
DYNAMIC CONSTRAINT OPTIMAL SELECTION TECHNIQUES FOR LINEAR

PROGRAMMING

by

ALIREZA NOROZIROSHAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

April 2016

ii

Copyright © by Alireza Noroziroshan 2016

All Rights Reserved

iii

To my beloved ones

iv

Acknowledgements

I take this opportunity to sincerely express my gratitude to professor Dr. H.W.

Corley for chairing my committee and supervising my dissertation. I am indebted to him for

his whole-hearted support, enthusiasm, and inspiration throughout my graduate studies. I

am grateful to Dr. Jay M. Rosenberger for his valuable advice and suggestions during my

studies and for his participation in my committee. His courses have benefited me greatly

during my doctoral studies. I also sincerely appreciate Dr. Victoria Chen’s support as

Interim Chair of IMSE and for her interest and time on the committee. In addition, I am very

thankful to Richard Zercher for his support and guidance and for constantly running CPLEX

on the workstations. Finally I am grateful to the students of COSMOS lab for creating a

positive learning environment.

April 15, 2016

v

Abstract

DYNAMIC CONSTRAINT OPTIMAL SELECTION TECHNIQUES FOR LINEAR

PROGRAMMING

Alireza Noroziroshan, PhD

The University of Texas at Arlington, 2016

Supervising Professor: H.W. Corley

Linear programming has been studied for over 60 years. It has been considered

as one of the most valuable optimization tool for many industrial problems. The simplex

algorithm remains the predominant approach to solving linear programming problems.

Here we use the simplex method in an active-set frame work to improve it substantially. In

general an active-set method obtains solutions by adding one or more problem constraints

at a time to solve smaller problems iteratively. In particular, some of these methods have

proven to perform significantly faster than the simplex method. In this dissertation we

proposed an efficient constraint selection metric for NNLPs called NVRAD to add

constraints recursively in two ways; using posterior method and dynamic active-set

approach for both nonnegative linear programming and general linear programming. In

general linear programming we improve on past prior active-set methods by using dynamic

constraint selection technique. These innovations improved the solver’s performance and

reduced the computation time needed to solve large-scale linear programming problems.

vi

Table of Contents

Acknowledgements .. …………………….iv

Abstract ... v

List of Illustrations ... ixx

List of Tables ... x

Chapter 1 Introduction……………………………………………………...………...................1

1.1 The Linear Programming Problem………………………………………..…...….........1

1.2 Objectives of the Work………………………………….….…….……...…..…….….…3

1.3 Brief Description of COSTs ………………………………………..…...…...................3

1.4 Contribution ………………………………….….…….……...…..…………….……...…4

1.5 Overview of the Dissertation ……………….….…….……...…..…………….….….…5

Chapter 2 Background .. 6

2.1 Introduction ………………………………………..…...….........…………..….………..6

2.2 Non-negative Linear Programming……………….….…….………..…..……….….…7

2.3 Constraint Selection Metric.……………………………………..……...…...................7

2.3.1 Sub …………………………….….…….……...…..…………….…..…………...…8

2.3.2 Cosine……………………………………………………………………….……….8

2.3.3 VIOL.………………………….….…….……...…..…………….…..…………...…..9

2.3.4 RAD……………………………………………………………………..….……….10

2.3.5 VRAD………………………….….…….……...…..…………….…..…...………...12

2.3.6 GRAD……………………………………………………………………….………12

2.4 General Approach to Active-set …………………………………..…...….................12

2.5 Historical Perspective ……………….….…….……...…..…………….….………..…13

2.6 Large-Scale Linear Programming ……….….…….……....…..…………….….….…14

2.6.1 Delayed Column Generation ………………………………………….....…....…15

vii

2.6.2 Sifting (Sprint)………………………………………….…..…………........…....…16

2.7 Pivoting Rule ……….….…….……...…...…..…………………………….….….….…16

2.7.1 Full Pricing ………………………………………..………………………...…...…16

2.7.2 Partial Pricing ………………………………………………………...........…...…17

Chapter 3 Prior COSTs Improvement .. ……18

3.1 Introduction ………………………………………………………..…...…....................18

3.2 Dynamic Active-Set Approach for NNLP ………………………………..……….......18

3.3 Dynamic Active-Set Approach for LP.………………..…………..……….................19

3.4 Problem Instances & CPLEX Pre-processing ………………………………............21

3.5 Computational Experiments for NNLP………… ………………………..…..............22

3.6 Computational Experiments for LP ……………………..……….…...…...................23

3.7 Conclusion ……………………..……….…...…..29

Chapter 4 Posterior COSTs .. 30

4.1 Introduction ………………………………………………………..…...…....................30

4.2 Overview ….………..…...…..................…….........…….........….….........................30

4.3 Explanation of NVRAD ….………..…...…….……..............…….........….................31

4.4 Dynamic COST NVRAD …….………..…...………………......................................32

4.5 Computational Experiments …….………..…...………..................…......................36

4.6 Problem Instances …….………..…...…….…….........…….........…….....................36

4.7 CPLEX Processing …….………..…...………….........…….........…….....................37

4.8 NVRAD Computation Results …….………….........…….........…..…...……............37

4.9 Conclusions …….………..…...……...…….........…….........…….............................45

Chapter 5 Application to Column Generation & Entering Variable Rules……………...….46

5.1 Entering Variable Rules….………..…...…...….......…...……...……....….................46

5.2 Entering Variable Rule by DRAD ….………..…....…...……...…...…......................46

viii

5.3 DRAD Column Generation ….………..…..…...…..…...…...…........……..…...........50

5.4 Dynamic DRAD COST ….………....…...…..…...……...…..........…….....................51

Chapter 6 GRAD for Equality Constraints………………………………………….………...53

Chapter 7 Conclusion and Future Research…………………………………………….…...57

References ..…………58

Biographical Information ...…………61

ix

List of Illustrations

Figure 2.1 Constraint selection technique based on maximum cosine value………………8

Figure 2.2 Geometric description of VIOL…………………………………………………….10

Figure 2.3 Geometric interpretation of RAD…………………………………………………..11

Figure 4.1 An ideal changing angle between 𝒙𝑟

∗ and 𝒄……………………………………...33

Figure 5.1 Interpretation of DRAD and complementary slackness………………………...49

x

List of Tables

Table 3.1 Results from dynamic RAD and COST RAD for set 1- set 4…………………...25

Table 3.2 Results from the CPLEX primal, the dual simplex, and the barrier method
for set 1-set 4…………..………………………………………………………………………..26

Table 3.3 Comparison of computation times of CPLEX solvers, GRAD, and VIOL both
using dynamic active-set and multi-cut method on general LP problem set 27

Table 3.4 Comparison of computation times of GRAD using dynamic active-set
 and fixed cut method on general LP problem set ………..…………………………………28

Table 4.1 Comparison of CPU times to illustrate the effect of multi-cuts and
multi-bounds and dynamic active-set approach on problem Set1…………………………38

Table 4.2 CPU Times from RAD (multi-cuts and multi-bounds), and NVRAD using
dynamic active-set method for set1-set 4…………………………………………………….39

Table 4.3 Result obtained from Dynamic RAD and hybrid method for Set1-Set4……….41

Table 4.4 Result obtained from primal, dual simplex and barrier for set1-set4………......43

Table 4.5 The comparison of computation times of dynamic active-set method and
bounding technique……………………………………………………………………………..44

Table 5.1 Comparison of the number of the iterations between different variable
entering rules…………………………………………………………………………………….47

Table 5.2 Comparison of the number of the iterations between different variable
entering rules…………………………………………………………………………………….48

Table 5.3 The comparison of computation times of DRAD Column Generation,
Sifting, Primal, Dual, and Barrier………………………………………………………………52

Table 6.1 The computation times of dynamic GRAD and CPLEX used for equality
constraints…………………………………………………………………………………..…...54

Table 6.2 A comparison of the CPLEX pre-solver’s performance on equality and
inequality constraints……………………………………………………………………………55

Table 6.3 A comparison of the CPLEX’s performance on mixed equality-inequality
constraints NNLPs and dynamic RAD………………………………………………………..56

1

Chapter 1

Introduction

1.1 The Linear Programming Problem

Linear programming algorithms have been studied for over sixty years and it has

been considered as an optimization tool for several problems. Consider the following linear

programming problem 𝑃:

(P) 𝑀𝑎𝑥 𝑧 = 𝒄𝑇𝒙 (1.1)

𝑠. 𝑡.

 𝑨𝒙 ≤ 𝒃 (1.2)

 𝒙 ≥ 𝟎, (1.3)

where 𝒙 and 𝒄 are the n-dimensional column vectors of variables and objective coefficients,

respectively, and 𝑧 represents the objective function. The matrix 𝑨 is an 𝑚 × 𝑛 matrix [𝑎𝑖𝑗]

with row vectors 𝒂1, … , 𝒂𝑚; 𝒃 is an m-dimensional column vector; and 𝟎 is an 𝑛-dimensional

column vector of zeros. The non-polynomial simplex methods and polynomial interior-point

barrier-function algorithms illustrate the two different approaches to solve problem P. There

is no single best algorithm [1]. For any existing approach, there is a problem instance for

which the developed method performs poorly [2], [3]. However, interior point methods do

not provide efficient post-optimality analysis, so the simplex algorithm is the most frequently

used approach [2], even for sparse large scale linear programming problems where barrier

methods perform extremely well. In fact, the simplex method has been called “the algorithm

that runs the world” [4], yet it often cannot efficiently solve the large scale LPs required in

many applications.

We consider both the general linear program (LP) and the special case with 𝒂𝒊 ≥

𝟎 and 𝒂𝒊 ≠ 𝟎, ∀𝑖 = 1, … , 𝑚; 𝒃 > 𝟎; and 𝒄 > 𝟎, which is called a nonnegative linear program

(NNLP). NNLPs have some useful properties that simplify their solution, and they model

2

various practical applications such as determining an optimal driving route using global

positioning data [5] and updating airline schedules [6], for example.

After introducing the simplex method by George B.Dantzig in 1949, many

individuals have conducted theoretical and computational research in the field of linear

programming. For a wide range of problems, the simplex algorithm is capable of producing

solution in a reasonable amount of time and it allows an efficient post optimality analysis.

Simplex is known as a combinatorial algorithm in which the problem complexity increases

by the order of the problem size. However, in practice, simplex is able to solve problems

with complexity proportion to 𝑛 + 𝑚.

Since the principle use of LP in industrial applications is in binary and integer

programming algorithms, however, pivoting algorithms with efficient post-optimality

analysis are frequently preferable to interior-point methods. On the other hand, simplex

methods often cannot solve large-scale LPs at a speed required by many current

applications.

In many linear programming problems, the majority of constraints will be redundant

and they won’t bind at optimality. Active-set method is a method in which solution is

achieved by adding one or more constraints at a time to solve small subset of problems

iteratively. Our approach divides the constraints of problem 𝑃 into operative and inoperative

constraints at each iteration. Operative constraints are those active in a current relaxed

subproblem 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃, while the inoperative ones are constraints of the problem

𝑃 not active in 𝑃𝑟 . In our active-set method we iteratively solve 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃 after

adding one or more violated inoperative constraints from (1.2) to 𝑃𝑟−1 until the solution 𝒙𝑟
∗ to

𝑃𝑟 is a solution to 𝑃.

3

1.2 Objectives of the Work

This research focuses on developing new active-set methods as well as new

constraint selection metric that outperform the current existing active-set methods in

solving both non-negative linear programming and general linear programming problems.

Each new developed method is termed a Constraint Optimal Selection Technique (COST).

COSTs can be categorized in two main classes, prior and posterior. Prior COSTs only

utilize the global information of a subset of constraints (relaxed LP problems) while

posterior COSTs use current optimal solutions 𝒙𝑟
∗ of the relaxed problem to measure the

likelihood of binding constraint at optimality. A constraint selection metric and two dynamic

active-set approaches are developed, implemented and tested. The efficiency of the

proposed algorithms is tested by several test problems. For the majority of the problems,

the developed methods reveal superior performance than the existing methods in large-

scale optimization experiments.

1.3 Brief Description of COSTs

All constraints are sorted with respect to their probability of binding at optimal

solution by using a certain constraint selection metric. Our approach divides the constraints

of problem 𝑃 into operative and inoperative constraints at each iteration. Operative

constraints are those active in a current relaxed sub-problem 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃, while the

inoperative ones are constraints of the problem 𝑃 not active in 𝑃𝑟 . In our active-set method

we iteratively solve 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃 after adding one or more violated inoperative

constraints from (1.2) to 𝑃𝑟−1 until the solution 𝒙𝑟
∗ to 𝑃𝑟 is a solution to 𝑃.

In order to maintain appropriate level of progress we propose a dynamic method

that adds a varying number of constraints to 𝑃𝑟 that depends on the progress made at 𝑃𝑟−1.

No equality constraints are considered here, but any equality constraints can be included

in 𝑃0. An active-set function is defined to compensate for the lack of progress in 𝑃𝑟−1 by

4

adding more violated constraints at 𝑃𝑟. The algorithm stops when the solution 𝒙𝑟
∗ to 𝑃𝑟 is the

optimal solution to 𝑃.

1.4 Contribution

In this research, five different methods are developed to enhance the efficiency of

the current linear programming algorithms. The developed techniques are as follows.

I. Dynamic active-set method for NNLPs

II. 𝑁𝑉𝑅𝐴𝐷(𝒂𝒊, 𝑏𝑖 , 𝒄) =
𝒂𝑖

𝑇𝒄

𝑏𝑖
2 (𝒂𝒊𝒙

∗ − 𝑏𝑖)

III. Dynamic active-set method for GLPs

IV. Dynamic column generation using DRAD (𝒂𝑗𝑇
, 𝒃, 𝑐𝑗) = {

𝒂𝑗𝑇
𝒃

𝑐𝑗
 |𝒂𝑗𝑇

𝒚𝑟
∗ < 𝑐𝑗}

V. Dynamic COST (𝒂𝑗𝑇
, 𝒃, 𝑐𝑗) = {

𝒂𝑗𝑇
𝒃

𝑐𝑗
 } for dual of 𝑃

The main contributions of this research are

i) A new technique of dynamically adding multiple cuts at 𝑃𝑟 based on the

obtained progress at 𝑃𝑟−1 is incorporated into the NVRAD and GRAD for

NNLPs and GLPs respectively.

ii) Introducing a posterior constraint selection metric NVRAD(𝐚𝑖 , b𝑖 , 𝐜, 𝒙∗) =

𝒂𝑖
𝑇𝒄

𝑏𝑖
2 (𝒂𝑖𝒙

∗ − 𝑏𝑖).

iii) A new dynamic active-set method is incorporated into the NVRAD for NNLPs.

iv) Implementing a dynamic active-set method to increase the efficiency of the

GLPs.

v) Creating sets of randomly generated non-negative linear programming and

general linear programming problems and evaluating the performance of the

developed prior and posterior COST methods on these problems.

vi) Using DRAD as a Column generation method

5

vii) Using DRAD COST as a constraint selection metric in Dual of 𝑃.

viii) Experimenting CPLEX and our method for equality constraints and comparing

the results.

