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ABSTRACT 

HUMAN ROBOT INTERACTION 

USING KNOWLEDGE BASE 

APPROACH 

 

Utsav Shah, MS 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Panayiotis S. Shiakolas 

 

This research investigated Human Robot Interaction modalities. The performance of a 

robotic prosthetic hand (RPH) was used as a test bed robot. A user wearable glove was fitted with 

sensors to provide tele-control of the RPH. An open hardware control and easily expandable 

research platform based on LabVIEW software and myRIO control hardware was developed. 

LabVIEW graphical programming platform provides the tools for the development to customized 

interfaces for visualization purposes which is desired in research. The research platform was used 

to calibrate and control the operation of the artificial hand using various modalities such as open 

loop, glove master-slave setup and knowledge base interaction. Mapping algorithms between the 

motion of the master glove and slave RPH were developed. 

The knowledge based modality was based on artificial neural networks (ANN), where 

supervised learning identified appropriate grasping patterns for a set of objects based on a training 
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data set. The training data set was developed using manual and glove control of the RPH and 

consists of the object geometric features and object location relative to the RPH. The training data 

set is then processed using the LabVIEW ANN toolkit to identify in real-time, the grasping patterns 

for other similar objects that include the desired motion for each RPH finger. The developed 

research platform and tools have been demonstrated through manual, glove and ANN control of 

the RPH and display of system information on the LabVIEW GUI in real-time. 
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CHAPTER 1  

INTRODUCTION 

1.1 Human Robot Interaction 

Human Robot Interaction (HRI) describes the study of communication to understand, 

design and evaluate robotic systems by humans [1]. The HRI has been utilized in the physical, 

mental and social assistance to humans by robots. The initial step of HRI is to understand the 

behavior of robotic devices which correspond to human like interaction methods. Consequently, 

design and classification of a methodology where human type intelligence can be used to control 

robotic systems was further understood. Figure 1.1 is an example of HRI where the prosthetic hand 

is performing a hand shake with a human hand.   

 

Figure 1.1 Handshaking between a prosthetic and a human hand 
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Robotic systems can execute various tasks in social applications such as, medical, welfare, 

home, offices and industries in cooperation with human [2]. There are various possible interaction 

techniques such as speech, gesture and body language for a robot to interact with human. For 

example, the master-slave hand that was developed by the University of Tokyo which uses haptic 

interaction to control robotic hand with human hand [3]. The feature of speech and gesture 

interaction is generally found in social robot applications. The Leonardo robot, for instance, 

developed by MIT uses social learning experiments to interact with humans [4]. The National 

Aeronautics and Space Administrations (NASA) also developed Robonaut, a humanoid capable 

to work in hazardous environment of low earth orbit and planetary exploration [5].  

In order to investigate HRI, an environment that includes a testbed robot is required where 

the robot will be controlled by human. In this research, a prosthetic hand is used as the testbed 

robot and focuses on implementing HRI on a prosthetic hand to accomplish various grasping tasks. 

There is extensive on-going research to obtain object grasping information by classifying motion 

of the human hand [6].       

1.1.1 HRI with Prosthetic Hand 

Controlling a prosthetic hand with a human hand is the most practical approach in the field 

of HRI and it generally uses a data glove to map human hand motions onto the prosthetic hand. 

Commercial data gloves calibrate the flexion and abduction of the fingers and angular motion of 

palm using approximately 20 sensors on the glove [7]. Moreover, various sensing approaches are 

available to sense human hand motion which usually require recalibration for different users.  

Table 1.1 shows a summary of data gloves along with their sensing technologies.  
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Table 1.1 Use of sensing devices in various data gloves [7] 

Data Gloves Sensing Device Price 

VPL Data glove Fiber Optic $ 11000 

Virtex Cyber Glove Resistor $9800 

TUB-sensor glove developed by 

Technical University of Berlin 

Pressure & Position sensor - 

Accele Glove developed by Washington 

University 

Accelerometers - 

 

Polhemus 3-Space Fastrack (not glove) EMG sensors - 

Mattel’s power glove Ultrasonic sensor $100 

 

Most of data gloves are expensive depending on their design and sensing device. The 

preliminary requirement in this research is to develop a research platform where a prosthetic hand 

can accomplish various grasping tasks using a manual, glove guided and machine learning 

approaches. 

1.2 Robot Learning 

Robot learning is focused on developing skills in robots using machine learning. Robot 

learning through human demonstration is one of the difficult tasks in current intelligence system 

[8].  Robot learning is often characterized as machine learning where the term machine is replaced 

by a robotic system. Machine learning is a field of study where a learning skill can be developed 

on a computer without explicit programming, as defined by Arthur Samuel in 1959 [9]. Machine 

learning is a part of artificial intelligence which focuses on constructing a learning algorithm using 

an artificial neural network (ANN). A part of this research focuses on creating a learning 
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environment where prosthetic hand can be used to grasp complex object using machine learning 

approaches.  

1.2.1 Grasp Learning in Robots 

Robotic technologies have been researched in order to accurately solve the control and 

perception problem of grasping for decades (Shimoga, 1996). Currently, there are difficulties in 

industries when it comes to handling complex parts by robots. Therefore, grasp learning is an 

emerging field in industrial settings due to its ability to “learn” to handle complex parts. Google is 

researching a 7-degree of freedom robot used to grasp various objects using a vison system and 

machine learning algorithm with neural network [10]. Different universities such as Carnegie 

Mellon University is also investigating  machine learning algorithms to implement grasp learning 

on the industrial robot Baxter [11] . However, the novel approach to perform grasp learning using 

a prosthetic hand could be adapted in industries to handle complex object. 

1.3 Current Research Objectives 

The objective of this research is to develop an expandable, modular software and hardware 

environment to research grasp learning in a prosthetic hand using different HRI modalities. The 

software tools are based on the LabVIEW graphical programming environment. The hardware 

tools include mainly a robotic prosthetic hand (RPH), human wearable data glove, electrical 

interfacing boards and myRIO microcontroller. 

Grasp learning is achieved by implementing a supervised learning algorithm based on back 

propagation neural network, using the LabVIEW machine learning toolkit. The HRI technique is 

achieved by controlling a prosthetic hand in manual, tele operated and autonomous modalities. 

The learning performance is analyzed for known as well as unknown objects. Experiments 

on learning and evaluating for grasping various objects with a prosthetic hand using machine 
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learning algorithms emerge as a novel approach in the development of decision making skills for 

robots.  

1.4 Outline of Thesis 

Chapter 1 provides an introduction on HRI and machine learning, examples and application 

areas. It also discusses various approaches to implement HRI on the RPH. The objective related to 

the current research work is also discussed in this chapter. 

Chapter 2 discusses geometry, actuation system and grasp space of the RPH. Moreover, it 

discusses flex sensor glove development and terminology and introduces the back propagation 

learning algorithm.   

Chapter 3 discusses the required hardware modules such as the National Instruments (NI) 

myRIO microcontroller, flex sensor interfacing board, servo interfacing board and force feedback 

interfacing board. The software used is LabVIEW. It also discusses the flow of information 

between software and hardware modules. It also explains the control algorithm for the servo 

motors and control of the RPH with the flex sensor glove.  

Chapter 4 discusses how the system will learn grasping and evaluation of the RPH ability 

to grasp various objects. This chapter also discusses the performance of the artificial neural 

network (ANN) and explains the back propagation learn and evaluation procedure to perform grasp 

learning by the RPH. The chapter also describes speed control implementation for finger actuation. 

