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Abstract 

 
DYNAMIC CONSTRAINT OPTIMAL SELECTION TECHNIQUES FOR LINEAR 

PROGRAMMING 

 

 

Alireza Noroziroshan, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: H.W. Corley 

Linear programming has been studied for over 60 years. It has been considered 

as one of the most valuable optimization tool for many industrial problems. The simplex 

algorithm remains the predominant approach to solving linear programming problems. 

Here we use the simplex method in an active-set frame work to improve it substantially. In 

general an active-set method obtains solutions by adding one or more problem constraints 

at a time to solve smaller problems iteratively. In particular, some of these methods have 

proven to perform significantly faster than the simplex method. In this dissertation we 

proposed an efficient constraint selection metric for NNLPs called NVRAD to add 

constraints recursively in two ways; using posterior method and dynamic active-set 

approach for both nonnegative linear programming and general linear programming. In 

general linear programming we improve on past prior active-set methods by using dynamic 

constraint selection technique. These innovations improved the solver’s performance and 

reduced the computation time needed to solve large-scale linear programming problems.  



  

vi 

Table of Contents 

Acknowledgements .............................................................................. …………………….iv 

Abstract ............................................................................................................................... v 

List of Illustrations ............................................................................................................. ixx 

List of Tables ....................................................................................................................... x 

Chapter 1 Introduction……………………………………………………...………...................1     

1.1 The Linear Programming Problem………………………………………..…...….........1 

1.2 Objectives of the Work………………………………….….…….……...…..…….….…3  

1.3 Brief Description of COSTs ………………………………………..…...…...................3 

1.4 Contribution ………………………………….….…….……...…..…………….……...…4  

1.5 Overview of the Dissertation ……………….….…….……...…..…………….….….…5  

Chapter 2 Background ........................................................................................................ 6  

2.1 Introduction ………………………………………..…...….........…………..….………..6 

2.2 Non-negative Linear Programming……………….….…….………..…..……….….…7  

2.3 Constraint Selection Metric.……………………………………..……...…...................7 

2.3.1 Sub …………………………….….…….……...…..…………….…..…………...…8 

2.3.2  Cosine……………………………………………………………………….……….8 

2.3.3 VIOL.………………………….….…….……...…..…………….…..…………...…..9 

2.3.4  RAD……………………………………………………………………..….……….10 

2.3.5 VRAD………………………….….…….……...…..…………….…..…...………...12 

2.3.6  GRAD……………………………………………………………………….………12 

2.4 General Approach to Active-set …………………………………..…...….................12 

2.5 Historical Perspective ……………….….…….……...…..…………….….………..…13  

2.6 Large-Scale Linear Programming ……….….…….……....…..…………….….….…14  

2.6.1 Delayed Column Generation ………………………………………….....…....…15 



  

vii 

2.6.2 Sifting (Sprint)………………………………………….…..…………........…....…16 

2.7 Pivoting Rule ……….….…….……...…...…..…………………………….….….….…16 

2.7.1 Full Pricing ………………………………………..………………………...…...…16 

2.7.2 Partial Pricing ………………………………………………………...........…...…17 

Chapter 3 Prior COSTs Improvement ........................................................................ ……18  

3.1 Introduction ………………………………………………………..…...…....................18 

3.2 Dynamic Active-Set Approach for NNLP ………………………………..……….......18 

3.3 Dynamic Active-Set Approach for LP.………………..…………..……….................19 

3.4 Problem Instances & CPLEX Pre-processing ………………………………............21 

3.5 Computational Experiments for NNLP………… ………………………..…..............22 

3.6 Computational Experiments for LP ……………………..……….…...…...................23 

3.7 Conclusion ……………………..……….…...…........................................................29 

Chapter 4 Posterior COSTs .............................................................................................. 30  

4.1 Introduction ………………………………………………………..…...…....................30 

4.2 Overview ….………..…...…..................…….........…….........….….........................30 

4.3 Explanation of NVRAD ….………..…...…….……..............…….........….................31 

4.4 Dynamic COST NVRAD …….………..…...………………......................................32 

4.5 Computational Experiments …….………..…...………..................…......................36 

4.6 Problem Instances …….………..…...…….…….........…….........…….....................36 

4.7 CPLEX Processing …….………..…...………….........…….........…….....................37 

4.8 NVRAD Computation Results …….………….........…….........…..…...……............37 

4.9 Conclusions …….………..…...……...…….........…….........…….............................45 

Chapter 5 Application to Column Generation & Entering Variable Rules……………...….46 
 

5.1 Entering Variable Rules….………..…...…...….......…...……...……....….................46 

5.2 Entering Variable Rule by DRAD ….………..…....…...……...…...…......................46 



  

viii 

5.3 DRAD Column Generation ….………..…..…...…..…...…...…........……..…...........50 

5.4 Dynamic DRAD COST ….………....…...…..…...……...…..........…….....................51 

Chapter 6 GRAD for Equality Constraints………………………………………….………...53 

 

Chapter 7 Conclusion and Future Research…………………………………………….…...57 

 
References ..........................................................................................................…………58 

Biographical Information .....................................................................................…………61 

 



  

ix 

List of Illustrations 

 
Figure 2.1 Constraint selection technique based on maximum cosine value………………8 

Figure 2.2 Geometric description of VIOL…………………………………………………….10 
 
Figure 2.3 Geometric interpretation of RAD…………………………………………………..11 
 
Figure 4.1 An ideal changing angle between 𝒙𝑟

∗  and 𝒄……………………………………...33 
 
Figure 5.1 Interpretation of DRAD and complementary slackness………………………...49 
 
 



  

x 

List of Tables 

Table 3.1 Results from dynamic RAD and COST RAD for set 1- set 4…………………...25 
 

Table 3.2 Results from the CPLEX primal, the dual simplex, and the barrier method  
for set 1-set 4…………..………………………………………………………………………..26 
 

Table 3.3 Comparison of computation times of CPLEX solvers, GRAD, and VIOL both 
using dynamic active-set and multi-cut method on general LP problem set .................... 27 
 

Table 3.4 Comparison of computation times of GRAD using dynamic active-set 
 and fixed cut method on general LP problem set ………..…………………………………28 
 
Table 4.1 Comparison of CPU times to illustrate the effect of multi-cuts and  
multi-bounds and dynamic active-set approach on problem Set1…………………………38 
 
Table 4.2 CPU Times from RAD (multi-cuts and multi-bounds), and NVRAD using 
dynamic active-set method for set1-set 4…………………………………………………….39 
 
Table 4.3 Result obtained from Dynamic RAD and hybrid method for Set1-Set4……….41 
 
Table 4.4 Result obtained from primal, dual simplex and barrier for set1-set4………......43 
 
Table 4.5 The comparison of computation times of dynamic active-set method and 
bounding technique……………………………………………………………………………..44 
 
Table 5.1 Comparison of the number of the iterations between different variable  
entering rules…………………………………………………………………………………….47 
 
Table 5.2 Comparison of the number of the iterations between different variable 
entering rules…………………………………………………………………………………….48 
 
Table 5.3 The comparison of computation times of DRAD Column Generation, 
Sifting, Primal, Dual, and Barrier………………………………………………………………52 
 
Table 6.1 The computation times of dynamic GRAD and CPLEX used for equality 
constraints…………………………………………………………………………………..…...54 
 
Table 6.2 A comparison of the CPLEX pre-solver’s performance on equality and 
inequality constraints……………………………………………………………………………55 
 
Table 6.3 A comparison of the CPLEX’s performance on mixed equality-inequality 
constraints NNLPs and dynamic RAD………………………………………………………..56 
 
 
 

 



  

1 

 

Chapter 1  

Introduction 

1.1 The Linear Programming Problem 

 
Linear programming algorithms have been studied for over sixty years and it has 

been considered as an optimization tool for several problems. Consider the following linear 

programming problem 𝑃:  

(P)          𝑀𝑎𝑥  𝑧 = 𝒄𝑇𝒙 (1.1) 

𝑠. 𝑡.  

                  𝑨𝒙 ≤ 𝒃 (1.2) 

                    𝒙 ≥ 𝟎,  (1.3) 

 
where 𝒙 and 𝒄 are the n-dimensional column vectors of variables and objective coefficients, 

respectively, and 𝑧 represents the objective function. The matrix 𝑨 is an 𝑚 × 𝑛 matrix [𝑎𝑖𝑗] 

with row vectors 𝒂1, … , 𝒂𝑚; 𝒃 is an m-dimensional column vector; and 𝟎 is an 𝑛-dimensional 

column vector of zeros. The non-polynomial simplex methods and polynomial interior-point 

barrier-function algorithms illustrate the two different approaches to solve problem P. There 

is no single best algorithm [1]. For any existing approach, there is a problem instance for 

which the developed method performs poorly [2], [3]. However, interior point methods do 

not provide efficient post-optimality analysis, so the simplex algorithm is the most frequently 

used approach [2], even for sparse large scale linear programming problems where barrier 

methods perform extremely well. In fact, the simplex method has been called “the algorithm 

that runs the world” [4], yet it often cannot efficiently solve the large scale LPs required in 

many applications. 

We consider both the general linear program (LP) and the special case with  𝒂𝒊 ≥

𝟎 and 𝒂𝒊 ≠ 𝟎, ∀𝑖 = 1, … , 𝑚; 𝒃 > 𝟎; and 𝒄 > 𝟎, which is called a nonnegative linear program 

(NNLP). NNLPs have some useful properties that simplify their solution, and they model 
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various practical applications such as determining an optimal driving route using global 

positioning data [5] and updating airline schedules [6], for example. 

After introducing the simplex method by George B.Dantzig in 1949, many 

individuals have conducted theoretical and computational research in the field of linear 

programming. For a wide range of problems, the simplex algorithm is capable of producing 

solution in a reasonable amount of time and it allows an efficient post optimality analysis. 

Simplex is known as a combinatorial algorithm in which the problem complexity increases 

by the order of the problem size. However, in practice, simplex is able to solve problems 

with complexity proportion to 𝑛 + 𝑚.  

Since the principle use of LP in industrial applications is in binary and integer 

programming algorithms, however, pivoting algorithms with efficient post-optimality 

analysis are frequently preferable to interior-point methods. On the other hand, simplex 

methods often cannot solve large-scale LPs at a speed required by many current 

applications. 

In many linear programming problems, the majority of constraints will be redundant 

and they won’t bind at optimality. Active-set method is a method in which solution is 

achieved by adding one or more constraints at a time to solve small subset of problems 

iteratively. Our approach divides the constraints of problem 𝑃 into operative and inoperative 

constraints at each iteration. Operative constraints are those active in a current relaxed 

subproblem 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃, while the inoperative ones are constraints of the problem 

𝑃 not active in 𝑃𝑟 .  In our active-set method we iteratively solve 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃 after 

adding one or more violated inoperative constraints from (1.2) to 𝑃𝑟−1 until the solution 𝒙𝑟
∗ to 

𝑃𝑟 is a solution to 𝑃. 
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1.2 Objectives of the Work 

This research focuses on developing new active-set methods as well as new 

constraint selection metric that outperform the current existing active-set methods in 

solving both non-negative linear programming and general linear programming problems. 

Each new developed method is termed a Constraint Optimal Selection Technique (COST). 

COSTs can be categorized in two main classes, prior and posterior. Prior COSTs only 

utilize the global information of a subset of constraints (relaxed LP problems) while 

posterior COSTs use current optimal solutions 𝒙𝑟
∗  of the relaxed problem to measure the 

likelihood of binding constraint at optimality. A constraint selection metric and two dynamic 

active-set approaches are developed, implemented and tested. The efficiency of the 

proposed algorithms is tested by several test problems. For the majority of the problems, 

the developed methods reveal superior performance than the existing methods in large-

scale optimization experiments. 

1.3 Brief Description of COSTs 

All constraints are sorted with respect to their probability of binding at optimal 

solution by using a certain constraint selection metric. Our approach divides the constraints 

of problem 𝑃 into operative and inoperative constraints at each iteration. Operative 

constraints are those active in a current relaxed sub-problem 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃, while the 

inoperative ones are constraints of the problem 𝑃 not active in 𝑃𝑟 .  In our active-set method 

we iteratively solve 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃 after adding one or more violated inoperative 

constraints from (1.2) to 𝑃𝑟−1 until the solution 𝒙𝑟
∗ to 𝑃𝑟 is a solution to 𝑃. 

In order to maintain appropriate level of progress we propose a dynamic method 

that adds a varying number of constraints to 𝑃𝑟 that depends on the progress made at 𝑃𝑟−1. 

No equality constraints are considered here, but any equality constraints can be included 

in 𝑃0. An active-set function is defined to compensate for the lack of progress in 𝑃𝑟−1 by 
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adding more violated constraints at 𝑃𝑟. The algorithm stops when the solution 𝒙𝑟 
∗ to 𝑃𝑟 is the 

optimal solution to 𝑃.  

1.4 Contribution 

In this research, five different methods are developed to enhance the efficiency of 

the current linear programming algorithms. The developed techniques are as follows. 

I. Dynamic active-set method for NNLPs  

II. 𝑁𝑉𝑅𝐴𝐷(𝒂𝒊, 𝑏𝑖 , 𝒄) =
𝒂𝑖

𝑇𝒄 

𝑏𝑖
2 ( 𝒂𝒊𝒙

∗ − 𝑏𝑖) 

III. Dynamic active-set method for GLPs  

IV. Dynamic column generation using DRAD (𝒂𝑗𝑇
, 𝒃, 𝑐𝑗) = { 

𝒂𝑗𝑇
𝒃

𝑐𝑗
 |𝒂𝑗𝑇

𝒚𝑟
∗ < 𝑐𝑗} 

V. Dynamic COST (𝒂𝑗𝑇
, 𝒃, 𝑐𝑗) = { 

𝒂𝑗𝑇
𝒃

𝑐𝑗
 } for dual of 𝑃 

The main contributions of this research are  

i) A new technique of dynamically adding multiple cuts at 𝑃𝑟 based on the 

obtained progress at 𝑃𝑟−1  is incorporated into the NVRAD and GRAD for 

NNLPs and GLPs respectively.  

ii) Introducing a posterior constraint selection metric NVRAD(𝐚𝑖 , b𝑖 , 𝐜, 𝒙∗) =

𝒂𝑖
𝑇𝒄

𝑏𝑖
2 ( 𝒂𝑖𝒙

∗ − 𝑏𝑖). 

iii) A new dynamic active-set method is incorporated into the NVRAD for NNLPs.  

iv) Implementing a dynamic active-set method to increase the efficiency of the 

GLPs. 

v) Creating sets of randomly generated non-negative linear programming and 

general linear programming problems and evaluating the performance of the 

developed prior and posterior COST methods on these problems. 

vi) Using DRAD as a Column generation method  
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vii) Using DRAD COST as a constraint selection metric in Dual of 𝑃. 

viii) Experimenting CPLEX and our method for equality constraints and comparing 

the results.  

