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CHAPTER 1

INTRODUCTION

In the course of recent decades as purchasing choices moved on the web, the

broad use and fame of online survey destinations has at the same time expanded.

Users post their experience about various items and services in online sites like Yelp,

TripAdvisor, Amazon, and so forth in form of reviews and ratings. Users depend

upon these evaluations and surveys as the valid voice of the purchaser, guiding sales

online and in-store, improve conversion rate, bounce rate and time on site. According

to a survey conducted by Dimensional Research, 2013, ”90% Customers Say Buying

Decisions Are Influenced By Online Reviews”. Such importance towards ratings and

reviews has motivated business of various kinds to possess an in-house arsenal of

precious user feedback for marketing and development purposes. Out of the wide

variety of user feedback options, numeric scores are used in majority of areas (e.g.,

5 star ratings for Laptop, average rating of a Mobile, etc.). These ratings fail to

convince user as they don‘t provide information in terms of experience, feel, ease,

etc., (e.g., keyboard feel of the laptop, build quality of Mobile, etc.) which can be

provided by detailed reviews. Ratings also prove to be inefficient and confusing in

many instances for making a decision. Consider a Product 1 with aggregate rating score

of 3.0, number of ratings 100. Example., Consider Product 2 with aggregate rating score of

5.0, number of ratings 2. In this example, even tough Product 2 has higher aggregate rating

than Product 1, the rating has less appreciation because number of reviews for Product 1

is much higher than Product 2. Thus, ratings alone cannot help every time the user makes

a purchasing decision. The importance of detailed reviews is further enhanced in user’s

decision making if the product is expensive (e.g., buying expensive mobile phone). Thus,

the importance of detailed reviews cannot be ignored but appreciated.
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Though the 1% rule (or, the 90-9-1 rule) of Internet is presumed to be dead, a large

number of users read user-generated content in the Web without contributing. According

to survey conducted by Pew Internet in 2012, ”Though 90% people conduct online product

research, only 32% have ever posted a review online”. Thus, the number of useful reviews

available is far from many. This observation is a result of users tendency to overlook giving a

survey as it requires time, efforts and is unrewarding. Moreover, a few sites like Hotels.com

and IMDB permits users to submit feedback as ratings without any review accompaniment.

Hence the eventual size of detailed review corpus available is restricted. The available text

corpus further suffers from redundancy, spam, typographical and grammatical errors, etc.,

thus shrinking the already restricted corpus size available to make informed purchasing

decisions. With such an importance for users and businesses both, the need to obtain good

review corpus enhances. There exists many companies like Bazaarvoice, PowerReview, etc.,

which help organizations obtain reviews online for their growth and online presence. These

companies encourage users to write reviews by various means such as establishing client

engagement programs and providing discount coupons for writing a review, etc.

In [1] authors introduced the general TagAdvisor problem and proposed a practical

solution for an organized and automated system to increase good online reviews. A good

review can be considered as one which is concise, comprehensive, objective, usable and

applicable. The idea being, in order to assist users write a good review, ease the task of

reviewing online web item by providing a set of meaningful phrases. In a review an user can

express broad opinions about the different aspects of an item which can be either positive

or negative. Different opinions can also be expressed to same or different attributes of a

product. Let us consider a review Even though with a short battery life, phone has decent

call quality and nice volume. In this example, different item attributes such as Battery, Call

Quality, Speakers along with their respective sentiments are independently mentioned. Hence

individual attributes are either provided with positive sentiments or negative sentiments

independently. Now consider another review example, Awesome Dolby speakers for a phone,
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but has poor build quality. In this example, positive and negative sentiment are mentioned

against a single item attribute Speakers. Here different parts of the review statement express

opposite sentiments for a similar attribute. In [1] proposed two coverage functions for these

two styles of review writing and thereby defining two concrete problem instances, namely

Independent Coverage TagAdvisor (IC-TA) and Dependent Coverage TagAdvisor (DC-TA)

problems, that enable a wide range of real-world scenarios. In IC-TA, the coverage of an

item attributes is independent of its sentiment, whereas is dependent on the sentiment in

the DC-TA.

