
ELECTRO-PNEUMATIC SHIFTING AND SERVO CONTROL

OF A CLUTCH FOR A FSAE RACECAR

by

RAHUL JANARDHAN CHALMELA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2017

ii

Copyright © by Rahul Janardhan Chalmela 2017

All Rights Reserved

iii

Acknowledgements

Firstly, I would like to express my special thanks to my supervising professor Dr.

Robert L. Woods who has guided me throughout this project, he has continuously

supported and encouraged me by providing resources, practical solutions and

unmatched guidance during his supervision of this study.

Secondly, I would like to thank UTA Racing FSAE team and the teammates I

have for constantly supporting and believing in my work, as this was the first time the

team was moving to an entirely new system after almost 30 years. I would also like to

thank all the drivers for their valuable feedback on the new system installed. The team

has also been generous to allow me to convert an older car so that the setup on the new

car becomes easier.

Finally, I would like to thank my family and friends who have supported me

throughout this especially Abhiram Sakleshpur who has helped me start this study as a

summer project and by helping me understand programming. I would also like to thank

Michael Baldwin from SMC USA to provide me with the cylinders I needed to develop this

system.

April 28, 2017

iv

Abstract

ELECTRO-PNEUMATIC SHIFTING AND SERVO CONTROL

OF A CLUTCH FOR A FSAE RACECAR

Rahul Janardhan Chalmela, MS

The University of Texas at Arlington, 2017

Supervising Professor: Robert L. Woods

FSAE is an international student design competition held by SAE International

where students design, build and compete in static events like cost, design and dynamic

events ranging from acceleration, autocross to endurance. UTA Racing has been a part

of FSAE since 1982 and have been using a mechanical design for their shifter and clutch

since then. This year for the 2017 design competition an electro-pneumatic system is

developed to replace the mechanical system.

This system consists of pneumatic cylinders controlling a sequential shifter and a

servo clutch. The cylinders are controlled using direction control valves, these receive

their signals from a microcontroller which has been programmed accordingly. The major

part of this thesis defines the development of a feedback controlled servo clutch for the

racecar. This sub system is unique by itself as this is the first time UTA Racing would be

using an electro-pneumatic clutch. The shifter reduces the shift times from 150

milliseconds to 75 milliseconds. The report also includes selection of the pneumatic tank

to last an endurance event which requires approximately 1000 gear shifts.

The Electro-pneumatic system not only reduces effort seen by the driver while

shifting but also substantially improves the lap-times thereby increasing performance

during the dynamic events.

v

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Tables .. ix

Chapter 1 Introduction... 1

1.1 UTA Racing shifter design from 1985-2016 ... 1

1.2 Idea behind the electro-pneumatic system ... 4

Chapter 2 Design Approach .. 5

Chapter 3 Initial Test Bench Setup ... 6

3.1 Hardware test bench .. 6

3.1.1 CNG injectors .. 8

3.2 Electronic and Software test bench .. 9

3.4 Test bench readings ... 10

3.4.1 Shifter and Clutch Program for Test Bench Reading 10

3.4.2 Changes in the Program (operational logic) .. 13

Chapter 4 .. 16

Chapter 5 Setup on FSAE Car with Extra Additions ... 16

4.1 FSAE Racecar Setup ... 16

4.2 Change of microcontroller .. 18

4.3 Gear Counter .. 19

Appendix A Entire Code For the System .. 21

Appendix B Original Gear Counter Code .. 31

Appendix C Measurements and Spreadsheets .. 35

Shifter force and cylinder dimension calculator .. 39

Compressed air tank sizing .. 41

vi

Injector pulse calculation .. 43

Appendix D Programming the Controller .. 44

Programming the microcontroller ... 46

 Initial setup .. 46

Void Loop ... 49

Serial Print .. 51

Appendix E Test Code for Shifter and Clutch ... 52

Shifter Program .. 53

Clutch Program ... 55

References .. 58

vii

List of Illustrations

Figure 1 Butterfly Shifter Normal Position ... 2

Figure 2 Butterfly Shifter Actuated Position .. 3

Figure 3 Bench Setup ... 6

Figure 4 Injector manifold manufactured part ... 8

Figure 5 Injector manifold CAD render ... 8

Figure 6 Microcontroller on the test bench.. 9

Figure 7 Graph for 122.5 Hz ... 11

Figure 8 Graph for 30.64 Hz ... 11

Figure 9 Graph for 245.1 Hz ... 12

Figure 10 Graph for 490 Hz .. 12

Figure 11 PWM duty cycle logic for clutch for positive error ... 13

Figure 12 Clutch response fast release .. 15

Figure 13 Clutch response slow release ... 15

Figure 14 Clutch cylinder setup .. 16

Figure 15 Shift cylinder setup ... 17

Figure 16 New board with improved wiring ... 18

Figure 17 Gear counter showing gear count as 3 ... 19

Figure 18 Shift cylinder with reed switch installed .. 19

Figure 19 Clutch force and cylinder dimension calculator .. 37

Figure 20 Shifter force and cylinder dimension calculator .. 39

Figure 21 Compressed air tank sizing .. 41

Figure 22 Injector pulse calculation .. 43

Figure 23 Arduino IDE initial setup ... 46

Figure 24 Arduino IDE void setup ... 47

file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261443
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261444
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261445
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261446
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261447
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261448
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261449
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261450
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261451
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261452
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261453
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261454
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261455
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261456
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261457
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261458
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261459
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261460
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261461
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261462
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261463
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261464
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261465
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261466

viii

Figure 25 Arduino IDE void loop ... 49

Figure 26 Arduino IDE serial print ... 51

file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261467
file:///C:/Users/coolm_000/Desktop/Rahul%20Chalmela%20Report.docx%23_Toc483261468

ix

List of Tables

Table 1 Force and Torque values for downshifts .. 36

Table 2 Force and Torque values for upshifts .. 36

Table 3 Torque required by the clutch .. 36

Table 4 Microcontroller wiring for test bench .. 45

1

Chapter 1

Introduction

The following chapter describes about the mechanical design and a basic idea of

the implementation of the electro-pneumatic design.