 

1.5 Overview of the Dissertation 

This thesis is organized into seven chapters. Chapter 2 includes some essential 

definitions, keywords and basic concepts of optimization techniques as well as brief 

explanation on theoretical background, related works and historical perspective. A dynamic 

active set method for general linear programming is discussed in Chapter 3 and the results 

are compared with the existing methods for GLPs. In Chapter 4, NVRAD is introduced as 

a constraint selection metric for NNLPs along with its geometric interpretation. In the same 

chapter, the proposed method is applied on randomly generated NNLP problems and the 

importance of posterior methods is discussed in detail. Chapter 5 contains discussions on 

variable entering rules and column generation techniques in linear program problems. A 

new column generation method is developed and the results are compared with the Sifting 

method on test problems. Chapter 6 discusses a method for solving large-scale linear 

programing problems with equality constraints. The conclusion and the possible future 

works of this study are discussed in Chapter 7. Chapter 3, 4, and 5 each represents journal 

papers either published or submitted.  
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CHAPTER 2 

Background  

2.1 Introduction 

The preliminary definitions and general aspects of linear programming are briefly 

summarized in this chapter.  

2.2 Non-negative Linear Programming 

Nonnegative linear programing problem (NNLP), which is the special case of 𝑃 

with 𝒂𝒊 ≥ 𝟎 but 𝒂𝒊 ≠ 𝟎, ∀𝑖 = 1, … , 𝑚; 𝒃 > 𝟎; and 𝒄 > 𝟎. NNLPs model a large portion of 

linear programming applications such as determining the optimal driving path for navigation 

systems using traffic data [5], updating flight status due to the variations occurring in 

passenger loads or weather conditions [2], and detecting common errors in DNA 

sequences [7]. NNLPs have the following two important properties.  

 The origin 𝒙 =  𝟎 is feasible, 

 𝑥𝑗 ≤  min
𝑖=1,…𝑚

{
𝑏𝑖

𝑎𝑖𝑗
: 𝑎𝑖𝑗 > 0} , ∀𝑗 = 1, … , 𝑛 . 

 

Thus NNLPs have both a bounded feasible region and a bounded objective 

function if and only if no column of 𝑨 is a zero vector, and so their boundedness is easily 

verifiable without computation. 

Active-set methods have been studied by Stone [8], Thompson et al. [9], Adler et 

al. [10], Zeleny [11], Myers and Shih [12], Curet [13], and Bixby et al. [1], among others. 

The term ‘‘constraint selection technique’’ was introduced in [12], while the approaches of 

[10] and [8] illustrate two distinct classes of active-set methods. When the constraint 

selection metric for choosing violated inoperative constraints to be added to 𝑃𝑟 does not 

depend on the solution 𝒙𝑟
∗ , the associated active-set method is called a prior method. On 

the other hand, if the constraint selection at 𝑃𝑟 does depend on 𝒙𝑟
∗ , it is called a posterior 
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method. Adler et al. [10] developed a prior method in which a violated inoperative constraint 

was chosen randomly at each iteration. Zeleny [11] proposed a posterior method in which 

the inoperative constraint most violated by 𝒙𝑟
∗  was added. This posterior method is called 

VIOL here. VIOL is also used as a pricing rule in delayed column generation [14], for adding 

multiple constraints in the interior point cutting plane method  of [15], and in the sifting 

algorithm of [1] for column generation.  

2.3 Constraint Selection Metric 

An efficient constraint selection metric plays a pivotal rule in selecting the potential 

rows that are more likely to be active at optimality. Constraint selection metric can be 

categorized as prior or posterior methods. Some of the constraint selection criterions are 

as follows:  

 SUB (Prior COST) 

 COS (Prior COST) 

 VIOL (Posterior COST) 

 NVIOL (Posterior COST) 

 RAD (Prior COST) 

 VRAD (Posterior COST) 

 GRAD (Prior COST ) 

In prior method, all the constraints are sorted only once before the solver starts but 

unlike prior methods, posterior methods depend on 𝒙𝑟
∗  and require extra processing for 

every iteration [16]. Different constraint selection metrics place a different priority on each 

constraint and consequently each method leads to a different performance. Hence, there 

is an interest in development of a more efficient constraint selection metric to measure the 

likelihood of the binding rows at optimality. Based on different criteria, constraints can be 

ordered either preliminary or postliminary by a certain amount of likelihood of being binding 
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at optimal solution. In the following, some of the constraint selection rules are described in 

more detail.  

2.3.1 SUB 

In SUB method, no constraint selection rule is used and the violated constraints 

are added in the same order they appeared in the problem. Therefore, it does not require 

any preprocessing [10].  

2.3.2 COS 

Cosine (COS) constraint selection metric focuses on computing the angle between 

normal vector 𝒄 and normal vector of 𝒂𝑖 which can be obtained by 𝑐𝑜𝑠 (𝜃𝑖) =
𝒂𝑖

𝑇𝒄

||𝒂𝒊||∗||𝒄||
  [17]. 

The constraint that creates smaller 𝜃 has a higher chance to be binding at optimality. The 

efficiency of COS reduces in problem with low density by not getting the total impact of the 

𝒄 vector in every dimension. Therefore, in low density problems, the value of 𝑐𝑜𝑠 (𝜃) 

approaches to a small number which implies that the formed angle between normal vector 

𝑐 and normal vector of 𝒂𝑖 is within the range of 80′ to 90′, therefore COS metric may not 

provide that much information. Figure2.1 illustrates the constraint selection rule based on 

maximum cosine value. 

 
Figure 2.1 Constraint selection technique based on maximum cosine value  
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In addition, COS does not consider the depth of the feasible region removed by 

constraints. So two hyper-plans forming a same angle with normal vector of 𝒄 might be 

located in completely different positions have the same priority. Problem density can be 

obtained by (2.1).  

Problem density =
Number of non zero elements in matrix 𝐀

Number of Rows ∗   Number of Columns
 

(2.1) 

2.3.3 VIOL 

Zeleny [11] used a constraint selection rule which added the constraint that most 

violated at each iteration – the method we called VIOL. Let’s define 
𝑏𝑖 𝒂𝒊

𝒂𝑖
𝑇𝒂𝒊

 an “a-point” on 

constraint 𝑖. 𝒙𝒓
∗ −  

𝑏𝑖

𝒂𝒊
𝑻𝒂𝒊

 𝒂𝒊 is a vector from “a-point” to 𝒙𝒓
∗  and the scalar product of normal 

vector of 𝒂𝒊 with vector 𝒙𝒓
∗ −  

𝑏𝑖

𝒂𝒊
𝑻𝒂𝒊

 𝒂𝒊 can provide a geometric interpretation of violation. 

Violation can be described as the projection of a vector from “a- point” to current optimal 

solution 𝒙𝑟
∗  on the constraint normal vectors. The ranking of the constraints are from 

maximum to minimum value for VIOL which as follows:  

𝑉𝐼𝑂𝐿(𝒂𝒊, 𝑏𝑖 , 𝒙𝒓
∗) =  𝒂𝒊

𝑻𝒙𝒓
∗ − 𝑏 > 0, 

 

 where 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉𝐼𝑂𝐿 (𝒂𝒊, 𝑏𝑖 , 𝒙𝒓
∗): 𝒂𝒊

𝑻𝒙𝒓
∗ > 𝑏𝑖  ; 𝑖 ∉ 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸). Figure 2.2 depicts the 

geometric description of VIOL criteria.  
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Figure 2.2 Geometric description of VIOL 

 
 
2.3.4 RAD 

If the feasible space looks like a sphere to an n-dimension space and objective 

function vector moves toward objective gradient until hits the constraints. By moving in 𝒄 

direction toward constraint we have 𝒂𝑖
𝑇(𝑘𝒄) = 𝑏 . Then, scalar 𝑘 is obtained by  

𝑏𝑖

𝒂𝒊
𝑇𝒄

 . As 

can be seen from (2.5), RAD measures the likelihood of active constraints at optimal point 

as a combination of two factors.  

𝑅𝐴𝐷 =
𝒂𝒊

𝑇𝒄 

𝑏𝑖

=
||𝒂𝒊||

𝑏𝑖

𝒂𝒊
𝑇𝒄

||𝒂𝒊|| ∗ ||𝒄||
||𝒄|| ∝

||𝒂𝒊||

𝑏𝑖

COS( 𝒂𝒊,  𝒄) 
(2.2) 

The first factor is the depth of the feasible region that removes and the second factor is the 

angle of its normal vector 𝒂𝒊 with objective vector 𝒄. All constraints are sorted in a 

descending order of RAD. Figure 2.3 presents the geometric interpretation of RAD 

constraint selection criteria.  
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Figure 2.3 Geometric interpretation of RAD 

 

However, for problems with a low density, which 𝒂𝒊 contains some zeros in certain 

variables, adding a single constraint 𝑨𝒙 ≤ 𝑏 may not be efficient enough. In the problem 

with high density RAD is able to effectively prioritize the constraints since it captures more 

information from every dimension. However, in a problem with a low density because of 

not getting the total impact of the objective vector the RAD’s efficiency reduces. Adding 

multiple cutting planes in which forming a dome-shape polytope are more efficient than 

adding a single plane [6]. The efficient active-set approaches developed by using RAD 

metric are: 

 NRAD: Non-negative linear programming [6]  

 GRAD: General linear programming [18] 

Adding multiple constraints to 𝑝𝑟 to bound all the variables forms a geodesic-like 

dome which leads to cutting off the 𝒙𝑟
∗  more effectively, but in a high density problems, 𝑃𝑟 

is bounded at each iteration by adding few cuts. Therefore, the multi cut approach might 

perform somehow similar to a single cut method on high density problems.  
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2.3.5 VRAD 

The VRAD is a posterior constraint selection metric which considers the distance 

of 𝒙𝑟
∗  to the violated 𝒂𝑖

𝑇𝒙𝑟
∗ − 𝑏 along with RAD [16]. The constraint selection metric 

 
 
Where 𝑖∗ ∈

𝑎𝑟𝑔𝑚𝑎𝑥(𝑉𝑅𝐴𝐷 (𝒂𝒊, 𝑏𝑖 , 𝐜, 𝒙𝒓
∗): 𝒂𝒊

𝑇𝒙𝑟
∗ > 𝑏𝑖  ; 𝑖 ∉ 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸)  

 
 

2.3.6 GRAD 

Saito et al. [18] developed a constraint selection metric for general linear 

programming problem which as follows: 

𝐺𝑅𝐴𝐷 (𝒂𝑖 , 𝑏𝑖 , 𝒄) = ∑
𝑎𝑖𝑗  𝑐𝑗

𝑏𝑖
+ −

𝑛

𝑗=1,𝑐𝑗>0

∑
−𝑎𝑖𝑗

𝑏𝑖
+ ,

𝑛

𝑗=1,𝑐𝑗<0

 
(2.4) 

𝑤ℎ𝑒𝑟𝑒 𝑏𝑖
+ = {

𝑏𝑖 − min
𝑘=1,…,𝑚

[𝑏𝑘] + 𝜀       𝑖𝑓 min
𝑘=1,…,𝑚

[𝑏𝑘] < 0

𝑏𝑖                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

(2.5) 

for a small positive constant 𝜀, and  𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥(𝐺𝑅𝐴𝐷 (𝒂𝑖, 𝑏𝑖 , 𝒄): 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  , 𝑖 ∉

𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸  ). The first term invokes the shortest distance of constraint in positive 𝑐𝑗 

directions to 𝒂𝑖
𝑇 𝒙 =  𝑏𝑖 and second term represents the general closeness rate of a 

constraint to the origin for all negative  𝑐𝑗 directions. For 𝑎𝑗 with 𝑐𝑗 < 0, it is hard to measure 

the likelihood of the binding constraint at optimality since the intersection of multiple  𝑐 

vector, and 𝒂𝑖
𝑇 𝒙 =  𝑏𝑖 may not lie in the feasible region. Therefore, all 𝑐𝑗 is set to be -1.  

2.4 General Approach to Active-Set 

Active-set method divides the problem constraints (𝑨 matrix) into two groups of 

operative and inoperative sets and problem is solved iteratively by ignoring the inoperative 

constraints and updating the operative set at each iteration. The main purpose of using any 

such active-set method is that a solution to the main problem 𝑃 can be obtained by solving 

a sequence of relatively small sub problems 𝑃𝑟. Saito et al. [18]  developed an active-set 

𝑉𝑅𝐴𝐷(𝐚𝒊, b𝑖 , 𝐜, 𝒙𝒓
∗) =

𝒂𝒊
𝑇𝒄 

𝑏𝑖

∗
( 𝒂𝒊

𝑇𝒙𝑟
∗ − 𝑏)

||𝒂𝑖||
 

(2.3) 
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approach for NNLPs. To construct 𝑃0, we choose constraints from (1.2) in descending order 

of RAD until each variables 𝑥𝑗  has an 𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. We say the 

variables are covered by the constraints of the initial problem 𝑃0. It significantly increases 

the efficiency of constraint selection criteria RAD for non-negative linear programming. The 

main drawback with covering technique is the method might add only few constraints at 

each iteration to cover all columns in 𝑃𝑟 for a problem with relatively high density. 

In order to implement a new active-set approach for solving general linear 

programming problems Saito et al. [18] proposed to add an artificial bounding constraint 

𝒄𝑇𝒙 ≤  𝑀 for the first step. Then 𝑃0 is formed by adding multiple constraints from (1.2) 

sorted by descending order of GRAD until all the columns of the new 𝑨 matrix have at least 

one negative and one positive coefficient. The primal simplex method is used to solve 𝑃0  

and dual simplex is employed to solve next active set iterations 𝑃𝑟.  

2.5 Historical Perspective 

The history of the development and research on linear programming is shown in 

the following. 

The idea of LP goes back into 1824,  Leonid Kantorovich, a Soviet 

mathematician formulate LP but his work remain unknown until 1950s [19]. There was an 

interest in applying the optimization techniques for resource allocation and operation 

planning during wartime [20]. G.B. Dantzig developed the simplex method on 1947 and the 

following year he published his work “Programming in a Linear Structure “. New topics such 

as linear programming under uncertainty, network optimization and mathematical 

programming and began to emerge on 1950 [21].  

Dantzig decomposition method for solving large-scale problem was introduced by 

Dantzig in the late 1950. The idea is inspired from Minkowski and Weyl’s work on convex 

polyhedral sets. On 1955 Dantzig, pointed a way to find a solution to a large size integer 
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programming problems (TSP) and several combinatorial optimization problems. Dantzig 

and Beale independently worked on stochastic programming [20]. Gomory developed his 

cutting planes method for solving integer programming problems on 1958. The dual version 

of Dantzig-Wolfe decomposition which is Benders decomposition was proposed and 

published by Benders on 1962. Interior point method using ellipsoids developed by 

Khachiyan It was the first polynomial-time algorithm for solving LP [22]. In 1984 Karmarkar 

developed an interior point method with polynomial time complexity for solving linear 

programming.  

