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Abstract 

 
A DECISION SUPPORT SYSTEM TOOL FOR DYNAMIC  

PRICING OF MANAGED LANES  

 

Maryam Zabihi, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Siamak A. Ardekani 

Congestion pricing and managed lanes (ML) have been recently gaining interest 

around the country as a congestion management tool and as a means of revenue 

generation for facility maintenance and expansion as well repayment of highway 

construction debts.   Congestion pricing in MLs entails one of several strategies, including 

time of day pricing, dynamic pricing based on predicted/anticipated traffic conditions, and 

real-time dynamic pricing based on actual traffic conditions. The overall goal of this study 

has been to develop a Decision Support System (DSS) tool based on drivers’ revealed 

willingness to pay (WTP) values.  This should determine more effective dynamic toll pricing 

that achieves the ML corridors’ operational goals. A key challenge has been estimating 

drivers’ revealed WTP as influenced by their perceived values of time or by other factors 

such as enhanced safety and more reliable travel times.  

While there are significant advances made in the available methods to estimate 

WTP, research still lacks in the area of dynamic pricing. Indeed, for dynamic toll pricing 

systems, setting real-time toll prices based only on drivers’ average WTP values appears 

ineffective. However, the WTP values estimated through existing methods represent the 

average value of travel time saving and/or reliability (VOT and/or VOR) for the total 
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population. This makes the current approaches more compatible with static networks, 

which cannot efficiently address the nature of dynamic corridors. Another major drawback 

associated with current methods is that the travelers WTP values are measured in terms 

of price paid to save one unit of travel time (VOT). However, the travelers’ WTP to use MLs 

has been shown to be for a number of intertwined reasons and not just for time savings.  

This study suggests a number of unique approaches in estimating WTP values. 

These include a new revealed data source as well as an alternative analysis method for 

estimating WTP. To obtain more accurate results, the study was limited to the North Tarrant 

Expressway (NTE) drivers in North Texas and was conducted for different time periods. 

For this study, traffic count data were reduced from the camera images for different vehicle 

categories and for five different time periods, including AM and PM peaks, AM and PM 

inter-peaks, and off-peak periods. In addition, real-time toll prices associated with the study 

segment and the day and time of the data collection were obtained from the NTE website. 

The data analysis method involved an existing toll pricing model (TPM) developed in a 

former Texas Department of Transportation study for setting tolls for MLs. The model was 

modified and calibrated based on actual ML shares and associated toll prices for the NTE 

ML corridor. The modified version of TPM (version 5.0) can be employed as a DSS tool to 

estimate the WTP values for drivers of any vehicle class and for any time of day.  

Values of about $119, $101, $71, $75, and $59 per hours were estimated as the 

revealed average WTP for the NTE SOV drivers during AM peak, PM peak, AM inter-peak, 

PM inter-peak, and off-peak periods, respectively. In addition, a value of $85 per hour was 

estimated for the mean revealed WTP (all periods inclusive) for the NTE SOV drivers. The 

results of this study showed relatively high WTP values and ML share percentages for the 

NTE drivers, indicating a high level of acceptance of MLs in the region.  
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Finally, this study suggested applying a new paradigm in WTP estimation studies. 

The employed data collection and analysis methods were two components of the new 

paradigm. Besides, the new paradigm recommended evaluating real-time WTP by time of 

day instead of average WTP values for dynamic pricing schemes. The last component was 

a recommendation to attribute the WTP values to the travelers’ willingness to pay to drive 

one unit distance on toll lanes instead of to save one unit of travel time. 

The DSS tool developed in this study for the NTE ML has the potential to be used 

by ML operators to measure the real-time WTP values for the ML users. The results of this 

new methodology may not directly address the questions about travelers’ behavior in terms 

of their reasons to choose between the MLs and GPLs. However, these results can 

significantly contribute to decision making about transportation policies, in particular,  the 

policies associated with dynamic congestion pricing for ML corridors.  
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Chapter 1  

Study Objective and Background 

According to the United States Department of Transportation, the total number of 

vehicle miles traveled (VMT) in the United States during March 2016 was 273.4 billion 

vehicle miles. This number is an increase of 5 percent compared to the VMT in March 2015 

[1]. Expanding roadway capacity in order to accommodate such rapid traffic growth has 

become one of the main challenges for transportation agencies. An effective solution needs 

to address several issues such as escalating construction costs, right-of-way constraints, 

and social and environmental impacts, especially in urbanized areas. Limited right-of-way 

in urban areas prohibits capacity expansion and leads to traffic congestion, delays, and 

excessive fuel consumption and emissions. Therefore, in order to effectively address 

mobility needs and provide travel options, the managed lanes (ML) concept has recently 

gained interest around the country. The operational benefits of MLs are widely discussed 

in the literature.  However, there is still need for further research in the area of providing a 

decision support system for dynamic toll pricing of MLs to more effectively achieve facility 

managers’ operational goals.  

1.1 Problem Statement 

Congestion pricing and managed lanes have been recently gaining interest around 

the country as a practical congestion management strategy as well as  a mean to generate 

revenue to repay debt accrued in constructing and maintaining such facilities.  Congestion 

pricing in MLs entails one of several strategies including time of day pricing, real-time 

(dynamic) pricing based on actual sensor-monitored traffic conditions, and real-time 

(dynamic) pricing based on predicted traffic conditions. In many current successful ML 

projects around the country, variable pricing strategies are used for different time periods 

(e.g., SH-91 Express Lanes in Orange County, CA) [2]. The dynamic pricing strategy, 
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however, is not widely applied for setting toll prices. The best example of applying a 

dynamic pricing strategy is the IH-15 Express Lanes in San Diego, CA [2].  

The concept of congestion pricing is well documented for the case of static 

networks, but research still lacks in the area of dynamic pricing. In this study, the optimal 

toll was sought to prevent MLs from becoming congested while simultaneously maximizing 

revenue subject to a number of constraints.  This was achieved by applying a dynamic 

pricing strategy based on real traffic conditions on the corridor. A key factor to be 

considered was drivers’ willingness to pay (WTP) tolls as influenced by their perceived 

values of time or other concerns such as enhanced safety and/or more reliable travel times. 

The existing data collection and analysis methods employed to estimate WTP cannot 

efficiently address the dynamic nature of the ML corridors. Despite the significant advances 

in WTP studies, further improvements seem to be possible and desired, especially with 

respect to ML dynamic pricing. 

Accordingly, in this study, the revealed North Texas drivers’ sensitivities to pay toll 

were assessed through an innovative data source and analysis method. In addition, a 

Decision Support System (DSS) for dynamic toll pricing was developed based on actual 

traffic conditions in the managed and neighboring general-purpose lanes while 

incorporating drivers’ revealed willingness to pay values.  

1.2 Research Objective 

This study aimed at developing a Decision Support System for the dynamic pricing 

of MLs. A six-mile segment (segment one) of phase one of North Tarrant Expressway 

(NTE) in suburban Fort Worth, Texas, along IH-820 between IH-35W and SH-183, was 

selected as the study section (Figure 4-1) [3]. The selected segment was opened to traffic 

in October 2014 with four toll-managed lanes (two per direction) and four general purpose 

lanes (GPL) (two per direction). During the first six months, toll rates were static but variable 
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with higher rates during peak hours. After this period, toll rates have fluctuated based on 

the level of congestion and demand for both MLs and GPLs and/or time of day in order to 

try to maintain a minimum speed of 50 mph in MLs [4]. 

In this study, the optimum price was sought in order to prevent the managed lane 

from becoming congested, with congestion defined as average speeds below 50 mph [4]. 

In other words, the dynamic prices should result in an acceptable and reasonable level of 

service for users who pay to use the managed lanes, i.e. at least a 50-mph operating 

speed.  In this study, the field data was first augmented by monitoring the actual demand 

on the NTE managed lanes at different times of day and pricing conditions to capture the 

revealed preferences (RP) of north Texas drivers. The results were then compared with 

the WTP of the NTE’s potential users estimated from a stated-preference (SP) survey from 

a Texas Department of Transportation (TxDOT) -sponsored study [5]. The results of 

drivers’ sensitivity to toll values as obtained by SP surveys and adjusted by the RP results 

were then used as an input to modify a Toll Pricing Model (TPM) simulation package 

developed in a recent TxDOT study as a tool to model and price ML facilities [6,7]. After 

re-calibrating the TPM for the NTE users, various corridor demand levels and conditions 

were simulated. The outputs from the simulations were used to recommend dynamic toll 

pricing scenarios in response to various traffic conditions on MLs and adjacent general 

purpose lanes.  

Based on the above objectives, the main outcomes of the research were as 

follows: 

 Assessing revealed drivers’ sensitivity to toll price obtained from the field 

data 
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 Developing a decision support tool of dynamic toll pricing by modifying and 

calibrating the existing TPM simulation package [6,7] based on field data 

from North Tarrant Expressway facility. 
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Chapter 2  

Literature Review 

The literature review of aspects related to this project including willingness to pay 

and dynamic toll pricing of managed lanes is presented in this chapter.  

2.1 Willingness-to-pay Toll 

2.1.1 Definition 

The value of travel time savings (VTTS) or value of time (VOT) is one of the basic 

components of transportation investment evaluation. Travelers generally value their travel 

time savings due to one of the following reasons. First, they are able to obtain a monetary 

benefit through producing goods or providing services during the time saved. Second, they 

are able to spend the saved time to do something enjoyable or essential. Last, they are 

able reduce stress, frustration, and other negative attributes of travel delay [8]. However, 

travel time saving is not the only utility on which travelers place value. In the case of 

uncertain travel times, travelers have two options; either change their departure time, or 

choose a more reliable route or mode, with which a higher monetary cost might be 

associated [8]. The value of time reliability (VOR) indicates the monetary values travelers 

place on reducing the variability or improving the predictability of travel time by one unit 

[9,10]. There are several ways to measure travelers’ VOR. Some of them include trip time 

variance or standard deviation, difference of trip time percentiles (usually between the 90th 

and 50th percentile trip time or between other convenient points on the distribution), or the 

probability of lateness beyond a fixed time [8,10]. Travelers’ VOR is more complex to gauge 

than an average VOT. Furthermore, the relation between VOT and VOR does not follow a 

steady functional form and usually is not easy to understand or model [11].  

Travelers generally choose their mode and time of travel to maximize their utility 

(e.g. travel time reliability) or more accurately, to minimize their disutility (e.g. unpleasant 
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travel time) [12, 13]. People often do not treat the travel time just as a cost and budgetary 

constraint; but they believe it can also cause a direct utility or disutility to them [14]. Indeed, 

travel time savings depend both on the disutility of the time spent to travel and on the use 

to which the time saved is put. The disutility of the time spent travelling depends on factors 

such as the journey length or the effort, comfort, safety, travel time reliability, scenery and 

other attributes of the trip. Therefore, travelers might pay tolls to provide less disutility (i.e., 

a more pleasurable or a less stressful ride) for themselves [15]. As a result, it is difficult to 

separate the pure VOT from the premium placed on trip attributes that affect travelers’ 

willingness to pay. Accordingly, the terminology adopted in this study is the travelers’ 

willingness to pay (WTP) in lieu of the value of time (VOT).  

There are various reasons that make the value of time analysis beneficial. Among 

them, Small [11] mentioned three reasons as the most important ones. First, VOT is critical 

in decision making about transportation policies. Second, it contributes to better 

understanding of human behavior that is of interest for fields such as economics. Third, it 

is one of the important components in travel demand modeling [11]. In the concept of ML 

toll pricing, it is critical to understand how travelers make their decisions between using 

General Purpose Lanes (GPLs) (for free) or paying tolls to use Managed Lanes (MLs) [11]. 

A number of research studies have been implemented to evaluate VOT or VOR, which 

underscores the importance of both values in this regard [16, 17]. Different data sources 

and data analysis methods have been employed in these studies. In the following, the most 

common methods utilized are discussed.   

2.1.2 Existing data sources 

According to the literature, the more common data sources employed in WTP 

studies include Stated- and Revealed- Preference (SP and RP) survey data. SP data are 

based on the elicitation of respondents’ statements to hypothetical scenarios. RP data are 



 22 

based on actual drivers’ behavior in their real world mode choice experiments. Recently, 

other sources of revealed data, including loop detector data, Global Positioning System 

(GPS) data, and dynamic toll data have been introduced to the field [18,19,20,21,22]. In 

previous WTP studies, one or a combination of these data sources has been used. Survey 

data, stated preference (SP) and revealed preference (RP), are the traditional sources 

used in travelers’ behavior studies. However, there are a number of disadvantages 

associated with both. First, a SP survey is able to only capture the mode choice decisions 

made for hypothetical scenarios offered by the survey questionnaire. This leads to biased 

estimates since individuals actual decisions may not reflect their responses to the survey 

questions. To overcome this shortcoming, RP surveys are designed to detect the mode 

choice decisions made in real-word experiences. However, it is difficult or impossible to 

measure all the existing factors associated with the decision makers’ situations (e.g. VOR 

or unobserved heterogeneity [8, 11]). In addition, covering only the limited number of 

surveyed or observed conditions is also pointed out as a drawback of both approaches.  

The various capabilities and shortcomings of each data source might result in 

different datasets obtained for the same population. This leads to different VOT/VOR 

values estimates. Therefore, in some studies, both SP and RP data have been employed 

[23,24]. Combining SP and RP data allows detection and correction of any systematic 

biases in SP results based on RP data [25]. This method still suffers from a number of 

deficiencies, including non-response bias, and the fact that collecting RP data  is typically 

expensive and time consuming [20]. To overcome some of the shortcomings associated 

with survey data, loop detector and GPS data are used as alternative data sources in some 

more recent studies [18,19]. While the previous drawbacks might be addressed by these 

new methods, the former lacks the resolution of disaggregate data, and the latter is costly 

due to new equipment installation requirement. The GPS data collection methods also 
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require considerably more time and effort to find volunteers to participate. More recently, 

dynamic toll data are used as an alternative source in some studies [20,21,22]. Since only 

two variables, toll and travel time savings, can be provided through this source, the results 

are considered to be biased. This is especially caused by not considering travel time 

variabilities (reliabilities) [21]. To overcome this problem, dynamic toll data were combined 

with loop detector data in a recent study by He et al. [20]. While the lack of travel time 

reliability in WTP estimation was addressed, the results were still prone to bias. This was 

due to the unavailability of adequate data associated with travelers’ socio-demographic 

characteristics and trip attributes. Another major weakness of employing dynamic toll 

pricing data to estimate VOT/VOR was that only data associated with ML users could be 

provided and GPL users’ information were not available. In another research project 

conducted by Sheikh [22], a combination of two data sources including revealed field data 

and household level socio-economic data was employed [22]. The revealed data included 

disaggregated, automated Express Lane use and non-use data. Therefore, the data 

associated with both MLs and GPLs were provided. In addition, the socioeconomic 

backgrounds of the users were also represented in his model. However, there were 

possible sources of bias associated with the suggested data sources. First, matching the 

revealed data with the vehicle registration database could result in biased estimates. 

Additionally, lack of data regarding trip attributes information could be another source of 

bias. 

The methods mentioned above are the common data sources that have been used 

in available literature for WTP studies. Despite the significant improvements made in data 

collection efforts, these are still some possibilities for biased results, as discussed above. 

This indicates a need for further improvements in data collection efforts. 
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2.1.3 Existing data analysis method 

Regardless of the methods used to obtain data, all the studies employed the same 

method to analyze the data. The travelers’ WTP is often estimated through discrete travel 

choice modeling as the marginal rate of substitution (MRS) between time and monetary 

cost [26]. The results obtained from these models are subject to change based on different 

factors. First, the accuracy of the results strongly depends on the data source, as different 

sources capture different aspects of the users’ behavior. Indeed, VOT/VOR estimates are 

not strong functions of the explanatory variables used in the models. Finding more 

observable explanatory variables, for both travelers’ socio-economic characteristics and 

trip attributes, could lead to significant enhancements.  

In order to better measure the travelers’ sensitivity to different tolls, it is critical to 

understand how people implicitly value their travel time savings. The literature shows that 

a number of factors affect the travelers’ WTP. These include factors such as travelers’ 

characteristics (e.g., age, gender, and income), and their trip attributes (e.g., time of day 

trip taken, trip purpose, trip characteristics (level of congestion), trip length, travel mode, 

and size of the travel time savings) [11,12,14].  

In a study conducted by Algers et al. [27], it was observed that travelers aged 45 

or younger seemed more sensitive to travel time than older travelers. According to 

Patterson et al. [28], female commuters were often less time sensitive than male 

commuters. Other studies showed that the travelers’ income affected the value they place 

on their travel time savings [29]. In previous research studies, the prevailing average wage 

rates of potential facility users were usually used to determine the WTP [30]. However, 

according to both theoretical and empirical research, the current wage rate of an individual 

would not be a good estimator of WTP. Indeed, travelers’ willingness to pay could be 

significantly higher or lower than their wage rate [14]. Cherlow [31] studied the estimated 



 25 

WTP from previous studies, which varied from 9% to as high as 140% of the wage rate. 

He suggested that there was no single value of travel time savings for different individuals 

in different circumstances. Small pointed out that travelers’ VOT increased with income or 

wage rate, but not proportionally [27]. In a study recently conducted for the IH-85 HOT 

Lane in Atlanta, no relation was observed between income and using toll lanes [32].  

Wardman showed that travelers had generally greater WTP for commuting than 

leisure trips [33]. In another study, the travelers’ behavior was studied in different situations 

including one normal situation versus six urgent ones [34]. The results showed higher WTP 

values for travelers in an urgent situation than those in normal situations [34]. It was also 

shown that the value of motorists’ time also varies with the level of traffic congestion [35]. 

In another study by Wardman [36], a “congestion multiplier” was suggested and estimated 

for travelers. Any such “congestion multiplier” could be explained by more difficult and 

accident-prone conditions with a higher sense of frustration and greater unreliability [37].  

Wardman et al. recommended that to study travelers’ behavior, a finer categorization of 

traffic congestion (i.e., free flow, busy, light congestion, heavy congestion, stop-start, and 

grid lock) should be considered instead of the simple dichotomy of congested and 

uncongested traffic conditions [37]. 

On the other hand, the factors affecting the travelers’ mode choice decision are 

not all measurable (e.g., individual tax rates, ability to use time saved productively, fatigue 

from travel and congestion, non-flexible work-hours [11]), or even not known to 

researchers. In addition, all the models cannot address the observed and unobserved 

heterogeneity of the drivers [11]. The inaccuracies of the results would still not be resolved 

by employing more advanced models such as mixed logit models. For example, the 

different choice of distribution function for the random coefficient can yield different 
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coefficient estimates [11]. These are some of the major barriers in VOT/VOR studies that 

are mostly caused by the data analysis method.  

The studies mentioned above are just a few examples of studies on travelers’ 

WTP. There are some points that should be further investigated. First, in addition to the 

factors considered in the models, travelers’ WTP can be strongly affected by other possible 

but unknown factors. Second, the existing methods in the field mainly measure the average 

behavior of the system. While this is more compatible with static networks, it cannot 

efficiently address the nature of dynamic ones. Third, as shown in the literature, different 

factors definitely influence travelers’ WTP. However, all the individual travelers are not 

affected in similar ways. Using the population average WTP estimated through current 

methods to individual travelers would not address the dynamic nature of ML networks. 