Chapter 5 summarizes the research work on grasp learning in the RPH and HRI approaches 

and provides recommendations for future research.  
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CHAPTER 2  

PROSTHETIC HAND ANALYSIS AND INTERFACE  

Most industrial robots use parallel jaw grippers which are sufficient for handling objects in 

current applications. However, the future technological innovations focus on investigating grippers 

that can handle complex geometrical objects. Prosthetic hand development is growing due to its 

enhanced grasping capability of handling complex parts in the medical and industrial fields. There 

are extensive amounts of money spent on  research and development of different prosthetic hand 

projects such as the APL arm ($120 million project) and the DEKA arm ($40 million project) [12], 

[13]. The Michelangelo Hand developed by Advance Arm Dynamics costs $100,000 (Pittman, 

2012) [14] . The design and manufacturing process is also time consuming for prosthetic hand 

based on the degrees of freedom and actuation strength.  

2.1 Robotic Prosthetic Hand Mechanism and Geometry 

2.1.1 InMoov Prosthetic Hand 

The discussion of prosthetic hands has concluded that the design and manufacturing 

process is expensive and time consuming. Instead of analyzing and creating a new design, it is 

more convenient to modify and improve an existing design. In this research, part files of a right 

hand were downloaded from the InMoov project developed by Gael Lengavin and 3D printed [15]. 

Afterwards, the 3D printed components, such as forearm, fingers and palm, were assembled as 

shown in Figure 2.1  
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Figure 2.1 Assembled InMoov prosthetic hand with dimensions in mm 

The RPH has a span of 195mm (distance from outstretched pinky to outstretched thumb) 

and a hand height of 212mm (distance from wrist to tip of middle finger) [16]. Each finger consists 

of three joints and the thumb consists of two joints. The actuation of each finger consists only of 

one motor.  

2.2.2 Workspace 

The objective of the prosthetic hand is focused on grasping similar objects. Therefore, a 

convenient workspace was established considering the different constraints of the RPH. The first 

constraint is that the RPH has no actuation in the wrist nor in the elbow joint. Currently, the RPH 

has actuation only for the thumb and fingers. Therefore, for this research, it is assumed that the 

prosthetic hand would be properly orientated with respect to Z-axis in three dimensional space so 

that the object that will be grasped is within the reach of the prosthetic hand. The workspace setup 

is shown in Figure 2.2. 
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Figure 2.2 Prosthetic hand with workspace 

Another important and challenging task is the handling process of objects in three 

dimensional space. A static setup was created where the position of the object can be adjusted with 

respect to Z-axis. However, the X and Y position of object is fixed to simplify grasping analysis. 

This setup was used to reproduce grasping operations for training purposes. Therefore, a three 

dimensional work space was developed where position of RPH was fixed as well as the position 

of the object. However, the setup allows for slight changes in hand orientation and height of the 

object. Figure 2.3 shows the top view and Figure 2.4 shows the front view of 3D workspace 

17’’×21’’×22’’. 
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Figure 2.3 Top view of workspace (dimensions in inch) 

 

Figure 2.4 Front view of workspace (dimension in inch)  
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2.2 Robotic Prosthetic Hand Actuation Analysis 

2.2.1 Actuation Type 

There are different actuation methods available to control a RPH. The first actuation 

method is to apply actuation on each finger joint with geared motors as shown in Figure 2.5. 

However, this form of actuation, implementing a motor on each joint, increases the total size, 

weight and increases the control complexity of RPH [17]. Furthermore, small/compact motors with 

appropriate torque are expensive. However, there are benefits, such as being more stable and 

flexible for controlling the individual joints of the prosthetic hand. 

 

Figure 2.5 Prosthetic hand with actuation on finger joints [10]  

Another actuation method used to control the joints of the fingers is a cable-pulley 

mechanism where two cables are passed through each joint. The cables are then fixed at the end 

of the fingertip as well as at the pulley mechanism. It is important to note that the cable has to be 

fixed permanently on motor-gear and tension in the cable attached to finger-tip should always be 
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maintained. It should also be noted that the design of the gear attached to motor is important to 

achieve maximum finger rotation.  

2.2.2 Prosthetic Hand Actuation  

A second actuation method is employed in the RPH. Servo motors are mounted in the 

forearm of the assembly and connected to each finger by a cable-pulley mechanism, as shown in 

Figure 2.6. In this actuation method, each finger has only one degree of freedom because a single 

servo motor controls all three joints in each finger. 

 

Figure 2.6 RPH actuation mechanism 

The position of the line passing through the grooves is different for each finger. Therefore, 

the minimum and maximum possible rotation (initial and final finger position) of the servo motor 

is dependent on the distance dc between the grooves from where cables are passing and attached 

on motor gear and the gear diameter dg.  

Each finger rotation is dependent on the linear travel distance of two cables attached to 

servo motor gear. Figure 2.7 illustrates that the servo motor angle range of Ɵ𝑠  increases as 𝑑𝑐  
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increases. Therefore, the servo motor attached to middle finger has higher angle range than index 

finger because it has a larger value of 𝑑𝑐.  

 

Figure 2.7 Servo motor angle difference with change in cable distance for index and middle 

finger 

2.2.3 Behavior of Fingers 

In the RPH, there are several motion constraints regarding the degrees of freedom in the 

fingers and thumb. Only one servo motor is provided to control the three revolute joints on each 
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finger. Figure 2.8 shows the behavior of the index finger for different servo motor angular rotation. 

The index finger has proximal, intermediate and distal links that are interconnected on joint 1, joint 

2 and joint 3 respectively. In this discussion, the term joint 1 angle is the angle between proximal 

link and X axis, Joint 2 angle is the angle from proximal link to intermediate link and Joint 3 angle 

is the angle from intermediate to distal link. Figure 2.8(a) shows the initial position of index finger 

where all three joint angles are zero degrees as well as the servo motor angle. In Figure 2.8(b), the 

servo motor rotation of 20 degrees sets joint 1, joint 2 and joint 3 to 50, 0 and 0 degrees 

respectively. The intermediate position where the servo motor rotation is 90 degrees, sets joint 1, 

joint 2 and joint3 to 90, 20 and 30 degrees respectively as shown in Figure 2.8(d).  The final 

position of index finger is achieved at 130 degrees of servo motor rotation which sets joint 1, joint 

2 and joint 3 equal to 90, 90 and 45 degrees respectively.  

 

Figure 2.8 Behavior of finger for different servo motor angular rotation 
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A protractor was adjusted parallel to rotational axis to measure different joint angles as 

shown in Figure 2.9. A more accurate approach of measuring joint angles could be a vision system. 

There would need to be a calibration method to be able to compare the original size and the joint 

angle measurements on the image. 

 

Figure 2.9 Protractor arrangement to measure joint angles of fingers 

The measurements of joint angle are performed on all fingers and thumb which concluded 

that joint angle of fingers are different with respect to servo motor angle. Table 2.1 shows the 

calibration mapping of servo motor rotation to finger state. Note that thumb has only two joints. 

Therefore, measurement of position of joint 3 is not applicable for the thumb.  

For the initial position, all fingers are at zero degrees with respect to the X-axis. However, 

in the final condition, the behavior of each finger is different depending on their servo motor 

attachment and finger geometry. Figure 2.10 shows initial and final positions of all fingers. The 

motion of thumb is shown in Figure 2.14 which will be explained in further discussion.  

 

 

X 

Y 
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Table 2.1 Experimental relation between servo motor angle and finger joints 

 
Joint 1 Angle (deg) Joint 2 Angle (deg) Joint 3 Angle (deg) 

Index finger 
   

0 (Initial position) 
0 0 0 

20 
50 0 0 

35 
80 10 0 

55 
90 20 30 

130(Final position) 
90 90 45 

Middle finger 
   

0(Initial position) 
0 0 0 

30 
60 0 0 

100 
90 10 10 

175(Final position) 
90 70 30 

Ring finger 
   

0(Initial position) 
0 0 0 

30 
60 0 0 

60 
90 10 10 

130(Final position) 
90 50 30 

Pink finger 
   

0(Initial position) 
0 0 0 

12 
10 0 70 

30 
60 0 70 

40 
80 0 70 

90(Final position) 
80 50 70 

 

 
Thumb 

   

0(Initial position) 
0 0 NA 

10 
0 0 NA 

20 
35 0 NA 

90(Final position) 
60 50 NA 
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Figure 2.10 Finger positions for initial and final servo motor angle 

2.3 Grasping Pattern Analysis 

2.3.1 Grasping Art 

The operated complexity of the RPH prohibits grasp point generation and force 

manipulation which are dependent on hand kinematics. Object geometry, hand constraints and the 

manipulation task mechanism intersect produce the grasp space constraints as shown in Figure 

2.11. 