1.5 Overview of the Dissertation

This thesis is organized into seven chapters. Chapter 2 includes some essential

definitions, keywords and basic concepts of optimization techniques as well as brief

explanation on theoretical background, related works and historical perspective. A dynamic

active set method for general linear programming is discussed in Chapter 3 and the results

are compared with the existing methods for GLPs. In Chapter 4, NVRAD is introduced as

a constraint selection metric for NNLPs along with its geometric interpretation. In the same

chapter, the proposed method is applied on randomly generated NNLP problems and the

importance of posterior methods is discussed in detail. Chapter 5 contains discussions on

variable entering rules and column generation techniques in linear program problems. A

new column generation method is developed and the results are compared with the Sifting

method on test problems. Chapter 6 discusses a method for solving large-scale linear

programing problems with equality constraints. The conclusion and the possible future

works of this study are discussed in Chapter 7. Chapter 3, 4, and 5 each represents journal

papers either published or submitted.

6

CHAPTER 2

Background

2.1 Introduction

The preliminary definitions and general aspects of linear programming are briefly

summarized in this chapter.

2.2 Non-negative Linear Programming

Nonnegative linear programing problem (NNLP), which is the special case of 𝑃

with 𝒂𝒊 ≥ 𝟎 but 𝒂𝒊 ≠ 𝟎, ∀𝑖 = 1, … , 𝑚; 𝒃 > 𝟎; and 𝒄 > 𝟎. NNLPs model a large portion of

linear programming applications such as determining the optimal driving path for navigation

systems using traffic data [5], updating flight status due to the variations occurring in

passenger loads or weather conditions [2], and detecting common errors in DNA

sequences [7]. NNLPs have the following two important properties.

 The origin 𝒙 = 𝟎 is feasible,

 𝑥𝑗 ≤ min
𝑖=1,…𝑚

{
𝑏𝑖

𝑎𝑖𝑗
: 𝑎𝑖𝑗 > 0} , ∀𝑗 = 1, … , 𝑛 .

Thus NNLPs have both a bounded feasible region and a bounded objective

function if and only if no column of 𝑨 is a zero vector, and so their boundedness is easily

verifiable without computation.

Active-set methods have been studied by Stone [8], Thompson et al. [9], Adler et

al. [10], Zeleny [11], Myers and Shih [12], Curet [13], and Bixby et al. [1], among others.

The term ‘‘constraint selection technique’’ was introduced in [12], while the approaches of

[10] and [8] illustrate two distinct classes of active-set methods. When the constraint

selection metric for choosing violated inoperative constraints to be added to 𝑃𝑟 does not

depend on the solution 𝒙𝑟
∗ , the associated active-set method is called a prior method. On

the other hand, if the constraint selection at 𝑃𝑟 does depend on 𝒙𝑟
∗ , it is called a posterior

7

method. Adler et al. [10] developed a prior method in which a violated inoperative constraint

was chosen randomly at each iteration. Zeleny [11] proposed a posterior method in which

the inoperative constraint most violated by 𝒙𝑟
∗ was added. This posterior method is called

VIOL here. VIOL is also used as a pricing rule in delayed column generation [14], for adding

multiple constraints in the interior point cutting plane method of [15], and in the sifting

algorithm of [1] for column generation.

2.3 Constraint Selection Metric

An efficient constraint selection metric plays a pivotal rule in selecting the potential

rows that are more likely to be active at optimality. Constraint selection metric can be

categorized as prior or posterior methods. Some of the constraint selection criterions are

as follows:

 SUB (Prior COST)

 COS (Prior COST)

 VIOL (Posterior COST)

 NVIOL (Posterior COST)

 RAD (Prior COST)

 VRAD (Posterior COST)

 GRAD (Prior COST)

In prior method, all the constraints are sorted only once before the solver starts but

unlike prior methods, posterior methods depend on 𝒙𝑟
∗ and require extra processing for

every iteration [16]. Different constraint selection metrics place a different priority on each

constraint and consequently each method leads to a different performance. Hence, there

is an interest in development of a more efficient constraint selection metric to measure the

likelihood of the binding rows at optimality. Based on different criteria, constraints can be

ordered either preliminary or postliminary by a certain amount of likelihood of being binding

8

at optimal solution. In the following, some of the constraint selection rules are described in

more detail.

2.3.1 SUB

In SUB method, no constraint selection rule is used and the violated constraints

are added in the same order they appeared in the problem. Therefore, it does not require

any preprocessing [10].

2.3.2 COS

Cosine (COS) constraint selection metric focuses on computing the angle between

normal vector 𝒄 and normal vector of 𝒂𝑖 which can be obtained by 𝑐𝑜𝑠 (𝜃𝑖) =
𝒂𝑖

𝑇𝒄

||𝒂𝒊||∗||𝒄||
 [17].

The constraint that creates smaller 𝜃 has a higher chance to be binding at optimality. The

efficiency of COS reduces in problem with low density by not getting the total impact of the

𝒄 vector in every dimension. Therefore, in low density problems, the value of 𝑐𝑜𝑠 (𝜃)

approaches to a small number which implies that the formed angle between normal vector

𝑐 and normal vector of 𝒂𝑖 is within the range of 80′ to 90′, therefore COS metric may not

provide that much information. Figure2.1 illustrates the constraint selection rule based on

maximum cosine value.

Figure 2.1 Constraint selection technique based on maximum cosine value

9

In addition, COS does not consider the depth of the feasible region removed by

constraints. So two hyper-plans forming a same angle with normal vector of 𝒄 might be

located in completely different positions have the same priority. Problem density can be

obtained by (2.1).

Problem density =
Number of non zero elements in matrix 𝐀

Number of Rows ∗ Number of Columns

(2.1)

2.3.3 VIOL

Zeleny [11] used a constraint selection rule which added the constraint that most

violated at each iteration – the method we called VIOL. Let’s define
𝑏𝑖 𝒂𝒊

𝒂𝑖
𝑇𝒂𝒊

 an “a-point” on

constraint 𝑖. 𝒙𝒓
∗ −

𝑏𝑖

𝒂𝒊
𝑻𝒂𝒊

 𝒂𝒊 is a vector from “a-point” to 𝒙𝒓
∗ and the scalar product of normal

vector of 𝒂𝒊 with vector 𝒙𝒓
∗ −

𝑏𝑖

𝒂𝒊
𝑻𝒂𝒊

 𝒂𝒊 can provide a geometric interpretation of violation.

Violation can be described as the projection of a vector from “a- point” to current optimal

solution 𝒙𝑟
∗ on the constraint normal vectors. The ranking of the constraints are from

maximum to minimum value for VIOL which as follows:

𝑉𝐼𝑂𝐿(𝒂𝒊, 𝑏𝑖 , 𝒙𝒓
∗) = 𝒂𝒊

𝑻𝒙𝒓
∗ − 𝑏 > 0,

 where 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉𝐼𝑂𝐿 (𝒂𝒊, 𝑏𝑖 , 𝒙𝒓
∗): 𝒂𝒊

𝑻𝒙𝒓
∗ > 𝑏𝑖 ; 𝑖 ∉ 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸). Figure 2.2 depicts the

geometric description of VIOL criteria.

10

Figure 2.2 Geometric description of VIOL

2.3.4 RAD

If the feasible space looks like a sphere to an n-dimension space and objective

function vector moves toward objective gradient until hits the constraints. By moving in 𝒄

direction toward constraint we have 𝒂𝑖
𝑇(𝑘𝒄) = 𝑏 . Then, scalar 𝑘 is obtained by

𝑏𝑖

𝒂𝒊
𝑇𝒄

 . As

can be seen from (2.5), RAD measures the likelihood of active constraints at optimal point

as a combination of two factors.

𝑅𝐴𝐷 =
𝒂𝒊

𝑇𝒄

𝑏𝑖

=
||𝒂𝒊||

𝑏𝑖

𝒂𝒊
𝑇𝒄

||𝒂𝒊|| ∗ ||𝒄||
||𝒄|| ∝

||𝒂𝒊||

𝑏𝑖

COS(𝒂𝒊, 𝒄)
(2.2)

The first factor is the depth of the feasible region that removes and the second factor is the

angle of its normal vector 𝒂𝒊 with objective vector 𝒄. All constraints are sorted in a

descending order of RAD. Figure 2.3 presents the geometric interpretation of RAD

constraint selection criteria.

11

Figure 2.3 Geometric interpretation of RAD

However, for problems with a low density, which 𝒂𝒊 contains some zeros in certain

variables, adding a single constraint 𝑨𝒙 ≤ 𝑏 may not be efficient enough. In the problem

with high density RAD is able to effectively prioritize the constraints since it captures more

information from every dimension. However, in a problem with a low density because of

not getting the total impact of the objective vector the RAD’s efficiency reduces. Adding

multiple cutting planes in which forming a dome-shape polytope are more efficient than

adding a single plane [6]. The efficient active-set approaches developed by using RAD

metric are:

 NRAD: Non-negative linear programming [6]

 GRAD: General linear programming [18]

Adding multiple constraints to 𝑝𝑟 to bound all the variables forms a geodesic-like

dome which leads to cutting off the 𝒙𝑟
∗ more effectively, but in a high density problems, 𝑃𝑟

is bounded at each iteration by adding few cuts. Therefore, the multi cut approach might

perform somehow similar to a single cut method on high density problems.

12

2.3.5 VRAD

The VRAD is a posterior constraint selection metric which considers the distance

of 𝒙𝑟
∗ to the violated 𝒂𝑖

𝑇𝒙𝑟
∗ − 𝑏 along with RAD [16]. The constraint selection metric

Where 𝑖∗ ∈

𝑎𝑟𝑔𝑚𝑎𝑥(𝑉𝑅𝐴𝐷 (𝒂𝒊, 𝑏𝑖 , 𝐜, 𝒙𝒓
∗): 𝒂𝒊

𝑇𝒙𝑟
∗ > 𝑏𝑖 ; 𝑖 ∉ 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸)

2.3.6 GRAD

Saito et al. [18] developed a constraint selection metric for general linear

programming problem which as follows:

𝐺𝑅𝐴𝐷 (𝒂𝑖 , 𝑏𝑖 , 𝒄) = ∑
𝑎𝑖𝑗 𝑐𝑗

𝑏𝑖
+ −

𝑛

𝑗=1,𝑐𝑗>0

∑
−𝑎𝑖𝑗

𝑏𝑖
+ ,

𝑛

𝑗=1,𝑐𝑗<0

(2.4)

𝑤ℎ𝑒𝑟𝑒 𝑏𝑖
+ = {

𝑏𝑖 − min
𝑘=1,…,𝑚

[𝑏𝑘] + 𝜀 𝑖𝑓 min
𝑘=1,…,𝑚

[𝑏𝑘] < 0

𝑏𝑖 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.5)

for a small positive constant 𝜀, and 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥(𝐺𝑅𝐴𝐷 (𝒂𝑖, 𝑏𝑖 , 𝒄): 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 , 𝑖 ∉

𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸). The first term invokes the shortest distance of constraint in positive 𝑐𝑗

directions to 𝒂𝑖
𝑇 𝒙 = 𝑏𝑖 and second term represents the general closeness rate of a

constraint to the origin for all negative 𝑐𝑗 directions. For 𝑎𝑗 with 𝑐𝑗 < 0, it is hard to measure

the likelihood of the binding constraint at optimality since the intersection of multiple 𝑐

vector, and 𝒂𝑖
𝑇 𝒙 = 𝑏𝑖 may not lie in the feasible region. Therefore, all 𝑐𝑗 is set to be -1.

2.4 General Approach to Active-Set

Active-set method divides the problem constraints (𝑨 matrix) into two groups of

operative and inoperative sets and problem is solved iteratively by ignoring the inoperative

constraints and updating the operative set at each iteration. The main purpose of using any

such active-set method is that a solution to the main problem 𝑃 can be obtained by solving

a sequence of relatively small sub problems 𝑃𝑟. Saito et al. [18] developed an active-set

𝑉𝑅𝐴𝐷(𝐚𝒊, b𝑖 , 𝐜, 𝒙𝒓
∗) =

𝒂𝒊
𝑇𝒄

𝑏𝑖

∗
(𝒂𝒊

𝑇𝒙𝑟
∗ − 𝑏)

||𝒂𝑖||

(2.3)

13

approach for NNLPs. To construct 𝑃0, we choose constraints from (1.2) in descending order

of RAD until each variables 𝑥𝑗 has an 𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. We say the

variables are covered by the constraints of the initial problem 𝑃0. It significantly increases

the efficiency of constraint selection criteria RAD for non-negative linear programming. The

main drawback with covering technique is the method might add only few constraints at

each iteration to cover all columns in 𝑃𝑟 for a problem with relatively high density.

In order to implement a new active-set approach for solving general linear

programming problems Saito et al. [18] proposed to add an artificial bounding constraint

𝒄𝑇𝒙 ≤ 𝑀 for the first step. Then 𝑃0 is formed by adding multiple constraints from (1.2)

sorted by descending order of GRAD until all the columns of the new 𝑨 matrix have at least

one negative and one positive coefficient. The primal simplex method is used to solve 𝑃0

and dual simplex is employed to solve next active set iterations 𝑃𝑟.

2.5 Historical Perspective

The history of the development and research on linear programming is shown in

the following.

The idea of LP goes back into 1824, Leonid Kantorovich, a Soviet

mathematician formulate LP but his work remain unknown until 1950s [19]. There was an

interest in applying the optimization techniques for resource allocation and operation

planning during wartime [20]. G.B. Dantzig developed the simplex method on 1947 and the

following year he published his work “Programming in a Linear Structure “. New topics such

as linear programming under uncertainty, network optimization and mathematical

programming and began to emerge on 1950 [21].

Dantzig decomposition method for solving large-scale problem was introduced by

Dantzig in the late 1950. The idea is inspired from Minkowski and Weyl’s work on convex

polyhedral sets. On 1955 Dantzig, pointed a way to find a solution to a large size integer

14

programming problems (TSP) and several combinatorial optimization problems. Dantzig

and Beale independently worked on stochastic programming [20]. Gomory developed his

cutting planes method for solving integer programming problems on 1958. The dual version

of Dantzig-Wolfe decomposition which is Benders decomposition was proposed and

published by Benders on 1962. Interior point method using ellipsoids developed by

Khachiyan It was the first polynomial-time algorithm for solving LP [22]. In 1984 Karmarkar

developed an interior point method with polynomial time complexity for solving linear

programming.

The simplex method searching for the optimal solution by traversing a series of

basic feasible point and changing a basic variable at each iteration. Simplex method is

considered as a combinatorial algorithm since there are finite set of extreme points in each

linear programming problem. Interior point method was developed by John von Neumann

[23]. It is a certain class of optimization method that achieves optimality by moving through

the feasible direction which maximize the objective function per unit distance, rather than

moving around the boundary. There are three categories of interior point method

algorithms:

1) Potential reduction algorithm

2) Affine scaling algorithm

3) Path following algorithm

The primal-dual algorithm interior point method is one of the most efficient path following

algorithms that simultaneously operates on primal and dual space [24].