1.1 UTA Racing shifter design from 1985-2016

The Formula SAE racecars built by UTA have been very successful in the past

due to a multitude of reasons. The previous system of manual shifting is also one of

them. It consists of a mechanism termed as a Butterfly Shifter, named by the team. It

includes a clutch controlled using a cable and a shifter controlled using a rod, both

hinged at the same point on a lever mechanism. The way the mechanism works is that it

has two levers that pivot about their axis of rotation which then actuate the clutch cable,

also the entire assembly has its own pivot point which moves a set of links that then

move the shifter lever. The advantage of this system over the basic systems used many

teams in FSAE is that they employ a clutch pedal with a single lever for the shifter, this is

considered by UTA Racing as a major flaw in racecar driving as introducing a third pedal

makes driving more difficult.

2

The above image shows levers A and B, which pivot about point A’ and B’, this

causes the clutch cable to be actuated as the brass components move away from each

other. Point D is the point of pivot for the entire assembly and when lever a is pushed

Lever A

Lever B

Pivot A’

Pivot B’

Pivot D

Clutch cable link

Shifter link attachment

Figure 1 Butterfly Shifter Normal Position

3

towards lever B they meet and then the entire assembly ratchets about point D, this is a

downshift scenario. For upshifting lever A is pulled away from lever B and the mechanism

only pivots about point D allowing an upshift.

The above image shows the actual actuation of the clutch system and not the

shifting system. For shifting this entire assembly ratchets about point D.

Figure 2 Butterfly Shifter Actuated Position

4

1.2 Idea behind the electro-pneumatic system

The mechanical system can be improved ergonomically, the fundamental flaw

being the requirement that the driver remove his/her hands from the steering wheel while

shifting. This is something that adversely affects performance of the racecar, especially in

very unpredictable scenarios where shifts might be required in the middle of turns.

Another reason being that the endurance event lasts for 13.66 miles overall which would

require inputs for the driver for shifting and clutch actuation over a long period and it

becomes stressful.

Electronic shifting improves the ergonomic comfort of the driver, as well as the

performance of the racecar. The system envisaged for this purpose consists of a

pneumatic shifter made up of a cylinder actuating a shift lever. The cylinder is fed through

a solenoid valve to which suitable, short pulses are sent. Due to the unique and

competitive driving technique that UTA FSAE drivers employ, a servo clutch is a

necessity. A servo clutch also definitely makes launches much smoother than otherwise.

It was decided that the clutch should be actuated by another pneumatic cylinder. The

idea of using an electronic servo was neglected as it increases cost and is very heavy.

The other types of clutch mechanism teams use employ a hand clutch [1] or a

foot clutch [2], but that defeats the ergonomic approach. Some teams also use a

pneumatic operated clutch, but it works in an on-off fashion which is not good for the

clutch plates or the drivetrain system [3].

5

Chapter 2

Design Approach

The initial steps were to calculate the forces and the torques required for both the

actuation of the clutch and the shifter. This was done by attaching the hook of a spring

balance to the arm of the clutch/shifter lever on the engine and pulling it. The forces

required for actuation were recorded, and on multiplication with the length of the lever

arm, the torque required to actuate was determined. The maximum force value for the

shifter was found to be around 30 lb with a corresponding torque value of around 4.2 lb-ft

and an arm length of 1.7 inches. The maximum torque value for the clutch was measured

as 7 lb-ft, slip torque was measured as 5.7 lb-ft and the start torque measured as 5 lb-ft.

These values are approximate, and the true value is mentioned in the Appendix C. These

same values are used to generate spreadsheets that help in determining the dimensions

required for the sizing the cylinders which use standard mathematical equations and the

procedure is also mentioned in Appendix C. After the cylinders were sized another

spreadsheet was created to determine the size of the pneumatic that that is going to be

used. This sheet also has standard mathematical equations and the combined gas law

equation.

A Pulse width modulation [3][6] spreadsheet [Appendix C] was created to

determine the on time for the solenoid. This was useful as it helped convert percentage

duty cycle to an 8-bit value which the Arduino code understands.

6

Chapter 3

Initial Test Bench Setup

The following chapter describes the hardware setup that was initially available

and was modified to work with the new microcontroller. It includes the basic test bench

which was modified to achieve better readings, implementation of injectors, the electronic

and software testing, the setup of the programmer to control the microcontroller which

include the approach to program it and them test bench programing with their outputs.

3.1 Hardware test bench

The bench setup includes a basic workbench board, levers, links and springs to

imitate the forces of the shifter and the clutch. It also had the cylinders, lines, valves and

the microcontroller.

The above image shows the bench setup. The primary reason to work on a test

bench was to achieve maximum programming capability, and to tune a system before it is

Figure 3 Bench Setup

7

deployed. This also included reliability testing and comparing various programs. This

setup helped understand programming the microcontroller and how it could be used in

the most efficient way. The setup was not an exact replica of the forces observed on the

actual engine, but were approximate to the behavior and loading cycle.

The hardware includes a double acting cylinder for the shifter, a single acting

spring expanded cylinder for the clutch (initial setup had a double acting cylinder being

used as a single acting, the spring was added to increase the static stiffness of the

system as the flow of pressurized air is controlled only in one direction.), 5 port 3 position

electro-pneumatic directional control valve for the shifter, 3 port 2 position directional

control valve for the clutch (later replaced by a custom housed CNG injector assembly)

and ¼” pneumatic lines (later replaced by ⅛” pneumatic lines).

A variable linear potentiometer was attached to the clutch cylinder. This

potentiometer gives a feedback signal to the microcontroller which helps in determining

the position of the actuator link/ position of the clutch.