In this thesis, we build a system AD-WIRE which is a practical implementation for

[1]. Our system identifies the top-k meaningful phrases/tags to help review the item easily

for an user who wants to review an item. Using AD-WIRE the user can now compose a

good review quickly by selecting phrases among a set of tags returned by the system. Thus

abolishing the pain in providing time and effort required to compose a review, which is

one of the main problems as mentioned earlier. Also, as phrases are selected to composes a

review, the possibility for the review containing grammatical errors, etc., is decreased as the

system provides an organized approach towards review writing. In order to enable a user to

satisfactorily review an item, AD-WIRE considers three essential properties for the result

set, —relevance (i.e., how well the provided set of tags describe an item to a user), coverage

(i.e., how well the different aspects of an item are considered within the provided set of

tags), and polarity (i.e., how well the set of tags match the opinion of the user). The design

of AD-WIRE system is technically challenging for several reasons, one of reason being the

solution provided in both the IC-TA and DC-TA problems is of type NP-Complete. The

objective is to identify k tags that are relevant, cover maximum aspects of an item, and

match the users sentiment. While the first two concerns the relationship between the item

attributes and tags, the third is based on a user’s personal preference. Most users provide

positive comments, others tend to be critical. AD-WIRE demonstrates the result of both

IC-TA and DC-TA problems, thus enabling both styles of review writing. It also visualizes
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the dependency of the tags to different aspects of an item so a user can make an informed

decision quickly.

Going forward in coming chapters, we will initially discuss the TagAdvisor model

which is provided by [1], and the coverage problems. This will be followed by the Archi-

tecture of AD-WIRE and System Demonstration. We will finally conclude evaluating the

results obtained by our system.
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CHAPTER 2

TAGADVISOR OVERVIEW

This chapter provides a broad overview of the TagAdvisor Problem as mentioned in

[1]. We first describe the data model which is used by ADWIRE, then we will visit the

problem statement along with the two different problem instances that enable a wide range

of real-world scenarios.

2.1 Data Model

As each item consists of item attributes we can consider an item has a well de-

fined schema IA = {a1, a2, ..., am} and each item i as a tuple {a.v1, a.v2, ..., a.vm} with

IA as schema, where a.vy is the value of item attribute ay; e.g., In <brand=Samsung,

model=Galaxy Note 3>, <brand, model> describes the item schema and <Samsung, Galaxy

Note 3> describes the item as a tuple. Let n be the total number of tags in T such that,

T = {t1, t2, ..., tn}. The data D in a tuple < I, T >, will thus represent a set of items, and

the tag vocabulary respectively. Each tag which is associated with an item action can be

represented as < i, T > where i ∈ I, and T ∈ T . Table 2.1 shows an example of the mobile

data in the data store. As mentioned in [1], to predict the rules describing dependency be-

tween attributes and tags we use existing world class classifiers and Rule learning models.

These models provide rules along with it‘s probability, if there are several rules for a tag tx

and an item i having attributes values {a.v1, a.v2, ...a.vm},the one with highest probability

p will be selected. Our objective will then be to identify the top-k tags T ∗ = {t1, t2, ..., tk}

for a item i ∈ I such that a user can find the set of tags T ∗ “meaningful”, and can provide

review for an item i with ease by selecting tags from T ∗.
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Table 2.1: An example mobile phone review data as < I, T >

Items (I) Tags (T)

Item Color Secondary
Camera

Primary
Cam-
era

Touch
screen

Screen
Size

RAM Screen
Type

Positive
Tags

Negative
Tags

(i) (a1) (a2) (a3) (a4) (a5) (a6) (a7) (T+) (T−)

i1 rose
gold

5mp 12mp True 4.7 3GB capacit-
ive

stylish,
light-

weight

poor

battery

i2 silver
black

5mp 16mp True 5.1 3GB corning
gorilla

super
cool

poor

battery,
gimmicky

touch-

screen

Table 2.2: Set of rules for the item i1 in Table 2.1

Attributes Tags p

Primary Camera = 16mp, Touchscreen=true, Screen
Size = 5.1”

super cool 0.25

Color=rose gold, Secondary Camera = 5mp, Touch-
screen=true

stylish 0.3

Secondary Camera = 5mp, RAM = 3GB, Touch-

screen=true

poor battery 0.2

Touchscreen=true gimmicky

touchscreen

0.25

The Table 2.2 can be represented in a bipartite graph model as shown in Fig: 2.1.

The top nodes consists of positive tag T+ and negative tags T− whereas the bottom nodes

consists of item attribute values.

2.2 Properties of Tag

To term the result set of tags meaningful, [1] defines three essential properties of tags.