2.6 Large-Scale Linear Programming

Linear programming has been widely applied to several scientific and industrial

problems. Many such problems have a particular form and structure in which the positive

elements of 𝑨 matrix representing block angular structure. By utilizing some of the

15

decomposition techniques we are able to convert large size problems in to the smaller sub-

problems. The decomposition technique can improve the computational time of the linear

programing problems, which their 𝑨 matrix has a certain structure. The master problem

contains general constraints and sub-problem includes special structured constraints and

then the strategy operates on both master and sub-problem by passing the information

back and forth until the optimal solution to the main problem is achieved. Dantzig-Wolfe

and Benders decomposition are two types of these decomposition techniques [1].

The idea of partitioning methods and decomposition techniques for solving large-

scale optimization problems can be described as follows:

1. In a problem with (𝑚 >> 𝑛) excessive number of row, a constraint is only

created and then added if it is violated by the current optimal solution. The

constraint selection techniques are used to determine the priority of the violated

constraints.

2. In a problem with short and wide structure (𝑛 >> 𝑚) a column is only generated

if its reduced cost is negative. The generated column is then added.

2.6.1 Delayed Column Generation

Delayed column generation is one of the most efficient methods for solving large

scale linear programs. The main idea of column generation is that many linear

programming problems have short and wide structure and the numbers of variables are

too large to consider all the variables in 𝑨 matrix. Meanwhile only a sub set of variables

need to be considered when solving the problem. It considers generating a column if only

it has been discovered that it can profitably enter the basis. In delayed column generation

the linear programming problem is divided into two problems:

1. Master problem

2. Sub-problem

16

The master problem contains subset of variables from original problem that created to

discover the favorable columns to enter the basis. Delayed constraint generation is the

dual of delayed column generation [25].

2.6.2 Sifting (Sprint)

Sifting algorithm is a column generation technique for linear programming

problems and it was developed by John Forrest and it was applied on airline crew

scheduling problem. The problem under study was a set partitioning problem with 837 rows

and 12,750,000 columns [1].

2.7 Pivoting Rule

A pivoting rule plays an important role in the simplex method. It guaranties the

improvement of the objective function in each iteration. Dantzig’s pivoting rule is commonly

used in simplex method. Let 𝑁 be the non-basis and 𝐵 the associated basis at the current

iteration of the simplex algorithm. The non-basic variable’s reduced costs can be achieved

by a pricing operation

𝒄̅𝑁 = 𝒄𝑁 – 𝑁𝑇 𝝅, 𝝅 = 𝒄𝐵𝐵−1. (2.6)

Optimality is obtained if the index set is empty for ∀ 𝑗 = 1,..,n

𝐽 = {𝑗 | 𝒄̅𝑗 < 0, 𝑗 ∈ 𝑁} (2.7)

otherwise, any index in 𝐽 (has negative reduced cost) can improve the objective function.

2.7.1 Full Pricing

The full pricing rule considers all non-basic variables’ reduced cost at each iteration

and selects the variable in which decreases or increases the objective value the most.

There exist some other standard frequently used pricing rules developed and tested and

the computational results were encouraging in several problem samples compared to

original Dantzig’s rule which are as follow:

1. Largest decrees rule

17

2. Dantzig’s rule

3. Steepest-edge rule

4. Devex-rule

5. Largest distance

6. Nested pricing

The nested pricing and largest distance rule yield run times reduced by a factor of

5.73 and 3.24 respectively, compared to the Devex rule [26]. The direct cosine simplex

algorithm (DCA) is developed by [27] to improve the simplex algorithm. The proposed

algorithm defines a set of variables with negative reduced cost and among those DCA

pivots on the variable that has lower cosine value. All candidate variables with negative

reduce cost, are required to calculate the corresponding 𝑐𝑜𝑠∗(𝜃𝑖) value by (2.8).

𝑐𝑜𝑠∗(𝜃𝑖) = [
(𝑨𝑇)𝑖 . 𝑩𝑇

||(𝑨𝑇)𝑖||
] =

∑ 𝑎𝑗𝑖𝑚
𝑗=1

∑ (𝑎𝑗𝑖)2𝑚
𝑗=1

 (2.8)

where 𝑩 = [𝑏1 , 𝑏2, . . . , 𝑏𝑚]𝑇 and 𝑨𝒊 = [𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛] , is the 𝑖𝑡ℎ row of matrix 𝑨 in the dual

problem. A variable with the minimal 𝑐𝑜𝑠∗(𝜃𝑖) is chosen as entering variable. DCA

represents the superior performance over Dantzig’s rule in most problem samples in

computational experiment [27].

2.7.2 Partial Pricing

Partial pricing is a method that only a small proportion of the non-basic variables’

are considered as for pricing out process. The potential variable from this set is selected

by some metric and enter to the basis and keep the other variables as potential candidates

for the next iterations. The process continues until all the reduced costs associated with all

variables in the set are nonnegative [26].

18

CHAPTER 3

Prior Cost Improvement

3.1 Introduction

In this chapter, a dynamic active-set approach for NNLPs is developed and its

geometric interpretation is described in detail. Also the performance of GRAD is tested in

the dynamic active-set frame work to show the efficiency of utilizing the dynamic active-set

method for GLPs.

3.2 Dynamic Active-Set Approach for NNLP

The dynamic active-set approach developed for solving NNLPs is as follows.

Constraints are initially ordered by the RAD constraint selection metric (2.2). To

construct 𝑃0, we choose constraints from (1.2) in descending order of RAD until each

variables 𝑥𝑗 has an 𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. We say the variables are covered

by the constraints of the initial problem 𝑃0. 𝑃0 is then solved by the primal simplex to achieve

an initial solution 𝒙0
∗ . Now let 𝛾0 be the number of constraints in the original problem 𝑃, and

in general let 𝛾𝑟 be the number of constraints of problem 𝑃 violated by 𝒙𝑟
∗ . At each iteration

𝑟, the total number of violated constraints 𝛾𝑟 is computed, and the improvement percentage

is calculated by

𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛾𝑟−1 − 𝛾𝑟

𝛾𝑟−1

)} ∗ 100 , ∀ 𝑟 = 1,2, …, (3.1)

where 𝜔𝑟 > 0 represents the percent of improvement made in reducing the total number of

violated constraints at iteration 𝑟. Next, with [.] denoting the greatest integer function, let

𝜑𝑟+1 = [𝜑𝑟 ∗ (1 + log(101 − 𝜔𝑟))] , 0 ≤ 𝜔𝑟 ≤ 100 , ∀ 𝑟 = 1,2, … , (3.2)

where 𝜑1 = 100. The value 𝜑𝑟 is an upper bound on the possible number of non-operative

violated constraints that can be added at active-set iteration 𝑟 = 1,2, … . The actual number

19

added is 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟}. The active-set iterations terminate when 𝛾𝑟 = 0 and therefore 𝜔𝑟 =

100. Equation (3.2) was developed from the results of computational experiments.

Pseudocode for the dynamic active-set NNLPs is as follows.
Step 1 — Identify constraints to initially bound the problem.

1: 𝒂∗ ← 𝟎

2: 𝒘𝒉𝒊𝒍𝒆 𝒂∗ ≯ 𝟎 𝒅𝒐

3: 𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖 ∉ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄)

4: 𝒊𝒇 ∃𝑗 |𝑎𝑗
∗ = 0 𝒂𝒏𝒅 𝑎𝑖∗𝑗 > 0 𝒕𝒉𝒆𝒏

5: 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ← 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ∪ {𝑖∗}
6: 𝒆𝒏𝒅 𝒊𝒇

7: 𝒂∗ ← 𝒂∗ + 𝒂𝑖∗

8: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒇𝒂𝒍𝒔𝒆

9: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆
Step 2 — Using the primal simplex method, obtain an optimal solution 𝒙0

∗ for the initial

bounded problem 𝑃0

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝒄𝑇𝒙

subject to 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝒙 ≥ 𝟎
Step 3 — Perform the following iterations until an optimal solution to problem P is found.

1: 𝜑1 ← #100

2: 𝑟 ← 0
3: 𝛾0 ← # 𝑟𝑜𝑤𝑠

4: 𝒘𝒉𝒊𝒍𝒆 (𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝒇𝒂𝒍𝒔𝒆) 𝒅𝒐

5: 𝑟 ← 𝑟 + 1

6: 𝒊𝒇 { 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 , ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠} 𝒕𝒉𝒆𝒏 calculate 𝛾𝑟

7: Calculate 𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛾𝑟−1−𝛾𝑟

𝛾𝑟−1
)} ∗ 100

8: 𝒊𝒇 0 ≤ 𝜔𝑟 < 100 𝒕𝒉𝒆𝒏 𝜑𝑟+1 = [𝜑𝑟 ∗ (1 + log(101 − 𝜔𝑟))]

9: 𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸

{ RAD(𝒂𝑖 , 𝑏𝑖 , 𝒄) ∶ 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 }

10: 𝒇𝒐𝒓 (i=0 to 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟}) 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ← 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ∪ {𝑖∗} 𝒆𝒏𝒅

11: Solve the following 𝑃𝑟 by the dual simplex method to obtain 𝒙𝑟
∗

12: 𝒆𝒍𝒔𝒆 𝒊𝒇(𝜔𝑟 = 100) 𝒕𝒉𝒆𝒏 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗ is an optimal solution to P.

13: 𝒆𝒏𝒅 𝒊𝒇

14: 𝒆𝒍𝒔𝒆 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗ is an optimal solution to P.

15: 𝒆𝒏𝒅 𝒊𝒇
16: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

3.3 Dynamic Active-Set Approach for LP

The dynamic active-set approach for solving LPs is similar to the one for NNLPs.

We construct 𝑃0 by choosing a number of constraints 𝜌1 from (1.2) in descending order of

20

GRAD from (2.4) until no variable 𝑥𝑗 is left without at least either a positive or a negative

coefficient. In addition, we include an artificial bounding constraint 𝟏𝑇𝒙 ≤ 𝑀. If 𝜌1 < 100,

then set 𝜌1 = 100. Then 𝑃0 is solved to obtain an initial solution 𝒙0
∗ . It is initially assumed

that all constraints are violated (𝛾0 = 𝑚). Then the relative improvement percent 𝜔𝑟 is

calculated by (3.1) for 𝑃𝑟 and 𝑃𝑟+1. Now let

𝜌𝑟+1 = [𝜌𝑟 ∗ log(101 − 𝜔𝑟)] , 0 ≤ 𝜔𝑟 ≤ 100 , ∀𝑟 = 1,2, … , (3.3)

where the value 𝜌𝑟 is an upper bound on the possible number of non-operative violated

constraints that can be added at active-set iteration 𝑟 = 1,2, … . The actual number added

is 𝑚𝑖𝑛 {𝜌𝑟+1, 𝛾𝑟}. As 𝜔 decreases, 𝜌𝑟+1 increases in (3.3) to add more violated constraints

to 𝑃𝑟+1. The algorithm stops at 100% reduction in the number of violated constraints.

Pseudocode for the dynamic active-set for LPs is as follows.

Step 1 — Identify constraints to initially bound the problem.

1: 𝒂∗ ← 𝟎

2: 𝒘𝒉𝒊𝒍𝒆 𝒂∗ ≯ 0 𝒅𝒐

3: 𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖 ∉ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝐺𝑅𝐴𝐷(𝒂𝑖, 𝑏𝑖 , 𝒄)

4: 𝒊𝒇 ∃𝑗 |𝑎𝑗
∗ = 0 𝒂𝒏𝒅 𝑎𝑖∗𝑗 > 0 𝑜𝑟 𝑎𝑖∗𝑗 < 0 𝒕𝒉𝒆𝒏

5: 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ← 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ∪ {𝑖∗}

6: 𝒆𝒏𝒅 𝒊𝒇

7: 𝒂∗ ← 𝒂∗ + 𝒂𝑖∗

8: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒇𝒂𝒍𝒔𝒆

9: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Step 2 — Using the primal simplex method, obtain an optimal solution 𝒙0
∗ for the initial

bounded problem 𝑃0 given by

21

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝒄𝑇𝒙

subject to 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝟏𝑇𝒙 ≤ 𝑀

𝒙 ≥ 𝟎
Step 3 — Perform the following iterations until an optimal solution to problem P is found.

1: 𝜌1 ← Max {#𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺, 100}

2: 𝑟 ← 1

3: 𝛾0 ← # 𝑟𝑜𝑤𝑠

4: 𝒘𝒉𝒊𝒍𝒆 (𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝒇𝒂𝒍𝒔𝒆) 𝒅𝒐

5: 𝑟 ← 𝑟 + 1

6: 𝒊𝒇 { 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 , ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠} 𝒕𝒉𝒆𝒏 calculate 𝛾𝑟

7: Calculate 𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛾𝑟−1−𝛾𝑟

𝛾𝑟−1
)} ∗ 100

8: 𝒊𝒇 0 ≤ 𝜔𝑟 < 100 𝒕𝒉𝒆𝒏 𝜌𝑟+1 = [𝜌𝑟 ∗ log(101 − 𝜔𝑟)]

9: 𝐿𝑒𝑡 𝑖∗ ∈ arg max
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸

{ GRAD(𝒂𝑖 , 𝑏𝑖 , 𝒄) ∶ 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 }

10: 𝒇𝒐𝒓 (i=0 to 𝑚𝑖𝑛 {𝜌𝑟+1, 𝛾𝑟}) 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ← 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ∪ {𝑖∗
 } 𝒆𝒏𝒅

11: Solve the following 𝑃𝑟 by the dual simplex method to obtain 𝒙𝑟
∗

12: 𝒆𝒏𝒅 𝒊𝒇

13: 𝒆𝒍𝒔𝒆 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗ is an optimal solution to P.

14: 𝒆𝒏𝒅 𝒊𝒇

15: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

3.4 Problem Instances and CPLEX Preprocessing

Four sets of NNLPs used in [6] are considered to evaluate the performance of the

developed algorithm. Each problem set contains five problem instances for 21 different

density levels and for varying ratios of (𝑚 constraints)/(𝑛 variables) from 200 to 1. Each

22

set contains 105 randomly generated NNLPs with various densities 𝑝 ranging from 0.005

to 1. Randomly generated real numbers between 1 and 5, 1 and 10, 1 and 10 were

assigned to the elements of 𝑨, 𝒃, and 𝒄 respectively. To avoid having a constraint in the

form of an upper bound on a variable, each constraint is required to have at least two non-

zero 𝑎𝑖𝑗. For general LP, a problem set containing 105 randomly generated by Saito et al.

[18] is compared with the dynamic approach of this paper. These LP problems contain

1000 variables (n) and 200,000 constraints (m), with various densities ranging from 0.005

to 1 and the randomly generated 𝑎𝑖𝑗 ranging between -1 and -5 or between 1 and 5.

