigue. Multiple researchers have attempted to generate models for muscle

fatigue based on joint torques and muscle contraction levels. For example, the au-

thors in [58] utilized electromyographic data and derived an analytical muscle model,

taking into account physiological and anatomical data, to estimate the joints’ torque.
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This model helps them to generate joint torques and stiffness values while the user is

interacting with a rehabilitation instrument.

4.4.1 Experimental setup at the shoulder’s joint

In order to fully validate that the torque estimation derived by our biomechan-

ical model is correct, we conducted a series of experiments that involves primitive

arm movements that isolate the shoulder axis and muscle activations. Figure 4.16

shows the Delsys sensors placement in the user’s arm and the muscles area that are

associated.

Figure 4.16: Muscle to sensor placement

Our initial goal is to correlate the joints’ frame placement, according to the

Figure 4.2, with the muscles that are triggered and move the shoulder at each axis.

For this reason, sensor 3 has been placed on the Lateral Deltoid muscle, sensor 4

has been placed to the Anterior Deltoid muscle area, connecting to the clavicle, and

sensor 1 and 2 were placed to the biceps and triceps respectively. The exercise that

is first chosen is the shoulder abduction (Figure 4.17). This allows the first frame of
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the shoulder to rotate along axis z1 in the positive direction. The second exercise is

the shoulder forward flexion (Figure 4.18) that allows the second shoulder frame to

rotate along axis z2.

Figure 4.17: Shoulder Abduction

From the experimental results, in Figure 4.17, it is obvious that the first exercise

triggers the third sensor more which correlates the deltoid’s muscle movement. The

torque values of the frame 1 at the beginning are close to 11 N/m and when the

shoulder is fully abducted they reach 36 N/m. For the frame 2, the absolute torque

values increased slightly exactly like the correspondence muscle contraction (sensor

4).

The second experimental results (Figure 4.18) show the opposite torque value

estimation which corresponds with the muscles’ activation. The torque values of the

second frame are increased from 9 N/m to 34 N/m relatively as sensor 4 jumps. The

frame 1 torque values show some discrepancy but this is caused because of the axis

z is crossed while the user is flexing forward his arm. Also, sensor 3 is reacting to

this motion as the deltoid muscle is triggered slightly. It should be mentioned that
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Figure 4.18: Shoulder Forward Flexion

is difficult to isolate the muscle’s activation at the shoulder as they are wrapped

together to help the shoulder’s rotation to the three axes.

4.4.2 Experimental Analysis of the electromyographic data

To analyze the electromyographic (EMG) data, the collected signal was first

filtered. Filtering was done in 3 stages: High Pass filter, Low Pass filter and Notch

Filter. A butterworth filter was used to design these filters. The corner frequency of

the high-pass filter was 10 Hz while the corner frequency of the low-pass filter was

500 Hz and the frequency of the notch filter was 50 Hz. This process removed any

noise below 10 Hz, above 500 Hz and at 50 Hz.

After the filtering process, the peaks of the EMG were found. These peaks were

used to find a relationship between the torque extracted from the Kinect data and

the EMG extracted from the Delsys. We used the inbuilt peak detection function

in MATLAB to detect the peaks. Furthermore, both the EMG and the torque data

were downsampled to 1 HZ, resulting in one data point per second. This was done
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for EMG data too. Peak data at each second was calculated as the mean of the EMG

peaks for 500 ms on either side of the second mark.

Figure 4.19: Shoulder Abduction

Lastly, the relationship was found by using Kendall’s Rank Correlation method.

This is a nonparametric correlation method. It operates by assigning ranks to each

datapoint and calculating the concordant and the discordant pairs. Consider a data

point in a set, any data point below the considered one is assumed to be a concordant

pair if the rank for the new data point is smaller than the rank for the considered data

point. It is a discordant pair if the rank for the new data point is greater than the

initial data point. Kendall’s correlation calculates τ by using the following formulae:

τ =

∑
D −

∑
D∑

D +
∑
D

(4.15)
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Table 4.2: Correlation values between torque and electromyographic signal.

Exercise Sensor Tau P

Abduction
EMG3 1 5.51E-07
EMG4 -0.82222 3.58E-04

Forward
Flexion

EMG3 -1 4.96E-05
EMG4 1 4.96E-05

where C are the Concordant Pairs and D are the Discordant Pairs. This yields a value

between -1 and 1 where -1 indicates a strong negative correlation and ’+1’ indicates

a strong positive correlation. 0 indicates no correlation.

Figure 4.20: Shoulder Forward Flexion

Figure 4.19 and 4.20 show the opposite correlation of the torque values esti-

mated by our biomechanical model and the electromyographic filtered signal after

the analysis. These results confirm our hypotheses for torque estimation per axes

with the isolated muscle to electromyographic data analysis. Specifically, in Table
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4.2 we can see that the correlation values for the shoulder abduction motion give

τ = 1 and τ = −0.82222 for the EMG3 and EMG4 respectively. This means that

the torque1 value has linear increasing rate such as the EMG3 signal. On the other

hand, torque2 value follows closely the linear decreasing of the signal. An analogous

trend is observed in the shoulder forward flexion EMG and torque correlation graph

(Figure 4.20), because the increments rates are opposite. Thus, we can justify the

torque values and claim that our biomechanical model can be used for shoulder torque

estimation in rehabilitation exercises.

The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort

in an unobtrusive and safe way, by estimating the torque that affects the user’s arm.

The system’s torque estimations are justified by capturing electromyographic data

from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion).
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CHAPTER 5

Haptic Force-fields and control strategies

In this chapter, the application of the Haptic robot controller for the user’

hand coordination is demonstrated. Also, different control strategies and protocols

for intelligent adaptive robot-based exercises are presented.

5.1 Related Work

One simple exercise in rehabilitation is to repetitively follow pre-described tra-

jectories to help users strengthen their weakened muscles or regain motor control. A

haptic path can be defined as a virtual tunnel that uses force feedback to help users

move through that path or constrain them from deviating in other directions. The

authors in [6] use gait trajectories to help users while doing exoskeleton gait training

on the treadmill. They proposed a haptic controller designed to be ’assist-as-needed’

system, which can apply suitable forces on the patient’s leg to help him move on

the desired trajectory. Similarly, in upper limb rehabilitation, [61, 66] tracking the

performance and progress of the users, can be achieved by comparing their measured

trajectories with the Dynamic Time Warping (DTW) algorithm [29]. The literature

has shown that haptic feedback/guidance can help the users improve their tracing

abilities by following a prescribed trajectories [44, 27]. This haptic feedback can be

by probing the user’s hand through the path or by providing perpendicular forces

that prevent the user’s hand to deviate from the desired path.
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5.2 Haptic Device Dynamics

The dynamics of a robotic manipulator that is never in contact with another

external object are as follows:

D(q)q̈ + (C(q, q̇) +B)q̇ +G(q) = τ (5.1)

where D(q) ∈ R3×3 defines the inertial matrix, C(q, q̇) ∈ R3×3 is the Coriolis

and the centripetal forces matrix, G(q) ∈ R3×1 devices the gravity forces vector,

B ∈ R3×3 indicates the viscous coefficient matrix, and τ ∈ R3×1 is the torque input.

In our case the patient is driving the system, so τ = τc + τh, and τc ∈ R3×1 is the

guidance control and τh = JTfh is a sign of the human-haptic interaction, where JT

stands for the transpose Jacobian of the haptic device, and fh shows the patient’s

performance force vector.

5.3 Haptic Path

The robotic arm can help guide the user to follow a precise trajectory as dictated

by previously recorded exercises done by a physical/occupational therapist. The

user can attempt to perform the prescribed exercise and if he/she deviates from the

prescribed trajectory, an appropriate correctional force is applied by the robotic arm

to guide him/her back to the correct trajectory. Besides spatial, the deviation can

also be temporal, i.e. the user performs the exercise much slower or much faster than

the therapist. When either of the two deviation types occurs, an error-correction force

is applied to bring the patient’s hand position closer to the prescribed trajectory.
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Figure 5.1: Prescribed exercise represented by a haptic path.

5.3.1 Haptic forces

One of the tasks that the patient should perform in our experiments, is to

stay close to a prescribed trajectory in the 3D space. For that particular reason, a

force-field assists the patient to stay close when he is deviating. A force-field (Figure

5.1) is provided from the given start position pB start to the end target position pB end

of the path, as Figure 5.2 depicts. If the patient deviates from the given path, a

perpendicular force will be activated in order to push the patient’s arm to stay close

to the path. The robot’s end-effector position pB t searches for the closest point at

the haptic path at each moment. The direction and magnitude of the force in the

end-effector position pB t, is calculated by the pB N point and the absolute distance dt

respectively.

The haptic path has been reconstructed with the use of an impedance con-

trol mechanism that controls the position of the robot’s end-effector ( pB t) at the

corresponding trajectory point ( pB NN). The impedance control aims to increase or

decrease the compliance (stiffness) of the robot in order to allow the user to deviate

more or less from the predefined trajectory. This stiffness values (K) constrains the
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Figure 5.2: Prescribed exercise represented by a haptic path.

user to the trajectory and acts as the spring constant. The force generated (ft) is

equivalent to ft = K × dt. The proportional gain (P) that represents the stiffness of

the force-field of the impedance controller, behaved similarly to the K spring constant

value. By changing the P value we are able to bring the patient’s hand closer to the

therapist’s prerecorded trajectory.

The haptic control law for that particular haptic path can be described properly

by integrating the equation 5.1 to :

D(q)q̈ + (C(q, q̇) +B)q̇ +G(q) = τ + JT (~q)[Kp(~pNN)− ~pt) + fassist/resist] (5.2)

where the factor Kp(~pNN)− ~pt) represents the ft force generated perpenticular

to the pB NN point, while the factor fassist/resist is defined as the constant force that

push or repel the user’s hand towards a tangential direction with the prerecorded

trajectory.
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5.3.2 Haptic Control

The control chart of the proposed control system can be found in Figure 5.3.

The Barrett WAM robot is directly interacting with patient’s arm τp. All motion

parameters that associate the kinematics of the robot are measured with internal

sensors. In our case, the measurements are provided through the Barrett WAM’s

Puck sensor that operates in 500 Hz.