The properties are as follows:

1. Relevance: Relevance can be defined as how well a set of tags (T ∗) where T ∗ =

{t1, t2, ..., tk} and T ∗ ∈ T describe the item i to the user. So, given item i and tag

vocabulary T , the relevance of a tag tx ∈ T ∗ denotes how well tx describes i. Mathe-
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Figure 2.1: TagAdvisor Bipartite Graph Model

matically, it is the probability of obtaining tx given i, i.e., rel(tx, i) = Pr(tx|i).This

score can be computed by employing a probabilistic classifier, that models the rela-

tionship between item attributes and tags. Thus, rel(T ∗) =
∑

tx∈T ∗
(
rel(tx, i)

)
.

2. Coverage: Coverage can be defined as for a given item i, tag vocabulary T , and

a set of associated rules < = {{a.v} → tx}, the coverage of a tag tx ∈ T ∗ for i is

the set of distinct item attribute values have been covered by it. We say tx covers

the attribute value a.vy if a.vy ∈ {a.v}, i.e., cov(tx, i) = {a.v}. For the example in

Table 2.1, for item i1 if we consider T ∗ = {stylish, gimmicky touchscreen}, the

independently covered attributes will be Color=rose gold, Secondary Camera = 5mp,

Touchscreen=true.

3. Polarity: Polarity of a set of tags can be defined as how good the sentiment of tags

are distributed for an item i, and tag vocabulary T . Thus polarity of T ∗ is measured

as the ratio of the number of the positive tags to the number of the negative tags,

i.e., pol(T ∗) = |T ∗+|
|T ∗−| . For the example in Table 2.1, for item i1 if we consider T ∗

= {stylish, gimmicky touchscreen}, the pol(T ∗) = 1
1 = 1. Thus implying the

polarity is evenly distributed among positive and negative sentiments.
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2.3 TagAdvisor Problem

Given a set of rules < = {{a.v} → tx} for an item i = {a.v1, a.v2, ...} and tx ∈ T ,

non-negative integer budget k, relevance parameter β (0 ≤ β ≤ 1), and user factor α

(0 ≤ α ≤ 1), find a subset of T ∗ ⊆ T such that:

• |T ∗| ≤ k;

• pol(T ∗) = α
1−α ;

• rel(T ∗) ≥ β × relT,kmax;

• cov(T ∗) is maximized,

where pol(T ∗) is the sentiment in opinion by tags in T ∗, i.e., the number of positive

tags (kα) to the number of negative tags(k − kα), rel(T ∗) is the combined relevance of

tags in T ∗, relT,kmax is the maximum combined relevance for k tags from T such that the k

selected tags provide the same sentiment in opinion, and cov(T ∗) is the total number of

item attributes covered by tags in T ∗. The relevance parameter β ensures that rel(T ∗),

the relevance score of tags in T ∗ matches the relevance score relT,kmax as much possible. The

user factor α denotes the ratio of positive and negative tags preferred by a user.

2.4 Types of Coverage

By definition of coverage mentioned in [1] , we consider reviews to be broadly cat-

egorized into two types. First let us consider a review Even though with a short battery

life, phone has decent call quality and nice volume In this example, different attributes such

as Battery, Call Quality, Speakers along with their respective sentiments are independently

mentioned. Hence individual attributes are either provided with positive sentiments or

negative sentiments independently. Now consider another review example, Awesome Dolby

speakers for a phone, but has poor build quality. In this example, positive and negative

sentiment are mentioned against a single attribute Speakers. Thus, different parts of the
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Figure 2.2: Independent Coverage TagAdvisor Bipartite Graph

review statement express opposite sentiments for a similar attribute. The TagAdvisor prob-

lem requires to maximize coverage, with two types of review writing styles we define two

types of TagAdvisor Problems as mentioned below.

2.4.1 Independent Coverage TagAdvisor

Independent Coverage TagAdvisor Problem is a specialized version of TagAdvisor

Problem where the coverage function to maximize covIC(T ∗) is defined as the size of set

of item attribute values covered by the tags in T ∗, independent of their sentiment. We say,

T ∗ covers an attribute value a.vy for an attribute ay of an item i if there exists a tag tx

covering a.vy. Given a set of tags T ∗, Independent-Coverage of T ∗ is defined as:

covIC(T ∗) = |
⋃

tx∈T ∗
cov(tx, i)| (2.1)

For the example in Table 2.1, for item i1 if we consider T ∗ = {stylish, gimmicky touchscreen}

IC-TA will cover 3 item attribute values, i.e., Color=rose gold, Secondary Camera = 5mp,