The simplex method searching for the optimal solution by traversing a series of 

basic feasible point and changing a basic variable at each iteration. Simplex method is 

considered as a combinatorial algorithm since there are finite set of extreme points in each 

linear programming problem. Interior point method was developed by John von Neumann 

[23]. It is a certain class of optimization method that achieves optimality by moving through 

the feasible direction which maximize the objective function per unit distance, rather than 

moving around the boundary. There are three categories of interior point method 

algorithms: 

1) Potential reduction algorithm  

2) Affine scaling algorithm  

3) Path following algorithm  

The primal-dual algorithm interior point method is one of the most efficient path following 

algorithms that simultaneously operates on primal and dual space [24].  

2.6 Large-Scale Linear Programming 

Linear programming has been widely applied to several scientific and industrial 

problems. Many such problems have a particular form and structure in which the positive 

elements of 𝑨 matrix representing block angular structure. By utilizing some of the 
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decomposition techniques we are able to convert large size problems in to the smaller sub-

problems. The decomposition technique can improve the computational time of the linear 

programing problems, which their 𝑨 matrix has a certain structure. The master problem 

contains general constraints and sub-problem includes special structured constraints and 

then the strategy operates on both master and sub-problem by passing the information 

back and forth until the optimal solution to the main problem is achieved. Dantzig-Wolfe 

and Benders decomposition are two types of these decomposition techniques [1].  

The idea of partitioning methods and decomposition techniques for solving large-

scale optimization problems can be described as follows: 

1. In a problem with (𝑚 >> 𝑛 ) excessive number of row, a constraint is only 

created and then added if it is violated by the current optimal solution.  The 

constraint selection techniques are used to determine the priority of the violated 

constraints.  

2. In a problem with short and wide structure (𝑛 >> 𝑚) a column is only generated 

if its reduced cost is negative. The generated column is then added. 

2.6.1 Delayed Column Generation  

Delayed column generation is one of the most efficient methods for solving large 

scale linear programs. The main idea of column generation is that many linear 

programming problems have short and wide structure and the numbers of variables are 

too large to consider all the variables in 𝑨 matrix. Meanwhile only a sub set of variables 

need to be considered when solving the problem. It considers generating a column if only 

it has been discovered that it can profitably enter the basis. In delayed column generation 

the linear programming problem is divided into two problems: 

1. Master problem 

2. Sub-problem  
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The master problem contains subset of variables from original problem that created to 

discover the favorable columns to enter the basis. Delayed constraint generation is the 

dual of delayed column generation [25].  

2.6.2 Sifting (Sprint) 
 

Sifting algorithm is a column generation technique for linear programming 

problems and it was developed by John Forrest and it was applied on airline crew 

scheduling problem. The problem under study was a set partitioning problem with 837 rows 

and 12,750,000 columns [1]. 

2.7 Pivoting Rule 

A pivoting rule plays an important role in the simplex method. It guaranties the 

improvement of the objective function in each iteration. Dantzig’s pivoting rule is commonly 

used in simplex method. Let 𝑁 be the non-basis and 𝐵 the associated basis at the current 

iteration of the simplex algorithm. The non-basic variable’s reduced costs can be achieved 

by a pricing operation 

𝒄̅𝑁 =  𝒄𝑁 – 𝑁𝑇 𝝅, 𝝅 =  𝒄𝐵𝐵−1. (2.6) 

Optimality is obtained if the index set is empty for ∀ 𝑗 = 1,..,n 

𝐽 = {𝑗 | 𝒄̅𝑗 < 0, 𝑗 ∈  𝑁}  (2.7) 

otherwise, any index in 𝐽 (has negative reduced cost) can improve the objective function.  

2.7.1 Full Pricing 

The full pricing rule considers all non-basic variables’ reduced cost at each iteration 

and selects the variable in which decreases or increases the objective value the most. 

There exist some other standard frequently used pricing rules developed and tested and 

the computational results were encouraging in several problem samples compared to 

original Dantzig’s rule which are as follow:  

1. Largest decrees rule 
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2. Dantzig’s rule 

3. Steepest-edge rule  

4. Devex-rule  

5. Largest distance  

6. Nested pricing  

 

The nested pricing and largest distance rule yield run times reduced by a factor of 

5.73 and 3.24 respectively, compared to the Devex rule [26]. The direct cosine simplex 

algorithm (DCA) is developed by [27] to improve the simplex algorithm. The proposed 

algorithm defines a set of variables with negative reduced cost and among those DCA 

pivots on the variable that has lower cosine value. All candidate variables with negative 

reduce cost, are required to calculate the corresponding 𝑐𝑜𝑠∗(𝜃𝑖) value by (2.8).   

𝑐𝑜𝑠∗(𝜃𝑖)  = [
(𝑨𝑇)𝑖  . 𝑩𝑇

||(𝑨𝑇)𝑖||
] =

∑ 𝑎𝑗𝑖𝑚
𝑗=1

∑ (𝑎𝑗𝑖)2𝑚
𝑗=1

 (2.8) 

where 𝑩 = [𝑏1 , 𝑏2, . . . , 𝑏𝑚]𝑇 and 𝑨𝒊 = [𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛] , is the 𝑖𝑡ℎ row of matrix 𝑨 in the dual 

problem. A variable with the minimal 𝑐𝑜𝑠∗(𝜃𝑖)  is chosen as entering variable. DCA 

represents the superior performance over Dantzig’s rule in most problem samples in 

computational experiment [27]. 

2.7.2 Partial Pricing 

Partial pricing is a method that only a small proportion of the non-basic variables’ 

are considered as for pricing out process. The potential variable from this set is selected 

by some metric and enter to the basis and keep the other variables as potential candidates 

for the next iterations. The process continues until all the reduced costs associated with all 

variables in the set are nonnegative [26]. 
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CHAPTER 3 

Prior Cost Improvement  

3.1 Introduction 

In this chapter, a dynamic active-set approach for NNLPs is developed and its 

geometric interpretation is described in detail. Also the performance of GRAD is tested in 

the dynamic active-set frame work to show the efficiency of utilizing the dynamic active-set 

method for GLPs. 

3.2 Dynamic Active-Set Approach for NNLP 

 

The dynamic active-set approach developed for solving NNLPs is as follows. 

Constraints are initially ordered by the RAD constraint selection metric (2.2). To 

construct 𝑃0, we choose constraints from (1.2) in descending order of RAD until each 

variables 𝑥𝑗  has an 𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. We say the variables are covered 

by the constraints of the initial problem 𝑃0. 𝑃0 is then solved by the primal simplex to achieve 

an initial solution 𝒙0 
∗ . Now let 𝛾0 be the number of constraints in the original problem 𝑃, and 

in general let 𝛾𝑟 be the number of constraints of problem 𝑃 violated by 𝒙𝑟
∗ . At each iteration 

𝑟, the total number of violated constraints 𝛾𝑟 is computed, and the improvement percentage 

is calculated by  

𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛾𝑟−1 − 𝛾𝑟

𝛾𝑟−1

)} ∗ 100 , ∀ 𝑟 = 1,2, …, (3.1) 

where 𝜔𝑟 > 0 represents the percent of improvement made in reducing the total number of 

violated constraints at iteration 𝑟. Next, with [.] denoting the greatest integer function, let  

𝜑𝑟+1 = [𝜑𝑟 ∗ (1 + log(101 − 𝜔𝑟))] , 0 ≤ 𝜔𝑟 ≤ 100 , ∀ 𝑟 = 1,2, …   ,    (3.2)  

where 𝜑1 = 100. The value 𝜑𝑟 is an upper bound on the possible number of non-operative 

violated constraints that can be added at active-set iteration 𝑟 = 1,2, … .  The actual number 
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added is 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟}. The active-set iterations terminate when 𝛾𝑟 = 0 and therefore 𝜔𝑟 =

100. Equation (3.2) was developed from the results of computational experiments.  

Pseudocode for the dynamic active-set NNLPs is as follows.  
Step 1 — Identify constraints to initially bound the problem.  

1: 𝒂∗ ←  𝟎 

2: 𝒘𝒉𝒊𝒍𝒆 𝒂∗ ≯ 𝟎  𝒅𝒐 

3:   𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖 ∉ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄)     

4:   𝒊𝒇 ∃𝑗 |𝑎𝑗
∗ = 0 𝒂𝒏𝒅 𝑎𝑖∗𝑗 > 0  𝒕𝒉𝒆𝒏   

5:     𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ← 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ∪ {𝑖∗}  
6:   𝒆𝒏𝒅 𝒊𝒇 

7:   𝒂∗ ←  𝒂∗ +  𝒂𝑖∗  

8:   𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒇𝒂𝒍𝒔𝒆  

9: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 
Step 2 — Using the primal simplex method, obtain an optimal solution 𝒙0

∗  for the initial 

bounded problem 𝑃0 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =  𝒄𝑇𝒙 

subject to  𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖     ∀𝑖 ∈  𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺  

𝒙 ≥  𝟎 
Step 3 — Perform the following iterations until an optimal solution to problem P is found. 

1: 𝜑1 ← #100 

2: 𝑟 ← 0  
3: 𝛾0 ← # 𝑟𝑜𝑤𝑠 

4: 𝒘𝒉𝒊𝒍𝒆 (𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝒇𝒂𝒍𝒔𝒆 ) 𝒅𝒐 

5:   𝑟 ← 𝑟 + 1  

6:   𝒊𝒇 { 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  ,  ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠} 𝒕𝒉𝒆𝒏  calculate 𝛾𝑟 

7:      Calculate 𝜔𝑟 =  𝑚𝑎𝑥 {0, (
𝛾𝑟−1−𝛾𝑟

𝛾𝑟−1
)} ∗ 100 

8:    𝒊𝒇 0 ≤  𝜔𝑟 < 100   𝒕𝒉𝒆𝒏   𝜑𝑟+1  = [𝜑𝑟 ∗ (1 + log(101 − 𝜔𝑟))]   

9:     𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸  

{ RAD(𝒂𝑖 , 𝑏𝑖 , 𝒄) ∶ 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  } 

10:    𝒇𝒐𝒓 (i=0 to  𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟})  𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ← 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ∪ {𝑖∗} 𝒆𝒏𝒅 

11:    Solve the following 𝑃𝑟  by the dual simplex method to obtain 𝒙𝑟
∗  

12:    𝒆𝒍𝒔𝒆 𝒊𝒇(𝜔𝑟 = 100)  𝒕𝒉𝒆𝒏  𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗  is an optimal solution to P. 

13:   𝒆𝒏𝒅 𝒊𝒇 

14:  𝒆𝒍𝒔𝒆 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗  is an optimal solution to P. 

15:  𝒆𝒏𝒅 𝒊𝒇 
16: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 
 

3.3 Dynamic Active-Set Approach for LP 

The dynamic active-set approach for solving LPs is similar to the one for NNLPs. 

We construct 𝑃0 by choosing a number of constraints 𝜌1 from (1.2) in descending order of 
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GRAD from (2.4) until no variable 𝑥𝑗 is left without at least either a positive or a negative 

coefficient. In addition, we include an artificial bounding constraint 𝟏𝑇𝒙 ≤ 𝑀. If 𝜌1 < 100, 

then set 𝜌1 = 100. Then 𝑃0 is solved to obtain an initial solution 𝒙0
∗ . It is initially assumed 

that all constraints are violated (𝛾0 = 𝑚). Then the relative improvement percent 𝜔𝑟 is 

calculated by (3.1) for 𝑃𝑟 and 𝑃𝑟+1. Now let  

𝜌𝑟+1  = [𝜌𝑟 ∗ log(101 − 𝜔𝑟)] ,   0 ≤ 𝜔𝑟 ≤ 100 , ∀𝑟 = 1,2, … , (3.3)  

where the value 𝜌𝑟 is an upper bound on the possible number of non-operative violated 

constraints that can be added at active-set iteration 𝑟 = 1,2, …  . The actual number added 

is 𝑚𝑖𝑛 {𝜌𝑟+1, 𝛾𝑟}. As 𝜔 decreases, 𝜌𝑟+1 increases in (3.3) to add more violated constraints 

to 𝑃𝑟+1. The algorithm stops at 100% reduction in the number of violated constraints. 

Pseudocode for the dynamic active-set for LPs is as follows.  

Step 1 — Identify constraints to initially bound the problem.  

1: 𝒂∗ ←  𝟎 

2: 𝒘𝒉𝒊𝒍𝒆 𝒂∗ ≯ 0  𝒅𝒐 

3:   𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖 ∉ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝐺𝑅𝐴𝐷(𝒂𝑖, 𝑏𝑖 , 𝒄)     

4:   𝒊𝒇 ∃𝑗 |𝑎𝑗
∗ = 0 𝒂𝒏𝒅 𝑎𝑖∗𝑗 > 0  𝑜𝑟  𝑎𝑖∗𝑗 < 0 𝒕𝒉𝒆𝒏   

5:     𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ← 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ∪ {𝑖∗}  

6:   𝒆𝒏𝒅 𝒊𝒇 

7:   𝒂∗ ←  𝒂∗ +  𝒂𝑖∗  

8:   𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒇𝒂𝒍𝒔𝒆  

9: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

Step 2 — Using the primal simplex method, obtain an optimal solution 𝒙0
∗  for the initial 

bounded problem 𝑃0 given by 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =  𝒄𝑇𝒙 

subject to  𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖     ∀𝑖 ∈  𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺  

𝟏𝑇𝒙 ≤  𝑀 

𝒙 ≥  𝟎 
Step 3 — Perform the following iterations until an optimal solution to problem P is found. 

1: 𝜌1 ← Max {#𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺, 100} 

2: 𝑟 ← 1  

3: 𝛾0 ← # 𝑟𝑜𝑤𝑠 

4: 𝒘𝒉𝒊𝒍𝒆 (𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝒇𝒂𝒍𝒔𝒆 )  𝒅𝒐 

5:   𝑟 ← 𝑟 + 1  

6:   𝒊𝒇 { 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  ,  ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠} 𝒕𝒉𝒆𝒏  calculate 𝛾𝑟 

7:    Calculate  𝜔𝑟 =  𝑚𝑎𝑥 {0, (
𝛾𝑟−1−𝛾𝑟

𝛾𝑟−1
)} ∗ 100 

8:    𝒊𝒇 0 ≤ 𝜔𝑟 < 100   𝒕𝒉𝒆𝒏    𝜌𝑟+1 = [𝜌𝑟 ∗ log(101 − 𝜔𝑟)]   

9:     𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸  

{ GRAD(𝒂𝑖 , 𝑏𝑖 , 𝒄) ∶ 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  } 

10:    𝒇𝒐𝒓 (i=0 to  𝑚𝑖𝑛 {𝜌𝑟+1, 𝛾𝑟})  𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ← 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ∪ {𝑖∗
 } 𝒆𝒏𝒅 

11: Solve the following 𝑃𝑟 by the dual simplex method to obtain 𝒙𝑟
∗  

12:   𝒆𝒏𝒅 𝒊𝒇 

13:  𝒆𝒍𝒔𝒆   𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗  is an optimal solution to P. 