Figure 5.3: The impedance haptic path controller implemented in the Barrett WAM
robot. A control chart overview.

At the above figure, the forward kinematics of the robot are utilized to calculate

the end-effector position, which is supplied to the visual interface implemented in

the Unity 3D game engine. This depicts the end-effector’s trajectory as well as the

start position pstart and target position ptarget that defines the haptic path. Such

information is used to calculate the nearest neighbor point pNN on the track, and

the tangential vector fassist/resist by using the end-effector position. The transposed

Jacobian JT (q) is used to calculate the corresponding joint torques τ that accelerates

the robot. Additionally, the compensation model τcomp which is consisting of the
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friction, gravity and spring compensation module, provides the necessary torque to

keep the arm stationary.

5.3.3 Haptic Experiments

In order to test the compliance of the impedance controller, we recruited one

chronic stroke patient (Fig. 5.4) and we conducted three experiments with different

proportional values. Then, we analyzed the effects of the haptic controller by using

the Dynamic Time Warping method to derive spatial or temporal error deviations in

the user’s cartesian trajectory. Figures 5.5 and 5.6 illustrates the Cartesian position

in the plane during the haptic path exercise. In particular, the desired trajectory

is shown with red targets to the stroke patient (Virtual Exercise) (Figure ??) and

is represented by the red line in Figure 5.5. The stroke patient was instructed to

perform each exercise (Haptic path) with the best of his abilities and try to reach all

the red virtual targets.

Figure 5.4: Volunteer chronic stroke patient.
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5.3.4 Haptic Response

Figure 5.5: Stroke patient’s error deviation for three difference proportional values:
A) P = 50; B) P = 100; C) P = 800.

Three exercises were performed with the stroke patient with small breaks of

5 minutes (Figure 5.5). In the first, exercise (A) the stroke patient was unassisted

(P = 50) and his error deviation was error = 4.9114. At the second execution (B),

the stiffness value of the impedance controller was (P = 100) and the stroke patient’s

error trajectory deviation from the prescribed path was error = 0.65122. Finally, we
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increased the robot’s assistance (C) with (P = 800) and he managed to execute the

exercise correctly (error = 0.22548).

Figure 5.6: Unimpaired user’s error deviation for three difference proportional values:
A) P = 50; B) P = 100; C) P = 800.

Similar experiments were conducted with an unimpaired user. In Figure 5.6 the

user’s performance did not change drastically as he manages to control the motion of

his hand successfully and his error deviation is getting better as long the robotic arm

constrains him to the prescribed trajectory. It is clear that when the applied rendered

forces constrain the users to the prerecorded exercises, the error deviation is getting
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smaller. This phenomenon implies that patient/user will be able to increase hand

coordination and improve motor skills with the passage of time. In the next chapter,

we will introduce how we are able to evaluate the user’s hand coordination using the

DTW algorithm and how we can adapt the robot’s haptic controller in order to guide

and support the user’s hand through the entire exercise.
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CHAPTER 6

Artificial Intelligence for adaptive human-robot interaction

In this Chapter, we show how Artificial Intelligence methods such as Machine

Learning, Pattern Recognition, and Fuzzy Inference System can be utilized, in order

assess the user’s performances, identify the user’s errors and adjust the rehabilitation

treatment. Three proposed interfaces have been developed (MAGNI, MAGNI 3D, and

MAGNI Dynamics) to acquire user motion data and to adapt the exercise difficulty

level dynamically.

6.1 Self-managed physical therapy

The subsystem, ”called MAGNI 1”, records the position of the subject’s hand

during game interaction with the robotic arm and analyzes this data using pattern

matching and machine learning algorithms, in order to guide self-managed physical

therapy. The purpose of this assessment tool is to encourage and engage the user in

performing the exercises using a 3D balloon popping game. The general idea of our

system is to learn the patient’s weaknesses and his arm limitations when he interacts

with the game and to adapt the game level of difficulty in the next sessions. The

balloons have random positions at the beginning of the game, but as the patients

interact with the game the balloons positions are targeted to force the user to reach

out farther for some of them and to help improve their capabilities. The interaction

of the user with the game provides us with motion trajectories which can be analyzed

and interpreted to assess the patient’s arm limitations and weaknesses. Since the

1MAGNI is the God of strength in Norse mythology
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game requires the user to pop the balloons that appear in the game, the range of

motion and forces that the user places upon the Barrett WAM Arm’s end-effector

can be decomposed to primary and basic exercise movements.

Figure 6.1: Human Robot and Game Interaction

6.1.1 Theoretical Background

Support Vector Machines (SVM) have demonstrated good classification per-

formance and have widespread successful use in many pattern recognition problems.

These classifiers rely mainly on the hyper plane optimization that maximizes the mar-

gin, or the distance between the separating hyper plane and the training examples

nearest to the hyper plane [8]. We rely on Multi-Class Support Vector Machines to

classify the patient exercises and movements when they interact with the 3D Balloon

game. The training feature-set used by multi-SVM is the direction and the curvature

obtained from the hand motion trajectories during exercise. In our system each tra-

jectory passes a prepossessing step that divides it in equal-distance sub-trajectories

before it is incorporated into the classification model, with high importance for the

shape modeling. Figure 6.2 shows the training and the classification phases of our

system.
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Figure 6.2: The procedure of the trajectory classification

The Hidden Markov Models (HMM) approach belongs to supervised learning

and statistical modelling methods for sequential data. It has been used prominently

and successfully in speech recognition and, more recently, in handwriting recognition

and visual recognition of sign language. The sample model is described as a graph with

four internal and two marginal states connected by oriented transitions. Moreover,

there are six associated output vectors, as seen in figure 6.3.

The trajectory classification is similar to the speech recognition tasks [8]. A

trajectory is a continuous quantity that can be described analytically as the position

of the object in time. An object trajectory O is a potentially infinite sequence of state
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vectors o(t) = [x, y, z, dx, dy, dz], where the first three denotes the Cartesian position

and the three last the direction.

The trajectory classification problem can be formulated as to identify the class

ci(i = 1..N) to which belongs the trajectory state sequence. The basic formulation of

the problem is given by maximization of a conditional probability:

i∗ = arg max
i
P (ci|O) = arg max

i

P (O|ci)P (ci)

P (O)
(6.1)

We use Bayes theorem in (6.1), because we cannot evaluate P (ci|O) directly.

Assuming we know prior probabilities P (ci) and P (O), we are about to compute the

likelihood P (O|ci); the probability of the sequence O knowing the class ci. To compute

this, we should have a model M for class ci. The model is a finite state automaton

with K states generating sequence O. There are transition probabilities ak,j between

the states. Except first and the last state, states are emitting or generating output

probability density function bj(o(t)). In the figure 6.3, there is a sample configuration

of A = [ak,j](k, j = 1..K), the transition matrix, which defines the probability of

transition to the next state for each combination of HMM states. The probability of

passing an object O through a model M by a way X. is defined by equation 6.2.

P (O,X|M) = ax(o)x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1). (6.2)

For the training and classifying procedure we have used the Hidden Markov

Model (HMM) Toolbox for Matlab [56] with four mixtures of diagonal Gaussians.

To classify a sequence into one of 6 classes (exercises), we trained up 6 HMMs, one

per class, and then we computed the log-likelihood that each model gives to the test

sequence; if the ith model is the most likely, then declare the class of the sequence to

be class i.
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Figure 6.3: Hidden Markov Model configuration

A two-level exercise classification system has been developed. The first level uses

the SVM classifier which can define the shape of each exercise (3 or 6 base shapes of

exercises) according to the curvature and the internal direction of each trajectory. In

the second level we use the Hidden Markov Model to identify the direction of each

exercise. For example if the multi-SVM classifier provides us with the information

that an exercise belongs to a line-shape then the HMM can identify the direction

of this line according to the training direction. The system incorporates the HMM

inside the Motion Analysis of the user with the 3D video game so as to identify the

position and the orientation of his movement. In other words, for each exercise that

the system asks the user to perform, we have trained 6 different orientations for each

of them in order to identify the portions that the user can accomplish successfully.

All experiments were conducted on an Intel i7 machine with 8 Gigabytes of

main memory, running MacOSX. Everything is implemented in Matlab. Additionally,

LIBSVM [12] with a linear kernel is used to build a classifier, and the parameters of

LIBSVM are set to the default values.
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6.1.2 Motion Analysis

Each balloon, or each sequence of balloons, that the user tries to pop in the

game, generates a 3D trajectory of the motion of the robotic arm’s end-effector. This

trajectory can be compared and tested with therapist’s exercises’ trajectories, used

as gold-standards. In this work, we have developed a novel, two-level classification

scheme to classify motion trajectories. In the first level we use the SVM classifier,

which can identify the shape of each exercise according to the curvature and the

internal direction of each trajectory, and in the next level we use the Hidden Markov

Model to identify the direction of each exercise according to the centralized sub-

trajectories points. The accuracy of the first level SVM classifier reaches 92% when

the basic exercises are 6 (circles, line, u-shape, square, gamma and figure eight) and

the second level Hidden Markov Model classifier provides us with 95-100% accuracy.

In this work, we have recorded 30 trajectories for each class. From this data,

we used 20 trajectories of each class for training and 10 trajectories for testing. This

means we have a total of 120 trajectories for training and 60 trajectories for testing.

Also, we have split each trajectory in 20-70 sub-trajectories in order to obtain more

information about their shape. The features that we have selected in order to classify

the trajectories are:

• Curvature in sub-trajectories

• Direction of sub-trajectory

• The sub-trajectories are represented by their principal component analysis (PCA)

coefficients.

In order to compute the curvature of each segment we have used the Hermann

and R. Klette’s formulas [31]. We projected each trajectory in the x-, y-, z- axis and

we calculated the curvature in each 2D space. In figure 6.4: we have plotted the circle
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trajectory in each axis: x = red circle, y=green circle and z = yellow circle (figure

6.4).
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Figure 6.4: Projection in the 3 planes

Using the curvature analysis we extract the curvature of each segment in each

dimension and create a vector of 3*30 segments = 90-dimensional curvatures for each

trajectory. Then, for each segment, we calculate the unit normal direction vector and

we sum up all of them in order to generate the overall direction vector of the trajectory.