Accordingly, despite the significant progress made in this field, there are still potentials for 

more enhancements.  

Furthermore, WTP values vary among different times and regions. Most recently, 

some research studies focused on estimating the WTP of users on specific MLs. The WTP 

of passenger car drivers for Metro Atlanta was estimated by GDOT from $7 to $15 per hour 

[38]. According to their estimates, WTP varied for trucks from $10 for 2-axle trucks to $28 

for 6-axle trucks [38]. In another study conducted by FDOT [39], WTP was estimated to 

vary widely from $2.27 to $79.32 per hour for IH-95 travelers. These indicate a wide 

variation in WTP in various regions and hence, a further impetus to determine the revealed 

WTP for the North Texas drivers and implement a more effective dynamic toll pricing 

scheme. 

2.2 Dynamic Toll Pricing of Managed Lanes 

Road pricing is being considered as a financing mechanism for infrastructure 

maintenance in many countries worldwide. It may also help with roadway congestion 
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problems and reduce system-wide delays, fuel consumption, and emissions. However, this 

is only one of the strategies of a total management package and congestion problems 

would not be solved by only using this strategy. 

Due in part to early Federal Highway Administration (FHWA) Value Pricing Pilot 

Program efforts in 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) and the 

Transportation Efficiency Act for the 21st Century (TEA-21), the ML concept has gained 

increasing attention in the United States [2]. The expected increase in MLs popularity is 

considered a potential factor in the over-use and congestion on managed lanes [2]. 

Therefore, the congestion on MLs should be, to the extent possible, controlled or it would 

defeat the purpose of having MLs as a congestion mitigation tool. One potential approach 

could be to adopt pricing strategies to keep MLs at an acceptable level of service. Indeed, 

the toll should ideally be set at an optimum price that results in a reasonable speed on MLs 

and maximized throughput for the corridor as a whole. 

2.2.1 Definition 

Congestion pricing, also known as congestion-relief tolling, has been practiced 

under different schemes including fixed-rate pricing, variable pricing, and dynamic pricing. 

Flat rate schemes do not change the toll price while in variable pricing the price of toll is 

influenced and varies by different factors including time-of-day (peak-hour period versus 

non-peak-hour period and weekday versus weekends), facility location, season, day-of-

week, or air quality conditions. On the other hand, in dynamic pricing systems, toll rates 

fluctuate with operating conditions that reflect current congestion levels [40]. In order to 

dynamically estimate the optimum toll price for managed lanes, congestion levels should 

be monitored in real-time.  

Dynamic toll schemes vary the toll price in real time (or near real time) as a function 

of prevailing or historical traffic conditions [41,42]. Thus, if congestion occurs in GPLs, the 
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toll can be raised in order to limit the number of drivers who enter the ML during the 

disruption. The principal challenge is to set the price at a sufficiently high rate before the 

congestion/breakdown occurs in the MLs. To do so, a proactive (anticipatory) approach 

has been developed by Dong et al., which proves to be more effective to control the 

congestion [43]. In this approach, instead of prevailing or historical traffic data, predicted 

traffic data were used by a proactive pricing strategy. Therefore, any probable significant 

changes in network conditions, such as incidents, during an individual’s travel through a 

ML was considered by the model in order to provide the expected level of service and a 

more reliable travel time due to the amount of toll which was paid [43]. 

2.2.2 Better-known ML facilities in the United States 

As indicated in Table 2-1, some of the existing ML facilities around the country are 

practicing dynamic toll pricing schemes. The IH-15 Express Lanes in San Diego, California 

is the best example of using this type of pricing scheme. The price varies by entrance 

location and is a rate per mile multiplied by the distance of travel for that trip. Tolls range 

from $0.50 to a maximum of $8 per trip, which is set via a distance-based dynamic pricing 

system. In order to ensure a free-flow speed on the MLs, every three minutes, the per-mile 

toll rate is recalculated according to the level of congestion on MLs [44].  
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Table 2-1 Better-known Managed Lane Facilities in the United States 

Name Location 
Length 
(miles) 

Congestion 
Pricing 

Schemes 

SR-91 Orange County, CA 10 Variable 

IH-15 San Diego, CA 20 Dynamic 

IH-680 San Francisco, CA 14 Dynamic 

IH-10 Houston, TX 12 Variable 

US-290 Houston, TX 15 Variable 

IH-95 Miami-Ft. Lauderdale, FL 7 Dynamic 

IH-394 Minneapolis-St. Paul, MN 22 Dynamic 

IH-35W Minneapolis-St. Paul, MN 26 Dynamic 

IH-25 Denver, CO 7 Variable 

IH-15 Salt Lake City, UT 62 Dynamic 

SR-167 Seattle, WA 10 Dynamic 

IH-85 Atlanta, GA 15.5 Dynamic 

 

In some of the other facilities, toll prices are adjusted based on algorithms in 

response to traffic conditions. For example, to provide the IH-15 Express Lanes users in 

Salt Lake City with speeds around 55 mph, toll prices vary between $0.25 to $1 per zone 

based on congestion levels, with the highest prices during peak traffic times [45]. The Salt 

Lake Express Lanes are divided into six payment zones. In the IH-680 Express Lanes in 

San Francisco, toll rates vary from a minimum of $1 per trip during the morning peak to a 

minimum of $0.30 during off-peak periods in response to the level of demand [46].  

According to the level of congestion, the average peak period toll prices vary between $1 

and $4 per toll zone for the IH-35W and IH-394 Express Lanes in Minnesota [47]. On IH-

95 Express Lanes in Florida, tolls vary from $0.20 to $0.80 per mile based on the level of 

congestion of the express lanes only, and not based on the adjacent GPL conditions [39]. 

2.2.3 Challenges in dynamic toll pricing  

Uncertainties in the network are caused by uncertainty on the supply-side (e.g., 

the effect of an incident or maintenance activities), uncertainty on the demand-side (e.g., 

due to prediction errors in demand forecasting), and/or travel behavior [35, 48]. In terms of 
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congestion management, short-term capacity disruptions (e.g., poor weather, incidents, or 

short-term maintenance activities) critically affect even the long term planning for managed 

lane corridors [48]. In a study, Boyles et al. [49] examined the toll pricing problem under 

stochastic supply conditions. The results showed that toll schemes, which consider 

uncertainty in supply involve significantly higher prices. 

Travel demand and network capacity are major factors affecting network 

performance. The stochastic nature of travel demand and network capacity in managed 

lane corridors pose a challenge for toll pricing strategies that attempt to predict the potential 

users of MLs based on toll prices. Moreover, these uncertainties in traffic conditions affect 

the drivers’ WTP a certain toll rate to use the managed facilities. Therefore, reliable data 

on drivers’ WTP is considered a critical component to successfully model the impacts of 

tolls on travel demand and network performance [14].  

While the concept of congestion pricing is well documented for the case of static 

networks, research still lacks in the area of dynamic pricing. The dynamic nature of ML 

corridors requires a method that allows capturing the frequent fluctuations in the corridors’ 

condition and demand. Developing a decision support system (DSS) tool for ML dynamic 

toll pricing seems essential. As discussed, the existing methods employed to estimate WTP 

values cannot efficiently capture the uncertainty in the ML corridors’ demand and supply. 

To estimate and use the average WTP values, which might be significantly different from 

an individual traveler’s real-time WTP, can be mentioned as the major drawback with the 

current dynamic pricing practices. 

Recently, a regionally supported managed lane system has been developed in the 

Dallas-Fort Worth (DFW) region. Recently, the North Tarrant Expressway (NTE) (first and 

second segments), Lyndon Baines Johnson (LBJ) TEXpress lanes, and the DFW airport 

connector TEXpress lanes have opened to traffic as part of this ML network [50]. To 
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operate these facilities, a dynamic pricing method is implemented for setting the toll rates. 

After six months from the opening of each facility, toll rates began fluctuating based on the 

level of congestion and demand on both MLs and GPLs and/or time of day to try to maintain 

a minimum of 50 mph speed on MLs. Real-time rates are calculated based on the actual 

traffic data monitored by roadside equipment [4]. Typical toll prices on each TEXpress toll 

segment may range from $0.15 to $0.35 per mile during non-peak periods, and from $0.45 

to $0.75 during peak periods [50]. 

This study aims at using a new data source and analysis method that could 

contribute to improving the dynamic toll pricing effectiveness. A literature review presented 

in this chapter was conducted to understand the state-of-the art in WTP and the dynamic 

pricing schemes for managed lane toll pricing as well as the existing shortcomings in this 

field. In the next chapters, the new data collection efforts and analysis method will be 

presented. The new approach is suggested as an alternative source to the traditional 

methods used in this field to develop an efficient DSS tool to more effectively achieve 

facility managers’ operational goals.  

. 
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Chapter 3  

Study Approach 

The overall goal of this study was to enable planners to more accurately model the 

demand on dynamically managed lanes. This was not likely without assessing the revealed 

preference (RP) of drivers in terms of their sensitivities to toll prices. The WTP is one of 

the basic components of transportation investment evaluation. In the concept of managed 

lanes toll pricing, it is critical to understand how people implicitly value their travel time. 

The study of driving behavior is often complex and error-prone. If it is conducted 

through different data collection and analysis methods, the results are often not consistent 

with each other and with field behavior. Another complication in studying travel behavior is 

that it is spatially and temporally sensitive. Indeed, it varies from region to region and time 

of day as well as from individual to individual. Even for a single individual, it varies by many 

factors such as time of day, day of week (weekday versus weekend), and trip purpose.    

Accordingly, it is essential to implement specific dynamic toll pricing schemes 

based on different regions and time periods with allowance for variability across individuals. 

The focus of this study was to develop a decision support tool for dynamically pricing the 

North Texas region ML tolls by studying the NTE TEXpress corridor as a case study. To 

consider the effects of time on the sensitivity of the drivers to toll rates, five different time 

periods were considered for data collection; two peak periods (AM peak (6:00 AM- 9:00 

AM) and PM peak (4:00 PM- 7:00 PM)), an off-peak period, and two inter-peak periods 

(AM inter-peak (11:00 AM- 12:00 PM) and PM inter-peak (7:00 PM- 8:00 PM)). 

The approach to this study can be summarized as follows:  

 Determine the stated WTP through an SP survey, 

 Determine the average WTP through field observations, 
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 Determine the distribution of revealed WTP values through simulation runs 

that match the ML/GPL volume splits observed in the field, 

 Select a distribution of revealed WTP values, which yield the same 

average values as those observed in the field.     

3.1 Determining the Stated WTP through the SP Survey 

The travelers’ WTP is usually estimated by conducting SP studies. In the case of 

a toll pricing study, the SP survey is designed to gain information related to hypothetical 

choices for a range of different toll levels and travel time savings scenarios. The data 

obtained by SP methods are analyzed via discrete travel choice models. Accordingly, the 

stated preference of a WTP toll is calculated as the marginal rate of substitution (MRS) 

between time and monetary cost in the model. Due to time and budget constraints, we 

were unable to conduct a SP survey as part of this study. Instead, we used the data 

obtained from the SP survey conducted for TxDOT in 2006 for the first phase of the NTE 

[5] and estimated by AECOM Enterprises as part of the NTE-Traffic and Revenue Forecast 

study in 2009 [52]. In Chapter 4, more details about the survey administration and 

questionnaire design are presented. The stated WTP for different times of day that was 

estimated through the SP surveys was used as a starting point for the simulation of the 

study section through Toll Pricing Model (TPM).   

3.2 Determining the Average WTP from Field Data 

For the purpose of this research, traffic count data were reduced from the camera 

images for different vehicle categories and different time periods. In addition to the traffic 

count data, toll prices associated with the study segment and the day and time of the data 

collection were obtained from the NTE website [51].  
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First, based on the assumed traffic flow model that was most representative of the 

traffic flow characteristics of the study corridor, the speed (mph) and travel time (minutes) 

for the observation points were estimated. The travel time savings (minutes) associated 

with each prevailing toll charge were then obtained through the differences between the 

associated travel time on the MLs and the travel time on the GPLs. The average WTP 

value was estimated by the average toll paid divided by the average travel time saved by 

Single Occupant Vehicle (SOV) drivers for each respective study period.   

3.3 Determining the Revealed WTP through TPM 

The Toll Pricing Model (TPM-5.0) used in this study was a modified version of the 

Toll Pricing Model (TPM-4.3), which was developed based on a recent study conducted for 

TxDOT [6,7]. 

As mentioned earlier in this chapter, the stated WTP was used as a starting point 

to simulate the field data through the TPM. The initial WTP distribution scenario from the 

SP surveys was then modified until the output of simulation runs produced similar ML/GPL 

flow splits as the field observations. The simulation runs were based on trial and error 

attempts of different WTP distribution scenarios. To determine which of the WTP 

distribution scenarios would best represent the revealed WTP, two criteria were 

considered, as follows:  

 Simulation runs using the WTP distribution being examined must result in 

the same split between the ML and GPL as observed in the field,  

 The WTP distribution must also yield the same average WTP as obtained 

from the regression models on the field data.   

Accordingly, the output of the simulation runs was compared to the field 

observations. The price sensitivities within the TPM were tweaked until simulation runs 

produced similar splits as observed volume splits in the field. In cases when more than one 
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WTP distribution scenario yielded the same split as observed in the field, the average, 

which was obtained from the linear regression models was used as a second criterion to 

choose among those alternatives. For the WTP distribution scenarios, which led to the 

same traffic split in TPM as in the field, the average WTP value was calculated. To do so, 

the mid-values of the WTP intervals in each scenario were multiplied by the percent of the 

population distribution belonging to the respective WTP intervals. The average WTP for 

each distribution scenario was then calculated by aggregating these values over all the 

intervals to obtain a weighted average.  

The WTP distribution scenario, which led to the same volume split as the field and 

also yielded the same average WTP as obtained from the field data was considered to best 

represent the revealed WTP for the associated period. These WTP values were then used 

to modify the TPM into a decision tool for toll pricing.   

The next chapter presents the data collection process used in this study. As 

mentioned earlier, this study employed an alternative data source to the existing ones using 

the WTP studies.  
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Chapter 4  

Data Collection 

The overall goal of this study was to enable planners to more accurately model the 

demand on dynamically managed lanes by assessing the revealed preference (RP) of 

drivers in terms of their sensitivity to toll prices. This required data to be collected from 

potential and current travelers who were using MLs or who had an option of using MLs.  

This study first used the data collected from the North Tarrant Expressway (NTE)’s 

potential users through the stated-preference (SP) surveys, which were conducted for 

TxDOT in 2006 [5]. Then, traffic counts were made by monitoring the actual demand on 

the NTE managed lanes and general purpose lanes at different times of day and pricing 

conditions to capture the actual usage of toll lanes. The result of drivers’ sensitivity to toll 

values obtained by SP surveys and RP results obtained from the field were then used as 

an input to modify a Toll Pricing Model (TPM) simulation package [6,7] developed in a 

recent TxDOT study as a tool to model and price ML facilities. Details of the study section 

as well as the process of data collection are presented in this Chapter.  

4.1 Site Description 

The study section for this research is a 6-mile segment (segment one) of the first 

phase of the North Tarrant Expressway (NTE) in suburban Fort Worth, along IH-820 

between IH-35W and SH-183. The NTE is dedicated to improving mobility along north IH-

35W, northeast IH-820 and SH-121/183 Airport Freeway through a regionally supported 

managed lane system. This project is one of six major Dallas-Fort Worth TEXpress 

corridors that will form the regional TEXpress Lanes network [3]. The selected segment 

was completed and opened to traffic in early October 2014. The corridor had four main 

lanes and four TEXpress (toll-managed) lanes, two each direction. By 2030, frontage roads 

and auxiliary lanes would be completed and two additional GPLs would also be added to 
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the corridor. During the first six months, toll rates were static but variable, with higher rates 

during peak hours. After this period, toll rates fluctuated based on the real-time level of 

congestion and demand for both MLs and GPLs and/or time of day to maintain a minimum 

of 50 mph speed on MLs [3]. 

 

Figure 4-1 Study Section [53] 

4.2 Stated Preference Survey Data 

The value of time (VOT) is one of the basic components of transportation 

investment evaluation. In the concept of managed lanes toll pricing, it is critical to 

understand how people implicitly value their travel time. Travelers’ VOT is often estimated 

by conducting stated-preference (SP) studies. In the case of a toll pricing study, the SP 

survey is designed to gain information related to hypothetical choices for a range of 

different toll levels and travel time savings scenarios. The data obtained by SP methods is 

analyzed via discrete travel choice models. Accordingly, the stated preference of WTP toll 

is calculated as the marginal rate of substitution (MRS) between time and monetary cost 

in the model. Due to the budget constraints, I was not able to conduct a SP survey for the 

purposes of this study. Instead, we used the data obtained from the SP survey conducted 



 38 

for TxDOT in 2006 for the NTE first phase. In the following sections, more details about the 

survey administration and question design are presented.  

4.2.1 Survey administration 

This study used data from the survey conducted by Resource System Group, Inc. 

(RSG) for the IH-820/ SH-183 Travel Study for TxDOT in January 2006 [5]. As documented 

in an AECOM report [52], the design, implementation, and analysis of the survey were 

directed by Wilber Smith Associates (now CDM Smith) and a total of 1,930 individuals 

completed the survey. The results were documented by RSG in two sections, including the 

raw data in SPSS format containing all the stated preference data and the corresponding 

background data and the document with summarized results in PDF format. For the 

purpose of this study, both reports [5, 8] were obtained through a Public Information Act 

request from TxDOT in November 2014.   

Travelers between Dallas and Fort Worth who either had used or could have used 

IH-820 or SH-183 for trips longer than 15 minutes were asked to take the survey. The focus 

was mainly on sites adjacent  to the study corridor, which provided access to travelers with 

work and non-work purposes as well as travelers with airport and non-airport trips.  

To gather the data, a computer-assistant self-interview (CASI) instrument with both 

Internet and field-intercept administration techniques were used as follows: 

 Survey at field intercept sites 

 Online survey to businesses within the study corridor 

 Online survey to individuals who participated in an origin-destination study 

and agreed to be contacted for this study [52]. 

4.2.2 Stated preference questionnaire design  

The survey consisted of five main parts: context questions that asked for details of 

the respondent’s trip (a recently made one-way trip that was longer than 15 minutes and 
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was or could have been made through the study section of IH820/ SH183), an introduction 

to the proposed IH-820/ SH-183 Managed Lanes, stated preference questions that offered 

hypothetical travel alternatives with different levels of toll, different travel time and other 

vehicle occupants, if applicable, followed by a series of background questions.  

Each respondent was presented a total of eight trade-off scenarios with two, three 

or four distinct hypothetical travel alternatives in each choice set for a trip similar to the one 

the respondent had described in the first section. The information obtained from the first 

section had been used to customize the scenarios’ options based on its characteristics. 

The options in each scenario were as follows:  

 Option 1: GPLs with no toll 

 Option 2: New MLs, driving alone with an electronic toll tag 

 Option 3: New MLs, driving in a carpool with an electronic toll tag 

 Option 4: Staying with the respondent’s current route. 

Note that option 3 was shown only to the respondents who recently had  traveled 

in a vehicle with two or more occupants, and option 4 was presented only when the 

respondents had not used IH-820/ SH-183 for their recent trips.  