14:  𝒆𝒏𝒅 𝒊𝒇 

15: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

3.4 Problem Instances and CPLEX Preprocessing 
 

Four sets of NNLPs used in [6] are considered to evaluate the performance of the 

developed algorithm. Each problem set contains five problem instances for 21 different 

density levels and for varying ratios of (𝑚 constraints)/(𝑛 variables) from 200 to 1. Each 
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set contains 105 randomly generated NNLPs with various densities 𝑝 ranging from 0.005 

to 1. Randomly generated real numbers between 1 and 5, 1 and 10, 1 and 10 were 

assigned to the elements of 𝑨, 𝒃, and 𝒄 respectively. To avoid having a constraint in the 

form of an upper bound on a variable, each constraint is required to have at least two non-

zero 𝑎𝑖𝑗. For general LP, a problem set containing 105 randomly generated by Saito et al. 

[18] is compared with the dynamic approach of this paper. These LP problems contain 

1000 variables (n) and 200,000 constraints (m), with various densities ranging from 0.005 

to 1 and the randomly generated 𝑎𝑖𝑗 ranging between -1 and -5 or between 1 and 5.  

Two parameters that CPLEX uses for solving linear programming are PREIND 

(preprocessing pre-solve indicator) and PREDUAL (preprocessing dual). As described in 

[18] and [6], when parameter setting PREIND = 1 (ON), the preprocessing pre-solver is 

enabled and both the number of variables and the number of constraints is reduced before 

any type of algorithm is used. By setting PREIND = 0 (OFF) the pre-solver routine in 

CPLEX is disabled. PREDUAL is the second preprocessing parameter in CPLEX. By 

setting parameter PREDUAL = 0 (ON) or -1 (OFF), CPLEX automatically selects whether 

to solve the dual of the original LP or not. Both are used with the default settings for the 

CPLEX primal simplex method, the CPLEX dual simplex method, and the CPLEX barrier 

method. Neither CPLEX pre-solver nor PREDUAL parameters were used in any part of the 

developed dynamic active-set methods for NNLPs and LPs.  

3.5 Computational Results for NNLP 
 

Table 3.1 illustrates the performance comparison between dynamic RAD method 

and the previously defined constraint selection technique COST RAD on Set 1 to Set 4 for 

various dimensions of the matrix 𝑨 used in [6]. Both methods are compared with the CPLEX 

barrier method (interior point), the CPLEX primal simplex method, and the CPLEX dual 
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simplex method. The worst performance occurs at m/n ratio of 200, where on average, 

dynamic RAD is 8% faster than COST RAD for densities less than 0.2 and 18% slower for 

densities above 0.2. When the density increases, dynamic RAD shows an increase in 

computation time more than that of COST RAD. On the other hand, for an m/n ratio of 20 

the CPU times decrease with an increase in density. For higher densities above 0.01, 

dynamic RAD is more efficient and takes less computation times than COST RAD. On 

average, dynamic RAD is 10% more efficient than COST RAD. For an m/n ratio of 2 at 

densities higher than 0.009, the data show that COST RAD starts taking significantly more 

time than dynamic RAD. Dynamic RAD was 5.5% faster than COST RAD over all densities 

and 21% faster on average for densities above 0.5. For an m/n ratio of 1 with densities 

greater than 0.01, dynamic RAD is about 8% more efficient than COST RAD. On average, 

dynamic RAD is superior performance to COST RAD for problem sets 2, 3, and 4. 

Table 3.2 from [6] is presented to provide an immediate comparison of the 

developed dynamic RAD method with the standard CPLEX solvers. A reporting limit of 

3000 seconds was used. On average, the CPU times for dynamic RAD were faster than 

any of the CPLEX solvers across all densities and ratios. However, CPLEX barrier methods 

show smaller CPU times when ratio m/n = 20 and the density is less than or equal to 0.01.  

3.6 Computational Results for LP 

Table 3.3 shows computational results for the CPLEX primal simplex method, the 

dual simplex method, and the interior point barrier method for the general LP problem set 

used in [18]. CPU times for COST GRAD and VIOL using both the multi-cut technique and 

dynamic approaches are presented for comparison. Dynamic GRAD is stable over the 

range of densities. In addition, its performance is superior to multi-cut GRAD for every 

problem instance. Average CPU times for GRAD using multi-cut method and dynamic 
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approach are 43.87 and 24.57 seconds, respectively, a 42% improvement in computation 

time. Average computation times for GRAD and VIOL using dynamic approach are 24.57 

seconds vs. 33.82 seconds, respectively.  

It should be noted that GRAD captures more information than VIOL in higher 

densities to discriminate between constraints. Interestingly, when the dynamic active-set 

is used for both GRAD and VIOL, their CPU times are significantly faster than the same 

metrics with the multi-cut method. GRAD using the multi-cut technique takes the longest 

computation time in comparison to others at higher densities. Unlike the proposed dynamic 

approach, the LP algorithm COST GRAD requires checking the signs of the nonzero 

𝑎𝑖𝑗 and therefore more computation time for higher densities. 

 The efficiency of VIOL decreases significantly with increasing density. On 

average, dynamic GRAD is approximately 35 times faster than the CPLEX primal simplex, 

21 times faster than the CPLEX dual simplex, and 17 times faster the CPLEX barrier linear 

programming solvers without preprocessing. The superior overall performance of GRAD 

using dynamic approach is apparent across all densities in general LP set. 
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Table 3.1 Results from dynamic RAD and COST RAD for set 1- set 4, (Random, NNLP 
𝑎𝑖𝑗 =1-5, 𝑏𝑖 =1-10, 𝑐𝑗 = 1-10) 

  Dynamic RAD +  COST RAD + 

 n 1000 3163 10000 14143 1000 3163 10000 14143 

 m 200000 63246 20000 14143 200000 63246 20000 14143 

 m/n 200 20 2 1 200 20 2 1 

Density No CPU TIME, sec ++ 

CPU Time, sec ++ 0.005 1 2.02 30.88 108.52 126.93 2.10 30.82 108.70 127.55 

0.006 2 2.47 32.19 106.48 113.68 2.42 31.48 104.87 114.03 

0.007 3 2.63 30.39 96.61 104.34 2.65 29.41 92.45 104.18 

0.008 4 2.46 31.03 90.14 89.24 2.54 30.63 88.20 90.73 

0.009 5 2.67 28.89 82.66 86.57 2.78 30.10 83.53 85.21 

0.01 6 2.73 28.22 75.46 83.66 2.79 27.81 77.90 80.43 

0.02 7 2.88 23.17 45.55 49.82 3.09 24.69 47.63 49.95 

0.03 8 2.83 17.97 33.85 37.35 3.22 20.49 36.68 38.33 

0.04 9 2.92 15.24 29.23 28.98 3.33 19.06 32.74 32.53 

0.05 10 2.97 14.10 24.83 26.37 3.34 16.97 28.23 28.59 

0.06 11 2.86 11.93 23.38 24.45 3.20 14.94 27.58 27.27 

0.07 12 2.94 11.21 20.38 21.08 3.41 14.88 23.59 23.79 

0.08 13 2.87 10.25 19.47 21.43 3.32 13.57 23.44 24.19 

0.09 14 3.05 9.33 19.43 20.49 3.38 12.67 23.09 23.80 

0.1 15 3.20 9.33 18.03 18.78 3.39 12.92 22.93 20.85 

0.2 16 4.39 8.07 14.86 16.50 4.30 11.09 18.87 20.31 

0.3 17 5.26 8.19 13.77 15.27 4.97 10.58 18.11 19.46 

0.4 18 6.40 9.19 14.32 15.60 5.76 12.31 18.55 18.88 

0.5 19 7.80 9.84 14.33 15.97 6.98 11.92 18.00 19.89 

0.75 20 10.86 11.91 14.55 16.26 8.26 12.01 17.19 18.06 

1 21 12.93 12.01 12.61 14.58 8.39 12.20 17.71 18.50 

Average  4.24 17.30 41.83 45.11 3.98 19.07 44.28 46.98 
+Used CPLEX preprocessing parameters of presolve = off and predual = off.  
++Average of 5 instances of LPs at each density. 
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Table 4.4 Result obtained from primal, dual simplex and barrier for set1-set4, (Random, NNLP 𝑎𝑖𝑗 =1-5, 𝑏𝑖 = 1-10, 𝑐𝑗 = 1-

10) [6]    Primal--  Dual--  Barrier --  

 n 1000 3163 10000 14143  1000 3163 10000 14143  1000 3163 10000 14143 

 m 200000 63246 20000 14143  200000 63246 20000 14143  200000 63246 20000 14143 

 m/n 200 20 2 1  200 20 2 1  200 20 2 1 
Density No   CPU Time (Sec) ++   
0.005 1 7.01 71.02 228.51 309.83  54.84 762.62 1597.24 1169.04  2.36 14.52 240.17 650.83 

0.006 2 10.36 77.28 245.60 291.07  60.29 803.97 1607.16 2413.42  2.39 16.30 224.08 666.54 

0.007 3 12.98 75.84 219.72 265.09  91.39 876.85 1483.20 1702.47  3.04 18.34 233.55 671.56 

0.008 4 15.72 82.01 206.45 239.30  100.06 912.75 1445.54 1236.76  3.90 20.70 232.38 668.82 

0.009 5 19.25 80.35 196.72 216.23  114.95 898.99 1375.73 427.95  4.76 22.66 232.23 649.26 

0.01 6 21.92 78.50 182.47 216.60  123.49 912.63 1252.05 436.31  5.53 24.29 228.76 650.30 

0.02 7 39.90 78.80 118.28 127.59  203.08 963.66 807.29 362.34  17.13 32.08 242.54 711.26 

0.03 8 45.42 79.75 98.02 108.60  217.18 1207.76 545.91 723.98  28.79 45.03 266.90 727.61 

0.04 9 50.30 78.78 89.75 88.32  248.75 1489.40 450.08 539.92  41.50 62.28 292.15 806.80 

0.05 10 55.16 78.92 81.09 82.14  256.49 1746.46 418.69 519.50  53.72 81.32 327.01 837.67 

0.06 11 60.34 77.49 77.28 78.27  251.39 2124.31 378.71 409.47  67.58 100.48 359.53 897.58 

0.07 12 62.07 78.93 70.44 70.37  251.74 2446.69 310.89 544.15  84.70 125.49 401.72 948.01 

0.08 13 62.92 76.96 70.21 69.81  264.48 2799.62 307.25 388.94  99.51 149.37 454.01 1038.86 

0.09 14 66.57 79.07 71.46 72.37  258.14 2523.03 718.04 427.95  119.26 186.06 495.28 1153.31 

0.1 15 71.00 74.57 67.43 62.64  287.36 2251.10 267.14 436.31  138.67 207.54 539.64 1194.56 

0.2 16 87.49 83.12 64.38 62.99  294.39 1450.82 201.73 362.34  379.68 691.77 1298.76 2529.97 

0.3 17 94.57 77.91 67.14 66.61  341.44 1280.71 175.16 267.16  657.45 1333.29 2418.75 b 

0.4 18 99.33 78.46 73.58 71.48  384.10 1236.30 146.09 233.39  985.86 2076.09 b b 

0.5 19 111.30 84.30 86.50 75.62  427.16 1173.49 133.49 208.65  1350.82 b b b 

0.75 20 128.26 99.35 115.00 102.51  410.98 1056.18 132.25 181.95  b b b b 

1 21 207.55 94.09 393.54 145.96  375.89 411.19 148.90 165.45  b b b b 

Average  63.30 80.26 134.46 134.45  238.93 1396.60 662.03 626.55  n/a n/a n/a n/a 
--Used CPLEX preprocessing parameters of presolve = ON and predual = Auto.  
++Average of 5 instances of LPs at each density. 
b Runs with CPU times > 3000s are not reported. 
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Table 3.3 Comparison of computation times of CPLEX solvers, GRAD, and VIOL using 
both dynamic active-set and multi-cut method on general LP problem set ( Random LP 
with 1000 variables and 200,000 constraints [18]) 

  Constraint selection metric+ CPLEX-- 

No Density GRAD VIOL GRAD VIOL Primal Dual Barrier Auto1 

  Multi-cut method Dynamic active-
set 

    

  CPU TIME, sec++ 

1 0.005 9.85 12.31 7.96 9.26 40.99 23.05 2.39 1.79 

2 0.006 11.48 14.50 9.44 11.11 84.56 35.52 2.62 3 

3 0.007 13.36 14.21 10.60 12.58 128.65 48.62 3.79 4.07 

4 0.008 14.24 14.67 12.09 13.00 183.70 61.56 4.93 5.71 

5 0.009 15.41 15.32 12.25 14.57 212.79 75.34 6.06 7.19 

6 0.01 16.55 17.09 14.10 15.33 256.70 92.11 7.33 8.18 

7 0.02 24.74 22.24 20.93 21.79 396.55 205.25 15.86 22.21 

8 0.03 27.84 24.30 22.91 26.21 460.01 295.18 26.63 37.3 

9 0.04 30.55 24.47 23.87 29.52 602.73 350.86 35.26 51.03 

10 0.05 37.59 28.72 28.52 33.57 617.29 396.10 46.76 65.6 

11 0.06 34.29 26.58 26.86 33.80 656.22 438.92 59.55 81.7 

12 0.07 37.46 28.05 26.91 34.34 729.43 465.61 71.65 104.35 

13 0.08 36.28 26.29 25.54 33.46 739.21 510.10 82.98 130.13 

14 0.09 37.97 27.74 24.60 33.21 823.11 521.89 94.01 140.32 

15 0.10 39.50 28.30 25.99 35.61 956.17 554.29 108.03 178.63 

16 0.20 56.26 36.64 27.97 41.28 1456.41 759.66 280.09 432.58 

17 0.30 60.93 42.40 28.41 40.68 1664.83 900.12 527.05 904.53 

18 0.40 74.58 56.97 33.39 52.19 2033.10 1057.27 760.07 1325.8 

19 0.50 85.02 71.35 36.85 54.68 1925.32 1334.80 1076.40 2253.9 

20 0.75 113.02 116.78 39.44 59.53 2232.88 1571.28 2132.53 NA 

21 1.00 144.35 173.02 57.22 104.5
8 

2301.76 1717.25 3267.10 NA 

Avg  43.87 39.14 24.57 33.82 881.07 543.56 410.05 NA 
 + Used CPLEX preprocessing parameters of presolve = off and predual = off. 