 

Figure 2.11 Grasp planning restrictions [18] 
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Object grasping can be defined as the process of placing the  RPH relative to the target 

object for manipulation while holding the object stable[18]. However, in the current analysis, the 

manipulation of RPH is fixed because there is no actuation on the equivalent wrist and elbow 

joints.  A precise grasp consists of finger contact locations, contact type and applied force 

characteristics [18]. However, the applied force is dependent on weight and surface finish of object 

which are not considered in this study. This discussion is focused on creating different grasping 

patterns by varying the location of the object relative to the palm and object geometry. 

2.3.2 Grasp Planning 

There are different types of contact grasp such as friction point contact, hard finger contact, 

soft finger contact, form closure grasp, force closure grasp, equilibrium grasp, stable grasp and 

compliant grasp [18]. This study focuses on form closure grasp where the set of contact points 

contain the object grasped regardless of the magnitude of the contact force. The finger contacts are 

entirely dependent on geometry of the object and its relative location.  

 

Figure 2.12 Grasping of two different dimensional cylindrical objects and contact points 
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The prosthetic hand has numerous contact points such as fingers, thumb and palm which 

allow for more efficient grasping. Figure 2.12 illustrates form closure grasping on the prosthetic 

hand for two cylindrical objects with different geometrical properties. The thumb always provides 

the first contacting support to hold any object as shown in Figure 2.12.  

The palm of prosthetic hand, additionally provides a base support which restricts the sliding 

of object in positive Y direction marked as green arrow in Figure 2.13.   

 

Figure 2.13 Top view of Figure 2.12 

2.3.3 Grasping Space 

Grasping space is a term used to describe the workable region for the RPH to grasp an 

object. Grasping space can be created based on physiology of the RPH. The rotational path of tip 

of thumb allows to create a grasping space depending on the rotation of fingers. The grasp space 

(80×65×45 mm) is created considering rotation path and geometrical properties of fingers and 

thumb. The reference frame of grasp space is 5mm offset from thumb tip as shown in Figure 2.14. 

The object’s contact points must exist inside the grasping space as shown in Figure 2.14. 
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Some exterior contact points can be applicable with the support of the palm of the RPH. 

However, these contact points just provide extra support which is not mandatory for every grasping 

pattern. The X-axis distance between the supporting contact point and the remaining contact points 

should not be larger than grasping space to perform an efficient grasp.  

 

Figure 2.14  Grasp space analysis for the RPH 

The solid model as show in Figure 2.15 is developed for the final position of fingers 

considering the joint angles represented in Table 2.1. The measurement of geometrical parameters 

of fingers were taken with Vernier caliper and implemented in solid model.  
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Figure 2.15 Solid model of the RPH fingers grasping a cylindrical object with a 20mm diameter 

It should be noted that grasping is possible without requiring the thumb. In that case, the 

palm provides supporting contact and fingers provide the opposite remaining contact. However, 

the diameter of the object should be considerably small such as 20mm in this method, which is not 

convenient. 

2.4 Machine Learning using Artificial Neural Network 

2.4.1 Artificial Neural Network 

In machine learning, artificial neural networks (an inspiration from biological neural 

networks) are information processing systems used to approximate functions from known or 

unknown inputs [19].They are used to solve complex problems with large number of 

interconnected processing elements[20]. The ANN with cascade connectivity consist of an input 

layer, hidden layer and an output layer, as shown in Figure 2.16. 
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Figure 2.16 Artificial Neural Network  

The approximated output,𝑦𝑗, for input, 𝑥𝑖, and hidden neuron, 𝑘, is 

 𝑦𝑗 = 𝑓 (𝜃𝑗
𝑜𝑢𝑡 + ∑ 𝑊𝑜𝑘𝑗

𝐾
𝑘=1 𝑓(∑ 𝑊𝑖𝑖𝑘𝑥𝑖 +𝑁

𝑖=1  𝜃𝑘
ℎ𝑖𝑑)) (2.1) 

where, 𝑓 is the activation function, 𝑁 is the number of input neurons, 𝐾 is the number of hidden 

neurons, 𝑊𝑖𝑖𝑘 is the input weight, 𝑊𝑜𝑘𝑗 is the output weight,  𝑥𝑖 is the input, 𝜃𝑘
ℎ𝑖𝑑 are the thresholds 

in terms of hidden neurons and 𝜃𝑗
𝑜𝑢𝑡 is threshold in terms of output neuron [21]. ANNs are utilized 

for specific applications, such as pattern recognition and data classification through learning 

process[20]. There are two types of learning; ANN supervised learning and unsupervised learning. 

2.4.2 Supervised Learning  

Supervised learning is often called as learning with a teacher, which is a widely used 

training method where ANN is trained through sets of known inputs and outputs. The output error 

is computed and weights are incrementally adjusted to reduce the error using each organized 

pattern [8]. These weights are adjusted by different learning algorithms such as back propagation, 
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learning vector quantization (LVQ) and support vector machine (SVM). Figure 2.17 illustrates a 

network with desired output processes through supervised learning. The teacher or supervisor 

provides the predefined output and a supervised learning approximates the output based on the 

input using the ANN. The difference between the actual and approximated output is calculated 

using the error block and the network tries to minimize the error using the supervised learning 

algorithm.  Supervised learning is becoming popular due to its productive results [22]. 

 

Figure 2.17 Supervised learning 

2.4.3 Back Propagation Algorithm 

The back propagation algorithm was first mentioned by Werbos in 1974 and 

“rediscovered” by Rumelhart and McClelland in 1986 [23],[24].  Back propagation neural 

networks are frequently used in control systems to learn system characteristics through nonlinear 

mapping [25]. The back propagation is widely used supervised learning algorithm for computing 

network weights regardless of the convergence rate. This algorithm adjusts weights and biases of 

a network in the direction of steepest descent depending on error [20]. 

A three-layer feedforward multilayer perceptron (MLP) network with cascade connectivity 

is shown in Figure 2.18. The diagram shows three layers; input layer, one hidden layer and an 

output layer. For discussion purposes 3 input, 2 hidden and 1 output neuron are considered. 
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Figure 2.18 Three-layer network with back propagation algorithm for three inputs and one 

output. 

In the initial stage, this network approximates output based on inputs, weights and hidden 

unit activation functions where the weights are initialized with random values. First, inputs are 

multiplied with weights and then added to thresholds which formulates a net hidden unit output, 

𝑛 as shown in Equations (2.2) and (2.3)  

 𝑛(11) = 𝜃1 + 𝑋1 𝑊𝑖(11) + 𝑋2 𝑊𝑖(21) + 𝑋3𝑊𝑖(31) (2.2) 

 𝑛(12) = 𝜃1 + 𝑋1 𝑊𝑖(12) + 𝑋2 𝑊𝑖(22) + 𝑋3𝑊𝑖(32)     (2.3) 
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The output of net hidden unit processes through activation function to calculate hidden unit 

output. This activation function can be a sigmoid or a hyperbolic tangent function. For example, 

consider a hyperbolic tangent function as shown in Equation (2.4), 

 𝑓(𝑥) =  tanh(𝑥) =  (
2

1+𝑒−2𝑥
− 1) (2.4) 

Then, the hidden unit output is calculated as shown in Equations (2.5) and (2.6) as a 

function of the net output. 