8

3.1.1 CNG injectors

The use of CNG injectors is the key to the success of the servo clutch. This is

because the valves conventional valves that are used to operate pneumatic cylinders

cannot open and close faster than 2 milliseconds, whereas an injector can operate much

faster and open and close faster than one millisecond. CNG injectors were introduced

because the rate at which injectors operate is much faster. As the CNG injector is placed

in a custom housing both the injectors can be operated simultaneously unlike the spool

valve which was used before. This allows much smoother operation to do minor

corrections while the actuator moves across the length to be travelled. Furthermore, while

testing the response of the directional control valve it was observed that the range of duty

cycles that the valve operates is very less as compared to that of the injectors.

Figure 5 Injector manifold CAD render

Figure 4 Injector manifold manufactured part

9

3.2 Electronic and Software test bench

The above image shows how the initial test started with the Arduino Uno R3

microcontroller. Since programming was a new thing this controller was selected as it is

very easy to understand and use. The circuit board was made on a breadboard to easily

connect and disconnect. It consists of MOSFETs to connect the 5-volt system to the 12-

volt solenoid actuators. N-channel MOSFETs were used over P-Channel due to simplicity

and ease to use plus it has a wider range of options. And MOSFETs were selected over

relays due to the rate at with it can switch the state. Input and feedback potentiometers

are also used across the analog terminals of the microcontroller to compare the input and

feedback signals. These signals are in the form of a 10-bit value. The basics of writing

the code is explained in Appendix D

Figure 6 Microcontroller on the test bench

10

3.4 Test bench readings

As the programming of the controller was figured out along with the setup of the

mechanical and electronic hardware, various programs were written to understand the

response of the system both for the shifter and the clutch. Following are the outcomes of

the programs that were used. The program code is mentioned in Appendix E. The Pulse

width modulation frequency was programmed using the Arduino timers [5].

3.4.1 Shifter and Clutch Program for Test Bench Reading

From the code mentioned in Appendix E, it is visible that the carrier frequency

defined is 245.10 Hz. The duty cycle defined is the “pwm” variable and the value is set to

76.5 out of 255 in terms of 8-bit code and is equal 30% duty cycle. Similarly, the duty

cycle “pwm” variable value is changed in terms of 8-bit values to different percentage

duty cycle from 0-100 in steps of 10. This is done for various carrier frequency setups like

30.64 Hz, 112.55 Hz and 490.20 Hz. Following are the graphs that were generated using

this code.

11

Figure 7 Graph for 122.5 Hz

Figure 8 Graph for 30.64 Hz

12

From the above graphs, it is clearly visible that if the system is run at 30.64 Hz

the actuator stops for a while before it starts moving ahead even at duty cycles as high as

70%. From the remaining three frequencies, it is observed that at 490.20 Hz the system

cannot run below 70% duty cycle. Comparing 122.5 Hz and 245.1 Hz, for 122.5 Hz 70%

Figure 10 Graph for 490 Hz

Figure 9 Graph for 245.1 Hz

13

to 90% duty cycle the output is identical and hence does not provide much difference in

operation at those duty cycles. Hence 245.1 Hz was selected as a carrier frequency.

3.4.2 Changes in the Program (operational logic)

The initial clutch program was based on the error between the input and the

feedback which was tagged as error. This error value was directly proportional to the duty

cycle. The response was smooth, but had issues of deceleration meaning that when the

cylinder reached the end of cycle, the value of error reduced causing the duty cycle to

reduce and this caused the cylinder to move slowly towards the end.

To resolve this issue, the following logic is used. The logic for negative error was the

same as positive error except that the absolute value of the error is used

The X axis in the graph shows the error value from 0-100% value and the Y axis

shows the duty cycle in value from 0-100% value. As seen when the error value is less

than 30% the error vs duty cycle follows a 2nd order polynomial curve to calculate duty

cycle using error and it ranges from 30-40% duty cycle. This allows smooth movement of

the clutch when minor changes are made to the input. The duty cycle shoots to 100% if

Figure 11 PWM duty cycle logic for clutch for positive error

14

the is more than 30%. This type of logic removed the deceleration issue. One more part

of code was added to the logic which states.

“else if((error>=db)&&(error<=200)&&(pval>=850))

 analogWrite(mos1,240);

”

The above code states that if the error is more than 20% and the input is

actuated more than 83% a 94% duty cycle is given to the system to disengage the clutch.

else if((error<=-db)&&(pval<=100)&&(error<=-200))

 analogWrite(mos2,240);

”

The above code states that if the input is less than 10% and the error is less than

20% a 94% duty cycle is given to the system to engage the clutch. A combination of the

above codes helped remove the deceleration issue caused before.

15

The following graphs were generated with the final program. These graphs plot input,

output and error with respect to time in milliseconds.

Figure 12 Clutch response fast release

Figure 13 Clutch response slow release

16

Chapter 4

Chapter 5 Setup on FSAE Car with Extra Additions

The following chapter shows images of the setup on the car and how it was

mounted. After seeing success in the setup on the car, the program was further

developed to show a gear counter. The gear counter serves two purposes, firstly it helps

understanding the gear the car is in as it is a sequential shifter, and secondly the program

can be further developed to include automatic shifting.

4.1 FSAE Racecar Setup

The above image shows the installation of the clutch cylinder on the engine with

its feedback potentiometer and adjustable rod end bearing. The feedback potentiometer

had a longer travel than the cylinder stroke, this was done to prevent damage to the

potentiometer. The potentiometer travel is remapped on the controller.

Figure 14 Clutch cylinder setup

17

The above image shows the mounting of the shifter cylinder. A housing was made from

billet aluminum to locate the cylinder. The arm length of the shift lever was made to

match that of the spreadsheet, so that it can achieve the desired travel.