This feature provides us with the direction information of each segment relative to the

overall direction of the trajectory. Since the new feature space for each trajectory is
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120 dimensions, we use the PCA coefficients to decrease the dimensionality. In figure

6.4 we have selected the 3D line that is produced from the robotic arm’s end-effector

and we are generating the overall direction vector from all the segments.

Before starting analysis and comparing the trajectories by using the DTW, as we

did in our previous work, [62], we have to identify first their base shape and direction.

For this reason, we classify each trajectory in 6 different classes in order to help us

with the alignment phase using DTW and then estimate the error of each trajectory

in each direction condition. The importance of our trajectory classification stage is

that the system can adapt to the user’s range of motion. Since we have preprocessed

the trajectories, it allows us to have a scale and time invariant classification phase.

That property enables the system to calculate outcomes from different personalized

human variations and compare directly the user shape-trajectory data.
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Figure 6.5: Accuracy estimation for different number of classes.

In the below diagrams we have tested the accuracy of the trajectory classifica-

tion according to the number of classes and the number of segments that we split each

trajectory into. Figure 6.5 shows the accuracy of the classification algorithm when

the number of classes increases. The more classes we insert in our Multi-Class SVM
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classifier, the less accurate it becomes. This is the obvious result when you have to

deal with classification problems as the feature space limits the accuracy when the

number of classes increases. In this experiment we have split each trajectory in 40

segments.
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Figure 6.6: Accuracy estimation in comparison to the number of segments.

Figure 6.6 depicts the accuracy of the classification relative to the number of seg-

ments in each trajectory. As we mentioned before the features that we have selected

have been applied in the sub-trajectories, so this parameter (number of segments)

plays an important role in the classification process in order to define the shape and

the properties of each class. For these kind of experiments, we used 6-classes and

tested the classification accuracy with different numbers of segments (20-70). Bigger

number of segments increases computational cost, but achieves better classification

accuracy. In figure 6.7 we provide a combined representation of results when the

number of segments and the number of classes increases. It’s obvious from the graph

that the number of segments in the classification problems increases the accuracy.

The results obtained indicate the robustness of the proposed method. Although

our framework, at this stage, does not evaluate the user’s engagement and satisfaction,

it can successfully manage to evaluate the user’s physiological performance through
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Figure 6.7: Trajectory classification accuracy. Comparison results for different num-
ber of classes and different number of segments for each trajectory.

a train-tested and well-defined exercise system. Thus, the system is able to record

the patient’s exercise trajectories as he/she interacts with the game, to estimate

the exercise score values regarding the range-of-motion, and to count the number of

repetitions of each exercise.

6.2 Real-time Tele-rehabilitation Robot-based system

In this work, called ”MAGNI 3D”, we contribute technically in building an end-

to-end prototype for the user’s real-time tele-rehabilitation experience by conducting

experiments that allow the therapist to administer the patients remotely through a

virtual exergame. Our algorithmic rehabilitation motion analysis contribution and

the empirical studies of health-related information provide an important innovation

in the Human-Computer Interaction (HCI) community. The upper limb health data

captured from the user’s whole arm, coordinated with the data visualization of the

user’s hand, performances, and scores, provides valuable information to physical and

occupational therapists for the patient’s rehabilitation progress. The data collected

will be used to provide input to the therapist for both monitorings the patient’s
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progress over time and for offering recommendations about the next course of treat-

ment. Surveys were given to the subjects to evaluate and deliver feedback on our

prototype. The results and conclusions from the surveys will be incorporated in our

system that can potentially be used in a clinical environment to improve the commu-

nication and interaction between a therapist and a patient in robot-aided therapy.

We evaluate the user’s exercises according to the prescribed therapist exercises

using the Barrett WAM Arm in order to capture range of motion of the user’s upper

limb. The purpose of this assessment tool is to motivate the user to perform some

of the exercises, assigned in real-time by the therapist, using a 3D carnival-themed

game. The contribution of this work is that wraps the Patient-Robot-Game (PRG)

Interaction, Analysis and Database together in an integrated GUI that can be used

in real-time by patients and therapists. Our research presents an innovative tele-

rehabilitation system that tracks movements on a highly dexterous robotic platform

to evaluate the range of motion associated with patient’s upper-limb.

6.2.1 Exercise Analysis

Dynamic time warping (DTW) [24] is a robust algorithm for measuring the

similarity between two sequences which may vary in time or speed. We use the Multi-

Dimensional DTW algorithm for the purpose of measuring the distance between the

time-series representations of the exercise trajectories. These trajectories are the

spatial coordinates received from the Barrett Arm corresponding to its location at

any given time. The authors in [25] have used the same warping technique for sign

language recognition and we incorporate the same analysis for measuring the exercise

trajectory deviation.

Let R be an exercise trajectory. Here we can represent R as a time series

(R1, ..., R|X|), where each Rt is the spatial coordinate of the Barrett arm. Given a
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reference trajectory R and patient trajectory P , DTW computes a warping path W

that forms correspondences between features of R and P :

W = ((r1, p1), · · · , (r|W |, p|W |)).

Here |W | is the length of the warping path, and pair (ri, pi) shows that feature

ri of R corresponds to feature pi of P . The warping path follows rules as shown below:

• Boundary Conditions: This states that the first elements match (r1 = 1, p1 = 1)

and the last elements match (r|W | = |R|, p|W | = |P |).

• Monotonicity and Continuity: This states that the alignment cannot go back-

wards and the alignment cannot skip elements (0 ≤ ri+1−ri ≤ 1, 0 ≤ pi+1−pi ≤

1).

The cost measure D(W,R, P ) of a warping path W is the sum of individual

local optimal distances d(Rri, Ppi), corresponding to matching each Rri with the cor-

responding Ppi. The local distance is the Euclidean distance between the correspond-

ing features of the two trajectories. The DTW distance between trajectories R and

P is defined as the cost of the lowest-cost warping path between R and P . We use

this distance to calculate score for the game. This enables accurate score calculations

for trajectory time series with similar shapes even if they may be out of phase in

the time axis. We visualize the DTW optimal alignment to provide the therapist a

better understanding of the patient trajectories’ error deviations. Figure 6.8 shows

the overall flow of the exercise analysis that is performed in our system. Our game

score is computed as a combination of the DTW distance of the user’s trajectory

with reference trajectory and the number of targets hit by the user. The score is then

normalized to be valid for all the different trajectories in our game.

The cost measure of a warping path is the sum of individual local optimal

distances, corresponding to matching each with the corresponding. The local distance

is the Euclidean distance between the corresponding features of the two trajectories.

81



Figure 6.8: Left - Exercise Analysis Flow Diagram; Right - Patient’s recovery progress
in four sessions. The score error deviation over sessions are A.) 52.38, B.) 25.83, C.)
8.31 and D.)7.53.

The DTW distance between trajectories is defined as the cost of the lowest-cost

warping path. We use this distance to calculate the score for the game. This enables

accurate score calculations for trajectory time series with similar shapes even if they

may be out of phase in the time axis. We visualize the Multi-Dimensional DTW

optimal alignment to provide the therapist a better understanding of the patient

trajectories’ error deviations. Figure 6.8 above shows the overall flow of the exercise

analysis that is performed in our system and an example of the patient’s score and

recovery progress over multiple sessions.
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6.3 An adaptive robot-based therapy

A considerable amount of research has been conducted to implement a robotic

rehabilitation system that adapts its behavior according to the patient’s performance

and physiological state. Rajibul et. al. [33], have presented preliminaries studies

in developing a fuzzy logic intelligent system for autonomous post-stroke upper-limb

rehabilitation. In their work, an intelligent system estimates the muscle fatigue of the

patient and tunes the control parameters to generate different haptic effects. Badesa

et. al. [3], have incorporated multisensory data in the control loop to adaptively and

dynamically change in real-time the therapy. The aforementioned results demonstrate

the potential to create a fuzzy system that adapts the robot’s behavior and delivers

personalized rehabilitation sessions. Similarly, in our work, we incorporated a fuzzy

logic module that controls the haptic forces which are exerted upon the user.

Mandryk and Atkins [50] developed a fuzzy inference system to map physiolog-

ical signals to the emotional experience when users were playing games. The training

data is galvanic skin response (GSR), heart rate, and electromyography (EMG). The

fuzzy inference system consists of input, output, membership functions, and if-then

rules. In a fuzzy inference system, if-then rules determine the weighting factors, which

are the parameters of the model. In their approach, these expert rules were the key

point to influence the output of the fuzzy inference system.

This work presents a home-based robot-rehabilitation subsystem, called ”MAGNI

Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive

haptic feedback controller. The system is expected to provide personalized rehabilita-

tion by adjusting its resistive and supportive behavior according to a fuzzy intelligence

controller that acts as an inference system, which correlates the user’s performance

to different stiffness factors.
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Figure 6.9: Proposed home-based robotic rehabilitation system.

As seen from Figure 6.9, the system is consisted by the following components:

the RGBD camera sensor that provides skeletal tracking information, which is fed

into the proposed vision system. Furthermore, the estimated torque (τe) of the user

is passed to a fuzzy controller. The fuzzy controller acts as a high intelligence system

that shifts the gains (KP ) of the haptic controller, according to some abstract rules

that have been defined by the therapist in a linguistic manner, and the performance

of the user. As a result, the fuzzy intelligence system adjusts the control input signal

(τr) of the robot to provide adaptive/assistive training.

6.3.1 Performace-based Assessmenet

In our case of rehabilitation robotic treatment, it is important to perceive the

user’s performance levels. For that particular reason, a performance model can me

tuned according to the experts’ decision making and be captured in a Fuzzy Inference

System (FIS). The FIS’s input directly comes from the user’s efforts to accomplish

the virtual reality game’s goal. Most especially, the error deviation performing the

84



Figure 6.10: Fuzzy Inference System for the performance assessment.

prerecorded haptic path as well as the speed that the user accomplish it plays a critical

role in our performance modeling. Figure 6.10 illustrates the intelligent performance

estimator.

The Fuzzy Inference System utilizes a Mamdani-Assilian mechanism that em-

ploys fuzzy sets into the input and output membership functions (Figure 6.11.). The

inference used min-max-centroid type and the fuzzified input values are correlated in

rules utilizing the minimum T-norm (Figure 6.12).