To ensure that the greatest possible amount of information could be obtained from 

the fewest possible experiments, a fixed fractional factorial orthogonal experimental design 

was used. This allowed assigning the specific values in each SP survey, with the resulting 

orthogonal design for this survey containing 16 experiments. A randomly selected and 

randomly ordered set of eight of these experiments was presented to each of the 

participants. Each experiment included up to eight attributes, and five of them were 

independently varied. For those who had not used the study portion of IH-820/ SH-183, the 

presented experiments included an option for staying with their current travel route, which 

had two attributes of time and cost.   
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Finally, a series of general socio-demographic questions were asked in order to 

allow a comparison of the sample population to the whole population that would be served 

by the new managed lanes. These questions contained household size, number of total 

and young children in the household, number of vehicles owned by the household, age, 

gender, employment status, and the annual household income. 

4.3 Field Data 

For the purpose of this research, five different time periods were considered for 

data collection; two peak periods (AM peak and PM peak), an off-peak period, and two 

inter-peak periods (AM inter-peak and PM inter-peak). Obtaining field data was a 

challenge, as both TxDOT Forth Worth and North Texas Tollway Authority (NTTA) were 

reluctant to provide access to the records from their live cameras. To start, some 

preliminary field data were gathered for AM peak periods by visiting the Fort Worth 

Transvision center and using the live camera feeds at the center. However, the study 

required traffic counts from the field for different vehicle categories. This was not possible 

through live camera images since it would increase the probability of errors in counting 

without options to slow the camera images, pause, or rewind them. Finally, NTTA and 

TxDOT agreed to provide recorded camera images at a specific site midway through the 

NTE section under study.  

In addition to the traffic count data, toll prices associated with the study segment 

and the day and time of the data collection were obtained from the NTE website. The 

detailed process and results of data collection are explained in the following sections.  

4.3.1 Traffic count data 

The field data was recorded from one of the NTTA cameras, which was located at 

the intersection of the NTE study section and U.S. 377 (Denton Hwy). Figure 4-2 shows 

the location of the camera along the study segment.  
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Figure 4-2 Location of the Camera Used for Data Collection [53] 

The data were collected for different days of the week (weekdays and weekends) 

and different times of the day (AM and PM periods) and different traffic conditions (peak, 

off peak, and inter-peak periods). Table 4-1 summarizes the obtained data from the field 

by period of the day, date, and day of the week. 
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Table 4-1 Period, Date and Day of Data Collection 

Period Date Day of the Week 

AM Peak 

Nov-03-2015 Tuesday 

Dec-08-2015 Tuesday 

Dec-09-2015 Wednesday 

Dec-10-2015 Thursday 

PM Peak 

Oct-30-2015 Friday 

Dec-08-2015 Tuesday 

Dec-09-2015 Wednesday 

Dec-10-2015 Thursday 

Off Peak 

Oct-31-2015 Saturday 

Nov-05-2015 Thursday 

Nov-08-2015 Sunday 

AM-inter Peak Nov-04-2015 Wednesday 

PM-inter Peak Nov-02-2015 Monday 

 

Toll prices on the NTE managed lanes vary by the size class of the vehicle instead 

of the number of axles [51]. The purpose of this study was to develop a decision support 

tool to dynamically set the toll prices, which could be used for any managed lane corridors. 

Therefore, the definition of the different vehicle classes presented by NTTA was modified 

based on the classes defined in the Highway Capacity Manual [54]. Hence, this 

classification would be generally recognized in applying the TPM software for modeling 

any other corridors. These new classes were then used to categorize the traffic count data 

as reduced from the video recordings as well as to modify the TPM software. Table 4-2 

shows the different vehicle classes and the associated toll policies, which were used in this 

study to collect and analyze the data. 
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Table 4-2 Vehicles Classes and Associated Toll Policies 

Vehicle Class Prevailing Toll Factor 1 

Single Occupancy Vehicles (SOV)- Class 122 1.0 × (Base Toll Rate) 

Registered High Occupancy Vehicles (HOV) and Motorcycles- Class 12 0.5 × (Base Toll Rate)3 

SOV, +1 trailers- Class 13 2.0 × (Base Toll Rate) 

Single-unit Trucks- Class 14 3.0 × (Base Toll Rate) 

Semi-trailer Trucks- Class 15 4.0 × (Base Toll Rate) 

Semi-trailer Trucks, Double or Triple Trailers- class 16, 17 4.0 × (Base Toll Rate) 

Special Vehicle or Special Permit Vehicles- class 18 5.0 × (Base Toll Rate) 

 

The traffic count data obtained from the video recordings were stored in Excel 

format. Table 4-3 presents a sample of traffic count data for the eastbound direction in 

terms of different vehicle classes, collected for the AM peak period on Tuesday, November 

3, 2015 (6:00 AM to 9:30 AM).  

As mentioned, video recordings supplied by NTTA were used to obtain traffic count 

data. This procedure imposed a number of constraints on data accuracy. First, for the last 

vehicle class, Special Vehicle or Special Permit (class18), it was not possible to positively 

recognize them from the images. This was because the vehicles’ weight was also an 

attribute in defining this class. In the same way, vehicles that were required to obtain a 

special permit from authorities to use the facility could not be recognized. Note that the 

focus of this study was only on the SOV class drivers and other vehicle classes were just 

considered in terms of their impact on the corridor’s traffic conditions. The changes in the 

traffic conditions would definitely affect the SOV class drivers in their decision to use or not 

use the ML. Therefore, it was assumed that the percent of the vehicles in the corridor which 

                                                
1 http://www.ntetexpress.com/pricing/check-past-rates 
2 The class numbers are related to the NTTA suggested vehicle classification 
3 The 50% discount is only offered to registered HOV (+2) and motorcycles and only during peak 
periods. 
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belonged to such special classes would be negligible. However, considering them could 

capture their impact on the SOV drivers’ decisions. These special classes included semi-

trailer trucks, and double- or triple-trailer vehicle classes. As shown in the records,  no 

traffic count data in the last vehicle class was ever observed during any of the five 

observation periods listed inTable 4-1.  

Travel behavior studies are essentially dependent on the data collected from trips 

and travelers. For this study data, the stated WTP for potential NTE users which was 

estimated from the SP survey  was obtained. In addition, traffic volume splits between the 

MLs and GPLs was collected from the field as well as the associated toll for MLs.  Details 

of the data collection process were presented in this chapter (Chapter 4). The analysis 

carried out on these data for achieving the study objectives is presented in the next chapter. 
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Table 4-3 A Sample of Collected Data for AM Peak in One Day 

Time 

Base 
Price 
($/6 

miles) 

SOV 
(Base Price) 

(v/5-minute) 

Registered HOV 
and Motorcycles 
(0.5× Base Price) 

(v/5-minute) 

SOV, +1 Trailers 
(2× Base Price) 

(v/5-minute) 

Single-unit Trucks 
(3× Base Price) 

(v/5-minute) 

Semi-Trailer 
Trucks 

(4× Base Price) 

(v/5-minute) 

Semi-Trailer 
Trucks, Double or 

Triple Trailers 

(4× Base Price) 
(v/5-minute) 

Special Vehicle 
or Special Permit 
(5× Base Price) 

(v/5-minute) 

Total 
(vph) 

ML GPL ML GPL ML GPL ML GPL ML GPL ML GPL ML GPL ML GPL Total 

6:00- 6:05 2.67 67 246 1 82 0 0 2 7 6 9 0 0 0 0 912 4128 5040 

6:05- 6:10 3.21 82 207 2 69 0 1 1 4 5 10 0 0 0 0 1080 3492 4572 

6:10- 6:15 3.3 85 194 2 65 0 0 1 5 2 5 0 0 0 0 1080 3228 4308 

6:15- 6:20 3.3 80 215 1 72 0 0 1 6 1 10 0 1 0 0 996 3648 4644 

6:20- 6:25 3.3 83 209 2 70 0 2 4 1 3 8 0 0 0 0 1104 3468 4572 

6:25- 6:30 3.3 105 202 2 67 0 0 6 6 1 7 0 0 0 0 1368 3384 4752 

6:30- 6:35 3.54 111 207 2 69 0 1 2 4 3 14 0 0 0 0 1416 3540 4956 

6:35- 6:40 3.9 108 219 2 73 1 2 5 2 0 6 0 1 0 0 1392 3636 5028 

6:40- 6:45 3.9 92 221 2 74 3 0 4 4 1 9 1 0 0 0 1236 3696 4932 

6:45- 6:50 3.9 99 236 2 79 0 2 2 8 5 5 0 0 0 0 1296 3948 5244 

6:50- 6:55 3.9 88 222 2 74 1 0 3 8 4 6 1 0 0 0 1188 3720 4908 

6:55- 7:00 3.9 119 225 
2 75 

1 1 4 7 3 7 0 0 0 0 1548 3780 5328 

7:00- 7:05 4.02 91 231 2 77 3 4 3 4 5 4 2 0 0 0 1272 3840 5112 

7:05- 7:10 4.2 103 231 2 77 1 2 5 3 4 8 0 0 0 0 1380 3852 5232 

7:10- 7:15 4.2 99 248 2 83 2 0 1 1 8 8 2 0 0 0 1368 4080 5448 

7:15- 7:20 4.2 94 215 2 72 2 1 2 1 2 7 0 0 0 0 1224 3552 4776 

7:20- 7:25 4.2 79 250 1 83 1 4 1 2 6 1 0 0 0 0 1056 4080 5136 

7:25- 7:30 4.2 74 233 1 78 1 5 2 3 6 13 0 0 0 0 1008 3972 4980 

7:30- 7:35 4.2 77 229 1 76 1 2 2 9 2 4 0 2 0 0 996 3864 4860 

7:35- 7:40 4.2 89 247 2 82 0 5 4 3 4 3 0 1 0 0 1188 4092 5280 
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Table 4-3-Continued 

Time 

Base 

Price 
($/6 

miles) 

SOV 

(Base Price) 
(v/5-minute) 

Registered HOV 
and Motorcycles 

(0.5× Base Price) 
(v/5-minute) 

SOV, +1 Trailers 

(2× Base Price) 
(v/5-minute) 

Single-unit Trucks 

(3× Base Price) 
(v/5-minute) 

Semi-Trailer 
Trucks 

(4× Base Price) 
(v/5-minute) 

Semi-Trailer 
Trucks, Double or 

Triple Trailers 
(4× Base Price) 

(v/5-minute) 

Special Vehicle or 
Special Permit (5× 

Base Price) 
(v/5-minute) 

Total 

(vph) 

ML GPL ML GPL ML GPL ML GPL ML GPL ML GPL ML GPL ML GPL Total 

7:40- 7:45 4.2 70 243 1 81 0 2 3 2 2 9 0 0 0 0 912 4044 4956 

7:45- 7:50 4.2 83 223 2 74 0 5 2 2 9 12 0 0 0 0 1152 3792 4944 

7:50- 7:55 4.2 74 216 1 72 1 8 4 9 5 7 1 0 0 0 1032 3744 4776 

7:55- 8:00 4.2 81 206 1 69 0 1 2 6 7 13 0 0 0 0 1092 3540 4632 

8:00- 8:05 4.2 90 209 2 70 1 0 2 6 6 10 1 0 0 0 1224 3540 4764 

8:05- 8:10 4.2 74 203 1 68 0 3 5 4 10 3 0 0 0 0 1080 3360 4440 

8:10- 8:15 4.2 91 205 2 68 0 8 8 8 6 12 0 0 0 0 1284 3612 4896 

8:15- 8:20 4.2 69 209 1 70 1 1 3 5 8 7 1 0 0 0 996 3504 4500 

8:20- 8:25 4.2 82 201 1 67 0 3 2 7 6 7 1 0 0 0 1104 3420 4524 

8:25- 8:30 4.2 
90 179 2 60 

1 3 2 5 5 11 0 1 0 0 1200 3096 4296 

8:30- 8:35 4.2 69 203 1 68 1 4 3 2 2 7 0 0 0 0 912 3408 4320 

8:35- 8:40 4.2 59 197 1 66 0 7 3 6 5 15 0 0 0 0 816 3480 4296 

8:40- 8:45 4.2 57 197 1 66 1 4 7 8 4 12 1 0 0 0 852 3432 4284 

8:45- 8:50 4.2 46 172 1 57 0 2 1 5 2 18 1 0 0 0 612 3048 3660 

8:50- 8:55 4.2 54 158 1 53 1 1 1 11 5 19 2 1 0 0 768 2904 3672 

8:55- 9:00 4.2 59 178 1 59 1 1 3 8 12 16 0 1 0 0 912 3156 4068 
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Second, there was a similar problem in gathering the data associated with the 

registered HOV and Motorcycles classes. The number of individuals in each vehicle could 

not be captured on video recordings. Therefore, the number of vehicles in the corridor 

belonging to this class was unknown. Moreover, the toll discount (50% off the base toll 

rate) applied only during peak periods on weekdays (AM peak: 6:30 to 9:00 and PM peak: 

15:00-18:30). The HOV drivers with a minimum of one additional passenger and 

motorcycles should obtain a valid digital toll tag and register as HOV2+ to be eligible for 

the discount [51,52]. For the purpose of this study, the traffic volume of registered vehicles 

on managed lanes belonging only to this category during the AM and PM peak periods 

were estimated by the average percent of transactions associated with this class as 

obtained from NTTA. These numbers were 1.8% of the total transactions made during AM 

peak periods and 1.4% of the total transactions made during PM peak periods. For 

example, suppose the total number of vehicles on the managed lanes during the AM peak 

period were 106 vehicles per 5-minute interval. Then, the 106 vehicles could be divided 

between SOV and HOV classes as 104 SOVs and 2 HOVs (98.2% × 106= 104 SOVs per 

5 minutes and 1.8% × 106= 2 registered HOVs per 5 minutes).  

For the GPLs, the average vehicle occupancy rate was used to split the recorded 

numbers of vehicles between SOV and HOV classes. Based on the 2009 National 

Household Travel Survey [55], the average vehicle occupancy rate for suburban areas in 

Texas was 1.36. Inversing this occupancy rate (1.36-1=0.74) could roughly show the 

fraction of vehicles in the corridor that could be considered to be SOVs, with the remainder 

being HOVs.  Accordingly, for the toll-free lanes in the study section, a 75/25 split was 

assumed for the SOV/HOV ratio. Assuming for example, a combination of 291 (SOV+HOV) 

vehicles in 5 minutes, 218 (= 75% × 291) vehicles were categorized as SOVs and 73 (= 

25% * 291) vehicles were categorized as HOVs.  
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4.3.2 Toll price data 

As shown in Table 4-2, the toll prices associated with the study segment and the 

day and time of the data collection were obtained from the NTE website. All past rates for 

the last 180 days can be accessed through the website [51]. In the drop-down menus, the 

appropriate entry and exit points for the study section were selected. For the eastbound 

direction trips, the IH-820 east entrance from IH- 35W was picked as the entry point and 

the SH-26 exit was picked as the end of the trip on the study section. For the westbound 

direction trips, the two points were selected in reverse. The associated toll rate data were 

obtained by entering the exact date and time of the data collection and the respective 

vehicle classes (toll rates were available for every minute). Figure 4-4-3 shows an example 

NTTA website screen shot showing the prevailing toll prices at the time.  

 

Figure 4-4-3 Example of Using NTTA Website to Check the Prevailing Toll Rates [51]
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Chapter 5  

Data Analysis and Results 

The primary goal of this study was to gain a better understanding of manage lane 

(ML) travelers’ sensitivity to tolls rates. To obtain more accurate results, the study was 

limited to the NTE drivers in North Texas and was conducted for different time periods. In 

addition, the field data were collected for different vehicle types categorized based on their 

size, weight, and the toll rates paid. The analysis carried out to contribute towards 

achieving the objectives of this study is described in this chapter. First, data were analyzed 

to obtain an overall picture of the sample population regarding their preferences to use the 

MLs. The results derived from a preliminary analysis were helpful in finding the general 

trend of the population in their mode choice decision between MLs and GPLs. Next, a more 

in-depth analysis of the field data resulting in average revealed Willingness-To-Pay (WTP) 

estimations for the NTE SOV drivers is presented.  

5.1 Preliminary Analysis 

The MLs is a relatively new concept in the nation’s freeway system. Recently, a 

limited number of MLs or TEXpress lanes have been introduced to the DFW highway 

system [3]. In addition, the conventional toll pricing methods are being replaced by an 

emerging scheme called dynamic toll pricing. In the new system, instead of setting the 

price based on time of day, the price is continually adjusted according to actual traffic 

conditions to maintain an acceptable level of traffic. Since these new concepts are still in 

their early stages, the level of acceptance by users is not yet well specified. Thus, to get a 

better understanding of the users’ responses to the new concepts, an initial analysis was 

performed on field data obtained from the first segment of NTE ML corridor. These results 

are presented as follows. 
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5.1.1 Travel time estimation 

According to the National Household Travel Survey (NHTS), travel time is one of 

the important factors that influenced individuals’ choice of transport [56,57]. Specifically, in 

the case of MLs, travelers mainly pay a toll to reduce their travel time [13,58]. There are 

also other reasons than travel time savings that explain why people choose to drive on 

MLs. These reasons include travelers’ perception of improved safety and/or more reliable 

travel time provided by toll lanes [58,59,60]. However, while the impacts of the latter factors 

might not be negligible, they are not directly measurable. To capture their effects on the 

drivers’ mode choice decision, it would be beneficial to apply other data collection methods 

such as SP and RP surveys. However, according to the data collected in this study, the 

overall impacts of travel time savings and toll rates on the sample population could only be 

examined. 

On the other hand, the data obtained from the field (video images from the field) 

could not directly provide any information about the speed and travel time on the corridor. 

But, other information including traffic count data for different vehicle categories were 

reduced from the records. In addition, the geometric attributes of the corridor provided the 

length of trips (6-mile corridor). Therefore, the speed and travel time could be estimated 

based on the traffic flow characteristics and the geometric information of the corridor.    

To do so, the relationship among the corridor’s flow, density and speed was to be 

first specified. Due to budget and time limitations for this study, we were not able to directly 

calibrate the existing traffic flow models to find out which one best represents the traffic 

characteristics of the study section. Instead, we used the Drake model to characterize the 

NTE corridor’s flow-density-speed relationship. This model was used based on 

recommendations from a previous study by Nepal in 2008 [61]. His study showed that the 
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Drake model was the best fit for the data collected for two freeway sections in the Dallas-

Fort Worth area [6,61]. The general equation of the Drake model is as follows [62]:  

𝑢 = 𝑢𝑓𝑒[−0.5(𝑘 𝑘𝑐)⁄ 2
] (5-1) 

Where:  

𝑢 =  speed (mph) 

𝑢𝑓 = free-flow speed (mph) 

 

𝑘 = density (pcpmpl) 

 
𝑘𝑐 = density at capacity (pcpmpl) 

One way to estimate the model parameters, free-flow speed (𝑢𝑓) and density at 

capacity (𝑘𝑐) is calibrating the model based on the data obtained from the site. However, 

in this study, these parameters were directly measured based on the data observed in the 

field. The process of data collection and measurement for the Drake model’s parameters 

is explained as follows: 

Free-flow speed (𝑢𝑓) - is an average free-flow speed (in mph) in the study corridor. 