Figure 15 Shift cylinder setup

18

4.2 Change of microcontroller

A new board was implemented after seeing the success of the arduino uno r3,

the new board is an arduino mega 2560. Programming the board is done using the same

language and software hence it was selected. The advantages of this board over the old

board is that it has more analog and digital inputs and outputs. Apart from additional input

outputs, the controller also has more ram and more storage space for the program.

Another reason to switch the board was that the gear counter that was to be implemented

requires more inputs and outputs.

Figure 16 New board with improved wiring

19

4.3 Gear Counter

The gear counter that was implemented has a 7-segment display as an output.

The input to the controller comes from a magnetic reed switch which is driven by the

pneumatic cylinder. The input state changes only when the reed switch receives a pick

up from the magnet in the pneumatic cylinder when it reaches the end. This helps

achieving a signal if and only if the cylinder reaches the end position.

Figure 17 Gear counter showing gear count as 3

Figure 18 Shift cylinder with reed switch installed

20

The code for the gear counter is mentioned in the appendix. The code begins

with defining a byte function to switch on and off the LED’s on the display. This reduces

the length of the entire program. The gear counter resets to 0 denoting neutral each time

it receives a signal from the neutral detect on the engine. The advantage of this approach

is that it the system would always do correct counting whenever it crosses neutral. The

code for the gear counter was modified from an existing code found online and is

mentioned in appendix B. It was a basic push button counter and was modified per the

working of the sequential shifter on the racecar.

21

Appendix A

Entire Code For the System

22

const int upsw=7;//upshift switch pin

const int downsw=8;//downshift switch pin

const int upsol=5;//the solenoid switch

const int downsol=6;//the solenoid switch

const int fbpot=A1;//feedback potentiometer pin

const int ppot=A0;//paddle potentiometer pin

const int mos1=9;//pin sending signal to MOSFET controlling cylinder input injector

const int mos2=10;//pin sending signal to MOSFET controlling cylinder exhaust injector

const int ns=2;//Neutral Detect

float pwmval=0;//pwm value for injectors

float error=0;//error between the paddle and feedback potentiometers

int fbval=0;//variable to store the feedback potentiometer value

int pval=0;//variable to store paddle potentiometer value

long unsigned int t1=0;

long unsigned int t2=0;

int st=35;//shift time

int ntrl=12;

int db=5;//deadband value (10 out of 950 units)

const int upPin = 32; // pushbutton attached to pin 32

const int downPin = 34; // pushbutton attached to pin 34

float currUpState = 1; // initialise currUpState as HIGH

float currDownState = 1; // initialise currDownState as HIGH

23

float prevUpState = 0;

float prevDownState = 0;

byte pins [] = {22, 23, 24, 25, 26, 27, 28, 29 }; // pin 9 allocated to DP but not used

(first element of binary array in char tenCode)

int counter = 1; // initialise counter as zero

byte timer = 10; // delay timer interval

int i[7] = {0, 1, 2, 3, 4, 5, 6};

char tenCode[] = {B00000110, B01011111, B00111011, B00101111, B11100110,

B01101101, B01111101};

void setup() {

 // Code for setting pwm frequency

 TCCR0B = TCCR0B & B11111000 | B00000011; // set timer 0 divisor to 64 for

PWM frequency of 976.56 Hz (The DEFAULT)

 TCCR1B = TCCR1B & B11111000 | B00000011; // set timer 1 divisor to 64 for

PWM frequency of 490.20 Hz (The DEFAULT)

 TCCR2B = TCCR2B & B11111000 | B00000101; // set timer 2 divisor to 128 for

PWM frequency of 245.10 Hz

//TCCR2B = TCCR2B & B11111000 | B00000110; // set timer 2 divisor to 256 for

PWM frequency of 122.55 Hz

//TCCR2B = TCCR2B & B11111000 | B00000111; // set timer 2 divisor to 1024 for

PWM frequency of 30.64 Hz

TCCR3B = TCCR3B & B11111000 | B00000011; // set timer 3 divisor to 64 for

PWM frequency of 490.20 Hz (The DEFAULT)

TCCR4B = TCCR4B & B11111000 | B00000011; // set timer 4 divisor to 64 for

PWM frequency of 490.20 Hz (The DEFAULT)

24

for(byte i = 0; i < 7; i++) // set digital pins as OUTPUTS

pinMode(pins[i], OUTPUT);

pinMode(upsw,INPUT);

pinMode(downsw,INPUT);

pinMode(upsol,OUTPUT);

pinMode(downsol,OUTPUT);

pinMode(fbpot,INPUT);

pinMode(ppot,INPUT);

pinMode(mos1,OUTPUT);

pinMode(mos2,OUTPUT);

pinMode(ns,INPUT_PULLUP);

Serial.begin(115200);

}

void loop()

{

pval=analogRead(ppot);

pval=map(pval,0,1023,0,1023);

fbval=analogRead(fbpot); //Reading the value of the feedback potentiometer

fbval=map(fbval,0,1023,0,1023);//"K" proportionality on feedback, for easier comparison

error=pval-fbval;

pwmval=(0.000018*pow(error,2))+75;//Formula to find the desired PWM value from

error

25

//The following conditions control cylinder retract motion.

if((error>=db)&&(error<300)) //polynomial proportional PWM value is determined

according to the formula as long as the error is less than 300 (out of 950 units).

 analogWrite(mos1,pwmval);

else if((error>=db)&&(error>=300)&&(pval>0)) //If error is more than 30% override the

duty cycle to 100% so as to achieve rapid movement.

 analogWrite(mos1,255);

else if((error>=db)&&(error<=200)&&(pval>=850)) //If error is less than 20% and input

is more than 85% keep duty cycle 95% so as to prevent deceleration when error reduces

 analogWrite(mos1,240);

//The following conditions control cylinder expansion i.e clutch engagement

if((error<=-db)&&(error>-300)) //polynomial proportional PWM value is determined

according to the formula as long as the error is less than 300 (out of 950 units)

 analogWrite(mos2,pwmval);

else if((error<=-db)&&(error<=-300)&&(pval=0)) //If error is more than 30% override the

duty cycle to 100% so as to achieve rapid movement.