Touchscreen=true. This can be verified by observing the Fig: 2.2.
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2.4.2 Dependent Coverage TagAdvisor

Dependent Coverage TagAdvisor Problem is a specialized version of TagAdvisor Prob-

lem with a variation in the coverage function to maximize covDC(T ∗). In Dependent Cov-

erage TagAdvisor, an attribute value for a given item i and attribute ay, a.vy depends on

the sentiment of its associated tags. An attribute value a.vy is covered, according to [2] if

one of the following holds:

• a.vy is covered by both positive and negative tags, and atleast one of its tag from

both the sentiments belong to T ∗. Formally, ∃t+x ∈ T ∗, ∃t−w ∈ T−
∗

such that a.vy ∈

cov(t+x , i) ∩ a.vy ∈ cov(t−w , i)

• a.vy is covered by positive tags only, and atleast one of its positive tags belongs to

T ∗. Formally, ∃t+x ∈ T ∗, ∀t−w ∈ T ∗ such that a.vy ∈ cov(t+x , i) ∩ a.vy /∈ cov(t−w , i)

• a.vy is covered by negative tags only, and atleast one of its negative tags belongs to

T ∗. Formally, ∀t+x ∈ T+∗ ,∃t−w ∈ T−
∗

such that a.vy /∈ cov(t+x , i) ∩ a.vy ∈ cov(t−w , i)

Given a set of tags T ∗, Dependent-Coverage of T ∗ is formally defined as:

covDC(T ∗) = |(
⋃

t+x ∈T ∗
cov(t+x , i))

⋂
(
⋃

t−w∈T ∗
cov(t−w , i))|

+ |
⋃

t+x ∈T ∗
cov(t+x , i) \

⋃
t−w∈T ∗

cov(t−w , i)|

+ |
⋃

t−w∈T ∗
cov(t−w , i) \

⋃
t+x ∈T ∗

cov(t+x , i)|

(2.2)

For the example in Table 2.1, for item i1 let us consider T ∗ = {stylish, gimmicky

touchscreen}. DC-TA will cover 2 item attribute values i.e., Color=rose gold and Touch-

screen=true. Note that even though Secondary Camera = 5mp is associated with the

stylish, it is not covered because there exist a negative tag Poor battery which de-

pends on this item attribute value but it is not in T ∗. Fig: 2.3 can be referred for detailed

understanding.
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Figure 2.3: Dependent Coverage TagAdvisor Bipartite Graph

2.5 Algorithms

In this section we provide a brief overview of algorithms mentioned in [2] to solve

the IC-TA and DC-TA problems. As mentioned in previous section Independent Coverage

TagAdvisor Problem, can be defined as a instance of TagAdvisor Problem (TA) with same

inputs and constraints except that the objective:

• covIC(T ∗) (given by Equation 2.1) is maximized

On the same lines Dependent Coverage TagAdvisor Problem, can be defined as instance of

TagAdvisor Problem (TA) with same inputs and constraints except that the objective:

• covDC(T ∗) (given by Equation 2.2) is maximized

Both these problems are mapped as NP-Complete problems and we hence prefer Approxi-

mation Algorithms in place of exact algorithms for the implementation of AD-WIRE. (refer

[2] for details).

2.5.1 Approximation Algorithm (A-IC-TA)

To verify NP-Completeness, we try to reduce an already existing NP-Complete prob-

lem to IC-TA and argue that a solution exists to it if and only if a solution exists to IC-TA

problem. For IC-TA we consider Max-Coverage problem with group budget constraints
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(MCG) [3] and reduce it to IC-TA problem. We argue that if and only if, a solution to

IC-TA problem exists does a solution to MCG exists.In Max-Coverage problem with group

budget constraints (MCG) problem our goal is to pick k sets from S, given S = {S1, S2, ...}

as a collection of Si, where each Si is a subset of a ground set X and S is partitioned

into groups G1, G2, ..., Gm. The constraint of the problem is at most ki be picked from

each group Gi and cardinality of their union is maximum. AD-WIRE implements a greedy

solution proposed by authors in [3] for IC-TA.

In IC-TA the set S is the set of rules < = {{a.v} → tx} which is partitioned into

positive tags group and negative tags group. The greedy approach iteratively picks those

relevant unpicked tags that cover the maximum number of uncovered item attribute values.

It checks if the sentiment associated with the tag along with the relevance of the result set,

if all conditions pass, the tag is chosen part of the result set.