In order to estimate 𝑢𝑓 value, the vehicles’ speeds on the NTE eastbound direction were 

measured using hand-held K&E Radar. The measurements were performed when the 

corridor was under free-flow condition, on Tuesday, December 30, 2014 between 10:30 

PM and 11:00 PM. At the time, the weather condition was dry and clear. The experiment 

was done on Tuesday, December 30, 2014 between 10:30 PM and 11:00 PM, at the 

intersection of IH-820 with Rufe Snow Drive in Fort Worth, TX. The following tables show 

the speeds measured for both facilities. The free-flow speed was estimated as the average 

of the measured speeds for each facility. In this way, the free-flow speeds of 73 mph and 

63 mph were estimated for the MLs and the GPLs, respectively.   
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Table 5-1 Free-Flow Speeds Measured for NTE MLs (mph) 

Speed (mph) 

73 72 72 71 75 

75 69 72 73 74 

71 73 73 73 75 

68 74 82 70 76 

74 81 74 80 76 

75 75 70 72 73 

Average 73 mph 

 

Table 5-2 Free-Flow Speeds Measured for NTE GPLs (mph) 

Speed (mph) 

60 58 60 60 66 

62 63 64 65 65 

62 63 64 64 65 

61 64 67 70 60 

65 61 63 65 63 

60 63 69 70 62 

Average 63 mph 

Density at capacity (𝑘𝑐) – is the concentration at which flow is maximum, i.e. the 

corridor is operating at the capacity. This parameter was estimated by following the 

relationships between flow, speed, and density (Equation 5-2) as well as the Drake Model. 

q = u × k  (5-2) 

Where:  

𝑞 = flow (pcphpl) 
 

𝑢 =  speed (mph) 

𝑘 =  density (pcpmpl) 
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For the calculations, the corridor capacity was considered to be 2200 (pcphpl) for 

both MLs and GPLs. This assumption was in line with the former study conducted for NTE 

[51]. In this way, values of 𝑘𝑐 were estimated as 50 (pcpmpl) and 58 (pcpmpl) for the MLs 

and the GPLs, respectively. 

Table 5-3 shows some examples of speed and travel time estimations for both ML 

and GPL facilities. The travel time saving was estimated by subtracting MLs’ travel time 

from respective travel time on GPLs.  

Table 5-3 Speed and Travel Time Calculation based on Drake Model for the AM Peak in 

One Day 

Time 

ML GPL Travel 
Time 

Saving 
(minute) 

Volume  
(vph) 

Speed 
(mph) 

Travel 
Time 

(minute) 

Volume  
(vph) 

Speed 
 (mph) 

Travel 
Time 

(minute) 

6:00- 6:05 912 72.4 4.98 4128 45.6 7.90 2.93 

6:05- 6:10 1080 72.1 4.99 3492 53.1 6.78 1.79 

6:10- 6:15 1080 72.1 4.99 3228 55.1 6.54 1.55 

6:15- 6:20 996 72.3 4.98 3648 51.6 6.97 1.99 

6:20- 6:25 1104 72.1 5.00 3468 53.5 6.73 1.74 

6:25- 6:30 1368 71.6 5.03 3384 53.9 6.67 1.65 

6:30- 6:35 1416 71.5 5.03 3540 52.5 6.86 1.82 

6:35- 6:40 1392 71.5 5.03 3636 52.1 6.91 1.87 

6:40- 6:45 1236 71.8 5.01 3696 51.4 7.00 1.99 

6:45- 6:50 1296 71.7 5.02 3948 48.6 7.41 2.39 

6:50- 6:55 1188 71.9 5.01 3720 51.1 7.04 2.03 

6:55- 7:00 1548 71.2 5.06 3780 50.5 7.13 2.07 

7:00- 7:05 1272 71.7 5.02 3840 50.2 7.17 2.15 

7:05- 7:10 1380 71.5 5.03 3852 49.9 7.21 2.18 

7:10- 7:15 1368 71.5 5.03 4080 47.1 7.64 2.60 

7:15- 7:20 1224 71.9 5.01 3552 52.9 6.81 1.80 

7:20- 7:25 1056 72.1 4.99 4080 47.5 7.57 2.58 

7:25- 7:30 1008 72.2 4.99 3972 47.9 7.51 2.52 

7:30- 7:35 996 72.3 4.98 3864 49.5 7.27 2.29 

7:35- 7:40 1188 71.9 5.01 4092 46.9 7.67 2.66 

7:40- 7:45 912 72.4 4.97 4044 47.4 7.59 2.62 

7:45- 7:50 1152 71.9 5.00 3792 50.28 7.16 2.16 

7:50- 7:55 1032 72.2 4.99 3744 50.58 7.12 2.13 

7:55- 8:00 1092 72.1 5.00 3540 52.45 6.86 1.87 

8:00- 8:05 1224 71.8 5.01 3540 52.62 6.84 1.83 

8:05- 8:10 1080 72.0 5.00 3360 54.30 6.63 1.63 

8:10- 8:15 1284 71.7 5.02 3612 51.63 6.97 1.95 

8:15- 8:20 996 72.2 4.99 3504 53.08 6.78 1.80 

8:20- 8:25 1104 72.1 5.00 3420 53.58 6.72 1.72 

  



 54 

Table 5-3-Continued    

Time 

ML GPL Travel 
Time 

Saving 
(minute) 

Volume  
(vph) 

Speed 
(mph) 

Travel 
Time 

(minute) 

Volume  
(vph) 

Speed 
 (mph) 

Travel 
Time 

(minute) 

8:30- 8:35 912 72.4 4.97 3408 53.87 6.68 1.71 

8:35- 8:40 816 72.5 4.97 3480 52.73 6.83 1.86 

8:40- 8:45 852 72.4 4.97 3432 53.21 6.77 1.79 

8:45- 8:50 612 72.7 4.95 3048 55.66 6.47 1.52 

8:50- 8:55 768 72.5 4.96 2904 56.20 6.41 1.44 

8:55- 9:00 912 72.3 4.98 3156 54.95 6.55 1.57 

 

As mentioned, the corridor was not investigated to find the traffic flow model, which 

best represented its characteristics. Therefore, this could affect the accuracy of the 

outcomes. To get more precise results, a further study would be beneficial to calibrate the 

traffic flow models for the corridor. Due to the dynamic nature of ML corridors, it is unlikely 

to describe various stochastic behavior of travelers’ solely using a deterministic traffic flow 

model. The deterministic single-regime speed-density traffic flow models characterize the 

average systems behavior [63]. Therefore, more advanced models are required to capture 

the corridor’s uncertainties. Wang et al. [63] proposed a stochastic speed-density 

relationship to overcome the shortcomings of deterministic models. In another study, to 

accurately estimate the freeway travel time, a (modified) dynamic traffic flow model was 

presented. The model used fixed-point detector data to describe and predict the corridor 

travel time under transition and congestion conditions [64]. In the concept of ML and 

dynamic toll pricing, further studies are useful to come up with more accurate traffic flow 

models.  
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5.1.2 Descriptive analysis 

For this study, 426 data points (traffic volume counts and SOV toll rates for 5-

minute intervals) were collected from the field. This section presents the initial analysis, 

including a description of the corridor vehicle mix as well as the ML share percentages in 

each vehicle class for different time periods. The analysis also involved the ML share 

comparisons for different times of day and different amounts of toll charged. This analysis 

can be used to evaluate the prevailing tendency of the sample population with respect to 

their mode choice decisions between MLs and GPLs. 

Individual travelers’ choice of mode is affected not only by their socio-economic 

characteristics but also by their trip attributes such as trip purpose or time of day the trip is 

taken [66]. Also, WTP distributions vary among drivers of different vehicle classes 

[65,66,67,68]. Accordingly, the field data were examined based on time periods and vehicle 

classes to which the observations belonged. The results revealed how variations in mode 

choice decisions occurred during different time periods and among different vehicle classes 

(figures 5-1 to 5-5).  
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Figure 5-1 Corridor Total Volume Mix- ML Share Percentage for Different Vehicle 

Classes - AM Peak Period 
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Figure 5-2 Corridor Total Volume Mix- ML Share Percentage for Different Vehicle 

Classes- PM Peak Period 
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Figure 5-3 Corridor Total Volume Mix -ML Share Percentage for Different Vehicle 

Classes- AM Inter-Peak Period 
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Figure 5-4 Corridor Total Volume Mix- ML Share Percentages for Different Vehicle 

Classes- PM Inter-Peak Period 
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Figure 5-5 Corridor Total Volume Mix- ML Share Percentage for Different Vehicle 

Classes- Off-Peak Period 
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For each time period, the figure on top displays the corridor’s vehicle mix and the 

one on the bottom shows the ML share percentage for each vehicle class. The ML share 

is defined as the ratio of the traffic volume on MLs to the total volume of the corridor (MLs 

and GPLs). For example, as shown in Figure 5-1 for AM peak periods, on average almost 

4% (196 vehicles) of the total corridor’s volume (4451 vehicles) were semi-trailer trucks, of 

which 31.4% (61 vehicles) used the MLs. Furthermore, as it can be observed from the 

figures, for all non-peak periods (AM and PM Inter-peak and Off peak periods), the number 

of vehicles belonging to the “Registered HOVs and Motorcycles” class was shown as zero. 

It did not mean that there were no registered HOVs or motorcycles on the corridor during 

those periods. However, recall from Chapter 4 that for the purpose of this study, the 

vehicles were categorized based on their differences in the tolls charged. The discount 

(0.50 × base toll) was available to the registered HOVs and motorcycles only during peak 

periods. Therefore, during non-peak periods, the share of traffic volume belonging to this 

class, if any, was considered under the SOV class, as both paid the same toll rates (1.00 

× base toll).  

Once more, the emphasis of this study was only on examining the travel behavior 

of SOV drivers. However, data associated with the other vehicle classes were also 

collected in order to provide the simulation model with the same traffic conditions as 

observed in the field. Accordingly, the analysis and results are only presented for SOV 

travelers. Future work can be done on studying travel behavior of drivers belonging to other 

vehicle classes.  

Based on the figures, during peak periods (AM and PM), as it was expected, SOV 

drivers were more willing to pay tolls and switch to the MLs compared with non-peak 

periods. It is shown that almost one-third of the SOV population chose to drove on MLs 

instead of using GPLs. The next high ML share percentages can be recognized for the 
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inter peak periods (16% AM inter-peak and 15% PM inter-peak periods) followed by the off 

peak period (14%). Peak-period trips are more likely to be oriented around work commuting 

purpose while during non-peak periods trip purposes mainly switch to non-work trips [69]. 

My data did not have information about trip purposes. However, the time of day and trip 

purpose variables are likely correlated and thus affect the travelers’ WTP values. Table 5-

4 and Figure 5-6 summarize the SOV average ML share percentages and SOV average 

toll rates charged for different time periods. The average values were estimated from all 

data collected for five-minute intervals during each time period. 

 Table 5-4 SOV Average ML Share and Average Toll Price for Different Time Periods 

 

Figure 5-6 SOV Average ML Share and Average Toll Price for Different Time Periods 

Time Period SOV Average ML Share% SOV Average Toll Charge ($/6 miles) 

AM Peak 29.2% $3.90 

PM Peak 29.2% $3.29 

AM Inter-peak 15.9% $1.74 

PM Inter-peak 14.6% $1.92 

Off-Peak 13.9% $1.22 
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The results showed that NTE travelers were willing to pay higher tolls to use MLs 

during peak periods. During the AM and PM inter-peak periods, both ML share percentages 

and toll rates dropped by nearly 50 percent. The decrease was likely due to the general 

shifts in the purpose of trips from work commute trips. Also, the considerable drop (about 

30 percent) in the level of congestion on the corridor, which led to a decrease in travel time 

savings, could make toll lanes less appealing to the drivers. However, as shown in Table 

5-4, the ML share percentage during off peak periods did not dramatically drop compared 

to the inter-peak periods. It can be therefore concluded that travelers’ WTP values might 

not be merely explained by time savings as a reason. During off peak periods, ML users 

were probably looking to increase and/ or decrease their other utilities and/or disutilities by 

choosing MLs over GPLs. Perceiving a higher speed limit, improved safety, and more 

reliable travel time could be among their other reasons to switch to the MLs. With regard 

to the noticeable percentages of drivers on the MLs during non-peak periods, it is critical 

to consider the effects of these factors in travelers’ WTP studies. 

5.1.3 Travelers’ general tendency towards using NTE MLs 

The data collected for this study were used to model the revealed travelers’ mode 

choice decisions. Three variables associated with the drivers’ real route choice, including 

travel time, out-of pocket monetary cost (toll), and times of day the trip taken were captured 

by the dataset. The data were initially analyzed to determine how the travel time saved by 

the users affected their WTP tolls. Figure 5-7 shows the travel time savings and the toll 

paid by the SOV drivers for various time periods. It shows that during peak period hours, 

no significant relation can be observed between travel time savings and toll. This can be 

partially due to the data insufficiency or inaccuracy in estimating travel time savings. 

However, it also reveals other potential aspects of the NTE travelers’ behavior with respect 

to the MLs. First, it might be indicative of the differences between the actual and perceived 
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travel time savings by drivers. A former study conducted for the MLs in the Houston area 

showed that travelers generally overestimated the amount of time saved by using the MLs 

[70]. Trip purpose was shown to be one of the important factors affecting their perceptions. 

Accordingly, no obvious relation between time savings and toll during peak hours could be 

partially due to this reason. Some travelers might have paid tolls to save their travel time, 

however, their perceived travel time savings might have been overestimated by some of 

them. Additionally, it might show that the travelers may value travel time reliability more 

than travel time savings. The results of another study conducted for the MnPASS Express 

lanes in Minneapolis showed that MnPASS users were willing to pay a toll for travel time 

reliability rather than for travel time savings [20]. In particular, travel time reliability was 

shown to be more valuable than travel time savings for morning peak since travelers were 

shown to be more concerned about travel time reliability than travel time savings [20]. This 

could also help explain the NTE drivers’ behavior, especially during peak hours. 

Specifically, due to the dynamic toll pricing system employed by facility operators, drivers 

could infer that the higher rates indicate a higher level of congestion in GPLs. In addition 

to more reliable travel times, other potential advantages offered by MLs as well as drivers’ 

socio-demographic characteristics and trip attributes (e.g. trip purpose, length) might affect 

the travelers’ mode choices. Therefore, it seems that NTE drivers probably did not pay tolls 

to only save travel time. However, the other potential reasons to switch to the MLs cannot 

be investigated through the data associated with toll and time savings.  

Nonetheless, as shown in Figure 5-7, travel time savings were a better predictor 

of the NTE users’ mode choice decisions during non-peak hours. Except for the AM inter-

peak hours, which follow the same pattern as the peak periods, a positive relation can be 

detected during other non-peak periods. Therefore, it can be concluded that travel time 

saving was one of the main motivations for the NTE users to pay a toll during PM inter-
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peak and off-peak hours. These findings are in line with the results of a previous study, 

which indicated the VTTS values estimated for, off-peak through mixed logit models were 

largely affected by travel times and toll rates [71].  

 

 

 

 

 

 

 

 
 

Figure 5-7 SOV Travel Time Savings versus Toll Rates - Different Time Periods 
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Following the analysis, a general trend in users’ ML versus GPL choice decision 

between ML and GPL, independent of time of day, was obtained for the NTE users. In 

doing so, data over all the time periods were considered together. Figure 5-8 presents the 

corridor total volume versus the SOV toll rates. 

 

Figure 5-8 Corridor Total Volume versus SOV Toll - All Time Periods 

It can be seen from Figure 5-8 that toll rates increased as traffic volume increased 

on the corridor. As GPLs became more congested, the travel time saving and reliability 

offered by MLs increased. This made MLs more appealing to the drivers whose WTP were 

higher than tolls charged. As a result, toll rates increased in order to prevent MLs from 

becoming congested. The level of congestion is differently defined for different toll facilities. 

For the NTE managed lanes, the minimum speed should be no slower than 50 mph [4]. 

Figure 5-9 shows the variations in ML shares in response to fluctuations in toll 

prices. As shown in Figure 5-9, a counterintuitive positive relation is observed between the 
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increased with an increase in toll rates. The trend can partly be explained due to the 

influence of peak-period data. The higher ML shares associated with the higher toll rates 

were mostly associated with the peak periods. This can also be observed in Table 5-4 and 

Figure 5-6, i.e. travelers were willing to pay higher tolls during peak periods. Their higher 

WTP could be due to the dominated peak-period trip purpose (mainly work trips) and their 

perceptions about more reliable travel time offered by MLs [70].  

 
 

Figure 5-9 ML Share Percentage- SOV Prevailing Toll Charges for All Time Periods 

Figure 5-10 displays the relation between toll paid and associated travel time 

saved by SOV drivers. An overall positive trend can be observed from the figure, which 

indicates that drivers were generally willing to pay higher tolls in order to save more time. 
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be the major reason behind drivers’ decision to pay tolls for both peak periods and the AM 

inter-peak hours. 

 

Figure 5-10 SOV Average Toll Prices versus Average Travel Time Savings for All Time 

Periods 
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a data aggregation method was applied to smooth the data on toll values paid versus the 

time saving periods. The results of data smoothing yielded a more statistically significant 

trend to describe the average behavior among the users in paying tolls for time savings. 

Figure 5-11 shows the general linear trend acquired by regressing the average toll rates 

against the average time savings, which were smoothed over 0.2-minute travel time saving 

intervals. The data now display a more obvious positive linear trend between travel time 

savings and toll paid. This result confirms the key role of travel time saving in the travelers’ 

mode choice decisions and WTP values [27]. However, near the upper end of the linear fit, 

data deviate from the positive linear trend. This can most likely be caused by the maximum 

toll allowed by regional policy; the amount of toll cannot exceed a fixed maximum rate. So, 

when the toll rate reaches that amount, even if the congestion grows on the corridor and 

more time savings can indeed be realized by ML drivers, the toll price will not increase 

anymore.  

 
Figure 5-11 SOV Average Toll paid versus Average Travel Time Savings - All Time 

Periods 
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5.2 Revealed WTP Analysis 

The main goal of this study was to determine the NTE SOV drivers’ revealed WTP 

for different times of day. The former studies in this field were mainly conducted based on 

the SP and RV survey data. Other sources of data were also employed in some recent 

studies, which were discussed in Chapter 2. For data analysis, while the main method to 

estimate the WTP values has been discrete choice modeling, this study suggested a new 

method based on revealed data. This method involved an existing toll pricing model (TPM) 

developed in a former TxDOT study [6,7] for setting the tolls for MLs. The model was 

modified and calibrated based on actual ML shares and associated toll prices for the NTE 

ML corridor.  