On the other side, the output membership functions correlating to the rule

is fined at the rule strength. The aggregation step utilized mamimum T-conorm

to structure an output distribution from the output membership functions. The

defuzzification step employes a centroid of area method to estimate the total crisp

value.

6.3.2 Network Communication

To accomplish the communication between the Barrett WAM Arm Linux com-

puter and the Unity 3D Game Windows System we established a low level software

architecture scheme through real-time network socket inter-process communication
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Figure 6.11: Input and output membership functions of Fuzzy Inference System.

Figure 6.12: Rule-based for Fuzzy Inference System.

across these two computers. Figure 6.13 shows the communication between Robot-

Game by using C + + and C# connection and the Game-Analysis through C# and

Java languages.

6.4 System Evaluation

One of the challenges for this system is the way that the haptic and the graphical

interfaces are rendered. Most especially, the architecture that we have chosen allows

us to build two independent correlated modules. The first module is the haptic control

mechanism that exerts forces taking into considerations the rendering approaches that

we follow. For example, tangential forces are exerted when we want to apply forces to
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Figure 6.13: System Architecture.

a haptic path, and perpendicular forces are generating force-fields that constrain the

user closer to the trajectory. Also, surfaces can produce normal forces that should be

calculated to the robot’s control interface.

The second module renders the visual interfaces in the Unity 3D platform and

is depicting the robot’s position to the screen. This architecture creates two parallel

geometrical calculations, one for the haptic control and one for the visual illustra-

tion, and it’s capable of sharing common robot’s position data in order to produce

the haptic/visual user perception. Such parallel calculations are unreliable solutions

when serves medical applications. The dual streaming of position and force data can

generate data discrepancies as well as delays to the system through lagging scenarios.

Also, the independent system calculations may cause unstable networking pipeline

streaming which provokes uncertainties.

For that particular reason, a better architecture that would administer such a

real-time haptic and visual rendering modules will be the unit-module architecture.

The calculations of the haptic forces as well as, the visual rendering modules should

be generated only on one platform. For example, an idea would be the development

of a plugin /driver that could connect and deploy the robotic arm with the Unity 3D
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directly. All the geometrical haptic forces and the visual rendering/games features

would have the ability to be generated and calculated from one physics engine, like

the PhysicX that the Unity 3D platform comes with.
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CHAPTER 7

Developed Applications in Human-Robot Interaction

In this Chapter, we present seven application of robots in assistive environments.

The goal of these robotic applications is to share a work area and interact directly with

users that need help. Their unique feature enables them to perceive their environment

and individuals with sensors’ aid as well as to incorporate intelligent algorithms that

allow them to communicate with people, navigate autonomously and make decisions

independently. Subsequently, experimental studies with users proved the acceptability

and the trust factors in human-robot interaction research.

7.1 Robot-based Tele-rehabilitation system

Figure 7.1: Tele-Rehabilitation System. On the right figure the therapist assigns
exercises and on the left figure the patient performs them.

During the last two decades, robotic rehabilitation has become widespread,

particularly for upper limb physical rehabilitation. Significant findings prove that
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the efficacy of robot-assisted rehabilitation can be increased by motivation and en-

gagement, which is offered by exploiting the opportunities of gamification and ex-

ergaming. This paper presents a tele-rehabilitation framework to enable interaction

between therapists and patients and is a combination of a graphical user interface

and a high dexterous robotic arm [29]. The system, called MAGNI, integrates a 3D

exercise game with a robotic arm, operated by the therapist to assign in real-time

the prerecorded tasks to the patients. We propose a game that can be performed by

a patient who has suffered an injury to their arm (e.g. Stroke, Spinal Injury, or some

physical injury to the shoulder itself). The experimental results and the feedback

from the participants show that the system has the potential to impact how robotic

physical therapy addresses specific patient’s needs and how occupational therapists

assess patient’s progress over time.

7.1.1 Experimental Setup and Results

In Human-Computer Interaction (HCI), role-play is a useful technique to de-

velop an understanding of users’ needs and to evaluate design prototypes where access

to users or environments is limited. In our work, we use therapeutic role-play [53]

technique with our participants to gain feedback about the design of our system. Here

we apply a procedure similar to the Goldish bowl role-play technique where there are

two participants in the role-play and many observers. We use two participants in

the role-play, one as the therapist and the other as the patient. The developers of

the system are the active and engaged observers who receive feedback from the par-

ticipants on the design of the interface and the game-play experience. The system

was tested with ten participants (three females and seven males) who actively took

part in the therapeutic role-play technique while using our system and then provid-

ing feedback by filling out two surveys, namely MAGNI Game Survey and MAGNI
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Therapist User Interface Survey. Both surveys contained Likert-like questions with

10 points scale with 1 being ”Very Easy” and 10 being ”Extremely Diffcult.” Our

participants were all students from Computer Science Department with good vision

and physical condition. Instructions were given to the participants to inform them

what are the disabilities of stroke patients related to the arm movement, such that

they could successfully participate in such a role-play. Each participant first played

the game in the role of the patient and then used the user interface of our system in

the role of the therapist.

The hardware that we require for our infrastructure is the Barrett WAM Robotic

Arm, a Linux desktop computer to control the Arm, a Windows desktop computer to

run the game and contain the database, one projector monitor, and networking hard-

ware (LAN cable and router). All experiments of the User Interface were conducted

on an Intel i5 4690 CPU @ 3.5GHz machine with 16 Gigabytes of main memory,

running Windows 8.1 with NVIDIA GeForce GTX 780 graphics card.

Figure 7.2: Questions given during survey.
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Figure 7.2 shows some of the questions that were presented during the two

surveys. Figure 7.3 shows the mean value of the results taken from the surveys.

This shows that the responses to our game and interface were mostly positive with

the lowest mean being approximately 7.40. The higher values may be caused by

the participants having prior experience with games and their work in other areas of

Computer Science.

Figure 7.3: The mean value of the responses from the survey (The red lines correspond
to the therapist interface answers and the blue lines with the patient interface).

The participants also provided additional comments on both the game and

interface. The most common response was to grant the therapist the ability to ma-

nipulate the graphs. This way, the therapist can pan, rotate, or zoom in on the graph

to see certain portions of the graph clearer. Another typical response was about the

depth perception of the game. Even though the game was a 3D game, it appeared
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to the participants as if it was 2D, making it difficult to understand the depth of

the target. Lastly, participants wanted some additional information when adding or

updating patients in the interface, such as user prompts and error messages that pop

up and provide additional information.
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7.2 Human-Robot Delivering Interaction in Assistive Environments

Figure 7.4: Face detection and recognition framework.

Integrating robotic platforms in smart home environments can improve the

monitoring quality of daily activities. In this study, we explore a scenario where a

robot provides a service to the users, which in our case is delivering a cup of coffee.

The users place their order via an application, which at the same time captures a

short video from their upper-body and their face to obtain information about their

identity and to recognize them during the delivery phase. The proposed approach

comprises three distinct steps [42]. At a first step the robot detects groups of people,

then it captures information from their faces and their upper body and measures

the distance between the probe and identifies the person with the higher probability.

Finally, it approaches this person, performs an additional identification and delivers

the cup of coffee. Through real-time preliminary tests under different illumination

conditions, we verified that the robot could execute the task with high accuracy.
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Figure 7.5: The task of our proposed framework for secure task execution.

7.2.1 Proposed Framework

The proposed scenario can be described as follows: A user gives instructions

via an application and information from his face and t-shirt is saved. Our goal is to

make a robot identify this person after a while and perform the required task (Figure

7.5). The proposed process consists of 4 distinct steps:

1. First the robot scans the indoor environment and detects humans (groups of

people) to approach them (to come in close range e.g. 2.5 m). Then the robot

gives instructions to the users to adjust their face and body orientation towards

the agent.

2. Since all the users have aligned their faces and their bodies towards the robot

camera, face detection is performed and their faces as long as t-shirt information

is saved. Using both information acquired from the application and from the
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face detection step we perform a similarity measurement algorithm and compute

accuracy scores between the input image and the detected faces.

3. The aforementioned scores can serve as an indication of who are the people

that have higher probability of being the correct match. The robot agent gives

instructions to these persons to come at a closer distance (0.5 m) in order to

make the final decision.

4. A second-level identification sub-system is then employed which identifies the

person that needs to be served from the agent, with an accuracy of 93% for a

maximum of 15 persons in the database.

Figure 7.6: Application and Kinect feature extraction and matching for person de-
tection.

In our study the target class is the face which was captured when the order of

the service was placed. When the robot is ready to deliver the service, it scans for faces

in the image plane and for each face, it performs a similarity measurement in order to
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identify the person that placed the order. Having taken into consideration the nature

of the problem we are trying to solve, we chose to perform feature extraction not only

from the detected face, but also from the t-shirt that the customer is wearing in order

to exploit color and texture information that enhance our decision (Figure 7.6). As a

result, we chose to perform color histogram feature extraction and matching from the

selected region (i.e. face and t-shirt). By comparing the histograms signatures of two

images and matching the color content - in the RGB color space - we can recognize

the customer from a group of people standing in a specific range of distances and

angles. We conducted experiments with people standing in arbitrary positions and

angles in front of the Kinect camera mounted on the robot and concluded that the

ideal distances and angles lie between 1.5m and 2.5m and −20o to +20o respectively.

Figure 7.7: Face detection examples captured from the application and from Kinect
camera of the robot.

In Figure 7.7 face detection examples are illustrated in images acquired from

the application and the Kinect camera. In the left image, we perform color histogram

feature extraction from the selected region of the customer, whereas in the right

image we extract the corresponding histogram features from the face of each possible

customer. We map the face of each person in the right image to a folder by using
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spatial information in the image plain in order to construct the classes of the testing

model of the one class classification problem.

At a next step, we perform a similarity measurement using the Euclidean dis-

tance between the values of the customer and those of the candidates. The person

with the lowest distance is the one with the highest confidence of being the customer.

In order to derive the decision of the proposed algorithm, we use a confusion matrix

with one actual class and predicted classes, the number of which depends on the

number of people in our image plane. A challenge that we faced was that the probe

image and the testing images were captured from different cameras from different

angles and under different conditions.

