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Abstract 

 
A COMPREHENSIVE RESILIENCE FRAMEWORK FOR THE SEISMIC EVALUATION 

OF HYDRAULIC FILL DAMS IN NORTH TEXAS 

 

Santiago Caballero, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dr. Anand J. Puppala 

Hydraulic filling is a construction procedure that was used for earthen structures 

during the mid-1800s to the early 1900s; however, dams and levees that were 

constructed by implementing this technique had a significant potential for geotechnical 

hazards. Historically, most of the failures of these structures were a result of the soil 

cyclic liquefaction phenomenon. This phenomenon occurs when excess pore water 

pressure develops during cyclic loading and causes loss of effective strength in the soil. 

The cyclic stress approach is one of the methods widely used to assess cyclic 

liquefaction; however, seismic parameters (loading conditions) and soil characterization 

(liquefaction resistance) must be characterized in a discreet and careful manner. The 

seismic resilience of hydraulic fill dams depend upon two main contributing factors which 

are the high variability of soil properties and the sudden increase of seismic activity in 

areas believed to have low seismicity (magnitude, location, and distance at which the 

earthquake occurs). Current slope stability and liquefaction analysis considers averaging 

the soil properties at a specific depth; they are considered as layered systems. However, 

such analysis is not suitable for hydraulic fill structures due to the high variability of the 

soil layers and the fact that failure can be triggered at any location within the structure. 
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Hence, a more rigorous approach is required for addressing the variability in soil 

properties and identifying potential liquefiable layers. 

In this research study, a comprehensive seismic resilience framework for 

hydraulic fill dams was developed based on an enhanced soil characterization and 3D-

visualization modeling using in-situ cone penetration testing and geotechnical borehole 

data. Eagle Mountain Dam located in Fort Worth, Texas was used for the present 

analysis. Geostatistics was used for modeling of the dam embankment section and these 

results are then used to assess liquefaction of dam embankment layers. Both 

deterministic and probabilistic hazard analyses using the recent earthquakes surrounding 

the test site are performed. Hypothetical scenarios based on source of seismicity, site-to-

source distance, and focal depth of earthquakes were also assumed and analyzed. The 

cyclic liquefaction analysis showed that both deterministic and probabilistic analyses did 

not cause liquefaction of the layers in the current and natural field conditions. However, 

probabilistic analyses showed potential liquefaction of layers with an increase in the 

water elevations within the dam. This study can also be applied and used to evaluate 

liquefaction of similar structures where seismic activity has been either noted or 

expected.  
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Chapter 1  

Introduction 

1.1 General Overview 

Hydraulic fill construction procedures were commonly employed for building 

many earthen structures from the mid-1800s to the early 1900s. The methodology 

consists of generating an artificial fill composed of soils that are conveyed and deposited 

by hydraulic means (Valenzuela 2015). These fills are generally used to build 

construction platforms, to reclaim land, to generate beaches from the sea, and to build 

impoundment dams or levees. However, these types of structures are perceived 

negatively due to their history of failures associated with the original design. There is no 

specific date for the construction of the first hydraulic fill dam, but the methodology is 

associated with the construction of land reclamation dikes in the Netherlands (Hsu 1988) 

and with mining exploitation in California (Valenzuela 2015.)  

Hydraulic systems enable large-scale extraction, transport, and placement of 

borrow soils in an economical manner (Valenzuela 2015.) However, the resilience and 

performance of several hydraulic fill dams and levees was affected by geotechnical 

failures that were due to unaccounted for factors in the design analysis (USNRC 1985). 

These failures are mainly attributed to the effects of seepage and liquefaction in 

seismically active areas. The difficulty of building the core, with respect to the shoulders, 

due to the variable contents of sand and fines in the borrowed material, generated a non-

homogenous body after construction. A further difficulty of controlling the construction 

was that it allowed the sand material to slide from the shoulders towards the central core, 

introducing sand lenses into the “clayey” core, rendering it highly susceptible to 

liquefaction.  
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Over the past decades, several attempts have been made to analyze the cyclic 

liquefaction of hydraulic fill structures (Tezcan et al. 2001; Uddin and Baltz 2001; Bair et 

al. 2003). They were, however, performed based on spot-based measurements which did 

not consider the high variability of soil properties within the whole configuration of the 

dam or levee. It has been proven that the lack of incorporation of spatial variability within 

soil properties into the analysis resulted in a large number of uncertainties for 

geotechnical designs (Einstein and Baecher 1982; Laccasse and Nadim 1996).  

Along with spatial variability, another important aspect of this analysis is to 

determine the appropriate seismic parameters, especially in low seismic areas, where 

some hydraulic fill structures are located in the United States. However, over the past 

eight years, some of the areas which were believed to be low seismic zones have 

experienced a sudden increase of seismic activity. The Central United States is such an 

area, and considerable seismic events, including some with high magnitudes (i.e., M5.8) 

have occurred in Oklahoma, Colorado, Arkansas, and Texas.  

In November 2011, a sequence of earthquakes hit the area of Prague, OK (M 5.6 

and three M > 4.0). Smaller events occurred in Texas (M3.6, Azle, TX 2013; M4.0 Venus, 

TX 2014; and M3.6 Irving, TX 2015). The main concern in the region is the lack of 

seismic hazard analyses for structures. Seismic hazard analyses are based on the known 

source of seismicity (i.e., commonly active faults). Only a few areas in central United 

States have developed a detailed mapping of faults so that the seismic hazard 

assessment for a site can be evaluated. In areas such as those in North Texas, where 

the increase of seismicity is evident, the lack of fault mapping makes the task of finding 

seismic sources more difficult.  
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Hence, it is vital to improve the geotechnical hazard assessments of existing old 

structures such as hydraulic fill dams and levees, considering both the high spatial 

variability within their configurations and developing a specific seismic hazard analysis for 

areas where no active faults have been encountered yet. In this research study, a 

comprehensive resilience framework based on soil characterization and 3D-visualization 

modeling was developed, using in-situ Cone Penetration Testing (CPT) data and 

Geostatistics tools. CPT results are further used to perform cyclic liquefaction 

assessment of hydraulic fill dam. The liquefaction analysis of these structures was 

complemented by integrating a seismic evaluation framework developed for the Central 

United States, using volumetric seismic sources that were based on the records obtained 

from the recent seismicity events in the region.  

  1.2 Research Objectives 

The main objective of this research is to apply the principles of risk and reliability 

to assess the resilience of aging structures such as dams and levees. The principle of 

risk is associated with predicting the natural and man-made hazard events such as 

earthquakes, flooding and others. The reliability principles were applied to determine the 

realistic variation of soil properties by modeling the spatial variability using Geostatistics 

principles. These principles are then applied to assess the resiliency of an infrastructure. 

In this study, a comprehensive framework was developed to assess the resiliency of 

critical aging infrastructure such as dams by focusing on the liquefaction distress. In order 

to demonstrate the application of the framework, a hydraulic fill dam located in North 

Texas was considered as a prototype example for comprehensive analysis including risk 

based characterization of compacted dams and probabilistic seismic hazard analysis on 



 

4 
 
 

 

loading events.  The following research tasks have been formulated for performing the 

above mentioned studies: 

a) To develop a framework to assess the probabilistic seismic parameters 

based on previous and future seismic hazard events and specific site 

conditions in North Texas; 

b) To develop a framework for soil characterization and to generate three 

dimensional (3D) visualization models of dams to identify the critical sections 

based on in-situ cone penetration testing measurements; 

c) The incorporation of a) and b) for the comprehensive assessment of the 

liquefaction potential of dam structures. 

As an attempt to demonstrate the developed approach, an analysis was 

performed on the Eagle Mountain Dam, a hydraulic fill dam structure located in North 

Texas. Extensive cone penetration soundings to borehole logs with laboratory tested soil 

parameters are available. This is presented along with available seismic records from 

USGS are used in performing the above specific tasks. 

  1.3 Thesis Organization 

This thesis consists of six sections: Introduction (Chapter 1); Literature Review 

(Chapter 2); Formulation of a Simplified Seismic Hazard Analysis Framework for North 

Texas (Chapter 3); 3D Visualization in Geotechnical Engineering (Chapter 4); 

Liquefaction Evaluation of Eagle Mountain Lake Dam in Fort Worth, Texas based on 3D 

Visualization Models (Chapter 5); and Conclusions and Recommendations (Chapter 6).  

Chapter 1 provides a general overview of hydraulic fill structures and their 

vulnerability to liquefaction in seismically active zones. The importance of soil 
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characterization of these structures is also highlighted, as is the necessity for using new 

visualization models to address soil variability when performing liquefaction assessments.  

Chapter 2 includes a summary of the literature review pertaining to topics that 

are divided into several sub-chapters: A brief introduction of dams, Classification Types, 

Hydraulic Fill Dams, Geotechnical Hazards, Liquefaction analyses, and Seismic Hazards. 

A seismic hazard analysis is also introduced in this chapter, and includes basic concepts 

that will help in developing the seismic hazard analysis framework for North Texas. 

Finally, soil characterization and variability is included, with an explanation of 

uncertainties in geotechnical engineering, as well as descriptions of existing prediction 

models. A summary of 2D visualization models and technology is also highlighted to 

showcase the necessity of a 3D visualization for any geotechnical assessment. 

Chapter 3 presents the steps required to develop a simplified seismic hazard 

analysis framework for North Texas. The generation of volumetric seismic sources, which 

plays an important role in assessing the seismic hazard parameters, is described, along 

with the final seismic hazard parameters. 

Chapter 4 describes the methodology used to incorporate in-situ testing data to 

develop 3D visualization models, using Geostatistics. The in-situ test data available at a 

hydraulic fill structure located in North Texas was considered in this study to demonstrate 

that the 3D visualization model assesses the variability in soils and replicates the most 

appropriate field conditions. 

Chapter 5 presents the liquefaction assessment of a hydraulic fill dam located in 

North Texas. This was performed by incorporating the seismic hazard analysis generated 

in Chapter 3 and the 3D visualization models and soil characterization developed in 

Chapter 4.  
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Chapter 6 summarizes the research, cites conclusions, offers recommendations 

for future research and define certain limitations of the framework presented. 

Chapter 2  

Literature Review 

2.1 Introduction: Dams  

Dams are structures built for water retention; flood control, recreational facilities, 

electricity generation, and a water supply source for irrigation purposes, drinking water, 

and other public facilities (Sharma 1991). They provide several societal, economic, and 

environmental benefits. Hence, their failure can be catastrophic, resulting in property loss 

and serious threat to different species of living beings. Dams are classified by three 

hazard levels: low, significant, and high (FEMA 2005). Most dams are considered to have 

low hazard potential because their failure does not cause any loss of human life. 

However, if the failure of the dam causes significant economic loss without loss of human 

life, it is considered a significant hazard. A high hazard classification refers to the 

probable loss of human life, economic loss, and harm to the environment.   

According to the U.S. Army Corps of Engineers (National Inventory of Dams), 

there are approximately 91,000 dams in the United States, including some which were 

constructed  before 1900 (USACE 2017). Of these, almost 28,000 dams are classified as 

having a high or significant hazard potential. According to the Association of State Dam 

Safety Officials, from January 1st, 2005 through June 2013, 173 dam failures and 587 

incidents were reported (ASDSO 2017). Some of these were attributed to an inaccurate 

design or faulty construction process; others were a consequence of poor maintenance 

or inadequate operation. However, many of these failures resulted from unanticipated 

large floods and from intense earthquake tremors. In an effort to increase the resiliency of 
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these structures, over the past century, the design, construction, and maintenance of 

them have dramatically evolved.  

The US Department of the Interior’s Bureau of Reclamation has played a key role 

in the evolution of the design, construction, and safety of dams (Wiltshire 2002). Dams 

are subcategorized into different classes, according to the use of the dam, its hydraulic 

design, and the construction methodologies implemented (Wiltshire 2002). 

Storage, diversion, and detention are the three main classification systems of 

dams based on their usage. Storage dams are constructed to retain water, over a long 

period of time, and serve as the water supply source for cities. Diversion dams are 

constructed to dodge water into ditches, canals, or other similar systems. Other dams are 

constructed as detention structures that control flood or runoff to minimize the effects of 

sudden floods (Wiltshire 2002). Dams can be also subdivided by their hydraulic design, 

and some are commonly called overflow dams, because they carry some discharge 

through spillways or over their crests. But the most common classification system is 

based on the materials used for the construction of the structure: concrete dams and 

earthen dams. The selection of a concrete dam or an earthen dam, rock-fill dam, or any 

other type depends on several factors which are presented in the following sections. 

2.2 Factors Governing Selection of Dam Type 

Dam projects, like any other civil engineering project, require special attention 

during the early stages of planning and design, including the selection of the site and type 

of dam. It requires special cooperation and coordination among experts from different 

disciplines such as, but not limited to, planners, geologists, hydrologists, and 

geotechnical and structural engineers to ensure the most adequate and economical 

design. According to the Manual of Small Dams (USDI 1987), several factors affect the 
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final selection of the type of dam, such as the protection of the spillway discharges, 

limitations of outlet works, the difficulty of diverting the stream during construction, 

availability of construction equipment and materials, the accessibility to the site, and 

physical characteristics of the site. It is important to have a good understanding of the 

characteristics of the site in order to evaluate its safety and to perform geotechnical 

assessment of existing dams. Therefore, this section presents an overview of the 

physical factors important to the selection of the type of dam and to being able to 

understand the potential problems during its operation. 

2.2.1 Topography 

The topography of the site plays a vital role in the selection of the dam. It 

includes the surface configuration of the site and the reservoir area, as well as the 

accessibility and availability of construction materials. In general, three rules for 

topography can be addressed when selecting the dam type: a) A narrow U-shaped valley 

(i.e., a narrow stream flowing between high rock walls) suggests a concrete overflow 

dam; b) An earth fill dam with separate spillways is suitable for low plain country; and c) A 

narrow V-shaped valley indicates the need for an arch dam.  

Following the suggestions described, embankment dams can be built in almost 

any topography, although they are not constructed often in narrow canyons with steep 

abutments. A series of problems can be addressed when constructing earth fill dams in 

narrow canyons, such as the location of a spillway and the lack of availability of materials 

for its construction. However, there has been an increase in the construction of 

embankment dams in narrow valleys (Sharma 1991); several examples are the 

Esmeralda Dam and the Guavio Dam, both located in Colombia. The Esmeralda dam 

was built in a narrow V-shaped valley with a height of 237 m and a crest length ratio of 1 
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percolation or seepage (USDI 1987). However, clayey shale, sandstones, or weathered 

basalt are considered unacceptable for the construction of high earth fill or rock-fill dams. 

The identification of shear zones or faults in the rock is a key factor that may lead to 

changing the dam type. Defects in the bedrock, such as shear zones or faults, affect the 

weathering, depths, slope stability, and seepage in high earth-fill dams. 

2.2.2.2 Gravel or Alluvial Foundations 

Well-compacted granular materials are usually able to withstand an embankment 

dam (USDI 1987). However, due to the high permeability of this material, several 

seepage problems might be encountered, and adequate seepage control must be 

provided, such as cut-off walls or seals. 

2.2.2.3 Silt or Fine Sands 

This category of soils can be suitable as foundations for low-height concrete 

gravity dams and some earth-fill dams, if they are properly designed, but they are not 

usually suitable for rock-fill dams (Kollgaard et al. 1988). Several problems might be 

encountered, such as non-uniform settlements, potential soil liquefaction or collapse 

upon saturation, uplift forces, piping, excessive percolation losses, and protection at the 

downstream toe from erosion (USDI 1987). If site stratigraphy is found to be composed of 

these type of materials, then it may be necessary to remove them, if economically 

feasible, or to improve them by artificial means such as vibro-compaction or heavy 

tamping techniques (Sharma 1991). 

2.2.2.4 Clay Foundations  

Clayey soils are suitable as foundation soil for embankment dams. However, 

careful consideration should be given to engineering properties, such as shear strength, 

permeability, mineralogy, and stress history. Due to the relative low strength of clayey 
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soils compared to rocks and other materials, relatively flat embankment slopes should be 

constructed, which greatly impacts the economy of the project. Concrete dams are not 

recommended for clayey foundations due to their heavy weight, which results in 

consolidation settlement. Several solutions can be provided to accelerate the 

consolidation of clayey foundation soils, such as vertical and horizontal drainage systems 

or blankets.    

2.2.3 Availability of Materials 

The availability of materials plays a vital role in governing the economy and 

performance of the project. The most economical type of dam is usually selected as the 

one for which a large amount of materials can be found within a reasonable distance from 

the project site. For a concrete structure, for example, the availability of suitable and high-

quality sand and gravel is required. In the late 1800s and early 1900s, when construction 

equipment and technology were not properly developed yet, the availability of materials 

was one of the key factors in selecting the dam type.  

Several embankment dams were constructed, using soil borrowed from sites, by 

transporting and compacting it, using hydraulic procedures (i.e., hydraulic fill dams). One 

of the objectives of this research is to address the origin of the hydraulic fill process and 

to attain a thorough understanding of the potential problems associated with it during its 

operation under external loading (i.e., seepage forces, earthquakes). Hydraulic fill 

structures were developed mainly due to the lack of materials locally and the constraints 

of construction and compaction equipment in that age. The following section describes in 

detail the configuration of embankment dams, specifically those constructed using the 

hydraulic fill procedure. 
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2.2.4 Spillway Location  

The cost involved in the construction of a spillway is frequently a considerable 

portion of the total cost of a dam project. The size, type, and natural restrictions of its 

location are the controlling factors in the selection of the type of dam (USDI 1987). Some 

recommendations can be addressed based on the type of spillway used during the 

development of embankment dams. Generally, there are two types of spillways used with 

embankments. The “chute” type is most frequently used, and is constructed by 

excavating in one of the abutments (Sharma 1991). This type of spillway involves a lot of 

excavation, and the cost involved in its construction plays a key role in the selection of 

the type of dam.  

The tunnel type is the other spillway that is used if a suitable site for a chute 

spillway is not available. Most of the time, when the topography presents a wide valley, a 

composite type of dam can used, with a concrete overflow spillway and an embankment 

dam as the main support of the reservoir. However, the practice of building overflow 

concrete spillways and earth-fill or rock-fill dams has generally been discouraged due to 

the conservative design assumptions, as well as the potential failures associated with it. 

2.2.5 Earthquake (EQ) Prone Areas  

Depending on the site of the project, which can lie in active seismic areas, 

earthquake considerations must be taken into account in the selection of the type of dam. 

This is especially true for dams constructed using hydraulic filling, where the liquefaction 

of soils has been reported (Wiltshire 2002; Seed et al. 1973). The design analyses should 

account for all of the expected or hypothetical scenarios, irrespective of dam type. 

Earthquake design considerations have been developed over last few decades, based on 

increasing research and what has been learned from historic failures. They play a key 
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role in the selection of the dam type, especially for those located in high seismic zones or 

areas.  

2.2.6 Various Factors 

Several other important factors, such as river diversion and/or the time available 

for construction, affect the selection of dam type. River diversion may affect both the 

location and cross section of the dam since some topography may be better suited for the 

construction of diversion tunnels or coffer dams. The cost of the project can be minimized 

by incorporating the upstream and downstream coffer dams in the shells of the dam 

section (Sharma 1991).  

The time available for the construction is another important factor in the selection 

of the type of dam. The most economical dam is constructed by excavating and placing 

soil materials for its configuration. However, with limited construction time and the non-

availability of materials, the designer may have to consider changing the dam type. On 

the other hand, if the embankment is constructed quickly, the pore pressure during 

construction might be an issue where slopes must be flatter or horizontal drainage must 

be provided to dissipate the pressure within the embankment.  

Another important factor is the possibility of increasing the height of the dam in 

the future. When an embankment dam needs to be extended slightly, the new core is tied 

to existing structure; however, when the height increase is large, it is more economical to 

construct a new core section. This step is important due to the seepage problems that 

designers may encounter after their construction. Inclined core dams are more suitable 

than vertical core dams and present fewer problems.  
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The selection of the type of dam is governed by all of the factors discussed 

above. The following section provides a brief review of the different types of dams, with 

special attention paid to the earthen and rock-fill embankment dams. 

2.3 Concrete Dams 

Historically, concrete is the most common and strongest material used for the 

construction of many civil engineering projects. The design and construction of a 

concrete dam is expensive, and it is not always the most suitable option; however, 

depending on the use and the size of dams, concrete material results are often optimal. 

The construction of concrete dams introduced the concept of RCC (roller-compacted 

concrete), which has been developed and implemented over time (Kollgaard et al. 1988). 

Several types of concrete dams can be found in the literature, and their selection 

depends upon several factors explained in the following sections. 

According to the US Army Corps of Engineers, gravity dams are solid concrete 

structures that maintain their stability from their geometric shape and the mass and 

strength of concrete (USACE 1995). Topography of the site is a key factor when selecting 

this type of dam, since they are generally constructed on a straight axis, although they 

can be slightly curved to accommodate site conditions.  

The Manual of Small Dams Design developed by the United States Bureau of 

Reclamation (USBR) states that the construction of gravity dams is more acceptable for 

those sites where there is a sound rock foundation (USDI 1987). However, low-height 

structures may also be built on alluvial foundations, by providing reasonable cutoffs. Most 

often, gravity dams are used as overflow spillways for earth-fill and rock-fill dams (Figure 

2-2), or as overflow sections of diversion dams.   
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 The early use of embankment dams is reported in many countries, including 

India, China, and Iraq (Wiltshire, 2002). In North America, the Hohokam Indians began 

the construction of diversion works and canals along the Salt and Gila Rivers in Arizona 

in 300 B.C. The height of embankments gradually increased with time and experience, 

reaching a maximum of 79 ft. height. In the earliest dam project, 43 ft. was the maximum 

height for masonry dams. Earthen dams were constructed in six different ways: 

homogenous dams; an embankment with a central core of puddle (clay core); an 

embankment with the central core of masonry concrete; an embankment with puddle 

placed on its water face; an embankment of earth resisting an embankment of loose rock; 

and an embankment of earth, sand, and gravel sluiced into position by flowing water 

(hydraulic fill) (Wilson and Squier 1969).  

In discussing the development of earthen dams engineering, it is necessary to 

understand basic design considerations that lead to a better assessment of geotechnical 

hazards of this type of structure. Several subsections can be defined such as layout, 

foundation conditions, materials for construction, cross sections, construction methods, 

site investigations, laboratory investigations, soil mechanics analyses, instrumentation, 

construction control, and monitoring. The following sections provide a brief overview of 

some of the key aspects of earthen dams that are limited to cross sections, materials, 

and construction methodologies used for old earth-fill dams.  

2.4.1 Typical Cross Sections 

 The typical cross sections on earthen dams can be subdivided in two categories: 

homogenous dams and zoned dams. A homogenous dam, as the name implies, is built 

entirely of one type of material (except for slope protection) which should be sufficiently 

impervious to provide a proper seepage through the whole body of the dam. The soil 
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type of earthen dam. Soils have infinite combinations of size, gradation, composition, and 

variation of properties, and their suitability is determined by performing laboratory tests.   

2.4.2.1 Core Material: Impervious Materials 

The core material, impervious in nature, may vary from clay soils of high plasticity 

to very well-graded materials of glacial till type with low plasticity (Lowe III 1970); 

(Kollgaard et al. 1988). These materials are preferred over silty sands and fine sands, 

where the seepage of water likely results in dam failure (Sharma 1991). Hence, a well-

graded mixture of soils is suitable for ensuring both imperviousness and self-healing. In 

practice, a wide variety of soils, ranging from clays, silts, and fine granular soils with 

some silt to coarse-grained soils (i.e., glacial tills) have been used as the core of 

embankment dams (Sharma 1991).  

In conclusion, the principal role of core material in an earthen dam is to provide 

imperviousness (Sherards and Dunnigan 1985). The basic design concept is more 

concerned with providing resistance to erosion against potential piping issues. Other 

control actions can be more suitable for controlling localized seepage, such as the 

construction of a filter downstream of the core (Sharma 1991; USDI 2012; Lowe III 1970).  

2.4.2.2 Material for Shells in Zoned Earth-fill Dams 

Zoned earth-fill dams are usually constructed in areas where several soil types 

are available, such as clays, silts, sands, gravels, and rock. Zoned embankments have 

the advantage of using all of the different native materials to their advantage in different 

components of the dam. The impervious core is flanked by transition zones; downstream 

filters; and drains; and the outer zones, named shells, are basically composed of gravel; 

rock; or random fill, which is considerably stronger than the core material.  
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Since homogenous earthen dams are mainly constructed of only one impervious 

material, the construction methodology used does not affect the final configuration of the 

dam. For zoned earthen dams, where several materials are used for their construction, 

the placement of selected materials plays an important role in obtaining a configuration of 

the structure. Hence, the construction methodology plays a key role in evaluating the 

actual configuration of the dam structure, which impacts the geotechnical stability 

analyses. The following section presents the construction methodologies used for 

construction of an earth-fill dam. 

2.4.3 Construction Methodology 

The objective of this section is to describe the methodology used for the 

construction of earth-fill structures built during the late 1800s and the early 1900s 

(Valenzuela 2015). The construction methodologies of modern earth-fill and rock-fill 

embankment dams are far more sophisticated today than they were more than 100 years 

ago (USDA). During gold rush times, approximately in the 1850s, the lack of construction 

equipment was the main problem; therefore, the placement of soil for the development of 

tailing dams was performed by hydraulic means, which was the easiest way to construct 

embankments (i.e., hydraulic fill) (Kollgaard et al. 1988). 

Over time, the traditional construction methodologies used in mid-19th century for 

mining (i.e., tailing dams) were slowly adapted to build storage earthen dams and 

reservoirs. A hydraulic fill procedure was adopted to construct several dams in the United 

States during the mid-19th century. For example, a zoned earthen dam, using hydraulic fill 

methodology, consists of depositing soils by hydraulic means: the silt and clay soils 

toward the center (core) and the sand and gravel in upstream and downstream sides to 

form shells. On the other hand, several other structures were constructed using 
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traditional compaction procedures, using the available primitive tools for compaction 

(Wiltshire 2002). These construction methods involved the use of horses or mules, drawn 

scrapers for excavation, as stated by Kollgaard and Chadwick (1988). The use of 

primitive tools for compaction was soon replaced by steam-powered shovels and steam 

locomotives. Compaction equipment evolved dramatically after World War I, with the 

inventions of gasoline and diesel. The increase of power and size of equipment made it 

more feasible to construct larger and higher dams (Kollgaard et al. 1988).  

By the mid-20th century, dams for storage purposes were built using both 

hydraulic fill procedures and rolled compaction. However, the main challenge for the 

government agencies and engineers was not the construction of dams, but the safety of 

those already constructed. Several government agencies developed safety guidelines 

and procedures to ensure the safety and performance of existing dams, and the 

assessment of those still is a big concern. This research study focusses on hydraulic fill 

dams; hence, the following section provides more detailed information about hydraulic fill 

structures to facilitate a better understanding of the influence of this methodology on the 

performance of existing dams.  

2.5 Hydraulic Fill Dams 

The hydraulic fill procedure consists of generating an artificial fill composed of 

soils that are conveyed and deposited by hydraulic means (Valenzuela 2015).  The basic 

principle of the methodology is to transform a constant fluid out of borrows, through pipes 

or sluice-ways. Soils are deposited to the corresponding dam section (i.e., zoned earthen 

dams) where they are separated into fines and coarse materials due to a sedimentation 

process that generates a self-compaction effect. The distribution of soil solids, 

methodology for placement of materials, water content, and compaction are considered 
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some of the most important variables that affects the construction of earth-fill 

embankments. 

2.5.1 History of Hydraulic Fill Dams in the United States 

The land reclamation dikes in the Netherlands are believed to be the first 

hydraulic structures that were constructed (Hsu 1988). Extensive hydraulic mining in the 

United States, followed by the discovery of gold in California in 1849, led to the utilization 

of the hydraulic fill procedure for the construction of dams. The hydraulic fill procedure 

provided a fast large-scale extraction, transport and placement of borrow soils in an 

economical manner (Valenzuela 2015). During the early 1900s, several dam projects 

using the hydraulic filling procedure were planned and executed in the United States.  

The U.S. Army Corps of Engineers have first constructed important embankment 

projects in the United States by using this methodology and other compaction methods 

(Wiltshire 2002). The Van Noman Dam in California (Lower San Fernando Dam) and the 

Fort Peck Dam, along the Missouri River, were constructed between 1912 and 1915, 

using hydraulic filling (Figure 2-12). The lack of clear understanding of soil strength and 

implications from construction methodology resulted in massive slope failures in the Fort 

Peck Dam (Figure 2-13). The design criteria for the construction of these structures was 

based on the available concepts and guidelines (Schuyler 1907; Hazen 1920; Pail 1922; 

Holmes 1921). 
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2.5.2 Concept and Methodology 

The basic objective of the hydraulic fill methodology in zoned earthen dams is to 

accommodate soils in the way that pervious material shells provide stability and drainage 

to the interior fluid mass of the soil (Sharma 1991). Initially, the core (impervious material) 

is in a fluid state and receives support and stability from the shells (pervious material). By 

sedimentation or gradual settlement following drainage, it becomes a solid mass capable 

of resisting water pressure from the reservoir. The methodology initiates with the 

excavation of materials, dredging with hydraulic giants, or drying by using a hog box. The 

methodology for excavation is selected based upon the cohesion of the soil, as well as 

the topography of the site. Shortly after the excavation, materials are transported in 

suspension, using different pipelines. Water and soil mixtures typically have 10-20% 

solids by volume or 25-50% solids by weight (Sowers and Sally 1962).  