Two parameters that CPLEX uses for solving linear programming are PREIND

(preprocessing pre-solve indicator) and PREDUAL (preprocessing dual). As described in

[18] and [6], when parameter setting PREIND = 1 (ON), the preprocessing pre-solver is

enabled and both the number of variables and the number of constraints is reduced before

any type of algorithm is used. By setting PREIND = 0 (OFF) the pre-solver routine in

CPLEX is disabled. PREDUAL is the second preprocessing parameter in CPLEX. By

setting parameter PREDUAL = 0 (ON) or -1 (OFF), CPLEX automatically selects whether

to solve the dual of the original LP or not. Both are used with the default settings for the

CPLEX primal simplex method, the CPLEX dual simplex method, and the CPLEX barrier

method. Neither CPLEX pre-solver nor PREDUAL parameters were used in any part of the

developed dynamic active-set methods for NNLPs and LPs.

3.5 Computational Results for NNLP

Table 3.1 illustrates the performance comparison between dynamic RAD method

and the previously defined constraint selection technique COST RAD on Set 1 to Set 4 for

various dimensions of the matrix 𝑨 used in [6]. Both methods are compared with the CPLEX

barrier method (interior point), the CPLEX primal simplex method, and the CPLEX dual

23

simplex method. The worst performance occurs at m/n ratio of 200, where on average,

dynamic RAD is 8% faster than COST RAD for densities less than 0.2 and 18% slower for

densities above 0.2. When the density increases, dynamic RAD shows an increase in

computation time more than that of COST RAD. On the other hand, for an m/n ratio of 20

the CPU times decrease with an increase in density. For higher densities above 0.01,

dynamic RAD is more efficient and takes less computation times than COST RAD. On

average, dynamic RAD is 10% more efficient than COST RAD. For an m/n ratio of 2 at

densities higher than 0.009, the data show that COST RAD starts taking significantly more

time than dynamic RAD. Dynamic RAD was 5.5% faster than COST RAD over all densities

and 21% faster on average for densities above 0.5. For an m/n ratio of 1 with densities

greater than 0.01, dynamic RAD is about 8% more efficient than COST RAD. On average,

dynamic RAD is superior performance to COST RAD for problem sets 2, 3, and 4.

Table 3.2 from [6] is presented to provide an immediate comparison of the

developed dynamic RAD method with the standard CPLEX solvers. A reporting limit of

3000 seconds was used. On average, the CPU times for dynamic RAD were faster than

any of the CPLEX solvers across all densities and ratios. However, CPLEX barrier methods

show smaller CPU times when ratio m/n = 20 and the density is less than or equal to 0.01.

3.6 Computational Results for LP

Table 3.3 shows computational results for the CPLEX primal simplex method, the

dual simplex method, and the interior point barrier method for the general LP problem set

used in [18]. CPU times for COST GRAD and VIOL using both the multi-cut technique and

dynamic approaches are presented for comparison. Dynamic GRAD is stable over the

range of densities. In addition, its performance is superior to multi-cut GRAD for every

problem instance. Average CPU times for GRAD using multi-cut method and dynamic

24

approach are 43.87 and 24.57 seconds, respectively, a 42% improvement in computation

time. Average computation times for GRAD and VIOL using dynamic approach are 24.57

seconds vs. 33.82 seconds, respectively.

It should be noted that GRAD captures more information than VIOL in higher

densities to discriminate between constraints. Interestingly, when the dynamic active-set

is used for both GRAD and VIOL, their CPU times are significantly faster than the same

metrics with the multi-cut method. GRAD using the multi-cut technique takes the longest

computation time in comparison to others at higher densities. Unlike the proposed dynamic

approach, the LP algorithm COST GRAD requires checking the signs of the nonzero

𝑎𝑖𝑗 and therefore more computation time for higher densities.

 The efficiency of VIOL decreases significantly with increasing density. On

average, dynamic GRAD is approximately 35 times faster than the CPLEX primal simplex,

21 times faster than the CPLEX dual simplex, and 17 times faster the CPLEX barrier linear

programming solvers without preprocessing. The superior overall performance of GRAD

using dynamic approach is apparent across all densities in general LP set.

25

Table 3.1 Results from dynamic RAD and COST RAD for set 1- set 4, (Random, NNLP
𝑎𝑖𝑗 =1-5, 𝑏𝑖 =1-10, 𝑐𝑗 = 1-10)

 Dynamic RAD + COST RAD +

 n 1000 3163 10000 14143 1000 3163 10000 14143

 m 200000 63246 20000 14143 200000 63246 20000 14143

 m/n 200 20 2 1 200 20 2 1

Density No CPU TIME, sec ++

CPU Time, sec ++ 0.005 1 2.02 30.88 108.52 126.93 2.10 30.82 108.70 127.55

0.006 2 2.47 32.19 106.48 113.68 2.42 31.48 104.87 114.03

0.007 3 2.63 30.39 96.61 104.34 2.65 29.41 92.45 104.18

0.008 4 2.46 31.03 90.14 89.24 2.54 30.63 88.20 90.73

0.009 5 2.67 28.89 82.66 86.57 2.78 30.10 83.53 85.21

0.01 6 2.73 28.22 75.46 83.66 2.79 27.81 77.90 80.43

0.02 7 2.88 23.17 45.55 49.82 3.09 24.69 47.63 49.95

0.03 8 2.83 17.97 33.85 37.35 3.22 20.49 36.68 38.33

0.04 9 2.92 15.24 29.23 28.98 3.33 19.06 32.74 32.53

0.05 10 2.97 14.10 24.83 26.37 3.34 16.97 28.23 28.59

0.06 11 2.86 11.93 23.38 24.45 3.20 14.94 27.58 27.27

0.07 12 2.94 11.21 20.38 21.08 3.41 14.88 23.59 23.79

0.08 13 2.87 10.25 19.47 21.43 3.32 13.57 23.44 24.19

0.09 14 3.05 9.33 19.43 20.49 3.38 12.67 23.09 23.80

0.1 15 3.20 9.33 18.03 18.78 3.39 12.92 22.93 20.85

0.2 16 4.39 8.07 14.86 16.50 4.30 11.09 18.87 20.31

0.3 17 5.26 8.19 13.77 15.27 4.97 10.58 18.11 19.46

0.4 18 6.40 9.19 14.32 15.60 5.76 12.31 18.55 18.88

0.5 19 7.80 9.84 14.33 15.97 6.98 11.92 18.00 19.89

0.75 20 10.86 11.91 14.55 16.26 8.26 12.01 17.19 18.06

1 21 12.93 12.01 12.61 14.58 8.39 12.20 17.71 18.50

Average 4.24 17.30 41.83 45.11 3.98 19.07 44.28 46.98
+Used CPLEX preprocessing parameters of presolve = off and predual = off.
++Average of 5 instances of LPs at each density.

26

Table 4.4 Result obtained from primal, dual simplex and barrier for set1-set4, (Random, NNLP 𝑎𝑖𝑗 =1-5, 𝑏𝑖 = 1-10, 𝑐𝑗 = 1-

10) [6] Primal-- Dual-- Barrier --

 n 1000 3163 10000 14143 1000 3163 10000 14143 1000 3163 10000 14143

 m 200000 63246 20000 14143 200000 63246 20000 14143 200000 63246 20000 14143

 m/n 200 20 2 1 200 20 2 1 200 20 2 1
Density No CPU Time (Sec) ++
0.005 1 7.01 71.02 228.51 309.83 54.84 762.62 1597.24 1169.04 2.36 14.52 240.17 650.83

0.006 2 10.36 77.28 245.60 291.07 60.29 803.97 1607.16 2413.42 2.39 16.30 224.08 666.54

0.007 3 12.98 75.84 219.72 265.09 91.39 876.85 1483.20 1702.47 3.04 18.34 233.55 671.56

0.008 4 15.72 82.01 206.45 239.30 100.06 912.75 1445.54 1236.76 3.90 20.70 232.38 668.82

0.009 5 19.25 80.35 196.72 216.23 114.95 898.99 1375.73 427.95 4.76 22.66 232.23 649.26

0.01 6 21.92 78.50 182.47 216.60 123.49 912.63 1252.05 436.31 5.53 24.29 228.76 650.30

0.02 7 39.90 78.80 118.28 127.59 203.08 963.66 807.29 362.34 17.13 32.08 242.54 711.26

0.03 8 45.42 79.75 98.02 108.60 217.18 1207.76 545.91 723.98 28.79 45.03 266.90 727.61

0.04 9 50.30 78.78 89.75 88.32 248.75 1489.40 450.08 539.92 41.50 62.28 292.15 806.80

0.05 10 55.16 78.92 81.09 82.14 256.49 1746.46 418.69 519.50 53.72 81.32 327.01 837.67

0.06 11 60.34 77.49 77.28 78.27 251.39 2124.31 378.71 409.47 67.58 100.48 359.53 897.58

0.07 12 62.07 78.93 70.44 70.37 251.74 2446.69 310.89 544.15 84.70 125.49 401.72 948.01

0.08 13 62.92 76.96 70.21 69.81 264.48 2799.62 307.25 388.94 99.51 149.37 454.01 1038.86

0.09 14 66.57 79.07 71.46 72.37 258.14 2523.03 718.04 427.95 119.26 186.06 495.28 1153.31

0.1 15 71.00 74.57 67.43 62.64 287.36 2251.10 267.14 436.31 138.67 207.54 539.64 1194.56

0.2 16 87.49 83.12 64.38 62.99 294.39 1450.82 201.73 362.34 379.68 691.77 1298.76 2529.97

0.3 17 94.57 77.91 67.14 66.61 341.44 1280.71 175.16 267.16 657.45 1333.29 2418.75 b

0.4 18 99.33 78.46 73.58 71.48 384.10 1236.30 146.09 233.39 985.86 2076.09 b b

0.5 19 111.30 84.30 86.50 75.62 427.16 1173.49 133.49 208.65 1350.82 b b b

0.75 20 128.26 99.35 115.00 102.51 410.98 1056.18 132.25 181.95 b b b b

1 21 207.55 94.09 393.54 145.96 375.89 411.19 148.90 165.45 b b b b

Average 63.30 80.26 134.46 134.45 238.93 1396.60 662.03 626.55 n/a n/a n/a n/a
--Used CPLEX preprocessing parameters of presolve = ON and predual = Auto.
++Average of 5 instances of LPs at each density.
b Runs with CPU times > 3000s are not reported.

2
6

27

Table 3.3 Comparison of computation times of CPLEX solvers, GRAD, and VIOL using
both dynamic active-set and multi-cut method on general LP problem set (Random LP
with 1000 variables and 200,000 constraints [18])

 Constraint selection metric+ CPLEX--

No Density GRAD VIOL GRAD VIOL Primal Dual Barrier Auto1

 Multi-cut method Dynamic active-
set

 CPU TIME, sec++

1 0.005 9.85 12.31 7.96 9.26 40.99 23.05 2.39 1.79

2 0.006 11.48 14.50 9.44 11.11 84.56 35.52 2.62 3

3 0.007 13.36 14.21 10.60 12.58 128.65 48.62 3.79 4.07

4 0.008 14.24 14.67 12.09 13.00 183.70 61.56 4.93 5.71

5 0.009 15.41 15.32 12.25 14.57 212.79 75.34 6.06 7.19

6 0.01 16.55 17.09 14.10 15.33 256.70 92.11 7.33 8.18

7 0.02 24.74 22.24 20.93 21.79 396.55 205.25 15.86 22.21

8 0.03 27.84 24.30 22.91 26.21 460.01 295.18 26.63 37.3

9 0.04 30.55 24.47 23.87 29.52 602.73 350.86 35.26 51.03

10 0.05 37.59 28.72 28.52 33.57 617.29 396.10 46.76 65.6

11 0.06 34.29 26.58 26.86 33.80 656.22 438.92 59.55 81.7

12 0.07 37.46 28.05 26.91 34.34 729.43 465.61 71.65 104.35

13 0.08 36.28 26.29 25.54 33.46 739.21 510.10 82.98 130.13

14 0.09 37.97 27.74 24.60 33.21 823.11 521.89 94.01 140.32

15 0.10 39.50 28.30 25.99 35.61 956.17 554.29 108.03 178.63

16 0.20 56.26 36.64 27.97 41.28 1456.41 759.66 280.09 432.58

17 0.30 60.93 42.40 28.41 40.68 1664.83 900.12 527.05 904.53

18 0.40 74.58 56.97 33.39 52.19 2033.10 1057.27 760.07 1325.8

19 0.50 85.02 71.35 36.85 54.68 1925.32 1334.80 1076.40 2253.9

20 0.75 113.02 116.78 39.44 59.53 2232.88 1571.28 2132.53 NA

21 1.00 144.35 173.02 57.22 104.5
8

2301.76 1717.25 3267.10 NA

Avg 43.87 39.14 24.57 33.82 881.07 543.56 410.05 NA
 + Used CPLEX preprocessing parameters of presolve = off and predual = off.

 𝟏𝑇𝒙 ≤ 𝑀 = 1010 was used as the bounding constraint.
 ++ Average of 5 instances of LPs at each density.
 --Used CPLEX preprocessing parameters of presolve = ON and predual = Auto.
1 Computation time for one problem instance.

For comparison purposes, Table 3.4 shows GRAD and VIOL computation times

when a fixed number of violated constraints is added at each iteration. Adding a fixed

number of constraints is examined for both GRAD and VIOL. At densities below 0.03,

28

dynamic GRAD takes less CPU time than the fixed-cut approach. GRAD with 500 cuts per

iteration shows a faster solution time than 100 or 1000 cuts. VIOL performs best for a 100-

constraint cut. On the other hand, GRAD performs best for a 500-constraint cut. In fact, the

500-constraint cut for GRAD performs as well as the GRAD dynamic active-set approach.

However, determining an optimum number of cuts for a given problem is not possible.