According to the objectives of this study, the data obtained from the field were 

prepared for each vehicle class and time period. Then, the analysis carried out to find the 

WTP values based on the revealed data. First, to find the revealed average WTP, the TPM 

was calibrated according to the geometry and traffic characteristics of the study section. In 

addition, to achieve the objectives of this study, some modifications were also made to the 

algorithm of the model. The field data were then simulated through the TPM based on 

different trial and error attempts of the WTP distribution. To begin, the WTP distribution 

scenarios derived from the SP survey were used as the initial trial and error attempts. Each 

simulation run through the TPM resulted in a volume split between MLs and GPLs. The 

goal was to find the WTP distribution scenario resulting in the same ML/GPL volume split 

as observed in the field. However, the same split as the field was obtained through 

simulating the model for more than one WTP distribution scenario at times. Thus, based 

on the first criterion, there were multiple WTP distribution scenarios which could probably 

represent the average WTP of the NTE users. Therefore, it was necessary to involve 

another criterion to narrow down the probable WTP distribution scenarios to the one that 
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best represented the field data. Thus, the average WTP values estimated from the field 

data were used as the second condition. The process of data preparation and analysis 

carried out to find the revealed WTP values for the NTE drivers are summarized as the 

following:  

 Data Aggregation 

 Determining Stated Preference WTP through Survey Data 

 Determining the Revealed Average WTP through the TPM 

5.2.1 Data aggregation 

Since a key objective of this study was to estimate the revealed WTP for different 

time periods, traffic volume versus toll data were aggregated over each time period. This 

reduced the variance in the data so that trends could be more easily identified. However, 

the accuracy of the results would naturally be reduced due to inevitable errors resulting 

from the data aggregation effort [72]. In this regards, the results obtained from the 

aggregated data present the average revealed WTP of the NTE travelers for different times 

of day. So, the results should not be generalized to other time intervals and/or facilities 

without further investigations. 

Tables 5-5 to 5-9 present the results from the data aggregation for various time 

periods. As reported in the following sections, the results were used as input to the TPM to 

obtain the revealed WTP values. 
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Table 5-5 Aggregated Field Data - AM Peak Periods 

Vehicle Classes Average 

Corridor 

Vehicle Mix 

Volume (vph) 

Average 

Corridor 

Vehicle Mix 

(%) 

Average 

ML 

Volume 

(vph) 

Average 

GPL 

Volume 

(vph) 

Average 

ML 

Share 

(%) 

SOV 3256 73.15 951 2305 29.2 

Registered HOVs and 

Motorcycles 

786 17.65 17 768 2.22 

SOV, +Trailer 42 0.94 15 27 36.18 

Single-unit Trucks 136 3.05 53 83 38.75 

Semi-trailer Trucks 196 4.40 61 135 31.34 

Semi-Trailer Trucks 

(Double or Triple Trailers) 

36 0.81 12 24 33.82 

Special Permit Trucks 0 0.00 0 0 0.00 

Table 5-6 Aggregated Field Data - PM Peak Periods 

Vehicle Classes Average 

Corridor 

Vehicle Mix 

Volume (vph) 

Average 

Corridor 

Vehicle Mix 

(%) 

Average 

ML 

Volume 

(vph) 

Average 

GPL 

Volume 

(vph) 

Average 

ML 

Share 

(%) 

SOV 3460 75.86 1012 2448 29.2 

Registered HOVs and 

Motorcycles 

830 18.21 14 816 1.7 

SOV, +Trailer 32 0.70 13 19 41.5 

Single-unit Trucks 79 1.74 40 40 49.9 

Semi-trailer Trucks 145 3.18 57 88 39.3 

Semi-Trailer Trucks 

(Double or Triple Trailers) 

14 0.31 7 7 48.8 

Special Permit Trucks 0 0.00 0 0 0.0 
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Table 5-7 Aggregated Field Data - AM Inter-Peak Periods 

Vehicle Classes Average 

Corridor 

Vehicle Mix 

Volume (vph) 

Average 

Corridor 

Vehicle Mix 

(%) 

Average 

ML 

Volume 

(vph) 

Average 

GPL 

Volume 

(vph) 

Average 

ML 

Share 

(%) 

SOV 2708 85.38 430 2278 15.9 

Registered HOVs and 

Motorcycles 

0 0.00 0 0 0.0 

SOV, +Trailer 39 1.24 8 32 19.1 

Single-unit Trucks 150 4.72 29 121 19.4 

Semi-trailer Trucks 268 8.44 71 197 26.6 

Semi-Trailer Trucks 

(Double or Triple Trailers) 

7 0.22 3 4 43.6 

Special Permit Trucks 0 0.00 0 0 0.0 

 

Table 5-8 Aggregated Field Data - PM inter-Peak Periods 

Vehicle Classes Average 

Corridor 

Vehicle Mix 

Volume (vph) 

Average 

Corridor 

Vehicle Mix 

(%) 

Average 

ML 

Volume 

(vph) 

Average 

GPL 

Volume 

(vph) 

Average 

ML 

Share 

(%) 

SOV 2814 88.49 411 2402 14.6 

Registered HOVs and 

Motorcycles 

0 0.00 0 0 0.0 

SOV, +Trailer 30 0.93 6 24 19.7 

Single-unit Trucks 113 3.55 24 89 21.0 

Semi-trailer Trucks 217 6.81 56 160 26.1 

Semi-Trailer Trucks 

(Double or Triple Trailers) 

7 0.22 4 3 53.0 

Special Permit Trucks 0 0.00 0 0 0.0 
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Table 5-9 Aggregated Field Data - Off Peak Periods 

Vehicle Classes Average 

Corridor 

Vehicle Mix 

Volume (vph) 

Average 

Corridor 

Vehicle Mix 

(%) 

Average 

ML 

Volume 

(vph) 

Average 

GPL 

Volume 

(vph) 

Average 

ML 

Share 

(%) 

SOV 2686 96.22 373 2313 13.9 

Registered HOVs and 

Motorcycles 

0 0.00 0 0 0.0 

SOV, +Trailer 16 0.56 4 12 26.5 

Single-unit Trucks 33 1.19 9 24 28.4 

Semi-trailer Trucks 53 1.90 11 42 20.8 

Semi-Trailer Trucks 

(Double or Triple Trailers) 

4 0.13 1 2 37.5 

Special Permit Trucks 0 0.00 0 0 0.0 

 

5.2.2 Determining stated preference WTP through survey data 

For the purpose of this study, the results from SP survey carried out for TxDOT in 

January 2006 were used to find the stated WTP for NTE drivers [5]. The analysis of the 

data was done by AECOM Enterprises as part of the NTE-Traffic and Revenue Forecast 

study in 2009 [52]. The SOV drivers’ stated values of time were estimated through 

Multinomial Logit modeling. According to Microeconomic Theory, the value of time is 

defined as the marginal cost of travel time and toll [26]. The results were just estimated for 

AM, PM, and Off peak periods. No results were available for AM and PM Inter-peak periods 

[5]. To use the 2006 stated WTP values reported by AECOM for this study, the values were 

converted to their equivalent monetary values in 2015 (year of data collection). This was 

done through the CPI Inflation Calculator available on the Bureau of Labor Statistics 

website [73]. The following table shows the resulting SOV stated WTP values in both 2006 

and 2015 equivalent monetary values.  
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Table 5-10 SOV Average Stated WTP in 2006 and 2015 Equivalent Values [52,73] 

Time Period 

Average WTP 

 

2006 Monetary Value 

($/hr) 

2015 Equivalent Monetary Value 

($/hr) 

AM Peak Periods 14.44 16.98 

PM Peak Periods 15.03 17.67 

Off Peak Periods 14.40 16.93 

In addition, the SOV WTP distributions for different time periods were retrieved 

from the charts presented in the report [52], as summarized in Table 5-11, values of time 

intervals presented in the table were also converted to the 2015 equivalent monetary 

values. In addition, the number of intervals was reduced from 27 to 10 to match the number 

of intervals required by TPM. These values were used later as the initial WTP distribution 

scenario to simulate the field data for each of the associated time periods.  

Table 5-11 SOV Stated Value of Time Distributions for Different Time Periods [52,73] 

 

5.2.3 Determining the revealed average WTP through TPM 

The Toll Pricing Model (TPM-5.0) used in this study was a modified version of an 

existing Toll Pricing Model (TPM-4.3), which was developed based during a former TxDOT 

WTP ($/hr) 

2015 Monetary 

Value 

Frequency (%) 

AM Peak Period PM Peak Period Off Peak Period 

0-5 3.3 3.9 0.0 

5-10 17.8 19.3 5.5 

10-15 30.2 29.9 34.0 

15-20 15.5 12.5 17.0 

20-25 9.5 11.0 9.7 

25-30 6.5 8.2 8.2 

30-35 4.7 5.9 9.0 

35-40 3.7 1.6 6.7 

40-45 4.0 4.2 5.5 

45+ 5.1 3.5 4.4 
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study [6,7]. ML facilities are intended to offer a lower travel time compared to the adjacent 

GPLs. Therefore, Wardrop’s first principle based on equal travel times cannot directly 

explain the users’ equilibrium condition for these facilities. The model instead, was 

established based on a new paradigm in user equilibrium. In the following, the concept of 

this new paradigm is briefly presented followed by an analysis carried out to find the 

revealed average WTP values through TPM. More details about the logic and components 

of TPM are presented in Chapter 6. 

5.2.3.1 The Toll Pricing Model (TPM) framework 

The ML equilibrium paradigm which was employed to develop TPM entails two 

important components including Cost of Time Saving (CTS) and Willingness-to-pay (WTP) 

[7]. The volume assignments in the ML networks are significantly affected by these two 

factors. On managed lane corridors, CTS is defined as the amount per mile that drivers 

pay for saving one unit of time (usually measured in minutes) if they choose to take the 

MLs. While WTP is the amount that drivers are willing to pay for one unit of time saved [7]. 

𝐶𝑇𝑆 =  
𝑇𝑜𝑙𝑙 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 ($)

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝑠𝑎𝑣𝑖𝑛𝑔 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒
  (5-3) 

𝐶𝑇𝑆 =  
𝑇

[(𝐿𝐺𝑃𝐿×𝑡𝐺𝑃𝐿)−(𝐿𝑀𝐿×𝑡𝐺𝑃𝐿)] 𝐿𝑀𝐿⁄
  (5-4) 

In Equation 5-5, travel time saving per mile is an average time that is expected to 

be saved by driving one mile on MLs compared to travel time on GPLs. In Equation 5-6, T 

is a ML toll per mile. LGPL and LML are the lengths of the GPL and ML facilities and tGPL and 

tML are the travel times spent for traveling one mile on each of the facilities, respectively 

[6,7]. The travel time calculations are based on the Bureau of Public Roads (BPR) function 

[7] as the follows:   
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𝑡𝐺𝑃𝐿 = 0.8 × [1 + (
𝑉𝐺𝑃𝐿

𝐶𝐺𝑃𝐿
)

4

] (5-5) 

𝑡𝑀𝐿 = 0.8 × [1 + (
𝑉𝑀𝐿

𝐶𝑀𝐿
)

4

] (5-6) 

Here, V is the traffic volume per lane and C is the respective capacity per lane on 

either GPL or ML. At the initial volume assignment state, when there is no charge for driving 

on the MLs, the volume is expected to be equally assigned to both MLs and GPLs. In this 

case, the cost of time savings does not exist. However, when a toll is charged on the MLs, 

drivers whose WTP values are higher than CTS will switch to the MLs. On the other hand, 

drivers whose WTP are lower than the CTS will choose to drive on the GPLs. This changes 

in volume assignments between ML and GPL will in turn affect the travel time savings. 

Therefore, CTS is re-estimated and compared with the current ML users’ WTP [6,7].  

𝑇𝑜𝑙𝑙 = 0, 𝐶𝑇𝑆 = 0; 𝑉𝐺𝑃𝐿 = 𝑉𝑀𝐿 ………………………………Initial Loading Condition 

𝑇𝑜𝑙𝑙 > 0, 𝐶𝑇𝑆 <  𝑊𝑇𝑃𝑖; 𝑉𝐺𝑃𝐿 = 𝑉𝑀𝐿 ……………………………………. ML is Chosen 

𝑇𝑜𝑙𝑙 > 0, 𝐶𝑇𝑆 ≥ 𝑊𝑇𝑃𝑖;  𝑉𝐺𝑃𝐿 = 𝑉𝑀𝐿 ………………………….…….. ML is not Chosen 

The process explained above continues until the network becomes stable, i.e. no 

one else switches lanes. At this point, the user’s WTP is equal to the corridor’s CTS and 

the network reaches its equilibrium condition. Indeed, according to the above equilibrium 

concept, under users’ equilibrium conditions the model splits the traffic volume in such a 

way that ML users’ WTP are higher than or equal to the corridor’s CTS and the GPL users’ 

WTP are lower than the corridor’s CTS [6,7]. 

5.2.3.2 TPM simulation runs 

All vehicles were allowed to travel on the NTE MLs regardless of the class to which 

they belonged. However, toll rates charged were different for each of the classes [52]. In 
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addition, former studies showed that the WTP values were different among drivers of 

different classes [65,66,67]. Therefore, to model the corridor in TPM, it was not accurate 

to assume that vehicles traveling on the MLs were homogenous. Accordingly, the TPM 

was designed to incorporate separate traffic volumes and WTP values for each vehicle 

class. However, the focus of this study was only on finding the SOV drivers’ revealed WTP. 

In addition, the simulation runs to find the WTP values were based on trial and error 

attempts of different WTP distribution scenarios. It was almost impossible to 

simultaneously change WTP distributions for different vehicle classes to find the ones that 

best represented the field data.  

For this research, data associated with all the vehicle classes were collected from 

the field. Although, the drivers of the SOV class were the specific focus of this study, 

classes other than SOV were also studied. In this study, their impacts on the corridor’s 

traffic condition and consequently on SOV drivers’ route choice decisions were 

incorporated. To do so, the TPM was equipped with an additional option. The new option 

allowed the user to include or exclude any vehicle classes in or from equilibrium 

assignment. Therefore, during the initial loading state in TPM, the traffic counts associated 

with the excluded classes were fixed and assigned to respective MLs and GPLs. Next, 

when a toll was charged, for the corridor to reach its equilibrium condition, only traffic 

counts associated with the remaining (included) vehicle classes were switched between 

ML and GPLs. Eventually, the model included all the vehicles regardless of their class 

during re-estimating the corridor’s CTS. Thus, the traffic volumes associated with the 

excluded vehicle classes were also considered as part of the corridor’s flow in estimating 

the corridor’s travel time. In this study, in running the simulation, all the classes except for 

SOV were excluded from participating in the equilibrium process. This did not expect to 

impact the equilibrium results significantly since the percent of non-SOV classes in the mix 
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were relatively low. Furthermore, their impacts on travel time for the ML were incorporated 

regardless.  

5.2.3.2.1 Stated WTP simulation runs through TPM 

The simulations were run on the field data individually for each time period. Data 

including toll rates and traffic volumes were averaged across vehicle categories for each 

time period as shown in Table 5-5 through Table 5-9. Different WTP distribution scenarios 

were used as inputs to the model. The stated WTP distribution scenarios (as shown in 

Table 5-11) were used as the initial input. The following figure shows the results obtained 

through the TPM for the stated WTP distribution scenario compared with the actual traffic 

volume split observed in the field. The figure shows the results just for AM, PM, and off 

peak periods since the stated WTP results were only available for these time periods [52].   

 

Figure 5-12 SOV ML Share Percentages- Field and Stated WTP data 

As it can be observed from Figure 5-12, the traffic volume splits from the stated 

WTP distribution scenarios are significantly lower than the actual splits observed in the 

field. These differences can be partially explained by the drawbacks associated with the 

SP surveys [27]. Besides, several other reasons may also help explain these differences. 
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First, the SP survey used in this study was conducted in 2006. For this study, the values 

of WTP obtained from the survey were converted to the current monetary values. However, 

the survey results were completely out-of-date to contribute to any practical outcomes. The 

discrete choice model used to estimate the SP WTP values was a Multinomial Logit Model, 

while applying more elaborate and complex models may yield more reliable estimates 

[27,75]. Additionally, the survey was conducted for a traffic and revenue study before the 

start of the NTE ML construction project. At the time, the concept of a ML was in its early 

stages and there was no ML facility built in the DFW area. So, the answers could be more 

based on the respondents’ personal perceptions about MLs rather than their real-life 

experiences. Additionally, there could be the probability of biased responses to the survey 

questions. Indeed, some individuals might have deliberately answered in such a way to 

reflect their objection to the concept of MLs. This opposition was observed among the 

comments of some respondents [5]. Another possible explanation can be that the 

estimated SP WTP values just measured the travelers’ VOT. Other factors such as the 

values of travel time reliability, safety, smoother geometry, and higher speed limits might 

also influence the revealed values of WTP. However, the stated WTP results from the 

survey were useful in providing an overall perspective of the NTE travelers’ willingness to 

pay trends for different time periods.  

5.2.3.2.2 Determining revealed average WTP through simulation 

Since the results from the initial simulation run were so different from the field splits, 

the initial WTP distribution scenario was modified through trial and error attempts. The 

output of the simulation run yielded from any single attempt was then compared to the field 

observations. In the case of non-similarity, the WTP distribution scenario was re-modified. 

This process was continued until any of the trial attempts yielded similar (with ± 0.05 error 

threshold) ML/GPL split as observed in the field. Different WTP scenarios and distribution 
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scenarios were defined through the simulation process. The following tables show some 

examples of different WTP distribution scenarios developed based on trial and error 

attempts. Each of the WTP scenarios are different in the ranges of WTP values. For 

example, as shown in Table 5-12, in the first scenario, ($0- $175+) per hour is defined as 

the range of WTP values. This range is increased to ($0- $270+) per hour in the fourth 

scenario. All the WTP scenarios are introduced in 10 consecutive intervals in order to be 

compatible with the TPM input module.  

Table 5-12 Sample of Different WTP Scenarios  

WTP ($/hr.) 

Scenario 1 Scenario 2  Scenario 3  Scenario 4  

0-15 0-20 0-25 0-30 

15-30 20-40 25-50 30-60 

30-45 40-60 50-75 60-90 

45-60 60-80 75-100 90-120 

60-75 80-100 100-125 120-150 

75-100 100-120 125-150 150-180 

100-125 120-140 150-175 180-210 

125-150 140-160 175-200 210-240 

150-175 160-180 200-225 240-270 

175+ 180+ 225+ 270+ 

 

Table 5-13 displays a number of different probable frequencies for each of the 

WTP intervals. For this study, more than 250 different frequency distributions were defined, 

each representing one trial and error attempt. Each WTP scenario was used along with 

different frequency distributions until one of these combinations yielded the same volume 

split as observed in the field. For convenience, each of the trial and error attempts was 

labeled based on the number associated with each of the WTP scenarios and frequency 
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distributions used. For example, in try 1-70, as shown in Table 5-14, the first WTP scenario 

and the 70th frequency distribution were combined.     

Table 5-13 Sample of Different Frequency Distributions  

Frequency Distribution (%) 

Dist. 70 Dist. 71 Dist. 72 Dist. 73 Dist. 74 Dist. 75 

31 31 30 31 31 31 

23 23 24 23 23 23 

13 13 13 12 13 13 

10 11 10 11 11 10 

6 6 6 5 5 7 

4 4 4 5 5 4 

4 4 4 4 3 3 

3 3 3 3 3 3 

3 3 3 3 3 3 

3 2 3 3 3 3 

Table 5-14 Example of Labeling the Trial and Error Attempts: Try 1-70 

WTP ($/hr.) Scenario Frequency Distribution 
(%) 

Scenario 1  Dist. 70 

0-15 31 

15--30 23 

30-45 13 

45-60 10 

60-75 6 

75-100 4 

100-125 4 

125-150 3 

150-175 3 

175+ 3 
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Figure 5-13 Sample of Simulation Results through TPM-AM Peak Period 

Different WTP distribution scenarios were investigated through the TPM for 

different periods of day. Figure 5-13 shows some examples of the simulation results 

obtained for the AM peak period data. In the figure, the red bar shows the ML share 

percentage observed in the field. The bars in blue show the results obtained through the 

simulation runs using trials 3-11 to 3-24, as shown in Table 5-15. The details associated 

with these tries are displayed in Table 5-16. As it can be observed in Figure 5-13, more 

than one WTP distribution scenario yielded the same volume splits as the field, considering 

the ±0.05 error threshold. This was also the case for the other time periods, as shown in 

Table 5-16 to Table 5-20. Note that the tables just present a sample of the tries that yielded 

the same split as what was observed in the field.  