Algorithm 1 is the pseudo code for our algorithm, denoted as A-IC-TA. The A-IC-

TA algorithm iteratively picks tags from T that cover the maximum number of uncovered

item attribute values such that the number of positive and negative tags are k1 = dαke,

k2 = k−k1 and rel(T ∗) ≥ β ·relT,kmax. relT,kmax is the summation of the first k1 positive tags

and k2 negative tags found in T+ and T− respectively where both are sorted by relevance.

Example: In our example, if α = 0.5, β = 0.5 and k = 2 for item i1. The algorithm

will first consider sort both the lists T+ = {stylish, super cool} and T− = { gimmicky

touchscreen,poor battery}. It will then select stylish into its result set as stylish

provides relevance of 0.3 which is higher than rel(T ∗) ≥ β ·relT,kmax = 0.5*0.3 = 0.15. Thus

stylish is selected in the result set. Later, super cool is iteratively picked but since α

= 0.5 and k = 2, implies only one positive tag is allowed in the result set. Thus super

cool is discarded. Similarly gimmicky touchscreen is allowed to be a part of the result set

discarding poor battery. Hence, the result set T ∗= {stylish, gimmicky touchscreen}.

12



Algorithm 1: IC-TA Algorithm (A-IC-TA)

Input : Tag vocabulary T , set of rules < = {{a.v} → tx}, budget k > 0,

relevance parameter 0 < β ≤ 1, user factor 0 < α ≤ 1

Output: set of tags T ∗ ⊆ T of size k

1 k1 = dk · αe; k2 = k − k1;

2 T ∗ = ∅;

3 for x = 1 to k do

4 for ty ∈ T \ T ∗ do

5 if (ty ∈ T+ and |T+∗| < k1) or (ty ∈ T− and |T−∗ | < k2) then

6 if rel(T ∗ ∪ ty) ≥ β · relT,xmax then Compute(covIC(T ∗ ∪ ty));

7 end

8 end

9 ty = argmax
ty∈T\T ∗

covIC(T ∗ ∪ ty);

10 T ∗ = T ∗ ∪ ty;

11 end

12 return T ∗

2.5.2 Approximation Algorithm (A-DC-TA)

In paper [1], the DC-TA problem is defined as a NP-Complete problem. To verify

NP-Completeness, it reduces the MAX-SUM Facility Dispersion problem [4, 5, 6] a problem

already defined to be NP-Complete, to DC-TA problem. It argues that if and only if, a

solution to DC-TA problem exists does a solution to MAX-SUM Facility Dispersion exists.

In MAX-SUM Facility Dispersion problem, we are given a set V = {v1, v2, ..., vn} where

each vi is a node of graph. Let their be n nodes, a non-negative distance w(vi, vj) for each

pair of nodes vi, vj , and an integer p which is smaller than n, the goal is to find a subset
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of p nodes P = {vi1 , vi2 , ..., vip} of V , such that sum of distances are maximized. ADWIRE

implements the Approximation Algorithm as a solution for the DC-TA Problem.

In order to map DC-TA as MAX-SUM Facility Dispersion problem, we modify our

DC-TA problem approach. Consider a graph GDC−TA = (VT , E) as DC-TA model where

VT is tag represented as node in graph and E ⊆ (VTxVT ) , relevance parameter β, and user

factor α, the goal is to select k1 = dαke positive tags and k2 = k − k1 negative tags such

that rel(T ∗) ≥ β · relT,kmax and ϑDC(T ∗) is minimum.

AD-WIRE implements the greedy algorithm 2 which produces a solution with con-

stant factor approximation of the optimal. In A-DC-TA Algorithm consider the user factor

α which implies k1 positive and k2 negative tags. On each iteration of the first iteration

cycle of the algorithm iteratively picks the cross-edges (vtx , vty), tx ∈ T+, ty ∈ T− under

two constraints, first, the relevance score of result set including edge is greater than equal

to β · relT,k
′

max and secondly, the edge adds minimum weight to ϑDC(T ∗) as compared to all

other edges. Under all these scenarios algorithm adds those tags to the T ∗ until the number

of selected positive or negative tags be k1 or k2 respectively. Once the quota of a particular

sentiment is reached, the other iterative cycle begins. In the other iterative cycles either the

number of positive or negative tags is not equal to k1 or k2 respectively. Accordingly either

a positive or negative iterative cycle is executed and remaining tags from same sentiment

are selected in result set. Let us assume k2 negative tags are selected, thus the algorithm

needs to find positive tags only for the result set. It finds the new tag ty ∈ T+ \T ∗ with the

relevance score of atleast β · relT,k
′

max, which add minimum weight to ϑDC(T ∗). Similarly,

let us assume k1 positive tags are selected, thus the algorithm needs to find negative tags

only for the result set. It finds the new tag ty ∈ T− \ T ∗ with the relevance score of atleast