 analogWrite(mos2,255);

else if((error<=-db)&&(pval<=100)&&(error<=-200)) //If error is less than 20% and input

is more than 85% keep duty cycle 95% so as to prevent deceleration when error reduces

 analogWrite(mos2,240);

// Following Command states that if error is within deadband not to control the solenoid

else if((error>-db)&&(error<db))

 {

 analogWrite(mos2,0);

26

 analogWrite(mos1,0);

 }

 if(abs(error)>=db)

 dataret();

//The next set of conditions is to control the shifter

if((digitalRead(upsw)==HIGH)&&(digitalRead(downsw)==LOW)) // case to define

upshift

{

 if(t1==0)

 t1=millis();

 else

 t1=t1;

 if((millis()-t1)<st) //check if timer is less than shift time

 {

 digitalWrite(upsol,HIGH); //enable upshift

 // digitalWrite(downsol,LOW);

 }

 else if(((millis()-t1)>=st)&&(digitalRead(downsw==LOW))) //check if timer has

crossed shift time

 {

 digitalWrite(upsol,LOW); //stop shift

 // digitalWrite(downsol,LOW);

 }

27

}

if((digitalRead(downsw)==HIGH)&&(digitalRead(upsw)==LOW)) //case to define

downshift

 { if(t1==0)

 t1=millis();

 else

 t1=t1;

 if((millis()-t1)<st) //check if timer is less than shift time

 {

 digitalWrite(downsol,HIGH); //enable downshift

 // digitalWrite(upsol,LOW);

 }

 else if(((millis()-t1)>=st)&&(digitalRead((upsw)==LOW))) //check if timer has crossed

shift time

 {

 digitalWrite(downsol,LOW); //stop downshift

 //digitalWrite(upsol,LOW);

 }

 }

 if((digitalRead(downsw)==HIGH)&&(digitalRead(upsw)==HIGH)&&((millis()-t1)>=st))

//case to shift to neutral

 {

 if(t2==0)

 t2=millis();

 else

 t2=t2;

28

 if((millis()-t2)<ntrl) //check if timer is less than neutral time

 digitalWrite(upsol,HIGH); //initiate upshift

 else if(((millis()-t2)>=ntrl)||(ns==LOW)) //check if timer is greather than neutral time

or if neutral is detected from engine

 digitalWrite(upsol,LOW); //stop upshift

 }

 else if((digitalRead(upsw)==LOW)&&(digitalRead(downsw)==LOW)) // case for no

shift

 {

 digitalWrite(downsol,LOW); //keep both solenoids off

 digitalWrite(upsol,LOW);

 t1=0;

 t2=0;

 }

 currUpState = digitalRead(upPin);

 if (prevUpState != currUpState) // has the state changed from

 { // HIGH to LOW or vice versa

 prevUpState = currUpState;

 if (currUpState == HIGH) // If the button was pressed

 counter++; // increment the counter by one

 }

 if(counter > 6)

 counter--;

 displayEleven(i[counter]);

29

 currDownState = digitalRead(downPin);

 if (prevDownState != currDownState) // has the state changed from

 { // HIGH to LOW or vice versa

 prevDownState = currDownState;

 if (currDownState == HIGH) // If the button was pressed

 counter--; // decrement the counter by one

 }

 if(counter < 0)

 counter++;

 displayEleven(i[counter]);

 }

 void displayEleven(byte num)

 {

 byte mask = 1;

 for(byte i = 0; i < 7; i++)

 {

 if((mask & tenCode[num]) == 0)

 digitalWrite(pins[i], LOW);

 else digitalWrite(pins[i], HIGH);

 mask = mask << 1;

 }

 }

void dataret()//function to print (return) all required data

{ Serial.print(millis());

 Serial.print("\t");

30

 Serial.print(map(analogRead(ppot),0,1023,0,100)); //print value of input paddle

from 0-100%

 Serial.print("\t");

 Serial.print(map(analogRead(fbpot),224,738,0,100)); //print value of feedback from

0-100%

 Serial.print("\t");

 Serial.print(map(error,0,1023,0,100)); //print value of error from 0-100%

 Serial.print("\t");

 Serial.print(pwmval); //print duty cycle being calculated

 Serial.print("\t");

 Serial.print(analogRead(mos1)); //print duty cycle for mosfet 1

 Serial.print("\t");

 Serial.print(analogRead(mos2)); //print duty cycle for mosfet 2

 Serial.println();

}

31

Appendix B

Original Gear Counter Code

32

The following code is used from an online source and the link is shared in the references [4].

This code is used to develop the shifter program and it is written in the following way.

// Thanks to Grumpy Mike http://www.thebox.myzen.co.uk/Tutorial/Arrays.html

 // LED Segment allocation within byte = {DP ABCDEFG }

 byte upPin = 12; // pushbutton attached to pin 12

 byte downPin = 13; // pushbutton attached to pin 13

 byte currUpState = 1; // initialise currUpState as HIGH

 byte currDownState = 1; // initialise currDownState as HIGH

 byte prevUpState = 0;

 byte prevDownState = 0;

 byte pins [] = {2, 3, 4, 5, 6, 7, 8, 9 }; // pin 9 allocated to DP but not used (first element of

binary array in char tenCode)

 int counter = 0; // initialise counter as zero

 byte timer = 1000; // delay timer interval

 int i[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

 char tenCode[] = {B01111110, B00110000, B01101101, B01111001, B00110011, B01011011,

B01011111, B01110000, B01111111, B01111011 };

 void setup()

 {

 for(byte i = 0; i < 8; i++) // set digital pins as OUTPUTS

 pinMode(pins[i], OUTPUT);

 }

 void loop()

 {

http://www.thebox.myzen.co.uk/Tutorial/Arrays.html
http://www.thebox.myzen.co.uk/Tutorial/Arrays.html