A schematic of hydraulic fill methodology for zoned earthen dams is shown in 

Figure 2-14. The filling starts by depositing the soil into two dikes located parallel to each 

other (starting dikes) which can be placed at or barely on the inner side of embankment 

toes, as illustrated in Figure 2-14(a). They commonly are the final and permanent rock 

toes which can also be constructed of rolled pervious soil. The pipelines, known as beach 

pipes are shortly after placed on top of the dikes which can be carried on low trestles 

above them as well. Several adjacent outlets are placed between dikes that allow the 

discharge of mixtures. Coarse materials settle close to the discharge points (forming 

shell), while the fine soils are carried to the center, still in suspension. A “pool” is 

generated between the “beaches” or shells just formed. Due the rate of sedimentation 

which is much lower for finer soils, the core level is below the beach level or outer side of 

shells, as shown in Figure 2-14 (a), 
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stability, seepage failures, and global stability. Some of the areas to be revised are the 

ability to safely pass flood runoff without overtopping the embankment, control of 

seepage to prevent piping of materials, and the control of pore pressures within the 

embankment due to unexpected loadings (i.e., earthquakes or soil strength loss). This 

research is limited to those hazards (i.e., earthquakes) or physical mechanisms 

generated by failure modes that are more likely applicable to hydraulic fill structures.  

A large number of hydraulic fill dams failed during strong seismic events 

(earthquakes) or due to numerous uncertainties that were not accounted for in the 

analyses. The instability of a dam could be caused by either static or dynamic loading. 

Static loading refers to the performance of the structure under construction with normal 

operating conditions (i.e., placement of soil layers, filling and emptying the reservoir, and 

constant seepage). Dynamic loading refers to those produced from earthquakes, pile 

driving, and geophysical exploration and blasting. Several hazards can be addressed, 

depending on the type of loading. The following sections present the most common 

failures that are associated with earthen dams, especially hydraulic fill dams. 

2.5.3.1 Internal Erosion 

The instability of a dam due to internal erosion usually occurs under static 

loading (i.e., normal operation) and is primarily caused by several problems, such as the 

construction materials, poor quality control during construction, lack of maintenance, or a 

change in the hydrological and environmental conditions. It is a progressive process that 

initiates by suffusion and induces additional hazards (Wan 2006). In hydraulic fill 

structures, a really complex configuration of soils is developed due to the construction 

process. There is a high degree of variability in the configuration of hydraulic fill dams, 

and soil materials fall into a broad particle-size range (Valenzuela 2015). Internal erosion, 
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and methodologies for evaluating liquefaction potential in hydraulic fill dams, as well as 

the description of some historic failures.  

2.5.3.3 Liquefaction 

Liquefaction is a term widely used by geotechnical engineers, especially in areas 

where seismic activity is highly present. It is a phenomenon that occurs when soil loses 

its strength and stiffness due to undrained (quick) loading  and acts as a fluid (Kramer 

1996). The term “soil liquefaction” was initially introduced by Hansen in 1920 (Hazen 

1920) to describe the failure of the hydraulic fill dam at Calaveras in 1918 (Valenzuela 

2015). Since then, hydraulic fill dams have experienced a series of failures, which are 

believed to have been caused by the loss of strength and stiffness under an undrained 

loading. Several research studies on soil liquefaction were conducted in the mid-20th 

century, after the occurrence of soil failures during seismic events (Mogami and Kubo 

1953, Terzaghi and Peck 1967).  

Extensive studies were performed to understand the liquefaction phenomenon in 

different soils and under different field conditions (Yoshimi et al. 1977; Seed 1979; Finn 

1981; Ishihara 1993), and liquefaction improvement methodologies (Robertson and Fear 

1994; Robertson and Wride 1998; Youd and Idriss 1998). The present work does not 

intend to describe the evolution of the liquefaction concept; it is limited to describing 

important concepts and understanding the traditional methods widely used for 

liquefaction assessment. 

Liquefaction can be classified into two main groups, based on the performance of 

soil during an earthquake: flow liquefaction and cyclic softening. Both groups must be 

considered in assessing the liquefaction potential in hydraulic fill dams. Flow liquefaction 

is considered a major design issue for large soil structures such as mine tailings 
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impoundments and earth dams (Robertson 2010). Flow liquefaction refers to the strength 

loss potential of strain-softening soils either triggered by a monotonic (i.e., a sudden rise 

in groundwater level or rapid undrained loading), as well as by cyclic loading (i.e., 

earthquakes) (Robertson and Fear 1994).  

For sloping ground structures (i.e., earthen dams), the flow liquefaction analysis 

becomes a challenge for geotechnical engineers since the ground could be subjected to 

a static driving shear stress and cyclic stress can induced even more loss of strength in 

soil. The term “spontaneous liquefaction was provided by Terzaghi and Peck (1967) to 

represent the rapid loss of strength of very loose sands which are the main cause of flow 

slides after a slender disturbance (Robertson 2010).  

Flow or static liquefaction usually occurs when soils have a strain-softening 

response during undrained loading, resulting in approximately constant shear stress and 

effective stress (Robertson and Cabal 2012). In flow liquefaction, gravitational stresses 

must be higher than the undrained shear strength; a failure of soil mass will only occur, if 

a sufficient volume of material undergoes in strain softening (Robertson and Cabal 2012). 

The result consists on a flow failure, depending on the soil properties and ground 

topography, and the resulting deformations are primarily caused due to internal 

phenomena (i.e., internal erosion). 

On the other hand, cyclic softening can only occur when enough excess pore 

water pressure is generated to overcome the effective stress of the soil triggered by a 

cyclic loading only. If no change in pore water pressure is present, hence in effective 

stress, then neither flow liquefaction nor cyclic softening will occur (Kramer 1996). Cyclic 

softening can be subdivided into two categories: cyclic liquefaction and cyclic mobility, 

and it applies to both strain-softening and strain-hardening soils, respectively (Robertson 



 

 

an

ea

ev

W

sl

(P

liq

su

pr

ar

m

m

nd 

arth

ven

Wrid

lopi

Pan

que

ubje

ress

re m

mode

may 

Fe

hqua

ntua

e 1

ng; 

do 

efac

ecte

sure

mor

erat

be 

ar 

ake

If a

ally 

998

ho

an

tion

ed to

e (K

e su

Figu

If a

te c

slig

199

e), a

a s

rea

8). 

owe

nd 

n. T

o a 

Kram

usc

ure 

a sh

cycli

ghtl

94).

a str

stres

ache

Stre

ever

Rob

he 

cyc

mer

ept

2-2

ear

ic lo

y h

. D

ress

ss r

es t

ess

r, it 

bert

stre

clic 

r 19

ible

22 U

r str

oad

ighe

Depe

s rev

reve

the 

 rev

als

tson

ess 

load

996)

e to 

Und

ess

ing)

er t

end

vers

ersa

con

vers

so 

n 1

rev

ding

). At

occ

rain

s rev

), ze

than

ing 

sal 

al o

ndit

sal 

occ

1995

vers

g, w

t tha

cur d

ned 

vers

ero 

n ze

on

ma

occu

ion 

gen

curs

5). 

sal s

whic

at p

dur

cyc

sal d

effe

ero

n th

y oc

urs,

of 

nera

s du

Th

stat

ch is

poin

ing 

clic 

doe

ecti

as 

he 

ccu

, po

zer

ally 

urin

his 

te is

s the

nt, s

cyc

beh

es n

ve s

sho

siz

r. 

ore 

ro e

 oc

g la

phe

s of

e re

oil h

clic 

hav

not o

stre

own

41
 
 

e a

pre

effec

ccur

arge

eno

ften 

esul

has

load

ior o

occu

ess 

n in 

and

ess

ctiv

rs if

e e

ome

pro

lt of

s ve

ding

of s

ur (

mig

Fig

 du

sure

ve s

f gr

earth

enon

odu

f sig

ry l

g (R

sand

i.e.,

ght 

gure

urat

es s

stres

roun

hqu

n is

ced

gnifi

ow 

Robe

d (R

, ste

not 

e 2-

tion

sudd

ss (

nd c

uake

s k

d on

can

stif

erts

Robe

eep

be 

-23

 of

den

(Fig

con

es 

know

n sa

nt an

ffnes

son 

erts

ly s

rea

(a) 

f th

nly 

gure

ditio

in s

wn 

atur

nd s

ss,

and

son 

slop

ache

(b)

he 

buil

e 2-

ons

stee

as

ated

sud

and

d W

and

ing 

ed, 

). In

cyc

ld u

-22)

s ar

eply

s cy

d co

dden

d la

Wride

d Fe

gro

and

n ot

clic 

up, 

) (R

re le

y sl

yclic

ohe

n bu

rge

e 19

ear 

ound

d th

her 

loa

an

Robe

eve

opin

c o

esio

uild-

 de

998

199

d su

he s

r wo

adin

nd t

erts

l or

ng 

or s

nles

-up 

form

8). 

 

94) 

ubje

stres

ords

ng (

the 

son 

r ge

gro

seis

ss s

of p

mat

 

ecte

ss s

s, cy

(i.e.

so

and

ently

ound

smic

soils

pore

tions

ed to

state

yclic

., 

il 

d 

y 

d 

c 

s 

e 

s 

o 

e 

c 



 

 

m

ar

th

st

sl

2.

ex

F

fo

be

fo

(F

m

fa

co

(V

co

liq

mobi

re a

his e

train

lide

.5.4

xpe

ort 

oren

ento

ound

Figu

made

ailur

ond

Vale

ond

que

ility 

alwa

effe

n re

) (R

4 Hi

erien

Pec

nsic

onit

dati

ure 

e se

re. 

ditio

enzu

ditio

efact

occ

ays 

ect o

espo

Robe

istor

Wh

nce

ck D

c inv

te s

ion 

2-2

eve

Un

n b

uela

ns (

tion

curs

gre

occu

ons

erts

ric F

heth

d fa

Dam

vest

seam

was

24) 

eral 

der

by 

a 2

(i.e.

n (C

s, a

eate

urs 

e is

son 

Fi

Fail

her 

ailu

m, a

tiga

ms 

s su

in 1

atte

r hi

con

015

., flo

Casa

and 

er th

onl

s str

and

gur

lure

it is

res 

 hyd

ation

in th

ubje

1938

emp

is s

nduc

5). 

ow 

agra

be

han 

ly if

rain

d Fe

re 2-

s in

s a 

du

dra

n re

he f

ecte

8 in

pts 

sup

ctin

Liqu

liqu

and

cau

zer

f the

n ha

ear 

-23 

n Hy

flow

ring

ulic

epor

foun

ed to

nitia

to u

erv

g a

uefa

uefa

de 1

use 

ro, 

e vo

arde

199

Th

ydra

w o

g ea

c fill 

rt st

nda

o (B

ated

und

isio

a s

acti

actio

1936

the

only

oid 

enin

94;

ree

aulic

or c

arth

dam

tate

ation

Billin

 stu

ders

on, 

serie

on 

on) a

6), 

e un

y sm

rati

ng (i

Rob

 cas

c Fil

cycli

hqua

m co

ed th

n we

ngto

udie

stan

Go

es 

of 

and

in w

ndra

mal

o is

i.e.,

bert

ses

ll St

ic s

ake

ons

hat 

ere

on e

es o

nd th

onza

of 

san

d co

whi

aine

l or 

s be

, the

tson

s of 

truc

soil 

s. I

struc

the

not

et al

of s

he 

alo 

dra

nds 

orres

ch 
42

 
 

ed c

r lim

elow

e so

n an

cyc

cture

liqu

n 1

cted

e sh

t su

l. 20

soil 

mec

Ca

aine

in 

spo

sat

cycl

mited

w th

oil i

nd W

clic s

es

uefa

938

d in 

hear

uffic

005

liqu

cha

astro

ed t

Fo

onde

tura

ic lo

d de

he c

s n

Wrid

soft

actio

8, a

the

ring

cient

5). T

uefa

anis

o (C

triax

ort P

ed t

ted 

oad

efor

critic

ot s

de 1

teni

on, 

a m

e ea

g res

t to 

The 

actio

m t

Cas

xial 

Pec

to w

co

ding

rma

cal s

susc

199

ng (

sev

mass

arly 

sist

wit

flow

on. 

that

stro

tes

ck o

what

ohes

g inc

ation

stat

cep

8). 

(Kra

vera

sive

193

tanc

thst

w fa

Pro

t trig

 19

sts 

occu

t A.

sion

clud

ns a

te li

ptible

 

ame

al h

e lan

30s 

ce o

tand

ailur

ofes

gge

969

wit

urre

 Ca

nles

des 

are 

ne 

e to

er 1

hydr

nds

(Fi

of w

d th

re o

ssor

ered

9) d

th 

ed u

asag

s s

she

pro

(CS

o a 

996

raul

lide

gur

weat

e s

of th

r Ar

d the

disc

def

und

gran

soils

ear 

duc

SL) 

cata

6) 

ic f

e oc

re 2-

ther

hea

e F

rthu

e F

ove

form

er 

nde

s, u

str

ced.

and

astr

fill d

ccur

-13

red 

aring

Fort 

r C

ort 

ered

matio

stat

e na

nde

ress

. Ho

d th

roph

dam

rred

). T

sha

g fo

Pec

asa

Pec

d th

on 

tic 

ame

er s

ses 

owe

he la

hic 

ms h

d at

The 

ale 

orce

ck D

agra

ck d

he 

con

load

d “t

stati

tha

ever

arge

flow

 

have

t the

fina

and

e the

Dam

ande

dam

flow

ntro

ding

true

c o

at 

r, 

e 

w 

e 

e 

al 

d 

e 

m 

e 

m 

w 

ol 

g 

e” 

or 



 

 

dy

flo

da

liq

th

ne

(V

su

co

liq

of

yna

ow 

F

ams

que

he U

ega

Vale

ubje

omp

que

f so

amic

as a

igur

s, t

efact

Upp

ative

enzu

ecte

pos

efact

oil 

c lo

a vi

re 2

Des

the 

tion

per 

e pe

uela

ed 

ed 

tion

con

adin

sco

2-24

spit

po

n to 

and

erce

a 20

to 

of c

n an

nfigu

ng, 

ous 

4 Tra

te th

ossi

occ

d Lo

eptio

015

cyc

coa

nd c

urat

los

fluid

ans

he 

ibilit

cur.

owe

ons

5). L

clic 

arse

cycli

tion

se th

d (V

sver

fact

ty 

 In 

er V

s ab

Liqu

loa

e an

c so

ns, 

heir

Vale

rsal 

t th

of 

197

Van 

out 

uefa

adin

nd f

ofte

the

r res

enzu

sec

at l

hav

71, 

No

 the

actio

ng 

ine 

enin

 no

sist

uela

ctio

iqu

ving

an 

orma

e vu

on i

du

san

g, r

on-u

tanc

a 20

n a

(C

efac

g a

ear

an 

ulne

n th

ring

nd 

resp

unifo

ce a

015

nd f

Casa

ctio

 se

rthq

(Sa

erab

he S

g th

laye

pect

orm

and 

).  

flow

agra

on is

eism

uak

an F

bility

San

he 

ers,

tive

m d

43
 
 

ac

w sli

and

s pr

mic 

ke o

Fern

y of 

n Fe

ear

 as

ly (S

istri

quir

de 

de 1

rese

ev

of M

nan

hyd

erna

rthq

s we

See

ibut

re a

in th

975

ent 

vent

ML=6

ndo)

drau

and

quak

ell a

ed e

tion 

an i

he F

5) 

und

t re

6.6 

) Da

ulic 

o D

ke 

as c

et a

of 

nte

Fort

der 

epre

in C

am 

fill d

Dam

(i.e

clay

l. 19

f so

rna

t Pe

sta

esen

Calif

(Fig

dam

m oc

e., 

y lay

973

oil p

l st

eck 

atic 

nts 

forn

gure

ms t

ccur

cyc

yers

3). T

prop

ruct

Da

loa

the

nia c

e 2

to li

rred

clic 

s w

Thus

pert

ture

m, 

adin

e g

cau

2-25

que

d on

liq

were

s, th

ties

e th

Sta

g in

grea

sed

5), c

efac

n th

uefa

 so

he h

, a

at a

ation

n hy

ates

d th

conf

ction

he s

acti

often

high

nd 

allow

n 22

ydra

st r

e fa

firm

n pr

shel

ion)

ned 

h va

the

ws 

2+00

auli

risk 

ailur

ming

robl

l zo

). S

du

ariab

e lo

it to

 

0 

c fi

fo

re o

 the

ems

ones

Soils

e to

bility

oose

o 

ll 

or 

of 

e 

s 

s 

s 

o 

y 

e 



 

 

m

w

th

S

as

19

th

mate

were

he in

eve

sse

986

he s

erial

e ind

nve

eral 

essm

6. R

soil-

l res

dica

F

The

entio

rel

men

Robe

liqu

sult

ators

Figu

(N

e ev

on o

atio

nt w

erts

uefa

ing 

s fo

re 2

NOA

valu

of in

onsh

were

son 

actio

from

or liq

2-25

AA/N

uati

n-sit

hips

e ad

in 

on-t

m th

quef

5 Lo

NGD

on 

tu te

s an

ddre

199

rigg

he c

fact

owe

DC,

of l

ests

nd c

esse

94 (

gerin

con

tion

er Sa

, E.V

2

ique

s (i.

con

ed i

Rob

ng f

stru

 fai

an 

V. L

2.5 

efac

e.,

cep

in d

bert

fram

uctio

lure

Fer

Leye

Eva

ctio

con

pts 

diffe

tson

mew

on m

e.  

rnan

end

alua

on s

ne p

on 

eren

n an

work

met

ndo 

deck

ation

susc

pen

how

nt pu

nd 

k, w

44
 
 

hod

Da

ker,

n of

cept

etra

w in

ubli

Fea

whic

dolo

am a

 U.S

f Liq

tibil

ation

n-sit

cati

ar 1

h is

ogy 

afte

S. G

quef

ity i

n te

tu t

ions

994

s stil

em

r M

Geo

fact

in d

ests

tests

s (S

4), 

ll us

ploy

6.6 

olog

tion

dam

s an

s ca

See

pre

sed 

yed

Ea

ical

 

ms b

nd s

an 

d e

sen

tod

d in

rthq

l Su

beca

stan

be 

et al

nted

day

the

qua

urve

ame

dar

app

. 19

d a 

(Fig

Sa

ke i

ey 1

e m

rd p

plied

985

gen

gure

an F

in 1

971

more

pene

d fo

5; S

nera

e 2-

Fern

971

1) 

e fea

etra

or li

eed

al o

-26)

nand

1  

asib

tion

ique

d an

over

).  

do D

ble 

n tes

efac

nd A

rview

Dam

with

sts)

ction

Alba

w o

m 

h 

). 

n 

a 

of 



 

 

de

(Y

E

di

m

ev

ap

eve

You

ngi

iscu

meth

valu

ppro

elop

d a

nee

usse

hods

uati

oac

In 

ed 

and

ering

ed 

s). 

ng 

ch is

Fig

199

by 

d Id

g R

are

Th

flow

s th

gure

96, 

Ro

dris

Rese

e p

e i

w o

hat 

e 2-

se

ober

s 1

earc

rim

in-s

or c

it re

26 S

ver

rtso

199

ch 

arily

situ 

ycli

efer

Sug

ral a

n a

98) 

(NC

y th

tes

c li

rs to

gge

adv

and 

we

CEE

hos

st-b

que

o th

sted

 (R

vanc

Wr

ere 

ER) 

se b

base

efac

he f

d flo

Robe

ces 

ride 

pre

in 

bas

ed 

ction

field

ow c

erts

in 

(R

ese

the

sed 

app

n fo

d da

cha

on a

so

Robe

ente

e U

on

proa

or e

ata,

45
 
 

art fo

and

oil l

ertso

d t

nite

n in

ach 

exist

wh

or e

d Fe

ique

on 

to 

ed S

n-sit

is

ting

hich 

eval

ear 

efac

and

the

Stat

tu t

 th

g da

ha

uat

199

ctio

d W

e N

tes

test

he 

am 

s a

ion 

94)

n a

Wride

Natio

of 

m

mos

pro

a gre

of s

and 

e 1

ona

Am

eth

st 

ojec

eate

soil 

inc

998

l C

meric

ods

suit

cts. 

er r

liqu

clud

8) a

Cen

ca. 

s (i

tabl

The

repr

uefa

ded

and 

ter 

Th

.e.,

le m

e a

rese

 

actio

 im

Yo

for

e m

SP

met

adva

enta

on 

mpo

oud 

r E

meth

PT 

thod

anta

ation

rtan

and

Eart

hod

an

dolo

age 

n of

nt w

d Id

hqu

dolo

d C

ogy 

of 

f in-

work

driss

uake

gies

CPT

fo

this

-situ

k 

s 

e 

s 

T 

or 

s 

u 



 

46 
 
 

 

conditions than soil sampling and laboratory-test-data based approaches. The present 

seismic resilience framework for hydraulic fill dams in this dissertation is primarily 

developed to address the cyclic liquefaction in hydraulic fill dams by using conventional 

in-situ cone penetration testing. Flow liquefaction or strength loss potential due to cyclic 

loading (i.e., cyclic mobility) is not covered in the present framework.  

The cyclic liquefaction assessment is performed based on two factors, the 

quantification of external loading (i.e., earthquakes) and the resistance of soil against 

liquefaction and it will be discussed in the following section. The evaluation of the 

initiation of liquefaction was derived by different approaches over decades. The Cyclic 

Stress approach and the Cyclic Strain approach are the most common methodologies to 

estimate cyclic liquefaction. Several other approaches have been developed, such as the 

dissipated energy approach and the effective stress-based response analysis (Kramer 

1996). The following sections present different approaches for assessing the liquefaction 

potential in soils.  

2.5.1 Cyclic Stress Approach 

The cyclic soil resistance concept was introduced by Professor Bolton Seed and 

his collaborators in the 1960s. The approach is based on the evaluation of the loading 

conditions required to trigger cyclic liquefaction. The loading is defined in terms of cyclic 

shear stresses, and the cyclic liquefaction potential is addressed on the basis of the 

amplitude and number of cycles of earthquake-induced shear stresses (Kramer, 1996). 

The stress-based approach for evaluating potential liquefaction compares two 

parameters: the earthquake-induced cyclic stress ratio (CSR) and the cyclic resistance 

ratio (CRR) (Boulanger and Idriss 2014). The earthquake-induced cyclic stress ratio 

(CSR) refers to the characterization of earthquake loading. The amount of excess pore 



 

47 
 
 

 

water pressure required to initiate liquefaction directly depends on the amplitude and 

duration of earthquake loading (i.e., higher CSR). Earthquake loading can be estimated 

by using two approaches: by generating a detailed ground-response analysis or by using 

a simplified approach. The CSR is usually estimated based on the probability of an 

occurrence of an earthquake and is referred to as a simplified approach (Seed and Idriss 

1971). The simplified approach for evaluating CSR is based on the maximum ground 

surface acceleration (amax) at the site of interest, as shown in Equation 2.1.  

ܴܵܥ ൌ ఛಲೇ
ఙᇱೇೀ

ൌ 0.65 ቂ௔೘ೌೣ

௚
ቃ ቀ ఙೡ೚

ఙᇱೡ೚
ቁ  ௗ   (2.1)ݎ

A cyclic stress ratio profile is developed based on the average cyclic shear stress 

(τav) expressed by the simplified approach, based on the peak ground acceleration (amax), 

and the total (σvo) and effective (σ’vo) vertical overburden stresses. A factor of rd is also 

considered as a depth reduction factor (i.e., earthquake loading reduces with depth). Soil 

liquefaction resistance is represented by evaluating the cyclic resistance ratio (CRR). A 

methodology for estimating CRR was first developed by Seed (Seed and Alba 1986) for 

clean sands, based on the standard penetration test (SPT) and using data of liquefied 

soils. In-situ tests are considered the most appropriate methods for addressing 

liquefaction potential at a test site. Cone penetration test (CPT) is the most popular tool 

for estimating CRR values because of their continuous and reliable nature of data (Youd 

and Idriss 1998; Robertson 2009). The susceptibility of soils to liquefaction was 

developed by considering sand-like behavior and clay-like behavior (Boulanger and Idriss 

2004). Figure 2-27 shows the criteria suggested by Bray and Sancio’s method, which is 

based on the plasticity of soils (Bray et al. 2004).  
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2.5.2 Other Traditional Approaches 

The influence of different factors on the cyclic stresses required to produce 

liquefaction are difficult to identify due to its conservative assumptions. Soils, especially 

sands, tend to densify due to the generation of excess pore water pressure and are 

fundamentally related to cyclic strain rather than cyclic stresses (Kramer 1996). Other 

approaches for evaluating the initiation of liquefaction are found in the literature. The 

cyclic  strain approach was developed on experimental results that showed densification 

of dry sands which were controlled by cyclic strains rather than by cyclic stresses (Silver 

and Seed 1971; Youd 1972). It is also based on the existence of the threshold volumetric 

shear strain where densification does not occur below this point. Thus, the convenience 

of using this approach is the strong relationship between pore pressure generation and 

cyclic strain amplitude.  

The excess pore water pressure during cyclic loading can be estimated more 

accurately by determining cyclic strains rather than cyclic stresses (Kramer 1996). Other 

approaches are identified as the energy dissipation approach and the effective stress-

based response analysis approach, which are not widely used due to the lack of 

calibration. The former method has the advantage of considering both cyclic strains and 

cyclic stresses to address the liquefaction resistance, as well as stochastic earthquake 

ground motions for evaluating the earthquake-induced loading. The latter approach is 

more complex since the excess pore water pressure can be predicted by applying 

advanced constitutive models by describing models based on cyclic nonlinear stress-

strain (Kramer 1996). 

Despite the methodology used to evaluate the liquefaction potential, the success 

of their application can be demonstrated in several hydraulic fill dams’ post-earthquake 
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evaluations. However, choosing the methodology is not the primary concern for 

liquefaction assessment in hydraulic fill dams. The significant number of liquefaction 

failures in hydraulic fill dams is primarily due to the uncertainty of the soil configuration 

after the construction. This was demonstrated by the research work performed by Seed 

(Seed et al. 1973) on soil samples collected from the San Fernando Dam after the 

earthquake. Liquefaction in the San Fernando Dam occurred in layers of mixed soils 

(coarse, fine sands, and clays) and in soils with D50 ranging between 0.05 and 1.00 mm 

and relative density (DR) ranging from 40% to 70% (Valenzuela 2015).  

Although the application of the hydraulic fill methodology was discontinued in the 

United States due to the extensive number of failures, some hydraulic fill dams are still 

operating and require a comprehensive liquefaction assessment. Therefore, it is 

important to perform a comprehensive interpretation of the soil configuration within the 

embankment to characterize its properties by considering the variabilities encountered in 

hydraulic fill dams. The following sections present various approaches to studying soil 

characterization and variability. 

2.6 Soil Characterization and Variability 

2.6.1 Introduction 

The key aspect to any geotechnical assessment is to understand the geology 

and soil conditions at the site of interest. Soils are inherently heterogeneous; therefore, 

their stratigraphy can present high variabilities in the soil properties. Geotechnical 

variability is a complex attribute, resulting from different sources of uncertainties (Phoon 

and Kulhawy 1999). Uncertainties in geotechnical designs are the result of not 

incorporating the spatial variability of soil properties into geotechnical analyses (Einstein 

and Baecher 1982; Laccasse and Nadim 1996). In other words, soil properties vary from 
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variable; thus, the regionalized variable is directly affected if any of these factors change 

(Davis 1986).  

The spatial variability of soil properties directly depends upon the soil type and 

soil deposition and formation (Jones et al. 2002). It also depends on the values of the 

parameters collected and used to evaluate spatial variability due to the potential influence 

of measurement errors. Considering spatial variability in developing geologic models 

based on collected soil properties enhances the prediction of subsurface materials so 

that realistic estimates can be performed. The following sections present different 

approaches used to determine the spatial variability in soils.   

2.6.2.1 Trend or Drift 

Trend or commonly named drift refers to the constant path or fit belonging to a 

soil property variation along a subsurface profile or with respect to depth (Bheemasetti 

2014). The trend can be computed by considering the weighted average of all points 

within the region around that point (Davis 1986). Least-square techniques can be used to 

model trends or drifts as linear, quadratic, or higher-order functions in one or two 

dimensions (Jones et al. 2002). The trend or drift has to be minimized or removed by 

several techniques (i.e., ancillary data) to achieve spatial variability, and more importantly 

to enhance the prediction of soil properties (Minasny and McBratney 2007). The method 

for estimating the trend or drift function in spatial observations was developed by several 

researchers (Davidoff et al. 1986; Arutyunyan et al. 1996).  