Through this step, multiple WTP distribution scenarios were selected for each time 

period as the probable NTE users’ revealed WTP. To narrow them down to achieve the 

desired results, a second criterion was imposed, as discussed in the next section.  
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Table 5-15 WTP Distribution Scenarios Associated to Trials 3-11 to 3-24 

WTP ($/hr.) 
Scenario 3 

Dist. 
11 
(%) 

Dist. 
12 
(%) 

Dist. 
13 

Dist. 
14 
(%) 

Dist. 
15 
(%) 

Dist. 
16 
(%) 

Dist. 
17 
(%) 

Dist. 
18 
(%) 

Dist. 
19 
(%) 

Dist. 
20 
(%) 

Dist. 
21 
(%) 

Dist. 
22 
(%) 

Dist. 
23 
(%) 

Dist. 
24 
(%) 

0-25 7 7 7 6 6 5 15 11 11 13 13 13 13 12 

25-50 7 7 7 7 6 6 14 12 11 13 13 13 12 12 

50-75 8 7 7 8 8 7 13 12 12 13 13 12 11 12 

75-100 8 8 7 9 8 8 12 14 13 13 12 12 10 11 

100-125 9 9 7 9 9 9 11 14 14 13 11 11 10 11 

125-150 11 11 13 14 14 11 9 6 9 7 9 9 10 9 

150-175 12 12 13 13 14 12 8 6 9 7 8 8 10 9 

175-200 12 13 13 12 12 13 7 8 8 7 7 8 9 8 

200-225 13 13 13 11 12 14 6 8 7 7 7 7 8 8 

225+ 13 13 13 11 11 15 5 9 6 7 7 7 7 8 
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Table 5-16 Samples of Tries Yielded the Same Volume Split as the Field Data- AM Peak Periods 

Number of Try 

4-40 4-41 4-43 4-47 4-52 4-136 4-142 4-143 4-144 4-145 4-156 4-157 4-165 4-169 

Frequency Distribution (%) 

25 25 27 33 28 23 22 22 22 22 22 22 22 22 

14 11 14 10 12 11 12 12 12 12 12 12 11 11 

13 11 12 10 12 12 12 12 12 12 12 11 11 11 

11 11 11 10 9 13 13 13 13 12 11 11 12 12 

10 11 10 10 10 9 9 9 9 10 11 12 12 12 

6 10 6 9 8 7 7 6 6 6 5 5 5 6 

6 6 5 8 7 8 7 6 6 6 6 6 6 6 

5 5 5 5 6 6 6 7 6 6 7 7 7 6 

5 5 5 5 3 6 6 7 7 7 7 7 7 7 

5 5 5 0 5 5 6 6 7 7  7 7 7 

ML Share (%) through TPM Simulation Runs 

28.1 29.3 27.8 28.1 28.7 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 
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Table 5-17 Samples of Tries Yielded the Same Volume Split as the Field Data- PM Peak Periods 

Number of Try 

3-40 3-43 3-47 3-52 3-58 3-136 3-143 3-144 3-147 3-153 3-156 3-168 3-171 3-179 

Frequency Distribution (%) 

25 27 33 28 30 23 22 22 22 23 22 22 21.5 21 

14 14 10 12 18 11 12 12 12 12 12 11 11 10 

13 12 10 12 12 12 12 12 12 12 12 11 11 10 

11 11 10 9 7 13 13 13 12 12 11 12 12.5 12.5 

10 10 10 10 7 9 9 9 10 10 11 12 12 14.5 

6 6 9 8 7 7 6 6 6 5 5 6 5 5 

6 5 8 7 6 8 6 6 5 5 6 6 6 6 

5 5 5 6 5 6 7 6 7 7 7 7 7 7 

5 5 5 3 4 6 7 7 7 7 7 7 7 7 

5 5 0 5 4 5 6 7 7 7 7 6 7 7 

ML Share (%) through TPM Simulation Runs 

28.4 28.2 28.4 29.0 27.8 29.7 29.7 29.7 29.7 29.6 29.7 29.7 29.7 29.7 
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Table 5-18 Samples of Tries Yielded the Same Volume Split as the Field Data- AM Inter-Peak Periods 

Number of Try 

2-70 2-74 2-78 2-83 2-85 2-97 2-100 2-184 2-191 2-200 2-210 2-215 2-221 2-222 

Frequency Distribution (%) 

31 31 31 31 31 31 31 27 23 21.5 16.5 14 11 10.5 

23 23 23 23 23 23 23 21 16 15 15 15 15 15 

13 13 13 12 12 13 13 14 18 16 16 16 16 16 

10 11 11 10 10 9 10 14 16 19 24 25 25 25 

6 5 6 8 8 6 5 6 8 9.5 9.5 11 14 14.5 

4 5 4 3 3 5 4 5 6 6 6 6 6 6 

4 3 3 4 3 3 4 4 4 4 4 4 4 4 

3 3 3 3 4 3 3 3 3 3 3 3 3 3 

3 3 3 3 3 4 4 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

ML Share (%) through TPM Simulation Runs 

15.8 16.3 15.3 15.3 15.3 16.3 16.4 16.2 16.6 16.6 16.6 16.6 16.6 16.6 
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Table 5-19 Samples of Tries Yielded the Same Volume Split as the Field Data- PM Inter-Peak Periods 

                                                                                               
Number of Try 

2-200 2-204 2-210 2-216 2-220 2-222  2-225 2-229 2-230 2-231 2-232 2-235 2-236 2-237 

Frequency Distribution (%) 

21.5 19.5 16.5 13.5 11.5 10.5 9 7 6.5 6 6.5 9 10 7.8 

15 15 15 15 15 15 15 15 15 15 15 15 15 15 

16 16 16 16 16 16 16 16 16 16 16 16 16 16 

19 21 24 25 25 25 25 25 25 25 24.5 22 22 23.4 

9.5 9.5 9.5 11.5 13.5 14.5 16 17.5 17.5 17.5 17.5 17.5 17.5 17.5 

6 6 6 6 6 6 6 6.5 7 7.5 7.5 7.5 7.5 7.4 

4 4 4 4 4 4 4 4 4 4 4 4 3 3.9 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 

ML Share (%) through TPM Simulation Runs 

16.6 15.0 15.0 15.0 15.0 15.0 15.0 15.1 15.2 15.3 15.3 15.3 14.9 15.3 
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Table 5-20 Samples of Tries Yielded the Same Volume Split as the Field Data- Off Peak Periods 

Number of Try 

1-40 1-41 1-43 1-45 1-52 1-53 1-238 1-239 1-240 1-241 1-242 1-243 1-244 1-245 

Frequency Distribution (%) 

25 25 27 32 28 26 27 26 25 25 25 24 24 24 

14 11 14 9 12 16 13 13 14 14 14 15 15 15 

13 11 12 12 12 11 12 13 13 12 12 12 12 13 

11 11 11 11 9 12 12 12 12 12 12 11 12 11 

10 11 10 10 10 10 11 11 11 12 11 11 10 10 

6 10 6 6 8 5 5 5 5 5 6 6 6 6 

6 6 5 5 7 5 5 5 5 5 5 6 6 6 

5 5 5 5 6 5 5 5 5 5 5 5 5 5 

5 5 5 5 3 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 

ML Share (%) through TPM Simulation Runs 

14.4 14.4 14.4 14.4 14.0 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 
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5.2.3.2.3 Determining the average WTP from field data 

The second criterion to find the best WTP distribution scenario which represented 

the field data was defined as the average WTP values estimated from the field data. These 

values were obtained by estimating the average of the toll paid by SOV drivers divided by 

the average time they saved by driving in the MLs. The estimated SOV average WTP 

values are shown in Table 5-21 for each time period.  

Table 5-21 SOV Average WTP from Field Data for each Time Period 

 

 

Figure 5-14 SOV Average WTP from Field Data - Different Time Periods 
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Based on data from the field, during peak hours, the average travel time on the 

MLs was almost 35 to 40 percent shorter than the average travel time on the GPLs. Also, 

as it can be seen in Table 5-21 and Figure 5-14, the NTE drivers had higher WTP values 

during the peak periods compared to the non-peak periods. During the AM and PM inter-

peak periods, the WTP values considerably dropped indicating that drivers became more 

sensitive to toll prices. During these periods, the average travel time on the MLs was almost 

25 percent shorter than the average travel time on the GPLs. The lowest values of WTP 

belonged to the users who travelled during off peak periods, as expected. The travel time 

on the MLs was almost 20% shorter than the average travel time on the GPLs during off 

peak hours. This difference was mainly due to the different speed limits for the two facilities.  

Next, the average WTP for each of the previously selected distribution scenarios 

were calculated. To do so, the mid values of the WTP intervals in each scenario were 

multiplied by the percent of the population frequencies belonging to the respective 

intervals. The average WTP for each distribution scenario was then calculated by 

aggregating these values over all the intervals to obtain a weighted average. The scenario 

for which the weighted average WTP was within ±5% of the field average WTP was 

selected as the revealed WTP. During this process, at times, the distribution scenarios 

initially selected through the first condition did not meet the second required criterion. 

Therefore, it was required to conduct many more iterations of the values of WTP 

distribution scenarios and go through the simulation runs again. These trial and error 

attempts continued until both criteria were satisfied by one of the WTP distribution 

scenarios. This scenario was the one that best represented the NTE SOV drivers’ average 

revealed WTP. Table 5-22 to 5-26 show the WTP weighted average estimated for WTP 

distribution scenarios, which were previously presented in Tables 5- 17 to 5-21.                                                                                                                           
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Table 5-22 Samples of WTP Weighted Average Estimated for Different WTP Distribution Scenarios- AM Peak Periods 

Number of Try 

4-40 4-41 4-43 4-47 4-52 4-136 4-142 4-143 4-144 4-145 4-156 4-157 4-165 4-169 

ML Share (%) obtained through TPM Simulation Runs 

28.1 29.3 27.8 28.1 28.7 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 

Weighted Average WTP ($/hr) 

123 104.7 109.8 102 95.4 113.4 114.6 115.5 116.4 116.7 117.8 118.2 118.8 118.2 

                                
Table 5-23 Samples of WTP Weighted Average Estimated for Different WTP Distribution Scenarios - PM Peak Periods 

Number of Try 

3-40 3-43 3-47 3-52 3-58 3-136 3-143 3-144 3-147 3-153 3-156 3-168 3-171 3-179 

ML Share (%) obtained through TPM Simulation Runs 

28.4 28.2 28.4 29.0 27.8 29.7 29.7 29.7 29.7 29.6 29.7 29.7 29.7 29.7 

Weighted Average WTP ($/hr) 

87.3 85.3 79.5 86.5 78.75 94.5 96.5 97 97.5 96.25 98 98 100.9 101.1 

   



 93 

Table 5-24 Samples of WTP Weighted Average Estimated for Different WTP Distribution Scenarios - AM Inter-Peak Periods 

Number of Try 

2-70 
2-74 2-78 2-83 2-85 2-97 2-100 2-184 2-191 2-200 2-210 2-215 2-221 2-222 

ML Share (%) obtained through TPM Simulation Runs 

15.8 16.3 15.3 15.3 15.3 16.3 16.4 16.2 16.6 16.6 16.6 16.6 16.6 16.6 

Weighted Average WTP ($/hr) 

53.8 53.4 53.2 54 54 54.6 54.6 57.2 61.6 63.6 66.6 68.4 70.8 71.2 

  
Table 5-25 Samples of WTP Weighted Average Estimated for Different WTP Distribution Scenarios - PM Inter-Peak Periods 

Number of Try 

2-200  2-204 2-210 2-216 2-220 2-222 2-225  2-229  2-230 2-231  2-232  2-235 2-236 2-237 

ML Share (%) obtained through TPM Simulation Runs 

16.6 15.0 15.0 15.0 15.0 15.0 15.0 15.1 15.2 15.3 15.3 15.3 14.9 15.3 

Weighted Average WTP ($/hr) 

63.6 64.8 66.6 68.8 70.4 71.2 72.4 74.1 74.6 75.1 74.8 73.3 72.1 74 
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Table 5-26 Samples of WTP Weighted Average Estimated for Different WTP Distribution Scenarios - Off Peak Periods 

Number of Try 

1-40 1-41 1-43 1-45 1-52 1-53 1-238 1-239 1-240 1-241 1-242 1-243 1-244 1-245 

ML Share (%) obtained through TPM Simulation Runs 

14.4 14.4 14.4 14.4 14.0 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 

Weighted Average WTP ($/hr) 

58.8 61.55 57.45 56.55 58.15 57.1 57.2 57.9 58 58.3 58.5 59.25 59.1 59                                                                                 



 95 

5.2.4 Results and analysis of revealed WTP 

The main objective of this study was to estimate the average revealed WTP values 

for the NTE ML drivers. As discussed, the WTP distribution scenarios that yielded the same 

split as the field were chosen for further analysis. To select the revealed WTP of the NTE 

drivers among these probable scenarios, the average WTP values estimated from the field 

data were used as the second selection criterion. In this way, the weighted average of the 

distribution scenario should have yielded the same value as the average WTP estimated 

from the field data. Thus, the attempt that satisfied both criteria was adopted as the 

revealed WTP distribution scenario for each respective time period.  

The resulting average revealed WTP values for the NTE SOV drivers are 

presented in Table 5-27 for each time period. The table also shows the volume splits and 

WTP weighted average values yielded by running the selected scenarios through TPM as 

well as the actual values obtained from the field. As expected, the AM and PM peak WTP 

estimations were higher than non-peak periods. The average WTP values range was 

between $59 per hour for the off-peak period to $119 per hour for the AM peak period. The 

mean revealed WTP (all periods inclusive) was estimated to be $85 per hour for the NTE 

users. 

The revealed average WTP estimates were intended to be used in the TPM for ML 

demand estimations during different times of day. This led to the development of a decision 

support system (DSS) tool for dynamic pricing of MLs, which was another objective of this 

study. The next chapter presents more details about the various modules and logic of this 

tool.    
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Table 5-27 The NTE Users’ Revealed WTP Distributions for Different Time periods 

AM Peak  PM Peak  AM Inter-peak  PM Inter-peak  Off Peak 

WTP Distribution Scenario  

WTP  
($/hr.) 

Frequency 
(%) 

WTP 
Intervals 
($/hr.) 

Frequency  
(%) 

WTP 
Intervals 
($/hr.) 

Frequency  
(%) 

WTP 
Intervals 
($/hr.) 

Frequency  
(%) 

WTP 
Intervals 
($/hr.) 

Frequency  
(%) 

0-30 24.0 0-25 21.0 0-20 10.5 0-20 6.0 0-15 24.0 

30-60 15.0 25-50 10.0 20-40 15.0 20-40 15.0 15-30 15.0 

60-90 13.0 50-75 10.0 40-60 16.0 40-60 16.0 30-45 13.0 

90-120 11.0 75-100 12.5 60-80 25.0 60-80 25.0 45-60 11.0 

120-150 10.0 100-125 14.5 80-100 14.5 80-100 17.5 60-75 10.0 

150-180 6.0 125-150 5.0 100-120 6.0 100-120 7.5 75-100 6.0 

180-210 6.0 150-175 6.0 120-140 4.0 120-140 4.0 100-125 6.0 

210-240 5.0 175-200 7.0 140-160 3.0 140-160 3.0 125-150 5.0 

240-270 5.0 200-225 7.0 160-180 3.0 160-180 3.0 150-175 5.0 

270+ 5.0 225+ 7.0 180+ 3.0 180+ 3.0 175+ 5.0 

Weighted Average WTP- TPM ($/hr) 

118.8  101.1 71.2 75.1 59 

Average WTP- Field ($/hr) 

123 106 71 75 59 

ML share- TPM (%) 

30.6 29.7 16.6 15.3 14.4 

ML Share- Field (%) 

29.2 29.2 15.9 14.6 13.9 
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Chapter 6  

Decision Support System for Dynamic Pricing  

 A key objective of this study was to develop a conceptual framework for a decision 

support system (DSS) to assist managed lane operators to assess alternative dynamic toll 

scenarios for an existing managed lane facility. The values of users’ WTP play a role of 

utmost importance in ML dynamic pricing effectiveness. Therefore, it was critical in this 

study to evaluate the revealed average WTP of the NTE TEXpress travelers. These values 

were estimated through calibrating an existing toll pricing model (TPM 4.3) [6, 7] for data 

obtained from the field.  

To develop a DSS tool, the model TPM 4.3 was updated and converted to a web-

based dynamic toll pricing decision tool. Indeed, the model was modified and calibrated 

based on the corridor specific geometry and traffic characteristics to more accurately 

address the revealed WTP for the NTE users. In addition, for the purpose of this study, 

some changes to the current logic and algorithms of the model were made. Furthermore, 

the existing TPM model was written in an outdated Visual Basic programming language 

and was not very user-friendly. Therefore, the TPM codes were transferred to Java, which 

is a more modern, flexible and user-friendly programming language and would allow web-

based access and execution of the program.  

TPM was established based on a new paradigm in users’ equilibrium condition 

[6,7]. Accordingly, the ML was assumed to reach equilibrium when the cost of traveling on 

the ML was higher than the travelers’ WTP values [6,7]. The details of the model’s concept 

were described earlier in Chapter 5. In this chapter, all components of the model and the 

process of converting the TPM to a DSS tool for dynamic toll pricing are discussed. The 

modifications made in order to update the previous version of TPM (4.3) to the latest 

version (TPM 5.0) are also described in this chapter.  
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The outline of this chapter is as follows. First, the model input modules are 

presented followed by explanations about the output modules. More details about the 

calculation and assignment processes are available in [6,7]. 

6.1 Input Variables 

The first four screens of the DSS toll were designed to input the required 

information to model the corridor. The input variables are categorized as below:  

 Facility Information 

 User Information  

 Willingness-to-Pay  

 Objective  

Each of these input modules is described in the following sections.  

6.1.1 Facility information 

First, data associated with the geometry and traffic flow characteristics of the 

corridor are required. The information for each facility (GPLs and MLs) includes the number 

and the length of the lanes. Here, users are required to first select the corridor’s flow-

density-speed relation from a drop-down menu. Based on the model selected, users are 

prompted to input the associated parameters for that specific model.  

Figure 6-1 shows the TPM input data screen for facility information. In the following 

section, more details regarding the required parameters associated with traffic 

characteristics of the corridor are presented.  

6.1.1.1 Corridor’s geometric attributes 

The required geometric attributes of the corridor include the total numbers of lanes 

per direction and the length of the corridor. As shown in  

Figure 6-1, the model takes the information separately for each of the facilities 

(GPLs or MLs).  
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At the time of this study, both the GPLs and MLs facilities had two lanes in each 

direction and the length of the corridor was six miles. Since at the time, the access roads 

along the corridor were still incomplete and not continuous, they were not included in 

modeling the corridor. However, all the continuous existing lanes along the study corridor 

were considered to model the facility accurately.   