33

 currUpState = digitalRead(upPin);

 if (prevUpState != currUpState) // has the state changed from

 { // HIGH to LOW or vice versa

 prevUpState = currUpState;

 if (currUpState == HIGH) // If the button was pressed

 counter++; // increment the counter by one

 }

 if(counter > 8)

 counter--;

 displayEleven(i[counter]);

 currDownState = digitalRead(downPin);

 if (prevDownState != currDownState) // has the state changed from

 { // HIGH to LOW or vice versa

 prevDownState = currDownState;

 if (currDownState == HIGH) // If the button was pressed

 counter--; // decrement the counter by one

 }

 if(counter < 0)

 counter++;

 displayEleven(i[counter]);

 }

 void displayEleven(byte num)

 {

 byte mask = 1;

34

 for(byte i = 0; i < 8; i++)

 {

 if((mask & tenCode[num]) == 0)

 digitalWrite(pins[i], LOW);

 else digitalWrite(pins[i], HIGH);

 mask = mask << 1;

 }

 }

35

Appendix C

Measurements and Spreadsheets

36

 The following appendix is based on chapter 2 Design Approach. The forces and torque

measured for the system are mentioned in the following tables.

Table 1 Force and Torque values for downshifts

Gear change Force(lb) Torque(lb-ft)

6th-5th 30 4.13

5th-4th 28 3.85

4th-3rd 30 4.13

3rd-2nd 28 3.85

2nd-1st 30 4.13

Table 2 Force and Torque values for upshifts

Gear Change Force(lb) Torque(lb-ft)

1st-2nd 28 3.85

2nd-3rd 28 3.85

3rd-4th 28 3.85

4th-5th 28 3.85

5th-6th 28 3.85

The torque required for clutch actuation were measured to be.

Table 3 Torque required by the clutch

Lever Position Torque (lb ft)

Start Torque 4.83

Slip Torque 5.66

Maximum Torque 7.00

37

After attaining the above values a mathematical excel workbook was created. This

workbook has several spreadsheets like Clutch force and cylinder dimension calculator, Shifter

force and cylinder dimension calculator, compressed air tank sizing and Injector pulse

calculator.

Clutch force and cylinder dimension calculator

The above image shows a screenshot of the clutch force and cylinder dimension

calculator spreadsheet. The primary inputs are the measured clutch torque, and the bell crank

radius along with a defined factor of safety. After this the desired system pressure and

approximate rod end diameter values are also defined.

The diameter determination goes on as following: -

1. Clutch force= (Clutch torque/lever length)

This helps determining the actuation force as the torque value is fixed.

Figure 19 Clutch force and cylinder dimension calculator

38

2. Rod end area= ((pi/4)*(Rod end dia)^2)

This area is determined as a compensation value as the cylinder is a single acting

spring extended one.

3. Required area= (factor of safety*Clutch force)/(Pressure)

This equation determines the minimum area required to actuate the cylinder.

4. Piston area= (Required area + Rod end area)

Since the cylinder used is a single acting spring extended, the rod end side would

experience forces, but while buying a cylinder the piston diameter is considered, so it

compensates for the area loss.

5. Piston dia= square root ((piston are*4)/pi)

This is the last equation which helps determine diameter required to actuate the

cylinder.

Similarly, the stroke length was also calculated. This is included in the same sheet as it

keeps it compact. The two set values here are the angle of rotation and the arm length.

The stroke length calculation goes on as follows: -

 Clutch full travel length= (Clutch travel angle (radians)*Clutch arm length)

Hence all the values in green and gray are either the ones that are measured or are

defined, and the values in yellow are the calculated values.

39

Shifter force and cylinder dimension calculator

The above image shows a screenshot of the shifter force and cylinder dimension

calculator. The tables on the left are measured values of force required to initiate shifts while

upshifting and downshifting. Neutral could not be calculated as it was a small force which could

not be measured properly without any trouble, it was decided to send a smaller pulse to shift to

neutral. Using the table on the left the maximum of the two torques was selected along with a

desired arm length. This helped calculating force required. Along with these values the system

pressure and factor of safety was used as an input.

The diameter determination goes on as following: -

1. Shift force= (Shift torque/arm length)

This helps determining the actuation force as the torque value is fixed.

2. Rod end area=(pi/4)*(Rod end dia)^2)

This area is determined as a compensation value as the cylinder is acting in both

directions.

3. Required area=(factor of safety*Shift Force)/(Pressure)

This equation determines the minimum area required to actuate the cylinder.

4. Piston area=(Required area + Rod end area)

Figure 20 Shifter force and cylinder dimension calculator

40

Since the cylinder is actuated in either direction the smaller area needs to be the bare

minimum as the rod end side would experience forces, but while buying a cylinder the piston

diameter is considered, so it compensates for the area loss.

5. Piston dia= square root ((piston are*4)/pi)

This is the last equation which helps determine diameter required to actuate the

cylinder.

Similarly, the stroke length was also calculated. This is included in the same sheet as it

keeps it compact. The two set values here are the angle of rotation and the arm length.

The stroke length calculation goes on as follows: -

 Shifter travel length= (shifter travel angle (radians)*shifter arm length) *2

The above value is multiplied by two because the shift arm rotates in either direction,

depending on the type of shift.

41

Compressed air tank sizing

The above screenshot shows the spreadsheet for sizing the tank based on the number

of shifts. It uses the cylinder bore and stroke for the clutch and bore and half stroke for the

shifter. Number of shifts were predefined by calculating the average shifts per lap and

multiplying it by the number of laps plus and extra of a few hundred shifts. The equations in the

outlined box

Figure 21 Compressed air tank sizing

42

The following equations were used.

1. Area of piston= ((pi*Bore^2)/4)

This equation calculates the area of the piston.

2. Consumption/ stroke= (area of piston*actuator stroke length)

This equation calculates the volume consumed by the cylinder each time it is actuated.