 𝑓(11) =  𝑓(𝑛(11)) =  (
2

1+𝑒
−2(𝑛(11)) − 1) (2.5) 

 𝑓(12) =  𝑓(𝑛(12)) =   (
2

1+𝑒
−2(𝑛(12)) − 1) (2.6) 

The net output can be derived by multiplying net functions with output weights and adding 

output threshold as described in Equation (2.7) and the final output 𝑦1 is approximated with output 

activation function as shown in Equation (2.8).  

 𝑛(1) =  𝜃2 + 𝑓(11)𝑊𝑜(11) + 𝑓(12)𝑊𝑜(21) (2.7) 

 𝑦1 = 𝑓(𝑛(1)) (2.8) 

2.4.4 Back Propagation Learning steps  

The network is trained by finding a set of weights and threshold that minimize the error 

between the actual (t) and network output (y) based on the training data set according to Equation 

(2.9). 

 𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟(𝑀𝑆𝐸) =
1

𝑁𝑣
 ∑ ∑ (𝑡𝑝𝑗 − 𝑦𝑝𝑗)2𝑀

𝑗=1
𝑁𝑣
𝑝=1  (2.9) 



25 

 

where, 𝑁= number of inputs, 𝑀= number of outputs and 𝑁𝑣= number of patterns. For this example, 

number of patterns 𝑁𝑣=1 and number of outputs 𝑗=1. Therefore, MSE is, 

 𝑀𝑆𝐸 = (𝑡1 − 𝑦1)2 (2.10) 

The input and output weights are updated according to steepest descent algorithm, 

 𝑊𝑜(𝑘𝑗) = 𝑊𝑜(𝑘𝑗) + 𝑧. 𝐺𝑘𝑗 (2.11) 

 𝑊𝑖(𝑖𝑘) = 𝑊𝑜(𝑖𝑘) + 𝑧. 𝐺𝑖𝑘 (2.12) 

where, z is the learning factor which is 0.5 in the general case, and gradient Gkj can be obtained by 

using the partial derivative of error with respect to output weight, 

 𝐺𝑘𝑗 =  
𝜕𝐸

𝜕𝑊𝑜(𝑘𝑗)
 (2.13) 

Moreover, gradient Gik can be obtained by partial derivative of error with respect to input 

weight, 

 𝐺𝑖𝑘 =  
𝜕𝐸

𝜕𝑊𝑜(𝑖𝑘)
 (2.14) 

A new set of network output is calculated with updated weights shown in Equation (2.11) 

and (2.12) for the next iteration. This procedure is then repeated for several iterations until the 

mean square error is minimized. In order to prevent the training from an infinite loop, stopping 

criteria are usually defined such as the maximum number of iterations or when an attemptable 

training error is reached.  
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2.5 Flex Sensor Glove 

For the purpose of this research it is important to map human hand motions to RPH 

motions. This can be achieved with use of sensors which can sense human hand motions such as 

flex sensors, EMG (Electromyography) sensors and vision systems. This type of sensing can be 

implemented on a RPH by using a controller to communicate to the actuators the desired motion.  

2.5.1 Flex sensor 

In this research, the motion of the human posture is captured with a flex sensor.  A flex 

sensor is an analog resistor which works as a variable analog voltage divider. The bending of flex 

sensor produces a change in resistance relative to the bend radius as shown in Figure 2.19 [26].  

 

Figure 2.19 Different bending conditions of flex sensor [27] 

2.5.2 Implementing Flex sensors on Glove 

To map human hand motions to the RPH, flex sensors were integrated on the outer surface 

of a glove. Five flex sensors were attached on the outside of the glove, as shown in Figure 2.20.   
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Figure 2.20 Flex sensor glove 

The thread sown on to the glove was used to create a hollow gap on the glove to allow the 

flex sensor to slide through hollow gap smoothly. Considering the shift of flex sensor during full 

bending, a small hollow tube was mounted at the end of the finger to stabilize the end of flex 

sensor. The base of the flex sensor was kept fixed. The two wires are connected to a DB-25 

connector which that connects to a flex sensor interface board and the microcontroller. A user can 

wear this glove and control the motion of the fingers of the prosthetic hand. The calibration 

procedure and flex sensor circuits are discussed in Chapter 3.  
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CHAPTER 3  

SOFTWARE AND HARDWARE TOOLS 

3.1 Hardware/Computer Interface 

3.1.1 LabVIEW 

LabVIEW is a programming software tool from National Instruments (NI), that allows a 

user to interface and control several mechanical and electrical components through a graphical 

programming environment. The software also allows the user to visualize information and perform 

computations in real-time [28]. A myRIO microcontroller from NI is used to handle inputs and 

outputs and all computation [29]. The myRIO microcontroller has a high clock speed, good 

memory, wireless connectivity, audio input-output and camera input. Additionally, LabVIEW has 

inbuilt myRIO module which simplifies the interface between software and hardware. LabVIEW 

has the resources for graphical and textual programming on a host computer toolkit and then 

transmitted to myRIO. LabVIEW also has its own machine learning toolkit which allows the user 

to perform machine learning in real-time. Figure 3.1 illustrates relationship between hardware and 

software tools used for this research. 

The connection diagram shows that host computer uses NI LabVIEW software to select 

control modalities such as, manual, flex sensor glove and artificial neural network. LabVIEW 

software communicates with myRIO using Wi-Fi. The myRIO is then connected to three different 

interfacing boards: the servo, the flex sensor and the force feedback.  

The servo motor interfacing and force feedback boards are each connected to the RPH with 

a DB-25 cable and the flex sensor sensing board is connected to the glove with DB-25 cable. The 

extra terminals can be used in the future to connect more sensors on the glove and the RPH. The 
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external power supply of 12V and 5V is provided to myRIO and the servo motor interfacing board. 

However, the remaining two boards use 5V power supply from myRIO. 

 

Figure 3.1 Relationship between hardware and software component 

3.1.2 Servo Motor Interfacing Board 

The servo motor interfacing board receives PWM signals from the myRIO and transmits 

those signals to five servo motors connected to the prosthetic hand. More information about 

controlling servo motors with PWM will be discussed in Section 3.2. Additionally, this board 

allows the user to adjust the voltage provided to the servo motors depending on user requirements. 

This board was developed using parallel circuit theory presented in  [30] where the voltage applied 

to all motors is constant by connecting all motor positive and negative terminals in parallel. The 

external power supply provides the motors with 5 volts and 2 amps. The power supply is connected 

to the controlling board which maintains a constant 5 volts. The maximum current on each servo 

motor when all motors operate at the same time is 400mA. This current is appropriate to rotate a 

single servo motor.  
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3.1.3 Flex Sensor Interfacing Board 

The flex sensor interfacing board receives signals from the glove and transmits them to the 

myRIO. More information about converting these signals to servo motor angles will be discussed 

in Section 3.3. The interfacing board consist of two parts, a voltage divider, amplification and 

filtering as shown in Figure 3.2. The voltage divider circuit is implemented on the board to adjust 

the sensitivity of the change in resistance so that this signal can be further proceeded through 

amplification and filtering. 

 

Figure 3.2 Flex sensor control board 

The voltage divider circuit is a common resistor circuit which divides the voltage by 

maintaining a certain fixed value of resistor which can be useful in reading analog signals in terms 

of voltage. The voltage divider circuit can be implemented for glove sensing, by setting Vin(5V), 

R1(3.3K) constant and replacing resistance R2 with ranging flex sensor resistance as shown in 

Figure 3.3. The output voltage  𝑉𝐹𝑆 is calculated with Equation (3.1), 
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 𝑉𝐹𝑆 = 𝑉𝑖𝑛
𝑅𝐹𝑆

𝑅𝐹𝑆+𝑅1
 (3.1) 

A low pass filter is added to the above circuit for noise cancelation as shown in Figure 3.3. 