 
Figure 6-1 TPM 5.0 Data Input Screen- Facility Information 

6.1.1.2 Corridor’s traffic flow characteristics 

The second series of data are associated with the traffic stream characteristics of 

the corridor under study. First, the relationship among the corridor’s flow, density and 

speed is to be specified. The TPM gives the option to use one of three commonly-used 

macroscopic models, namely the Drake model [62], the Greenshields model and [75] the 

Underwood model [76]. The desired model can be selected from the drop-down menu 

provided in the input data screen. To determine the traffic flow model, which best 
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represents the corridor characteristics, the models should be calibrated based on the data 

observed in the field. For the purpose of this study, based on the results of a former study 

[61], the Drake model was selected to characterize the corridor’s flow-density-speed 

relation. According to the model selected, other required parameters for using that model 

must be specified, as follows: 

Free-Flow Speed 

Free-flow speed is the average free-flow speed (in mph) for the study corridor. For 

the study section, free-flow speeds were measured in the field using a hand-held RADAR.  

They were determined to be 73 mph and 63 mph for the MLs and GPLs, respectively.  

Capacity Per Lane 

The capacity per lane is a maximum lane flow (in pcphpl) for freeway conditions. 

For this study, 2200 pcphpl was considered for corridor capacity. 

Jam Density  

Jam density is the concentration at which speeds approach zero (in pcpmpl). This 

is one of the required parameters for the Greenshields model.   

6.1.2 User information 

Figure 6-2 shows the TPM input data screen for user information and the essential 

data required to characterize the corridor users. For each vehicle class, the input data are 

as follows:  
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Figure 6-2 TPM 5.0 Data Input Screen- User Information 

6.1.2.1 Vehicle mix 

Vehicle mix is the percentage of each vehicle class in the study corridor (both MLs 

and GPLs). It presents the total number of vehicles in each class divided by the total vehicle 

counts in the corridor. The vehicle classes in TPM are defined as,  

 Single Occupancy Vehicles  (SOV) 

 Registered High Occupancy Vehicles (HOV) and Motorcycles 

 SOV +1 Trailers 

 Single-unit Trucks 

 Semi-trailer Trucks 

 Semi-trailer Trucks, Double or Triple Trailers 

 Special Vehicle or Special Permit Vehicles 
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6.1.2.2 Passenger Car Equivalent (PCE) factor 

PCE is a multiplier applied to convert a mixed traffic stream into a homogenous 

stream in terms of passenger cars. The PCE factors used in this study were set based on 

the recommendations by the Highway Capacity Manual (HCM) 2010 [54]. 

6.1.2.3 Vehicles not permitted to use ML facility 

Based on the different ML corridor’s policies, some vehicle classes might not be 

allowed on ML facilities at all or during specific time periods. Through this option, the 

vehicle classes not allowed to enter the ML are specified and excluded from user 

equilibrium assignment by the model. However, according to the NTE policy, all vehicle 

classes are permitted to use the MLs. 

6.1.2.4 Toll policy distribution 

The toll amounts for each vehicle class are specified here. For each vehicle class, 

there may be different toll polices based on the number of axles and/or size of the vehicles. 

Toll policy scenarios are usually specified as a percent of the base toll scenario (SOV toll). 

Toll policy scenarios for the study corridor were obtained through the NTE website [51].  

6.1.2.5 Fixed volume share 

This option is one of the modifications applied to the previous version of the TPM 

to make it compatible with the objectives of this study. For this research, data associated 

with all vehicle classes were collected from the field. Although, the drivers of SOV class 

were the specific focus of this study, classes other than SOV were also considered so that 

their impacts on the corridor’s traffic condition and consequently on SOV drivers’ route 

choice decisions could be incorporated. To do so, the TPM was equipped with an additional 

option. The new option allowed the user to include (or exclude) any vehicle classes in the 

equilibrium assignment. Therefore, during the initial loading state in TPM, traffic counts 

associated with excluded classes were fixed and assigned to the respective MLs and 
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GPLs. Next, when a toll was charged, for the corridor to reach its equilibrium condition, 

only traffic counts associated with the remaining (included) vehicle classes were assigned 

between ML and GPLs. Eventually, the model included all the vehicles regardless of their 

class during re-estimating the corridor’s cost of travel time savings (CTS), i.e. the toll 

charge converted to cost per minute of time savings. Thus, the traffic volumes associated 

with excluded vehicle classes were also considered as part of the corridor’s flow in 

estimating the corridor’s travel time. In simulating this study corridor, all vehicle classes 

except the SOVs were excluded from participating in the equilibrium process. This did not 

expect to impact the equilibrium results significantly since the percent of non-SOV classes 

in the mix were relatively low. Furthermore, their impacts on travel time in the ML were 

incorporated regardless.  

6.1.2.6 ML Share Percentages  

This option will be activated for all vehicle classes not included in user equilibrium 

as specified in the previous step (6.1.2.5 Fixed Volume Share). The actual ML shares as 

observed in the field for those classes are entered using this option. During the initial 

loading state, the model fixes and assigns the traffic counts for those classes to the 

associated facilities based on the percentages specified.  

As discussed in the previous chapters, the ML share was one of the two criteria to 

determine the revealed WTP distribution scenario that best represented field conditions for 

the NTE ML users. In this study, all the vehicle classes except for SOV were fixed and 

assigned to the respective facilities. Therefore, the SOV was the only class that was 

included in the equilibrium assignment by the model. The results in terms of ML share 

percentages yielded through any of the trial WTP distribution scenarios were eventually 

compared to the actual ML share observed in the field.  
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6.1.2.7 Corridor demand 

It shows the total number of vehicles in each direction in both MLs and GPLs in 

vehicles per hour.   

6.1.2.8 Dead setters  

Dead setters are defined as the percent of drivers in each vehicle class who will 

not use MLs if there is any charge at all. This could be due to their specific origin- 

destinations or other driver behavioral reasons. For this study, based on the previous 

studies [6,7], a 4.1% dead setters rule, which assumes that 4.1% of each vehicle class will 

not use the MLs if there is any charge. 

6.1.2.9 Time period  

The TPM was modified and converted to a DSS tool to dynamically set ML toll 

prices. This option provides the model with the users’ WTP values estimated previously for 

different times of day and different vehicle classes. These values can be stored in the 

model and used as the default WTP values. The time periods can be selected from the 

drop-down menu. Based on the findings of this study, the default SOV drivers’ WTP values 

are available for AM peak, PM peak, AM inter-peak, PM inter-peak, and off-peak periods. 

The WTP values for any other desirable times of day or vehicle classes can be estimated 

following the estimation process used in this study. By selecting any of the available time 

periods from the drop-down menu, the default values of WTP will automatically appear in 

the next screen (WTP input screen). The users have the option to change those as well as 

the WTP interval ranges and the frequency distributions.   

6.1.3 WTP Values 

The WTP distributions reveal how much the users are willing to pay to use any 

specific ML facility. The WTP distributions are entered separately for each vehicle class.  
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Figure 6-3 shows an example of the WTP input screen. This option shows one of 

the benefits of the TPM, which is its capability to integrate multiple vehicle classes in the 

new equilibrium concept. Indeed, different WTP distributions for different vehicle classes 

can be adjusted.  This allows the model to utilize only one equilibrium algorithm by adjusting 

the percentages of population in each vehicle class. Moreover, TPM has the capability to 

convert the vehicles in all classes into passenger car equivalents.  

 
 

Figure 6-3 TPM 5.0 Data Input Screen- WTP 

6.1.4 Objective 

In this screen, the operator can specify one of two desired ML operational 

objectives (Figure 6-4). The first option is to specify an SOV toll amount to be charged. In 

this case, for a specified set of toll policies and demand, the model can predict the resulting 
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volumes and speeds on MLs and GPLs. In the second option, users can specify a desired 

ML operating speed (Figure 6-4). In this case, the TPM estimates toll values that could 

result in maintaining the speed at or above the desired speed on the MLs [6,7]. For the 

NTE toll facility, the minimum speed can be set at 50 mph in compliance with the regional 

policy [4]. 

 
Figure 6-4 TPM 5.0 Data Input Screen- Objective 

6.2 Output Variables 

Figure 6-5 shows an example of the TPM 5.0 output screen. If toll values for each 

class of vehicles are specified, for a given total corridor demand the following key attributes 

are estimated: 

 Managed Lane Volume and Speed  

 Managed Lane Volumes by Vehicle Class 
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 General Purpose Lane Volume and Speed 

 General Purpose Lane Volumes by Vehicle Class  

 Total Toll Revenues  

 

Figure 6-5 TPM 5.0 Output Screen 

For a given corridor demand, if the objective of maintaining a desired speed in ML 

is specified, the output will include a recommended toll value for SOVs and for other 

classes of vehicles. Based on the calculated toll amount, the model then estimates the 

values of the above attributes. Outputs can be downloaded in a PDF format, as shown in 

Figure 6-6. The model outputs can also be exported into a Comma-Separated Value (CSV) 

file and be opened and saved in an Excel format. 

In this chapter, the features of input and output of the Toll Pricing Model version 

5.0 (TPM-5.0) are described. The various example input and output screens are also 
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presented. The next chapter presents the study conclusions and recommendations for 

future studies. 
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Objective 1: SOV toll value per mile: 0.61     

Speed-flow model: Drake      

Number of Managed Lanes: 2.0 lanes      

Number of General Purpose Lanes: 2.0 lanes     

Length of Managed Lane corridor: 6.0 miles     

Length of General Purpose Lane corridor: 6.0 miles     

Corridor Demand: 4451.0 vph      

      

VOLUME AND TOLL SUMMARY:      

Vehicle Class VolumeML(vph) VolumeGP(vph) ML Share (%) Toll Value($/mile) Total Revenue($/hr) 

SOV 321 2934 9.86 0.61 1174.86 

RHOV_M 17 769 2.16 0.3 30.60 

SOV_T+ 15 27 35.71 1.22 109.8 

Single-Unit Trucks 53 83 38.97 1.83 581.94 

Semi-Trailer Trucks 61 135 31.12 2.44 893.04 

Semi-Trailer Trucks (1 or 2 Trailer) 12 24 33.33 2.44 175.68 

SpVeh 0 0 0 3.05 0 

Total 479 3972 10.76 - 2965.92 

      

 ML GPL    

Total Volume (pc/hr) 545 4098.4    

Avg. Speed (Mile/hr) 74 64    

      

Figure 6-6  TPM 5.0 Output in CSV Format                                                                                                                                                                      
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Chapter 7  

Conclusions and Recommendations  

This study was mainly aimed at understanding the SOV drivers’ behavior, 

particularly with respect to MLs. This goal was addressed by studying the revealed mode 

choice decisions made by the North Tarrant Expressway (NTE) users, which were captured 

by the camera records during different times of day. The data collection efforts for this study 

employed an alternative to the traditional data sources. The most common data collection 

efforts include stated preference survey data, and more recently loop detector, Global 

Positioning System (GPS), and dynamic toll data. For the purpose of this study, toll rates 

for various times of day in the study section were obtained from the NTE website [51].  The 

associated ML/GPL volume splits were obtained from video recordings.   

In addition, while discrete choice models have been the most common method to 

analyze the WTP data, this research suggested an alternative approach in estimating the 

WTP values. The data were simulated through a modified version of an existing toll pricing 

model (TPM) [6,7] to estimate the average revealed WTP for the NTE travelers for different 

time periods. The model was established based on ML paradigm in users’ equilibrium 

condition defined for the ML facilities [6,7]. The revealed average WTP values were 

estimated through the TPM by examining the revealed NTE drivers’ mode choice decisions 

in response to the respective toll rates in effect. 

Finally, the WTP values estimated for the NTE SOV drivers were used to modify 

the TPM. The model was also modified based on the geometry and traffic characteristics 

of the studied corridor. Besides, some changes to the algorithm of the previous version 

were also required. These modifications finally led to the development of a decision support 

system (DSS) tool for ML dynamic toll pricing.   
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This chapter presents the findings and contributions of this study, followed by 

discussions on the study limitations and potential future directions.     

7.1 Research Findings 

The analysis in this study was carried out in two phases. The first phase included 

an initial analysis to describe the drivers’ general behavior with respect to the MLs usage. 

The second phase involved more in-depth analysis to estimate revealed WTP values. The 

results obtained from each analysis phase are summarized as follows. 

7.1.1 Revealed propensity in using the NTE MLs 

The data obtained for this study were initially evaluated to detect the prevailing 

tendency for the SOV drivers in the sample population. Indeed, travelers’ decisions were 

studied with respect to their mode choice between MLs and GPLs under different tolls 

charged. The following results can be observed for the NTE drivers:  

 Considerable percentages of SOV drivers using toll lanes (29.2% during AM and 

PM peaks, 15.9% during AM inter-peak, 14.6% during PM inter-peak, and 13.9% 

during off-peak periods).  

 Low sensitivity for SOV drivers to toll values, especially during peak periods. 

 No correlation between travel time savings and tolls paid during AM and PM peaks 

and the AM inter-peak period, underscoring the possibility of other potential 

reasons than VOT influencing the NTE travelers’ mode choice decision (e.g. 

drivers’ perception of more travel time reliability, safer geometry, and lax 

enforcement).   

 No statistically significant relation between travel time savings and tolls during non-

peak periods, again emphasizing the possibility of other potential reasons beside 

VOT affecting the NTE users’ mode choice decision.  

 Positive relation between tolls and corridor total volumes (expected) 
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 Positive relation between tolls and percentages of SOV drivers using toll lanes  

7.1.2 Revealed Willingness-To-Pay Values 

The method used in this study suggested a new approach to estimate the WTP 

values. This new method involved an existing toll pricing model (TPM) [6,7] to estimate the 

travelers’ revealed WTP from their real-life decisions. Values of about $119, $101, $71, 

$75, and $59 per hours were estimated as the revealed average WTP for the NTE SOV 

drivers during the AM, PM, AM inter-, PM inter-, and off-peak periods, respectively. As the 

values show, the revealed WTP value during the AM peak is considerably higher than the 

PM peak value. This is most likely because during morning peak hours, the majority of trips 

are work trips. Therefore, the AM drivers are usually less sensitive to toll rates and are 

highly sensitive to travel time due to not wanting to be late to work. The PM peak travelers, 

on the other hand, are likely to have a higher variety of trip purposes with less critical late 

arrival penalties.  

In addition, a value of $85 per hour was estimated for the mean revealed WTP (all 

periods inclusive) for the NTE SOV drivers. The WTP values estimated in this study 

showed higher WTP values compared with the former studies in the field. For example, in 

a study done for San Diego IH-15 in 2003 [58], the median WTP was estimated to be only 

$30 per hour, as determined through SP survey data. The authors pointed out the 

probability of biased results due to measuring only VOT and excluding drivers’ other 

possible reasons for using toll lanes, such as the value of travel time reliability (VOR). Patil 

et al. evaluated the values of VOT and VOR for Katy Freeway users in Houston under 

urgent and ordinary situations [73]. Values of $8 to $47.50 per hour and $7.40 to $8.60 

were estimated for urgent and ordinary situations, respectively. The results were based on 

the SP survey data conducted for Katy Freeway [34]. Another study was conducted for the 

same corridor [77], with the implied VOT estimated to be $22 per hour and the implied VOT 
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and VOR together estimated as $59 per hour. These estimates were again based on SP 

survey data. Later, Huang analyzed the same dataset using advanced Prospect Theory 

(PT) models. He obtained relatively low WTP values ($8 to $14/hour) for Katy Freeway 

users [78]. In another study in 2011, dynamic toll data for IH-394 were used to estimated 

VOT [21]. A value of $78 per hour was estimated for morning peak hours. The main 

drawback of this study was mentioned to be excluding the VOR from WTP estimations [21]. 

To address this shortcoming, He et al. proposed a methodology to estimate VOT/VOR 

using the combination of dynamic toll data and loop detector data for IH-394. The results 

showed average values of $11.36/$25.45 per hour for VOT/VOR, respectively [20].  

The studies mentioned here just present a sample of studies conducted in this 

area. The results clearly vary considerably for different studies. These variances in WTP 

values definitely could be caused by the differences in the studies’ time periods and years 

and locations. For example, the WTP values are not expected to be the same for peak and 

non-peak periods or for drivers in Houston and Minneapolis. Another important point that 

should be considered is that the longer the new facilities have been introduced to the users, 

the more steady and predictable their behavior becomes. In addition, different sources of 

data can capture different aspects of users’ behavior. For example, in some of these 

studies, the data source did not provide the travel time variabilities (reliabilities). In some 

others, the travelers’ socio-demographic characteristics and/or trip attributes were not 

provided. Furthermore, different methodologies used in analyzing the data could result in 

different estimates. The more advanced discrete choice models could likely result in more 

accurate estimations. Different assumptions on the model’s parameters, such as choice of 

distribution function for the random coefficient, could also result in different estimates. In 

addition to all the factors mentioned here, there would still be other reasons which could 
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help explain the differences between the WTP values estimated in this study and the 

estimates from the previous studies. 

However, this study applied camera images and TPM, a new and completely 

different data source and methodology, to estimate the WTP values. This could help 

explain the somewhat different results relative to those reported in the literature. First, the 

WTP values estimated in this study probably represent more than the values that travelers 

were willing to pay only for their travel time savings due to the data source and methodology 

used in this study. On the one hand, to obtain the desired results from trial and error 

attempts, one of the criteria used was the average WTP estimated from the field data. The 

value was estimated by dividing the average toll paid by the average time savings. In 

addition, through the TPM, the ML equilibrium condition was reached when the users’ WTP 

values became less than the cost of traveling on the MLs. The cost was estimated based 

on the assumption that travelers paid a toll to only save their travel time. Therefore, it seems 

that the WTP estimated in this study involves only VOT.  

On the other hand, the WTP distribution scenarios were obtained through trial and 

error attempts. Thus, their values were independent of other potentially influential factors 

such as travelers’ socio-economic characteristics and/or trip attributes. Indeed, whether 

the travelers chose to pay a toll to drive on the MLs or not was known. However, why they 

chose to make such decisions was not identified in this study. It was presumed that the 

primary factor in paying a toll was saving travel time, i.e. the VOT.  However, what was 

being observed was the WTP (not the VOT) to use MLs for a number of intertwined reasons 

and not just time savings. This could help enlighten why scatter plots of travel time savings 

versus toll for different times of day displayed no strong trend between the two variables. 

Indeed, during the AM and PM peaks and the AM inter-peak period, no trends were 

observed. During non-peak periods, the observed trends were more pronounced but still 
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not statistically significant, with very low adjusted R-squared values. So, it can be 

concluded that the values paid by travelers likely should not be solely attributed to travel 

time savings. Furthermore, in dynamic toll pricing systems, drivers might infer current traffic 

conditions along the corridor through the amounts of toll being charged. From their point of 

view, the higher values of toll might indicate higher levels of congestion downstream, and 

consequently a higher probability to experience longer travel times on the GPLs. 

Accordingly, the WTP estimated in this study are likely to include the users’ values of travel 

time reliability (VOR) and other values of intangible factors rather than only their VOT. 

These include, for example, the values users place on higher speed limits, safer facilities, 

more travel time reliability, a perception of lax enforcement, etc.   

Further investigation to validate the results of this study can be beneficial in this 

regard. In addition, considering the possible sources of bias in the results of different 

studies can further help explain the differences. The possible sources of bias regarding the 

new data source and methodology used in this study are discussed further in the study 

limitations section later in this chapter.  