In the last step of the proposed identification framework, the person with the

highest identification accuracy from the previous step, approaches the robot at a

distance of approximately 0.5m, where an additional face verification technique is

utilized. We measure the distance between the video captured when the order was

placed and the videos in the database. The training set in this case consists of the

faces of the users which are captured through a 10-second video before they enter the

indoor environment.

Having acquired all the faces of the users the next step is to train the iden-

tification algorithm. For this process, we detected both the face and the eyes and

obtained 10 faces per person from each video. To alleviate the vulnerability of the face

identification procedure due to its sensitivity to changes in lighting conditions, face

orientation and face expression, we applied the following pre-processing procedure:

• Geometrical transformation during which images are resized, rotated and trans-

lated in order for the eyes to be aligned. Information from the forehead, the

chin, the ears and the background is discarded at this step.
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• Histogram equalization: The brightness and the contrast of both the left- and

the right-hand sides of the face are normalized independently.

• Smoothing: Image noise is reduced using a bilateral filter.

• Elliptical mask: Removes all unnecessary information from the hair and the

background which was not discarded during the first step.

Figure 7.8: Experiments for each customer in different layout.

The above pre-processing procedure is important in our proposed framework

because the captured images (before the participants enter the room and when they

are in the room) may have significant differences in lighting illuminations, image

resolution and color saturations. Finally the 2nd-step of the identification procedure

is trained using images acquired from the videos of 20 different people. The more

persons were inserted in the training set, the more training time was required. Note

that a confidence level was also obtained for each face. If the confidence level was
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below a threshold then the candidate face was considered as unknown and was added

in the database which was then re-trained.

7.2.2 Experimental Evaluation

For the validation of our framework we conducted two types of experiments.

For the first type we investigated the accuracy of the one-class classifier to accurately

decide who is the person that requires to be served by the robot. Figure 7.8 shows

the setting of the experiments we conducted that contained 4 possible customers and

5 layouts.

Figure 7.9: The person detection classification accuracy.

In each layout 2 to 6 people (including the customer) were standing in distances

between 1.5m and 2.5m in front of the Kinect camera in 25 different combinations (i.e.

people were changing positions in the setting). Our goal was to measure the customer

identification accuracy in each layout in order to evaluate the performance of our

algorithm. Figure 7.9 presents the performance rates of our proposed methodology

for layouts with a varying number of people in them. As the number of people
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increases in the image plane, the detection rate of our algorithm decreases linearly

except from the 5-person layout where a small increase occurs.

Figure 7.10: Comparison of the identification accuracy of Eigenfaces and Fisherfaces
for different numbers of people.

For the second type of experiments we investigated the verification accuracy of

2 state-of-the-art algorithms. Figure 7.10 shows that the Eigenfaces approach [81]

works with 90% accuracy when the number of people in the dataset is less than 10.

Slightly better results are obtained using the Fisherface method of Belhumeur et al.

[7]. When the number of persons in the database was 15, the accuracy was 93%.

The results show that verification using Fisherfaces is higher than Eigenfaces as the

number of people in the training set is increasing.
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7.3 3D Mapping of Visual Attention for Smart Rehabilitation

Figure 7.11: Head mounted eye-tracker and visual attention pipeline.

The estimation of human attention as input modality has been suggested as a

method for an advanced human-computer interaction. With an increasing interest and

development of augmented reality tools, the advent of Microsoft HoloLens glasses and

increasingly affordable wearable eye-tracking devices, monitoring the human attention

will soon become ubiquitous. Also, visual heat-maps have become very popular and

simpler to create in the 2D space over the last few years. They are very compelling

and can be effective in summarizing and communicating data. The innovation in our

work is the implementation of visual 3D heat-maps of the real world combined with
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advanced Computer Vision libraries [54]. Finally, we have incorporated the visual

3D heat-maps for rehabilitation purposes that deal with the loss of concentration in

children with learning disabilities, or disabled patients to select items of interest for

them across a room.

7.3.1 Visual 3D heat-maps generation

We model the application of visual heat using concepts of physical heating and

cooling, which provides an intuitive means for visualizing and reasoning about visual

salience over a given time window. Our approach is able to account for gaze vector

error, visual fixation duration, and shifting attention through tunable variables that

can be adjusted online.

7.3.1.1 Computing saliency heat

In order to apply heat to a given location of interest, we first must compute the

distance of the point to the gaze vector. This can be solved using the 3D point-line

distance formula

D =
|(X0 −X1) + (X0 −X2)|

|X2 −X1|
(7.1)

where X1 and X2 are two unique points lying on a line in 3D space and X0

denotes a given point of interest. We then wish to assign a saliency heat value in the

range of [0, 1] with a gaussian function

f(x) = ae−
(x−b)2

2c2 + d (7.2)

where a, b, c, d set the curve’s peak, horizontal offset from 0, bell width, and

vertical offset from 0, respectively. Our goal is to assign a heat value from [0, 1]
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centered around a distance of 0 to the gaze vector, thus we set a = 1, b = 0, d = 0.

The bell width, c, we leave as a free parameter which is set according to the error

of the gaze vector. In our headset approach, we are able to estimate this parameter

given the known hardware and user calibration errors. It then follows that we assign

heat to a given point i using the following formula

Hi = e−
(D)2

2c2 (7.3)

where D is computed using (7.1). Combining (7.1) and (7.3) to achieve a final

heat formula for a point i given the gaze vector defined by points X1 and X2 with

error constant c yields

Hi = e
−( |(X0−X1)+(X0−X2)|

|X2−X1|
)2/2c2

(7.4)

7.3.1.2 Cooling salient locations over time

In real-time applications, we wish to decrease the perceived saliency of objects

or points over time if the user’s attention shifts toward another location. We also want

to decrease the contribution that short duration gaze vectors have on our perception

of saliency, such as those measured during saccade eye motion. Intuitively, we model

this “cooling” of 3D saliency map locations using basic heat transfer equations.

Recalling Newton’s Law of Cooling, the temperature of a cooling object at time

t is given by the function

T (t) = Te + (T0 − Te)e-kt (7.5)

where Te is the temperature of the surrounding environment and T0 is the initial

temperature of the object. The constant k controls the rate of cooling based on the
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material properties of the given object. In our application, we define the temperate

of a point with no relative saliency to be equal to zero, thus we set Te to zero. We

then rewrite Eq (7.5) as

T ′i = Tie
-kt (7.6)

where Ti is the initial saliency temperature of point i and T ′i is the updated

temperature of the point after cooling for t seconds. Equations (7.6) and (7.4) are

then used to generate dynamic 3D visual salience heat maps as shown in Figure 7.11

at the top left HeatMap image.

7.3.2 Hardware and Software

Information about the environment in front of the user is provided by a forward

facing RGB-D camera, the Asus XtionPRO Live. This device provides a 640x480

color-image of the environment along with a 640x480 depth range image at a rate of

30 Hz. The two images are obtained from individual imaging sensors and registered

by the device such that each color pixel value is assigned actual 3D coordinates in

space. This provides a complete scanning solution for the environment in the form

of 3D Point Cloud Library (PCL) [65], which we are using such us to implement the

visual 3D heat-maps. The completed Headset is shown in Figure 7.11 at the top right

image.

To capture user attention we used the popular starburst algorithm, which works

by roughly estimating the pupil center, fitting an ellipse to the pupil ”blob”, and then

refining the ellipse by considering pupil edge points, which lie on rays projected out-

wards from the center of the first ellipse. The 3D PoG can be obtained easily from

the 2D point by looking up the 3D coordinates of the pixel in the point cloud data

structure provided by the RGB-D camera.

105



7.4 Safe Human-Drone Interaction in Warehouse Environments

Figure 7.12: Human recognition and drone’s maneuverability.

This work presents an Unmanned Aerial Vehicle (UAV), based on the AR. Drone

platform, which can perform an autonomous navigation in indoor (e.g. corridor,

hallway) and industrial environments (e.g. production line) [41]. It also has the

ability to avoid pedestrians while they are working or walking in the vicinity of the

robot. The only sensor in our system is the front camera. For the navigation part,

our system relies on the vanishing point algorithm, the Hough transform for the wall

detection and avoidance, and the HOG descriptors for pedestrian detection using SVM

classifier. Our experiments show that our vision navigation procedures are reliable and

enable the aerial vehicle to fly without humans intervention and coordinate together
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in the same workspace. We are able to detect human motion with high confidence of

85% in a corridor and to confirm our algorithm in 80% successful fight experiments.

7.4.1 System architecture

7.4.1.1 Setup

For our experiments we used a quadrotor (Parrot AR.Drone) and a laptop

MacBook Pro which is a quad core Intel i7-2410 @2GHz with 8 GB RAM memory

and running Linux. For the video analysis we used OpenCV [9] which extract features

from the sequence images that are captured from the frontal camera of the AR.Drone

which the field of view is 92-degree and 640 x 480 pixels analysis. The high accuracy

and robust recognition of the pedestrians is achieved using the OpenCV GPU module

that utilize the GPU computational capabilities and is implemented using NVIDIA

CUDA Runtime API. All the computational process happens in the connected laptop

and the payload for the AR.Drone is very law with result the captured image to

transfer quickly and the response time to be low. Finally for stability reasons we

have access to the IMU data of the gyroscope to extract the yaw angular values.

7.4.1.2 Visual navigation - Compass

Vision offers long-range sensing with low power and less weight, allowing smaller

aerial robots to be build. By analyzing the images sequence we succeed to extract

features and precess them for all the task that we have done.

7.4.1.3 Edge Detection

One of the first task in image processing is to determine the edges in each

frame of the capture images. For this reason we use the Canny edge detector [11],
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that is characterized for the low error rate, the well localized edges and the single

edge point response using the nonmaxima suppression. Also, the effectiveness has

been approved from using four filter to detect the horizontal, vertical and diagonal

edges in the burring image and by combining a hysteresis thresholding to the neighbor

ridges, can provide more accurate the real edges.

Because OpenCV implementation of Canny does not blur the image, we use a

Gaussian blurring filter with a 5 × 5 window to remove the noise and unimportant

edges. From our experiments, we try to compensate the two parameters of the high

and low thresholds that check the gradient value of a pixels, in a way to accept the

pixels the edges of our corridors and work fine with the Hough transform algorithm

when try to find the most prominent lines.