 𝟏𝑇𝒙 ≤ 𝑀 = 1010 was used as the bounding constraint. 
 ++ Average of 5 instances of LPs at each density. 
 --Used CPLEX preprocessing parameters of presolve = ON and predual = Auto. 
1 Computation time for one problem instance. 

 

For comparison purposes, Table 3.4 shows GRAD and VIOL computation times 

when a fixed number of violated constraints is added at each iteration. Adding a fixed 

number of constraints is examined for both GRAD and VIOL. At densities below 0.03, 
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dynamic GRAD takes less CPU time than the fixed-cut approach. GRAD with 500 cuts per 

iteration shows a faster solution time than 100 or 1000 cuts. VIOL performs best for a 100-

constraint cut. On the other hand, GRAD performs best for a 500-constraint cut. In fact, the 

500-constraint cut for GRAD performs as well as the GRAD dynamic active-set approach. 

However, determining an optimum number of cuts for a given problem is not possible.  

 

Table 3.4 Comparison of computation times of GRAD using dynamic active-set and 
fixed cut method on general LP problem set ( Random LP with 1000 variables and 
200,000 constraints [18]) 

Constraint selection metric+ 
No Density GRAD VIOL  GRAD 

 
 VIOL 

 Dynamic 
active-set  

Fixed number of constraints 

 100 500 1000  100 500 1000 
       CPU TIMES, sec++ 

1 0.005 7.96 9.26  14.58 10.04 8.05  10.49 8.82 11.56 

2 0.006 9.44 11.11  18.75 13.14 9.48  12.61 10.57 14.45 

3 0.007 10.60 12.58  20.32 13.24 10.67  13.87 12.22 15.01 

4 0.008 12.09 13.00  23.57 12.63 12.05  14.97 12.82 16.22 

5 0.009 12.25 14.57  23.16 13.60 12.32  15.88 14.00 18.35 

6 0.01 14.10 15.33  26.04 14.83 13.59  17.72 15.35 19.26 

7 0.02 20.93 21.79  36.49 21.27 20.38  23.55 22.70 28.35 

8 0.03 22.91 26.21  38.40 22.33 22.30  25.40 26.07 34.22 

9 0.04 23.87 29.52  38.48 22.68 23.19  25.63 27.51 36.21 

10 0.05 28.52 33.57  46.34 27.77 28.69  29.67 32.25 41.66 

11 0.06 26.86 33.80  40.35 24.47 26.26  27.12 30.36 40.53 

12 0.07 26.91 34.34  41.91 26.05 27.92  28.88 32.69 42.09 

13 0.08 25.54 33.46  37.80 24.61 26.36  26.64 31.62 42.58 

14 0.09 24.60 33.21  37.71 25.01 28.18  27.38 32.19 43.69 

15 0.1 25.99 35.61  39.30 25.54 28.00  29.12 33.81 46.08 

16 0.2 27.97 41.28  41.66 29.36 33.48  33.54 40.20 57.02 

17 0.3 28.41 40.68  38.05 28.25 34.05  32.88 41.53 59.39 

18 0.4 33.39 52.19  41.45 33.58 41.14  39.98 50.68 74.25 

19 0.5 36.85 54.68  42.40 36.86 46.14  44.68 56.76 81.71 

20 0.75 39.44 59.53  45.88 40.36 50.28  52.67 69.07 101.71 

21 1 57.22 104.58  48.44 46.14 57.55  61.59 78.23 114.15 

Average  24.57 33.82  35.29 24.37 26.67  28.30 32.36 44.69 

+Used CPLEX preprocessing parameters of presolve = off and predual = off. 𝟏𝑇𝒙 ≤ 𝑀 =
1010 was used as the bounding constraint. 
++Average of 5 instances of LPs at each density. 
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3.7 Conclusion 
 

In this chapter, dynamic active-set methods have been proposed for both NNLPs 

and LPs. In particular, these new approaches were compared to existing methods for 

problems with various sizes and densities. On average, dynamic RAD shows superior 

performance over COST RAD for the NNLP problem sets 2, 3, and 4. In the LP problem 

set, dynamic GRAD significantly outperformed the COST GRAD as well as the CPLEX 

primal simplex and the dual simplex. In this LP problem set, however, the barrier solver did 

outperform all methods for densities up to 0.03. In addition, dynamic GRAD outperformed 

a dynamic version of VIOL, which is a standard method in column generation and 

decomposition methods. 
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CHAPTER 4 

Posterior Cost  

4.1 Introduction 

In this chapter, we propose an active-set method to solve nonnegative linear 

programming problems more efficiently. Our approach divides the constraints of problem 

𝑃 into operative and inoperative constraints at each iteration. Operative constraints are 

those active in the current relaxed sub-problem 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃, while the inoperative 

ones are constraints of the problem 𝑃 not active in 𝑃𝑟 .  In our active-set method we 

iteratively solve 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃 after adding one or more violated inoperative 

constraints from (1.2) to 𝑃𝑟−1 until the solution 𝒙𝑟
∗ to 𝑃𝑟 is a solution to 𝑃.  

RAD is a geometric constraint selection criterion for determining the constraints 

most likely to be binding at optimality. In the associated active-set COST algorithm of [19], 

all constraints of (1.2) are pre-ordered by decreasing value of RAD prior to solving an initial 

bounded problem 𝑃0 by the primal simplex. The dual simplex is then used when violated 

inoperative constraints are added according to their RAD value. In computational 

experiments, RAD proved superior to existing linear programming methods for NNLPs. A 

similar  constraint selection metric GRAD was developed in [18] to solve general linear 

programs (LPs). It should be noted that both a constraint selection metric and the 

associated COST active-set method are identified by the same name – for example, RAD. 

4.2 Overview 

In this chapter a posterior constraint selection metric NVRAD, as distinguished 

from the prior constraint metric RAD, is developed for NNLPs and utilized in a dynamic 

active-set framework. The main contributions are:  

(i)  a geometric interpretation is presented  for NVRAD, 



  

31 

 

(ii) a dynamic active-set approach is developed by adding a varying number of violated 

constraints at 𝑃𝑟 based on the progress at 𝑃𝑟−1,  

(iii) extensive computational experiments that (a) confirm the efficacy of the dynamic 

active-set approach for the posterior method as compared to multi-cut and multi-bound 

technique proposed in Saito et al. [6]; (b) indicate the ability of NVRAD to determine 

constraints likely to be binding at optimality for NNLPs; and (c) show that NVRAD solves 

NNLPs faster than other computational methods, including RAD and various versions of 

VIOL. 

4.3 Explanation of NVRAD 

Let 𝒙𝑟
∗  be the current optimal solution for some 𝑃𝑟 with a perpendicular distance 

𝑑 =
𝒂𝒊

𝑇𝒙𝑟
∗ −𝑏𝑖

‖ 𝒂𝑖‖
 to a violated hyperplane 𝒂𝑖

𝑇𝒙 =  𝑏𝑖. It follows that  

𝑑 

𝑏𝑖  
‖ 𝒂𝑖‖

=
𝒂𝑖

𝑇𝒙𝑟
∗ − 𝑏𝑖

𝑏𝑖

. 
(4.1) 

Note that 
𝑏𝑖 

‖ 𝒂𝑖‖
 is the perpendicular distance of hyperplane 𝒂𝑖

𝑇𝒙 = 𝑏𝑖  to the origin. Thus 

choosing a violated hyperplane 𝒂𝑖
𝑇𝒙 =  𝑏𝑖 with a maximum value 

𝒂𝒊
𝑇𝒙𝑟

∗ −𝑏𝑖

𝑏𝑖
  on the right side 

of (6) can be interpreted from the left side of (6) as selecting a violated constraint giving 

the deepest cut based on information derived from 𝒙𝑟
∗ . But the information from the prior 

constraint selection metric 𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄) of (4) is also valuable. From [20], the expression 

𝒂𝒊
𝑇𝒄 

𝑏𝑖
 on the right side of (4) is the distance from the origin to the hyperplane 𝒂𝑖

𝑇𝒙 ≤ 𝑏𝑖 along 

the vector 𝒄,  i.e., the direction of steepest ascent for the objective function of (P). We 

update the prior information obtained from RAD with subsequent information obtained from 

𝒙𝑟
∗ . In a manner reminiscent of using Bayes’ Theorem to get a posterior probability 
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distribution from a prior distribution and a random sample [28], we multiply RAD by the right 

side of (4.1) to obtain  

𝑁𝑉𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄, 𝒙𝑟
∗ ) =

𝒂𝑖
𝑇𝒄 

𝑏𝑖
2

( 𝒂𝑖
𝑇𝒙𝑟

∗ − 𝑏𝑖). (4.2) 

Equation (4.2) incorporates the global prior information from RAD with local information 

from 𝒙𝑟
∗ . NVRAD thus seeks 

𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸

(
𝒂𝑖

𝑇𝒄 

𝑏𝑖
2

( 𝒂𝑖
𝑇𝒙𝑟

∗ − 𝑏𝑖): 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖)     (4.3)   

for each 𝑃𝑟. We mention that the 𝑏𝑖
2 

term in the denominator of (4.2) works better in the 

constraint selection metric NVRAD than would simply 𝑏𝑖 . This fact was established in 

computational results not reported here and therefore supports derivation. 

4.4 Dynamic COST NVRAD 

Let 𝒙𝑟
∗  be the optimal extreme point for 𝑃𝑟 .  The cosine of the angle 𝜃𝑟 (in radians) 

between 𝒙𝑟
∗  and 𝒄 is given by 

𝑐𝑜𝑠(𝜃𝑟) =
𝒄𝑇𝒙𝑟

∗

‖𝒙𝑟
∗ ‖ ‖𝒄‖

, (4.4) 

which is nonnegative since 𝑃𝑟 is also an NNLP. Ideally we want to decrease 𝜃𝑟 at each 

iteration so that 𝒙𝑟
∗  is more in line with the gradient of the objective function 𝑧 of (1.1) as 

illustrated in Figure 4.1 for two dimensions. Toward that end, we develop a dynamic 

heuristic that adds a varying number of violated inoperative constraints to 𝑃𝑟  according to 

the progress made at 𝑃𝑟−1in reducing the angle between vectors 𝒙𝑟−1 
∗ and 𝒄. As our goal, 

let 𝜃𝑟 = 0 in (4.4) to give  

𝒄𝑇𝒙𝑟
∗ = ‖𝒙𝑟

∗ ‖ ‖𝒄‖. 

 

 

 

(4.5) 
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Figure 4.1 An ideal changing angle between 𝒙𝑟

∗  and 𝒄  
 

When 𝜃𝑟 = 0, it thus follows from (4.5) that 

  

∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑟𝑗

∗

√∑ 𝑐𝑗
2𝑛

𝑗=1

= √∑ (𝑥𝑟𝑗
∗ )2𝑛

𝑗=1 .  (4.6) 

Letting | . | denote absolute value, define  

𝛿𝑟(𝒙𝑟
∗ ) =  |

∑ 𝑐𝑗𝑥𝑟𝑗
∗𝑛

𝑗=1

√∑ 𝑐𝑗
2𝑛

𝑗=1

− √∑ (𝑥𝑟𝑗
∗ )2𝑛

𝑗=1 |  (4.7) 

as a measure of the performance of our active-set method at iteration 𝑟. The value of 𝛿𝑟(𝒙𝑟
∗ ) 

decreases as 𝒙𝑟 
∗ as 𝜃𝑟 decreases. Such a decrease usually occurs as 𝒙𝑟 

∗ moves toward an 

optimal extreme point of 𝑃.  

The dynamic COST NVRAD for solving NNLPs is described as follows. Constraints 

are initially ordered by the RAD constraint selection metric (2.2). To construct 𝑃0, we 

choose constraints from (1.2) in descending order of RAD until each variables 𝑥𝑗  has an 

𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. We say the variables are covered by the constraints 

of the initial problem 𝑃0. No equality constraints are considered here, but any equality 

constraints can be included in 𝑃0. 𝑃0 is then solved by the primal simplex to achieve an 
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initial solution 𝒙0 
∗ and 𝛿0(𝒙0 

∗ ) is calculated accordingly. Let 𝛾𝑟 be the number of constraints 

of problem 𝑃 violated by 𝒙𝑟
∗ . At every iteration 𝑟 − 1 and 𝑟, the values 

of 𝛿𝑟−1(𝒙𝑟−1 
∗ ) and 𝛿𝑟(𝒙𝑟

∗ ) are calculated, respectively, and the percentage of improvement 

is calculated by 

𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛿𝑟−1(𝒙𝑟−1 

∗ ) − 𝛿𝑟(𝒙𝑟
∗ )

𝛿𝑟−1(𝒙𝑟−1 
∗ )

)} ∗ 100 , ∀ 𝑟 = 1,2, …,  
(4.8) 

where 𝜔𝑟 > 0 represents the percent of improvement made in reducing the angle between 

vectors 𝒙𝑟 
∗ and 𝒄 at iteration 𝑟. With [.] denoting the greatest integer function, let  

{
𝜑𝑟+1  =  𝜑𝑟 ∗ (1 + [(ln 𝜔𝑟)−1]), ∀ 𝑟 = 1,2, …  

.
𝜑𝑟+1  = 𝛾𝑟 , … … … … . . … … … … . . ∀ 𝑟 = 1,2, … .

 
if      𝜔𝑟 > 1 

if      𝜔𝑟  ≤ 1 

(4.9) 

 

where 𝜑1 = 200. The value of 𝜑𝑟 is an upper bound on the possible number of non-

operative violated constraints that can be added at active-set iteration 𝑟. The actual number 

added is 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟}. The active-set function is defined to compensate for the lack of 

progress in 𝑃𝑟−1 by adding more violated constraints at 𝑃𝑟. The algorithm stops when 𝛾𝑟 =

0.  

The pseudocode for dynamic NVRAD is as follows.  

Step 1 — Identify constraints to initially bound the problem.  

1: 𝑎∗ ←  0 

2: 𝒘𝒉𝒊𝒍𝒆 𝑎∗ ≯ 0  𝒅𝒐 

3:   𝐿𝑒𝑡 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∉𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝑅𝐴𝐷(𝒂𝑖, 𝑏𝑖 , 𝒄) 

4:   𝒊𝒇   ∃𝑗 |𝑎𝑗
∗ = 0 𝒂𝒏𝒅 𝑎𝑖∗𝑗 > 0 𝒕𝒉𝒆𝒏  

5:     𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ←  𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ∪ {𝑖∗}  

6:   𝒆𝒏𝒅 𝒊𝒇 

7:   𝒂∗ ←  𝒂∗ +  𝒂𝑖∗  
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8:   𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒇𝒂𝒍𝒔𝒆  

9: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

Step 2 — Using the primal simplex method, obtain an optimal solution 𝑥0
∗ for the initial 

bounded problem 𝑃0 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =  𝒄𝑇𝒙 

                         subject to  𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖        ∀𝑖 ∈  𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺  

          𝒙 ≥  𝟎 
Step 3 — Perform the following iterations until an optimal solution to problem P is found. 