Table 3.4 Comparison of computation times of GRAD using dynamic active-set and
fixed cut method on general LP problem set (Random LP with 1000 variables and
200,000 constraints [18])

Constraint selection metric+
No Density GRAD VIOL GRAD

 VIOL

 Dynamic
active-set

Fixed number of constraints

 100 500 1000 100 500 1000
 CPU TIMES, sec++

1 0.005 7.96 9.26 14.58 10.04 8.05 10.49 8.82 11.56

2 0.006 9.44 11.11 18.75 13.14 9.48 12.61 10.57 14.45

3 0.007 10.60 12.58 20.32 13.24 10.67 13.87 12.22 15.01

4 0.008 12.09 13.00 23.57 12.63 12.05 14.97 12.82 16.22

5 0.009 12.25 14.57 23.16 13.60 12.32 15.88 14.00 18.35

6 0.01 14.10 15.33 26.04 14.83 13.59 17.72 15.35 19.26

7 0.02 20.93 21.79 36.49 21.27 20.38 23.55 22.70 28.35

8 0.03 22.91 26.21 38.40 22.33 22.30 25.40 26.07 34.22

9 0.04 23.87 29.52 38.48 22.68 23.19 25.63 27.51 36.21

10 0.05 28.52 33.57 46.34 27.77 28.69 29.67 32.25 41.66

11 0.06 26.86 33.80 40.35 24.47 26.26 27.12 30.36 40.53

12 0.07 26.91 34.34 41.91 26.05 27.92 28.88 32.69 42.09

13 0.08 25.54 33.46 37.80 24.61 26.36 26.64 31.62 42.58

14 0.09 24.60 33.21 37.71 25.01 28.18 27.38 32.19 43.69

15 0.1 25.99 35.61 39.30 25.54 28.00 29.12 33.81 46.08

16 0.2 27.97 41.28 41.66 29.36 33.48 33.54 40.20 57.02

17 0.3 28.41 40.68 38.05 28.25 34.05 32.88 41.53 59.39

18 0.4 33.39 52.19 41.45 33.58 41.14 39.98 50.68 74.25

19 0.5 36.85 54.68 42.40 36.86 46.14 44.68 56.76 81.71

20 0.75 39.44 59.53 45.88 40.36 50.28 52.67 69.07 101.71

21 1 57.22 104.58 48.44 46.14 57.55 61.59 78.23 114.15

Average 24.57 33.82 35.29 24.37 26.67 28.30 32.36 44.69

+Used CPLEX preprocessing parameters of presolve = off and predual = off. 𝟏𝑇𝒙 ≤ 𝑀 =
1010 was used as the bounding constraint.
++Average of 5 instances of LPs at each density.

29

3.7 Conclusion

In this chapter, dynamic active-set methods have been proposed for both NNLPs

and LPs. In particular, these new approaches were compared to existing methods for

problems with various sizes and densities. On average, dynamic RAD shows superior

performance over COST RAD for the NNLP problem sets 2, 3, and 4. In the LP problem

set, dynamic GRAD significantly outperformed the COST GRAD as well as the CPLEX

primal simplex and the dual simplex. In this LP problem set, however, the barrier solver did

outperform all methods for densities up to 0.03. In addition, dynamic GRAD outperformed

a dynamic version of VIOL, which is a standard method in column generation and

decomposition methods.

30

CHAPTER 4

Posterior Cost

4.1 Introduction

In this chapter, we propose an active-set method to solve nonnegative linear

programming problems more efficiently. Our approach divides the constraints of problem

𝑃 into operative and inoperative constraints at each iteration. Operative constraints are

those active in the current relaxed sub-problem 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃, while the inoperative

ones are constraints of the problem 𝑃 not active in 𝑃𝑟 . In our active-set method we

iteratively solve 𝑃𝑟 , 𝑟 = 1,2, … , of 𝑃 after adding one or more violated inoperative

constraints from (1.2) to 𝑃𝑟−1 until the solution 𝒙𝑟
∗ to 𝑃𝑟 is a solution to 𝑃.

RAD is a geometric constraint selection criterion for determining the constraints

most likely to be binding at optimality. In the associated active-set COST algorithm of [19],

all constraints of (1.2) are pre-ordered by decreasing value of RAD prior to solving an initial

bounded problem 𝑃0 by the primal simplex. The dual simplex is then used when violated

inoperative constraints are added according to their RAD value. In computational

experiments, RAD proved superior to existing linear programming methods for NNLPs. A

similar constraint selection metric GRAD was developed in [18] to solve general linear

programs (LPs). It should be noted that both a constraint selection metric and the

associated COST active-set method are identified by the same name – for example, RAD.

4.2 Overview

In this chapter a posterior constraint selection metric NVRAD, as distinguished

from the prior constraint metric RAD, is developed for NNLPs and utilized in a dynamic

active-set framework. The main contributions are:

(i) a geometric interpretation is presented for NVRAD,

31

(ii) a dynamic active-set approach is developed by adding a varying number of violated

constraints at 𝑃𝑟 based on the progress at 𝑃𝑟−1,

(iii) extensive computational experiments that (a) confirm the efficacy of the dynamic

active-set approach for the posterior method as compared to multi-cut and multi-bound

technique proposed in Saito et al. [6]; (b) indicate the ability of NVRAD to determine

constraints likely to be binding at optimality for NNLPs; and (c) show that NVRAD solves

NNLPs faster than other computational methods, including RAD and various versions of

VIOL.

4.3 Explanation of NVRAD

Let 𝒙𝑟
∗ be the current optimal solution for some 𝑃𝑟 with a perpendicular distance

𝑑 =
𝒂𝒊

𝑇𝒙𝑟
∗ −𝑏𝑖

‖ 𝒂𝑖‖
 to a violated hyperplane 𝒂𝑖

𝑇𝒙 = 𝑏𝑖. It follows that

𝑑

𝑏𝑖
‖ 𝒂𝑖‖

=
𝒂𝑖

𝑇𝒙𝑟
∗ − 𝑏𝑖

𝑏𝑖

.
(4.1)

Note that
𝑏𝑖

‖ 𝒂𝑖‖
 is the perpendicular distance of hyperplane 𝒂𝑖

𝑇𝒙 = 𝑏𝑖 to the origin. Thus

choosing a violated hyperplane 𝒂𝑖
𝑇𝒙 = 𝑏𝑖 with a maximum value

𝒂𝒊
𝑇𝒙𝑟

∗ −𝑏𝑖

𝑏𝑖
 on the right side

of (6) can be interpreted from the left side of (6) as selecting a violated constraint giving

the deepest cut based on information derived from 𝒙𝑟
∗ . But the information from the prior

constraint selection metric 𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄) of (4) is also valuable. From [20], the expression

𝒂𝒊
𝑇𝒄

𝑏𝑖
 on the right side of (4) is the distance from the origin to the hyperplane 𝒂𝑖

𝑇𝒙 ≤ 𝑏𝑖 along

the vector 𝒄, i.e., the direction of steepest ascent for the objective function of (P). We

update the prior information obtained from RAD with subsequent information obtained from

𝒙𝑟
∗ . In a manner reminiscent of using Bayes’ Theorem to get a posterior probability

32

distribution from a prior distribution and a random sample [28], we multiply RAD by the right

side of (4.1) to obtain

𝑁𝑉𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄, 𝒙𝑟
∗) =

𝒂𝑖
𝑇𝒄

𝑏𝑖
2

(𝒂𝑖
𝑇𝒙𝑟

∗ − 𝑏𝑖). (4.2)

Equation (4.2) incorporates the global prior information from RAD with local information

from 𝒙𝑟
∗ . NVRAD thus seeks

𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸

(
𝒂𝑖

𝑇𝒄

𝑏𝑖
2

(𝒂𝑖
𝑇𝒙𝑟

∗ − 𝑏𝑖): 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖) (4.3)

for each 𝑃𝑟. We mention that the 𝑏𝑖
2

term in the denominator of (4.2) works better in the

constraint selection metric NVRAD than would simply 𝑏𝑖 . This fact was established in

computational results not reported here and therefore supports derivation.

4.4 Dynamic COST NVRAD

Let 𝒙𝑟
∗ be the optimal extreme point for 𝑃𝑟 . The cosine of the angle 𝜃𝑟 (in radians)

between 𝒙𝑟
∗ and 𝒄 is given by

𝑐𝑜𝑠(𝜃𝑟) =
𝒄𝑇𝒙𝑟

∗

‖𝒙𝑟
∗ ‖ ‖𝒄‖

, (4.4)

which is nonnegative since 𝑃𝑟 is also an NNLP. Ideally we want to decrease 𝜃𝑟 at each

iteration so that 𝒙𝑟
∗ is more in line with the gradient of the objective function 𝑧 of (1.1) as

illustrated in Figure 4.1 for two dimensions. Toward that end, we develop a dynamic

heuristic that adds a varying number of violated inoperative constraints to 𝑃𝑟 according to

the progress made at 𝑃𝑟−1in reducing the angle between vectors 𝒙𝑟−1
∗ and 𝒄. As our goal,

let 𝜃𝑟 = 0 in (4.4) to give

𝒄𝑇𝒙𝑟
∗ = ‖𝒙𝑟

∗ ‖ ‖𝒄‖.

(4.5)

33

Figure 4.1 An ideal changing angle between 𝒙𝑟

∗ and 𝒄

When 𝜃𝑟 = 0, it thus follows from (4.5) that

∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑟𝑗

∗

√∑ 𝑐𝑗
2𝑛

𝑗=1

= √∑ (𝑥𝑟𝑗
∗)2𝑛

𝑗=1 . (4.6)

Letting | . | denote absolute value, define

𝛿𝑟(𝒙𝑟
∗) = |

∑ 𝑐𝑗𝑥𝑟𝑗
∗𝑛

𝑗=1

√∑ 𝑐𝑗
2𝑛

𝑗=1

− √∑ (𝑥𝑟𝑗
∗)2𝑛

𝑗=1 | (4.7)

as a measure of the performance of our active-set method at iteration 𝑟. The value of 𝛿𝑟(𝒙𝑟
∗)

decreases as 𝒙𝑟
∗ as 𝜃𝑟 decreases. Such a decrease usually occurs as 𝒙𝑟

∗ moves toward an

optimal extreme point of 𝑃.

The dynamic COST NVRAD for solving NNLPs is described as follows. Constraints

are initially ordered by the RAD constraint selection metric (2.2). To construct 𝑃0, we

choose constraints from (1.2) in descending order of RAD until each variables 𝑥𝑗 has an

𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. We say the variables are covered by the constraints

of the initial problem 𝑃0. No equality constraints are considered here, but any equality

constraints can be included in 𝑃0. 𝑃0 is then solved by the primal simplex to achieve an

34

initial solution 𝒙0
∗ and 𝛿0(𝒙0

∗) is calculated accordingly. Let 𝛾𝑟 be the number of constraints

of problem 𝑃 violated by 𝒙𝑟
∗ . At every iteration 𝑟 − 1 and 𝑟, the values

of 𝛿𝑟−1(𝒙𝑟−1
∗) and 𝛿𝑟(𝒙𝑟

∗) are calculated, respectively, and the percentage of improvement

is calculated by

𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛿𝑟−1(𝒙𝑟−1

∗) − 𝛿𝑟(𝒙𝑟
∗)

𝛿𝑟−1(𝒙𝑟−1
∗)

)} ∗ 100 , ∀ 𝑟 = 1,2, …,
(4.8)

where 𝜔𝑟 > 0 represents the percent of improvement made in reducing the angle between

vectors 𝒙𝑟
∗ and 𝒄 at iteration 𝑟. With [.] denoting the greatest integer function, let

{
𝜑𝑟+1 = 𝜑𝑟 ∗ (1 + [(ln 𝜔𝑟)−1]), ∀ 𝑟 = 1,2, …

.
𝜑𝑟+1 = 𝛾𝑟 , … … … … . . … … … … . . ∀ 𝑟 = 1,2, … .

if 𝜔𝑟 > 1

if 𝜔𝑟 ≤ 1

(4.9)

where 𝜑1 = 200. The value of 𝜑𝑟 is an upper bound on the possible number of non-

operative violated constraints that can be added at active-set iteration 𝑟. The actual number

added is 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟}. The active-set function is defined to compensate for the lack of

progress in 𝑃𝑟−1 by adding more violated constraints at 𝑃𝑟. The algorithm stops when 𝛾𝑟 =

0.

The pseudocode for dynamic NVRAD is as follows.

Step 1 — Identify constraints to initially bound the problem.

1: 𝑎∗ ← 0

2: 𝒘𝒉𝒊𝒍𝒆 𝑎∗ ≯ 0 𝒅𝒐

3: 𝐿𝑒𝑡 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∉𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

𝑅𝐴𝐷(𝒂𝑖, 𝑏𝑖 , 𝒄)

4: 𝒊𝒇 ∃𝑗 |𝑎𝑗
∗ = 0 𝒂𝒏𝒅 𝑎𝑖∗𝑗 > 0 𝒕𝒉𝒆𝒏

5: 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ← 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺 ∪ {𝑖∗}

6: 𝒆𝒏𝒅 𝒊𝒇

7: 𝒂∗ ← 𝒂∗ + 𝒂𝑖∗

35

8: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒇𝒂𝒍𝒔𝒆

9: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Step 2 — Using the primal simplex method, obtain an optimal solution 𝑥0
∗ for the initial

bounded problem 𝑃0

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝒄𝑇𝒙

 subject to 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝐵𝑂𝑈𝑁𝐷𝐼𝑁𝐺

 𝒙 ≥ 𝟎
Step 3 — Perform the following iterations until an optimal solution to problem P is found.

1: 𝑟 ← 0

2: 𝑾𝒉𝒊𝒍𝒆 (𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝐟𝐚𝐥𝐬𝐞) 𝒅𝒐

3: Calculate 𝛿𝑟(𝒙𝑟
∗)

4: 𝒊𝒇 𝑟 > 1 𝒕𝒉𝒆𝒏 𝜔𝑟 = 𝑚𝑎𝑥 {0, (
𝛿𝑟−1(𝒙𝑟−1

∗)− 𝛿𝑟(𝒙𝑟
∗)

𝛿𝑟−1(𝒙𝑟−1
∗)

)}

5: 𝒊𝒇 𝜔𝑟 > 1 𝒕𝒉𝒆𝒏 𝜑𝑟+1 = 𝜑𝑟 ∗ (1 + [(ln 𝜔𝑟)−1])

6: 𝒆𝒍𝒔𝒆 𝒊𝒇 𝜔𝑟 ≤ 1 𝒕𝒉𝒆𝒏 𝜑𝑟+1 = 𝛾𝑟

7: 𝒆𝒏𝒅 𝒊𝒇

8: 𝒆𝒍𝒔𝒆 𝜑𝑟 ← 200

9: 𝒆𝒏𝒅 𝒊𝒇

10: 𝒊𝒇 { 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 , ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠 } 𝒕𝒉𝒆𝒏

11: 𝛾𝑟 ← #{ 𝒂𝑖
𝑇𝒙𝑟

∗ > 𝑏𝑖 , ∀ 𝑖 = 0, … , 𝑟𝑜𝑤𝑠 }

12: 𝐿𝑒𝑡 𝑖∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∉𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸

{ 𝑁𝑉𝑅𝐴𝐷(𝒂𝑖 , 𝑏𝑖 , 𝒄, 𝒙𝑟
∗) =

𝒂𝑖
𝑇𝒄

𝑏𝑖
2 (𝒂𝑖

𝑇𝒙𝑟
∗ − 𝑏𝑖) ∶ 𝒂𝑖

𝑇𝒙𝑟
∗ > 𝑏𝑖 }

13: 𝒇𝒐𝒓 (i = 0 to 𝑚𝑖𝑛 {𝜑𝑟+1, 𝛾𝑟}) 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ← 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑉𝐸 ∪ {𝑖∗} 𝒆𝒏𝒅

14: Solve the following 𝑃𝑟 by the dual simplex method to obtain 𝒙𝑟
∗

15: 𝑟 ← 𝑟 + 1

16: 𝑮𝒐 𝒕𝒐 𝟑

17: 𝒆𝒍𝒔𝒆 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ← 𝒕𝒓𝒖𝒆 // 𝒙𝑟
∗ is an optimal solution to P.