Amplifier NTE948, suggested by manufacturer of flex sensor, is used in this circuit. The single 

sided operational amplifier attached to voltage output allows only low bias current to pass, which 

reduces error due to source impedance [27]. Also, the analog output with higher frequency can be 

filtered by a low pass filter as shown in Figure 3.3. The output voltage 𝑉𝑜𝑢𝑡 after filtering and 

amplifying is shown in Equation (3.2). 

 𝑉𝑜𝑢𝑡 = 𝑉𝐹𝑆  
√𝑅𝐿𝑃𝐹

2 +𝑋𝐶
2

𝑋𝑐
 𝑤ℎ𝑒𝑟𝑒, 𝑋𝑐 =

1

2𝜋𝑓𝑐𝐶𝐿𝑃𝐹
 (3.2) 

 

Figure 3.3 Voltage divider with filter diagram. 

The cut-off frequency can be found from the resistor and capacitor of the circuit. 

 𝑓𝑐 =
1

2𝜋𝑅𝐿𝑃𝐹𝐶𝐿𝑃𝐹   
 (3.3) 
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where, RLPF = Resistance of RC-Filter and CLPF = Capacitance of RC-Filter. From Equation (3.3), 

the cut off frequency for low pass filter is 0.17Hz with resistance of 20K and capacitance of 40F 

as recommended by the flex sensor manufacturer. The actual analog output voltage (without 

amplifier and filter) and amplified and filtered analog output can be analyzed for one flex sensor 

for flat and full bent conditions. Figure 3.4 illustrates these two conditions where filter signal 

converges smoothly in direction of flat to fully bent.  

 

Figure 3.4 Flex sensor behavior with filter and without filter 

Implementing a low pass filter increases response time and decreases noise in signal. 

Figure 3.5 illustrates two responses where flex sensor (flat→bentflat) actual response rate was 

500ms. It is observed in Figure 3.5 that the filtered signal had a faster response rate than the non-

filtered signal. 

The flex sensor interfacing board was designed and fabricated based on above 

specifications. All five flex sensors are connected in parallel connection to maintain constant 
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voltage across each one. A 7805 voltage regulator is used to provide constant 5V across each 

voltage divider. 

 

Figure 3.5 Filtered and non-filtered analog voltage response time analysis. 

3.1.4 Force Feedback Interfacing Board 

Force feedback interfacing board receives analog signals from the force sensor attached to 

the prosthetic hand and transmits them to the myRIO as analog voltage. This interface consists of 

five voltage dividers (one for each sensor) connected in parallel to transmit the signals from five 

flex sensors to microcontroller for further computation. The operating procedure is similar to flex 

sensor circuit. The resistance in voltage divider is adjustable and allows one to increase or decrease 

its sensitivity.  

3.1.5 Communication with Wi-Fi and Spreadsheet. 

Another major advantage of the myRIO controller is its onboard Wi-Fi which establishes 

wireless communication between the host computer and the controller. This eliminates the use of 

a tethered USB cable connection which allows the host computer to control the prosthetic hand 
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from anywhere within the Wi-Fi range of up to 150m. The host computer running LabVIEW has 

the ability to deploy and run the program through Wi-Fi. In the preliminary stage, the user has to 

connect the myRIO to the host computer with a USB cable which detects the controller in the NI 

Measurement and Automation Explorer program. This procedure allows the user to setup the Wi-

Fi on the controller by configuring the IP address and setting up a Wi-Fi name. Afterwards, the 

USB cable is removed and a connection is established to the myRIO through Wi-Fi as shown in 

Figure 3.6. Once the Wi-Fi connection is established, the LabVIEW project can detect the myRIO 

through a wireless network and the user can deploy this project. 

 

Figure 3.6 Establishing Wi-Fi connection on myRIO using computer tools. 

LabVIEW provides flexible interface with computer data files. For example, LabVIEW 

can read data from a spreadsheet and process it, and again write data back to the spreadsheet file. 

Figure 3.7, shows the Read Delimited Spreadsheet VI available in LabVIEW that was used in this 

work. 
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Figure 3.7 Read Delimited Spreadsheet VI in LabVIEW 

3.2 Servo Motor Control 

3.2.1 Pulse Width Modulation 

As discussed in Chapter 2, servo motors are used to control the fingers of the RPH. 

However, the servo motor rotation has to be controlled accurately and precisely for gasping 

requirements. Servo motors operate with Pulse Width Modulation (PWM) signals which require 

two parameters, duty cycle and frequency. PWM produces repetitive pulse signals with desired 

duty cycle as shown in Figure 3.8. 

 

Figure 3.8 Pulse width modulation signal 

However, duty cycle and frequency are different depending on the type of servo motor 

used. The servo motor used in the current prosthetic hand is MG995 manufactured by Tower Pro 

which operates in the power range of 4.8V to 7.2V [31]. Most servo motors operate with duty 
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cycle range of 10% (pulse width 1ms) to 20% (pulse width 2ms) where 1ms is equal to 0 degrees, 

1.5ms is equal to 90 degrees and 2ms is equal to 180 degrees, for 20ms cycle time. The MG995 

servo motor has 20ms cycle time (50Hz). However, it operates between duty cycle range of 5% 

(0.5ms) to 20% (2ms) where 0.5ms equals 0 degrees, 1.25ms equals 90 degrees and 2ms equals 

180 degrees. This operation was determined experimentally.  

3.2.2 Servo Motor Angle to PWM calibration 

An algorithm was developed to convert servo motor angle into duty cycle according to 

desired user input angle. The duty cycle can be obtained by multiplying pulse width with 

frequency. Therefore, there is a linear relation between pulse width and servo motor angle. This 

algorithm is based on servo motor angle span of 0 to 180 degrees. The calibration is based on linear 

relationship according to Equation (3.4): 

 𝑃 =  𝑚𝐴 + 𝐶 (3.4) 

where, 𝐴 = desired servo motor angle in degrees, 𝑃 = output pulse width in millisecond, 𝐶 = initial 

duty cycle and  𝑚 =slope. The slope 𝑚 of equation (3.4) is 

 𝑚 =
𝑃𝑓−𝑃𝑖

𝐴𝑓−𝐴𝑖
 =

2−0.5

180−0
= 0.0083  

where, 𝐴𝑓 = final servo motor angle, 𝐴𝑖 = initial servo motor angle, 𝑃𝑓 = pulse width for final servo 

motor angle and 𝑃𝑖 = pulse width for initial servo motor angle. Solving Equation (3.4) with slope 

equal to 0.0083, a linear equation 𝑃 = 0.0083𝐴 + 0.5 can be obtained. Figure 3.9 shows the 

relation between pulse width and servo motor angle.  

          



37 

 

 

Figure 3.9 Pulse width versus servo motor angle  

The LabVIEW program requires duty cycle (seconds) and frequency (Hz) to generate the 

PWM signal to the servo motor as shown in Figure 3.10.  

 

Figure 3.10 Express VI to generate PWM signal in LabVIEW 

A sub-VI was developed to compute the duty cycle according to Equation (3.3) and it is 

represented in Figure 3.11. Note that the user must specify the constant parameters such as m, C 

and frequency.  
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Figure 3.11 Servo motor angle to duty cycle Sub VI 

3.3 Flex Sensor Read 

3.3.1 Analog Voltage to Servo Motor Angle Conversion Algorithm 

An algorithm was developed to convert the analog voltage output Vout   from the flex sensor 

into servo motor angle depending on maximum rotational limit (final servo motor angle) of the 

servo motor. The linear relation between analog voltage output and servo motor angle was 

developed based on flat and fully bent conditions of the flex sensor as shown in Equation (3.5). 