3. Consumption/ cycle= (consumption/ stroke *sides used)

This equation changes the consumption from stroke based to cycle based which

changes in case of the shifter as it uses both sides.

4. Volume consumed= ((consumption/ cycle) * number of cycles)

This value is the volume consumed for the individual cylinders. They are then added to

determine the final total volume consumed.

After the volume is determined Combined gas law was used to determine if the tank

used enough. The equation is as following.

In the above equations; P1, P2 are pressures, T1, T2 are temperatures and V1, V2 is

the Volume of the gas at state 1 and state 2 respectively. This is not the most accurate method

as it is an ideal law, but it helps determine a baseline.

43

Injector pulse calculation

This sheet was generated to determine the frequency at which the pulse width

modulation would run. It also helps determining the maximum on time for the injector. This is

necessary as too high a frequency would not allow the injector to run or too low a frequency the

response would be slower.

The following equations were used: -

 Pulse width maximum in ms= ((1/Frequency) *1000)

The carrier frequency is inversed and then multiplied by a thousand to get a value in

milliseconds. The Pulse width mentioned in the screenshot above is the actual value of on-time

for the PWM at that duty cycle.

Figure 22 Injector pulse calculation

44

Appendix D

Programming the Controller

45

The following appendix explains the wiring and the code used for the microcontroller.

The circuit was connected the following way.

Table 4 Microcontroller wiring for test bench

Microcontroller pin

(Type)

Component Use

7 (Digital input) Right Switch Upshift Button

8 (Digital input) Left Switch Downshift Button

5 (Digital output) Gate of MOSFET Up Upshift Solenoid

6 (Digital output) Gate of MOSFET Down Downshift Solenoid

5 (Digital output) Gate of MOSFET Ignition cut ECU for Ign cut

A1 (Analog output) Potentiometer Feedback Clutch position sensor

A0 (Analog output) Potentiometer Input Clutch Input Paddle

3 (Digital output) Gate of MOSFET Cylinder Return Clutch Disengage

11 (Digital output) Gate of MOSFET Cylinder Expand Clutch Engage

All the digital input and output pins were connected to ground using a 10K-ohm resistor

to set a set a logic state of LOW. The idea behind this was so that the pins do not stay floating/

may not change state because of noise. This was done for the inputs so that whenever a button

is pressed it changes the pin state to HIGH changing the logic state. For the outputs this was

implemented for the MOSFETS as it kept the Gate signal LOW thereby keeping the circuit

open. Whenever the microcontroller sends a 5-volt signal to the MOSFET the Gate state

changes from LOW to HIGH thereby closing the circuit between the DRAIN and SOURCE. The

SOURCE of all the MOSFETs were connected to the common ground as they were N-Channel

46

ones. The positive of the solenoids and the injectors were connected to +12 Volts of a battery.

The MOSFETs DRAIN was connected to the ground terminal of the respective solenoid or the

injectors.

Programming the microcontroller

 Initial setup

The Arduino UNO R3 microcontroller is programmed using a software called as Arduino

IDE. The program starts with the setup of the pins. This is done using the command “const int”

followed by the variable and then the pin number. “Const int” is used to define the pin number

which is used for the MOSFET or switch. Then some of the variable values are defined these

consist of the error value and the value for the duty cycle. These are defined using “float”

command as their values keep on changing when the loop runs. The analog readings of the

input and feedback are defined using an int function which are initially defined/ reset to zero in

Figure 23 Arduino IDE initial setup

47

the program. Timer variables were defined using “long unsigned int” function. This was

implemented in the code to calculate the time the shift solenoid is enabled. More integers were

defined for example the shift time(st), neutral(ntrl) and deadband(db). These were given defined

values and were used to tune the system, this helps as the entire code does not need to

change, only the values in the initial setup are changed. For example, a data type is defined in

the following way “const int upsw=7; “, here “const int” is the data type, “upsw “is the variable

that is defined so that it can be used while programming and “7” is the pin number on the

microcontroller board. The command ends with a semicolon which signifies that the command

ends there.

Void Setup

Figure 24 Arduino IDE void setup

48

After the initial integers and floats are defined, it is necessary to define the

microcontroller pins as inputs or outputs, and to define the clock speed of the timers so that the

pwm frequency can be changed.

The void setup information is written between two curly brackets. The initial part under

the void setup defines the divisor of the individual timers so that the carrier frequency of the

Pulse Width Modulation can be changed. The divisor of timer 0 is kept to the default value as it

sets the frequency to 976.56 Hz which is closest to 1000 Hz, this is useful to run the timers for

the shifter which was mentioned in the previous section. After the timers are set up the pins are

set and defined if they are inputs or outputs using “pinMode” function. This function is used in

the following way “pinMode(upsw,INPUT); “ here upsw is the variable defined in the initial setup,

“INPUT” defines it as an input, so that the controller knows if it has to read that value or write a

value there. “Serial.begin(115200) “is a communication protocol that is used to send data back

to the computer to read the data, it is used as a method to log or check live data.

49

Void Loop

The void loop is the section where the code for the working of the entire system is

written. The previous two sections were to define the system. This part of the code includes

statements like if, else if, and is basic C programming. The part of the code displayed in the

above screenshot defines how the clutch should operate. It starts with re-defining variables

mentioned in the first section of the programming part by reading the pins on the

microcontroller. A “map “math function is used to interpolate the values read on the pins to

Figure 25 Arduino IDE void loop

50

match them while calculating error. A variable “error” is introduced which is nothing but the

difference between the input paddle and the feedback from the clutch. This value is used to

change the duty cycle at which the MOSFET is pulse width modulated. A predefined value of

“deadband” is used in the program which helps the output settle at a faster rate, like an

overdamped system, so that it does not keep oscillating while getting the error zero. This

causes an intensional hysteresis in the system but helps the system respond smoother and

without any jitter.