2.6.2.2 Scale of Fluctuation 

Unlike the trend or drift, the scale of fluctuation grant a measure of how fast a 

parameter changes with position about a trend. In other words, this fluctuation estimates 

maximum distances over which a random variable (i.e., soil property) shows strong 
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Figure 2-35 (a) Spatial covariance represented by data points, x, and separation 

distances of h; (b) Hypothetical data showing that autocorrelation should be higher for 

low h than for high h (Jones et al. 2002) 

2.6.2.4 Variogram Model 

Several concepts can be found in the literature for describing the variogram and 

semi-variogram (Amundaray 1994; Isaaks and Srivastava 1989). The semi-variogram is 

one-half of the variogram (Equation 2.4), and it provides the spatial variability present in 

the property of interest (i.e., soil parameter). Spatial continuity of data can be described 

by variograms in earth science applications. Mathematically, the variogram can be 

expressed as the expected squared difference between two data values separated by a 

distance vector, h, in the variogram (Gringarten and Deutsch 2001).  

ሺ݄ሻߛ ൌ ଵ

ଶ௡ሺ௛ሻ
∑ ሾݖሺݔ௜ ൅ ݄ሻ െ ௜ሻሿଶݔሺݖ
௡ሺ௛ሻ
௜ୀଵ           2.4 

Figure 2-36 illustrates a typical sample semi-variogram for which three main 

characteristics can be often defined: Range, sill and nugget (Isaaks and Srivastava 

1989). The range, a, refers to the value of the x-axis of the variogram that is related to the 

lag distance, h. Thus, by increasing the separation distance between pairs, the range 

value in the semi-variogram will also increases. It is also described as the distance in the 

x-axis where the semi-variogram function reaches approximately a constant value in the 

y-axis. The sill, (C+C0), is the vertical distance value in the y-axis, starting from the origin 

of the semi-variogram to the value of the y-axis, where the function tends to be constant. 

The nugget, C0’, is discontinuity from the origin, as shown in Figure 2-36, and is primarily 

caused by sampling error and very short scale variability, causing sample values to get 

separated by excessively short distances (h) (i.e., nugget effect).  
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(Vanmarcke 1977). Since the present research focuses on the application of prediction 

methodologies to address spatial variability, estimation methods are described in later 

sections. Various techniques for simulating soil variability are briefly presented. 

2.6.3.1 Random Field 

A random field quantifies the uncertainty in probabilistic terms and is used in 

geotechnical engineering to replicate the actual field conditions by incorporating spatial 

variability. Several researches have been developed based on statistical tools (i.e., 

correlation distance, scale of fluctuations, and coefficient of variation) that simulate a 

random field (Vanmarcke 1977; Fenton 1999a; Huang et al. 2010; Cho 2012; Zhu et al. 

2013). Several methodologies for generating a random field were summarized by Jones 

(Jones et al. 2002), based on the work performed by different researchers (Vanmarcke 

1984; Yamazaki and Shinozuka 1988; Hasofer 1993). On large number of simulation 

methodologies, fields are generated approximately or exactly in form of Gaussian 

models, and the assumption of having a Gaussian behavior simplifies the stochastic 

problems (Jones et al. 2002). 

2.6.3.2 Monte Carlo Simulation Methods  

The Monte Carlo methods (MCM) model the simulation of soil properties by 

generating suitable random numbers and identifying the portion of values that satisfy a 

single soil property or several properties. The implementation model was compiled by 

Yang (Yang et al. 1993), and it requires a series of iterations that are dependent on the 

number of variables to be simulated. By using computational algorithms, the results can 

be determined in a faster way. For example, MCM can be used in probabilistic slope 

stability analysis for the determination of a critical slope surface, and the calculation is 

based on the mean value of the input shear strength parameters combined with 
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appropriate deterministic analyses (i.e., limit equilibrium or finite element analyses). A 

probabilistic approach is performed by considering the variability of input parameters (i.e., 

mean and standard deviations) on the critical slip surface, which in most cases, the 

designer has already specified. Iterations are performed during MCM, and a normalized 

random number is used for updating input parameters. The final result is that the factor of 

safety includes the corresponding mean and standard deviation, thus, the probability 

distribution function can be calculate. As a general rule, the required trails tend to 

increase based on the increasing of variables as well as on the decreasing of expected 

probability of failure (Jones et al. 2002). It not common practice to perform several trials 

to reach a reasonable level of confidence when using a Monte Carlo probabilistic slope 

stability analysis (Mostyn and Li 1996). 

2.6.4 Predictions using Geostatistics 

The present study incorporates spatial variability in geotechnical projects by 

using geostatistics, which is a stochastic interpretation tool that evaluates the spatial 

variability of data sets. According to Isaaks and Srivastava (1989), spatial analysis or 

spatial variability refers to those techniques that define data sets with respect to space. 

Several examples of considering spatial variability are the definition of the location of 

extreme value, the overall trend or the degree of continuity. Geostatistics incorporates 

both the statistical distribution of the sample data and the spatial correlation among the 

sample data. 

A hypothetical example is presented in a study performed by Bheemasetti 

(2014), as shown in Figure 2-38. The value (z) is predicted by considering data provided, 

A, B, C, and D. However, by performing univariate statistics, the value of (z) can be 

estimated as the average of the nearby values. Geostatistical methods predict the value 
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values (Jones et al. 2002). The weighted factors, as well as the variance of the data set, 

are analyzed by the semi-variogram to address spatial variability. The present research is 

based on the application of the Kriging interpolation method to predict soil parameters at 

unsampled locations by using collected data at specific locations. However, different 

types of Kriging are found in the literature, which are briefly described in this section 

Simple Kriging is considered the simplest type of all the Kriging methods, and 

consists on assuming the covariance as a second-order stationary which means that the 

trend or drift component is constant and the mean or average is known. It is commonly 

used in the mining industry, where the mean of mining panels is a known value 

(Armstrong 1994; Bheemasetti 2014). The accuracy of the simple Kriging is considered to 

be very low as compared with other kriging types; it only assumes the first order 

moments constant (Olea 2009). 

Ordinary Kriging is a form of Kriging also known as BLUE (best linear unbiased 

estimator) (Isaaks and Srivastava 1989). Ordinary Kriging is “linear,” because its 

estimates are weighted linear combinations of the available data. It is called unbiased 

because it tends to have the residual mean or error equal to zero, and it is the best 

because it reduces the variance of the errors. Bheemasetti (2014) defined ordinary 

Kriging as the method when the first and second order moments are constant values, 

which means that the second order stationarity is satisfied (Haining 2010; Olea 2009). 

The work also presents the application of ordinary Kriging for predicting soil properties in 

two dimensions models. Ordinary Kriging is most successful when the anistropy is 

properly described and when the variogram is locally customized  (Isaaks and Srivastava 

1989). Therefore, the present research uses ordianry Kriging and also considers the 

anistropy to generate more realistic variograms.  
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Universal Kriging (Regression Kriging) is a variant of ordinary Kriging and is used 

when the mean is not constant and the weights of the nearby values are estimated by 

considering locally varying means values (Bheemasetti 2014). Additionally, intrinsic 

stationarity must be satisfied in this approach (Hohn 1999; Olea 2009). Fractional Kriging 

is developed based on a variogram filtering technique (Matheron 1982). It consists to be 

a multivariate geostatistical technique that needs to minimize the noise present in data 

(Magneron et al. 2009). Several applications are suitable for using factorial Kriging, such 

as petroleum and mining engineering. The technique is limited to when the data is non-

stationary and reducing the noise is a big challenge to constructing the variogram 

(Bheemasetti 2014). Various research projects have used Kriging for the prediction of 

variables at unsampled locations. Mesic (2016) presented an example of depth 

interpolation to describe which Kriging technique is most suitable in a specific application, 

as shown in Figure 2-39 (Mesic 2016).  

Overall, Kriging has several advantages over conventional interpolation methods. 

Kriging accounts both for the clustering of nearby samples and for their distance to the 

point being estimated (Isaaks and Srivastava 1989). Additionally, by considering 

statisitcal distance (Kriging) through the variogram, rather than the euclidean distance 

(straight-line) distance used in conventional methods, it offers a siginifcant advantage for 

customizing the estimation method to a particular problem by considering the spatial 

continuity (spatial anisotropy). The incorporation of anisotropy or spatial continuity is used 

in the present research as part of the construction of variograms for the interpolation of 

several soil parameters in three dimensions by using ordinary Kriging. The following 

section presents a compilation of the advances of geostatistics in geotechnical 

engineering and its application for creating two-dimensional models. 
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2.6.5 Geotechnical Data Visualization 

Geotechnical data visualization is a valuable task for hazard mitigation and 

disaster response (Ellis and Vessely 2015), and it can include a wide list of available 

tools to collect, interpret, analyze, and represent geotechnical features to address 

hazards. However, many of the existing researches present a gap between the 

interpretation of collected data and enhanced visualization tools, which could range from 

simple two dimensional X-Y plots to more interactive three-dimensional modeling of the 

subsurface conditions. Geotechnical engineers are looking for innovative tools which can 

improve the design and evaluation to handle uncertainties and variations inherent in soil 

and rock properties in a more favorable manner (Hammah and Curran 2006).  

Geotechnical hazards of hydraulic fill dams were widely covered in the last 

section, and a vital step for addressing those hazards is to understand the soil 

configuration of this type of structure, which presents high variability in its properties. 

Enhanced visualization tools are necessary to overcome the uncertainties inherent in soil 

properties. Broad-based applications of geostatistics facilitate easier incorporation of the 

inherent uncertainty of soil mass into numerical models (Hammah and Curran 2006). The 

following sections present an overview of geotechnical visualization techniques 

traditionally used by practitioners to better understand the subsurface before conducting 

any geotechnical hazard assessment.  

2.6.5.1 Conventional Geotechnical Visualization Techniques 

A tremendous challenge for geotechnical engineers deals with the access, view 

and the interpretation of geotechnical data in a consistent and favorable format (Ellis and 

Vessely 2015). Visualization techniques for soil subsurface can be addressed based on 

high-quality data collected over a specific site. Geotechnical data can vary in type and 
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can be stored and accessed by different methods, such as reconnaissance; exploration; 

and testing (i.e., CPT, SPT); instrumentation (i.e., piezometers, inclinometers); remote 

sensing devices (i.e., gravimetric surveys); and geophysical devices (i.e., seismic 

refraction). Whether or not a specific type of collecting data method is used, the vital step 

to modeling geotechnical data is to apply available tools in an efficient and realistic 

manner.   

Data visualization tools varies from typical X-Y graphing software to sophisticated 

systems that combines multiple graphic tools based on complex database and image 

acquisition tools. A report prepared by Hollie et al. (2015) includes a basic list of existing 

geotechnical visualization technologies that includes the following. 

Spreadsheets and boring log generators are considered and used for 

visualization of geotechnical data by generating x-y graphs which will be useful for the 

illustration of data relationships such as CPT and SPT data interpretations. Spreadsheets 

are mainly created to interpret general geotechnical information based on existing 

correlations by inputting users’ data (i.e., shear strength based on tip resistance). A 

boring log generator is often referred to as software that employs user data input, and 

uses existing correlations to output a completed log interpretation (Ellis and Vessely 

2015), as shown in Figure 2-40.  
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engineering units to visualize and present laboratory results; The scheduling, collection, 

processing and  visualization of data can also be obtained from installed instruments at 

the site  (i.e., inclinometers, piezometers) by using instrumentation software; 

geographical information systems (GIS); image analysis software; and web-based 

imaging systems. These tools are primarily used to visualize surface areas (i.e., create 

interactive maps, ground penetrating radar, GPR, and LiDAR). Whether or not specific 

visualization tools are used, soil modeling has been primarily considered only in two 

dimensions in the existing literature; little research has considered soil as a three-

dimensional mass that can vary in all three directions. Most of the available research 

using three-dimensional models was created by using conventional interpolation methods 

after data collection. The following section includes several applications for visualizing 

and modeling soil based on geostatistical methods. 

2.6.5.2 Geotechnical Data Visualization using Two-Dimensional Models based on 

Geostatistics 

There are several benefits of employing geostatistical analyses in geotechnical 

engineering. It provides powerful tools for performing relatively simple but accurate 

models of non-homogenous materials based on limited sample data. Also, it contains 

techniques for optimizing sampling locations and the methodologies for estimating 

geotechnical properties at unsampled locations, with minimum estimation errors. 

Hammah (2005) presented a study that includes an application of geostatistics in a 

channel tunnel project, where optimization studies were performed along the alignment of 

the tunnel based on a Kriging interpolation of geologic layers.  
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implemented, such analysis allows different hypotheses and assumptions on variability to 

be readily tested. The present study presents a framework that results in visualization 

models based on a geostatistical prediction that considers spatial variability and spatial 

continuity of data collected from a hydraulic fill dam. Visualization models were predicted 

by Ordinary Kriging and by considering spatial anisotropy of data, as well and present soil 

properties models, based on interpolation of CPT data collected from dams at different 

locations.  

Three-dimensional visualization modeling can also enhance evaluations of 

geotechnical hazards. Liquefaction was defined as one of the most important hazards for 

hydraulic fill structures located in seismic areas. Although the hazards may vary from one 

location to another, the effective use of geotechnical data visualization tools and 

methodologies in one location can be applied to a series of conditions, events, and 

objectives in another location (Ellis and Vessely 2015). The present research also 

presents a visualization model of liquefaction assessment based on in-situ test data 

interpretation performed by existing liquefaction triggering methodologies described in 

earlier sections.  

Several hydraulic fill dams are actively in operation and located in areas where 

seismic activity was previously non-existent. However, areas such as the Central United 

States have been subjected to seismicity over the past decade. Three-dimensional 

visualization models are developed based on the liquefaction assessment for hydraulic fill 

dams located in specific regions within the Central United States. A simplified seismic 

hazard analysis is generated to combine liquefaction evaluations with the generation of 

three-dimensional visualization models. The following section presents a brief review of 

seismic hazard analysis. 
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2.7 Seismic Hazard Analysis 

2.7.1 Introduction 

A seismic hazard is described as a natural, earthquake-generated phenomenon 

such as ground shaking, fault rupture, and soil liquefaction (Kramer 1996). Several 

hydraulic fill dam failures have occurred after strong and long-duration seismic events. 

The vulnerability of hydraulic fill dams to accidents and failures from long-duration 

seismic ground motions was clearly demonstrated during the 1971 San Fernando, 

California earthquake (National Research 1983). Seismic hazard analysis is often 

developed in areas where the threat of natural earthquakes is constant (i.e., California, 

New Madrid area).  

Other areas, such as the Central United States, were previously considered as 

non-seismic regions due to their location in the middle of the intercontinental plate. 

However, the sudden increase of seismic activity alerted engineers to perform safety 

evaluations for all civil infrastructures in this region, especially in areas like Oklahoma, 

Texas, Colorado, and Arkansas. The present research develops a simplified seismic 

hazard analysis for the area of North Texas where several hydraulic fill dams are still 

active and require surveillance and safety evaluations.  

2.7.2 Recent increase of Seismic Activity in Central United States 

Earthquake activity within the Central United States has suddenly increased 

more than an order of magnitude since late 2009 (Rubinstein and Mahani 2015). Such 

rate of increase is having dramatic implications for the seismic hazards throughout the 

regions like Oklahoma, Colorado, and Texas, where the existing infrastructures were not 

designed to sustain seismic events. Significant damages were reported from the 5.7 

magnitude (M) earthquake that occurred in 2011 in Prague, Oklahoma, as well as several 
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2.7.3 Identification and Evaluation of Earthquakes sources 

A seismic or earthquake source is described as a geologic structure or domain 

within which the spatial and temporal occurrances or seismic events are approximately 

uniformily distributed (Kramer 1996). Potential sources that may generate future strong 

ground motion must be identified and evaluated. Identifying sources becomes an easy 

step where modern seismographs and seismographic networks are present (Kramer 

1996). However, seismographic networks have been deployed only to areas where there 

has been constant seismicity and/or expected earthquakes are likely to occur (i.e., 

California, New Madrid area). In areas where seismicity is rarely present, there is no 

reason for engineers to install equipment to make observations and interpretations; 

therefore, mapping of potential seismic sources has not been generated. North Texas is 

one of such areas where seismic activity was previously non-existent, but it now shows 

an increase of seismicity, demonstrated by earthquakes that occurred few years ago (i.e., 

M3.6 Azle TX, M4.0 Venus TX,  and M3.6 Iriving TX).  

Seismic sources are generally identified by the use of instruments; however, in 

the absence of instrumental seismic records, several other types of identification may be 

useful, such as the geologic and tectonic evidence or historical seismicity  (Kramer 1996), 

as shown in Figure 2-48. In areas where seismic activity is often present, the 

identification of sources becomes an easy task. For the Central United States, several 

seismograph network were installed after seismic events in Oklahoma (i.e., M5.7 Prague, 

OK earthquake). Since seismic activity continues to increase, the data recorded by 

seismographs has identified several active faults that were not easily found before. 

However, it is part of an extensive and time consuming work, and faults are identified 

after the earthquakes occur. Regions with a recent increase of seismicity (i.e., North 
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Chi-Square test comes from the statistical formula that uses the difference between 

“expected” and “observed” values and follows a Chi-Square distribution (Equation 2.7). 

ଶ ሺ௘೔ି௢೔ሻమ

௘೔
௞ିଵି௡௘௣
ଶ௞

௜ୀଵ     2.7 

Where, 

ei: expected number of data point in cell I (ei>5) 

oi: actual (observed) number of data points in cell I; 

k: total number of cells or subintervals in the range; 

n: sample size for implementing the Chi-Square test (n>25*K) 

k: total number of cells or range subintervals 

k-1: No. estimated parameters (nep); Chi-Square degrees of freedom (DF>0) 

χ2
γ : Chi-Square distribution (table) with DF=γ 

2.7.4 Ground Motion in Central United States 

The effect of earthquakes is primarily characterized by the strong motion 

produced at one specific site, and can be quite complicated to describe (Kramer 1996). 

The evaluation of any seismic hazard analysis is described by the ground motion 

expected at that specific site, and it is measured by using Ground Motion Predicting 

Equations (GMPEs) (Atkinson 2015). Ground motion is generally described by ground 

motion parameters in two groups: amplitude parameters, such as peak ground or 

horizontal acceleration (PGA or PHA), peak ground velocity (PGV), or peak ground 

displacement; and frequency content parameters (ground motion spectra) that include 

the Fourier spectra, power spectra, and response spectra. There are several others that 

fall into a different group, such as the spectral parameters (bandwidth, central frequency, 

and shape factor (Kramer 1996). 
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Despite the fact that seismic parameters are considered for the seismic hazard 

analysis, they are generally obtained based on the application of GMPEs of a specific 

site.  GMPEs are mainly developed by using regression models that relate any ground-

motion parameters (the most commonly used is the peak ground acceleration, PGA, and 

the pseudo-spectral acceleration, PSA) to seismological parameters of a specific region, 

such as earthquake magnitude, source-to-site distance, local site conditions, and style of 

faulting (Pezeshk et al. 2011).  

In the Central US, and due to the past low seismicity, the generation of GMPEs 

has been a challenge. For regions in the Central US, such as Oklahoma, Texas, 

Arkansas, and Colorado, various characteristics of seismic activity can be determined 

based on a collected earthquakes record. According to the USGS classification, 

earthquakes in this region are considered shallow earthquakes, since their hypocenters 

are located at shallow depths (4-20 km) compared to other regions where hypocenters 

are located at higher depths (>40 km) (i.e., California). It is believed that earthquakes can 

be attributed to human activities (i.e., mining and oil-extracting activities) or natural 

causes (i.e., reactivation of faults).  

A key requirement for the accurate assessment of seismic hazards and risks is to 

develop ground-motion-predicting equations (GMPE) for a specific site of interest. 

Several studies have developed GMPEs by using catalogs of earthquakes believed to 

have originated from mining or oil extracting activities. Edwards et al. (2013) predicted 

ground motions from induced earthquakes that occurred in areas where geothermal 

energy was developed for electrical power production (Edwards and Douglas 2013). 

Douglas (2011) presented a report gathering GMPEs developed from 1964 to 2010 and 

commonly used for seismic hazards in the Central United States (Douglas 2011). 
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However, those GMPEs did not consider the new catalog of earthquakes that was 

compiled for the increase of seismic activity in the region that occurred in 2009 and 

thereafter. Atkinson (2015) presented an updated study where GMPEs were developed 

based on induced seismicity in the United States and were also combined with the 

existing catalog of earthquakes. The study was mainly focused on small-to-moderate 

events (M3-6) at relatively short hypocenter distances (less than 40 km). The present 

research considers the development of the seismic hazard for a site located in North 

Texas. Ground motion calculated for the site of interest was based on the study 

developed by Atkinson (2015) described earlier, which was drawn from the Next 

Generation Attenuation-West 2 (NGA-West 2) database. GMPEs depend directly on the 

magnitude and source-to-site distance and various coefficients defined by Atkinson 

(2015), after the statistical regression.  

log ܻ ൌ ଴ܥ ൅ ܯଵܥ ൅ ଶܯଶܥ ൅ ଷܥ log ܴ   2.8 

in which Y is the ground-motion parameter (specifically, the orientation-

independent-horizontal component 5% damped pseudo-spectral acceleration [PSA] at a 

given frequency, or the PGA, or PGV); logs are in base 10; M is moment magnitude; and 

R is an effective point-source distance that includes near-source distance–saturation 

effects using an effective depth parameter (see Atkinson and Silva, 2000; Boore, 2009; 

Yenier and Atkinson, 2014) shown in Equation 2.9. 

R ൌ ටR୦୷୮୭
ଶ ൅ hୣ୤୤

ଶ     2.9 

݄௘௙௙ ൌ max	ሺ1.10ሺିଵ.଻ଶା଴.ସଷெሻሻ         2.10 

To constrain near-source behavior, Atkinson established Equation 2.10, in which 

the distance-saturation parameter, heff, is as determined by Yenier and Atkinson (2014) 

from stochastic modeling of a range of global events of M ≥6:0 (Yenier and Atkinson 
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2014). Note that a minimum value of heff = 1 km is specified. A limitation of the GMPE 

derived herein for seismic hazard application is that the simplicity of the selected 

functional form restricts its applicability to distances less than about 60 km. In conclusion, 

GMPEs derived by Atkinson (2015) induce a significant and larger ground motion than 

the GMPEs commonly used for the Central United States.  

Table 2-1 Coefficients of Equation 2.8 (Atkinson 2015) 

PSA at 
Frequency 

c0  c1  c2  c3  σ‐intra  σ‐inter 
σ‐

total 

0.2  −4.321  1.08  0.009376  −1.378  0.25  0.18  0.31 

0.33  −3.827  1.06  0.009086  −1.398  0.24  0.22  0.32 

0.5  −4.462  1.485  −0.03815  −1.361  0.24  0.23  0.33 

1  −4.081  1.742  −0.07381  −1.481  0.26  0.22  0.34 

2  −3.873  2.06  −0.1212  −1.544  0.29  0.2  0.35 

3.33  −2.794  1.852  −0.1078  −1.608  0.3  0.19  0.36 

5  −2.266  1.785  −0.1061  −1.657  0.3  0.21  0.37 

10  −1.954  1.83  −0.1185  −1.774  0.29  0.25  0.39 

20  −2.018  1.826  −0.1192  −1.831  0.28  0.3  0.41 

33  −2.283  1.842  −0.1189  −1.785  0.28  0.27  0.39 

PGA  −2.376  1.818  −0.1153  −1.752  0.28  0.24  0.37 

PGV  −4.151  1.762  −0.09509  −1.669  0.27  0.19  0.33 

Equation  (1)  predicts  5%  damped  horizontal‐component  pseudospectral  acceleration 
(PSA,  in cm=s2) for B/C site conditions, peak ground acceleration (PGA,  in cm=s2), and 
peak ground velocity (PGV, in cm=s). The standard deviation of residuals (σ‐total) and its 
intra‐event and inter‐event components are also given. 

 

Several other GMPEs were also used for addressing the deterministic seismic 

hazard analysis (Torild van et al. 2006; Pezeshk et al. 2011).  For probabilistic hazard 

analysis, GMPEs from Atkinson (2015) were used. Once the ground motion at a specific 

site has been defined, the seismic hazard can be calculated based on two basic 

approaches: deterministic and probabilistic seismic hazards. Both use the same basic 

body of information to establish the design earthquake. The major difference is that the 

probabilistic methodology systematically examines the uncertainties and includes the 
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According to the US Army Corps of Engineers (USACE 2016), the DSHA 

approach uses the known seismic sources that can affect the site, along with the 

available historical seismic and geological data to generate discrete, single-valued events 

or models of ground motion at the site of interest. It mainly considers that earthquakes 

occur at the source closest to the site. In deterministic analysis, the closest source-to-site 

is commonly used to determine the ground motion. A vital step in any seismic hazard is 

to apply right attenuation relationships that are characteristic to the local geology.  

Figure 2-52 illustrates the basic steps in the deterministic analysis. The initial 

step consists on the identification of all the possible sources capable of producing 

significant ground motion described in earlier sections. Some of these will be easy to 

identify (e.g., a known active fault); however, others may be more complicated to spot 

and characterize (i.e., North Texas region). Each seismic source is characterized by the 

selection of a source-to-site distance parameter for each seismic source. In most DSHAs, 

the calculation of the ground motion is primarily in terms of the shortest distance from the 

source to the site (Rmin).  

Also, each source is usually characterized by the maximum credible earthquake 

(MCE), which is considered as the largest earthquake magnitude that could occur along a 

recognized fault or within a particular seismic source (FEMA 2005). The loading resulting 

from the MCE often is exceeded for probabilistic methods for high-return period faults 

(i.e., San Andreas Fault). However, it involves various subjective and intuitive decisions, 

particularly regarding earthquake potential that may require expertise from professionals 

who already perform seismic hazards at similar sites.  

The second step consists of selecting the controlling earthquake (i.e., earthquake 

that is expected to produce the strongest level of shaking), which is generally expressed 
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and the variability of ground motion intensity for a given earthquake event (Baker 2008). 

In this section, a probability-based framework is described, including concepts and 

mathematical approaches to incorporate those conceptual problems.  

A PSHA does not search for the elusive worst-case ground motion intensity as 

the DSHA does. Rather, it considers all possible earthquake events and resulting events 

including their corresponding probability of occurrence, to finally find the level of ground 

motion intensity exceeded with some sufficiently low rate (Baker 2008). In general, the 

PSHA is established based on four steps: 

1. Identification of all earthquake sources of producing significant ground 

motion; 

2. Characterization of the distribution of earthquake magnitudes (rates at which 

earthquakes of various magnitudes are expected to occur). Characterization 

of all source-to-site distances associated with potential earthquakes; 

3. Prediction of the resulting distribution of ground motion intensity in terms of 

each magnitude and source-to-site distance combinations found in Step 2; 

4. Combination of all uncertainties in earthquake size, location, and ground 

motion intensity, using the total probability theorem computation (Baker 

2008). 

The final result is a full distribution of levels of ground shaking intensity and 

corresponding rates of exceedance, which can be illustrated with seismic hazard curves 

developed for the site of interest. PSHA results can be used to identify a ground motion 

intensity having an acceptably small probability of being exceeded.  
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2.7.6.1 Identification of Earthquake Sources 

Unlike in the DSHA, where seismic sources are focused on identifying the one 

which causes the largest possible earthquake, the identification of earthquake sources in 

a PSHA intends to recognize all earthquake sources capable of producing significant 

damaging ground motions at the site. Once all sources are identified, the distribution of 

magnitudes and source-to-site distances associated with earthquakes from the sources 

are defined.  
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earthquakes will be under-predicted, and the mean rate of large earthquakes will be over-

predicted (Kramer 1996). Several other methods have been introduced (Stepp 1972; 

Weichert 1980; EPRI 1986) to overcome with incomplete records and to correct the trend 

or path. 

The bounded Gutenberg-Richter recurrence law (Figure 2-55) was introduced to 

overcome the over-prediction of large earthquakes. Generally, a limitation is present on 

the upper bound of earthquake magnitudes in a region, and it primarily attributed to the 

finite and predefined size of the source faults. (Earthquake magnitude is related to the 

area of the seismic rupture. McGuire and Arabasz (1990) expressed a new version of the 

recurrence law that overcomes the overestimation for large earthquakes (McGuire and 

Arabasz 1990), as shown in Equation 2.12. 

௠ߣ ൌ ߥ ୣ୶୮
ሾିఉሺ௠ି௠బሻሿିୣ୶୮ሾିఉሺ௠೘ೌೣି௠బሻሿ

ଵିୣ୶୮ሾିఉሺ௠೘ೌೣି௠బሻሿ
 ;  ݉଴ ൏ ݉ ൏ ݉௠௔௫ 2.12 

Where, “ν” is the temporal distribution of earthquake recurrence; β = 2.303b; 

b=parameter obtained by regression of the database of seismicity from the source of 

interest; m0=minimum magnitude (m0=1.5); mmax= maximum magnitude assumed in our 

model; and λm is the mean annual rate of exceedance.  

Several other recurrence laws are found in the literature and can be used for 

specific cases. The Gutenberg-Richter Law represents the behavior of a single source 

only and has been questioned by some authors (Schwartz and Coppersmith 1984) 

(Schwartz 1988). For example, for some specific faults which produce earthquakes of 

similar size, the characteristic recurrence law is more appropriate (Figure 2-56). This can 

be addressed when enough geologic evidence of the fault is present (Kramer 1996). 