36

18: 𝒆𝒏𝒅 𝒊𝒇

19: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

4.5 Computational Experiments

Dynamic NVRAD is now compared with the CPLEX primal simplex, dual simplex,

and barrier methods. NVRAD is further compared to RAD, VIOL, and a normalized version

of VIOL called NVIOL, which is usually superior to VIOL. Since, it’s preferable to apply a

combined procedure to measure the effect of the both global and local information, the

COSTs RAD and NVRAD are used at even and odd iterations, respectively which is called

Hybrid here.

4.6 Problem Instances

Five sets of NNLPs in [6] are used to evaluate the performance of the dynamic

COST NVRAD. Each set contains 105 randomly generated NNLPs at 21 different density

levels ranging from 0.005 to 1, and four ratios of (𝑚 constraints)/(𝑛 variables) ranging from

200 to 1. There are five problem instances per combination of density level and ratio. In

these problem sets, randomly generated real numbers between 1 and 5, 1 and 10, 1 and

10 were assigned to the elements of 𝑨, 𝒃, and 𝒄, respectively. To avoid having a constraint

in the form of an upper bound on a variable, each constraint is required to have at least

two non-zero 𝑎𝑖𝑗. Problem Set 5 of NNLPs is a set of large-scale problems with 5000

variables and 1,000,000 constraints. In this set, real numbers between 1 and 100 were

assigned to the elements of 𝒃 and 𝒄 with densities 𝑝 ranging from 0.0004 to 0.06. Again, to

avoid having a constraint in the form of a upper bound on a variable, each constraint is

required to have at least two non-zero 𝑎𝑖𝑗.

37

4.7 CPLEX Processing

Two CPLEX parameters for solving linear programming are discussed here.

Preprocessing pre-solve indicator (PREIND) and preprocessing dual (PREDUAL) are the

two parameters that CPLEX uses for solving linear programming. Preprocessing pre-solver

is enabled with the parameter setting PREIND = 1 (ON), which reduces both the number

of variables and the constraints before any type of algorithm is used. Pre-solver routine in

CPLEX is disabled by setting PREIND = 0 (OFF). The second preprocessing parameter in

CPLEX, which affects the computational speed, is PREDUAL. By setting parameter

PREDUAL = 0 (ON) or PREDUAL = -1 (OFF), CPLEX automatically selects whether to

solve the dual of the original LP or not, respectively. Both CPLEX pre-solver and

preprocessing dual were disabled in the developed methods.

4.8 NVRAD Computation Results

The experiments are performed on an Intel Core (TM) 2 Duo X9650 3.00GHz with

a Linux 64-bit operating system and 8 GB of RAM. The developed method uses IBM

CPLEX 12.5 callable library to solve nonnegative linear programming problems. The CPU

times represent the average computation time of five problem samples in each density

level. In Table 4.1, the performance of the non-dynamic COST active-set approach of [19]

was compared to the dynamic COST active-set approach for Set 1. Dynamic NVRAD

significantly reduces computational time compared to the multi-cuts and multi-bounds

technique of [6]. Moreover, in higher density problems the dynamic version of NVIOL is up

to 21 times faster than when the same metric incorporated the multi-cuts and multi-bounds

technique. Dynamic NVRAD performs better than VIOL and NVIOL on every problem

instance.

38

Table 4.1 Comparison of CPU times to illustrate the effect of multi-cuts and multi-
bounds and dynamic active-set approach on problem Set1 (Random NNLP with 1000
variables and 200,000 constraints, 𝑎𝑖𝑗=1-5, 𝑏𝑖 =1-10, 𝑐𝑗 =1-10)

 VIOL+ NVIOL+ NVRAD+ NVIOL+ NVRAD+

 Multi-Cut & Multi-Bound

Dynamic Active-Set
 Density No CPU Time (sec)++

0.005 1 6.54 4.56 2.51 2.49 2.26

0.006 2 6.84 5.06 2.92 2.96 2.62

0.007 3 7.15 5.34 3.03 3.03 2.75

0.008 4 6.61 4.96 3.02 3.13 2.83

0.009 5 7.02 5.16 3.11 3.39 3.09

0.01 6 6.83 5.14 3.41 3.51 3.12

0.02 7 6.11 4.81 3.36 3.79 3.44

0.03 8 5.79 4.79 3.33 3.99 3.52

0.04 9 5.71 4.45 3.31 3.99 3.71

0.05 10 5.41 4.62 3.49 4.10 3.64

0.06 11 5.32 4.3 3.52 3.91 3.63

0.07 12 5.87 4.73 3.79 3.93 3.73

0.08 13 5.53 4.68 3.68 3.86 3.61

0.09 14 5.76 4.89 3.99 4.06 3.65

0.1 15 6.04 5.07 4.31 4.08 3.89

0.2 16 10.9 9.64 8.28 4.96 4.82

0.3 17 17.3 15.15 13.05 6.03 5.68

0.4 18 24.64 22.12 20.53 7.28 6.56

0.5 19 32.93 29.85 27.67 7.63 7.34

0.75 20 62.21 57.36 54.97 10.53 10.50

1 21 261.23 251.65 245.5 11.43 11.13

Average 23.89 21.82 20.04 4.86 4.55

++Average of 5 instances of LP at each density
+ Used CPLEX preprocessing parameters of presolve = off and predual = off.

In Table 4.2, CPU times of the test problems by dynamic NVRAD are compared

with RAD. In problem Set 1, RAD is 12.5% faster than NVRAD over all densities. In problem

Set 2, the average computation times for RAD and dynamic NVRAD are 19.07 and 16.86

seconds respectively. On average, dynamic NVRAD is superior to RAD with 38.91 seconds

and 41.87 seconds on Sets 3 and 4 respectively. At lower densities and higher dimensions,

where there may not be much prior global information the results from Table 2 affirm the

ability of NVRAD to add appropriate constraints at each iteration. For m/n ratio of 20,

39

NVRAD with 16.86 seconds is faster than the 19.07 seconds of COST RAD. For m/n ratio

of 2, for densities less than 0.01, dynamic NVRAD is up to 18% more efficient than COST

RAD. NVRAD performed well for both very low and very high density problems.

++ Average of 5 instances of LP at each density.
+ Used CPLEX preprocessing parameters of presolve = off and predual = off.

In Table 4.3, CPU times of the test problems by RAD and hybrid method of COSTs

(RAD and NVRAD) are compared. The hybrid version of COSTs represents a superior

Table 4.2 CPU Times from RAD (multi-cuts and multi-bounds), and NVRAD using
dynamic active-set method for set1-set 4 (Random, NNLP 𝑎𝑖𝑗 =1-5, 𝑏𝑖 =1-10, 𝑐𝑗 = 1-

10) NVRAD+ RAD+

 n 1000 3163 1000
0

1414
3

 1000 3163 1000
0

1414
3 m 20000

0
63246 2000

0
1414

3
 20000

0
6324

6
2000

0
1414

3 m/
n

200 20 2 1 200 20 2 1

 Dynamic Active-Set Multi-Cut & Multi Bound

Density No CPU Time (sec)++ CPU Time (sec)++

0.005 1 2.26 25.00 88.36 106.2
7

 2.10 30.82 108.7
0

127.5
5 0.006 2 2.62 27.23 88.73 97.31 2.42 31.48 104.8

7
114.0

3 0.007 3 2.75 25.79 82.04 90.65 2.65 29.41 92.45 104.1
8 0.008 4 2.83 27.49 78.04 78.92 2.54 30.63 88.20 90.73

0.009 5 3.09 27.43 74.65 75.18 2.78 30.10 83.53 85.21

0.01 6 3.12 26.07 68.23 73.29 2.79 27.81 77.90 80.43

0.02 7 3.44 22.48 45.06 46.24 3.09 24.69 47.63 49.95

0.03 8 3.52 18.59 34.78 38.25 3.22 20.49 36.68 38.33

0.04 9 3.71 16.92 29.96 30.75 3.33 19.06 32.74 32.53

0.05 10 3.64 15.47 26.31 28.01 3.34 16.97 28.23 28.59

0.06 11 3.63 13.62 24.62 25.62 3.20 14.94 27.58 27.27

0.07 12 3.73 12.93 22.24 23.19 3.41 14.88 23.59 23.79

0.08 13 3.61 11.99 20.74 22.30 3.32 13.57 23.44 24.19

0.09 14 3.65 11.39 20.47 21.64 3.38 12.67 23.09 23.80

0.1 15 3.89 10.81 19.65 20.18 3.39 12.92 22.93 20.85

0.2 16 4.82 8.98 16.31 19.44 4.30 11.09 18.87 20.31

0.3 17 5.68 8.84 15.66 19.09 4.97 10.58 18.11 19.46

0.4 18 6.56 9.77 15.76 17.23 5.76 12.31 18.55 18.88

0.5 19 7.34 10.60 15.82 17.89 6.98 11.92 18.00 19.89

0.75 20 10.50 11.24 15.80 16.73 8.26 12.01 17.19 18.06

1 21 11.13 11.34 13.85 11.12 8.39 12.20 17.71 18.50

Averag
e

 4.55 16.86 38.91 41.87 3.98 19.07 44.28 46.98

40

performance than RAD on problem Sets 2, 3, and 4 in dynamic active-set frame work. It

confirms the power of using both global and local information. In problem Set 1, dynamic

RAD is 1.4% faster than hybrid method over all densities. In problem Set 2, the average

computation times for dynamic RAD and hybrid are 16.84 and 16.03 seconds respectively.

On average, hybrid method is superior to RAD in a dynamic framework with 38.40 seconds

and 41.76 seconds on Sets 3 and 4 respectively.

In both Tables 4.2 and Table 4.3, HYBR is better than RAD, dynamic RAD, and

dynamic NVRAD, though only marginally was better that dynamic NVRAD. HYBR can

probably be improved. However, it is not our goal to determine the optimal ratio of RAD

and NVRAD in HYBR since this ratio might differ depending on various factors such as

density and 𝑚/𝑛.

41

Table 4.3 Result obtained from dynamic RAD and hybrid method for Set1-Set4

 RAD+ Hybrid+ (RAD,NVRAD)

()

n 1000 3163 10000 14143 1000 3163 10000 14143
 m 200000 63246 20000 14143 200000 63246 20000 14143
 m/n 200 20 2 1 200 20 2 1
 Dynamic Active-Set Dynamic Active-Set

Density No CPU Time (sec)++

CPU Time (Sec)++
0.005 1 2.02 29.51 106.42 127.70 2.19 27.14 94.26 113.63

0.006 2 2.32 30.20 107.61 116.08 2.53 28.51 95.25 103.78

0.007 3 2.49 29.07 95.87 104.79 2.78 26.14 84.13 95.47

0.008 4 2.47 29.80 89.37 93.12 2.76 27.63 78.88 83.75

0.009 5 2.67 28.59 80.46 86.46 2.93 27.21 77.09 81.11

0.01 6 2.65 27.09 75.60 81.28 3.02 25.68 70.59 75.25

0.02 7 2.85 22.01 45.39 48.01 3.28 20.90 44.45 46.91

0.03 8 2.83 17.30 33.40 36.20 3.19 17.46 34.44 36.18

0.04 9 2.82 14.97 29.29 27.47 3.18 15.08 27.58 29.31

0.05 10 2.97 13.91 24.38 24.70 3.04 13.68 24.61 24.94

0.06 11 2.85 11.43 22.31 22.82 3.19 11.81 23.03 23.32

0.07 12 2.93 11.04 19.40 20.48 3.31 11.55 19.99 20.88

0.08 13 2.91 10.37 18.75 19.87 3.30 10.36 19.19 20.72

0.09 14 3.16 9.16 18.11 18.93 3.34 9.37 18.52 19.54

0.1 15 3.06 9.54 17.35 17.34 3.51 9.18 17.74 17.89

0.2 16 4.34 8.12 14.39 15.99 4.36 7.92 14.01 15.55

0.3 17 5.70 8.57 13.31 15.32 5.40 7.86 12.92 14.66

0.4 18 7.00 9.28 13.55 14.58 6.50 8.95 12.65 13.93

0.5 19 7.95 9.85 13.60 16.35 7.84 9.60 13.38 14.52

0.75 20 10.64 12.05 14.43 15.56 9.81 10.77 12.38 14.13

1 21 12.66 11.71 12.60 14.72 11.00 9.76 11.39 11.59

Average 4.25 16.84 41.22 44.66 4.31 16.03 38.40 41.76
++ Average of 5 instances of LP at each density.
+ Used CPLEX preprocessing parameters of presolve = off and predual = off.

Table 4.4 from [6] is presented to provide an immediate comparison of the

developed dynamic NVRAD with the standard CPLEX solvers. Dynamic NVRAD was

superior across all ratios m/n and all densities except few problem instances with densities

less than 0.02 and a ratio m/n = 20 in which barrier method was faster.

42

For a larger test problems (n = 5000; m = 1,000,000), Table 4.5 illustrates the

effects of the dynamic active-set method along with the multi-cuts and multi-bounds

technique over several constraint selection metrics. In a multi-cut and multi-bound

framework, NVIOL shows 43% improvement in computation time compared to VIOL, while

NVRAD reduces the solution time around 53% using the same technique. Among all

posterior methods, NVRAD represents a superior performance compared to other

constraint selection metrics using both dynamic and multi-cut and multi-bound approach.

The average improvement made by using NVRAD in a dynamic framework is about 47%

reduction in CPU time compared to NVRAD using multi-cut and multi-bound method. The

average CPU times are not calculated for some of the CPLEX solvers since the CPU times

more than 3000 seconds are not reported.