β · relT,k
′

max, which add minimum weight to ϑDC(T ∗).
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Algorithm 2: DC-TA Algorithm (A-DC-TA)

1 k1 = dkαe; k2 = k − k1; T ∗ = ∅;

2 while (k1 > 0 and k2 > 0) do

3 k′ = |T ∗|+ 2 ;

4 for e = (tx, ty), (tx ∈ T+ \ T ∗, ty ∈ T− \ T ∗) do

5 if rel(T ∗ ∪ {tx, ty}) ≥ β · relT,k′max then

Compute(ϑDC(T ∗ ∪ {tx, ty}));

6 T ∗ = T ∗ ∪ argmin
tx∈T+\T ∗,ty∈T−\T ∗

ϑDC(T ∗ ∪ {tx, ty}) ;

7 k1 = k1 − 1; k2 = k2 − 1;

8 while (|T ∗| < k) do

9 if (k1 > 0) then

10 k′ = |T ∗|+ 1 ;

11 for e = (tx, ty), (tx ∈ T ∗
+
, ty ∈ T+ \ T ∗) do

12 if rel(T ∗ ∪ {tx, ty}) ≥ β · relT,k′max then

Compute(ϑDC(T ∗ ∪ {tx, ty}));

13 T ∗ = T ∗ ∪ argmin
tx∈T ∗+ ,ty∈T+\T ∗

ϑDC(T ∗ ∪ {tx, ty}) ;

14 if (k2 > 0) then

15 k′ = |T ∗|+ 1;

16 for e = (tx, ty), (tx ∈ T ∗
−
, ty ∈ T− \ T ∗) do

17 if rel(T ∗ ∪ {tx, ty}) ≥ β · relT,k′max then

Compute(ϑDC(T ∗ ∪ {tx, ty}));

18 T ∗ = T ∗ ∪ argmin
tx∈T ∗− ,ty∈T−\T ∗

ϑDC(T ∗ ∪ {tx, ty}) ;

19 return T ∗
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CHAPTER 3

ADWIRE ARCHITECTURE

In previous chapters we have discussed about the TagAdvisor model, various coverage

problems and how TagAdvisor can be used to solve user problem of review writing. AD-

WIRE, is a practical implementation of TagAdvisor and is built to review mobile products.

When a user uses ADWIRE to review a mobile product he should expect to find top-k

meaningful tags describing the mobile item user intends to review. In this chapter we will

discuss in detail about the building and functionality of each block of modules that together

form ADWIRE.

3.1 Data Store

The Data Store is an important module as it contains both Table 2.1 and Table 2.2.

The main functionality of data store is to provide instant access of data to the incoming

request by other modules as seen in Fig 3.1. To obtain a smooth system, it is critical the

response time of the data store is minimal. As the number of products might be vary, it is

required to index items efficiently without much overhead for the user to maintain them.

Also, the data store is expected to get simple read queries with where clauses. Considering

these aforementioned criteria having MongoDB based as the data store proves beneficial.

MongoDB offers great indexing, easy store, easy retrieve, fast access to data and minimal

overhead. The data is stored in JSON format and is easily retrieved.

3.2 Rule Generator

This module is responsible to find the complex dependencies that exist between item

attributes and tags. Table 2.2 shows extracted rules for the item i1 in Table 2.1. For
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Figure 3.1: AD-WIRE Architecture.

example, the first row of the Table 2.2 indicates that if a mobile phone has 5mp primary

camera, screen size of 5.1” and is touchscreen, then with probability of 0.3 it is responsible

for the receiving the tag super cool. ADWIRE aims to discover small distinguished set

of rules so as to classify if a set of attribute values provide a tag as class variable. For

these reasons our module uses the rule based classifier [7] to find the rules in our data set.

Given a user and an item Rule Generator provides the dependencies between the tags and

item attributes. The item attributes can be called rule antecedent while the tags as rule

consequent. The item attributes are connected logically via AND operator. These rules are

then send to Optimization Component.