Geologic evidence refers to the fact the characteristic earthquakes occur more often than 

would be implied by extrapolation of the G-R Law from high exceedance rates (low 
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ோ݂ሺݎሻ ൌ ௅݂ሺ݈ሻ
ௗ೗
ௗೝ

      2.13 

The present research uses volumetric models to characterize seismic sources 

within the area of study in North Texas. Kramer (1996) described a simplified 

methodology to compute the spatial uncertainty for volumetric sources, as shown in 

Figure 2-57(c). For volumetric sources, it is appropriate to evaluate fR(r) by numerical 

rather than analytical methods (Kramer, 1996). The task can be accomplished by dividing 

the irregular zone into a large number of discrete elements of equal area to generate a 

histogram fR(r), where R corresponds to the distance to the center of each element in the 

source. This approach assumes that the energy from the source rupture is released at 

the hypocenter of the earthquake.  

2.7.6.4 Ground Motion Intensity Uncertainty  

Quantification of the distribution of potential earthquake magnitudes and 

locations has been described; however, the objective is to analyze ground motions, not 

earthquakes at one specific site. Therefore, the following step is quantify the ground 

motion by using a ground motion prediction model (GMPE), which was described in 

earlier sections. However, seismic parameters can be scattered after using GMPEs, as 

shown in Figure 2-58, and the uncertainty of events to occur requires an evaluation. 
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The terms lnIM (M, R,) and (M , R,) are the result of the ground motion 

prediction model; both terms refer to the predicted mean and standard deviation, 

respectively, of the term lnIM. As shown in the Equation 2.14, both terms are function of 

earthquake magnitudes (M), source-to-site distance (R) and other parameters which can 

be constants from regression models developed for GMPEs that typically are referred to 

as “ ”. On the other hand,  is a standard normal random variable that provides the 

variability in the prediction model of lnIM. Positive values of  produce larger values 

than average of lnIM, while negative values of produce smaller values than average 

values of lnIM. 

In PSHAs, the definition of ground motion brings inevitable scatter results from 

using GMPES. Causes for the scattering in results are attributed to the randomness in 

the mechanisms of rupture and from variability and heterogeneity of the source, travel 

path, and variable site conditions. The values of the confidence limits (Campbell 1985) or 

by considering the standard deviation of the predicted parameter in the regression model 

of GMPEs (Kramer 1996) can be used as quantitative parameters in the scattering of 

data. An easier way to address the uncertainty is to consider the standard deviation of 

the logarithm model of the predicted parameter. Once the seismic parameter is 

calculated, using GMPEs for an specific m and r, the probability of that various target 

peak acceleration level will be exceeded and must be calculated using Equation 2.15. 

∗ݖ ൌ ௟௡௬∗ି௟௡௉ு஺

ఙ೗೙೤
     2.15 

Where y* is the target peak acceleration or seismic parameter and σ is the 

corresponding standard deviation for the GMPE model. Figure 2-59 illustrates the 



 

 

pr

pr

F

de

2.

in

co

re

ca

po

ea

po

roba

rod

Figu

epe

.7.6

nteg

onc

efer

alcu

oss

arth

oss

abil

uce

ure 

ends

6.5 S

grate

cept

rs to

ulate

sible

hqua

sible

lity 

ed b

2-5

In p

 Wh

s on

Seis

Sei

ed 

t for

o th

ed f

e so

ake

e ma

tha

by a

59 C

prob

here

n th

smi

ism

to 

r de

he c

for a

ourc

e wo

agn

at a

n ea

Cond

bab

e FY

e p

ic H

ic h

exp

evelo

calc

a gr

ce 

ould

nitud

 pa

arth

ditio

bilist

 

Y(z)

rob

Haza

haz

pres

opin

cula

rou

loca

d oc

des 

artic

hqua

ona

tic te

) is 

abil

ard 

ard 

ss 

ng s

ation

nd m

atio

ccu

and

cula

ake

l pro

p

erm

the

lity d

Cur

 cu

the 

seis

n of

mot

on, 

r at

d lo

r g

e ma

oba

para

ms, E

ܲሾ

e va

dist

rves

urve

cu

smic

f pr

tion

mu

t th

ocat

rou

agn

abilit

ame

Equ

ሾܻ ൐

lue 

tribu

s Co

es c

umu

c ha

roba

n pa

ultip

hat s

ions

nd 

itud

ty o

eter

uatio

൐ ݕ

of t

utio

omp

can 

ulati

aza

abil

aram

lied

spe

s ob

mo

de, m

of ex

r (M

on 2

݉|∗ݕ

the 

n us

puta

be 

ve

rd c

ity 

mete

d by

ecific

btai

1

otion

m a

xcee

 an

2.16

݉, ݎ

CD

sed

atio

ca

haz

curv

of e

er Y

y th

c lo

ned

104
 
 

n pa

and 

eda

d R

6 de

|ݎ ൌ

DF o

d to 

n an

lcul

zard

ves 

exc

Y wi

he 

ocat

d fro

 

ara

tha

ance

R) (K

escr

ൌ 1

of Y

rep

nd F

late

d fo

is q

ceed

th a

pro

tion

om t

met

at oc

e of

Kram

ribe

1 െ

Y at 

pres

Fini

ed fo

or 

quit

ding

a sp

obab

. T

the 

ter,

ccur

f a p

mer

ed th

௬ሺܨ

spe

sent

ite T

or i

a p

e s

g a 

peci

bility

he 

spa

Y,

rs a

part

r 19

he i

ሺݖ∗

ecif

 Y (

Tim

ndiv

part

imp

pa

fic e

y th

pro

atia

ex

at a 

ticul

96)

llus

ሻ 

fic m

(Kra

e P

vidu

ticul

ple (

rticu

eart

hat 

oces

l an

xcee

dist

lar v

) 

trat

m an

ame

Perio

ual 

lar 

(Kra

ular

thqu

this

ss i

nd s

eds 

tanc

valu

tion 

nd r

er 1

od 

sei

site

ame

r va

uak

s p

s th

size 

a 

ce,

ue o

in F

r. T

996

sm

e. T

er, 1

alue

ke th

parti

hen

dis

cert

r fro

of gr

Figu

The 

6). 

ic s

The

199

e of

hat 

icul

 re

strib

tain

om 

 

roun

ure 

 

valu

sour

e co

6). 

f y*

occ

ar 

pea

utio

n va

the

nd m

2-5

ue o

rces

omp

It p

, th

curs

ma

ated

on. 

alue

e site

mot

59. 

2

of F

s o

puta

prim

hat 

s at 

gnit

d fo

e, y

e. 

tion

2.16

FY(z

r be

ation

arily

was

one

tude

or a

y* 

 

6 

z) 

e 

n 

y 

s 

e 

e 

ll 



 

105 
 
 

 

Several math calculations overcome the most commonly associated equation for 

PSHA. Equation 2.17 integrates the fact about rates of occurrence of earthquakes, the 

expected earthquake magnitudes and sour-to-site distances, as well as the distribution of 

ground shaking intensity produced by those given earthquakes. 

ܯܫሺߣ ൐ ሻݔ ൌ ∑ ௜ܯሺߣ ൐ ݉௠௜௡ሻ∑ ∑ ܲ൫ܯܫ ൐ หݔ ௝݉, ௜ܯ௞൯ܲ൫ݎ ൌ ௝݉൯ܲሺܴ௜ ൌ ௞ሻݎ
௡ೃ
௞ୀଵ

௡ಾ
௝ୀଵ

௡ೞ೚ೠೝ೎೐ೞ
௜ୀଵ 		2.17 

Where, Mi and Ri represents the magnitude and distance distributions for a given 

source I; mj=m0 + (j-0.5) (mmax+m0)/Nm; rk=rmin+(k-0.5) (rmax-rmin)/Nr; IM=Y and nsources Is 

the number of sources considered.  

Once PSHA calculations are performed, it is easy to combine the seismic hazard 

curve with the Poisson model to estimate probabilities of exceedance in finite time 

intervals (Kramer 1996). Equation 2.18 defines the probability of exceedance of y* in a 

time period, T. 

ܲሾ்ܻ ൐ ሿ∗ݕ ൌ 1 െ ݁ିఒ೤∗்    2.18 

2.8 Summary  

This chapter presents a comprehensive literature review on earthen dams, 

hazards, soil variability, and seismic hazard analysis. Geotechnical evaluation for 

hydraulic fill structures is required, especially in areas where high seismicity is present. 

Several failures of hydraulic fill dams were presented, showing that liquefaction is the 

primary hazard that affects this type of structure. Also, hydraulic fill dams present high 

soil variability in their configuration, which was demonstrated by several researchers. The 

main objective of the research is to develop a comprehensive soil characterization by 

generating 3D visualization models based on the theory of Geostatistics, a method that 

considers spatial variability, and by incorporating in-situ test data (i.e., CPT) for 
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characterization of soil. Kriging interpolation is used based on the generation of 

variograms that incorporates spatial continuity combined with the anisotropy in the data.   

This research integrates an application study for the Central United States, 

where a sudden increase of seismicity has become an issue. A seismic geotechnical 

evaluation for this type of dam is also performed by addressing the cyclic liquefaction 

potential for the case study. The following chapter presents an approach to determine 

seismic parameters in areas where sudden increase of seismic activity has become an 

issue. First, a simplified seismic hazard analysis is developed by generating volumetric 

seismic sources for the area of North Texas, due to the lack of fault mapping.  

Finally, three-dimensional visualization models are presented for characterizing 

soil properties and cyclic liquefaction potential, based on CPT data collected and 

Geostatistical interpolation.   
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Chapter 3 Formulation of a Simplified Seismic Hazard Analysis for North Texas 

3.1 Introduction 

The main objective of this research is to apply the principles of risk and reliability 

to develop a framework to assess the resiliency of critical aging infrastructure such as 

dams and levees. The Eagle Mountain Dam, a hydraulic fills structure located in North 

Texas was considered for comprehensive seismic analysis including risk based 

characterizations of compacted dams and probabilistic seismic hazard analysis on 

seismic loading events.  The whole framework of development and analysis was done by 

using a real example of Eagle Mountain Dam located in North Texas. This chapter 

presents the development of a seismic hazard analysis by using the recent earthquake 

events in North Texas. Seismic parameters obtained from this analysis are used for the 

calculation and assessment of liquefaction potential at the EM dam internal soil layers.  

The sudden increase of seismic activity in the central United States raises a 

concern for the stability of critical lifeline structures such as dams and levees. Due to low 

seismic activity in these regions, many of the civil infrastructures were not designed to 

sustain seismic loading conditions. Significant damages were reported during the M5.7 

(magnitude) earthquake occurred in 2011 at Prague, Oklahoma (Holland et al. 2013). 

Latest seismic events, in the Oklahoma area such as the M5.8 Pawnee, OK and the M5.0 

Cushing, OK earthquakes, caused several geotechnical and structural damage (Clayton 

et al. 2016). Other important earthquakes in this region are: M5.3 Trinidad, Colorado 

earthquake, the 2012 M4.8 Timpson, Texas earthquake, the 2011 M4.7 Guy, Arkansas 

earthquake. The National Earthquake Information Center (NEIC) reported 27 

earthquakes near the cities of Azle and Reno, Texas including two main M3.6 events 

Figure 3-1. 
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Both, deterministic and probabilistic seismic hazard analyses, DSHA and PSHA 

respectively, are performed for this site to obtain the seismic parameters. However, 

based on the maximum earthquake magnitude recorded within the area, the DSHA 

appears to underestimate the seismic hazard at the site; however, PSHA complements 

and addresses those uncertainties coming from DSHA analysis. Initially, the analysis was 

performed based on two different approaches:  

 earthquakes with a short radius (Rmax=40 miles) from Eagle Mountain Dam  

 earthquakes with larger radius (Rmax=200 miles) from Eagle Mountain Dam 

Both approaches were selected based on the current seismicity near the site and 

also the potential effect of earthquakes in further areas such as Oklahoma. 

Corresponding ground motion predicting equations shall be used for each approach. The 

main characteristic of earthquakes in central US is considered by USGS in the category 

of minor to moderate earthquakes (M1-M5) or also called shallow or small magnitude 

earthquakes. The ground motion required was calculated based on ground motion 

predicting equations (GMPEs) developed for specific earthquake conditions (i.e., 

magnitude) as well as based on the source-to-site distance (R). 

Chapter 2 presented a compilation of GMPEs which can be applicable for the 

central United States; however, none of the correlations consider distances more than 

35-40 miles (50-60 km) for similar ground conditions of North Texas. A correlation for 

magnitudes M4-M8 and distances up to 1600 miles is found in the literature (Pezeshk et 

al. 2011); those GMPEs were developed for hard rock sites in Eastern United States and 

are not applicable for the region of interest where soft rock is mainly present.  

Despite the fact that it is unknown the cause oh earthquakes, it is not expected to 

have large events in North Texas as compared with areas like California or New Madrid 
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source-to-site distance is evaluated for normaility por each prism generated to satisfy the 

statement defined by Kramer (1996).  

The seismic hazard of EM is based on the assumption that earthquakes occuring 

at short distances (40-mile radius) will have more impact that those occurring at larger 

distances. The simplified model also assumes that Newmark East Zone fault identified in 

the area of North Texas is part of the volumetric seismic sources generated. The 

assumption is based that no information of fault rupture type has been documented for 

this type of fault; therefore it cannot be considered as seismic source for potential 

damage.  

3.2.1 Geometric Characterization  

Earthquake catalog was obtained within 40-mile radius from EM site from USGS 

database. Epicenter coordinates, hypocenter distances (depth) and magnitude of all the 

seismic events were recorded (See Appendix A). It was expected that the depth of 

earthquakes within this catalog ranges from 2.25-10 km approximately as shown in the 

catalog in which earthquakes are categorized as shallow events according to USGS. 

Figure 3-7 presents a sketch of the proposed methodology to generate volumetric 

seismic sources. It consists of generating two-dimensional polygons by connecting 

earthquake epicenters over a random area. Epicenters include the information of 

corresponding depth and hypocenters are easily identified for the creation of volumes or 

prisms. The polygon is then divided in a reasonable number of elements with the same 

volume capable to produce a good number of data for the check of normality. The 

process performs different iterations with different random polygons and prism created 

and normaility is checked for each. 
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3.2.2 Check for normality – Chi-Square Test 

The Chi-Square goodness of fit test is used to test the hypothesis that data 

comes from a normal distribution. It basically consists on comparing the observed values 

with the expected values by evaluating using the Chi-square function as described in 

Chapter 2. The statistical method to verify the normality is sufficient to consider the 

source-to-site distance for the generation of seismic sources since the number of 

elements is 1000 for each seismic source. Results of the chi-square analysis for sources 

shown in Figure 3-9, Figure 3-10, Figure 3-11 and tabulated in Table 3-2.  

Table 3-1 Check of Normality in Seismic Sources 

Description 
p‐value (Chi‐Square test) 

Low 
Normality 

Medium 
Normality 

Acceptable 
Normality 

Source 1  13.16%  23.25%  76.11% 

Source 2  1.79%  19.86%  65.73% 

Source 3   10.78%  32.19%  70.29% 

 

The proposed methodology aims the identification of seismic sources when faults 

or other potential sources have not been identified in a specific region. The seismic 

hazard presented herein includes this methodology as part of the computation of both, 

deterministic and probabilistic seismic hazard analysis which are described in the 

following sections. 

3.3 Deterministic Seismic Hazard Analysis (DSHA) 

The assessment of DSHA consists of determining the occurrence of an 

earthquake of a specified magnitude (controlling earthquake) at a specified location from 

the site of interest (FEMA 2005). This section presents the deterministic seismic hazard 

analysis performed for Eagle Mountain Lake site. 
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The DSHA performed is based on the steps described in Chapter 2. The first 

step consisted of identifying and characterizing seismic sources which refers to the 

definition of source-to-site distances and maximum earthquakes within each source. 

Three volumetric seismic sources (S1, S2 and S3) are considered within the 40-mile 

radius of EM Lake. The Maximum Credible Earthquake (MCE), defined as the maximum 

earthquake found within each source for assessing DSHA was determined for all the 

sources (Mmax).   

One of the main steps of DSHA is to address a threshold ground motion 

parameter value (minimum value of ground motion that causes a seismic hazard at the 

site). A threshold value is important to check whether all sources are actually capable or 

not to produce damage at the site of interest. It is usually calculated by using the 

minimum magnitude (Mmin) and the maximum source-to-site distance (Rmax) out of all 

sources. However, a threshold value is defined as a decluttering tool when a high number 

of seismic sources are present around the site of interest.  

Since there are only three sources (S1, S2 and S3) within the 40-mile radius from 

EM, it is assumed that all of them could cause significant hazard at the site. Figure 3-12 

shows a sketch of seismic sources with corresponding MCE (Mmax) and the shortest 

source-to-site (Rmin) to EM site. Recorded seismic events are represented as blue dots 

and the red solid lines represent the boundary for each seismic source. S.I units are used 

herein for the ground motion calculation for the easiness of applying GMPEs developed 

for those specific units.  



 

 

ba

de

re

sh

ea

ase

eve

elati

hort

arth

ed o

elop

ively

t di

hqua

The

on c

ed 

y va

stan

ake

e c

corr

by 

alid 

nce

es a

calcu

resp

Atk

for 

es (4

are l

ulat

pon

kinso

cal

40 

like

tion 

ding

on (

lcula

km

ly to

F

of 

g M

(20

atin

) a

o be

Figu

gro

Mmax

15) 

ng g

nd 

e o

ure 

oun

x an

de

grou

it is

ccu

3-1

nd m

nd R

scri

und 

s a

urred

2 D

mot

Rmin

ibed

mo

ppli

d at

1

DSH

tion

n. G

d in

otion

icab

t sh

123
 
 

HA s

 pr

rou

 Ch

n in 

ble 

hallo

 

sche

rodu

nd 

hapt

term

for 

ow 

ema

uced

mo

ter 

ms 

low

dep

atic 

d b

otion

2. T

of a

w s

pths

at E

by e

n is

The

a se

eism

s (4

EM

each

s ca

e se

eism

mic

-10

h s

alcu

t of

mic 

ity 

 km

sour

late

f GM

par

reg

m), s

rce 

ed b

MPE

ame

ions

sim

is 

by u

Es p

eter

s (M

ilar 

 

cha

usin

pres

r (P

M 3

con

arac

ng G

sen

PGA

3-6)

ndit

cter

GM

nted

A) w

) wh

tions

rized

PEs

 are

within

here

s as

d 

s 

e 

n 

e 

s 



 

124 
 
 

 

related to North Texas seismicity. Table 3-2 shows the results from the calculation of 

ground motion using Atkinson (2015) equations. 

Table 3-2 Ground motion at Eagle Mountain Lake site (DSHA) 

Source  Mmax 

Ground  
Source‐to‐site 
distance (Km) 

Depth 
(km) 

Reff 
(Km) 

heff 
Rmin 
(km) 

PGA 
(cm/s

2
) 

S1  3.6  4.3  5.05  6.6  0.98  6.7  17 

S2  3.6  25.1  5.01  25.6  0.98  25.7  1.6 

S3  4  41.6  4.92  41.9  1.00  41.9  1.6 

 
A primary objective of DHSA to address maximum potential damage from all 

sources is to select the controlling earthquake, earthquake that is expected to produce 

the strongest level of shaking which is obtained by quantifying the maximum ground 

motion parameter (Y, PGA) at the corresponding minimum source-to-site distance (Rmin) 

from Table 3-2. The hazard at the site is usually defined by different ground motion 

parameters. The present study only shows the evaluations of PGA as the critical ground 

motion parameter and does not contemplate the calculation of peak ground velocity 

(PGV) or spectral acceleration (PSA). The seismic hazard at the site is dependent on the 

earthquake magnitude (Mmax) and minimum distance from source to site (Rmin) that 

produces the highest value of PGA (cm/s2). The seismic hazard curve generated by S1 

and S2 is shown in red line and was developed with Mmax=3.6; however the Rmin is 

different for each source (i.e., Rmin1=6.7 km; Rmin2=25.7 km) and therefore the PGA 

generated by S1 is much higher than S2 (i.e., PGAS1=17 cm/s2). The seismic hazard 

curve produced by S3 is shown in blue, and it was generated with Mmax=4.0; however, the 

corresponding Rmin3=41.94 km produces a small value of PGA which is not able to be 

shown in Figure 3-13. 
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Figure 3-13 Deterministic Seismic Hazard Analysis (DSHA) at EM 

Results from DSHA showed that the earthquake hazard for the EM site has a 

peak ground acceleration (PGA) of approximately 0.02g (17 cm/s2) resulting from an 

M3.6 earthquake located at Source 1 (Azle, TX) at a distance of 6.7 km from the site. 

DSHA produces a relatively low seismic parameter (PGA) to generate a moderate or 

significant damage. However, the DSHA is not considered appropriate to estimate 

seismic hazard in North of Texas particularly when the rate of earthquakes is not 

constant. Therefore, a probabilistic seismic hazard analysis is more suitable by 

considering several uncertainties which are not considered in DSHA.  

3.4 Probabilistic Seismic Hazard Analysis, PSHA 

Seismic activity in North Texas is primarily characterized by the uncertainty of an 

earthquake to occur in both time and space. The recent increase of seismic events does 

not provide an overall view to define a final seismic hazard for sites at this region. 

However, the best approach to assess a seismic hazard at these sites is to use the 

probabilistic concepts that allows considering uncertainties in the size, location and rate 
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of recurrence of earthquakes and in the variation of ground motion characteristics with 

earthquake size and location (Kramer 1996). The present PSHA approach is developed 

based on the assumption that rate of earthquakes remains stationary in both time and 

space. Although, this assumption might not reflect the reality of seismic activity in the 

region but it can forecast seismic hazard within a short and finite period of time (1 year). 

PSHA calculation is usually described as a specific ground motion parameter 

with 2% probability of exceedance in 50 years at sites where representative seismic 

information is available. In other words, it commonly describes the 2% probability for a 

computed seismic parameter (i.e., PGA) to be exceeded in 50 years. The present model 

is valid for the calculation of ground motion parameter with 1% of probability of 

exceedance in one year to consider the rate of earthquakes stationary and it is valid to 

forecast seismic hazard in 2016 for similar structures located at this region. The 

developed PSHA approach provides a simple framework which allows identifying, 

quantifying and combining uncertainties in an easy manner to have a better picture of 

seismic hazards in North Texas.  

The PSHA methodology described in this section is based on deeply ingrained 

methods developed by different authors (Cornell 1968; Algermissen et al. 1982) which 

primarily consists of four steps (Reiter 1990) similar to DSHA. The following sections 

presents the detailed analysis on determining the seismic parameters using PSHA 

approach described in Chapter 2. The identification and characterization of sources is 

defined as the first step of PSHA which has same considerations as provided for 

deterministic analysis. However, a PSHA requires careful attention for characterizing a 

seismic source to consider uncertainties of the earthquake potential to the site. 

Therefore, characterization of an earthquake source is defined based on the 
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consideration of the spatial distance, size and time earthquake distribution within each 

source. 

3.4.1 Spatial and Size Uncertainty 

Seismicity has a peculiar characteristic in North Texas and several assumptions 

are required for the calculation of uncertainties in both, space and size, within seismic 

sources. The generation of volumetric sources primarily describes that earthquakes of 

different magnitudes (M) can occur at any location of the volumetric source (prism) with a 

certain source-to-site distance (R). PSHA considers those uncertainties by using 

univariate statistics to characterize the spatial and size uncertainty. Spatial distribution 

refers to the uncertainty in source-to-site distance and can be evaluated by a probability 

density function fR(r) (i.e., frequency of earthquakes within the source). This task was 

described in Chapter 2 and it is the same methodology used for evaluating a volumetric 

source by using univariate statistics (i.e., histograms). The distribution of earthquakes 

within each sources is shown in Figure 3-14. 

 
Figure 3-14 Spatial uncertainty illustration (Histograms) S1, S2 and S3 

A PSHA examines all possible seismic events and resulting events integrating 

their corresponding probability of occurrence within a source to finally establish the level 

of ground motion intensity that exceeds with a threshold value (i.e., tolerably low rate.) As 
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GMPEs are developed in terms of distances (R) and magnitudes (M), both parameters 

need to be addressed statistically. First, distances are obtained from histograms which 

are generated using number of samples on the y-axis and can be transformed to 

probability by assuming the maximum number of samples within a bin as one; Ground 

motion calculations is performed for every average distance at every single combination 

of bin size for each seismic source.  

On the other hand, the size uncertainty can be determined by using recurrence 

law models described in Chapter 2. PSHA approach makes the assumption that the 

recurrence law obtained from past seismic events is applicable for the prediction of future 

seismic events (Kramer 1996). In other words, a recurrence law describes the mean 

annual rate (λm) for a specific catalog of earthquakes which will be used later for 

probability calculations for different combinations of ground motion, magnitude and 

source-to-site distance as part of PSHA. The seismicity rate model assumes that rates of 

earthquakes (M 1.5 – 4.5) can be used along with a Bounded Gutenberg-Richter 

magnitude-frequency distribution (Guttenberg and Richter 1944). The Bounded G-R 

model is developed based on the Standard G-R model (Guttenberg and Richter 1944) 

which characterizes seismic sources by obtaining parameters from regression of the 

database of seismicity from the source of interest (i.e., “a” and “b” parameters; 

Guttenberg and Richter 1944).  

Parameters “a” and “b” are obtained based on the equation found from the 

Standard G-R model (Figure 3-15) and results are tabulated in Table 3-3. Parameters “a” 

and “b” will be used for the calculation of the temporal distribution of earthquakes “ν”. The 

model assumes a maximum earthquake Mmax6.0 to be associated with all sources and a 

minimum earthquake Mmin1.5 assuming that earthquakes of magnitude less than 1.5 do 



 

129 
 
 

 

not produce significant ground motion that contributes to the seismic hazard at EM site. 

The value “ν” is used for the calculation mean annual rate of exceedance for each source 

of the Bounded G-R recurrence model (McGuire and Arabasz 1990) defined by the 

Equation 3.1: 

௠ߣ ൌ ߥ ୣ୶୮
ሾିఉሺ௠ି௠బሻሿିୣ୶୮ሾିఉሺ௠೘ೌೣି௠బሻሿ

ଵିୣ୶୮ሾିఉሺ௠೘ೌೣି௠బሻሿ
 ;  ݉଴ ൏ ݉ ൏ ݉௠௔௫   3.1 

Where, ν is the temporal distribution of earthquake recurrence; β=2.303b; 

b=parameter obtained by regression of the database of seismicity from the source of 

interest; m0=minimum magnitude (m0=1.5); mmax= maximum magnitude assumed in our 

model (mmax=6.0); and λm is the mean annual rate of exceedance 

Table 3-3 “a” and “b” parameters (Figure 3-15) (S1, S2, S3) 

Source  

Parameters from Regression 
(Earthquake catalog)  
Standard G‐R model 

ν 

a  B 

S1  2.53  0.76  24.2 

S2  2.93  1.00  27.1 

S3  2.61  0.99  13.5 

 

 

Figure 3-15 Standard G-R model for S1, S2 and S3 at EM 

y = -1.0x + 2.93

y = -0.99x + 2.61 

y = -0.76x + 2.53
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Table 3-4 summarizes values the calculations based on the G-R recurrence 

model described in Chapter 2. Figure 3-16 illustrates the Bounded G-R recurrence model 

for each source capable of producing considerable ground motion at the Eagle Mountain 

Dam.  

Table 3-4 Gutenberg-Richter Recurrence Law calculation (S1, S2, S3) 

Years (Data 
collected) 

8 
Source 1

# 
Eqs

Nm  λm  log λm  ν 
λm 

(Bounded) Range  M  Description

1.5    

10.5

10.50 

2  2‐2.5  M>2 5 26 3.25 0.51 4.37 

2.5  2.51‐3  M>2.5 14 21 2.63 0.42 1.81 

3  3.01‐3.5  M>3 5 7 0.88 ‐0.06 0.75 

3.5  3.51‐4  M>3.5 2 2 0.25 ‐0.60 0.31 

4  4.01‐4.5  M>4 0 0 0 ‐ 0.13 

Years (Data 
collected) 

8 
Source 2

# 
Eqs

Nm  λm  log λm  ν 
λm 

(Bounded) Range  M  Description

1.5     8 104 13 1.11

27.1

27.07 

2  2‐2.5  M>2 50 96 12 1.09 3.35 

2.5  2.51‐3  M>2.5 35 46 5.75 0.76 1.07 

3  3.01‐3.5  M>3 10 11 1.38 0.14 0.34 

3.5  3.51‐4  M>3.5 1 1 0.13 ‐0.90 0.11 

4  4.01‐4.5  M>4 0 0 0 ‐ 0.03 

Years (Data 
collected) 

8 
Source 3

# 
Eqs

Nm  λm  log λm  ν 
λm 

(Bounded) Range  M  Description

1.5    

13.5

13.52 

2  2‐2.5  M>2 17 30 3.75 0.57 4.33 

2.5  2.51‐3  M>2.5 9 13 1.63 0.21 1.39 

3  3.01‐3.5  M>3 3 4 0.5 ‐0.30 0.44 

3.5  3.51‐4  M>3.5 1 1 0.13 ‐0.90 0.14 

4  4.01‐4.5  M>4 0 0 0 ‐ 0.045 

 
PSHA computations are primarily based on the temporal distribution of 

earthquake recurrence “ν” and probabilistic calculations that are described in the 

following sections. Source-to-site probability distribution can be directly obtained from 
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histograms (Figure 3-14). Results for the source-to-site probability distribution are 

summarized in Table 3-5.  