 𝑂𝑢𝑡𝑝𝑢𝑡 𝐴𝑛𝑔𝑙𝑒 =
(𝑈−𝑉𝑜𝑢𝑡)

(𝑈−𝐿)
× 𝐹𝑖𝑛𝑎𝑙 𝑠𝑒𝑟𝑣𝑜 𝑚𝑜𝑡𝑜𝑟 𝑎𝑛𝑔𝑙𝑒 (3.5) 

where, 𝑈 is the analog voltage output of flex sensor in flat condition and 𝐿 is the analog voltage 

output of flex sensor in fully bent condition. Note that the final servo motor angle is different for 

each finger. This relationship also allows the user to define the highest and lowest values of analog 

output voltage such that the servo motor work in the region between flat and fully bent conditions. 

A conditional flowchart was created to prevent malfunction of the servo motor and shown in Figure 

3.12.  
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Figure 3.12 Conditional flow chart to limit analog voltage between upper and lower bound. 

Even if the analog output voltage is higher than 𝑈 and lower than 𝐿, the calibrated output 

angle must not be lower than the initial condition and higher than the final condition to avoid 

damaging the servo motor. The sub-VI developed in LabVIEW that implements the flex sensor 

bent to motor angular rotation as shown in Figure 3.13. 

 

Figure 3.13 Sub VI to calibrate analog voltage to servo motor angle. 

3.3.2 Calibration 

An algorithm was developed to calibrate the change in analog voltage for the conditions of 

being totally flat and maximum bent position of flex sensor mounted on glove for home and final 

position of the servo motor.  
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Figure 3.14 Flex sensor glove and RPH mapping for flat and fully bent condition in index finger. 

Figure 3.14 shows the flex sensor in a flat and fully bent condition for the index finger 

and also shows the initial and final position of the RPH with desired servo motor rotation. 

Table 3.1 Relation between servo motor angles and flex sensor analog voltage and resistance 

Prosthetic 

Hand 

Servo motor angle 

(degrees) 

Flex Sensor Analog 

Output Voltage(V) 

Flex Sensor Analog Output 

Resistance(k) 

Initial Final Flat Fully Bent Flat Fully Bent 

Thumb 
0 90 0.651 0.355 12.776 26.000 

Index 
0 130 0.651 0.421 12.776 21.157 

Middle 
0 175 0.617 0.317 13.632 29.717 

Ring 
0 130 0.634 0.330 13.208 28.378 

Pinky 
0 90 0.552 0.252 15.650 37.972 

 

Note that the initial and final position for servo motor is related to the open and close 

position of each finger and thumb which is different for each finger due to RPH construction. 
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Therefore, experimental evaluation of each finger and thumb is necessary for different flex sensor 

bent conditions. The data for home and final position for each servo motor and flex sensor has 

been collected empirically and shown in Table 3.1 

The analog output voltage of the flex sensor is calculated in its flat position and maximum 

bent positions. Then, these two values were correlated with the finger and thumb’s open and close 

positions. Therefore, the user can control each servo motor with each flex sensor. Table 3.1 shows 

that 0 degree corresponds to 0.651 V and 90 degrees corresponds to 0.355 V for the thumb which 

indicates that an inversely proportional relationship exist between servo motor angle and analog 

voltage. This relationship was developed for each finger. However, it is proportional to analog 

resistance from the flex sensor. The difference for fully bent and flat condition for analog output 

voltage and servo motor angle is shown in Table 3.2. 

Table 3.2 Calibration from flex sensor to servo motor  

Prosthetic 

Hand 

Servo motor 

angle difference 

Flex Sensor Analog 

Output Voltage 

Difference 

Calibration 

Flat (initial angle of servo motor)-

voltage difference=Fully bent  

(final angle of servo motor) Final-Zero Flat-Fully Bent 

Thumb 
90 0.296 0.651(0º)-0.296=0.355(90º) 

Index 
130 0.230 0.651(0º)-0.230=0.421(130º) 

Middle 
175 0.300 0.617(0º)-0.300=0.317(175º) 

Ring 
130 0.304 0.634(0º)-0.304=0.300(130º) 

Pinky 
90 0.300 0.552(0º)-0.252=0.300(90º) 

 

While calibrating, analog voltage values have been taken at a lower value for the flat flex 

sensor condition and a higher value for a fully bent flex sensor condition. The actual values are 
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calculated with fully flat and fully bent conditions of the human hand which will be not similar 

every time. This motivates the use of lower calibrated values than actual values. Table 3.3 shows 

the calibrated analog voltage versus the actual analog voltage for flat and fully bent conditions. 

However, these values will vary depending on the user. 

Table 3.3 Actual versus calibrated analog voltage bounds for flex sensor 

Prosthetic 

Hand 

Calibrated Flex Sensor 

Analog Output Voltage(V) 

Actual Flex Sensor Analog 

Output Voltage(V) 

Flat Fully Bend  Flat Fully Bend 

Thumb 
0.620 0.360 0.651 0.355 

Index 
0.620 0.440 0.651 0.421 

Middle 
0.580 0.300 0.617 0.317 

Ring 
0.620 0.400 0.634 0.330 

Pinky 
0.520 0.300 0.552 0.252 

 

 

Figure 3.15 Servo motor angle vs glove flex sensor output graph 
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The linear relationship between the flex sensor calibrated analog voltage and servo motor 

angle for all fingers and thumb is shown in Figure 3.15 which illustrates that the behavior of the 

index and ring finger is similar. Moreover, the behavior of the thumb and pinky finger is similar. 

However, the behavior of middle finger is different. This behavior depends on physiology, 

geometry and actuation mechanism of prosthetic hand. Moreover, the relationship between the 

flex sensor’s analog resistance and servo motor angle can be modified by recording the glove 

movements with RPH movements.  
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CHAPTER 4  

GRASP LEARNING IN PROSTHETIC HAND 

The previous discussion was focused on creating a versatile platform, to perform object 

grasping tasks using software and hardware tools. The goal of this thesis is to implement decision 

making in a prosthetic hand to grasp different geometrical objects based on their geometrical 

properties and location in three dimensional space. This procedure is divided in two stages. In the 

first stage, the knowledge data collected consists of various objects and desired grasping patterns, 

which are generated manually in order to implement supervised learning on a prosthetic hand. In 

the second stage, the data is passed through the back propagation learning algorithm which 

approximates nonlinear functions (weights) representing a relationship between the object location 

and geometry (input) and the grasping pattern (output) of the RPH. In evaluation part, this 

nonlinear relationship is used to approximate output based on input. These two stages are 

integrated in the LabVIEW GUI developed for this research. The first stage through manual or 

glove control generates the knowledge data set and the second stage has an automatic and artificial 

neural network control to evaluate data learning by predicting grasping pattern.  

The first and second stages are implemented in the LabVIEW block diagram program using 

an event structure and global variables. The event structure is a conditional structure that waits 

until the next event occurs to perform selected task defined by user [28].  Event structure is used 

to handle multiple tasks in LabVIEW. Global variables are generally used to pass data among 

several different VIs thus eliminating multiple wire connection for complex block diagrams.   
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4.1 Generating Knowledge Data for Prosthetic Hand 

The user has two possible controls to generate knowledge data using the developed 

software and hardware tools according to flow chart shown in Figure 4.1. Manual control and 

glove control are two options available in the LabVIEW GUI to control the RPH. 

 

Figure 4.1 Flow chart to generate knowledge data in RPH. 