3.3 Probabilistic Classifier

The rules obtained from the Rule Generator may contain similar tags for different set

of item attribute values. We need these set of rules to have a minimum support and mini-

mum confidence throughout the dataset. Thus, we apply probabilistic classifiers which are

responsible to find the relevance score of a tag to an item. Given item i and tag vocabulary

T , the relevance of a tag tx ∈ T ∗ denotes how well tx describes i which can be computed

using existing probabilistic classifiers. This module uses the rule based classifier [7] to find

the relevance score.
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3.4 Optimization Component

Optimization Component is responsible for solving the ADWIRE optimization prob-

lem. As shown in Fig 3.1, this module lies in the core of the system and is very important

for functioning of the module. TagAdvisor Problem as explained in previous chapters is

implemented in this module. The Optimization Component requires user input parameters

such as item i, relevance parameter β , user factor α and number of required tags k. On

providing these inputs the component provides the user with two sets of tags. One tag

set for independent coverage style of writing whereas the other for a dependent style of

writing. Thus, the module consists of both the IC-TA Solver and DC-TA Solver to obtain

their individual result sets. The component also integrates interfacing the web server, the

probabilistic classifier and rule generator. We refer readers to[1],[7]and [2] for technical

details of the problems.

3.5 User Interface and Web Server

The main functionality of the User Interface (UI) is to provide an access to the

system abstracting the complexity of a system. It should allow user to provide user input

parameters such as item i, relevance parameter β , user factor α and number of required

tags k. On provision of these input parameters, it should display the user with a list of

top-k meaningful tags for both styles of review writing. The UI should be able to explain

the user about the attributes he is reviewing when he selects any tag. Most importantly

the UI should be smooth and provide easy access. The built User Interface interacts with

the ADWIRE system via a Web Server on which it hosts. The basic functionality of the

web server is to provide access to the UI, interact with the Optimization Component. As

only a single system module exists on the server with simple UI, the selected server should

be simple enough to provide static files over the web browser without much overhead of

maintaining the server up.
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CHAPTER 4

SYSTEM DEMONSTRATION

Using the basic architecture as described in the previous chapter we develop AD-

WIRE. In this chapter we will discuss the actual software tools, utilities and configurations

used for exact implementation of each of these modules.

4.1 System Implementation

AD-WIRE is developed on a Intel Quad Core 2.5 Ghz machine running Ubuntu

with 16GB RAM. In order to establish the data store, we first employ a state-of-art text

mining tool to obtain keywords and their sentiments from a text corpus of reviews for each

item. For example, a review statement ”Even though with a short battery life, phone has

decent call quality and nice volume” when processed by the text mining tool should provide

positive (decent call quality,nice volume) and a negative tag (short battery life).

We use IBM Watson‘s AlchemyAPI from ”www.alchemyapi.com” as the text mining tool,

it provides the required data for each item reviews. This data is stored in our data store

which is made of MongoDB. There are different collections in place for each data tables and

reference tables. Now in order to obtain complex dependencies between item attributes and

keywords, we use Rule generator as mentioned in Fig 3.1. These rules are then utilized by

the probabilistic classifier to obtain relevance of the tags. In AD-WIRE we utilize Weka‘s

JRIPPER rule based classifier [8], [9], as our Rule Generator and Probabilistic Classifier,

different other available models like Decision Trees, SVM Classifiers, etc., could also be

used. We employ JRIPPER to extract the set of rules that shows the dependency between

item attributes and tags. The optimization component is built on Python 2.7.9 as it offers

smooth integration with MongoDB, weka and the web server. BottlePy 0.12 is used as a
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Figure 4.1: AD-WIRE User Interface 1.

web server to provide web access to the system via the User Interface. The User Interface

is developed in HTML, JavaScript, Jquery to enable seamless web browsing and great user

experience.

4.2 User Interface

1. Input Interface: In [2], the TagAdvisor Problem uses k, α and β as input parameters

for item selected in order to provide the top-k meaningful tags. In AD-WIRE the

user is expected to provide these inputs via The Input Parameter area as shown in

Figure 4.1. On accessing the site, AD-WIRE displays the list of products available for

reviewing. After selecting the review item, user selects the following items. Firstly,

k parameter which is a non-negative integer value, it defines the number of top-k

tags to be displayed. A Relevance Parameter which implies, how well the result set

of tags describes the item. Finally, user selects the Product Rating which quantifies
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Figure 4.2: AD-WIRE User Interface 2.

user satisfaction towards the product. Together these parameters are submitted as a

form to fetch the result tags.