1: 𝑟 ← 0  

2: 𝑾𝒉𝒊𝒍𝒆 (𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝐟𝐚𝐥𝐬𝐞 )  𝒅𝒐 

3:   Calculate  𝛿𝑟(𝒙𝑟
∗ ) 

4:   𝒊𝒇  𝑟 > 1   𝒕𝒉𝒆𝒏  𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛿𝑟−1(𝒙𝑟−1 

∗ )− 𝛿𝑟(𝒙𝑟
∗ )

𝛿𝑟−1(𝒙𝑟−1 
∗ )

)}  

5:     𝒊𝒇 𝜔𝑟 > 1  𝒕𝒉𝒆𝒏  𝜑𝑟+1 =  𝜑𝑟 ∗ (1 + [(ln 𝜔𝑟)−1] ) 

6:       𝒆𝒍𝒔𝒆 𝒊𝒇 𝜔𝑟 ≤ 1  𝒕𝒉𝒆𝒏  𝜑𝑟+1 = 𝛾𝑟 

7:     𝒆𝒏𝒅 𝒊𝒇 

8:   𝒆𝒍𝒔𝒆 𝜑𝑟 ← 200   

9:   𝒆𝒏𝒅 𝒊𝒇 

10: 𝒊𝒇  { 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  ,  ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠  }  𝒕𝒉𝒆𝒏  

11:    𝛾𝑟 ← #{ 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖  ,  ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠  } 

12:    𝐿𝑒𝑡 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸

{ 𝑁𝑉𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄, 𝒙𝑟
∗ ) =

𝒂𝑖
𝑇𝒄 

𝑏𝑖
2 ( 𝒂𝑖

𝑇𝒙𝑟
∗ − 𝑏𝑖) ∶ 𝒂𝑖

𝑇𝒙𝑟
∗ > 𝑏𝑖  } 

13:    𝒇𝒐𝒓 ( i = 0 to 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟})   𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ← 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ∪ {𝑖∗}  𝒆𝒏𝒅  

14:    Solve the following 𝑃𝑟  by the dual simplex method to obtain 𝒙𝑟
∗  

15:    𝑟 ←  𝑟 + 1 

16:    𝑮𝒐 𝒕𝒐 𝟑 

17:  𝒆𝒍𝒔𝒆   𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗  is an optimal solution to P. 
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18:  𝒆𝒏𝒅 𝒊𝒇 

19: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

4.5 Computational Experiments 

Dynamic NVRAD is now compared with the CPLEX primal simplex, dual simplex, 

and barrier methods. NVRAD is further compared to RAD, VIOL, and a normalized version 

of VIOL called NVIOL, which is usually superior to VIOL. Since, it’s preferable to apply a 

combined procedure to measure the effect of the both global and local information, the 

COSTs RAD and NVRAD are used at even and odd iterations, respectively which is called 

Hybrid here.  

4.6 Problem Instances 

Five sets of NNLPs in [6] are used to evaluate the performance of the dynamic 

COST NVRAD. Each set contains 105 randomly generated NNLPs at 21 different density 

levels ranging from 0.005 to 1, and four ratios of (𝑚 constraints)/(𝑛 variables) ranging from 

200 to 1. There are five problem instances per combination of density level and ratio. In 

these problem sets, randomly generated real numbers between 1 and 5, 1 and 10, 1 and 

10 were assigned to the elements of 𝑨, 𝒃, and 𝒄, respectively. To avoid having a constraint 

in the form of an upper bound on a variable, each constraint is required to have at least 

two non-zero 𝑎𝑖𝑗. Problem Set 5 of NNLPs is a set of large-scale problems with 5000 

variables and 1,000,000 constraints. In this set, real numbers between 1 and 100 were 

assigned to the elements of 𝒃 and 𝒄 with densities 𝑝 ranging from 0.0004 to 0.06. Again, to 

avoid having a constraint in the form of a upper bound on a variable, each constraint is 

required to have at least two non-zero 𝑎𝑖𝑗.  
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4.7 CPLEX Processing 

Two CPLEX parameters for solving linear programming are discussed here. 

Preprocessing pre-solve indicator (PREIND) and preprocessing dual (PREDUAL) are the 

two parameters that CPLEX uses for solving linear programming. Preprocessing pre-solver 

is enabled with the parameter setting PREIND = 1 (ON), which reduces both the number 

of variables and the constraints before any type of algorithm is used. Pre-solver routine in 

CPLEX is disabled by setting PREIND = 0 (OFF). The second preprocessing parameter in 

CPLEX, which affects the computational speed, is PREDUAL. By setting parameter 

PREDUAL = 0 (ON) or PREDUAL = -1 (OFF), CPLEX automatically selects whether to 

solve the dual of the original LP or not, respectively. Both CPLEX pre-solver and 

preprocessing dual were disabled in the developed methods. 

4.8 NVRAD Computation Results 

The experiments are performed on an Intel Core (TM) 2 Duo X9650 3.00GHz with 

a Linux 64-bit operating system and 8 GB of RAM. The developed method uses IBM 

CPLEX 12.5 callable library to solve nonnegative linear programming problems. The CPU 

times represent the average computation time of five problem samples in each density 

level. In Table 4.1, the performance of the non-dynamic COST active-set approach of [19] 

was compared to the dynamic COST active-set approach for Set 1. Dynamic NVRAD 

significantly reduces computational time compared to the multi-cuts and multi-bounds 

technique of  [6]. Moreover, in higher density problems the dynamic version of NVIOL is up 

to 21 times faster than when the same metric incorporated the multi-cuts and multi-bounds 

technique. Dynamic NVRAD performs better than VIOL and NVIOL on every problem 

instance.   
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Table 4.1 Comparison of CPU times to illustrate the effect of multi-cuts and multi-
bounds and dynamic active-set approach on problem Set1 (Random NNLP with 1000 
variables and 200,000 constraints, 𝑎𝑖𝑗=1-5, 𝑏𝑖 =1-10, 𝑐𝑗 =1-10) 

  VIOL+ NVIOL+ NVRAD+  NVIOL+ NVRAD+ 

  Multi-Cut & Multi-Bound 
 
 

 
 

Dynamic Active-Set 
 Density No CPU Time (sec)++ 

0.005 1 6.54 4.56 2.51  2.49 2.26 

0.006 2 6.84 5.06 2.92  2.96 2.62 

0.007 3 7.15 5.34 3.03  3.03 2.75 

0.008 4 6.61 4.96 3.02  3.13 2.83 

0.009 5 7.02 5.16 3.11  3.39 3.09 

0.01 6 6.83 5.14 3.41  3.51 3.12 

0.02 7 6.11 4.81 3.36  3.79 3.44 

0.03 8 5.79 4.79 3.33  3.99 3.52 

0.04 9 5.71 4.45 3.31  3.99 3.71 

0.05 10 5.41 4.62 3.49  4.10 3.64 

0.06 11 5.32 4.3 3.52  3.91 3.63 

0.07 12 5.87 4.73 3.79  3.93 3.73 

0.08 13 5.53 4.68 3.68  3.86 3.61 

0.09 14 5.76 4.89 3.99  4.06 3.65 

0.1 15 6.04 5.07 4.31  4.08 3.89 

0.2 16 10.9 9.64 8.28  4.96 4.82 

0.3 17 17.3 15.15 13.05  6.03 5.68 

0.4 18 24.64 22.12 20.53  7.28 6.56 

0.5 19 32.93 29.85 27.67  7.63 7.34 

0.75 20 62.21 57.36 54.97  10.53 10.50 

1 21 261.23 251.65 245.5  11.43       11.13 

Average  23.89 21.82 20.04  4.86 4.55 

++Average of 5 instances of LP at each density 
+ Used CPLEX preprocessing parameters of presolve = off and predual = off. 
 

In Table 4.2, CPU times of the test problems by dynamic NVRAD are compared 

with RAD. In problem Set 1, RAD is 12.5% faster than NVRAD over all densities. In problem 

Set 2, the average computation times for RAD and dynamic NVRAD are 19.07 and 16.86 

seconds respectively. On average, dynamic NVRAD is superior to RAD with 38.91 seconds 

and 41.87 seconds on Sets 3 and 4 respectively. At lower densities and higher dimensions, 

where there may not be much prior global information the results from Table 2 affirm the 

ability of NVRAD to add appropriate constraints at each iteration. For m/n ratio of 20, 
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NVRAD with 16.86 seconds is faster than the 19.07 seconds of COST RAD. For m/n ratio 

of 2, for densities less than 0.01, dynamic NVRAD is up to 18% more efficient than COST 

RAD. NVRAD performed well for both very low and very high density problems.   

 

++ Average of 5 instances of LP at each density. 
+ Used CPLEX preprocessing parameters of presolve = off and predual = off. 

 
In Table 4.3, CPU times of the test problems by RAD and hybrid method of COSTs 

(RAD and NVRAD) are compared. The hybrid version of COSTs represents a superior 

Table 4.2 CPU Times from RAD (multi-cuts and multi-bounds), and NVRAD using 
dynamic active-set method for set1-set 4 (Random, NNLP 𝑎𝑖𝑗 =1-5, 𝑏𝑖 =1-10, 𝑐𝑗 = 1-

10)    NVRAD+   RAD+ 

 n 1000 3163 1000
0 

1414
3 

 1000 3163 1000
0 

1414
3  m 20000

0 
63246 2000

0 
1414

3 
 20000

0 
6324

6 
2000

0 
1414

3  m/
n 

200 20 2 1  200 20 2 1 

  Dynamic Active-Set  Multi-Cut & Multi Bound 

Density No CPU Time (sec)++  CPU Time (sec)++ 

0.005 1 2.26 25.00 88.36 106.2
7 

 2.10 30.82 108.7
0 

127.5
5 0.006 2 2.62 27.23 88.73 97.31  2.42 31.48 104.8

7 
114.0

3 0.007 3 2.75 25.79 82.04 90.65  2.65 29.41 92.45 104.1
8 0.008 4 2.83 27.49 78.04 78.92  2.54 30.63 88.20 90.73 

0.009 5 3.09 27.43 74.65 75.18  2.78 30.10 83.53 85.21 

0.01 6 3.12 26.07 68.23 73.29  2.79 27.81 77.90 80.43 

0.02 7 3.44 22.48 45.06 46.24  3.09 24.69 47.63 49.95 

0.03 8 3.52 18.59 34.78 38.25  3.22 20.49 36.68 38.33 

0.04 9 3.71 16.92 29.96 30.75  3.33 19.06 32.74 32.53 

0.05 10 3.64 15.47 26.31 28.01  3.34 16.97 28.23 28.59 

0.06 11 3.63 13.62 24.62 25.62  3.20 14.94 27.58 27.27 

0.07 12 3.73 12.93 22.24 23.19  3.41 14.88 23.59 23.79 

0.08 13 3.61 11.99 20.74 22.30  3.32 13.57 23.44 24.19 

0.09 14 3.65 11.39 20.47 21.64  3.38 12.67 23.09 23.80 

0.1 15 3.89 10.81 19.65 20.18  3.39 12.92 22.93 20.85 

0.2 16 4.82 8.98 16.31 19.44  4.30 11.09 18.87 20.31 

0.3 17 5.68 8.84 15.66 19.09  4.97 10.58 18.11 19.46 

0.4 18 6.56 9.77 15.76 17.23  5.76 12.31 18.55 18.88 

0.5 19 7.34 10.60 15.82 17.89  6.98 11.92 18.00 19.89 

0.75 20 10.50 11.24 15.80 16.73  8.26 12.01 17.19 18.06 

1 21 11.13 11.34 13.85 11.12  8.39 12.20 17.71 18.50 

Averag
e 

 4.55 16.86 38.91 41.87  3.98 19.07 44.28 46.98 
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performance than RAD on problem Sets 2, 3, and 4 in dynamic active-set frame work. It 

confirms the power of using both global and local information. In problem Set 1, dynamic 

RAD is 1.4% faster than hybrid method over all densities. In problem Set 2, the average 

computation times for dynamic RAD and hybrid are 16.84 and 16.03 seconds respectively. 

On average, hybrid method is superior to RAD in a dynamic framework with 38.40 seconds 

and 41.76 seconds on Sets 3 and 4 respectively. 

In both Tables 4.2 and Table 4.3, HYBR is better than RAD, dynamic RAD, and 

dynamic NVRAD, though only marginally was better that dynamic NVRAD. HYBR can 

probably be improved. However, it is not our goal to determine the optimal ratio of RAD 

and NVRAD in HYBR since this ratio might differ depending on various factors such as 

density and 𝑚/𝑛. 
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Table 4.3 Result obtained from dynamic RAD and hybrid method for Set1-Set4 

   RAD+    Hybrid+ (RAD,NVRAD) 

() 

n 1000 3163 10000 14143  1000 3163 10000 14143 
 m 200000 63246 20000 14143  200000 63246 20000 14143 
 m/n 200 20 2 1  200 20 2 1 
  Dynamic Active-Set  Dynamic Active-Set 

Density No CPU Time (sec)++ 

CPU Time (Sec)++ 
0.005 1 2.02 29.51 106.42 127.70  2.19 27.14 94.26 113.63 

0.006 2 2.32 30.20 107.61 116.08  2.53 28.51 95.25 103.78 

0.007 3 2.49 29.07 95.87 104.79  2.78 26.14 84.13 95.47 

0.008 4 2.47 29.80 89.37 93.12  2.76 27.63 78.88 83.75 

0.009 5 2.67 28.59 80.46 86.46  2.93 27.21 77.09 81.11 

0.01 6 2.65 27.09 75.60 81.28  3.02 25.68 70.59 75.25 

0.02 7 2.85 22.01 45.39 48.01  3.28 20.90 44.45 46.91 

0.03 8 2.83 17.30 33.40 36.20  3.19 17.46 34.44 36.18 

0.04 9 2.82 14.97 29.29 27.47  3.18 15.08 27.58 29.31 

0.05 10 2.97 13.91 24.38 24.70  3.04 13.68 24.61 24.94 

0.06 11 2.85 11.43 22.31 22.82  3.19 11.81 23.03 23.32 

0.07 12 2.93 11.04 19.40 20.48  3.31 11.55 19.99 20.88 

0.08 13 2.91 10.37 18.75 19.87  3.30 10.36 19.19 20.72 

0.09 14 3.16 9.16 18.11 18.93  3.34 9.37 18.52 19.54 

0.1 15 3.06 9.54 17.35 17.34  3.51 9.18 17.74 17.89 

0.2 16 4.34 8.12 14.39 15.99  4.36 7.92 14.01 15.55 

0.3 17 5.70 8.57 13.31 15.32  5.40 7.86 12.92 14.66 

0.4 18 7.00 9.28 13.55 14.58  6.50 8.95 12.65 13.93 

0.5 19 7.95 9.85 13.60 16.35  7.84 9.60 13.38 14.52 

0.75 20 10.64 12.05 14.43 15.56  9.81 10.77 12.38 14.13 

1 21 12.66 11.71 12.60 14.72  11.00 9.76 11.39 11.59 

Average  4.25 16.84 41.22 44.66  4.31 16.03 38.40 41.76 
++ Average of 5 instances of LP at each density. 
+ Used CPLEX preprocessing parameters of presolve = off and predual = off. 