7.4.1.4 Hough Transform

The detection of the perspective lines has been done using the Hough transform

algorithm which use a voting scheme procedure to find the lines that lie more close

to some points exported by the Canny detector. in order to accomplish that, we use

the polar-coordinates where each line is expressed with a unique (ρ, θ), and a generic

point (x,y) belongs to that line if satisfy the equation 7.7

xcos(θ) + ysin(θ) = ρ. (7.7)

where ρ represents the distance of a line from the origin and θ is the angle

among the x-axis (figure 7.13).

108



Figure 7.13: Each straight line has a unique representation in polar-coordinates (ρ,
θ).

7.4.1.5 Prune lines

From the previous algorithms we can find lines in our image and the number

of these depends on some thresholds that influence the Canny edges and the Hough

transform.

In figure 7.14 there is an example of the input image capture from the AR.Drone

and the processed image.

Figure 7.14: Image after the Canny edge detector and have been applied the Hough
transform algorithms.

109



Because some of these lines are outliers in our system, we try to prune them by

thresholding their angles (in radians). Especially we eliminate the lines with angles

θ < 0.5 for the vertical lines and the lines 3 < θ < 3.4 for the horizontal.

Figure 7.15: Lines we are interested after the pruning procedure.

7.4.1.6 Lines intersection

In order to find the line intersection from the lines exported by the Hough

transform we use Least square problem which estimate the minimum distance of a

point from a number of lines. In our environment (corridors) the lines intersect to

a specific point, the vanishing point. So the way to find this point is to solve the

mathematic system Ax = B, where the unknown parameter x is the point that we

find. This mathematic system can be solved for all the lines that we found in our

image by the following matrices and using the SVD in equation 7.8. The solution

x = (ATA)−1ATB give us the (u, v) coordinate of the vanishing point in pixel.



cos(θ1) sin(θ1)

cos(θ2) sin(θ2)

...
...

cos(θn) sin(θn)


x
y

 =



ρ1

ρ2
...

ρn


(7.8)
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In additional, every frame we estimate the vanishing point and we check its value

with the previous frame estimations, due to outliers that occurs from the AR.Drone’s

abrupt maneuvers. This acts as a protect mechanism for the navigation part of

our aerial platform, since the estimation of the vanishing point influence the drone’s

maneuvers. Also there is a boundary box in our image that the estimation of the van-

ishing point in that bounds consider as correct, otherwise we overlook this estimation

and wait for a new one.

7.4.1.7 Wall avoidance

The navigation of a micro aerial robot in indoor environments is not easy task

as there are obstacles that prevent it to fly and unpredictable maneuvers can occur.

Moreover, when a robot like AR.Drone that is not equipped with laser or obstacle

detection sensor, can easily be trapped in an unknown environment.

The most challenging obstacle that cannot be observed are the walls. The drone

should every time knows its position relative to the left and the right wall such as to

avoid them while moving. This ability has been pre-estimated manually, by analyzing

the lines’ angular value from the Hough transform algorithm, by putting the camera

to the two side-walls.

In addition, the lines’ angular values limits can be estimated automatically,

when the drone is positioned to the center of the corridor (B=D), and by exporting

the values of the angles A,B,C,D (Fig. 7.16). When the angle A is twice bigger than

the sum of B and D then this mean that there is enough space the AR.Drone to avoid

the human that are passing from the side free space without touch the walls.

The categorization and grouping of the lines can be done by measuring their

angles relative to the horizontal lines. In Figure 7.16 there is an example of our

experiments and from the line detection on the left and right wall we consider this
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Figure 7.16: Representation of the hough lines in the left and right wall.

angular values as the bounds of the drone’s side-workspace. Also, this experimental

set is important for the drone, due to the air currents and aerodynamics [10] that

result when in close proximity to a large obstacle. So, the drone can stabilize its

position relative to the left and right wall in order to avoid collisions from the sides.

7.4.1.8 Human detection

The detection of humans using cameras is a challenging task due to the wide

range of body pose and other environment parameters. Dalal et.al. [18] has studied

the performance the Histogram of Oriented Gradient (HOG) descriptors that works

excellent relative to other feature detectors such that Viola and Jones. This features

are computed on a dense grid of uniformly spaced cells and uses overlapping local

contrast normalization for improved accuracy. Also, a linear SVM classifier is used

in order to test the new feature detector in the MIT pedestrian database of 1800

pedestrians images of different poses and backgrounds.

That makes HOG feature very robust and highly recommended for our system

in order to detect pedestrians and to protect them from the aerials vehicle’s propels

(Fig. 7.17).

There are different ways the aerial robot can avoid the collision with the pedes-

trians and the most easy way is to pass them from above, but this way is a little
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Figure 7.17: Pedestrian detection for secure avoidance proposes as the AR.Drone pass
through them.

dangerous as it can collide with the human’s face or with the ceiling. For that reason,

we consider workspace area the boundaries of side walls, and this make the navigation

more safe for both sides (human and vehicle). In Figure 7.18 the AR.Drone detects

the pedestrian and estimate the most large free sideways area in order to avoid him.

The wall detection are important for this task as the aerial vehicle compute the posi-

tion of the pedestrian relative to the bounds of the left or the right wall, as mention

in the section 3.3.

7.4.2 Experiments

The navigation of the AR.Drone in indoor environments had many challenges

cause the air drifts and the unbalanced yaw movements when we try to avoid obstacles,

made the estimation of the vanishing point difficult as it depends from the angle of

the Hough lines. The pruning procedure that has been applied on the the vertical

and horizontal lines, as the AR.Drone change his yaw, rotates the capture image with

bud consequences for our system. A good way to overpass it, is to compensate our

captured images with the gyro measurement from the yaw coordinate of the AR.Drone
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Figure 7.18: Sequence of frames that show the AR.Drone position (red rectangle)
when detects a human being in front of it and try to avoid him.

and to apply a reverse rotation to the images. In figure 7.19 the red rectangle shows

the upper results.

We evaluated our algorithms by letting the quadrotor fly towards the corridor

to verify if it can detects and avoid the humans and the walls simultaneously. We

did two different set of experiments, one with gyro compensation and one without.

Also, in order to check the safety challenges of the AR.Drone for human collabora-

tions, we did two more experiments, first with one person and second with zik-zak
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Figure 7.19: Compensate the yaw angles of the AR.Drone with the captured images.

pedestrian layout such to compare and test the effectiveness of the drone’s maneuvers.

Non-gyro Gyro-compensation
Total Success Total Success

Run 10 3 10 8
Pedestrian crash 3 1

Wall crash 4 1

For our experiments, first, we flew the quadrotor 10 times on a corridor without

gyro-compensation support and it managed to avoid pedestrian and walls only 3 times.

Secondly we repeated 10 more flights with gyro-compensation support and the result

in the above table prove that gyro-compensation is important to an aerial vehicle.

The reason for these different result was quadrotor’s behavior as a ground vehicle,

cause the maneuvers did not influence our computer vision algorithms.
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7.5 An Interactive Robot-based Vocational Assessment Game using Lego Assembly

Paradigm

Lego construction task paradigms are utilized in order to develop logical and

mathematical abilities through visuospatial memory. This study aims to assess the

relationship between cognition and performance in a simulated industrial environment

by employing humanoid robots to assess the stated metrics. This system proposes to

develop a smart vocational assessment and intervention service system that assesses a

worker’s needs for training and rehabilitation in an experimental setup that simulates

a factory.

Figure 7.20: Interactive Human-Robot Learning Framework.

The proposed approach collects and analyzes multi-sensing data and recom-

mends personalized interventions that can improve the performance of and individual

worker [75]. In our implementation, Aldebaran’s NAO robot gradually learns the

features and thresholds needed to construct a decision tree that gradually learns the

expected Lego model by interacting with the user. The results from 615 test samples

show that the NAO robot is able to correctly identify the Lego blocks configuration

assembled by the user with an accuracy 81% of the time. Finally, we discuss the
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limitations of the proposed solution and we suggest future contributions that can

overpass these limitations and boost the accuracy of our proposed solution.

7.5.1 Decision-Making

Decision-making is the process of identifying and selecting alternatives based

on the values and preferences of the decision-Maker.The decision-making component

is important for our vocational assessment system since the robot’s visual features

results impact the user’s working memory evaluation. This subsection describes how

the system chooses those features, based on probabilities calculated using robot’s

vision knowledge during the game.

7.5.1.1 Feature selection

Since the NAO Robot does not have any machine learning library and does not

contain any form of the compiler, a Decision tree classifier was trained in an external

system using SciKit-Learn, converted to conditional python code, and imported back

into the NAO Robot’s source code. The decision tree classifier used five different

features as are formulated in Equation 7.9. Figure 7.22 shows how these features

are selected over the different tree’s branches. A script was created that used a grid

search on multiple decision tree parameters to determine the tree with the highest

cross-validation score.
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x[0] = Total number of Lego connections

x[1] = Total number of unconnected Lego connections

x[2] = Number of layers of Lego blocks

x[3] = Y position of the assembly on the placement board

x[4] = Threshold value for normal differences

(7.9)

7.5.1.2 Interactive Machine Learning

Multiple machine learning applications involve human interaction that may

incorporate input to learning processes such as correct labels, demonstrations, ranking

or evaluation. These applications are using human-subjects to test and evaluate the

correctness of the machine learning systems. For, the interactive machine-learning

(IML) models permits the users to train, view or classify the models’ outcomes and

simultaneously to fine tune the wrong results [25].

7.5.1.3 Decision Trees

Decision trees are predictive models that correlate observations to conclusions.

This machine learning technique is using a flowchart structure of branches that rep-

resent conjunctions of features and leaves that represent class labels.

7.5.1.4 Validation

The only way to generate training data was by interacting with our working

memory assessment game. At the beginning, we managed to label 10 data samples

and we used them to train our decision tree with the observed features. Then, we

collected the robot’s decisions while we were interacting again with the game. That

step allowed us to correct the wrong robot’s decisions and to use the corrected labeled
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samples as training data for the decision tree generation. This iterative procedure

helped us to collect a plethora of training data and increase the accuracy of the

robot’s decision-making system. It is worth mentioning that the threshold value (the

fifth feature) is the absolute difference between our expected model and the original

image.