The function of manual control is to control each servo motor connected to fingers and 

thumb using a vertical slider (having the user control the slider with the mouse) as shown in Figure 

4.2. The vertical slider is connected at the end of the servo motor calibration algorithm to perform 

this operation. Additionally, numerical control is available to manipulate the prosthetic hand with 

a desired servo motor angle. 
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Figure 4.2 Manual control GUI 

A flexible logic scheme was created in LabVIEW to switch from manual control to glove 

control in real-time. Glove control maps the human hand motion to the prosthetic hand as discussed 

in Chapters 2 and 3. In this control modality, the GUI was created to visualize analog resistance 

and analog voltage in the flex sensor and mapped servo motor angle in the prosthetic hand as 

shown in Figure 4.3.  

 

Figure 4.3 Glove control GUI 

The glove control GUI has the ability to reset analog voltage bounds for open and close 

conditions of data glove. Grasping of an object is performed by selecting manual or glove control 

individually on host computer.  
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Object grasping is divided in two parts. In the first part, grasping is performed on different 

objects with similar locations with respect to the Z-axis. The objects chosen for the initial focus of 

this study are cylinders and spheres, as shown in Figure 4.4. 

 

Figure 4.4 Geometrical grasping using glove and manual control. 

The geometrical parameters such as diameter and height of the objects shown in Figure 4.4 

are presented in Table 4.1 where C indicates cylinder and S indicates sphere.  
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Table 4.1 Geometrical parameters of objects used in Figure 4.4 

 Characteristics Diameter (mm) Height (mm) 

(a) C1 51.5 197 

(b) C2 40.5 202 

(c) C3 79.1 102.3 

(d) C4 35.5 47.8 

(e) C5 49.4 51 

(f) S1 50 50 

 

In the second part of the learning procedure, grasping is performed on the same object by 

changing the location of the object with respect to the Z- axis.  The task is performed particularly 

on cylindrical objects to demonstrate the relationship between the object location and desired 

grasping pattern as shown in Figure 4.5.  

It is observed that the grasping pattern changes for an object due to its location with 

reference to Z-axis. For instance, only the index finger and thumb are used to grasp the object in 

Figure 4.5(d) because it is not necessary to use all fingers for grasping based on the location of the 

object. These results show that the location of the object is an important parameter that needs to 

be considered to generate a proper grasping pattern.  
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Figure 4.5 Cylindrical object grasping considering various locations. 

After performing the grasping task on several cylindrical and spherical objects, the 

geometrical data and location (input) of object and desired servo motor angles (output) were saved 

in a spreadsheet as shown in Appendix C. This dataset is the knowledge data for grasp learning. 

Two major behaviors observed during grasping experimentation.  

1. Increase in object diameter decreases the servo motor angle for cylindrical objects.  

2. Change of the location of object changes the resulting grasping pattern.  

The main purpose of creating knowledge data is to develop these behaviors in a prosthetic 

hand through machine learning. 

4.2 Learning and Evaluation using Back Propagation Algorithm 

The previous sections explained the procedures used to create knowledge data set which is 

required for implementing supervised learning in the prosthetic hand. This section focuses on 

implementing the decision making algorithm in the prosthetic hand through learning.  
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Figure 4.6 Flow chart to implement artificial neural network control. 

Figure 4.6 shows the procedure for artificial neural network (ANN) learning and evaluating 

to grasp various objects using the RPH. Additionally, automatic control provides the flexibility to 

perform the object grasping using knowledge data by selecting object characteristic in LabVIEW 

GUI. 

4.2.1 Knowledge Data Learning 

The machine learning toolkit in LabVIEW was used to learn grasping patterns in the RPH. 

The spreadsheet with knowledge data is imported into LabVIEW block diagram. The knowledge 

data was transformed in two matrices such as input object location and geometry and output object 

grasping pattern as shown in Appendix C. This data contains training data sample for a three-layer 

back propagation (BP) learning algorithm. The back propagation learning algorithm requires a 

user to define the inputs, hidden neurons and output as discussed in Section 2.4.3. The inbuilt 

LabVIEW BP learn VI used to “learn” a grasping pattern is shown in Figure 4.7.  
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Figure 4.7 BP Learn VI description 

The BP Learn VI requires training data samples (input matrix) and training outputs (desired 

output matrix) generated from knowledge data. It also requires, the number of hidden neurons and 

the stopping criteria which allows one to define the maximum number of iterations. The output of 

the VI is the minimum mean square error (MSE) based on the performance of artificial neural 

network. The BP learn VI consisting back propagation learning algorithm trains the knowledge 

data and calculates the mean square error for a desired number of iterations as shown in Figure 

4.8.   

 

Figure 4.8 Knowledge data learning consisting input, output, stopping criteria and MSE 
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The graphical representation of back propagation learning is developed as shown in Figure 

4.9. The GUI also represents input data set, output data set and MSE using indicators. Moreover, 

it also provides facility to define maximum number of iterations and number of hidden neurons.   

 

Figure 4.9 Back propagation learning GUI 

There are two possible approaches to increase the performance of the back propagation 

learning (minimize the MSE). In first approach, the behavior of MSE can be checked by increasing 

the number of hidden neurons by keeping maximum number of iterations constant. Figure 4.10 

shows that with increase in the number of hidden neurons, the MSE decreases drastically in the 

beginning and afterwards there is no significant change for 28 samples and 1000 iterations. 

Likewise, the relationship between the MSE and number of hidden neurons is a decreasing 

exponential in the beginning, however, afterwards there is a first order relationship. This concludes 

that there is no remarkable change in MSE after increasing more than 5 hidden neurons as shown 

in Figure 4.10  
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Figure 4.10 MSE versus hidden neurons graph for 28 patterns 

The convergence behavior of MSE error depends on the number of patterns in the 

knowledge data. Figure 4.10 shows the behavior for 28 patterns available in knowledge data.  It is 

observed that the MSE is 7.4 for 24 hidden neurons which is lowest when 26 hidden neurons are 

used in experiment.  In second approach, the MSE decreases by increasing the number of iterations 

and keeping the number of hidden neurons constant (24 Hidden neurons) as shown in Figure 4.11. 

Similarly, in the beginning, there is a decreasing exponential relationship between the MSE and 

the number of iterations. However, after 1000 iterations the behavior becomes linear and there is 

no significant change in MSE if the number of iterations increases. 
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Figure 4.11 MSE versus iterations graph for 28 patterns. 

In this case, the MSE is 0.65 for 100,000 iterations which is lowest value of MSE calculated 

during experimentation. However, increasing the amount of iterations increases the computation 

time which might be prohibitive for large data sets.  The computing time is not important in 

supervised learning because the network will save nonlinear approximation function (weights and 

biases) after back propagation learning and will use this saved function to approximate grasping 

pattern based on object location and geometry.   

4.2.2 Evaluating Knowledge Data 

Once a nonlinear relationship is developed between the object location and geometrical 

parameter (input) and grasping pattern (output), the next and last step is to evaluate the learned 

network in evaluating the outputs based on inputs. The BP Evaluate VI in LabVIEW is used to 

evaluate learned network (BP Learn) for arbitrary inputs as shown in Figure 4.12. 
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Figure 4.12 BP Evaluate VI description. 

BP Evaluate VI requires two important components such as learned back propagation 

project (weights evaluated by BP learn VI) and test data samples (arbitrary Inputs for testing) as 

shown in Figure 4.12. Additionally, it requires test outputs which are known outputs. However, it 

is not necessary to provide test outputs since the target is to evaluate this outputs. At the end, the 

VI approximates outputs in terms of servo motor angles (grasping pattern) based on nonlinear 

relationship with inputs (object diameter, height and location) as shown in the GUI in Figure 4.13 

 

Figure 4.13 Back propagation evaluate GUI with speed control. 

The machine learning evaluation process will be analyzed in three different stages 

1. Evaluate grasping pattern for known object. 

2. Evaluate grasping pattern for unknown object. 
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3. Speed control and angle joint limits on Evaluated grasping pattern. 