 
 

Table 4.4 from [6] is presented to provide an immediate comparison of the 

developed dynamic NVRAD with the standard CPLEX solvers. Dynamic NVRAD was 

superior across all ratios m/n and all densities except few problem instances with densities 

less than 0.02 and a ratio m/n =  20 in which barrier method was faster.  
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For a larger test problems (n = 5000; m = 1,000,000), Table 4.5 illustrates the 

effects of the dynamic active-set method along with the multi-cuts and multi-bounds 

technique over several constraint selection metrics. In a multi-cut and multi-bound 

framework, NVIOL shows 43% improvement in computation time compared to VIOL, while 

NVRAD reduces the solution time around 53% using the same technique. Among all 

posterior methods, NVRAD represents a superior performance compared to other 

constraint selection metrics using both dynamic and multi-cut and multi-bound approach. 

The average improvement made by using NVRAD in a dynamic framework is about 47% 

reduction in CPU time compared to NVRAD using multi-cut and multi-bound method. The 

average CPU times are not calculated for some of the CPLEX solvers since the CPU times 

more than 3000 seconds are not reported. 
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Table 4.4 Result obtained from primal, dual simplex and barrier for set1-set4, (Random, NNLP 𝑎𝑖𝑗 =1-5, 𝑏𝑖 = 1-10, 𝑐𝑗 = 1-10) [6] 

   Primal--  Dual--  Barrier --  

 n 1000 3163 10000 14143  1000 3163 10000 14143  1000 3163 10000 14143 

 m 200000 63246 20000 14143  200000 63246 20000 14143  200000 63246 20000 14143 

 m/n 200 20 2 1  200 20 2 1  200 20 2 1 

Density No   CPU Time (Sec) ++   
0.005 1 7.01 71.02 228.51 309.83  54.84 762.62 1597.24 1169.04  2.36 14.52 240.17 650.83 

0.006 2 10.36 77.28 245.60 291.07  60.29 803.97 1607.16 2413.42  2.39 16.30 224.08 666.54 

0.007 3 12.98 75.84 219.72 265.09  91.39 876.85 1483.20 1702.47  3.04 18.34 233.55 671.56 

0.008 4 15.72 82.01 206.45 239.30  100.06 912.75 1445.54 1236.76  3.90 20.70 232.38 668.82 

0.009 5 19.25 80.35 196.72 216.23  114.95 898.99 1375.73 427.95  4.76 22.66 232.23 649.26 

0.01 6 21.92 78.50 182.47 216.60  123.49 912.63 1252.05 436.31  5.53 24.29 228.76 650.30 

0.02 7 39.90 78.80 118.28 127.59  203.08 963.66 807.29 362.34  17.13 32.08 242.54 711.26 

0.03 8 45.42 79.75 98.02 108.60  217.18 1207.76 545.91 723.98  28.79 45.03 266.90 727.61 

0.04 9 50.30 78.78 89.75 88.32  248.75 1489.40 450.08 539.92  41.50 62.28 292.15 806.80 

0.05 10 55.16 78.92 81.09 82.14  256.49 1746.46 418.69 519.50  53.72 81.32 327.01 837.67 

0.06 11 60.34 77.49 77.28 78.27  251.39 2124.31 378.71 409.47  67.58 100.48 359.53 897.58 

0.07 12 62.07 78.93 70.44 70.37  251.74 2446.69 310.89 544.15  84.70 125.49 401.72 948.01 

0.08 13 62.92 76.96 70.21 69.81  264.48 2799.62 307.25 388.94  99.51 149.37 454.01 1038.86 

0.09 14 66.57 79.07 71.46 72.37  258.14 2523.03 718.04 427.95  119.26 186.06 495.28 1153.31 

0.1 15 71.00 74.57 67.43 62.64  287.36 2251.10 267.14 436.31  138.67 207.54 539.64 1194.56 

0.2 16 87.49 83.12 64.38 62.99  294.39 1450.82 201.73 362.34  379.68 691.77 1298.76 2529.97 

0.3 17 94.57 77.91 67.14 66.61  341.44 1280.71 175.16 267.16  657.45 1333.29 2418.75 b 

0.4 18 99.33 78.46 73.58 71.48  384.10 1236.30 146.09 233.39  985.86 2076.09 b b 

0.5 19 111.30 84.30 86.50 75.62  427.16 1173.49 133.49 208.65  1350.82 b b b 

0.75 20 128.26 99.35 115.00 102.51  410.98 1056.18 132.25 181.95  b b b b 

1 21 207.55 94.09 393.54 145.96  375.89 411.19 148.90 165.45  b b b b 

Average  63.30 80.26 134.46 134.45  238.93 1396.60 662.03 626.55  n/a n/a n/a n/a 

--Used CPLEX preprocessing parameters of presolve = ON and predual = Auto.  ++Average of 5 instances of LPs at each density. 
b Runs with CPU times > 3000s are not reported. 
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Table 4.5 The comparison of computation times of dynamic active-set method and bounding technique (Random 
NNLP with 5,000 variables and 1,000,000 constraints, 𝑎𝑖𝑗 = 1-5, 𝑏𝑖 = 1-100, 𝑐𝑗 = 1-100) 

No Density NVRAD+ RAD+ 
 

 VIOL+ 
 

NVIOL+ 
 

NVRAD+ 
 

CPLEX  
Primal-- 

CPLEX 
Dual-- 

   CPLEX 
Barrier -- 

  Dynamic 
Active-Set 

Multi-Cuts & Multi-Bounds    

CPU Time (Sec)++ 

1 0.0004 6.21 7.54  157.92 73.09 72.19 11.90 14.08 12.31 

2 0.0005 9.22 12.26  177.96 100.86 106.31 23.41 29.83 16.61 

3 0.0006 11.94 16.51  252.74 75.41 76.12 13.45 107.61 20.45 

4 0.0007 15.45 22.19  282.95 92.70 93.64 18.99 176.50 24.60 

5 0.0008 20.16 27.66  325.51 108.42 95.22 28.88 257.06 27.43 

6 0.0009 23.70 33.24  346.76 120.57 91.06 40.17 339.49 29.80 

7 0.0010 28.01 39.81  374.06 141.35 107.34 50.91 427.60 31.73 

8 0.0020 70.01 89.57  393.48 222.63 174.78 173.03 1775.03 48.79 

9 0.0030 90.09 104.83  368.92 245.17 190.37 244.01 b 61.31 

10 0.0040 99.32 113.40  346.56 224.35 183.58 316.53 b 85.60 

11 0.0050 103.78 113.17  322.98 215.49 172.42 366.80 b 91.11 

12 0.0060 112.15 122.85  320.97 217.81 171.40 443.43 b 112.46 

13 0.0070 106.61 116.00  283.16 214.48 160.63 474.40 b 136.03 

14 0.0080 100.14 113.05  258.56 184.76 148.74 529.44 b 158.54 

15 0.0090 94.43 104.68  229.32 165.47 138.51 566.20 b 198.31 

16 0.0100 100.91 112.82  233.08 171.28 137.64 629.59 b 239.87 

17 0.0200 76.77 83.83  142.85 106.45 90.60 1134.77 b 899.87 

18 0.0300 69.41 76.69  114.25 86.83 76.77 1740.28 b b 

19 0.0400 65.87 67.36  103.22 79.26 71.60 1865.70 b b 

20 0.0500 63.71 64.58  100.60 80.35 71.87 2159.55 b b 

21 0.0600 64.57 65.62  102.05 82.42 74.41 b b b 

Average  63.45 71.79  249.42 143.29 119.29 n/a n/a n/a 

                       ++Average of 5 instances of LP at each density. b Runs with CPU times > 2400s are not reported. 
                       --Used CPLEX preprocessing parameters of presolve = ON and predual = Auto. 
                       + Used CPLEX preprocessing parameters of presolve = off and predual = off. 
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4.9 Conclusions 

An efficient posterior constraint selection metric NVRAD was developed here for 

NNLPs to utilize both prior global information and posterior local information, and a 

geometric interpretation was presented. In addition, a dynamic active-set approach was 

developed here to add varying numbers of constraints to for each 𝑃𝑟 . The performance of 

dynamic NVRAD was checked on sets of large-scale NNLPs. Dynamic NVRAD 

outperformed the previously developed methods COST RAD and VIOL, as well as the 

CPLEX primal simplex, dual simplex, and barrier solvers.    
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CHAPTER 5 

Application to Column Generation & Entering Variable Rule 
 

5.1 Entering Variable Rule 

Dantzig entering variable rule has been a dominant entering rule since the emergence of 

the simplex method. In the meantime, other entering rules are examined here to check 

their performance compared to the Dantzig entering rule. In the dual space of problem  𝑃, 

the likelihood of binding constraint at optimality can be determined by the corresponding 

dual version of RAD, called DRAD here.  

𝐷𝑅𝐴𝐷(𝒂, 𝒃, 𝑐) = 𝑗∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 { 
𝒂𝑗𝑇

𝒃

𝑐𝑗

 | 𝒂𝑗𝑇
𝒚𝑟

∗ < 𝑐𝑗}, (5.1) 

where 𝒂𝑗 is the 𝑗th column of 𝑨.  

The performance of the DRAD entering rule is compared with the cosine simplex 

method discussed in Section (2.7.1) and the Dantzig entering rule. It tested over few, 

randomly generated problems with varying number of 𝑚 and 𝑛 with density of 1. In the 

DRAD entering rule, at each iteration, among all non-basic variables with negative reduced 

cost, the one with the lowest possible DRAD value is chosen to enter to the basis. In the 

next step, the minimum test determines the leaving variable. In the cosine simplex 

algorithm, all candidate variables with negative reduce cost, are required to calculate the 

corresponding cosine value, and the variable with the minimal cosine (2.8) is chosen as an 

entering variable. 

To check the performance of the variable entering rules, two types of NNLPs, 

𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗  ∈ ℛ+ and 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗  ∈ ℤ+ are randomly generated.  

5.2 Entering Variable Rule by DRAD 

To examine the effect of changing the variable entering rule from Dantzig’s rule to 

use DRAD, several randomly generated problem samples at density of one are tested and 
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reported in Table 5.1 and Table 5.2. As described in Chapter 2, among all the potential 

variables with negative reduced cost, a variable considered favorable regarding each 

variable entering rule enters to basis in the next iteration. In problem set with 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈ ℛ, 

on average, Danzig’s rule shows a superior performance compared to other variable 

pivoting rules. The comparison for the number of the iterations is shown in Table 5.1 and 

Table 5.2. 

 

Table 5.1 Comparison of the number of the iterations between different variable entering 
 rules 

𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗  ∈ ℛ  

1 ≤ 𝑐𝑗 , 𝑏𝑖  ≤ 10 and 1 ≤ 𝑎𝑖𝑗 ≤ 5 

Number of iterations 
 

Density  Problem Samples  
 (Variables , 
Constraints) 

Cosine 
 Simplex 

DRAD 
Simplex 

Dantzig Simplex 

1 800,100 39 20 7 

1 700,100 19 6 5 

1 600,100 21 8 7 

1 500,100 70 29 15 

1 400,100 66 35 13 

1 300,100 7 9 5 

1 200,100 16 15 6 

1 100,100 16 21 7 

Average  31.75 17.88 8.125 
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Table 5.2 Comparison of the number of the iterations between different variable entering 
 rules 

𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗  ∈ ℤ+ 

1 ≤ 𝑐𝑗 , 𝑏𝑖  ≤ 10 and 1 ≤ 𝑎𝑖 ≤ 5 

Number of iterations 

Density Problem Samples 
(Variables , 
Constraints) 

Cosine 
Simplex 

DRAD 
Simplex 

Dantzig Simplex 

1 800,100 100 70 22 

1 700,100 41 27 9 

1 600,100 17 19 11 

1 500,100 17 19 6 

1 400,100 66 66 16 

1 300,100 21 14 13 

1 200,100 13 5 13 

1 100,100 13 10 7 

1 80,80 24 13 8 

Average  34.67 27.00 11.67 

 
Consider problem 𝐷 as the dual of linear programming problem 𝑃: 
 

(D)          𝑀𝑖𝑛 ∑ 𝒚𝒊 ∗  𝒃𝒊
𝑚
𝑖=1  

𝑠. 𝑡. 

(5.2) 

∑ 𝒚𝒊 ∗ 𝑎𝑖𝑗

𝑛

𝑖=1

≥  𝑐𝑗    ∀ 𝑗 = 1, … , 𝑛 
(5.3) 

𝒚𝒊 ≥  0       ∀ 𝑖 = 1, … , 𝑚 (5.4) 

DARD measures the likelihood of constraints binding at optimality in problem 𝐷.  

Theorem: Complementary Slackness Assume problem (P) has a solution 𝒙∗ and 

Problem (D) has a solution 𝒚∗. 

1. If 𝑥𝑗
∗ > 0, then the 𝑗𝑡ℎ constraint in (D) is binding. 

2. If the 𝑗𝑡ℎ constraint in (D) is not binding, then 𝑥𝑗
∗ = 0 

3. If 𝑦𝑖
∗ > 0, then the 𝑖𝑡ℎ constraint in (P) is binding. 

4. If the 𝑖𝑡ℎ constraint in (P) is not binding, then 𝑦𝑖
∗ = 0 

The complementary slackness theorem identifies a relationship between 

constraint in one problem and variables in the other problem. “It says if a variable is 
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positive, then the associated dual constraint must be binding. It also says if a constraints 

fails to bind, the associated variable must be zero” [29]. 

 

𝒚∗(𝑨𝒙∗ − 𝒃) = 0 
(𝒚∗𝑨 − 𝒄)𝒙∗ = 0 

  

Figure 5.1. Interpretation of DRAD and complementary slackness 
 

Considering the DRAD metric, 𝑢1 and 𝑢2 have a higher probability of getting 

positive values than 𝑢3. Though 𝑢3 has a high probability to be zero at optimal solution, the 

associated dual variable in the primal problem can be zero or positive. Consider a two-

dimensional example of an NNLP  

              𝑀𝑖𝑛  3𝑥1 + 3𝑥2  (P1) 

𝑠. 𝑡. 