The threshold value was originally easy to define. We could choose one value on

the real number line representing this threshold as the difference between an accurate

assembly and an inaccurate. As more complex assemblies were created it became

obvious how the threshold value changed based on many features such as the shadow

of the Y coordinate, the number of open connectors, and the number of layers. This

initiated the decision to use a classifier.

As the decision tree was created over and over throughout time, various features

were found to be redundant or unnecessary. Most of these features were removed,

but as is indicated in the current decision tree, the first feature (the number of total

connectors) is not used in this current iteration of the tree generation. It is possible

that as more training data gets added, this feature will once again be used, but in

the current tree it is unnecessary.

Figure 7.21 depicts the Cross-Validation history of the training data while we

were collecting test data. It should be mentioned that the horizontal axis represents

how many data samples we had at that point in time, and the vertical axis is the

Cross-Validation score at that moment in time. The results from 615 test samples

show that the NAO robot was able to correctly identify the Lego blocks configuration

assembled by the user with an accuracy 81% of the time.
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Figure 7.21: Decision Tree Cross-Validation evaluation from collected labeled training
samples over time.

7.5.2 Experimental Results

In order to test and evaluate the accuracy of our system, we asked participants

to play the memory system next to our NAO robot. The whole memory game con-

sists of 5 Lego assembly tasks and Figure 7.22 shows only the first two tasks having

incorrect and correct answers in order to evaluate the True Positive and True Nega-

tive samples. The NAO robot will not proceed to the next step if the user does not

assemble the task correctly. For that particular reason detecting and verifying that

the original image and the model Lego simulation if are similar, plays a crucial role

in our memory game evaluation.
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It is important to mention that Figure 7.23 colorizes four leafs with different

colors (red, blue, green and orange) in the same sequence order. Each leaf represents

a value of the True Positive or True Negative labeled variables with a probability

distribution over the two classes. Finally, the gini impurity factor, which measures

how often a randomly chosen sample from the classified subset, should be incorrectly

labeled if it was randomly labeled accordingly to the distribution of labels in the

subset, is less than 0.5 (0.4116) at the 1st incorrect sequence where the accuracy

reaches 71%. An example of our memory assessment game is illustrated in this link:

https://www.youtube.com/watch?v=5-mle3REiS8https://www.youtube.com/watch?v=5-

mle3REiS8.

Figure 7.23: Four memory-game steps showing the NAO robot?s feature extraction
and decision making results.
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7.6 Using Virtual Reality to Program Robotic Manipulators

Figure 7.24: Real-time Human and Virtual Robot manipulation

This work describes a novel teleoperation interface system to program industrial

robotic arms [14]. The system demonstrates the potential to create an interactive

programmable interface that enables users with no prior knowledge of robotics to

safely program mechanical manipulators with the use of Virtual Reality and the

Leap Motion Controller. The system takes full advantage of the Leap Motion to

navigate the virtual workspace of the robot that was created through the kinematic

properties of the real robot (Appendix A). The implementation of the application was

deemed possible by interfacing the Unity Engine with the Barrett WAM. Preliminary

experimental results show the ability of the system to engage and train appropriately

the user in robot programming.
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Figure 7.25: Barrett WAM task design Graphical User Interface.

7.6.1 Experimental Hypothesis and Case Study

To evaluate the usability and effectiveness of the proposed interface system, we

created a hypothesis that compares our system with two different approaches that

have already been established in the related bibliography. The comparison is meant to

test the system in terms of safety and usability. To test the hypothesis we performed

an experimental case study that provides measurements to support or debunk the

hypothesis. Our goal will be to prove whereas that the VARM can provide a safe and

intuitive interface to program robotic arms when compared to an application that
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utilizes a 2D GUI (Figure 7.25) and an application that enables the user to teach the

robot through direct physical interaction.

At this point, we have to mention the experimental configuration that was used

to test the hypothesis and provide details about the test protocol that was followed

throughout the process. The experiment involved a robotic challenge that would help

determine the strength or weakness of the hypothesis. Figure 7.27 illustrates the

scenario of the challenge. To elaborate more, the participants of the experiment were

asked to use the three provided interface applications (Learning from Demonstration,

2D GUI, Virtual Environment) to make the robot move from the green box of Figure

7.28 to the red one without colliding with any objects in the real environment. Figure

7.26 depicts an overview of the three different interface systems.

Figure 7.26: Overview of the three different interface systems

The hypothesis was tested by 11 different participants of both genders, with

little to no background in the field of robotics, from the age of 20 to 25. The devel-

opment team of VARM provided a quick overview of the experimental process and
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explained the challenge that every participant must accomplish with all three inter-

faces. Furthermore, each participant was exposed to a tutorial run by a member of

the team and was given a trial run to get a better understanding of every different

system before they had a test run. Note that during the test run the team measured

how much time it took each user to accomplish the task and how many times the

robot collided with an obstacle.

Figure 7.27: Average time to perform a task

7.6.2 Experimental Results

Results showed that the participants took less time to complete the task of the

experiment by directly interacting with the real robot, when compared to the VARM

and 2D GUI approaches. The VARM interface stood second in this comparison, while

the 2D GUI was last. Figure 7.27 illustrates these results. Moreover, Figure 7.28

showcases that the same pattern was monitored from the recordings of the obstacle
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collisions. To be more specific the average time to perform the task took 24 seconds

by direct interaction, 92 seconds when using the 2D GUI and 42 seconds with the

VARM. The average number of collisions when performing the task directly was 0,

6 when using the 2D GUI and 3 when using the VARM. Also, regardless of the

measurements that were collected, it is clear that the safest approach is the 2D GUI,

the most dangerous one is the direct interaction with the real robot and the VARM

stands somewhere in between.

Figure 7.28: Number of collisions per task

As a final notice, from the numerical data that were collected, it was shown

that the VARM interface stood in between the other two approaches in terms of both

task design effectiveness and safety. That is to be expected since VARM tries to

emulate a real interaction between a robot and a human, but it is lackluster it terms

of freedom and believability, since no matter how realistic a virtual environment is,

it still alienates the user from the real world.
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7.7 Multimodal Analysis of Serious Games for Cognitive and Physiological Assess-

ment

Figure 7.29: Design Serious Games for Human-Robot Assessment and Training.

Serious games usually refer to virtual games used for training, simulation, or

education and can engage users in cognitive and physical tasks. The design of serious

games may offer insights on users’ cognitive and physical behaviors while they try to

accomplish structured tasks. In this study, we concentrate on the design principles of

serious games that can be used for assessment, which we employed for our own design

[13]. To test our prototype, we conducted an experiment with control participants.

Results from surveys, our collected game features, and sensor outputs were compared

and analyzed with hypotheses based on previous research studies. Finally, we inter-

pret the results of our experiment, and we describe issues and real life uncertainties

that associate with sensor errors.

7.7.1 Hypotheses

For our experiments we plan to examine the serious game in a control setting

of healthy individuals. These following three hypotheses are based on the assumption
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that we will compare them with a future clinical population (individuals with disabil-

ities, CP, stroke, TBI). We believe that the marginal difference would be greater in

a clinical setting because of reduced inhibitory control, working memory, and issues

with eye-hand coordination, that are found among individuals with disabilities.

• H1: For the comparison of L1 to L4, we expect the subject to have more mistakes

and a slower move delay time for L4. The eye and move delay will be recorded

in order to compare the two populations, and we anticipate that the control

population would exhibit faster reaction and activity response times.

• H2: In L2, we predict that the number of iterations needed for the control

population would be lower (≤ 2, no need for the visual cues) when compared

to a clinical population because we expect them to exhibit stronger working

memory abilities.

• H3: We hypothesize that the overall scores for L3 would be higher (≥ 75, on a

scale [0 − 100]) in a control population as the participants do not suffer from

any physical impairments, nor issues with hand-eye coordination.

7.7.2 Experimental Procedure

In order to test our hypotheses, we conducted an IRB approved experiment

(IRB No.: 2016-0121) using human participants. After the process of informed con-

sent, each participant received verbal instructions that described each level. Then,

they were given the opportunity to ask questions or voice concerns. Next, the cal-

ibration process for the eye tracker occurred, which was followed by an interactive

tutorial phase allowing each participant to play the serious games. The tutorial was

a condensed version of the actual gameplay and the participants were given another

opportunity to ask questions. An example of our experimental setup can be seen in

Figure 7.29.
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Table 7.1: Participants Demographics

Participant Demographics - N = 12 Participants
Age Range: 18-29

Gender: 6 Males, 6 Females
Handedness: 12 Right, 0 Left

Table 7.2: Results of the Serious Games

Participant Correct(L1) Iterations(L2) E-H C (Average)(L3) Correct(L4)
1 90% 2 83% 100%
2 100% 2 76% 90%
3 100% 3 78% 100%
4 100% 2 72.5% 90%

For our study, there were twelve total participants recruited. All participants

were students and staff from the University of Texas at Arlington. Each partici-

pant was asked, after the experiment, to answer a questionnaire in order to gather

demographic and self-report data (Table 1 shows their demographic information).

The demographic information included age, gender, and hand dominance (which was

useful because every participant had to interact with the robotic manipulator using

their left hand). The rest of the survey was used to compare and analyze self-report

responses to their physiological reactions throughout the game. For example, it col-

lected the participants’ perceptions about the individual level difficulty and their

overall enjoyment.

7.7.3 Results and Discussion

Overall, we examined the results from four out of twelve participants in our

analysis. Those four participants had either perfect or good eye tracker calibration.

We have tried to re-do the eye tracker calibration for the other eight participants

multiple times, but we were only able to achieve either moderate or poor calibra-
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tion, which we believe it is not sufficient to produce accurate results. We should

explain that this was due to the lack of data collected and hardware errors from

the eye-tracking device. Moreover, we observed that the participants’ facial feature

deviations caused a discrepancy on the eye-tracking data. We also found that the

experimental environment should be more controlled when the Eye-Tribe device is

used for recording pupil dilation. The eye tracker did not consistently measure the

eyes due to exaggerated movements from the participants and their distance from

the device (over 60cm). In order to reduce experimental bias, we allowed a more

natural setting that was unfavorable to the collection of pupillary data. In our ex-

periment, the combination of cognitive and physical activities required autonomous

control from the users. Previous work [51][52] controlled the participants’ movement

by limiting physical activity, which allowed for better eye pupil recordings. In the

rest of this section, we will discuss results from the collected data and we will indicate

some inconsistencies with our hypotheses.