  

Figure 3-16 Bounded G-R model for S1, S2 and S3 at EM 

Table 3-5 Source-to-site probability distribution (S1, S2, S3) 

Description 
Source‐to‐Site Probability Distribution

Source 1 (26 observations)

Bin Limits (km)  6.9  9.2  11.4 13.7 16.0 18.3 20.6  ‐

Range of Limits 
(km) 

6.9 ‐ 9.2  9.2 ‐11.4  11.4 ‐13.7  13.7 ‐ 16  16 ‐ 18.3  18.3 ‐ 20.6  ‐  ‐ 

Frequency   4  8  6 4 2 2 ‐  ‐

Probability  0.15  0.31  0.23 0.15 0.08 0.08 ‐  ‐

   Source 2 (103  observations)

Bin Limits (km)  36.5  40.5  44.6 48.6 52.6 56.7 60.8  ‐

Range of Limits 
(km) 

36.5‐0.5  40.5 ‐ 4.6 44.6 ‐ 48.6  48.6‐52.6 52.6 ‐56.7  56.7 ‐ 60.8  ‐  ‐ 

Frequency   4  5  10 26 53 5 ‐  ‐

Probability  0.04  0.05  0.1 0.25 0.52 0.05 ‐  ‐

   Source 3 (31 observations)

Bin Limits (km)  43.5  46.9  50.2 53.5 56.9 60.2 63.5  66.9

Range of Limits 
(km) 

43.5‐46.9  46.9‐50.2 50.2‐ 53.5  53.5‐56.9 56.9‐60.2  60.2‐ 63.5  63.5‐ 6.9  ‐ 

Frequency   1  3  5 5 10 6 1  ‐

Probability  0.032  0.097  0.161 0.161 0.323 0.194 0.032  ‐
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Several assumptions are used to derive the seismic hazard at EM. Since, the 

earthquake catalog for the site is limited and it is not possible to generate an adequate 

magnitude probability distribution for seismic sources at EM, the magnitude probability 

distribution is simplified by assuming to be the same for all three sources. Intervals of 0.5 

of magnitude from the range of M1.5 to M6.0 (i.e., 1.5-2.0; 2.0-2.5; 2.5-3.0) are used to 

estimate the probability of size within seismic sources. The magnitude probability 

distribution function is given by Equation 3.2 (Guttenberg and Richter, 1944) and results 

are tabulated in Table 3-6. 

ெ݂ሺ݉ሻ ൌ
ఉୣ୶୮	ሾିఉሺ௠ି௠బሻሿ

ଵିୣ୶୮	ሾିఉሺ௠೘ೌೣି௠బሻ
     3.2 

Table 3-6 Magnitude probability distribution S1, S2 and S3 

Magnitude 
(M) 

Mave 
Probability 
(Eq. 3.2) 

1.5  ‐ ‐ 

2  1.75  0.32 

2.5  2.25  0.31 

3  2.75  0.16 

3.5  3.25  0.07 

4  3.75  0.03 

4.5  4.25  0.01 

5  4.75  0.004 

5.5  5.25  0.002 

6  5.75  0.001 

 

3.4.2 Ground Motion Probability Calculations 

The goal of PSHA is primarily to use GMPEs by considering the probability of 

occurrence of any size of earthquake at any possible point in each source using the 

probability distribution for both source-to-site and magnitude computed in previous 

sections. The inherent uncertainty present in the predictive equation (GMPE) is also 
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considered for the computation of PSHA by using its standard deviation in calculations. 

As discussed in previous sections, ground motion at EM Lake is calculated in terms of 

magnitude and source-to-site distance by using GMPEs developed by Atkinson (2015). 

GMPEs developed by Atkinson (2015) are described in Chapter 2 (Eq. 2.8; Eq. 2.9 and 

Eq. 2.10) as well as coefficients for PGA calculation described in Table 3-7.  The 

calculation of ground motion for each source is performed for every average source-to-

site distance value (Rave; Table 3-7) and average magnitude (Mave) obtained from the 

average of bin limits shown in Table 3-6. The computation of ground motion for three 

seismic sources are tabulated in Table 3-8. 

Table 3-7 Rave calculation used in GMPE (S1, S2 and S3) 

Description 
Average Source‐to‐site distance, Rave (km) 

Source 1 

Bin Limits 
(km) 

6.7  9.2  11.4  13.7  16.0  18.3  20.6  ‐ 

Rave (km)  8.00  10.3  12.6  14.9  17.2  19.4  ‐  ‐ 

   Source 2 

Bin Limits 
(km) 

36.5  40.5  44.57  48.6  52.9  56.7  60.9  ‐ 

Rave (km)  38.5  42.6  46.6  50.7  54.70  58.8  ‐  ‐ 

   Source 3 

Bin Limits 
(km) 

43.5  46.9  50.2  53.5  56.9  60.20  63.5  66.9 

Rave (km)  45.2  48.5  51.9  55.2  58.5  63.5  65.2  ‐ 
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Table 3-8 Log (PGA) Calculation for S1, S2 and S3 (cm/s2) 

Source  M 
heff 
(Km) 

Distance Rhypo (Km) 

8.0  10.3 12.6 14.9 17.2  19.4 

1 

1.75  1  ‐1.13  ‐1.32 ‐1.48 ‐1.60 ‐1.7  ‐1.81 

2.25  1  ‐0.46  ‐0.64 ‐0.8 ‐0.92 ‐1.03  ‐1.13 

2.75  1  0.16  ‐0.03 ‐0.18 ‐0.30 ‐0.41  ‐0.51 

3.25  1  0.72  0.54 0.39 0.26 0.15  0.06 

3.75  1  1.23  1.04 0.90 0.77 0.66  0.56 

 

Source  M 
heff 
(Km) 

Distance Rhypo (Km) 

38.5 42.5 46.6 50.7 54.7  58.8 

2 

1.75  1  ‐2.33 ‐2.40 ‐2.47 ‐2.53 ‐2.60  ‐2.65 

2.25  1  ‐1.65 ‐1.72 ‐1.80 ‐1.86 ‐1.91  ‐1.97 

2.75  1  ‐1.03 ‐1.10 ‐1.17 ‐1.24 ‐1.29  ‐1.35 

3.25  1  ‐0.46 ‐0.54 ‐0.61 ‐0.67 ‐0.73  ‐0.78 

3.75  1  0.042 ‐0.033 ‐0.10 ‐0.17 ‐0.22  ‐0.28 

 

Source  M 
heff 
(Km) 

Distance Rhypo (Km) 

45.2 48.5 51.9 55.2 58.5  63.5 

3 

1.75  1  ‐2.45 ‐2.50 ‐2.55 ‐2.60 ‐2.64  ‐2.71 

2.25  1  ‐1.77 ‐1.82 ‐1.87 ‐1.92 ‐1.97  ‐2.03 

2.75  1  ‐1.15 ‐1.20 ‐1.25 ‐1.30 ‐1.35  ‐1.41 

3.25  1  ‐0.59 ‐0.64 ‐0.69 ‐0.74 ‐0.78  ‐0.84 

3.75  1  ‐0.08 ‐0.13 ‐0.18 ‐0.23 ‐0.28  ‐0.34 

 

PSHA results can either be illustrated by seismic hazard curves or seismic 

hazard maps (Kramer 1996). The present study presents results by generating seismic 

hazard curves for the Eagle Mountain Lake site. Seismic hazard curves illustrate the 

annual probability of exceedance (λ) of several values of a ground motion parameter 

previously selected (i.e., PGA). Then first, the probability that various target peak 
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acceleration levels will be exceeded can be initially calculated by evaluating the standard 

normal variable (z*) (Equation 2.15) and by using the cumulative distribution function 

(CDF) of a Gaussian distribution as described in Chapter 2.  

Sample calculations are tabulated in Table 3-9 for the probability of exceedance 

(z*) 0.10 cm/s2 by using Equation 2.15 described in Chapter 2. The probability that 

various target peak acceleration levels will be exceeded is then calculated by using the 

standard normal variable (z*) as part of a Gaussian cumulative distribution function. The 

probability that peak ground acceleration within the sources will exceed a specific given 

PGA value is summarized in Table 3-10 for PGA=0.1 cm/s2. Finally the Mean rate of 

exceedance (λ) is calculated based on Equation 2.17 by multiplying the temporal 

distribution recurrence of earthquakes “ν” (Table 3-3), the source-to-site probability 

(Table 3-5), the magnitude or size probability assumed (Table 3-6) and the probability of 

exceedance a given PGA value (Table 3-10).  

Table 3-9 Standard normal variable (z*) for CDF (PGA=0.1 cm/s2) 

Source  M 
Distance Rhypo (Km) 

8.0 10.3 12.6 14.9 17.2 19.4

1 

1.75  8.5 8.96 9.37 9.71 10.01 10.26

2.25  6.62 7.13 7.54 7.88 8.17 8.43

2.75  4.94 5.45 5.86 6.20 6.50 6.75

3.25  3.42 3.93 4.34 4.68 4.95 5.23

3.75  2.05 2.56 2.97 3.32 3.61 3.87

Source  M 
Distance Rhypo (Km) 

38.5 42.5 46.6 50.7 54.7 58.8

2 

1.75  11.67 11.87 12.06 12.23 12.39 12.54

2.25  9.83 10.04 10.23 10.40 10.56 10.70

2.75  8.16 8.36 8.55 8.72 8.88 9.03

3.25  6.63 6.84 7.03 7.20 7.36 7.50

3.75  5.27 5.47 5.66 5.83 5.99 6.14

Source  M  Distance Rhypo (Km) 
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45.2 48.5 51.9 55.2 58.5 63.5

3 

1.75  0.12 0.12 12.28 12.41 12.53 12.70

2.25  0.10 10.31 10.45 10.58 10.70 10.86

2.75  0.09 8.63 8.77 8.90 9.02 9.19

3.25  0.07 7.14 7.25 7.38 7.50 7.67

3.75  0.06 5.75 5.88 6.01 6.134 6.30

Table 3-10 Probability of exceedance ܲሾܻ ൐ 0.1	cm/s2|݉, |ݎ ൌ 1 െ   ሻ∗ݖ௬ሺܨ

Source  M 
Distance Rhypo (Km) 

8.0  10.3  12.6  14.9  17.2  19.4 

1 

1.75  0E+00  0E+00  0E+00  0E+00  0E+00  0E+00 

2.25  2E‐09  6E‐11  3E‐12  2E‐13  1E‐14  0E+00 

2.75  5E‐05  3E‐06  3E‐07  3E‐08  5E‐09  9E‐10 

3.25  4E‐02  5E‐03  9E‐04  2E‐04  4E‐05  1E‐05 

3.75  2E+00  6E‐01  2E‐01  6E‐02  2E‐02  7E‐03 

Source  M 
Distance Rhypo (Km) 

38.5  42.5  46.6  50.7  54.7  58.8 

2 

1.75  0E+00  0E+00  0E+00  0E+00  0E+00  0E+00 

2.25  0E+00  0E+00  0E+00  0E+00  0E+00  0E+00 

2.75  3E‐14  0E+00  0E+00  0E+00  0E+00  0E+00 

3.25  2E‐09  6E‐10  2E‐10  5E‐11  1E‐11  5E‐12 

3.75  1E‐05  3E‐06  1E‐06  4E‐07  2E‐07  6E‐08 

Source  M 
Distance Rhypo (Km) 

45.2  48.5  51.9  55.2  58.5  63.5 

3 

1.75  4.5E‐01 4.5E‐01 0.0E+00  0.0E+00  0.0E+00  0.0E+00 

2.25  4.6E‐01 0.0E+00 0.0E+00  0.0E+00  0.0E+00  0.0E+00 

2.75  4.7E‐01 0.0E+00 0.0E+00  0.0E+00  0.0E+00  0.0E+00 

3.25  4.7E‐01 5.8E‐13 2.1E‐13  8.2E‐14  3.3E‐14  9.0E‐15 

3.75  4.8E‐01 4.6E‐09 2.0E‐09  9.3E‐10  4.4E‐10  1.5E‐10 

 
Finally, the process is repeated to calculate the probabilities for various target 

peak acceleration levels coming for each source. The total seismic hazard analysis at the 

Eagle Mountain Lake site is the summation of the hazard caused of each source. Seismic 
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hazard curves developed for the Eagle Mountain Lake site is shown in Figure 10 for three 

sources (S1, S2 and S3) within the 60 km radius. 

 

 

 

Figure 3-17 Seismic Hazard curves for EM site (2016) 

3.4.3 Finite Time Period 

The total seismic hazard curve obtained can be integrated with the Poisson 

model to define probabilities of exceedance in finite time intervals (Equation 2.18). The 

model proposed is valid for probabilities of exceedance in one-year since the rate of 

earthquakes is non-stationary in the region; however, model considered stationary until 

2016 and short time periods are more suitable for this uncertainty. Finally, the 

y = 17.504e-22.95x 
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probabilistic seismic hazard analysis for the Eagle Mountain Dam is a peak ground 

acceleration of 0.325g with a 1% probability of being exceeded in a 1-year period. 

3.3 Validation of Seismic Hazard Analysis 

Seismic hazard curves presented in this study for the Eagle Mountain Lake site 

are validated with the recent “2016 One-Year Seismic Hazard Forecast for the Central 

and Eastern United States from Induced and Natural Earthquakes” report released by 

USGS (Petersen et al. 2016). USGS reported seismic hazard curves using a different 

methodology and considering a large earthquake catalog covering areas like Oklahoma.  

Seismic hazard curves developed by USGS are presented in Figure 3-18 and the 

validation of the proposed simplified model is compared with the seismic curve developed 

for the city of Dallas, TX which is the closest location to the Eagle Mountain Lake site. 

USGS also provided seismic hazard maps for the one-year hazard forecast for Central 

United States as shown in Figure 3-19. The area of North Texas shows a hazard of 

approximately 0.25-0.28g with 1% probability of being exceeded in one-year. From the 

PSHA approach developed, the probability of exceedance is computed for a value of 

PGA=0.32g by using 2.18 and it is compared with USGS seismic hazard. Based on the 

calculation, the probability of exceedance 0.27g is 1% for one-year forecast. The 

simplified seismic hazard analysis can be used for analyzing civil infrastructure in similar 

regions.  

PSHA computations present more suitable results for the evaluation of seismic 

hazard in North of Texas as compared with those resulting from DSHA that 

underestimate the hazard. Geotechnical seismic evaluation of structures can use the 

present simplified approach for different application such as liquefaction analysis, 

pseudo-static slope stability and lateral spreading. An important limitation of the 
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methodology is that the rate of earthquakes is assumed to be non-stationary. Central 

United States including the North Texas region are subjected to an increase of seismicity 

without a defined or constant rate of earthquakes. Therefore, an update catalog of 

earthquakes is required if the simplified seismic hazard will be used in the future.  
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Chapter 4 Soil Variability Characterization using 3D Geostatistics and Visualization 

Models 

4.1 Introduction 

Soil characterization preludes geotechnical evaluation of site conditions. 

Traditionally, soil is characterized by interpreting soil data from the site using different in-

situ methodologies (i.e., SPT and CPT), and by conducting laboratory tests on the soil 

samples. Over the years, researchers and practitioners have relied mostly on the in-situ 

tests to understand the soil behavior types and other geotechnical properties. The 

constraints of a soil investigation program pose inevitable challenges to engineers in 

interpreting the soil properties between two or more bore holes or in-situ tests.  

In the last decade, several researchers have demonstrated the applicability of 

probabilistic theories to address this variability of soil properties. However, these studies 

are used to interpret the soil properties in two-dimensional (2D) models, and in the case 

of hydraulic dams, the variability pertains to three-dimensional (3D) models. The 

variability of soil properties in hydraulic fill dams has been demonstrated by several 

researchers (Seed et al. 1973). This chapter presents a methodology for developing a 3D 

visualization model of a hydraulic fill dam by incorporating the spatial variability of soils. In 

order to demonstrate the methodology, Eagle Mountain Dam, a hydraulic fill dam located 

in Fort Worth, Texas, was considered for this study.  

The Eagle Mountain Dam is situated on top of a geologic formation known as the 

Fort Worth Basin (Bend Arch-Fort Worth Basin). The Fort Worth Basin is a geologic 

formation located in North Central Texas and Southwestern Oklahoma that has a north-

south orientation, it is elongated in shape, relatively shallow in depth, and covers around 

15,000 miles2 (38,100 km2) (Montgomery et al. 2005) as shown in Figure 4-1. The Eagle 
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Soil variability in the Eagle Mountain dam was visualized by creating two-

dimensional fence diagrams from CPT data collected along the crest of the dam. The 

construction of the core wall, shown in Figure 4-4, was part of a mitigation plan in the 

1960s. Since tests were performed downstream and upstream of the centerline of the 

dam (core wall), CPTs are assumed to have been aligned with each other before the 

interpolation. Soil behavior type (SBT) obtained from the Robertson (1986 updated 2009) 

chart was used to classify the types of soils within the dam (Robertson 2009). The 

interpolation between two CPT’s was performed by using the Ordinary Kriging method, 

and results depicted that the dam presents significant soil variability as illustrated in 

Figure 4-7.  

Four stages of the construction process developed in the 1930s were identified 

from this interpolation. The maximum height of the dam is located in Sector 3 (H~100 ft.), 

and the largest amount of hydraulic fill is also at this location. Sand lenses, as well as 

clay layers, can be identified embedded in Sector 3, at depths of approximately 60 to 80 

ft. from the crest of the dam. Sector 1 also presents high soil variability in its 

configuration, and sand and silt lenses can be seen embedded where the hydraulic fill 

dam was placed, as per to construction drawings. It may be noted that vertical scale in 

Figure 4-7 has been increased to have a better visualization of the soil configuration 

within the dam. 
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Soil variability in the configuration of the dam was also addressed by comparing 

the variation of normalized tip resistance (Qtn) variation with depth in specific depth 

ranges with the data from construction drawings of the same depth ranges. The analysis 

was performed on two stations located at about 2500 to 3500 ft., due to the high amount 

of hydraulic fill placed in those locations. The construction of the Eagle Mountain dam 

was performed in several stages, as shown in as-built drawings which present different 

contour colors depicting the thickness of the layers deposited at different times during 

construction.  

The first approach was conducted by considering the assumption that each layer 

deposited by the contractor was of the same soil type and was applied for the evaluation 

of Station 25.00 (Figure 4-8). Based on construction drawings, the soil variability analysis 

performed at this station depicts that eight layers were placed in that specific section. The 

normalized tip resistance (Qtn) was evaluated by sorting values within depth ranges 

according to the construction drawings. Histograms were generated for each layer and 

the coefficient of variation (COV) was computed for each layer. The COV ranges from 

approximately 18% to 100% in Station 25.00, and values were lower at elevation 

approximately El+640 to El+650, where it was expected that unique materials form the 

dam core. COV values continued to increase as the depth increased (i.e., EL+620 to 

El+629) due to the high amount of hydraulic fill placed in those locations.  

The second approach was performed in Station 30.00 by assuming that the soil 

was placed in different layers, following a design criterion (i.e., clayey core and more 

granular top layers). Therefore, the construction drawing at Station 30.00 was divided into 

three ranges of depth, with two layers at the top, the first approximately from El+647 to 

El+662; the second layer from El+662 to the elevation of dam crest ~El+682; and the 
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third layer underneath the last two, approximately from El+600 to El+647. The COV was 

computed for all three layers, and it was found that the soil variability was higher in the 

deep layers, where the hydraulic fill was placed. Table 4-1 shows the COV values for 

every range of depth found in the analyses for both stations along the dam. Spatial 

variability was considered in this study by generating variograms before performing the 

Kriging interpolation. By performing conventional interpolation methods, problematic 

soils, such as sand lenses or small clay seams, might not be found due to the lack of 

spatial variability consideration. 

 
Table 4-1 COV at Different Ranges of Depth at St. 25.00 and St. 30.00  

Station 
Elevation  
Range (ft.) 

COV (%) 

25.00 

620‐625  100 

625‐629  72.0 

629‐635  30.3 

635‐642  18.4 

642‐647  64.2 

647‐650  46.6 

650‐662  82.5 

662‐682  100 

30.00 

600‐647  100 

647‐662  69.7 

662‐682  46.4 
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Figure 44-8 SSoil vvariaability
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Figure 44-9 SSoil vvariaability

 

y esttimattion –– Staationn 30.00 
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The soil strength is often controlled by the effective stress frictional envelope, 

and the parameters obtained from the Mohr-Coulomb model: effective friction angle, ɸ’ 

and effective cohesion intercept, c’. For sand, the effective drained friction angle can be 

evaluated by using Equation 4.1, developed by Robertson and Campanella (1983) 

(Robertson and Campanella 1983). 

ɸᇱ ൌ arctan ቂ0.1 ൅ ݃݋0.38݈ ቀ
௤೟
ఙೡ೚ᇱ

ቁቃ    4.1 

The strength of the clayey soils located within the core of the dam was evaluated 

by Equation 4.2, which was developed by theoretical solutions that provided some 

valuable insights (Robertson and Campanella 1983).  

ݑܵ ൌ ௤೟ିఙೡ
ேೖ೟

                       4.2 

The modulus of elasticity (E) was determined by using empirical correlations 

compiled within the NCHRP report (Mayne 2007). Equations 4.3 and 4.4 were used to 

determine the constrained modulus for cohesionless and cohesive soils, respectively. 

ௌܧ ൌ ൝
		஼ݍ4

௖ݍ2 ൅ 20	ሺܽܲܯሻ
120	ሺܽܲܯሻ	

				
௖ழଵ଴ெ௉௔ݍ

ܽܲܯ10 ൏ ௖ݍ ൏ ܽܲܯ50
ܽܲܯ50 ൏ ௖ݍ

ൡ; Cohesionless Soils   4.3 

ௌܧ ൌ 8.25 ∗ ሺ
௤೟
ఙೡ೚
ሻ ; Cohesive Soils   4.4 

Where, qc represents the tip cone resistance, qt represents the corrected tip 

resistance for pore water effects; σvo represents overburden pressure; σ’vo represents 

effective overburden pressure; σatm represents reference stress ~1atm considered for the 

analysis and Nkt represents bearing capacity factor ~15 considered in this study. 

4.2.3 Grid Generation 

Visualization models are primarily generated by incorporating information that 

depicts the geometry of the site by using different methods: LiDAR, Unmanned Aerial 
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data, and lag-distance distribution evaluated by the histograms. Ordinary Kriging was 

performed by combining the variogram analysis and its mathematical algorithm.  

A visualization tool software was used for the interpolation of the data, using 

Kriging. The data collected had approximately 25,000 points to be interpolated within the 

volumetric grid generated in earlier sections. The Ordinary Kriging approach is prone to 

unacceptable results when the input data is highly clustered and/or oversampled in one 

or even two directions. It has to be computed within one single and unique matrix in order 

to obtain a complete interpolation of data. However, the capacity of the software is 

limited, and Kriging can be performed with a moderate amount of data (approximately 

7000 data points). A data reduction tool is described in the following section to minimize 

the oversampling or the high cluster presented in data at some locations.  

4.2.4.1 Data Reduction Tool 

In statistics, it seems reasonable to assume that more data is always better. 

However, depending on how the data is used and interpreted, this is often not true. In 

general, reducing oversampling has several benefits including generating the model 

faster model and getting better quality of results. However, it is important to understand 

that the primary objective is to reduce the data without modifying the original raw input 

data.  

The present analysis includes a data reduction tool to minimize the oversampling 

of CPT data collected. Several approaches can be used to reduce the data such gradient 

optimization, average at geometric centroid, extremes of samples, and maximum of 

samples and minimum of samples approach. The average of a geometric centroid is a 

useful method when there is noise in the data. This algorithm extracts different mean 

values along the distance intervals resulting in effective filtering. The main parameter is 
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the group size (linear distance). The extreme of samples preserves the minimum and 

maximum values along several distance intervals, and the primary parameter is the group 

size (linear distance). The “Max and Min of Samples” approach presented in the software 

preserves maximum and minimum values along the distance intervals, and the main 

parameter is the group size (linear distance). A data log process is also available, which 

generates the plot with log axes; it is useful for data spanning several orders of 

magnitude.  

The gradient optimization approach of the software (Figure 4-14) uses a complex 

curve-fitting algorithm to fit the gradients in the user’s data with as few points as possible. 

The main parameters are epsilon and minimum distance. The epsilon value is a 

dimensionless parameter that describes how large gradients are allowed to exist along 

the bore line. In other words, it controls how finely the data is reduced. Larger values 

result in fewer points, and smaller values result in a higher number of data points. The 

minimum distance is used when several values remain the same for a large depth.  

Setting the minimum distance with a high value ensures that there is at least one 

sample value within that large depth range. Group size is also present in this method; 

however, it has less direct influence on the results, and hence is not used for reducing 

the data in this approach. This approach is applied for each CPT before the interpolation 

of each soil property. The output of data minimized is the same, regardless of the 

approach used, for reduction of data in the software.  

Figure 4-14 illustrates a sample of the data reduction tool used for the present 

study. The original raw data obtained from CPT DCD-24.5 originally contained 25,000 

points. The gradient optimization described above was used for accommodation and 

reduction of data. It is a vital step since software is limited to a certain amount of data. 
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4.2.4.2 Soil Type Visualization Model 

Soil type visualization models are developed by using data obtained from two 

different CPT correlations (Robertson et al., 1986, 2009; Robertson 1990, 2010). The first 

approach interpolates the soil behavior type (SBT) value obtained from non-normalized 

values of tip resistance and friction ratio. The variogram was constructed by using 

reduced data generated by the methodology described in the last section. Since some 

zones did not exist in the data (i.e., Zone 1 and Zone 9), they were grouped into a new 

material type, as shown in Table 4-2. 

Table 4-2 SBT Values Grouped into a New Material Type  

SBT Values 
Robertson (1986)  Material Type 

Min (>=)  Max (<) 

1  2  1  Sensitive, fine grained 

2  4  2 
Organic soils ‐ clay; Clays ‐ Silty 

clay to clay 

4  6  3 
Silt mixtures ‐ clayey silt to silty 
clay; Sand mixtures ‐ silty sand to 

sandy silt 

6  9  4 
Sands ‐ clean sand to silty sand; 
Gravelly sand to dense sand; Very 

stiff sand to clayey sand* 

9  12  5  Very stiff fine grained * 

 

The variogram could not be generated by using isotropic data conditions due to 

high scatter in the data which preludes the creation of an exponential or any other type of 

variogram function. Therefore, the variogram was constructed by considering advanced 

anisotropy in the data described in Chapter 2. Values to model anisotropy are tabulated 

in Table 4-3. A histogram of lag-distance distribution was also developed to verify the 

normality of the data distributed in the space. Variogram construction and lag-distance 

distribution for the material type obtained from SBT are illustrated in Figure 4-15. 
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4.2.4.3 Shear Strength - Effective Friction Angle (ɸ’) 

The effective shear strength can be estimated for relatively granular soils or 

clean sands. Estimation can be performed by evaluating the effective friction angle (ɸ’), 

based on CPT correlations described in earlier sections. The friction angle can be used 

as an input for slope stability calculations at critical sections found in the model. Raw data 

was reduced by using data reduction techniques and a variogram was generated, 

incorporating spatial continuity or anisotropy in the model. Table 4-4 shows values used 

for modelling anisotropy in the generation of the variogram for the estimation of spatial 

variability of the friction angle.  

Table 4-4 Variogram Modeling for Visualization of Effective Friction Angle (ɸ’) 

Description  Model Type 

Anisotropy  Variogram 

Secondary 
Ratio 

Primary 
Ratio 

Heading Dip Range Sill  Nugget 

Friction 
Angle (ɸ) 

Exponential  25.0  0.9  224.5  0.0 1550  0.14  0.28 

 

Data distribution analysis was generated by the histogram presented in Figure 

4-20 to establish interpolation limit values. Friction angle results values, Φ’<22° and 

Φ’>45° are relatively low in the data distribution plot (Figure 4-20). Therefore, limit values 

of interpolation are defined as 20° < ɸ < 45° for the Kriging interpolation and generation of 

the visualization model. 
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Visualization results for the interpolation of effective friction angle are shown in 

Figure 4-22, presenting several sections of the dam. The clayey core was formed by silts 

and clayey soils, depicting relatively small friction angles as expected. Based on the 

classification described in Table 4-5, visualization results also showed the presence of 

sands and silts in Sector 3, as shown in Figure 4-22. Sand lenses were identified at these 

locations, which may be susceptible to liquefaction or slope stability problems. 

Foundation soils were primarily composed of compact and dense sands; therefore, 

significant settlement are not expected to occur at the dam. Surface layers on the crest 

depict the presence of sands with high drained friction angle, as illustrated in Figure 4-23. 