𝑥1 + 𝑥2    >= 3 

2𝑥1 + 𝑥2  >= 4 

3𝑥1 + 𝑥2  >= 6 

𝑥1, 𝑥2 >= 0 
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The solution to (P1) is 𝑥1
∗ = 1.5, 𝑥2

∗ = 1.5, 𝑧∗ = 9. As seen, constraint 1 and 3 are bound at 

optimal solution, but the second constraint is loose (𝑢1 = 0, 𝑢2 = 0.5, 𝑢3 = 0). The dual of 

the (P1) is 

                   𝑀𝑎𝑥 3𝑦1 + 4𝑦2 + 6𝑦3 (D1) 

𝑠. 𝑡. 

𝑦1 + 2𝑦2 + 3𝑦3 <= 3 

𝑦1 + 𝑦2 + 𝑦3  <= 3 

𝑦1 , 𝑦2, 𝑦3  >= 0 

 

Solution 𝑦1 = 3 , 𝑦2 = 𝑦3 = 0,  𝑧∗ = 9 

 

Though constraint 3 in (P1) is tight, its corresponding dual variable in (D1) is 0, and it is 

not a basic variable at optimal solution.  

The provided example may explain the reason for inefficiency of DRAD metric as 

a variable selection rule. It assumes if a constraint binds at optimal solution in 𝐷, its 

associated dual variable is positive in 𝑃, which is not exactly accorded with the 

complementary slackness theorem.  

5.3 DRAD column generation 

In this section, DRAD is examined for generating columns in large scale LP 

problem with a short and wide structure. First, variables are sorted in an ascending order 

of DRAD (5.1) then CPLEX primal simplex is used to solve 𝑃0. The reduced costs of non-

basic variables are obtained by a pricing operation 

𝒄̅𝑁 = 𝒄𝑩𝐵−1𝒂𝒋 − 𝒄𝒋 (5.5) 

where  𝑗 = {𝑗 | 𝒄̅𝒋 < 0, 𝑗 ∈  𝑁} . Multiple of columns 𝑗 are added iteratively, since they price 

out favorably. First, variables are sorted in a descending order of DRAD. Then, 𝑃0 is 

constructed by adding 10% of the most important variables. Eq. (3.1) and Eq. (3.2) are 

used to determine the number of multiple columns added in the next iterations. DRAD 
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column generation is compared with CPLEX Sifting and CPLEX Primal, CPLEX Dual, and 

CPLEX Barrier methods, and the results are illustrated on Table 5.3. All methods are tested 

on problem-sets with 20000 variables and 5000 constraints. The DRAD column generation 

represents a superior performance compared to Sifting in high density problem instances. 

On average, DRAD column generation represents 67% improvement compared to the 

Sifting method on problem-sets 3.  

5.4 Dynamic DRAD COST 

DRAD is also used as a constraint selection metric to solve NNLP problems.  First, 

for each variable 𝐷𝑅𝐴𝐷(𝒂, 𝒃, 𝑐) is calculated then, problem 𝑃 is converted to dual problem 

𝐷, and constraints are sorted in a descending order of DRAD. The dynamic active-set 

method, discussed in Section 3.2, is used to add multiple violated constraints at problem 

𝑃𝑟 , 𝑟 = 1,2,3, … ,. As illustrated in Table 5.3, using DRAD as a constraint selection technique 

in problem 𝐷 is the most efficient method for solving NNLPs with short and wide structure. 

On average, DRAD COST is 57% faster than DRAD Column Generation, 22% faster than 

NRAD COST, and 85% more efficient than the sifting method, which is the standard LP 

column generation method. 
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Table 5.3 The comparison of computation times of  DRAD Column Generation, Sifting, Primal, Dual, and Barrier on 
(Random NNLP with 20000 variables and 5000 constraints, 𝑎𝑖𝑗 =1 to 5, 𝑏𝑖 =1 to 10, 𝑐𝑗 =1 to 10) 

NO Density DRAD COST 
Dynamic 

DRAD Column 
Generation 

NRAD 
COST  

CPLEX 
Sifting 

CPLEX  
Primal-- 

CPLEX 
Dual-- 

CPLEX 
Barrier -- 

  CPU Time (Sec)++ 

1 0.005 57.04 90.50 70.12 82.22 240.79 273.74 28.89 
2 0.01 39.93 71.00 42.72 70.45 189.77 244.05 29.97 
3 0.02 20.54 39.80 22.19 31.72 154.07 189.55 35.81 
4 0.03 14.60 31.89 17.19 26.56 148.08 215.39 41.30 
5 0.04 10.83 25.55 15.39 24.03 191.50 155.25 47.81 
6 0.05 9.22 22.22 13.53 25.52 226.33 146.91 60.25 
7 0.06 8.23 20.30 12.99 23.92 197.12 148.64 74.90 
8 0.07 7.29 19.50 11.97 24.53 173.60 175.36 90.40 
9 0.08 6.66 16.96 11.56 26.56 161.33 187.01 105.60 
10 0.09 6.17 16.59 10.87 26.46 159.93 203.78 126.51 
11 0.1 5.71 15.90 10.18 28.89 141.78 222.30 140.54 
12 0.2 5.84 30.41 9.53 46.92 136.24 202.87 394.03 
13 0.3 5.19 30.20 9.25 75.62 137.25 194.21 NA 

14 0.4 6.33 30.97 8.74 117.29 126.96 162.46 NA 

15 0.5 6.54 25.22 8.41 158.05 122.06 151.68 NA 

16 0.6 7.05 24.92 8.59 177.17 127.65 159.51 NA 

17 0.7 8.13 21.22 8.74 207.61 109.20 170.25 NA 

18 0.8 7.52 19.81 8.40 270.74 108.20 175.91 NA 

19 1 8.36 12.95 8.99 239.37 77.22 197.83 NA 

Average  12.69 29.78 16.28 88.61 154.16 188.25 NA 

++ Average of 5 instances of LP at each density. 
+ Used CPLEX preprocessing parameters of presolve = off and predual = off. 
-- Used CPLEX preprocessing parameters of presolve = ON and predual = ON. 
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CHAPTER 6 

GRAD for Equality Constraints 

The dynamic active-set approach is applied to large-scale NNLPs with equality 

constraints in this section. This is done as follows. 

An 𝑨′ matrix is formed by converting every equality constraint in 𝑨 into two 

inequalities 𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖  and  𝒂𝑖

𝑇𝒙 ≥  𝑏𝑖  . The dynamic GRAD, discussed in Section 3.3, is 

used to solve the general linear programming problem. Note, for an 𝑨 matrix with all 

equality constraints, 𝑨′ is twice as large in its constraints size as 𝑨. To measure the 

performance of the proposed method, few NNLPs with equality constraints and 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗  ∈

ℛ+ are randomly generated. To assure the randomly generated NNLPs have a feasible 

solution, 𝒙∗ is randomly generated to derive random 𝒃, where 𝒂𝑖
𝑇𝒙∗ =  𝑏𝑖.  In addition, to 

avoid having a constraint in an upper bound on a variable, each constraint must have at 

least two non-zero 𝑎𝑖𝑗. The number of nonzero 𝑎𝑖𝑗 in each constraint was binomially 

distributed B (n, p =density. 

As illustrated in Table 6.1, GRAD represents an efficiency lower than CPLEX 

solvers in the majority of problems. The possible explanation for the lack of efficiency in 

using GRAD is as follows:  

 The number of rows in 𝑨′ is twice as large as the number of rows in 𝑨, which is a 

significant increase in the number of constraints.  

 The main power of CPLEX is originated from its pre-solver and pre-dual 

computational advantage. The pre-processing capability of the CPLEX for 

problems with equality constraints is higher than the problems with inequality 

constraints. In addition CPLEX uses multiple threads for concurrent optimization 

which enables CPLEX to do its computation in a parallel mode.  
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In several problems, CPLEX solver eliminates all rows and columns which makes 

CPLEX to be extremely efficient for such problems. CPLEX AUTO has several tuning 

parameters that retune itself during the solving procedure. Some of these parameters are: 

 Variable selection: Devix entering rule, Steepest Edge, Dantzig entering rule 

 Parallel threads and computing  

 Markowitz tolerance 

 Cholesky decomposition 

 Pre-processing (pre-solver) 

 Pre-dual   

Table 6.1 The computation times of dynamic GRAD and CPLEX used for NNLPs with 
equality constraints(Random NNLP,1 ≤ 𝑐𝑗 ≤ 10 and 1 ≤ 𝑎𝑖𝑗 ≤ 5, and 1 ≤ 𝑥𝑖𝑗 ≤ 10) 

Density  NNLPs (Var , Cons) Dynamic 
GRAD 

CPLEX  
Primal-- 

CPLEX 
Barrier -- 

CPLEX 
AUTO 

                         CPU Time  

0.01 1000,50000 1.24 0.12 0.29 0.09 

0.05 2000,25000 163.02 78.53 307.09 73.66 

0.05 1000,50000 20.00 63.82 125.41 4.88 

0.08 1000,50000 39.53  73.19 147.78 5.56 

0.1 1000,50000 13.98 75.85 155.54 6.81 

0.5 1000,50000 125.31 103.37 191.76 28.21 

0.005 1000,100000 0.66 0.13 0.4 0.13 

0.05 1000,100000 19.07 147.17 261.13 7.12 

0.1 1000,100000 20.86 163.46 319.72 11.39 

0.005 2000,50000 8.82 0.11 0.24 0.09 

0.05 2000,50000 177.98 162.92 592.57 70.80 

0.1 2000, 50000 322.15 195.65 676.18 60.67 

-- Used CPLEX preprocessing parameters of presolve = ON and predual = ON. 

CPLEX pre-solver and pre-dual is more powerful and efficient in LP problems with 

equality constraints than inequality constraints. Table 6.2 compares the CPU time for the 

same NNLPs with equality and inequality constraints. In all problem instances, the CPU 
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time for solving NNLP problems with equality constraints is smaller than the same problem 

with inequality constraints. On average, CPLEX pre-solver and pre-dual are 8 times more 

efficient for NNLPs with equality constraints than the same problem with inequality 

constraints. The CPU time of COST NRAD is still larger than CPLEX. Interestingly, for 

equality constraints, CPLEX pre-solver eliminates all columns and rows which confirms the 

main computational power of CPLEX is from its preprocessing (pre-solver and pre-dual) 

parameters.  

Table 6.2 A comparison of the CPLEX pre-solver’s performance on equality and 
inequality constraints (Random NNLP, 1 ≤ 𝑐𝑗 ≤ 10 and 1 ≤ 𝑎𝑖𝑗 ≤ 5, and 1 ≤ 𝑥𝑖𝑗 ≤ 10) 

+Used CPLEX preprocessing parameters of presolve = ON and predual = ON. 

 

After considering the results, it was realized that the way that these problems are 

made effectively give a unique solution for a set of the linear equations in which in that 

case, CPLEX had to solve a system of overdetermined linear equations. Therefore, some 

further problems are constructed with the mixed equality and inequality constraints.  

The dynamic COST RAD for solving NNLPs problems with mixed equality and equality 

constrains is described as follows.  

Constraints are initially ordered by the RAD constraint selection metric (2.2). In 

order to solve problems with equality and equality constrains, all constraints are ranked in 

a descending order of RAD. Then, 𝑃0 is formed by adding all of the  𝒂𝑖
𝑇𝒙 =  𝑏𝑖 constraints. 

We add constraints  𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖 from (1.2) in descending order of RAD until each variables 

Density  CPU Time+ CPU Time 

Density  
 

NNLPs 
 (Variables , 
Constraints) 

 

CPLEX  
AUTO 

CPLEX 
AUTO 

COST NRAD 

Inequality 

 𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖  

Equality 

 𝒂𝑖
𝑇𝒙 =  𝑏𝑖 

Inequality 

 𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖  

0.01 1000,50000 0.80 0.09 0.43 

0.1 1000,50000 0.34 0.10 0.11 

0.05 1000, 100000 77.29 6.62 6.65 

0.1 1000, 100000 108.11 7.22 14.92 
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𝑥𝑗  has an 𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. Then, dynamic RAD discussed in Section 

3.2 is applied to solve the problem. As illustrated in Table 6.3, the proposed methodology 

solves the mixed constraints problem very efficiently.   

 
Table 6.3 A comparison of the CPLEX’s performance on mixed equality-inequality 
constraints NNLPs and dynamic RAD.  

+Used CPLEX preprocessing parameters of presolve = ON and predual = ON. 

 

 

 

 

 

 

 

 

 

 

 

 

Density  
 

NNLPs 

 (Variables , Constraints ( 𝒂𝑖
𝑇𝒙 ≤  𝑏𝑖,  𝒂𝑖

𝑇𝒙 = 𝑏𝑖) 

CPLEX  
AUTO 

Dynamic RAD 

  CPU Time CPU Time+ 

0.01 (1000, 200000) 9.86 0.88 

0.01 (1000, 200000) 10.47 0.9 

0.03 (1000, 200000) 78.97 1.21 

0.04 (1000, 200000) 129.44 1.20 

0.05 (1000, 200000) 144.49 1.32 

0.1 (1000, 200000) 407.47 1.72 

0.05 (5000, 20000) 150.34 5 

0.1 (5000, 20000) 367.56 4.09 
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CHAPTER 7 

Conclusions  

Two efficient dynamic active-set approaches were developed. In addition, a 

constraint selection rule NVRAD is developed, and its geometric interpretation was given. 

The performance of the developed methods was tested on sets of large-scale generated 

GLPs and NNLPs. The superior performance of the developed method over the COST 

NRAD multi-cuts is presented. Also, both Dynamic active-set methods significantly 

outperformed all of the CPLEX solver methods in solving GLPs and NNLPs with various 

densities from a low density to a density of 1. The improvement achieved on GLPs was 

more significant compared to the developed method by [18]. 

The dynamic active-set approach, presented in Chapter 4, increases the 

performance of the posterior methods, such as VIOL and NVIOL, significantly compared 

to the bounding technique. The importance of the posterior methods on the sparse matrix 

was illustrated. Also, a hybrid method is efficient, and it is understood that hybrid approaches 

can take advantage of both global and local information. A variable selection technique, based 

on the dual version of the radial constraint selection rule (DRAD), is implemented on a 

problem sets. The results are compared with the Sifting method, which is a popular method 

for generating column in LP problems with short and wide structure.  

The study can also be extended to address the cases when all the equations are 

equalities 𝑎𝑇𝑥 =  𝑏. Also, the reduced problem by CPLEX pre-solver can be used to speed 

up the solving process. Other areas of future research may contain expanding RAD to 

solve integer programming problems.   
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