The conducted experiments partially verified our first hypothesis (H1) as we

found slightly more mistakes made in L4 instead of L1. However, move delay was not

significantly different among the two levels. As seen in Figure 7.30, participants 1 and

4 showed a slower move delay for L4, but participant 2 and 3 were slower in L1. It was

possible that they became more familiarized with the gameplay as they reached L4.

This could have contributed to the faster move delay times found among participants

2 and 3. A possible solution could be a variation of the game-play parameters, such

as color choices, playtime or game-level reordering and combination.

Following, the second hypothesis (H2) suggests that a control population does

not need visual cues. From Table 7.2, only one participant exceeded our predicted

number of iterations (> 2) needed to collect all the items. Based on participant’s

survey responses, L2 was the most difficult level to accomplish due to the navigation
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Figure 7.30: Average Move Delay for L1 and L4.

speed at the first iteration. Additionally, the participants found it challenging to

recognize the items in the virtual environment as they had different perceptions for

the shape and characteristics of each item. To solve this issue, we can modify their

size or the game perspective view.

Lastly, for the third hypothesis (H3), most of the participants met our expec-

tations (≥ 75) as seen in Table 7.2. The outcomes for L3 show the average score

for the five different 3D trajectories. Participant 4 showed a lower score, but this

could be attributed to communication errors between the robotic arm and the game

platform (Unity) software. A better computer gaming architecture could eliminate

these errors, such as using wxPython implemented in C + + instead of using Unity

which is based on C# programming language.
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Figure 7.31: Pearson’s correlation between Move & Eye Delay.

One unexpected outcome that we found was that eye delay (M = 2.13, SD =

1.08) and move delay (M = 3.83, SD = 1.54) were positively correlated as seen in

Figure 7.31. Using a Pearson’s r correlation, we found a strong correlation r(78) =

0.89, p ≤ 0.001. For the four participants with working data, we discovered that as

their eyes reacted slower to the stimulus, so did their physical response to choose the

correct answer.
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CHAPTER 8

Conclusions and Future Work

In this dissertation, I have presented my work in creating an Intelligent Multi-

modal Upper-Limb Rehabilitation Robotic System. The main focus of this research

was to investigate the development of a safe human-robot interaction assessment and

training system by utilizing physiological, kinematic and dynamic modalities. This

system placed the user in the robot’s control loop, by feeding back his/her biomechan-

ical, physiological and cognitive states. A proposed vision-based upper-limb moni-

toring system and a developed adaptive haptic guidance control mechanism involved

human intentions to generate adaptive perception and behaviors for the Barrett WAM

robotic arm. To facilitate this, a combined integration of computer vision, artificial

intelligence, and human-robot interaction research had employed on the multisensing

robotic platform.

Figure 8.1: Fuzzy Inference System for user’ arousal condition.
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Our finding show that the computational methods can be used for a multimodal

upper-limb robot-aided system. The system was consisted of: (i) a virtual reality envi-

ronment that assesses the user physiological and psychological stages; (ii) an interface

capable to estimate patient performance utilizing motion analysis and pattern recog-

nition methods; (iii) an unobtrusive method for reconstructing upper-limb kinematics

during robot-aided tasks with end-effector machines using Microsoft Kinect’s skele-

tal tracking is presented and experimentally validated; (iv) and an adaptive haptic

guidance robotic controller is employed in order to modulate the complexity of the

assigned motor tasks and increase the hand coordination abilities of the user.

Figure 8.2: ANFIS system for membership function tuning.
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In the future, we plan to model the Fuzzy Inference System according to the

therapist interaction with the patient. Especially, physiological data will be incorpo-

rated as part of the user performance system which will be consisted from performance

and physiological efforts. The patient’s model will be generated as follow. The physio-

logical data (Heart Rate, Skin Temperature, and GSR) in Figure 8.1 will be the input

of the ANFIS [34] system in Figure 8.2. At every repetition, the therapist will ask the

user about his arousal level. This adaptive neuro-fuzzy inference system will map the

input characteristic to the user self-reported data. This process should be repeated

for five sessions up until we have gathered user data and create a personalized model

for his physiological performances. The user’s performance level will be determined

by the fuzzy inference system that will be designed following the task’s characteristics

(error and speed). Finally, it should be mentioned that the user’s physiological profile

data should be acquired by FDA approved biosensors as they provide ground truth

data analysis
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APPENDIX A

Forward and Inverse Kinematics of Barrett Arm
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A.1 Forward and Inverse Kinematics of the Barrett WAM Arm

In this Chapter, we provide a thorough analysis of the modeling process of the

robotic arm. The inverse kinematics generation as well as the robot’s design modeling

was produced by my college’s help, Michail Theofanidis.

A.1.1 Forward Kinematics of the 4-DOF Barrett WAM

Figure A.1: Barrett WAM Arm kinematic model and the Virtual Robot in Maya.

Figure A.1 illustrates the kinematic model that was used to construct the virtual

model of the robot. The frame placement of the kinematic chain is defined according

to the DH parameters, which are provided in the Barrett WAM user manual.

Based on the DH table described above the homogeneous coordinate matrix of

the frames can be derived according to the following matrix :
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Table A.1: DH Table for 4-DOF Barrett WAM

i αi ai di θi
1 -90 0 0 θ1
2 90 0 0 θ2
3 -90 0.045 0.55 θ3
4 90 -0.045 0 θ4
e 0 0 0.35 0

Ti−1
i =



cθi −cαisθi sαisθi aicθi

sθi cαicθi −sαicθi aisθi

0 sαi cαi di

0 0 0 1


(A.1)

Thus, the forward kinematics of the robot are derived by the following equation:

Tke = Tk0 ∗ T01 ∗ T12 ∗ T23 ∗ T34 ∗ T4e (A.2)

Which determines that the resulting homogeneous transformation from the base

frame of the robot to the robot’s end effector frame:

Tke =



r11 r12 r13 xe

r21 r22 r23 ye

r31 r32 r33 ze

0 0 0 1


(A.3)
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r11 = c1c2c3c4 − s1s3c4 − c1s2s4

r12 = −c1c2s3 − s1c3

r13 = c1c2c3s4 − s1s3s4 + c1s2c4

r21 = s1c2c3c4 + c1s3c4 − s1s2s4

r22 = −s1c2s3 + c1c3

r23 = s1c2c3s4 + c1s3s4 + s1s2c3

r31 = −s2c3c4 − c2s4

r32 = s2s3

r33 = −s2c3s4 + c2c4

xe = l2r13 + z4r11 + z3(c1c2c3 − s1s3) + l1(c1c2)

ye = l2r23 + z4r21 + z3(s1c2c3 + c1s3) + l1(s1s2)

ze = l2r33 + z4r31 + z3(−s2c3) + l1(c2)

(A.4)

A.1.2 Inverse Kinematics of the 4-DOF Barrett WAM

In contrast to the forward kinematics problem, the goal of the inverse kine-

matics problem is to find a set of joint configurations given a particular end-effector

position and orientation. The difficulty of the inverse kinematics problem arises from

the fact that it depends on the physical configuration of the robot. Predominantly,

non-redundant robotic arms can be solved analytically, while more complicated re-

dundant manipulators require more advanced mathematical solutions such as artificial

intelligent, pseudoinverse or transpose Jacobian solutions. However, these method-

ologies require algorithms with high time complexity costs, when compared with the

analytical solutions.
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The 4 DoF Barrett WAM is a kinematic redundant manipulator, which means

that an analytical solution is impossible to exist. However, we solved the inverse

kinematics analytically by setting the redundant third joint of the robot as a free pa-

rameter and thus effectively converting the redundant kinematic chain of the Barrett

WAM robot to a non-redundant one. Note, that although this simplification allows to

decouple the kinematic problem and solve it analytically, the solution of the inverse

kinematics now exists for any particular x, y, z coordinate within the Barrett WAM

workspace configuration, but only one fixed orientation that is defined by the value

of the third joint angle θ3.

For the purposes of the virtual reality application, it was decided that the value

of θ3 should be zero. This alters the final position vector as follows:


xe = c1(l2c2s4 + l2s2c4 + z4c2c4 − z4s2s4 + z3c2c4 + l1s2)

ye = s1(l2c2s4 + l2s2c4 + z4c2c4 − z4s2s4 + z3c2c4 + l1s2)

ze = −l2s2s4 + l2c2c4 − z4s2c4 − z4c2s4 − z3s2 + l1c2

(A.5)

By taking the sum of the squares of the position vectors, the solution of θ4 can

be given from the equation:

A tan
θ4
2

2

+B tan
θ4
2

+ C = 0 (A.6)

where,


A =

x2
e+y2e+z2e−z23−z24−l21−l22+2(l2l1+z4z3)

4

B = −(l2z3 − l1z4)

C =
x2
e+y2e+z2e−z23−z24−l21−l22−2(l2l1+z4z3)

4
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As a result, θ4 has two solutions (an elbow up and elbow down solution) which

are:

θ4 = 2 arctan
−B ±

√
B2 − 4AC

2A
(A.7)

Moreover, to derive the solution of θ2 we take the sum of squared the x and

y position vectors. Note, that as with θ4, θ2 also has two solutions (shoulder up,

shoulder down):

θ2 = 2 arctan
±M

√
x2e + y2e − zeL

±L
√
x2e + y2e + zeM

(A.8)

where,


M = (l2c4 − z4s4 − l1)

L = (l2s4 + z4c4 + z3)

Last but not least, the solution of θ1 can be found from the x and y coordinates

of the robot’s end effector.

θ1 = arctan
ye
xe

(A.9)

From the partial analytical solution described above it is important to mention

that θ4 has two independent solutions, θ1 has an independent solution that can result

in two different joint configurations and θ2 can be computed by two different solutions

that depend on θ4. This implies that there is a total of four different unique kinematic

configurations for every Cartesian point of the robot’s end effector. This phenomenon

is typical for planar manipulators as the same elbow up/down position of the robot

can be expressed with different joint configurations.
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