The gap in the clayey core, from approximately Station 38.00 to Station 40.00 observed 

in soil type visualization models, was verified by the presence of high effective friction 

angle corresponding to silty or sandy soils (ɸ'~25-30°), and shown in the longitudinal 

section in Figure 4-22. Overall, Sector 3 is one of critical locations for addressing 

geotechnical hazards. Table 4-6 also shows strength properties for all types of soils and 

can be used as reference for the visualization model generated. 

Table 4-5 Strength Properties for Sands (Das 1998) 

State of 
Packing 

Relative 
Density (%) 

Friction Angle, 
ɸ' (deg.) 

Very loose  <20  <30 

Loose  20‐40  30‐35 

Compact  40‐60  35‐40 

Dense  60‐80  40‐45 

Very dense  >80  >45 
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Table 4-6 Strength Properties (Drained) for Soils (Ortiz and Serra 1986) 

Material 
Cohesion 

Friction Angle 
(degrees) 

lb/ft
2
  lb/in

2
  Peak  Residual 

Gravel  ‐  ‐  34  32 

Sandy gravel with few 
fines 

‐  ‐  35  32 

Sandy gravel with silty or 
clayey fines 

‐  ‐  35  32 

Mixture of gravel and 
sand with fines 

21  0.15  28  22 

Uniform sand ‐ fine  62  0.44  32  30 

Uniform sand – coarse  ‐  ‐  34  30 

Well‐graded sand  ‐  ‐  33  32 

Low‐plasticity silt  42  0.29  28  25 

Medium to high 
plasticity silt 

62  0.44  25  22 

Low plasticity clay  125  0.87  24  20 

Medium plasticity clay  167  1.16  20  10 

High plasticity clay  208  1.45  17  6 

Organic silt or clay  146  1.02  20  15 
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1967). Several red zones (Su<0.2 TSF) were found on the surface layers of the crest, 

depicting soil layers as soft clays, as shown in Figure 4-26; however, SBT, Ic and friction 

angle visualization models defined those locations as sands with high drained effective 

friction angles. Those red regions depict cohesionless soils, and only drained shear 

strength parameters must be considered for any geotechnical assessment. The hydraulic 

fill placed in Sectors 2, 3, and 4 was mainly composed of medium stiff clay which was 

verified using with results obtained from SBT and Ic visualization models.  

The major part of the dam has very stiff soil, highlighting a stiff-to-very-stiff 

puddled clay (1<Su<2, TSF) core, as shown in Figure 4-27. The lack of clay soil in the 

core is identified in Sector 3 and 4 where possible seepage problems occurred in the 

1960s, as shown in Figure 4-26. The undrained shear visualization model defined the 

presence of some cohesionless soils in Sector 3 that may be susceptible to liquefaction. 

This area had already been identified by the visualization models of SBT, Ic and effective 

friction angle.  

Table 4-8 Undrained Shear Strength (Terzaghi and Peck 1967) 

Consistency 
Undrained Shear 

Strength,  
TSF (KPa) 

Unconfined 
Compressive 

Strength, TSF (KPa) 

Very Soft 
<0.125  <0.25 
(<12)  (<24) 

Soft 
0.125‐0.25  0.25‐0.50 
(12‐24)  (24‐48) 

Medium 
0.25‐0.50  0.50‐1.0 
(24‐48)  (48‐96) 

Stiff 
0.50‐1.0  1.0‐2.0 
(48‐96)  (96‐192) 

Very Stiff 
1.0‐2.0  2.0‐4.0 
(96‐192)  (192‐383) 

Hard 
>2.0  >4.0 
(>192)  (>383) 
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range from 5 to 2000 TSF. From the generated visualization model of the elastic moduli 

(TSF), it is observed that very low values at the area where sands are present instead of 

a clayey core (Sectors 3 and 4). These zones, with relatively low moduli values, can be 

susceptible to large deformations in case of a liquefaction phenomenon and can be 

identified as critical sections. The elastic moduli interpolated can be further used for 

modeling slope stability deformation analysis at those critical sections and incorporating 

corresponding values from interpolation for assigning properties to the model.   

Figure 4-30 shows the visualization model of elastic moduli within the dam. 

Sector 3, which is shown to be a composition of sands and silts from previous models, 

depicts low values of E. Since sands and silts are highly susceptible to liquefaction, it is 

important to identify the elastic moduli at this location for further deformation analysis.  

Table 4-10 Typical Elastic Modulus of Soils (USACE 2016) 

Soil  Es (TSF) 

Very soft clay  5‐50 

Soft clay  50 ‐ 200 

Medium clay  200 ‐ 500 

Stiff clay, silty clay  500 ‐ 1000 

Sandy clay  250 ‐ 2000 

Clay shale  1000 ‐ 2000 

Loose sand  100 ‐ 250 

Dense sand  250 ‐ 1000 

Dense sand and gravel  1000 ‐ 2000 

Silty sand  250 ‐ 2000 
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4.2.3 Validation of Visualization Models 

This section presents the validation studies that evaluated the accuracy of soil 

property interpolations performed by using 3D Geostatistics. This was done by comparing 

the interpolation results with the laboratory test results. Several borings were performed 

at the EM site for collecting soil samples. Basic laboratory tests such as sieve analysis, 

Atterberg limits, consolidation tests and strength tests were conducted. The laboratory 

results were used to validate the visualization models generated by interpolation using 

Geostatistics. Figure 4-31 and Figure 4-32 illustrate the results from the visualization 

model of the undrained shear strength, (Su, TSF) and effective friction angle, ɸ’ (deg.) 

interpolations.  

A boring located at Station DBC-16.05 was considered for the validation purpose. 

Sample “U24” collected at a depth of 51.5-52.2 ft. was subjected to strength laboratory 

tests and results were compared with values obtained from visualization models. 

Undrained shear strength (Su) shown a value of Su=0.5 tsf (1.1ksf) in laboratory results 

as compared with the value obtained from the visualization model Su~0.0.55 tsf (1.23 

ksf). The effective shear strength of the same sample was found to be ɸ’=19.1° based on 

laboratory results, whereas the visualization model showed a value of ɸ’~18°.  

A similar comparison was performed at Station DBC-37.05, with samples 

collected at a depth of 10 to 12 ft. Laboratory test results at that location indicated a value 

of Su= 0.36 tsf (0.81 ksf) and ɸ’=31.9° as compared to values of Su= 0.4 tsf (0.9 ksf) and 

ɸ’=32° obtained from interpolation and visualization. Visualization results were in 

consonance with the laboratory data and suggest the presence of some sand lenses at 

that depth that may be susceptible to liquefaction. 

 Deeper layers were also evaluated, exhibiting some dense silty to sandy 

materials in Sector 3. Visualization model results indicate very dense sands at deeper 
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layers. Figure 4-33 and Figure 4-34 illustrate the visualized values of undrained shear 

strength and effective friction angle at Station 37.05 (10-12 ft.). Laboratory results for 

both locations are shown in Appendix B. 
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Three-dimensional visualization models were successfully generated by using 

Geostatistics to consider spatial variability in the soil data. The key to the generation of 

models is the construction of a very detailed variogram based on the spatial continuity or 

anisotropy of the data. Data cannot be assumed to be isotropic in the space and special 

parameters have to be considered for the anisotropy to be considered for variogram 

construction. Visualization models can be used to identify critical sections that may be 

affected by geotechnical hazards such as liquefaction or slope stability assessments. 

Sector 3 seems to be the location most susceptible to geotechnical hazard assessment.  

4.3. Insights from Visualization Models for the Eagle Mountain Dam - Summary 

Three-dimensional visualization models of the Eagle Mountain Dam offer a 

complete understanding of soil configuration within the dam body. Several soil properties 

were calculated based on CPT correlations and visualized by computing variograms 

which considered data anisotropy and distribution. Critical sections were identified from 

visualization models. A comprehensive analysis of all models developed (i.e., SBT, Ic, ɸ’, 

Su, and E) were considered for the final interpretation of the soil configuration within the 

dam. The Eagle Mountain dam consists of a stiff clayey core (1<Su<2, TSF) surrounded 

by sandy material on the upstream and downstream side of the dam. Surface layers at 

the crest consist of very dense and compacted sands (Figure 4-23), and foundation soils 

show relatively dense sands as well (Figure 4-22). 

Sector 3, specifically the location from Station 35.00 to Stations 40.00, has sand 

pockets or lenses at locations where a clayey core was supposed to be constructed 

(Figure 4-26). Laboratory tests obtained near this location (i.e., DBC 37.05) were used to 

verify this information. As shown in Figures 1-22 and 1-30, low effective shear strength 

combined with relatively low elastic moduli at locations where sand pockets are found, 
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can produce large deformations if geotechnical hazards occur (i.e., liquefaction or slope 

failures).  

The following section includes a comprehensive three-dimensional visualization 

framework of the liquefaction assessment of the Eagle Mountain dam to understand the 

seismic behavior of the soil structure within the dam. Liquefaction soil resistance can be 

calculated by employing traditional CPT procedures, and interpolation of factor of safety 

can be performed by applying Geostatistics. Earthquake loading is characterized based 

on the probabilistic seismic hazard analysis included in Chapter 3 of the present work. 
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Chapter 5 Liquefaction Evaluation of the Eagle Mountain Dam based on 3D Visualization 

Models 

5.1 Introduction 

In the previous chapters, the vulnerability of several hydraulic fill dams to 

liquefaction and ground displacement in the event of earthquakes was presented. 

Historically, liquefaction is categorized as a geotechnical hazard that is capable to 

produce significant damage in hydraulic fill dams. This phenomenon can produce large 

deformations by triggering landslides even if small soil lenses lose their strength due to 

the increase of pore pressures (Holchin and Vallejo 1995). This chapter presents the 

resiliency of the EM dam against cyclic liquefaction in the event of different earthquake 

magnitudes. The analysis considered a hypothetical situation of a larger magnitude 

earthquake in the North Texas region (i.e., M6-7). Considering the age and hazard 

consequences of EM dam, it is important to evaluate its vulnerability to future 

hypothetical natural and man-made hazards.  

In this research study, the cyclic stress approach is used for evaluating the cyclic 

liquefaction potential in the EM dam. The cyclic stress approach is valid for gentle slope 

or level ground surfaces (i.e., slopes<5 degrees), therefore cyclic liquefaction will be 

evaluated up to El+625 at the EM Dam. Flow liquefaction evaluation is outside of the 

scope research, however since factor of safety is interpolated using Geostatistics, several 

liquefiable zones are identified (FOSliq<1.0) within the dam body at higher magnitudes 

(i.e., M5.5 or higher) and higher accelerations than the PSHA (i.e., 0.4g and 0.5g). The 

cyclic stress approach consists of comparing the cyclic stress ratio (CSR) resulting from 

the earthquake loading with the cyclic resistance ratio (CRR) resulting from the in-situ soil 

property conditions. The Factor of Safety (FSliq) for the calculation of cyclic liquefaction 

potential in sand-like soils is calculated as the ratio of CRR of soils and the earthquake-
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induced CSR as shown in Equation 5.1. Both, CRR and CSR values directly depend on 

the earthquake magnitude (M) chosen for the analysis and the in-situ effective 

overburden stress condition. Most of the methodologies convert the earthquake-induced 

CSR into the reference condition application to M=7.5 and σ’vo = 1 atm (i.e., σ’vo/pa=1) 

(Robertson 2009) as shown in Equation 5.2.  

ܨ ௟ܵ௜௤ ൌ  ெ,ఙᇱೡ೚     5.1ܴܵܥ/ெ,ఙᇱೡ೚ܴܴܥ

ܨ ௟ܵ௜௤ ൌ  ெୀ଻.ହ,ఙᇱೡ೚సభ    5.2ܴܵܥ/ெୀ଻.ହ,ఙᇱೡ೚ୀଵܴܴܥ

Where: CRRM=7.5, σ’vo =1 = Cyclic Resistance Ratio applicable to M = 7.5 and an 

effective overburden stress of σ’vo= 1 atm., sometimes presented as simply CRR7.5. 

CSR M=7.5, σ’vo =1 = earthquake induced Cyclic Stress Ratio adjusted to the equivalent 

CSR for the reference values of M = 7.5 and an effective overburden stress of 7.5, σ’vo = 1 

atm., sometimes presented as simply CSR7.5. 

Earthquake-induced CSR can be estimated using the following simplified 

correlation described by Seed and Idriss (1971) shown Equation 5.3.  

ܴܵܥ ൌ ఛಲೇ
ఙᇱೇೀ

ൌ 0.65 ቂ௔೘ೌೣ

௚
ቃ ቀ ఙೇೀ

ఙᇱೇೀ
ቁ  ௗ   5.3ݎ

Two main correction factors were later introduced by Boulanger and Idriss (2014) 

as shown in Equation 5.4 (Boulanger and Idriss 2014). The expression must be 

expressed through an earthquake magnitude scaling factor, MSF and an effective stress 

scaling factor Kσ.  

ܴܵܥ ൌ ఛೌೡ
ఙᇱೡ೚

ൌ 0.65 ቂ௔೘ೌೣ

௚
ቃ ቀ ఙೡ೚

ఙᇱೡ೚
ቁ ௗݎ ቀ

ଵ

ெௌி∗௄഑
ቁ   5.4 

The soil’s CRR is dependent on the duration of shaking and effective overburden 

stress conditions at a site. Corresponding conditions at the site are evaluated by 

correcting CRR due to the magnitude and effective stress scaling factors. Methods for 

estimating CRR depend mainly on normalized tip resistance or shear wave velocity 



 

190 
 

properties. CRR estimation by different methods and researchers mainly differ on the 

amount of data used, soil conditions and properties and the use of corrections factors. 

In this research study, the liquefaction potential at EM dam is evaluated using 

two CPT-based approaches developed by Robertson (2009) and Boulanger and Idriss 

(2014), and one shear wave velocity based approach developed by Kayen et al. (2013) 

(Robertson 2009; Boulanger and Idriss 2014; Kayen et al. 2013). Three-dimensional 

visualization models of liquefaction potential (Factor of Safety, FOS) are generated by 

incorporating spatial variability of soil properties such as fines content and cyclic 

resistance ratio. Overall, the liquefaction evaluation of the EM dam was performed based 

on the following scenarios:  

 The first scenario is a realistic case which considers the actual lake water level 

as in field conditions (i.e., elevation of the lake El+649.0) combined with an 

earthquake of magnitude M4.0 (~max. earthquake occurred in North Texas) 

which produced a ground motion of 0.3g (i.e., PSHA for the north Texas region) 

 Several hypothetical scenarios were considered to evaluate the resiliency of the 

EM dam for liquefaction analysis. The variables considered are as follows: 

o Lake water level is as in field conditions but the dam is subjected to 

higher earthquake magnitudes namely M4.5, M5.5 and M6.5 that 

produced ground motions of 0.3g, 0.4g and 0.5g 

o Lake water level at the time of earthquake to be ~10 ft. below the crest 

(soils within the dam embankment are saturated) combined with 

earthquakes of same magnitudes that produce a ground motion of 0.3g 

at the site. 

In order to highlight the importance of geotechnical visualization tools, 3D 

visualization models were generated for the results obtained from liquefaction analysis to 
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identify liquefiable zones. Finally, the effect of liquefiable zones on slope stability 

analyses is considered for slope stability analyses. The following sections provide brief 

descriptions of all three methods used to determine liquefaction potential at EM dam 

followed by results, analyses and discussion. 

5.2 Approach I: Robertson (2009) 

Robertson (2009) provided a simplified method to assess cyclic liquefaction by 

using Cone Penetration Test (CPT) data. This is an updated approach developed by 

Robertson and Wride (1998) (Robertson and Wride 1998) which primarily estimates grain 

characteristics from CPT and combine this concept with methods for determining 

resistance to cyclic loading (Cyclic stress based approach) (Robertson and Fear 1994). 

The estimation of CSR is performed using Equation 5.4. The determination of amax can be 

obtained from PSHA analysis is presented in Chapter 3. The stress reduction factor rd 

can be estimated using the following tri-linear function (Equation 5.5), originally proposed 

by Seed and Idriss (1971). 

    rd = 1.0-0.00765z          if z<30 ft.   5.5 

  = 1.174-0.0267z if z=30 to 75 ft.    

    = 0.744-0.008z if z= 75 to 100 ft.   

    =0.5         if z>100 ft.    

Magnitude Scaling Factor, MSF can be calculated based on Equation 5.6 and 

overburden correction factor (Kσ) is assumed to be unity. On the other hand, cyclic 

resistance ratio, CRR can be directly obtained from laboratory tests. Robertson (2009) 

initially proposed several equations for estimating CRR. However, a more updated 

version of their work is presented in Robertson (2009) by combining their initial approach 

for cohesionless sand-like soils by adding Boulanger and Idriss (2008) recommendations 

for cohesive clay-like soils (Idriss and Boulanger 2008). Therefore, it is possible to 
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provide a simple set of recommendations to estimate CRR7.5 from CPT results using the 

normalization of tip resistance, Qtn, and for a wide range of soils expressed by the Soil 

Behavior Type Index, Ic (Robertson 2009). 

ܨܵܯ ൌ ଵ଻ସ

ெమ.ఱర      5.6 

CRR equations developed for all soils and their use directly depends on the Soil 

Behavior Type Index (Ic). For sand-like soils (Ic ≤ 2.60) and for transition regions, sand-

like to clay-like soils (2.60 < Ic < 2.60), the normalized tip resistance (Qtn) is first corrected 

using a correction factor, Kc. The Kc factor is dependent on the Ic and refers to the soil 

plasticity, fines content, mineralogy, soil sensitivity, and stress history. The corrected 

normalized tip resistance (Qtn,cs) values for sand-like soils and transition regions are 

calculated using the following criteria. If Ic ≤ 2.60 (sand-like soils), the correction factor Kc 

is determined by the following set of equations: 

    If Ic ≤ 1.64, Kc=1.0 

   1.64< Ic < 2.60, Kc= 5.581Ic
3 – 0.403Ic

 4 – 21.53Ic
 2 – 33.75Ic -17.88 

   1.64< Ic <2.36 AND Fr<0.5%, set Kc-=1.0 

If 2.60 < Ic < 2.70 (transition regions), the Kc is computed as shown is Equation 

5.7: 

௖ܭ ൌ 6 ൈ 10ି଻ሺܫ஼ሻଵ଺.଻଺     5.7 

Thus, normalized tip resistance Qtn can be corrected by Kc using the following 

Equation 5.8: 

ܳ௧௡,௖௦ ൌ ௖ܭ ൈ ܳ௧௡     5.8 

Where Qtn is the normalized tip resistance obtained from CPT. The estimation of 

CRR7.5 for sandy-like soils and transition regions can be estimated by in terms of the 

corrected normalized tip resistance, Qtn,cs using Equations 5.9 and 5.10: 
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଻.ହܴܴܥ ൌ 0.833 ቂ
ொ೟೙,೎ೞ
ଵ଴଴଴

ቃ ൅ 0.05 If Qtn,cs < 50    5.9 

଻.ହܴܴܥ ൌ 93 ቂ
ொ೟೙,೎ೞ
ଵ଴଴଴

ቃ
ଷ
൅ 0.08  If 50 ≤ Qtn,cs ≤ 160   5.10 

   For clay-like soils (Ic ≥ 2.70), the cyclic softening expected is also evaluated. 

CRR7.5 can be estimated using Equation 5.11 in terms of the normalized tip resistance, 

Qtn obtained from CPT. 

଻.ହܴܴܥ ൌ 0.053	ܳ௧௡ܭఈ     5.11 

Where, Kα is a correction factor to account for static shear stresses. For 

structures considered well-designed, where the factor of safety for static loading is 

relatively large, Kα is generally close to 0.9 (Robertson and Cabal 2012). A value of Kα = 

0.9 is considered by reasonably assuming that the Eagle Mountain dam presents a high 

FOS against static loading; and is therefore used for the evaluation of cyclic softening in 

clay-like soils. A different traditional CPT-based liquefaction triggering approach 

developed by Boulanger and Idriss (2014) is also used for the assessment of cyclic 

liquefaction and brief details of this method is described in the following section.  

5.3 Approach II: Boulanger and Idriss (2014) 

A more advanced liquefaction analysis framework was presented by Boulanger 

and Idriss (2014) which is based on the procedure established in Idriss and Boulanger 

(2008) with some additional features. The present section summarizes the methodology 

for liquefaction assessment using Boulanger and Idriss (2014) approach.  

The magnitude scaling factor (MSF) is modified to be a function of earthquake 

(EQ) magnitude, soil type and denseness (Boulanger and Idriss 2014). A recommended 

relationship and approach for estimating fines content from CPT data is also described. 

CRR can be estimated using Equation 5.4 previously described. However, the magnitude 
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scaling factor is modified based on an equivalent clean-sand value, 	ݍ஼ଵே಴ೄ	using 

Equation 5.12: 

௠௔௫ܨܵܯ ൌ 1.09 ൅ ቀ
௤಴భಿ಴ೄ
ଵ଼଴

ቁ
ଷ
 ≤ 2.2    5.12 

஼ଵே಴ೄݍ ൌ ஼ଵேݍ ൅  ஼ଵே   5.13ݍ∆

Where: ݍ஼ଵே಴ೄ= equivalent clean sand term; ݍ஼ଵே= corrected tip resistance with 

overburden pressure and  ∆ݍ஼ଵே = adjustment for CPT-based correlation based on the 

fines content, FC = 80 x (Ic + CFC) – 137; 0% ≤ FC ≤ 100%. Soil Behavior Type Index, Ic 

is calculated by using correlations described by Robertson (2009) by using Normalized 

CPT values (Qtn and FR); CFC = 0.0, -0.29 and 0.29, corresponds to a fitting parameter 

(i.e., standard deviation of the regression) that can be adjusted based on site-specific 

data when available. The present study uses CFC as zero.  

 The equivalent clean sand term, ݍ஼ଵே಴ೄ	can be expressed in terms of the tip 

resistance, qc, the atmospheric pressure, pa, and the effective overburden stress, σ’v as 

follows: 

௖ଵேݍ ൌ
஼ಿൈ௤೎
௉௔

       5.14  

ேܥ ൌ ቀ௣ೌ
ఙᇱೡ
ቁ
ଵ.ହଷ଴ି଴.ଶସ଻	ቀ௤೎భಿ಴ೄቁ

బ.మలర

    5.15 

Combining Equation 5.13 and 5.14, Equation 5.16 for ݍ௖ଵே is formulated:  

௖ଵேݍ ൌ
ቀ
೛ೌ
഑ᇲೡ

ቁ
భ.ఱయబషబ.మరళ	ቀ೜೎భಿ಴ೄ

ቁ
బ.మలర

ൈ	௤೎

௉௔
    5.16 

The adjustment term, ∆ݍ஼ଵே is expressed in terms of the fines content correlation 

developed by Boulanger and Idriss (2014) using Equation 5.17: 

஼ଵேݍ∆ ൌ ቀ11.9 ൅ ௤೎భಿ
ଵସ.଺

ቁ ݌ݔ݁ ൬1.63 െ ଽ.଻

ி஼ାଶ
െ ቀ ଵହ.଻

ி஼ାଶ
ቁ
ଶ
൰   5.17 
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The term ∆ݍ஼ଵே can be described in terms of ݍ஼ଵே಴ೄ by combining Equation 5.15 

and 5.16 to finally calculate the equivalent clean sand, ݍ஼ଵே಴ೄ in terms of the fines content 

(FC), atmospheric pressure (pa), overburden pressure (σ’v) and tip resistance (qc). The 

MSF is then computed by using Equation 5.12 to calculate cyclic stress ratio CSR. 

CRR  is estimated by using the equivalent clean sand term resulting from the 

regression presented by Boulanger and Idriss (2014) based on Equation 5.18. 

ெୀ଻.ହ,ఙᇱೡୀଵ௔௧௠ܴܴܥ ൌ ݌ݔ݁ ൜
ܵܥ1ܰܥݍ
ଵଵଷ

൅ ቀ
ܵܥ1ܰܥݍ
ଵ଴଴଴

ቁ
ଶ
െ ቀ

ܵܥ1ܰܥݍ
ଵସ଴

ቁ
ଷ
൅ ቀ

ܵܥ1ܰܥݍ
ଵଷ଻

ቁ
ଶ
െ 2.80ൠ  5.18 

Factors of Safety are calculated by comparing CRR and CSR values as 

described in Equation 5.1. The methodology described is applied to each CPT collected 

at the Eagle Mountain dam to evaluate liquefaction potential and for comparison with 

other methods. This is a modern CPT approach that incorporates important soil 

information (i.e., FC and Ic) into the development of correction factors as well as the 

probability of liquefaction PL implicitly considered in the model of 15%.  

The third approach for liquefaction potential assessment was based on the shear 

wave velocity, Vs measurements in soil layers and this method is described in the 

following section. Kayen et al. (2013) presented a methodology that incorporated the 

direct measurements of Vs into the cyclic stress approach for liquefaction assessment. It 

should be noted that select cone test soundings on the dam has produced seismic shear 

wave data as these tests were conducted using a seismic piezocone.  

5.4 Approach III: Kayen et al. (2013) 

A more innovative approach based on the measurement of shear wave velocity, 

Vs is provided by Kayen et al. (2013). Measurements of shear wave velocity are 

considerably less sensitive to problems regarding to the soil compression and reduced 

penetration resistance when soil fines are present. Therefore, the approach based on 
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shear wave velocity measurements does not require major corrections for fines content, 

FC. Traditional means of estimating Vs of soil uses an instrumented borehole such as the 

Seismic CPT (SCPT) to measure the travel time of shear waves with respect to depth. In 

this study, four SCPTs (4) that were performed at Eagle Mountain Dam along the crest 

were considered to perform the liquefaction analysis using this approach. The shear 

wave velocities obtained from SCPT at these locations are combined with the estimation 

of Vs by using Standard CPT-based correlations provided in the NCHRP report (2007) to 

perform interpolations and visualization model of liquefaction potential.  

Shear wave velocity, Vs can be determined from Standard CPT by using the 

empirical correlation provided by Mayne (2006b) as presented in Equation 5.19, which is 

developed from well-documented experimental sites that includes, saturated clays, silts 

and sands: 

௦ܸ ൌ ሺ݃݋݈	118.8 ௦݂ሻ ൅ 18.5	ሺ݉/ݏሻ     5.19 

Where, fs = sleeve friction reported in unites of KPa. 

Shear wave velocity obtained from Standard CPT as well as shear wave velocity 

data collected from four SCPTs along the dam are corrected to be used for computation 

of cyclic resistance ratio CRR7.5. It can be estimated using the normalized shear wave 

velocity, Vs1 as described by Kayen et al. (2013) using Equation 5.20. 

ܴܴܥ ൌ ݌ݔ݁ ቄ
ൣሺ଴.଴଴଻ଷ.௏ೞభሻమ.ఴబభభିଶ.଺ଵ଺଼.୪୬ሺெೢሻି଴.଴଴ଽଽ.୪୬൫ఙᇲೡ೚൯ା଴.଴଴ଶ଼.୊େି଴.ସ଼଴ଽ.஍షభሺ௉ಽሻ൧

ଵ.ଽସ଺
ቅ 5.20 

Where, M is the magnitude of earthquake; σ’v is the effective stress; VS1 is the 

normalized shear wave velocity obtained by ௌܸଵ ൌ ൬݌௔ ௩′ߪ
ൗ ൰

଴.ଶହ

and ɸ-1(PL) the model for 

probability developed in this approach which can be computed using Equation 5.21 as 

follows: 
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P୐ ൌ ɸ ቄെ
ൣሺ଴.଴଴଻ଷ.୚౏భሻమ.ఴబభభିଵ.ଽସ଺.୪୬ሺୌୖሻିଶ.଺ଵ଺଼.୪୬ሺ୑౭ሻି଴.଴଴ଽଽ.୪୬൫஢ᇲ౬౥൯ା଴.଴଴ଶ଼.ሺ୊େሻ൧

଴.ସ଼଴ଽ
ቅ 5.21 

On the other hand, CSR7.5 can be computed using Equation 5.3; however the 

stress reduction factor rd is estimated based on a statistical model of ground response 

analysis results provided in this approach based on the Equation 5.22 and the MSF or 

(DFW – duration weighting factor defined by Kayen) using Equation 5.23. 

ܴௗ൫݀,ܯ௪, ܽ௠௔௫, ௦ܸ,ଵଶ௠
∗ ൯ ൌ

൭ଵା
షమయ.బభయషమ.వరవ.ೌ೘ೌೣశబ.వవవ.ಾೢశబ.బఱమఱ.ೇೞ,భమ೘

∗

భల.మఱఴశబ.మబభ.೐
బ.యరభ,ቀష೏శబ.బళఴఱ.ೇೞ,భమ೘

∗ శళ.ఱఴలቁ
൱

൭ଵା
షమయ.బభయషమ.వరవ.ೌ೘ೌೣశబ.వవవ.ಾೢశబ.బఱమఱ.ೇೞ,భమ೘

∗

భల.మఱఴశబ.మబభ.೐
బ.యరభ,ቀబ.బళఴఱ.ೇೞ,భమ೘

∗ శళ.ఱఴలቁ
൱

േ  ఌ௥ௗ    5.22ߪ

ሻܹܨܦሺܨܵܯ ൌ ௐܯ15
ିଵ.ଷସଶ       5.23 

Where, d=depth in meters, measured at the midpoint of the critical layer; 

Vs12.2m=average Vs in the upper 12.2 m (40 ft) of the soil column; and amax=PGA in units 

of gravity.  