The input set with information of object geometrical features and location, is a 1×3 matrix 

[diameter (mm), height (mm), location (inch)], and the output set with information of the grasping 

pattern is a 1×5 matrix [index, middle, ring, pinky, thumb] in degrees. In the first stage, a known 

object C1 (input: [51.5, 197, 5.5]) is entered in evaluation process where the network approximates 

grasping pattern output as [56, 112, 81, 33, 76]. It is observed that there are differences of [-3, -7, 

4, -3, -6] between actual and approximated output. Moreover, the evaluation is also performed on 

C2 object to evaluate the network performance and the difference between actual and 

approximated output is [-2, 1, 1, 1, -3] as shown in Figure 4.14.  

 

Figure 4.14 Relationship for Actual vs ANN output. 
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The difference in the angular rotation of each servo motor is within acceptable range and 

is relatively low with respect to actual output. Note that these results are calculated for a learned 

network with 24 hidden neurons, 1000 iterations and 28 patterns. However, more accurate outputs 

could be achieved by increasing knowledge data (patterns).  

Based on current prosthetic hand physiology and actuation, the servo motor angle 

difference of ± 5 degree for Thumb, ± 10 degree for Index, ±15 degree for Middle, ±10 degree for 

Ring and ±5 degree for pinky are the acceptable angle difference.   

In the second stage, the unknown input property set of an unknown object [input: 61, 147, 

6.5] is entered in evaluation process. The network approximates the grasping pattern as [output: 

51, 132, 116, 6, 74]. The grasping pattern is shown as lapsed photography sequence in Figure 4.15. 

 

Figure 4.15 Grasping considering object location 
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It is observed that for an object with a height of 6.5 inches from base, the pinky finger was 

not used in knowledge data. For the unknown object, the estimated servo motor angle for pinky 

finger is 6 degrees which is almost negligible. Moreover, as the object diameter increases, the 

servo motor angle for the index finger decreases, which is observed for this unknown object 

grasping pattern.  The index finger servo motor angle is 60 degrees for a 51.5mm diameter object 

and the approximated servo motor angle is 51 degrees for a 61mm diameter object in the evaluation 

procedure. These two observations conclude that the neural network output approximation is 

satisfactory in most of cases. It is important to mention that this approximation is expected to 

properly work within the minimum and maximum input range used for training. An input outside 

that range might produce an unstable output which is not in range of servo motor angles for each 

respective finger. 

The third stage is concerned with the safety of RPH and the object. It is possible that neural 

networks may approximate an output outside of servo motor angle limits which can damage the 

RPH. Therefore, a conditional algorithm considering servo motor angle limits was developed in 

LabVIEW Mathscript which restricts the output in servo angle limit for each finger. The 

Mathscript allows to perform text base programming in LabVIEW. Moreover, the order of finger 

and thumb closing and its closing speed can cause considerable damage to the object. In the RPH, 

the thumb always has to close first to grasp most objects due to the mechanical constraints of hand 

as discussed in Section 2.2. A conditional logic in the LabVIEW program is developed which will 

always close the thumb first and then the other fingers in the grasping operation.  Moreover, the 

speed control algorithm is created in LabVIEW program to control the closing speed of fingers as 

the ratio of the derived servo motor angular rotation divided by the desired time in degrees per 

second. The LabVIEW GUI is created to control the rotational speed of each finger with numerical 
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control as shown in Figure 4.16. The finger stops closing at the approximated servo motor angle 

given by the BP Evaluate VI. 

 

Figure 4.16 Speed control of each finger LabVIEW GUI 

The object grasping can be performed on various objects using the above three stages. The 

machine learning performance should be further analyzed for grasping various objects. 
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

A research platform has been successfully developed to investigate human robot interaction 

and robot learning on a RPH. The hardware and software modules have an ability to expose the 

grasping capabilities of prosthetic hand. The goal of this research was to train a RPH to grasp 

various objects using HRI and ANN. The technique that integrates manual, glove and artificial 

neural network control helps to improve grasping capabilities of the RPH. The programming 

software LabVIEW controls the entire grasping process with three different controls in real-time 

through a wireless network connection.  The successful grasping is performed on known as well 

as unknown objects by prosthetic hand using machine learning module in LabVIEW. The grasping 

results are verified experimentally in a laboratory setting. Only selected objects can be grasped 

due to mechanical constraints of the RPH. 

The current servo motor interface board can handle five servo motors in real-time to 

perform actuation on prosthetic hand. The linear mapping is successfully performed on RPH using 

data glove. The mapping can be performed by polynomial relation. However, it requires vision 

system to capture the hand motion and glove motion. The flex sensor interface board is developed 

in laboratory which transmits glove signals to RPH. The interface board has capability to expand 

inputs and outputs based on improvements in the hand and glove designs.  

The feed forward three-layer artificial neural network based on back propagation algorithm 

is used to generate nonlinear system architecture between object geometry and location (inputs) 
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and desired grasping pattern (outputs). The inputs and outputs are generated using the data glove 

and manual control to grasp various objects. This data was then stored in spreadsheet file which 

simplifies editing and updating the knowledge data set.     

The back propagation neural network algorithm allows the user to train the RPH to grasp 

various objects considering their geometry and location. The learning process has ability to update 

training data in real-time with the use of a spreadsheet file. The approximated grasping pattern 

successfully grasped known and unknown, objects with acceptable servo motor angle without 

considering contact force. Grasping can be improved by providing more knowledge data patterns 

to train and reduce the mean square error of the neural network. Therefore, grasping a large number 

of various object could improve the learning process of the RPH. 

Another approach to reduce the mean square error is to increase the number of hidden 

neurons and number of iterations. However, both of these approaches increase computation time. 

Speed control on each finger was successfully implemented to avoid damage to the object during 

grasping process.  The grasping performance of the RPH has improved by introducing machine 

learning.   

5.2 Future Work 

Even though the RPH is able to adequately grasp objects, the user is not able to control 

each finger joint individually. Additional issues to be studied relate to degrees of freedom of thumb 

that acts as a supporting part for grasping any object. It is recommended that improvements in 

fingers and thumb actuation design are implemented for better grasping performance. The current 

actuation depends on two components such as, the gear design attached to the motor and tension 

of the cable attached to the gear. These components are important to achieve consist results in 

object grasping using RPH. 
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It was also noticed that every time an object had to be positioned near the palm in order to 

perform grasping because there is no actuation on the wrist or elbow joint. Therefore, it is assumed 

that the hand will perform grasping after finding the location of the object. Instead of changing the 

entire concept, only a few output parameters in knowledge data will increase by introducing wrist 

and elbow actuation in prosthetic hand. 

The current flex sensor glove is mapped based on linear mapping. A new mapping scheme 

could be implemented by mapping several bending positions of prosthetic hand and data glove 

with a vision system.  

The back propagation algorithm is used for supervised grasp learning in the RPH. 

However, there are several other supervised learning algorithms available in LabVIEW that should 

be experimented for future work. Additionally, there are deep learning and reinforcement learning 

algorithms available to handle large data. However, they require expensive computation resources 

and time to understand the procedure. Moreover, if the variations in object properties are larger, 

the neural network classification algorithm can be implemented on object to group object based 

on its features before supervised learning.  

During the grasp evaluating procedure, the geometrical parameter and location of object 

were entered manually. However, a vision system can be incorporated to recognize the object 

shape and location thus automating the entire procedure. A limited number of objects were taken 

for the preliminary experiment. However, versatility in the object grasping can be achieved by 

increasing number of objects.  

Currently, Wi-Fi connection is used to interface software and hardware. However, 

LabVIEW has ability to use web services to receive commands through internet. Therefore, it 

would be a more expandable platform if web services were used to control the RPH. 
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These recommendations show how this research is expandable and where the current state 

is. The final goal is to improve human robot interaction and robot learning in RPH. 
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APPENDIX A 

LABVIEW GUI 
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APPENDIX B  

WIRING DIAGRAM  
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