4
3

Table 4.4 Result obtained from primal, dual simplex and barrier for set1-set4, (Random, NNLP 𝑎𝑖𝑗 =1-5, 𝑏𝑖 = 1-10, 𝑐𝑗 = 1-10) [6]

 Primal-- Dual-- Barrier --

 n 1000 3163 10000 14143 1000 3163 10000 14143 1000 3163 10000 14143

 m 200000 63246 20000 14143 200000 63246 20000 14143 200000 63246 20000 14143

 m/n 200 20 2 1 200 20 2 1 200 20 2 1

Density No CPU Time (Sec) ++
0.005 1 7.01 71.02 228.51 309.83 54.84 762.62 1597.24 1169.04 2.36 14.52 240.17 650.83

0.006 2 10.36 77.28 245.60 291.07 60.29 803.97 1607.16 2413.42 2.39 16.30 224.08 666.54

0.007 3 12.98 75.84 219.72 265.09 91.39 876.85 1483.20 1702.47 3.04 18.34 233.55 671.56

0.008 4 15.72 82.01 206.45 239.30 100.06 912.75 1445.54 1236.76 3.90 20.70 232.38 668.82

0.009 5 19.25 80.35 196.72 216.23 114.95 898.99 1375.73 427.95 4.76 22.66 232.23 649.26

0.01 6 21.92 78.50 182.47 216.60 123.49 912.63 1252.05 436.31 5.53 24.29 228.76 650.30

0.02 7 39.90 78.80 118.28 127.59 203.08 963.66 807.29 362.34 17.13 32.08 242.54 711.26

0.03 8 45.42 79.75 98.02 108.60 217.18 1207.76 545.91 723.98 28.79 45.03 266.90 727.61

0.04 9 50.30 78.78 89.75 88.32 248.75 1489.40 450.08 539.92 41.50 62.28 292.15 806.80

0.05 10 55.16 78.92 81.09 82.14 256.49 1746.46 418.69 519.50 53.72 81.32 327.01 837.67

0.06 11 60.34 77.49 77.28 78.27 251.39 2124.31 378.71 409.47 67.58 100.48 359.53 897.58

0.07 12 62.07 78.93 70.44 70.37 251.74 2446.69 310.89 544.15 84.70 125.49 401.72 948.01

0.08 13 62.92 76.96 70.21 69.81 264.48 2799.62 307.25 388.94 99.51 149.37 454.01 1038.86

0.09 14 66.57 79.07 71.46 72.37 258.14 2523.03 718.04 427.95 119.26 186.06 495.28 1153.31

0.1 15 71.00 74.57 67.43 62.64 287.36 2251.10 267.14 436.31 138.67 207.54 539.64 1194.56

0.2 16 87.49 83.12 64.38 62.99 294.39 1450.82 201.73 362.34 379.68 691.77 1298.76 2529.97

0.3 17 94.57 77.91 67.14 66.61 341.44 1280.71 175.16 267.16 657.45 1333.29 2418.75 b

0.4 18 99.33 78.46 73.58 71.48 384.10 1236.30 146.09 233.39 985.86 2076.09 b b

0.5 19 111.30 84.30 86.50 75.62 427.16 1173.49 133.49 208.65 1350.82 b b b

0.75 20 128.26 99.35 115.00 102.51 410.98 1056.18 132.25 181.95 b b b b

1 21 207.55 94.09 393.54 145.96 375.89 411.19 148.90 165.45 b b b b

Average 63.30 80.26 134.46 134.45 238.93 1396.60 662.03 626.55 n/a n/a n/a n/a

--Used CPLEX preprocessing parameters of presolve = ON and predual = Auto. ++Average of 5 instances of LPs at each density.
b Runs with CPU times > 3000s are not reported.

4
4

Table 4.5 The comparison of computation times of dynamic active-set method and bounding technique (Random
NNLP with 5,000 variables and 1,000,000 constraints, 𝑎𝑖𝑗 = 1-5, 𝑏𝑖 = 1-100, 𝑐𝑗 = 1-100)

No Density NVRAD+ RAD+

 VIOL+

NVIOL+

NVRAD+

CPLEX
Primal--

CPLEX
Dual--

 CPLEX
Barrier --

 Dynamic
Active-Set

Multi-Cuts & Multi-Bounds

CPU Time (Sec)++

1 0.0004 6.21 7.54 157.92 73.09 72.19 11.90 14.08 12.31

2 0.0005 9.22 12.26 177.96 100.86 106.31 23.41 29.83 16.61

3 0.0006 11.94 16.51 252.74 75.41 76.12 13.45 107.61 20.45

4 0.0007 15.45 22.19 282.95 92.70 93.64 18.99 176.50 24.60

5 0.0008 20.16 27.66 325.51 108.42 95.22 28.88 257.06 27.43

6 0.0009 23.70 33.24 346.76 120.57 91.06 40.17 339.49 29.80

7 0.0010 28.01 39.81 374.06 141.35 107.34 50.91 427.60 31.73

8 0.0020 70.01 89.57 393.48 222.63 174.78 173.03 1775.03 48.79

9 0.0030 90.09 104.83 368.92 245.17 190.37 244.01 b 61.31

10 0.0040 99.32 113.40 346.56 224.35 183.58 316.53 b 85.60

11 0.0050 103.78 113.17 322.98 215.49 172.42 366.80 b 91.11

12 0.0060 112.15 122.85 320.97 217.81 171.40 443.43 b 112.46

13 0.0070 106.61 116.00 283.16 214.48 160.63 474.40 b 136.03

14 0.0080 100.14 113.05 258.56 184.76 148.74 529.44 b 158.54

15 0.0090 94.43 104.68 229.32 165.47 138.51 566.20 b 198.31

16 0.0100 100.91 112.82 233.08 171.28 137.64 629.59 b 239.87

17 0.0200 76.77 83.83 142.85 106.45 90.60 1134.77 b 899.87

18 0.0300 69.41 76.69 114.25 86.83 76.77 1740.28 b b

19 0.0400 65.87 67.36 103.22 79.26 71.60 1865.70 b b

20 0.0500 63.71 64.58 100.60 80.35 71.87 2159.55 b b

21 0.0600 64.57 65.62 102.05 82.42 74.41 b b b

Average 63.45 71.79 249.42 143.29 119.29 n/a n/a n/a

 ++Average of 5 instances of LP at each density. b Runs with CPU times > 2400s are not reported.
 --Used CPLEX preprocessing parameters of presolve = ON and predual = Auto.
 + Used CPLEX preprocessing parameters of presolve = off and predual = off.

4
5

45

4.9 Conclusions

An efficient posterior constraint selection metric NVRAD was developed here for

NNLPs to utilize both prior global information and posterior local information, and a

geometric interpretation was presented. In addition, a dynamic active-set approach was

developed here to add varying numbers of constraints to for each 𝑃𝑟 . The performance of

dynamic NVRAD was checked on sets of large-scale NNLPs. Dynamic NVRAD

outperformed the previously developed methods COST RAD and VIOL, as well as the

CPLEX primal simplex, dual simplex, and barrier solvers.

4
6

46

CHAPTER 5

Application to Column Generation & Entering Variable Rule

5.1 Entering Variable Rule

Dantzig entering variable rule has been a dominant entering rule since the emergence of

the simplex method. In the meantime, other entering rules are examined here to check

their performance compared to the Dantzig entering rule. In the dual space of problem 𝑃,

the likelihood of binding constraint at optimality can be determined by the corresponding

dual version of RAD, called DRAD here.

𝐷𝑅𝐴𝐷(𝒂, 𝒃, 𝑐) = 𝑗∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 {
𝒂𝑗𝑇

𝒃

𝑐𝑗

 | 𝒂𝑗𝑇
𝒚𝑟

∗ < 𝑐𝑗}, (5.1)

where 𝒂𝑗 is the 𝑗th column of 𝑨.

The performance of the DRAD entering rule is compared with the cosine simplex

method discussed in Section (2.7.1) and the Dantzig entering rule. It tested over few,

randomly generated problems with varying number of 𝑚 and 𝑛 with density of 1. In the

DRAD entering rule, at each iteration, among all non-basic variables with negative reduced

cost, the one with the lowest possible DRAD value is chosen to enter to the basis. In the

next step, the minimum test determines the leaving variable. In the cosine simplex

algorithm, all candidate variables with negative reduce cost, are required to calculate the

corresponding cosine value, and the variable with the minimal cosine (2.8) is chosen as an

entering variable.

To check the performance of the variable entering rules, two types of NNLPs,

𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈ ℛ+ and 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈ ℤ+ are randomly generated.

5.2 Entering Variable Rule by DRAD

To examine the effect of changing the variable entering rule from Dantzig’s rule to

use DRAD, several randomly generated problem samples at density of one are tested and

4
7

47

reported in Table 5.1 and Table 5.2. As described in Chapter 2, among all the potential

variables with negative reduced cost, a variable considered favorable regarding each

variable entering rule enters to basis in the next iteration. In problem set with 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈ ℛ,

on average, Danzig’s rule shows a superior performance compared to other variable

pivoting rules. The comparison for the number of the iterations is shown in Table 5.1 and

Table 5.2.

Table 5.1 Comparison of the number of the iterations between different variable entering
 rules

𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈ ℛ

1 ≤ 𝑐𝑗 , 𝑏𝑖 ≤ 10 and 1 ≤ 𝑎𝑖𝑗 ≤ 5

Number of iterations

Density Problem Samples
 (Variables ,
Constraints)

Cosine
 Simplex

DRAD
Simplex

Dantzig Simplex

1 800,100 39 20 7

1 700,100 19 6 5

1 600,100 21 8 7

1 500,100 70 29 15

1 400,100 66 35 13

1 300,100 7 9 5

1 200,100 16 15 6

1 100,100 16 21 7

Average 31.75 17.88 8.125

4
8

48

Table 5.2 Comparison of the number of the iterations between different variable entering
 rules

𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈ ℤ+

1 ≤ 𝑐𝑗 , 𝑏𝑖 ≤ 10 and 1 ≤ 𝑎𝑖 ≤ 5

Number of iterations

Density Problem Samples
(Variables ,
Constraints)

Cosine
Simplex

DRAD
Simplex

Dantzig Simplex

1 800,100 100 70 22

1 700,100 41 27 9

1 600,100 17 19 11

1 500,100 17 19 6

1 400,100 66 66 16

1 300,100 21 14 13

1 200,100 13 5 13

1 100,100 13 10 7

1 80,80 24 13 8

Average 34.67 27.00 11.67

Consider problem 𝐷 as the dual of linear programming problem 𝑃:

(D) 𝑀𝑖𝑛 ∑ 𝒚𝒊 ∗ 𝒃𝒊
𝑚
𝑖=1

𝑠. 𝑡.

(5.2)

∑ 𝒚𝒊 ∗ 𝑎𝑖𝑗

𝑛

𝑖=1

≥ 𝑐𝑗 ∀ 𝑗 = 1, … , 𝑛
(5.3)

𝒚𝒊 ≥ 0 ∀ 𝑖 = 1, … , 𝑚 (5.4)

DARD measures the likelihood of constraints binding at optimality in problem 𝐷.

Theorem: Complementary Slackness Assume problem (P) has a solution 𝒙∗ and

Problem (D) has a solution 𝒚∗.

1. If 𝑥𝑗
∗ > 0, then the 𝑗𝑡ℎ constraint in (D) is binding.

2. If the 𝑗𝑡ℎ constraint in (D) is not binding, then 𝑥𝑗
∗ = 0

3. If 𝑦𝑖
∗ > 0, then the 𝑖𝑡ℎ constraint in (P) is binding.

4. If the 𝑖𝑡ℎ constraint in (P) is not binding, then 𝑦𝑖
∗ = 0

The complementary slackness theorem identifies a relationship between

constraint in one problem and variables in the other problem. “It says if a variable is

4
9

49

positive, then the associated dual constraint must be binding. It also says if a constraints

fails to bind, the associated variable must be zero” [29].

𝒚∗(𝑨𝒙∗ − 𝒃) = 0
(𝒚∗𝑨 − 𝒄)𝒙∗ = 0

Figure 5.1. Interpretation of DRAD and complementary slackness

Considering the DRAD metric, 𝑢1 and 𝑢2 have a higher probability of getting

positive values than 𝑢3. Though 𝑢3 has a high probability to be zero at optimal solution, the

associated dual variable in the primal problem can be zero or positive. Consider a two-

dimensional example of an NNLP

 𝑀𝑖𝑛 3𝑥1 + 3𝑥2 (P1)

𝑠. 𝑡.

𝑥1 + 𝑥2 >= 3

2𝑥1 + 𝑥2 >= 4

3𝑥1 + 𝑥2 >= 6

𝑥1, 𝑥2 >= 0

5
0

50

The solution to (P1) is 𝑥1
∗ = 1.5, 𝑥2

∗ = 1.5, 𝑧∗ = 9. As seen, constraint 1 and 3 are bound at

optimal solution, but the second constraint is loose (𝑢1 = 0, 𝑢2 = 0.5, 𝑢3 = 0). The dual of

the (P1) is

 𝑀𝑎𝑥 3𝑦1 + 4𝑦2 + 6𝑦3 (D1)

𝑠. 𝑡.

𝑦1 + 2𝑦2 + 3𝑦3 <= 3

𝑦1 + 𝑦2 + 𝑦3 <= 3

𝑦1 , 𝑦2, 𝑦3 >= 0

Solution 𝑦1 = 3 , 𝑦2 = 𝑦3 = 0, 𝑧∗ = 9

Though constraint 3 in (P1) is tight, its corresponding dual variable in (D1) is 0, and it is

not a basic variable at optimal solution.

The provided example may explain the reason for inefficiency of DRAD metric as

a variable selection rule. It assumes if a constraint binds at optimal solution in 𝐷, its

associated dual variable is positive in 𝑃, which is not exactly accorded with the

complementary slackness theorem.

5.3 DRAD column generation

In this section, DRAD is examined for generating columns in large scale LP

problem with a short and wide structure. First, variables are sorted in an ascending order

of DRAD (5.1) then CPLEX primal simplex is used to solve 𝑃0. The reduced costs of non-

basic variables are obtained by a pricing operation

𝒄̅𝑁 = 𝒄𝑩𝐵−1𝒂𝒋 − 𝒄𝒋 (5.5)

where 𝑗 = {𝑗 | 𝒄̅𝒋 < 0, 𝑗 ∈ 𝑁} . Multiple of columns 𝑗 are added iteratively, since they price

out favorably. First, variables are sorted in a descending order of DRAD. Then, 𝑃0 is

constructed by adding 10% of the most important variables. Eq. (3.1) and Eq. (3.2) are

used to determine the number of multiple columns added in the next iterations. DRAD

5
1

51

column generation is compared with CPLEX Sifting and CPLEX Primal, CPLEX Dual, and

CPLEX Barrier methods, and the results are illustrated on Table 5.3. All methods are tested

on problem-sets with 20000 variables and 5000 constraints. The DRAD column generation

represents a superior performance compared to Sifting in high density problem instances.

On average, DRAD column generation represents 67% improvement compared to the

Sifting method on problem-sets 3.

5.4 Dynamic DRAD COST

DRAD is also used as a constraint selection metric to solve NNLP problems. First,

for each variable 𝐷𝑅𝐴𝐷(𝒂, 𝒃, 𝑐) is calculated then, problem 𝑃 is converted to dual problem

𝐷, and constraints are sorted in a descending order of DRAD. The dynamic active-set

method, discussed in Section 3.2, is used to add multiple violated constraints at problem

𝑃𝑟 , 𝑟 = 1,2,3, … ,. As illustrated in Table 5.3, using DRAD as a constraint selection technique

in problem 𝐷 is the most efficient method for solving NNLPs with short and wide structure.

On average, DRAD COST is 57% faster than DRAD Column Generation, 22% faster than

NRAD COST, and 85% more efficient than the sifting method, which is the standard LP

column generation method.