2. Reviewing: After the user selects the required inputs and hits ”GO”, the browser

displays a new page as shown in Figure 4.2. This interface is where the user writes

the review. The interface can be divided into columns.

(a) Product Information: This column displays the item the user selected, the image

of the product followed by the product rating user provided in previous page.

We also display top-k relevant tags to signify the need for a top-k meaningful

tags and how top-k relevant tags fail to connect with the users sentiment and

critical experience.

(b) Independent Review: This column displays top-k tags obtained from IC-TA

Solver. The user can select any tag he connects with and the corresponding

tag will appear in the review text. Below the review writing section the user
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can find IC-TA Coverage Indicator which will display the user a list of attribute

values covered by tags the user selected in review. Thus, with the help of a set

of meaningful tags and an overview of item attributes being covered, the user

can easily articulate the review.

(c) Dependent Review: This column displays top-k tags obtained from DC-TA

Solver. The functionality and display of this column is exactly the same as

Column 2.

(d) Bipartite Graph: This column consists of a bipartite graph for display as shown

in Figure 4.2. The graph is displayed using a data visualization javascript library.

The left side of the graph consists of tags related to the product. These tags

are associated with item attribute values which are displayed on the right side

of the graph.
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CHAPTER 5

EXPERIMENTAL EVALUATION

This chapter presents the results of extensive experimental analysis performed by

providing various queries to AD-WIRE. The experimental results reinforce our promise

that AD-WIRE provide excellent quality of tags for any given circumstances. We proceed

to evaluate the performance of both A-IC-TA and A-DC-TA in terms of quality by varying

different user inputs.

5.1 Experimental Setup

All experiments were conducted on an Intel Quad Core 2.5 Ghz machine running

Ubuntu with 16GB RAM. The points displayed in graph are numbers obtained as the

average over all products. We conduct a comprehensive set of experiments using real data

crawled from the web to evaluate efficiency and quality of our proposed algorithms. We

crawled Amazon.com and GSMAreana.com for building a mobile dataset.

5.2 Coverage Analysis

In this section we evaluate the quality of results returned by the implemented A-IC-

TA Solver and A-DC-TA Solver of AD-WIRE. We measure the proportion of tags covered by

the result set of k tags in T ∗ for both the A-IC-TA and A-DC-TA algorithms implemented

in the respective solvers. We conduct our experiments with different set of constraint

conditions, i.e., user factor (α) and k.

1. K Parameter Vs Coverage In this evaluation, we set α = 0.5, β = 1.0, and vary

k from 2 to 10. So ideally, when we increase the number of K tags to be returned

the proportion of attribute space covered should also increase. That is exactly the
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Figure 5.1: Quality of A-IC-TA and A-DC-TA algorithms by varying k, α = 0.5, β = 0.5

behavior as shown in Figure 5.1. As one can also find from observing the plots is

A-IC-TA provides a better coverage compared to A-DC-TA, which makes sense as the

coverage function of A-IC-TA as mentioned in 2.1 is unbound whereas the coverage

function of A-DC-TA as mentioned in 2.2 is bound with sentiment associated in tags,

thus reducing the proportion of covered attributes.

2. User Factor Vs Coverage In the second evaluation, we set k = 10, β = 1.0, and

vary α from 0.1 to 1.0. When we change α, we are changing the proportion of positive

and negative tags. Thus, when we increase α from 0.1 to 1.0, we are increasing the

positive tags present in the result set, thereby decreasing the negative tags. The

behavior of coverage under such circumstances is as shown in Figure 5.2. As one

can also find from observing the plots is A-IC-TA again provides a better coverage

compared to A-DC-TA, which makes sense as the coverage function of A-IC-TA as

mentioned in 2.1 is unbound whereas the coverage function of A-DC-TA as mentioned

in 2.2 is bound with sentiment associated in tags, thus reducing the proportion of
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Figure 5.2: Quality of A-IC-TA and A-DC-TA algorithms by varying alpha, k = 10,
β = 0.5

covered attributes. But both the A-IC-TA and A-DC-TA provide less coverage at

the extreme ends compared to the middle. This implies that when user factor is at

extremes the attribute space available to incoporate k positive or k negative tags

decreases.

In both the experimental evaluations our results match with the exact algorithms

mentioned in [2]. This guarantees that AD-WIRE provides a set of top-k meaningful tags

under various constraints provided by user, thus being able to help the user review item

easily.
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