For the deterministic assessment of liquefaction susceptibility, this approach 

recommends the PL=15% contour for use as the single deterministic boundary for Vs1-

based liquefaction evaluation shown in Figure 2.31. Thus, the factor of safety is 

computed using Equation 5.21. 

ܨ ௟ܵ௜௤ ൌ
஼ோோುಽሺభఱ%ሻ

஼ௌோ
     5.21 

Transitions zones are considered for the first two approaches (Robertson 2009; 

Boulanger and Idriss 2014). By considering transition zones in the analysis, lateral and 

vertical displacements using CPT data are commonly overestimated. However, the 

objective of the present study is not to evaluate the displacements expected after 

liquefaction, but to provide more qualitative information on liquefaction related FOS 

values (ratios of CSR and CRR values). It should be noted a FOS value of 1 indicates a 

significant potential for liquefaction in a soil layer whereas higher FOS values indicate no 
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liquefaction in the soil layers. Hence, in order to have a better interpolation using 

Geostatistics, the FOS values obtained for all three approaches on selection cone 

soundings are determined and then interpolated by geostatistics and used for the 

generation of three-dimensional models of liquefaction potential. The following sections 

present a comprehensive liquefaction evaluation of the Eagle Mountain dam by 

presenting three different scenarios described earlier. 

5.4 Liquefaction Potential of EM Dam: Actual Field Conditions 

This first scenario refers to the liquefaction evaluation by using the present field 

conditions at the Eagle Mountain dam. The ground water level or phreatic line within the 

dam plays a vital role on the assessment of liquefaction within the dam. An excess of 

pore water pressure must be developed within the soil mass in order for liquefaction to 

occur. Therefore, if soils are above the phreatic line (unsaturated zone), they are less 

susceptible to liquefaction. According to the United States Geological Survey (USGS) 

along with the information from Tarrant Regional Water District (TRWD), the conservation 

pool elevation is estimated to be approximately El+649.0 ft. The dam is assumed to have 

a reasonable phreatic line based on the lake level. Thus, soils are considered to be 

saturated below the El+630.0 based on this assumption; however a more accurate 

prediction can be done by performing seepage analysis which is outside of the scope of 

this work.  

The next condition is the characterization of earthquake loading capable of 

producing ground motion at the Eagle Mountain dam. PSHA results depicted, 1% 

probability of 0.3g to be exceeded within a one-year time frame. Also, based on the 

recent seismicity events, the approximate magnitude of earthquake expected is ~M4.0 

(i.e., maximum earthquake in the region, Venus, TX in 2014). Therefore, liquefaction 



 

199 
 

evaluation for this scenario can be estimated by using a ground motion of 0.3g in the 

CSR calculations. 

5.4.1 Liquefaction Based on CPT 

This section includes several plots used to evaluate the liquefaction potential 

using three different approaches for the first case scenario. A CPT test located at Station 

10.50 on the crest of the dam is considered for the analysis. The raw CPT data (qt, fs and 

Rf) is shown in Figure 5-1 and it will be used in each methodology to calculate the 

liquefaction potential at that location.  

 

Figure 5-1 Raw CPT data obtained at Station 10.50 at the crest of the dam 

5.4.1.2 Analysis based on Approach I 

Initially, the raw CPT data was normalized by several conventional correction 

factors that are related to projected area of the cone and pore water pressure effects. 

Normalized plots and corresponding Soil Behavior Type Index (Ic) for the CPT performed 

at Station 10.50 are shown in Figure 5-2. Figure 5-3 illustrates the corrected normalized 

tip resistance (Qtn,cs) by using the grain characterization factor (Kc) for estimation of 

CRR7.5 in sandy-like soil and transition regions. Both, CRR and CSR can be estimated as 
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well as the FOS calculations at Station 10.50 are shown in Figure 5-4. It may be noted 

that cyclic liquefaction was also evaluated in the unsaturated zone (above 50 ft.) CRR 

values were found to be beyond the threshold value (CRR=4.0) as shown in Figure 5-4. 

 

Figure 5-2 Normalized CPT values and Soil type at Station 10.50 – Robertson (2009) 

  

Figure 5-3 Corrected Normalized tip resistance (Qtn,cs) – Robertson (2009) 
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Figure 5-4 Liquefaction Potential at Station 10.5 at the crest of the dam using Robertson 

(2009) 

Factor of safety against liquefaction potential using Roberson (2009) approach 

for the present case scenario depicted high values (FOS>2.0) in all soils. Liquefaction 

potential is defined by the FOS plots for each CPT data collected at EM dam. For 

unsaturated soil zones, the FOS values are much higher and hence high FOS of 2 are 

mentioned in those zones which indicate no liquefaction issues. Three-dimensional 

visualization models of FOS interpolation are further performed by incorporating their 

spatial variability using Geostatistics.  

5.4.1.2 Analysis based on Approach II 

This section includes several plots used to evaluate the liquefaction potential 

using the Boulanger and Idriss (2014) approach. For the sake of comparison with other 

methods, plots corresponding to CPT located at Station 10.50 on crest of the dam under 

first case scenario conditions, are presented herein. The following sequence of plots aim 

to understand the liquefaction evaluation using this approach. Figure 5-5 shows plots for 

the equivalent clean sand term obtained from raw CPT data as well as the fines content 
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estimation. These two terms are used for calculation of the fines adjustment term and the 

corrected tip resistance (Figure 5-6) used for computation of CRR7.5 as shown in Figure 

5-7. 

   

Figure 5-5 Equivalent clean sand and Fines Content, FC – Boulanger&Idriss (2014) 

   

Figure 5-6 Fines adjustment and Correc. Norm. Tip resistance - Boulanger&Idriss (2014) 
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Figure 5-7 Liquefaction Potential at Station 10.5 at the crest – Bounlanger&Idriss (2014) 

Liquefaction potential is also shown in Figure 5-7 in terms of factor of safety. The 

CPT depicted lower values of FOS than Robertson (2009) method and hence higher 

liquefaction potentials are obtained. In the present case (Figure 1-8), only a handful of 

locations yielded a FOS value of 1, still these are thin zones and hence do not appear to 

cause significant damage to the dam embankments. Interpolation of FOS obtained using 

this approach will provide higher number of data points for interpolation and visualization 

purposes. 

5.4.1.2 Analysis based on Approach III 

In an attempt to compare different liquefaction approaches by using some 

information available from SCPTu, an approach developed by Kayen et al. (2013) is 

presented. This approach is primarily developed when direct measurements of shear 

wave velocities are collected using different in-situ methods (i.e., SCPTu, DMT). SCPTu 

data were collected at four locations in the EM dam and shear wave velocities are used 

for the analysis. In an attempt at performing interpolation using Geostatistics, CPT raw 
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data can be used for computation the shear wave velocity at locations where SCPT is not 

available to increase the number of data. This approach estimates the liquefaction 

potential by using the normalized shear wave velocity (Vs1) and is better illustrated by 

generating several plots as shown in Figure 5-8 and Figure 5-9. Information collected at 

Station 10.50 is used for the sake of comparison with the other two methodologies. 

   

Figure 5-8 Normalization of Shear Wave Velocity  
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Figure 5-9 Liquefaction Potential at Station 10.5 at the crest - Kayen et al. (2013)  

Factors of safety obtained from shear wave velocity approach are presented in 

Figure 5-9. When comparing FOS results with the other two methodologies, shear wave 

velocity does not show any similarity. It is expected to have a low quality interpolation due 

to the limited number of data resulting from the approach. Results can be attributed to the 

inherent variability in predicting shear wave velocity from CPT or to the lack of 

considering transition zones in the methodology. The present study includes this 

approach for comparison purposes only. Three-dimensional models based on 

Geostatistics are generated; however visualization quality can be decreased due to the 

kriging interpolation of limited number of data values as shown in the following section. 

5.4.2 Three-Dimensional Visualization Model of FOS 

Three-dimensional visualization models were generated based on the conditions 

described above for the present case scenario. Figure 5-10 presents the visualization 

model of liquefaction potential calculated using three different approaches: Robertson 

0 1 2 3

FOS

80

60

40

20

0
Factor of Safety

FOS
FOS
FOS=1.0



 

206 
 

(2009), Boulanger and Idriss (2014) and Kayen et al (2013). The colored legend 

corresponding to each visualization model is assigned to define liquefaction potential.  

Results from visualization models using all three methodologies indicate that 

there is no liquefaction of soils in the Eagle Mountain dam based on the actual field 

conditions and the CPT interpretation results. The legend in the visualization results 

shows a full color of blue depicting high factors of safety within the body of the dam. If 

had liquefaction been triggered, some areas would be colored green showing factors of 

safety less than 1.0. The Eagle mountain dam is stable under local seismic conditions 

expected (M4, amax=0.3g) and based on the assumption that lake level remains at the 

conservation pool elevation (EL+649.0).  
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5.5 Liquefaction Potential of EM Dam: Hypothetical Scenarios 

This section presents three-dimensional visualization models of liquefaction 

potential for different hypothetical scenarios. The main objective is to visualize the 

influence in the increase of earthquake magnitude (M), peak ground acceleration (a), and 

the lake level that could lead to produce liquefaction in the dam. Seismicity with similar 

conditions in near locations (i.e., Oklahoma, Colorado) present higher magnitudes and 

accelerations as compared with the amax=0.3g obtained from PSHA at the Eagle 

Mountain Dam. Both approaches are performed at different magnitudes of earthquakes 

(M4.5, M5.5 and M6.5) assumed to occur in North of Texas for comparison purposes 

only. The Robertson (2009) liquefaction approach is used for evaluating the liquefaction 

potential considering hypothetical scenarios.  

The increase in earthquake loading will result in an increase in peak ground 

acceleration. The calculation of CSR is performed at Station 10.50 for each increase of 

acceleration (i.e., 0.3g, 0.4g and 0.5g) as well as for each magnitude of earthquake 

(M4.5, M5.5. and 6.5). It should be noted that both increase of earthquake magnitude and 

a hypothetical acceleration parameter are not directly correlated but they are considered 

as a potential transpiring scenario of earthquakes of different magnitudes that could 

occur in a larger area around the EM dam. The lake level remains constant for all cases. 

As shown in plots (Figure 5-11), CSR values above 50 ft. (unsaturated zone) are not 

shown in the plot due to scale limitations. The analysis performed by plotting CSR 

variation with acceleration and magnitude at the same location, provides a better insight 

of each hypothetical scenario herein presented. It should be noted that for the first three 

hypothetical scenarios where the lake level is at El+649.0, CRR values remain constant. 

The CRR changes for the fourth case scenario where the lake level is assumed to be 

high to consider soils in upper layers in saturated conditions. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-11 CSR at different magnitudes (a) 0.3g, (b) 0.4g, (c) 0.5g and (d) 0.3g – Lake 

level high – Roberson (2009) 
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5.5.1 Scenario I: amax - 0.3g; M- 4.5, 5.5, 6.5; Flood Level- El+649 

This section presents the generation of visualization models by assuming an 

increase in the magnitude of earthquakes in North Texas, but with the same peak ground 

acceleration a=0.3g obtained from PSHA. This condition, as noted earlier, can again 

transpire when larger EQ magnitudes occur beyond the 40-mile radius or due tore 

changes in geological and environmental conditions or both. The lake level still remains 

the same as the first case scenario considering the conservation pool levels reported by 

USGS (El+649.0). Results of liquefaction visualization models showed that for these 

defined conditions and with an increase in earthquake up to M5.5 (Figure 5-12), there is 

no liquefaction in the body of dam even when earthquake magnitude increases to M5.5. 

Results can be seen in Figure 5-12. 

However, under an earthquake of M6.5, some liquefaction is triggered at deeper 

depths (55-60 ft.) at Sector 3 and 4 as shown in Figure 5-13. The contour or shaded cyan 

areas represent the locations where the factors of safety are less than 1.0 within the body 

of the dam. It is noted that the phreatic level was assumed to be at El+630 approximately 

50 ft. below the crest and it was expected for liquefiable zones to be at locations below 

that elevation.  
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5.5.2 Scenario II: amax - 0.4g; M- 4.5, 5.5, 6.5; Flood Level- El+649 

The second hypothetical scenario analysis is performed based on the 

assumption that the peak ground acceleration is increased to 0.4g at the Eagle Mountain 

Dam. Higher peak ground acceleration increases the cyclic stress ratio, and hence 

increases the liquefaction problem in the dam. The lake level remains constant for the 

present scenario, as the actual condition based on the conservation pool levels 

presented by USGS (El+649.0). The evaluations is developed for a series of earthquakes 

of magnitudes, M4.5, M5.5 and M6.0 to visualize at which earthquake liquefaction is 

triggered in the dam.  

Results of visualization are shown to illustrate that an increase in earthquake 

magnitudes (M4.5, M5.5 and M6.5) has increased the cyclic liquefaction. The 

hypothetical scenario presented herein depicted that the initiation of liquefaction occurred 

in small areas at magnitudes of M5.5 at an acceleration of 0.4 g. In the visualization 

model for an earthquake magnitude M5.5, the liquefaction zone with factor of safety less 

than 1.0 (cyan color) is primarily located at Sector 3 at very large depths (~60 ft. below). 

Visualization models generated based on SBT, Ic and friction angle can be used for the 

interpretation of soil type at those locations. Results showed that soils are classified as 

silts; however liquefied area also includes some clayey-like soils which may be 

susceptible to cyclic softening. 

At higher magnitudes (M6.5), the increase in liquefaction potential is shown at 

similar depths (60-70 ft.). Cyclic liquefaction occurs on soils that are mainly located in the 

shells as well as at certain locations within the core. In this hypothetical scenario, the 

stability of the dam may be affected due to large deformations that may occur in the 

clayey core after cyclic softening in clayey-like soils and cyclic liquefaction in sand-like 

soils located at the shells.  
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5.5.3 Scenario III: amax - 0.5g; M- 4.5, 5.5, 6.5; Flood Level- El+649 

The third hypothetical scenario is to provide the liquefaction condition at an 

increased acceleration of 0.5g at different earthquake magnitudes. Other condition such 

as the lake level remains constant as the previous case scenario. The effect on 

liquefaction is similar but slightly higher level as compared to the condition with 

acceleration of 0.4g. While maintaining these conditions, the initiation of liquefaction can 

be visible in magnitudes of earthquake M5.5 at certain depths (~55-65 ft.) as shown in 

Figure 5-15. Soil types at those locations are corroborated with visualization models 

developed for SBT and others soil properties. The presence of clayey-like materials 

present is susceptible to cyclic softening under a seismic event with these high 

acceleration conditions.  

At higher magnitudes (M6.5), liquefaction zones expand along the dam at depths 

of 55-75 ft. Except for Sector 3 and 4 that consisted of sandy-like soils which experience 

cyclic liquefaction, the rest of the soils are mostly clayey-like materials that may be 

susceptible to cyclic softening at these conditions. Based on the color legend and in 

terms of the contours, it may be noted that the FOS of the entire dam is decreasing with 

an increase in the acceleration (amax – 0.4g to 0.5g). This effect is also shown when the 

EQ magnitude is increased from M4.5 to M6.5. 

Despite the fact that visualization results shown to have some liquefaction zones 

at higher earthquake magnitudes with higher accelerations, the probability to have these 

conditions at the North Texas is very low. The objective of reproducing these conditions 

is to highlight the importance of visualization approach using Geostatistics to provide a 

better overview of geotechnical hazards in a series of realistic and hypothetical 

scenarios. A worst case scenario is presented in the next section to show conditions at 

which the resilience of the dam is affected. 
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5.5.4 Scenario IV: amax - 0.3g; M- 4.5, 5.5, 6.5; Flood Level- El+665 

This section presents the liquefaction evaluation based on extreme conditions at 

the Eagle Mountain Dam. Previous sections presented hypothetical scenarios to illustrate 

the effects of increasing acceleration at the site as well as having earthquakes of higher 

magnitudes. All cases assumed that the water lake level remains at the conservation pool 

levels reported by USGS (El+649.0). Seepage line was reasonably assumed within the 

dam (average El+630.0) and it contemplates that soils were saturated below that 

elevation. Thus, the effect of saturation in soil hence the lake levels, have a significant 

effect on the liquefaction potential expected in the EM dam.  

The present section is based on the condition that lake level rises up to the 

elevation of El+665.0 (i.e., above the maximum flood value) during the time an 

earthquake strikes the site with a higher earthquake magnitude (M4.5, M5.5 and M6.5) 

and with acceleration at the ground of 0.3g (PSHA). A seepage line is also assumed 

(~El+665) and soils are considered to be saturated below that level. The analysis is 

performed at three-different magnitudes (M4.5, M5.5 and M6.5). Since it is expected to 

have some liquefaction within the body of the dam because of the present conditions; the 

liquefaction potential is again evaluated using three same methodologies. This task aims 

to demonstrate the effect of each methodology on the interpolation and visualization 

results within the body of the dam.  

Unlike the visualization results obtained from Robertson (2009) and Kayen et al. 

(2013) methods, Boulanger and Idriss (2014) approach depicts few zones of liquefaction 

at lower magnitudes (M4.5). Results can be attributed to the Magnitude Scaling Factor 

used in the model which considers duration of seismic events, soil type and state of the 

soil. Similar results are found in Sector 3 and 4, and it is noted to be one of the most 

critical regions in the dam, where maximum thickness of hydraulic fill is present. At higher 
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magnitudes (M5.5 and M6.0), liquefaction and areas of this distress increase in the dam 

and some of these areas can be considered susceptible to cyclic softening (i.e., clay-like 

soils).  

While increasing the earthquake magnitude up to M5.5, liquefaction potential is 

expanded primarily in soils located in Sectors 3 and 4 as shown in Figure 5-17. 

Visualization models of soil properties are used to evaluate soil types at those locations. 

This sector was already identified in previous Chapters as critical since sands and silts 

were placed at the core location. At higher magnitude of earthquake M6.5, the stability of 

the dam is affected in Sectors 3 and 4 as shown in Figure 5-18.  

The Robertson (2009) approach was found to give more conservative results 

when compared with the other two methodologies. Even though, Robertson (2009) 

considered in his updated work, the potential of cyclic softening in clayey-like soils, only 

few spots of cyclic softening areas are visualized. On the other hand, Boulanger & Idriss 

(2014) approach which initially considered the cyclic softening in clay-like soils showed a 

higher liquefaction potential for this type of materials.  

The visualization models using Kayen et al. (2013) depicts low quality in the 

results (i.e., colored large blocks in visualization). This is mainly attributed to the low 

number of shear wave velocities data points (i.e., FOS values) used for the interpolation. 

However, the initiation of liquefaction can be identified in sands or silts located in Sectors 

3 and 4 at same magnitudes at other approaches. Unlike the other two methodologies 

where few areas depict cyclic softening of the core at higher magnitudes (M6-M7), the 

shear wave velocity approach does not show any cyclic softening until an earthquake of 

Magnitude M7 is triggered as shown in Figure 5-18. The analysis is not performed for 

higher magnitudes since the dam is already showing liquefaction failures in the body of 

the dam at a=0.3g for the present high water table condition. 
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Analyses showed that higher saturation in the embankment of a dam would lead 

to liquefaction with the induced seismicity at the current PSHA level of 0.3g. In order to 

reduce these failures, it is important to maintain the phreatic line elevations levels well 

below the hypothetical level assumed here. Based on the current sets of water elevation 

readings, it is safe to assume that the embankment of the dam is less susceptible to 

liquefaction from induced seismicity occurring in the region. This analysis must also be 

considered within the maintenance and operational recommendations at the Eagle 

Mountain Dam. The lake level shall be conserved to ensure that soils are not fully 

saturated below certain elevation which minimizes the liquefaction potential. 
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5.7 Summary of Liquefaction Evaluation  

A series of visualization models were developed to estimate the liquefaction 

potential at the Eagle Mountain dam. Three different liquefaction evaluation procedures 

were used in the analysis: Robertson (2009), Boulanger and Idriss (2014) and Kayen et 

al. (2013. Seismic activity in North Texas depicts relatively low magnitude earthquakes 

(M<4); however, since the rate of earthquakes is non-stationary and the main cause of 

seismicity has not been identified, earthquakes of larger magnitudes may also occur.  

A series of different scenarios are presented based on ground motion expected 

and the conditions of soils within the dam (i.e., saturated or non-saturated). Initially, 

visualization models are generated based a real case scenario (~M4.0, 0.3g and Lake 

level +649.0). Several hypothetical scenarios are also considered and presented to 

account for the effect of increase in accelerations, earthquake magnitudes and lake 

levels. Some of these are hypothetical and are based on much larger influence areas 

around the dam. The estimation of CSR is primarily based on the simplified procedure 

presented by Seed (1971); however each liquefaction evaluation procedure presents a 

different set of correction factors such as the MSF and Kσ.  

Based on the comparisons of the three methodologies, Boulanger and Idriss 

(2014) approach seemed to be the most conservative method for evaluating liquefaction 

among all three methods. This approach depicts lower factors of safety and the 

probability to identify more spots susceptible to cyclic earthquake loading is higher as 

compared to the other two approaches. Shear wave velocity based liquefaction approach 

did not depict good quality visualization results for two main reasons: the first is that the 

approach developed by Kayen et al. (2013) is primarily used when direct measurements 

of shear wave velocity are available. In the present study, only four SCPTu were 

performed which were not sufficient to interpolate shear wave velocity values for the 
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by considering all scenarios. Based on the analysis, the probability of liquefaction is close 

to 15%. In other words, results presented herein represent a probability of 15% for 

liquefaction to occur within the dam. The 15% probability has been assumed by several 

authors as a conservative factor for the computation of CSR (Robertson and Wride 1998; 

Idriss and Boulanger 2008, Kayen et al. 2013; Young et al. 2001).  

Several insights can be gained based on the generation of liquefaction potential 

models at the Eagle Mountain Dam which are described in Table 5-1. Cyclic liquefaction 

mostly occurs where hydraulic fill is located. A comprehensive evaluation of visualization 

models is developed to identify critical sections that may be unstable due to liquefaction 

phenomena. Slope stability analysis is also performed on critical zones as described in 

the following sections.  The present work includes a series of interactive figures shown in 

Appendix C, where users can fully visualize through some of the three-dimensional 

models of liquefaction potential.  
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Table 5-1 Sumarry of Liquefaction Potential Results at EM dam 

DESCRIPTION 
LAKE LEVEL 
EL (FT.) 

PGA (g)  APPROACH 
EARTHQUAKE MAGNITUDE, M

4 4.5  5.5 6.5

H
yp
o
th
et
ic
al
 S
ce
n
ar
io
s 

 

+649.0  0.3 

Robertson (2009) 

No 
liquefaction 

‐  ‐  ‐ 
ACTUAL FIELD 
CONDITIONS 

Boulanger & Idriss 
(2014) 

  Kayen et al. (2013) 

SCENARIO I  +649.0  0.3 

Robertson (2009) 

‐  No liquefaction  No liquefaction 

Small amount of 
liquefaction of soils at 
~El+630 ft. and below at 

Sector 3 and 4 

SCENARIO II  +649.0  0.4  ‐  No liquefaction 
Few layers exhibit cyclic 
softening at Sector 3 

(El+620) 

Liquefaction is extended. 
Both, cyclic softening and 
liquefaction mostly in 

Sector 3 

SCENARIO III  +649.0  0.5  ‐  No liquefaction 

Both, cyclic softening 
and liquefaction mostly 
in Sector 3 at depths of 
55 to 75 ft. below the 

crest 

Cyclic liquefaction and 
cyclic softening increases 
significantly in Sector 2 3 

and 4 

SCENARIO IV  +665.0  0.3 

Robertson (2009)  ‐  No liquefaction 

Initiation of cyclic 
liquefaction in Sector 3 
and 4 at depths of ~20 
ft. and few layers at 50 
ft. below the crest 

Liquefaction potential 
extends at Sector 3 and 4. 

Cyclic liquefaction is 
exhibit at larger depths 

(El+620‐640) 

Boulanger & Idriss 
(2014) 

‐ 

Initiation of 
liquefaction in few 
spots Sector 3 and 4 
at depths of ~25 ft. 

Cyclic liquefaction 
tends to increase in 

Sector 3 and 4 in inner 
soils. Cyclic softening is 
also exhibited in few 
seams within the core  

Liquefaction potential 
extends significantly in 

Sector 3 and 4. Surface soil 
layers are liquefied. Cyclic 
softening is susceptible in 
clayey soil in the core in 

Sector 1 to 3. 

Kayen et al. (2013)  ‐  No liquefaction 

Cyclic liquefaction 
increases in Sector 3 
and 4. However, the 

increase is not 
significant as other two 

methods. 

Liquefaction potential 
extends towards the 

surface at Sector 4. Cyclic 
liquefaction is exhibited at 
larger depths in Sector 3 

(El+620‐630) 
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5.8 Slope Stability Analysis 

The main objective of this section is to study the effect of liquefiable soil zones on 

slope stability of the dam. Since, for actual site conditions, there were no liquefiable 

zones observed from the three approaches presented in section 5.4, the slope stability 

analysis is performed for the worst case hypothetical scenario. In order to perform this 

analysis, two main research tasks have been formulated:  Identification of critical sections 

based on liquefaction analysis and slope stability analysis for worst case scenario (this is 

based on liquefaction analysis). The details of the analysis and results are provided in the 

sections below. 

5.8.1 Identification and characterization of Critical Sections  

This section presents the identification of critical sections based on the worst 

case scenario (scenario 4). In an attempt to perform the slope stability analysis for the 

EM dam, worst case conditions are considered and hence critical sections susceptible to 

liquefaction can be obtained from the body of the dam. From the evaluation of soil 

properties to the assessment of liquefaction, several insights can be gained to identify 

critical zones.  

1. The absence of clayey soil in the core at Section 3 and 4 depicted from SBT and 

Ic visualization models was probably the path for seepage to occur in the EM 

dam. The presence of sands or silts in this region can be affected after strong 

seismic events (M>5.5). This is corroborated by the visualization models of soil 

properties. Also, since the elastic modulus is low due to sands and silts in 

Sectors 3 and 4, larger deformations may occur once liquefaction is triggered.  

2. Liquefaction evaluation from Scenario IV depicts that cyclic liquefaction primarily 

occurs in soils located at depth of 10-15 ft. in Sectors 3 and 4 under an 

earthquake of M>5.0 at amax=0.3g. The increase in peak ground acceleration, 



 
 

241 
 
 

PGA increases the amount of liquefiable soil layers but it does not result in cyclic 

liquefaction at magnitudes M<5.0. Based on the considerations, two sections are 

obtained from visualization models to address the stability of the dam by 

performing slope stability analysis. 

3. Figure 5-20 illustrates two critical sections obtained from evaluating visualization 

models using three different CPT-based triggering approaches. These sections 

are located at Sector 3 and 4 and shows that initiation of liquefaction (FOS<1) is 

triggered under an approximate earthquake magnitude of M5.0 and amax=0.3g. 

Critical sections identified are characterized for slope stability analysis based on 

the visualization models of different soil properties. Figure 5-21 illustrates the 

material type based on the SBT interpretation results. Foundations soils are 

mainly characterized as dense and compacted sands. However, the dam body 

includes several regions of sands and silts. Since soils within the dam are mainly 

characterized as sands, the strength for slope stability analyses must be 

provided by regionalizing visualization models of the effective drained friction 

angle shown in Figure 5-22. 
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create a regionalized material which includes steady state strength parameters due to the 

strength loss developed after liquefaction. Slope stability analysis is based on the 

calculation of liquefaction under an earthquake magnitude M5.0-M5.5 with a maximum 

acceleration of 0.3g at the surface. Factor of safety for slope stability reduces after 

liquefaction is triggered in zones where high amount of hydraulic fill material was 

identified in Chapter 4. Liquefaction mostly occurs in areas where the shell is formed by 

hydraulic fill material. However, the present study is based on conservative assumptions 

such as the level of the lake at the time of liquefaction occurs (El+665) and the likely 

occurrence of an earthquake magnitude M5.0-M5.5 with a 0.3g. It is only presented to 

illustrate and highlight the importance of modern visualization in geotechnical 

engineering.  

The intent of this analysis is not to evaluate the real stability of the Eagle 

Mountain dam; however it provides a comprehensive and modern visualization 

framework that can be applied to any geotechnical project. The incorporation of spatial 

variability in soils using Geostatistics aims to generate three-dimensional visualization 

models of soil properties and liquefaction potential using in-situ test data (i.e., CPT). 

Models can be further used to find critical locations within the dam to further perform 

slope stability analysis combined with the flow liquefaction analysis (i.e., loss of strength).  

5.9 Summary 

 This chapter provides a comprehensive summary of liquefaction analysis of EM 

dam using both realistic and hypothetical conditions of the EQ events in the EM zones. 

Liquefaction assessments based on three models are presented in a visualization format. 

These data are further screened and evaluated for slope stability assessments and 

studies. 
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Chapter 6 Summary, Conclusions and Recommendations 

6.1 Summary and Conclusions 

This dissertation focuses on a comprehensive analysis of cyclic liquefaction 

assessment of a major dam in North Texas by first using kriging and visualization 

analysis for determining soil layer configuration followed by liquefaction analysis of the in 

situ cone testing data with probabilistic seismic hazard assessments. The Eagle 

Mountain dam, a hydraulic fill dam located in Fort Worth Texas, was the focus of this 

dissertation research and was fully analyzed in this work.  