7.2 Contributions 

7.2.1 Innovative data source and analysis methods 

This study suggested a number of unique approaches in estimating WTP values. 

The new approaches included a different revealed data source (camera images from the 

field) as well as an alternative analysis method (TPM) in WTP studies. The results of this 

new methodology may not directly address the questions about travelers’ behavior in terms 

of their reasons to choose between the MLs and GPLs. However, these results can 

significantly contribute to decision making about transportation policies, in particular 

policies associated with dynamic congestion pricing for ML corridors.  
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While the revealed WTP values were estimated only for SOV drivers in this 

research, the model can easily be used to obtain the revealed WTP values for travelers’ 

driving other vehicle classes by using a similar dataset. Furthermore, this method can also 

be employed to estimate the WTP values for travelers’ driving other ML corridors in this or 

other regions. 

7.2.2 Better understanding of travelers’ behavior 

As mentioned earlier, the ML is a relatively new concept in the nation’s freeway 

system as well as the DFW highway network. In addition, the conventional toll pricing 

methods are being replaced by an emerging scheme called dynamic toll pricing. Since 

these new concepts are still in their early stages, the level of acceptance by users is not 

yet well specified. This study presents a procedure to better evaluate the travelers’ 

behavior based on their revealed mode choice and with respect to different times of day 

and classes of vehicles. Also, the WTP estimates do not only represent the mean value of 

WTP, but also a frequency distribution of the sample population.  

During peak periods, as previously shown, travel time savings might not have been 

the main reasons for paying toll for the NTE drivers. During non-peak periods, their 

motivations to pay tolls could be partially explained by travel time savings. It can be said 

that, other probable reasons such as more reliable travel time, safer geometry, higher 

speed limits, and a perception of lax speed enforcement might have been considered in 

their mode choice decisions. Further investigations would be beneficial to study the role of 

reasons other than time savings such as those mentioned above in using toll lanes. 

Moreover, the results of this study showed relatively high WTP values and ML 

share percentages for the NTE drivers, indicating a high level of acceptance of MLs in the 

region.  
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7.2.3 Decision support system tool for ML dynamic toll pricing (TPM 5.0) 

Using an existing toll pricing model (TPM-4.3) as a decision support system tool 

for dynamic toll pricing in ML facilities was another contribution of this study. This was 

achieved through calibrating and modifying the TPM [6,7] using the NTE revealed data. 

TPM 5.0 can be employed as a DSS tool to estimate the WTP values for drivers of any 

vehicle classes, on any ML corridors, and for any times of day. In addition, the model can 

be calibrated and modified for any ML facilities. Then, one of the two built-in objectives of 

the model can be invoked to predict the volume assignment on the facility for a given toll 

or to recommend a toll based on a desired ML average speed. TPM 5.0 can be accessed 

on the web and it is very user-friendly. The details on input modules of the DSS tool were 

presented in Chapter 6. 

7.3 Study Limitations   

The data used in this study were easy to collect. The camera images provided the 

information regarding the revealed mode choice decisions for travelers on both MLs and 

GPLs. Moreover, the volume and toll data for different times of day and different vehicle 

classes were easily reduced from the camera images, as well. Also, the analysis method 

employed only required the data associated with toll and traffic volume. Indeed, the process 

of WTP estimation was independent of travelers’ socio-economic backgrounds or trip 

attributes. 

On the other hand, the data analysis method was based on trial and error attempts 

of different WTP distribution scenarios through TPM. These new methods in data collection 

efforts and data analysis posed a number of advantages relative to the shortcomings 

associated with the existing methods in the field, as discussed in Chapter 2. However, 

there are some drawbacks and limitations associated with the data collection methodology 

used. These limitations are presented below.  
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7.3.1 Data limitation 

Whereas the data used in this study had some advantages as discussed earlier in 

this chapter and in Chapter 2, there were a number of limitations which may introduce 

some bias in WTP estimates.  

First, the traffic counts associated with Registered HOV and Motorcycle classes 

were not directly captured from the field and had to be estimated. This could affect the 

WTP estimates for these classes. In addition, in this study, only the GPLs and MLs of the 

NTE corridor were simulated through the TPM. The access roads were not considered 

since they were not continuous along the corridor at the time of the study. Including the 

frontage roads in the model, would definitely influence the WTP estimates. 

In addition, the lack of information regarding the total length and cost of individual 

travelers’ trips was another possible source of bias [18,32]. As shown in a previous study, 

travelers were more willing to pay tolls for shorter travel lengths [32]. It was also revealed 

by Li et al. that travelers’ WTP varied due to their total trip cost. The WTP values were 

higher if the toll paid by travelers made up a small fraction of their overall trip cost [18]. For 

this study, the data were only collected from the first segment of the NTE ML corridor and 

the travel times and costs were not captured for an individual’s entire trip. Therefore, the 

WTP estimated by this study were likely to have an upward bias. 

Another potential source of bias was the manner in which travel times were 

estimated. First, the traffic flow model used in this study was selected based on the results 

from a previous study [61]. As mentioned, the corridor was not studied in detail to find the 

traffic flow model which best represented its characteristics. This could affect the accuracy 

of the travel time estimates. To obtain more precise results, a further study would be 

beneficial to calibrate the traffic flow models for the specific corridor. Moreover, due to the 

dynamic nature of ML corridors, it is unlikely to describe the stochastic behavior of 
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travelers’ by solely using deterministic traffic flow models. The deterministic single-regime 

speed-density traffic flow models characterize the average system behavior. So, more 

advanced models are required to capture the ML corridor’s uncertainties [63]. Wang et al. 

proposed a stochastic speed-density relationship to overcome the shortcomings of 

deterministic models [63]. In another study, to more accurately estimate the freeway travel 

time, a (modified) dynamic traffic flow model was presented. The model used fixed-point 

detector data to describe and predict the corridor travel time under transition and 

congestion conditions [64]. In the concept of ML and dynamic toll pricing, further studies 

would be extremely useful to develop more accurate traffic flow models. A yet better 

alternative would be to directly measure travel times from field detectors such as Bluetooth 

readers or other such detectors. 

Another source of bias was that the number of travelers on the GPLs might be 

misinterpreted. The camera images were recorded at the midway of the first ML segment. 

Along the first segment, for each direction, there are only one entry and one exit ramp on 

each end of the segment. The drivers on the MLs selected to enter the ML at the beginning 

of the corridor. Since there is no access ramp along the corridor, the same drivers exit the 

ML at the end of the corridor. However, this is not the case for the GPLs since there are 

multiple access ramps along the GPL facility. Therefore, the traffic volume captured by the 

camera might enter the GPLs after the MLs entry ramp. They might have entered the ML 

facility if they had access to it. The drivers captured by the camera located at the middle of 

the corridor might enter the corridor after the ML entrance and exit it before the end of the 

corridor. This problem cannot be solved by changing the camera location to the beginning 

of the corridor. The travelers do not choose to drive on the ML because they might need to 

exit the ML before the end of the corridor. But since there is no exit ramp along the corridor, 

they choose not to use the MLs. Finally, there was no information about origin-destination 
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of the drivers on the GPLs. They might have entered and/or exited before and/or after the 

location of the camera. This problem could be somewhat mitigated by observing the field 

at the entrance of the ML corridor.   

7.3.2 ML user equilibrium condition 

The toll pricing model (TPM) used in this study was established based on the ML 

user equilibrium condition for MLs. Based on the new paradigm, the equilibrium condition 

was reached by ML corridor when the users’ WTP values became lower than the cost of 

traveling on the MLs. The cost of switching to the ML was estimated based on the 

assumption that travelers paid toll to only save travel time. However, travel time savings 

may not be the only benefit perceived by drivers when choosing to use MLs. A Previous 

study has shown that the travelers’ perceived travel time savings were more than what they 

really saved by switching to the MLs [70]. The purpose of trip (work commute) was also 

shown to significantly affect their perception of travel time savings [70]. If a percentage of 

the NTE travelers were assumed to overestimate the actual travel time savings, it could 

explain the relatively high values of average WTP estimates, especially during peak 

periods. In addition, one of the criteria which the results from the simulation runs required 

to meet was estimated based on the average WTP tolls to save a unit of travel time by 

travelers during each time period. Again, this approach makes no distinction between WTP 

and VOT. 

7.3.3 Manually modifying trial and error WTP distribution scenarios  

Another reason that might introduce bias in WTP values could be due to the 

process of trial and error attempts and their modifications for TPM being all done manually. 

Performing this process through developing computer programs would definitely optimize 

the results’ accuracy as well as the analysis time. Also, the wide range of dispersion in the 

WTP intervals can be fixed through examining different trial and error distribution scenarios 
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by these programs instead of performing the task manually. Moreover, figuring out the 

distribution shape of the travelers’ WTP is another challenge of this method. 

7.4 Future Directions 

The field of travelers’ willingness to pay toll is one of the most crucial fields in 

transportation policy. Although, existing literature has been substantially enhanced by 

various research efforts on this topic, further improvements in the field are still desired and 

possible. This research suggested a new practice in WTP studies. However, as discussed 

above, there are still a number of drawbacks associated with it. This section presents the 

direction for future studies in two sub-sections. First, based on the findings of the research 

and discussions in existing literature, a new paradigm in WTP estimations is suggested. 

Second, future studies to address some of the identified shortcomings in this research are 

recommended.  

7.4.1 New paradigm in willingness-to-pay estimations 

Despite significant progress made in the WTP studies, there is still room for further 

enhancements. There are various reasons that make the value of time analysis beneficial 

and desired. Among them, Small [11] mentioned three reasons. First, VOT is critical in 

decision making about transportation policy. Second, it contributes to better understanding 

of human behavior that is of interest for fields such as economics. Third, it is one of the 

important components in travel demand modeling [11]. Based on the findings of this 

research and the existing need for further improvements in this area, a new paradigm in 

WTP estimation studies is recommended. The new paradigm involves an alternative data 

source, an innovative analysis method, a new concept for WTP, and a relatively different 

definition for WTP values.  

A new data source and analysis method were introduced through this study. In 

addition, as the third component of the new paradigm, a concept of real-time WTP values 



 

 
122 

is suggested for dynamic toll pricing schemes. Indeed, for dynamic toll pricing systems, to 

set the real-time toll prices based on the real-time congestion levels on the corridor, it is 

recommended to measure travelers’ real-time WTP values. For dynamic toll pricing, the 

real-time WTP estimates would replace the WTP values obtained for the average behavior 

of the population as observed in most existing literature. The major drawbacks associated 

with the existing approaches can be summarized as below.  

First, the new concept relies thoroughly on the revealed behavior of the travelers. 

However, not all the data collection efforts measure the revealed travelers’ behavior from 

their real-life mode choice experiences. This is due to the fact that some of the motivations 

that cause travelers to behave in a certain way are difficult to quantify or unknown to the 

researchers. Furthermore, the real-time WTP cannot be estimated only through studying 

the ML users’ behavior, but also through studying the travelers’ who choose to drive on the 

free adjacent lanes. This is another shortcoming with the current revealed data sources 

such as dynamic toll data. Such data only provide information on the ML users. In addition, 

the dynamic pricing of the MLs facilities intends to change the price based on the real 

dynamic traffic conditions on the corridor. All the existing data collection efforts fail to 

capture the wide variety of traffic conditions encountered in a corridor. For example, SP 

surveys just offer participants only a limited number of hypothetical scenarios. Although RP 

surveys investigate the revealed drivers’ mode choice decisions, they still suffer from the 

restricted number of conditions under which the travelers’ behavior can be studied. Other 

revealed data collection efforts capture a wider variety of conditions, but they are still limited 

to using historical datasets. However, the suggested method has the potential to capture 

the data and the associated travelers’  behavior for any traffic conditions happening at the 

time.   
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Moreover, the concept of real-time WTP requires on-site data. SP or RP surveys 

are considerably time consuming to design, conduct, and reduce. The same problem is 

somewhat attributed to GPS data collection efforts. On the other hand, data provided by 

loop detectors or dynamic toll datasets are relatively fast-paced to access. However, there 

are still other drawbacks that make them somewhat unsuitable for use in dynamic toll 

pricing. For example, the dynamic toll data just cover the ML traffic counts, and data 

obtained from the loop detector cannot provide much information on travel time reliability. 

In addition, they both suffer from an absence of information on travelers’ socio-economic 

backgrounds or trip attributes. However, this is another advantage of the suggested 

method that estimates the travelers’ WTP values independent of their socio-economic 

characteristics and trips attributes.   

Once again, regardless of data collection methods, estimating the WTP values 

through the discrete choice models is significantly time consuming. This problem gets more 

serious when to obtain more accurate data, more advanced models and/or more predictor 

variables in the models are used. In addition, discrete choice models mainly estimate the 

average behavior of the population studied. However, transportation systems, particular 

dynamic managed lane pricing, cannot merely rely on the average travelers’ behavior. 

Indeed, it requires another gauge to efficiently address the dynamic nature of the ML 

corridors.  

The new data source and analysis method suggested in this study can be 

employed as a platform to develop a tool in order to estimate the real-time WTP values. 

This method only requires the data associated with the actual toll lane usage and tolls paid. 

The traffic count data are simply available for different time periods and for both MLs and 

adjacent free lanes through camera records. Existing cameras located in the corridors can 

capture the required data, so there is no need to install new equipment. Moreover, the data 
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can be obtained for different vehicle classes subject to different toll rates. This offers the 

opportunity for the ML operators to estimate the WTP for drivers of different vehicle classes 

by using the same dataset.  

As discussed, the DSS tool developed in this study has the potential to be used by 

ML operators to measure the real-time WTP values for the ML users. However, the concept 

of WTP, data collection effort, and TPM all require further modifications and enhancements 

in order to develop an on-site DSS tool. Some of the possible and desired modifications 

and enhancements are discussed in the future studies section.   

The last component in the new paradigm is a new definition for WTP values. The 

current literature defines the value of travel time savings (VTTS), also referred to as the 

value of time (VOT), to represent the travelers’ willingness to pay to reduce their travel time 

[79]. Value of travel time reliability (VOR) presents the value travelers place on the reliability 

of estimated travel time [15]. VOR can essentially be thought of as the value the travelers 

place on reducing the variability of travel time by one unit [15]. ML facilities are intended to 

offer lower and more reliable travel times. Therefore, the travelers WTP are currently 

estimated as their willingness to pay to reduce travel time and/or variability of travel time in 

terms of a monetary unit per unit of time (usually in dollars per hour). In other words, the 

available literature mainly focuses on estimating WTP as a portion of users’ WTP 

associated only with travel time (saving and/or reliability) through discrete choice models. 

However, other probable utilities offered by MLs for which they are also willing to pay are 

not addressed in those models. This could be explained due to the fact that these other 

probable influential factors are indeterminate, factors such as relative safety, higher speed 

limits, better geometry, etc.  

On the other hand, the WTP values are frequently prone to change. The WTP 

values are different among regions, times, and individual travelers. They vary during 
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different times and conditions even for an individual traveler. For example, a former study 

showed that risk-averse travelers had higher VOR and consecutively higher WTP 

compared with risk-taking travelers [70]. In another study, it was shown that drivers were 

considerably more willing to pay under urgent situations compared to ordinary situations 

[71]. Furthermore, different discrete choice models with different predictor variables and 

different assumptions would result in different WTP estimates.  

The fundamental question asked in the current literature is how much drivers are 

willing to pay to save travel time or to have more reliable travel time. However, this study 

suggests studying the travelers’ WTP values from another aspect. It is suggested to 

observe travelers’ decisions in their real-life experiences without speculating on the 

reasons behind their decisions.  

In this regard, it is suggested to instead ask how much drivers are willing to pay to 

drive one unit of length on the MLs. Therefore, the WTP value will be associated to the 

travelers’ willingness to pay to drive one unit distance on toll lanes. As the toll is charged 

in terms of dollars per mile, the travelers’ WTP are also estimated in terms of dollars per 

mile. The WTP values estimated through this new approach would not focus on the 

reasons behind the travelers’ decision. However, they would significantly contribute to the 

transportation policy decisions, in particular for ML dynamic pricing schemes. This new 

paradigm has also the potential to overcome some of the drawbacks associated with data 

collection and the methodology employed in this study.  

As mentioned, the new data collection and analysis methods employed in this 

study require further enhancements and modifications to be compatible with the new 

paradigm in WTP estimation discussed above. Moreover, future studies can investigate 

the possibility of developing a DSS tool based on the new paradigm in the WTP estimation, 

i.e. willingness to pay per mile rather than willingness to pay to save a minute of time.  
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7.4.2 Future studies 

The future directions to improve the findings of this study are summarized as 

follows:  

The decision support system tool developed for dynamic pricing of MLs can be 

applied for any ML corridors. To examine the accuracy of the results of this research, it 

would be useful to validate the model based on other ML corridors. Also, the focus of this 

study was only on the NTE SOV drivers’ travel behavior. Further studies to investigate the 

drivers’ travel behavior driving different classes of vehicles would provide a better 

understanding in this regard. Moreover, the data for this study were collected shortly (within 

a year) after opening the NTE TEXpress lanes. It is recommended to re-estimate WTP 

values based on data collected after the corridor has been operational for a few years so 

that users are more accustomed to the new ML corridors. 

To mitigate the possible sources of bias associated with the data collection effort, 

it is suggested to employ a combination of other different data collection methods with the 

new data source used in this study. In addition, the ML corridor studied in this research 

represented a specific length of toll lane corridor. Investigating corridors with different 

lengths would provide a more comprehensive understanding of travelers’ mode choice 

decisions. Furthermore, only the GPLs and MLs of the NTE corridor were simulated 

through the TPM. The access roads were not considered since they were not continuous 

along the corridor at the time of the study. Considering any continuous lanes along the 

corridor could improve the accuracy of the revealed WTP estimates. Additionally, to 

develop a more compatible DSS tool for measuring real-time WTP values, computer 

programs could perform the data reduction process from the camera records.  

Regarding the potential bias caused by the data analysis method (TPM), the 

process of generating and modifying the different WTP distribution scenarios could be 
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programed and done as part of the model. Therefore, instead of doing the whole process 

manually, it can be done automatically by the model. This could yield more accurate WTP 

estimates and minimize the wide range of the WTP intervals. Also, it would save significant 

amounts of estimation time. Moreover, the problems associated with the existing user 

equilibrium definition for MLs can be solved through adopting the new mile-based WTP 

concept offered by this study. The new measurement for WTP values could make the user 

equilibrium conditions easier to estimate. Indeed, the cost of traveling on the toll lanes is 

exactly equal to the amount of toll the travelers are willing to pay without the need to 

estimate an implicit per unit time toll values. So, the ML reaches the equilibrium condition 

when the travelers’ WTP become lower than the tolls charged. This could also remove the 

problem associated with choosing the best traffic flow model for the corridor for estimating 

travel times. 

Finally, in this study, the average revealed WTP values were estimated for the 

average data obtained for different times of day. However, to obtain more accurate results, 

the data are recommended to be simulated for every 5-minute interval (the time interval 

that real-time prices were re-calculated based on the level of congestion on the corridor 

[4]). It might require more time and more data points from the field. In addition to the 

average revealed WTP estimates for different times of day, attempts could also be made 

to obtain WTP estimates under different levels of congestion and if possible even for 

different trip purposes.  
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