5
2

52

Table 5.3 The comparison of computation times of DRAD Column Generation, Sifting, Primal, Dual, and Barrier on
(Random NNLP with 20000 variables and 5000 constraints, 𝑎𝑖𝑗 =1 to 5, 𝑏𝑖 =1 to 10, 𝑐𝑗 =1 to 10)

NO Density DRAD COST
Dynamic

DRAD Column
Generation

NRAD
COST

CPLEX
Sifting

CPLEX
Primal--

CPLEX
Dual--

CPLEX
Barrier --

 CPU Time (Sec)++

1 0.005 57.04 90.50 70.12 82.22 240.79 273.74 28.89
2 0.01 39.93 71.00 42.72 70.45 189.77 244.05 29.97
3 0.02 20.54 39.80 22.19 31.72 154.07 189.55 35.81
4 0.03 14.60 31.89 17.19 26.56 148.08 215.39 41.30
5 0.04 10.83 25.55 15.39 24.03 191.50 155.25 47.81
6 0.05 9.22 22.22 13.53 25.52 226.33 146.91 60.25
7 0.06 8.23 20.30 12.99 23.92 197.12 148.64 74.90
8 0.07 7.29 19.50 11.97 24.53 173.60 175.36 90.40
9 0.08 6.66 16.96 11.56 26.56 161.33 187.01 105.60
10 0.09 6.17 16.59 10.87 26.46 159.93 203.78 126.51
11 0.1 5.71 15.90 10.18 28.89 141.78 222.30 140.54
12 0.2 5.84 30.41 9.53 46.92 136.24 202.87 394.03
13 0.3 5.19 30.20 9.25 75.62 137.25 194.21 NA

14 0.4 6.33 30.97 8.74 117.29 126.96 162.46 NA

15 0.5 6.54 25.22 8.41 158.05 122.06 151.68 NA

16 0.6 7.05 24.92 8.59 177.17 127.65 159.51 NA

17 0.7 8.13 21.22 8.74 207.61 109.20 170.25 NA

18 0.8 7.52 19.81 8.40 270.74 108.20 175.91 NA

19 1 8.36 12.95 8.99 239.37 77.22 197.83 NA

Average 12.69 29.78 16.28 88.61 154.16 188.25 NA

++ Average of 5 instances of LP at each density.
+ Used CPLEX preprocessing parameters of presolve = off and predual = off.
-- Used CPLEX preprocessing parameters of presolve = ON and predual = ON.

53

CHAPTER 6

GRAD for Equality Constraints

The dynamic active-set approach is applied to large-scale NNLPs with equality

constraints in this section. This is done as follows.

An 𝑨′ matrix is formed by converting every equality constraint in 𝑨 into two

inequalities 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖 and 𝒂𝑖

𝑇𝒙 ≥ 𝑏𝑖 . The dynamic GRAD, discussed in Section 3.3, is

used to solve the general linear programming problem. Note, for an 𝑨 matrix with all

equality constraints, 𝑨′ is twice as large in its constraints size as 𝑨. To measure the

performance of the proposed method, few NNLPs with equality constraints and 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 ∈

ℛ+ are randomly generated. To assure the randomly generated NNLPs have a feasible

solution, 𝒙∗ is randomly generated to derive random 𝒃, where 𝒂𝑖
𝑇𝒙∗ = 𝑏𝑖. In addition, to

avoid having a constraint in an upper bound on a variable, each constraint must have at

least two non-zero 𝑎𝑖𝑗. The number of nonzero 𝑎𝑖𝑗 in each constraint was binomially

distributed B (n, p =density.

As illustrated in Table 6.1, GRAD represents an efficiency lower than CPLEX

solvers in the majority of problems. The possible explanation for the lack of efficiency in

using GRAD is as follows:

 The number of rows in 𝑨′ is twice as large as the number of rows in 𝑨, which is a

significant increase in the number of constraints.

 The main power of CPLEX is originated from its pre-solver and pre-dual

computational advantage. The pre-processing capability of the CPLEX for

problems with equality constraints is higher than the problems with inequality

constraints. In addition CPLEX uses multiple threads for concurrent optimization

which enables CPLEX to do its computation in a parallel mode.

54

In several problems, CPLEX solver eliminates all rows and columns which makes

CPLEX to be extremely efficient for such problems. CPLEX AUTO has several tuning

parameters that retune itself during the solving procedure. Some of these parameters are:

 Variable selection: Devix entering rule, Steepest Edge, Dantzig entering rule

 Parallel threads and computing

 Markowitz tolerance

 Cholesky decomposition

 Pre-processing (pre-solver)

 Pre-dual

Table 6.1 The computation times of dynamic GRAD and CPLEX used for NNLPs with
equality constraints(Random NNLP,1 ≤ 𝑐𝑗 ≤ 10 and 1 ≤ 𝑎𝑖𝑗 ≤ 5, and 1 ≤ 𝑥𝑖𝑗 ≤ 10)

Density NNLPs (Var , Cons) Dynamic
GRAD

CPLEX
Primal--

CPLEX
Barrier --

CPLEX
AUTO

 CPU Time

0.01 1000,50000 1.24 0.12 0.29 0.09

0.05 2000,25000 163.02 78.53 307.09 73.66

0.05 1000,50000 20.00 63.82 125.41 4.88

0.08 1000,50000 39.53 73.19 147.78 5.56

0.1 1000,50000 13.98 75.85 155.54 6.81

0.5 1000,50000 125.31 103.37 191.76 28.21

0.005 1000,100000 0.66 0.13 0.4 0.13

0.05 1000,100000 19.07 147.17 261.13 7.12

0.1 1000,100000 20.86 163.46 319.72 11.39

0.005 2000,50000 8.82 0.11 0.24 0.09

0.05 2000,50000 177.98 162.92 592.57 70.80

0.1 2000, 50000 322.15 195.65 676.18 60.67

-- Used CPLEX preprocessing parameters of presolve = ON and predual = ON.

CPLEX pre-solver and pre-dual is more powerful and efficient in LP problems with

equality constraints than inequality constraints. Table 6.2 compares the CPU time for the

same NNLPs with equality and inequality constraints. In all problem instances, the CPU

55

time for solving NNLP problems with equality constraints is smaller than the same problem

with inequality constraints. On average, CPLEX pre-solver and pre-dual are 8 times more

efficient for NNLPs with equality constraints than the same problem with inequality

constraints. The CPU time of COST NRAD is still larger than CPLEX. Interestingly, for

equality constraints, CPLEX pre-solver eliminates all columns and rows which confirms the

main computational power of CPLEX is from its preprocessing (pre-solver and pre-dual)

parameters.

Table 6.2 A comparison of the CPLEX pre-solver’s performance on equality and
inequality constraints (Random NNLP, 1 ≤ 𝑐𝑗 ≤ 10 and 1 ≤ 𝑎𝑖𝑗 ≤ 5, and 1 ≤ 𝑥𝑖𝑗 ≤ 10)

+Used CPLEX preprocessing parameters of presolve = ON and predual = ON.

After considering the results, it was realized that the way that these problems are

made effectively give a unique solution for a set of the linear equations in which in that

case, CPLEX had to solve a system of overdetermined linear equations. Therefore, some

further problems are constructed with the mixed equality and inequality constraints.

The dynamic COST RAD for solving NNLPs problems with mixed equality and equality

constrains is described as follows.

Constraints are initially ordered by the RAD constraint selection metric (2.2). In

order to solve problems with equality and equality constrains, all constraints are ranked in

a descending order of RAD. Then, 𝑃0 is formed by adding all of the 𝒂𝑖
𝑇𝒙 = 𝑏𝑖 constraints.

We add constraints 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖 from (1.2) in descending order of RAD until each variables

Density CPU Time+ CPU Time

Density

NNLPs
 (Variables ,
Constraints)

CPLEX
AUTO

CPLEX
AUTO

COST NRAD

Inequality

 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖

Equality

 𝒂𝑖
𝑇𝒙 = 𝑏𝑖

Inequality

 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖

0.01 1000,50000 0.80 0.09 0.43

0.1 1000,50000 0.34 0.10 0.11

0.05 1000, 100000 77.29 6.62 6.65

0.1 1000, 100000 108.11 7.22 14.92

56

𝑥𝑗 has an 𝑎𝑖𝑗 > 0 in the coefficient matrix of 𝑃0. Then, dynamic RAD discussed in Section

3.2 is applied to solve the problem. As illustrated in Table 6.3, the proposed methodology

solves the mixed constraints problem very efficiently.

Table 6.3 A comparison of the CPLEX’s performance on mixed equality-inequality
constraints NNLPs and dynamic RAD.

+Used CPLEX preprocessing parameters of presolve = ON and predual = ON.

Density

NNLPs

 (Variables , Constraints (𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖, 𝒂𝑖

𝑇𝒙 = 𝑏𝑖)

CPLEX
AUTO

Dynamic RAD

 CPU Time CPU Time+

0.01 (1000, 200000) 9.86 0.88

0.01 (1000, 200000) 10.47 0.9

0.03 (1000, 200000) 78.97 1.21

0.04 (1000, 200000) 129.44 1.20

0.05 (1000, 200000) 144.49 1.32

0.1 (1000, 200000) 407.47 1.72

0.05 (5000, 20000) 150.34 5

0.1 (5000, 20000) 367.56 4.09

57

CHAPTER 7

Conclusions

Two efficient dynamic active-set approaches were developed. In addition, a

constraint selection rule NVRAD is developed, and its geometric interpretation was given.

The performance of the developed methods was tested on sets of large-scale generated

GLPs and NNLPs. The superior performance of the developed method over the COST

NRAD multi-cuts is presented. Also, both Dynamic active-set methods significantly

outperformed all of the CPLEX solver methods in solving GLPs and NNLPs with various

densities from a low density to a density of 1. The improvement achieved on GLPs was

more significant compared to the developed method by [18].

The dynamic active-set approach, presented in Chapter 4, increases the

performance of the posterior methods, such as VIOL and NVIOL, significantly compared

to the bounding technique. The importance of the posterior methods on the sparse matrix

was illustrated. Also, a hybrid method is efficient, and it is understood that hybrid approaches

can take advantage of both global and local information. A variable selection technique, based

on the dual version of the radial constraint selection rule (DRAD), is implemented on a

problem sets. The results are compared with the Sifting method, which is a popular method

for generating column in LP problems with short and wide structure.

The study can also be extended to address the cases when all the equations are

equalities 𝑎𝑇𝑥 = 𝑏. Also, the reduced problem by CPLEX pre-solver can be used to speed

up the solving process. Other areas of future research may contain expanding RAD to

solve integer programming problems.

58

References

[1]. Bixby, R.E., et al., Very large-scale linear programming: a case study in combining
interior point and simplex methods. Operations research, 1992. 40(5): p. 885-897.

[2]. Rosenberger, J.M., E.L. Johnson, and G.L. Nemhauser, Rerouting Aircraft for

Airline Recovery. Transportation Science, 2003. 37(4): p. 408-421.

[3]. Todd, M.J., The many facets of linear programming. Mathematical Programming,

2002. 91(3): p. 417-436.

[4]. Elwes, R., The algorithm that runs the world. New Scientist, 2012. 215(2877): p.

32-37.

[5]. Dare, P. and H. Saleh, GPS network design: logistics solution using optimal and

near-optimal methods. Journal of Geodesy, 2000. 74(6): p. 467-478.

[6]. Saito, G., et al., Constraint Optimal Selection Techniques (COSTs) for nonnegative

linear programming problems. Applied Mathematics and Computation, 2015.
251: p. 586-598.

[7]. Li, H.-L. and C.-J. Fu, A linear programming approach for identifying a consensus

sequence on DNA sequences. Bioinformatics, 2005. 21(9): p. 1838-1845.

[8]. Stone, J.J., The cross-section method, an algorithm for linear programming. 1958,

DTIC Document.

[9]. Thompson, G.L., F.M. Tonge, and S. Zionts, Techniques for removing nonbinding

constraints and extraneous variables from linear programming problems.
Management Science, 1966. 12(7): p. 588-608.

[10]. Adler, I., R. Karp, and R. Shamir, A family of simplex variants solving an m× d linear

program in expected number of pivot steps depending on d only. Mathematics of
operations research, 1986. 11(4): p. 570-590.

[11]. Zeleny, M., An external reconstruction approach (ERA) to linear programming.

Computers & Operations Research, 1986. 13(1): p. 95-100.

[12]. Myers, D.C. and W. Shih, A constraint selection technique for a class of linear

programs. Operations Research Letters, 1988. 7(4): p. 191-195.

[13]. Curet, N.D., A primal-dual simplex method for linear programs. Operations

Research Letters, 1993. 13(4): p. 233-237.

59

[14]. Barnhart, C., et al., Branch-and-price: Column generation for solving huge integer
programs. Operations research, 1998. 46(3): p. 316-329.

[15]. Mitchell, J.E., Computational experience with an interior point cutting plane

algorithm. SIAM Journal on Optimization, 2000. 10(4): p. 1212-1227.

[16]. Corley, H.W. and J.M. Rosenberger, System, method and apparatus for allocating

resources by constraint selection, 2011.

[17]. Corley, H.W., et al., The cosine simplex algorithm. The International Journal of

Advanced Manufacturing Technology, 2006. 27(9-10): p. 1047-1050.

[18]. Saito, G., H.W. Corley, and J. Rosenberger, Constraint Optimal Selection

Techniques (COSTs) for Linear Programming. 2012.

[19]. Charnes, A. and W.W. Cooper, On some works of Kantorovich, Koopmans and

others. Management Science, 1962. 8(3): p. 246-263.

[20]. Dantzig, G.B. and M.N. Thapa, Linear Programming 1: 1: Introduction. Vol. 1.

1997: Springer.

[21]. Cottle, R., E. Johnson, and R. Wets, George B. Dantzig (1914–2005). Notices of the

AMS, 2007. 54(3): p. 344-362.

[22]. Khachiyan, L.G., Polynomial algorithms in linear programming. USSR

Computational Mathematics and Mathematical Physics, 1980. 20(1): p. 53-72.

[23]. Thapa, G.B.D.M.N., Linear programming. 2003.

[24]. Wright, S.J., Primal-dual interior-point methods. Vol. 54. 1997: Siam.

[25]. Desaulniers, G., J. Desrosiers, and M.M. Solomon, Column generation. Vol. 5.

2005: Springer.

[26]. Pan, P.-Q., Efficient nested pricing in the simplex algorithm. Operations Research

Letters, 2008. 36(3): p. 309-313.

[27]. Corley, H., et al., The cosine simplex algorithm. The International Journal of

Advanced Manufacturing Technology, 2006. 27(9-10): p. 1047-1050.

[28]. Tichý, M., Applied methods of structural reliability. Vol. 2. 2012: Springer Science

& Business Media.

60

[29]. Luis, G., Proving Optimality for Linear Programs 2005.

61

Biographical Information

Alireza Noroziroshan was born in IRAN where he earned his

bachelor’s degree in Industrial and System Engineering from Mazandaran University of Science and

Technology. In 2007 he started his Master’s program in Industrial Engineering at the Universiti

PUTRA Malaysia. During his Master’s program he got interested into operation research and

optimization. He came to US for his PhD at The Department of Industrial, Manufacturing and Systems

Engineering, University of Texas at Arlington n 2011. During his course of stay at UTA he worked

under the supervision of Dr. Bill Corley. He worked on developing techniques for solving large-scale

linear programming problems. He also worked as a teaching assistant at the Department of Industrial

and Manufacturing Systems Engineering. His research interests are optimizations and data analytics.