Three-dimensional visualization models were generated based on Geostatistics 

and kriging analyses of SCPTu results and this was followed by comprehensive cyclic 

liquefaction assessment. Based on these studies performed, the following conclusions 

are drawn:  

1. In the development of a simplified seismic hazard analysis, a new methodology is 

proposed for the identification and characterization of seismic sources at North 

Texas. The method consisted of generating volumetric sources or prisms where 

the spatial occurrences are approximately uniformly distributed. The distribution 

of source-to-site distances (R) in each source was evaluated and checked for 

normality using the Chi-Square test. Three seismic sources capable of producing 

significant ground motion were identified and characterized for the seismic 

hazard. These three sources at North of Texas include events at Azle, TX; Irving, 

TX and Venus TX, respectively. Results of the deterministic seismic hazard 

analysis (DSHA) depicted very low values of PGA (0.02g) resulting from an 

earthquake of M3.6 located at Source 1 (Azle, TX) at a distance of 4.2 miles from 

the site.  
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2. North Texas seismicity presents a high uncertainty in the seismic activity and 

hence, a probabilistic seismic hazard analysis (PSHA) is more appropriate and 

hence PSHA steps were performed to determine seismic parameters for 

liquefaction analysis. A finite period of 1 year is used for the calculation of PSHA 

since the rate of earthquakes is non-stationary and it can change year to year. 

PSHA results depicted a hazard of 0.27g with 1% probability to be exceeded in 

one-year. Results are validated with the recently released USGS Hazard maps 

for the central United States (USGS 2016) which shows 0.25 to 0.28g with 1% 

probability to be exceeded in one-year for the area of North Texas. The proposed 

methodology to generate volumetric seismic sources has been shown to be 

successful to be used in areas where seismic activity has increased and there is 

no additional information about faults. The seismic hazard of 0.3g (an average 

value obtained from present seismic hazard analysis and USGS recent hazard 

map) was hence used for the computation of liquefaction potential at Eagle 

Mountain Dam.  

3. A comprehensive characterization of soils at the Eagle Mountain Dam was 

performed by incorporating the spatial variability of soil properties using 

Geostatistics.  A high variability in soil properties was found in the EM dam. It 

was evaluated by using construction drawings collected from 1930s and 

comparing the configuration of layers with the distribution of normalized tip 

resistance at same range of depths. Ordinary Kriging was used for the 

interpolation of data by constructing variograms that considered spatial variability 

and a fully three-dimensional analysis of anisotropy. An enhanced visualization 

was developed for soil behavior type, soil behavior type index, effective drained 

friction, undrained shear strength and elastic moduli. Visualization models 
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developed provided insights about of the construction methodology adopted in 

1930s at Eagle Mountain Lake site. Four construction stages or sectors were 

identified in visualization models that are validated based on construction 

drawings information. Sector 3 and 4 were identified as critical sectors since it 

contains high amount of sands and silts at depths where the core is located.  

4. Three-dimensional visualization models of the Eagle Mountain dam are also 

developed for the cyclic liquefaction patterns at the Eagle Mountain dam. Models 

feature the cyclic liquefaction potential of the dam as a function of factors of 

safety obtained from analyses based on Robertson (2009), Boulanger & Idriss 

(2014) and Kayen et al. (2013) approaches by using the cyclic stress approach. 

Cyclic stress approach is valid for level ground surfaces (El+625), however by 

the interpolation performed, cyclic liquefaction potential can be identified in zones 

within the body of the dam at higher magnitudes and higher accelerations. This 

assumption must be validated with the strength loss potential obtained from flow 

liquefaction analysis which is not covered in the present research. The 

interpolation for modeling used “factors of safety” obtained from the 15% 

probability of liquefaction occurrence considered in all three methodologies. The 

liquefaction evaluation was performed for three cases: the first, a realistic case 

when water level at the time of earthquake is as in field conditions under and 

earthquake of magnitude M4.0 (~max. earthquake expected in North Texas) 

which produces a ground motion of 0.3g (PSHA); the second and third cases are 

hypothetical scenarios, when water level at the time of earthquake is similar to in 

field dam conditions and the dam is subjected to hypothetical earthquakes of 

magnitude M4.5, M5.5 and M6,5 that produced ground motions of 0.3g, 0.4g and 

0.5g. A worst case scenario was when water in the dam level at the time of 
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earthquake is ~10 ft. below the crest of the dam (soils are saturated) and the 

dam is subjected to an earthquake loading event of amax =0.3g. Visualization 

results showed that liquefaction is not triggered in the first case scenario using 

three methodologies. For the second case scenario, there is no sign of 

liquefaction in soil layers up to a=0.3g at none of the earthquake magnitudes; 

however for a=0.4g and a=0.5g some liquefaction of layers is triggered at high 

earthquake magnitudes (M5.5-M6.0). For the worst case scenario, liquefaction is 

triggered for a=0.3g at magnitudes of M5-M5.5. It can be concluded overall that 

by including current spatial variability of soil properties, the EM dam is stable 

against earthquakes including those of amax=0.3g under actual field conditions 

(first scenario). 

5. In an attempt to highlight the importance of this visualization framework, third 

case scenario was used as a particular severe case study. From this scenario, 

visualization models show that Sectors 3 and 4 are critical. Two cross-sections 

depicting locations where the major parts of liquefaction zones were found 

(FOSliq=1.0) are later used for performing slope stability analyses to study the 

effects of internally liquefied soil layers on global slope stability of the dam.  

6. Regionalized sections were generated for slope stability modeling and the 

assignment of strength properties were based on three-dimensional visualization 

models. Two-dimensional slope stability analysis was performed using the limit 

equilibrium analysis approach in three different scenarios: under static loading 

(before liquefaction), right after liquefaction is triggered and a post liquefaction 

scenario. A region of liquefiable soil is assigned in the modeling with steady state 

strength values (i.e., approximately 10-20% of the maximum strength of soil) for 

the third case scenario. A significant decrease in the factor of safety is detected 
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after liquefaction occurs. Again, it may be noted that this is a worst case scenario 

condition where water table rises close to the crest of the dam, a condition that is 

not expected to occur in field operations. 

7. Geostatistics was effectively used for the generation of an enhanced three-

dimensional visualization of subsurface and soil configuration for the EM dam. It 

addressed the spatial variability, probabilistic distribution and the geostatistical 

anisotropy of the grid for the generation of the variogram. Kriging was 

comprehensively used along with the variogram models to effectively deal with 

high variability of soils presented in the hydraulic fill dam. The prediction of 

liquefaction was effectively addressed by using in-situ based approaches and by 

generating models to visualize its potential in terms of factors of safety at 

different scenarios.  The above geostatistical framework as well as the seismic 

hazard analysis developed can be used for addressing geotechnical hazards of 

dams and levee structures at similar locations in North Texas.  

6.2 Limitation of the Seismic Hazard Analysis Framework 

The seismic hazard analysis is simplified by the generation of volumetric seismic 

sources which are used for the computation of DSHA and PSHA. However, the 

methodology for developing those seismic sources is based on a catalog of earthquakes 

obtained until November 2015. More recent seismic events (after November 2015) are 

not considered in the generation of volumetric seismic sources. Also, since the rate of 

earthquakes is considered as non-stationary seismic hazards curves (PSHA) are 

generated for a probability within a short period of time (one-year) as compared with 

other seismic hazards maps calculated with a probability of 50 years (i.e., California and 

New Madrid area). Therefore, the seismic hazard may increase if the rate of earthquakes 
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increases over the next years. The present simplified seismic hazard analysis can be 

used to address the seismic hazard at similar sites in North Texas only.  

6.3 Recommendations for Future Research 

Several recommendations can be made based on the framework developed: 

1. The three-dimensional visualization information of soil properties in the EM Dam can 

be successfully incorporated to the evaluation other important geotechnical hazards 

(i.e., slope stability, lateral spreading, and seepage). The estimated liquefaction 

potential shown in visualization models is referred to a volume of liquefiable soils 

(FOSliq=1.0).  

2. Liquefaction Potential Index (LPI) can also be addressed based on this framework. It 

is recommended that visualization models can be generated based on the LPI 

interpolation using geostatistics for future research. 

3. It is recommended to evaluate the strength loss potential of soils (flow liquefaction 

potential) by using the undrained shear strength ratio to verify the liquefaction 

potential locations at elevation higher than El+625.0 in this framework. Slope stability 

analysis can be evaluated by combining the cyclic liquefaction potential of layers at 

elevations lower than El+625.0 and the flow liquefaction potential evaluated by the 

strength loss of soils. 

4. A 3D slope stability analysis can be developed by considering a comprehensive 

material characterization based on properties presented in the visualization models. 

The analysis can be performed by incorporating acceleration-time history or 

accelerograms to check the stability of the dam against earthquakes. A transient 

seepage analysis is also recommended to identify level at which soils are saturated 

within the dam.  
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5. A risk and reliability analysis of the EM dam can be developed by compiling the 

results from all geotechnical hazards expected at the site. Visualization models can 

be enhanced by incorporating image-based technology such as LiDAR and UAV.   
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Appendix A 

Seismic Hazard Analysis - Catalog of Earthquakes 
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A1. Catalog of earthquakes within 60 km radius from Eagle Mountain Dam  

(January, 2007 to October, 2015) 

time latitude longitude depth M 
M 

(type) 
nst gap dmin rms 

2015-01-02T02:29:03.610Z 32.8438 -96.9034 2.25 2.4 mb_lg   64 0.567 0.45 

2013-11-26T20:03:28.540Z 32.9594 -97.6176 2.27 2.8 mb_lg   57 0.974 0.99 

2014-11-25T22:39:22.980Z 32.8404 -96.8922 2.58 2.7 mb_lg   64 0.552 0.88 

2014-12-12T03:25:38.030Z 32.8501 -96.8902 3.02 2.7 mb_lg   64 0.568 0.63 

2014-12-30T14:10:09.220Z 32.8372 -96.9132 3.09 2.7 mb_lg   64 0.535 0.57 

2014-12-20T05:08:11.390Z 32.8304 -96.9188 3.18 2.4 mb_lg   78 0.554 0.48 

2014-07-20T11:43:55.460Z 32.8386 -96.8669 3.23 2.2 mb_lg   75 0.588 0.81 

2014-11-23T03:15:47.770Z 32.8346 -96.8932 3.96 3.3 mb_lg   34 0.552 0.46 

2014-09-07T08:56:11.070Z 32.7397 -97.1132 4.12 2.4 mb_lg   41 0.438 0.53 

2014-12-15T12:00:59.380Z 32.8412 -96.9009 4.16 2.7 mb_lg   64 0.566 0.52 

2015-01-07T07:24:29.160Z 32.8473 -96.8896 4.27 2.3 mb_lg   77 0.57 0.27 

2013-03-10T13:47:35.400Z 32.503 -97.499 4.3 2.7 mblg 20 62.3   0.53 

2014-02-02T07:32:51.140Z 32.6451 -97.4354 4.99 2.4 mb_lg   97 0.232 0.62 

2013-12-08T06:10:04.010Z 32.9144 -97.5817 4.99 3.6 mb_lg   88 0.926 0.53 

2012-06-24T17:46:44.450Z 32.474 -97.289 5 3.5 mblg 61 46.3   1.04 

2012-07-10T02:22:44.160Z 32.476 -97.266 5 2.4 mblg 9 82.2   1.18 

2012-07-13T12:27:50.410Z 32.499 -97.323 5 2.7 mblg 13 84.1   0.78 

2012-11-20T04:50:34.290Z 32.622 -97.157 5 2.3 mblg 11 79.9   1.02 

2012-12-13T02:10:22.870Z 32.645 -97.32 5 2.6 mblg 12 76.3   0.68 

2011-09-23T04:21:22.360Z 32.648 -97.135 5 2.4 mblg 12 90.4   1.25 

2014-09-12T23:03:46.430Z 32.7335 -97.1299 5 2.5 mb_lg   69 0.43 0.68 

2008-10-31T05:46:31.000Z 32.755 -97.017 5 2.5 mblg 4 169.9   1.08 

2008-11-01T11:53:46.650Z 32.766 -97.035 5 2.5 mblg 4 169.3   1.02 

2009-05-16T17:53:09.360Z 32.77 -97.117 5 2.7 mblg 7 110.6   1.43 

2008-10-31T21:01:01.770Z 32.788 -97.028 5 2.9 mblg 5 132.4   0.8 

2009-05-16T18:02:23.000Z 32.795 -97.016 5 2.6 mblg 5 108.5     

2008-10-31T06:23:44.120Z 32.799 -97.045 5 2.6 mblg 4 168.2   0.69 

2008-10-31T04:25:52.290Z 32.8 -97.016 5 2.6 mblg 4 168.7   0.63 

2012-09-30T04:09:02.720Z 32.815 -96.962 5 3.1 mblg 29 55   0.72 

2014-09-11T08:21:58.780Z 32.8153 -96.9178 5 2.8 mb_lg   65 0.535 0.93 

2015-01-12T01:46:06.570Z 32.8175 -96.8769 5 2.4 mb_lg   65 0.044 0.54 

2014-11-10T09:04:05.600Z 32.8183 -96.8902 5 2.3 mb_lg   79 0.58 1.1 

2013-11-01T21:57:23.680Z 32.8213 -97.2095 5 2.1 mb_lg   125 0.853 0.72 

2015-09-20T23:25:08.930Z 32.8279 -96.9556 5 2.6 mb_lg   65 0.029 0.92 

2015-09-12T12:16:16.840Z 32.8281 -96.933 5 2.2 mb_lg   65 0.01 0.95 
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CONTINUATION A1 

2015-01-08T13:24:31.750Z 32.8282 -96.9008 5 2.3 mb_lg   96 0.066 0.34 

2008-10-31T20:54:18.810Z 32.831 -97.028 5 2.9 mblg 4 167.6   1.32 

2011-08-07T04:45:31.350Z 32.832 -97.037 5 2.6 mblg 18 56.5   0.63 

2008-10-31T07:58:23.910Z 32.832 -97.012 5 2.9 mblg 4 167.9   0.56 

2015-07-13T11:03:56.270Z 32.8351 -96.939 5 2.4 mb_lg   65 0.015 0.89 

2014-12-02T15:36:21.880Z 32.836 -96.893 5 2.7 mb_lg       1.23 

2008-10-31T05:01:54.910Z 32.836 -97.029 5 3 mblg 5 163.6   0.67 

2015-08-25T20:18:31.760Z 32.8363 -96.9467 5 2.1 mb_lg   77 0.022 0.47 

2015-03-08T03:12:22.340Z 32.8364 -96.9026 5 2.2 mb_lg   92 0.016 0.61 

2015-01-07T14:34:02.760Z 32.8367 -96.9063 5 2.7 mb_lg   64 0.572 1.19 

2015-08-31T08:15:37.160Z 32.8379 -96.9038 5 1.8 ml   77 0.011 0.77 

2015-01-14T19:02:34.140Z 32.8396 -96.8998 5 1.9 mb_lg   92 0.056 0.5 

2015-01-08T10:08:24.730Z 32.8408 -96.9143 5 2.1 mb_lg   96 0.05 0.52 

2012-10-01T03:41:09.970Z 32.841 -96.93 5 2.3 mblg 11 91.4   1.13 

2015-09-16T21:55:24.080Z 32.8411 -96.9448 5 2.1 ml   76 0.022 0.52 

2015-01-07T06:59:03.320Z 32.8417 -96.9131 5 3.1 mb_lg   38 0.565 0.72 

2012-09-30T04:05:00.930Z 32.842 -96.976 5 3.4 mblg 29 55   0.68 

2015-09-12T09:34:20.660Z 32.8427 -96.9185 5 2.5 mb_lg   59 0.011 0.56 

2014-10-28T07:15:01.840Z 32.8431 -96.9058 5 2.4 mb_lg   77 0.561 0.74 

2014-11-24T13:06:36.030Z 32.846 -96.8955 5 2.4 mb_lg   77 0.569 0.15 

2015-01-07T00:52:09.050Z 32.847 -96.8922 5 3.6 mb_lg   36 0.551 0.52 

2014-11-25T05:47:54.460Z 32.8481 -96.9013 5 2.2 mb_lg   96 0.564 0.55 

2014-11-15T19:19:46.410Z 32.8481 -96.9576 5 2.6 mb_lg   76 0.518 0.53 

2015-01-07T02:12:16.390Z 32.8485 -96.9375 5 2.7 ml   130 0.513 0.2 

2015-01-06T13:37:15.180Z 32.8487 -96.8883 5 2.3 mb_lg   77 0.57 0.33 

2009-05-16T16:58:37.690Z 32.85 -97.095 5 3 mblg 6 100.7   1.18 

2015-06-28T05:40:35.630Z 32.8505 -97.0002 5 2.1 mb_lg   75 0.034 0.52 

2014-12-17T22:19:00.790Z 32.8507 -96.9193 5 2.6 mb_lg   76 0.548 0.41 

2015-05-03T15:11:16.150Z 32.8511 -96.9514 5 3.2 mb_lg   64 0.024 0.56 

2015-01-07T05:02:52.910Z 32.8512 -96.8844 5 1.6 ml   97 0.569 0.16 

2015-01-18T02:00:04.200Z 32.852 -96.9378 5 2.2 ml   64 0.013 0.55 

2015-07-16T00:17:49.460Z 32.8533 -96.9417 5 1.8 ml   65 0.017 0.57 

2015-05-09T16:12:38.390Z 32.854 -96.8903 5 2.7 mb_lg   64 0.067 0.68 

2015-04-02T10:38:06.000Z 32.8543 -96.9392 5 2.7 mb_lg   61 0.015 0.52 

2015-08-25T20:59:47.930Z 32.8552 -96.9412 5 2.2 mb_lg   58 0.027 0.65 

2015-05-03T16:12:04.480Z 32.8561 -96.891 5 2.5 mb_lg   76 0.009 0.7 

2015-01-07T03:54:17.460Z 32.8564 -96.8819 5 1.7 ml   97 0.566 0.5 

2015-03-14T07:31:16.290Z 32.8565 -96.9251 5 2.7 mb_lg   43 0.008 0.63 
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CONTINUATION A1 

2015-10-27T13:01:07.430Z 32.8583 -96.9124 5 2.3 mb_lg   63 0.014 0.61 

2015-01-07T04:05:14.350Z 32.8588 -96.9174 5 2.4 mb_lg   76 0.548 0.56 

2015-11-03T02:37:41.520Z 32.86 -96.9426 5 2.2 mb_lg   59 0.033 0.45 

2015-10-28T01:33:37.110Z 32.8606 -96.95 5 2.2 mb_lg   65 0.018 0.52 

2015-05-04T13:57:59.870Z 32.8613 -96.8716 5 2.7 mb_lg   76 0.026 0.78 

2015-04-03T03:04:49.640Z 32.8614 -96.9087 5 2.5 mb_lg   63 0.017 0.71 

2014-12-10T04:44:48.610Z 32.8621 -96.9338 5 2 ml   75 0.534 0.5 

2015-10-04T05:57:09.220Z 32.8633 -96.9174 5 2.1 ml   67 0.021 0.81 

2014-04-17T19:44:20.040Z 32.8634 -96.9079 5 2.4 mb_lg   76 0.548 0.33 

2015-10-19T23:12:03.180Z 32.8659 -96.9394 5 2.3 mb_lg   58 0.024 0.44 

2015-05-18T18:14:29.920Z 32.8675 -96.9566 5 3.3 mb_lg   65 0.009 0.73 

2015-10-18T00:17:36.710Z 32.8684 -96.8652 5 2.4 mb_lg   63 0.025 0.72 

2008-10-31T05:33:45.620Z 32.871 -96.971 5 2.6 mblg 4 167.6   0.22 

2015-06-27T10:19:02.930Z 32.8723 -96.907 5 2.3 mb_lg   60 0.024 0.82 

2015-06-13T13:34:47.480Z 32.8726 -96.9038 5 2.3 mb_lg   78 0.024 0.93 

2008-11-01T11:54:30.190Z 32.874 -96.968 5 2.7 mblg 4 167.6   0.61 

2015-10-19T22:39:47.980Z 32.8755 -96.9134 5 2.7 mb_lg   57 0.029 0.61 

2015-09-14T21:04:59.040Z 32.8785 -96.901 5 2 ml   86 0.029 0.59 

2015-04-03T08:58:11.070Z 32.8826 -96.8772 5 2.2 mb_lg   169 0.047 0.28 

2015-09-22T10:18:43.020Z 32.8838 -96.9187 5 2.4 mb_lg   49 0.013 0.4 

2015-03-12T14:41:14.790Z 32.8839 -96.9075 5 2 ml   90 0.022 0.37 

2013-11-09T03:34:07.100Z 32.8873 -97.618 5 2.3 mb_lg   58 0.903 1.18 

2013-11-06T17:05:47.700Z 32.8884 -97.6784 5 2.6 mb_lg   105 0.914 0.83 

2013-01-23T04:16:18.860Z 32.894 -97.004 5 3 mblg 12 74.3   0.74 

2013-12-10T15:39:49.450Z 32.8951 -97.5437 5 2.7 mb_lg   99 0.904 0.85 

2013-11-26T14:24:03.850Z 32.908 -97.5587 5 2.7 ml   112 0.918 0.52 

2013-11-19T18:03:37.000Z 32.9086 -97.5903 5 2.8 mb_lg   59 0.921 0.78 

2013-11-29T06:14:09.070Z 32.9093 -97.5205 5 3.1 mb_lg   39 0.917 1.29 

2013-11-20T00:40:34.950Z 32.9116 -97.5509 5 3.6 mb_lg   30 0.921 0.71 

2011-08-01T04:33:26.360Z 32.913 -96.929 5 2.2 mblg 5 147.1   1.4 

2013-11-23T09:43:32.440Z 32.9152 -97.5983 5 2.9 mb_lg   88 0.929 0.63 

2013-11-06T03:32:08.600Z 32.9194 -97.5175 5 2.6 mb_lg   62 0.926 0.58 

2013-11-25T07:43:02.950Z 32.9195 -97.6182 5 3.4 mb_lg   43 0.935 0.63 

2013-11-09T19:54:31.820Z 32.9197 -97.6665 5 3 mb_lg   38 0.942 0.91 

2013-11-21T05:53:57.040Z 32.9232 -97.578 5 2.1 mb_lg   111 0.934 0.46 

2013-12-03T15:44:32.210Z 32.9387 -97.5545 5 2.7 mb_lg   98 0.948 0.63 

2014-01-13T17:40:21.580Z 32.9391 -97.5529 5 3.1 mb_lg   53 0.014 0.61 

2013-11-19T17:57:18.940Z 32.9437 -97.5992 5 2.5 mb_lg   105 0.957 0.71 
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2014-01-28T17:54:44.300Z 32.9453 -97.5339 5 2.5 mb_lg   113 0.016 0.59 

2013-11-26T01:55:21.460Z 32.9479 -97.5353 5 2.8 mb_lg   61 0.956 0.59 

2013-12-17T20:09:04.870Z 32.9543 -97.5546 5 2.1 mb_lg   90 0.027 0.69 

2013-11-08T04:32:56.870Z 32.9556 -97.6719 5 2.8 mb_lg   38 0.978 0.56 

2013-11-13T09:01:33.890Z 32.9574 -97.5029 5 2.6 mb_lg   62 0.964 0.49 

2013-12-09T09:23:14.340Z 32.9576 -98.0594 5 3.7 mb_lg   35 1.09 0.85 

2013-12-22T17:31:54.990Z 32.9619 -97.5552 5 3.3 mb_lg   38 0.028 0.58 

2013-11-28T07:58:35.690Z 32.9735 -98.0894 5 3.7 mb   35 1.116 1.33 

2013-11-11T08:30:54.280Z 32.9923 -97.5436 5 2.8 mb_lg   41 1 0.8 

2015-01-09T17:39:14.500Z 32.8418 -96.8936 5.03 2.4 mb_lg   64 0.057 0.49 

2013-12-15T04:54:16.010Z 32.9379 -97.6196 5.05 2.9 mb_lg   57 0.954 0.9 

2015-04-03T04:28:37.020Z 32.8678 -96.934 5.74 2.3 mb_lg   59 0.021 0.49 

2015-01-06T21:10:31.550Z 32.835 -96.9027 5.93 3.5 mb_lg   38 0.547 0.19 

2014-01-11T20:55:25.250Z 32.9125 -97.4787 6.24 2.2 mb_lg   133 0.054 0.36 

2013-12-23T13:11:34.040Z 32.9284 -97.5789 6.39 3.3 mb_lg   42 0.013 0.44 

2014-10-01T21:32:18.700Z 32.8499 -96.9824 6.56 2.1 mb_lg   93 0.497 0.45 

2015-01-07T15:57:30.110Z 32.8464 -96.9171 7.24 2.7 mb_lg   64 0.533 0.36 

2015-04-02T22:36:21.040Z 32.8588 -96.9356 7.67 3.3 mb_lg   56 0.015 0.49 

2015-02-27T12:18:21.710Z 32.8336 -96.9098 7.93 3.1 mb_lg   47 0.009 0.55 

2014-11-23T21:40:46.520Z 32.8449 -96.9343 8.01 2.5 mb_lg   56 0.537 0.5 

2014-12-19T16:38:30.010Z 32.8245 -96.9317 8.13 2.4 mb_lg   78 0.545 1.26 

2015-03-12T01:55:02.270Z 32.8775 -96.9129 8.17 2.4 mb_lg   56 0.02 0.22 

2015-01-07T02:11:17.810Z 32.8085 -96.8962 8.24 2.9 mb_lg   65 0.554 0.55 

2015-01-20T20:50:02.540Z 32.8526 -96.9265 8.32 2.5 mb_lg   56 0.005 0.43 

2015-10-29T22:24:39.420Z 32.8439 -96.9121 8.48 2.5 mb_lg   77 0.014 0.4 

2009-05-16T16:24:06.570Z 32.795 -97.016 8.7 3.3 mblg 19 66.5   0.84 

2015-01-23T15:16:01.500Z 32.8904 -96.8967 8.74 2.2 mb_lg   66 0.03 0.43 

2015-01-20T19:37:04.150Z 32.8615 -96.9093 8.77 2.6 mb_lg   63 0.031 0.44 

2015-01-20T20:25:49.390Z 32.8221 -96.9055 9.04 3 mb_lg   65 0.015 06 

2015-08-12T11:13:28.340Z 32.8465 -96.9122 9.78 2.7 mb_lg   64 0.008 0.3 

2015-01-20T14:04:03.170Z 32.8492 -96.9152 9.83 2.3 mb_lg   64 0.006 0.17 

2015-01-20T20:43:17.470Z 32.8536 -96.9029 10.4 2.4 mb_lg   76 0.027 0.16 

2015-07-18T15:30:09.260Z 32.8484 -96.9172 10.69 2.6 mb_lg   59 0.004 0.15 

2015-10-01T21:28:25.800Z 32.8343 -96.8929 12.14 2.7 mb_lg   78 0.015 0.59 
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Appendix B 

Boring Log Information for Validation 
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Appendix C 

Interactive Three-Dimensional Models of Liquefaction Potential 



C1. Scenario I: amax - 0.3g; M- 4.5, 5.5; Flood Level- El+649 (Click on the figure to activate the object)

267



C2. Scenario I: amax - 0.3g; M- 4.5, 5.5; Flood Level- El+649 (Click on the figure to activate the object)
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C3. Scenario II: amax - 0.4g; M- 4.5; Flood Level- El+649 (Click on the figure to activate the object)
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C4. Scenario II: amax - 0.4g; M- 5.5; Flood Level- El+649 (Click on the figure to activate the object)
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C5. Scenario II: amax - 0.4g; M- 6.5; Flood Level- El+649 (Click on the figure to activate the object)
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C6. Scenario III: amax - 0.5g; M- 4.5; Flood Level- El+649 (Click on the figure to activate the object)
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C7. Scenario III: amax - 0.5g; M- 5.5; Flood Level- El+649 (Click on the figure to activate the object)
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C8. Scenario III: amax - 0.5g; M- 6.5; Flood Level- El+649 (Click on the figure to activate the object)
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C9. Scenario IV: amax - 0.3g; M- 4.5, Boulanger & Idriss (2014); Flood Level- El+665 
(Click on the figure to activate the object)
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C10. Scenario IV: amax - 0.3g; M- 5.5, Robertson (2009); Flood Level- El+665 
(Click on the figure to activate the object)
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C11. Scenario IV: amax - 0.3g; M- 5.5, Boulanger & Idriss (2014); Flood Level- El+665 
(Click on the figure to activate the object)
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C12. Scenario IV: amax - 0.3g; M- 5.5, Kayen et al. (2013); Flood Level- El+665 
(Click on the figure to activate the object)
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C13. Scenario IV: amax - 0.3g; M- 6.5, Robertson (2009); Flood Level- El+665 
(Click on the figure to activate the object)
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C14. Scenario IV: amax - 0.3g; M- 6.5, Boulanger & Idriss (2014); Flood Level- El+665 
(Click on the figure to activate the object)
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C15. Scenario IV: amax - 0.3g; M- 6.5, Kayen et al. (2013); Flood Level- El+665 
(Click on the figure to activate the object)
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