51

Serial Print

Arduino IDE has a function called as “dataret() “ this is used when the values of the

variables are required to print as output. The command works in the following way,

“Serial.print(millis()); where “Serial.print” is the print function and “millis()” is the data that needs

to be printed, so it prints the timestamp of the counter. Similarly

map(analogRead(fbpot),224,738,0,100)) reads the 10-bit value for the feedback potentiometer

and maps it to a 0-100% range so that the values are comparable on the same scale.

Figure 26 Arduino IDE serial print

52

Appendix E

Test Code for Shifter and Clutch

53

Shifter Program

The following code was initially written to implement the gear shifting logic: -

void loop() {

 // put your main code here, to run repeatedly:

dst=digitalRead(downs);

ust=digitalRead(ups);

 if((dst==LOW)&&(ust==LOW))

 {

 digitalWrite(D,LOW);

 digitalWrite(U,LOW);

 }

else

{

if(ust==HIGH)

{ digitalWrite(U,HIGH);

 digitalWrite(D,LOW);

 delay(st);

 digitalWrite(U,LOW);

}

 if(dst==HIGH)

 {

 digitalWrite(U,LOW);

 digitalWrite(D,HIGH);

 delay(st);

 digitalWrite(D,LOW);

 } } }

54

This code runs on a delay function and the delay time was set by the time the shift lasted viz

(st). The drawback of this system is that when the delay occurs the controller is sitting idle and

does not do anything or is incapable of performing any task. This issue is corrected using a

timer which is mentioned in the setup part of the programming.

The following code was implemented: -

if((digitalRead(upsw)==HIGH)&&(digitalRead(downsw)==LOW))

{

 if(t1==0)

 t1=millis();

 else

 t1=t1;

 if((millis()-t1)<st)

 {

 digitalWrite(upsol,HIGH);

 // digitalWrite(downsol,LOW);

 }

 else if(((millis()-t1)>=st)&&(digitalRead(downsw==LOW)))

 {

 digitalWrite(upsol,LOW);

 // digitalWrite(downsol,LOW);

Here the “millis “ function is used, millis is a timer in milliseconds which starts as soons

as the controller is switched on. Millis is always increasing. A variable “t1” is defined as millis as

soon as the button is pressed, and the logic defines that if the difference between millis and t1 is

less than the shift time it starts the solenoid, or else as soon as the the button is released and

the difference between millis and t1 is greater than shift time it cuts the signal to the solenoid.

55

The shift time is a value which was initially set to 50 ms but is reduced to 35 ms when installed

on the car.

Clutch Program

The program for the clutch initially started by determining the carrier frequency of the

PWM (Pulse Width Modulation). PWM was implemented because it can be operated at various

speeds and the duty cycle that is used can be used as a function of the error in the system.

The initial test that helped determining the carrier frequency is by writing a program

which defines a base frequency and plot the movement of the actuator with respect to time (x-

axis) and position (y-axis).

An example of one of the codes used is given below: -

const int upsw=7;//upshift switch pin

const int downsw=8;//downshift switch pin

const int fbpot=A1;//feedback potentiometer pin

const int ppot=A0;//paddle potentiometer pin

const int mos1=3;//pin sending signal to MOSFET controlling cylinder input injector

const int mos2=11;//pin sending signal to MOSFET controlling cylinder exhaust injector

float pwmval=0;//pwm value for injectors

float error=0;//error between the paddle and feedback potentiometers

int fbval=0;//variable to store the feedback potentiometer value

int pval=0;//variable to store paddle potentiometer value

int db=10;//deadband value (10 out of 950 units)

int pwm=76.5;

void setup() {

 // Code for setting pwm frequency

56

TCCR2B = TCCR2B & B11111000 | B00000101; // set timer 2 divisor to 128 for

PWM frequency of 245.10 Hz

//TCCR2B = TCCR2B & B11111000 | B00000111; // set timer 2 divisor to 1024 for

PWM frequency of 30.64 Hz

//TCCR2B = TCCR2B & B11111000 | B00000110; // set timer 2 divisor to 256 for

PWM frequency of 122.55 Hz

TCCR0B = TCCR0B & B11111000 | B00000011; // set timer 0 divisor to 64 for

PWM frequency of 976.56 Hz (The DEFAULT)

TCCR1B = TCCR1B & B11111000 | B00000011; // set timer 1 divisor to 64 for

PWM frequency of 490.20 Hz (The DEFAULT)

pinMode(upsw,INPUT);

pinMode(downsw,INPUT);

pinMode(fbpot,INPUT);

pinMode(ppot,INPUT);

pinMode(mos1,OUTPUT);

pinMode(mos2,OUTPUT);

Serial.begin(115200);

}

void loop()

{

pval=analogRead(ppot);

pval=map(pval,0,1023,0,1023);

fbval=analogRead(fbpot); //Reading the value of the feedback potentiometer

fbval=map(fbval,224,738,0,1023);//"K" proportionality on feedback, for easier

comparison

error=pval-fbval;

57

if (error>=db)

analogWrite(mos1,pwm);

if (error<=-db)

analogWrite(mos2,pwm);

else if((error>-db)&&(error<db))

 {

 analogWrite(mos1,0);

 analogWrite(mos2,0);

 }

 if(abs(error)>=db)

 dataret();

}

void dataret()

 {

 Serial.print(millis());

 Serial.print("\t");

 Serial.print(map(analogRead(fbpot),224,738,0,100));

 Serial.println();

 }

58

References

1. http://www.eng.fiu.edu/mme/robotics/EML4551SeniorDesignOrg/Presentation/20

15Spring/Team07.pptx

2. http://www.ijetae.com/files/Volume5Issue7/IJETAE_0715_58.pdf

3. http://www.fsae.com/forums/showthread.php?8805-Pneumatic-Clutch

4. http://www.pedroduino.com/7SegLEDcircuits.php

5. https://arduino-info.wikispaces.com/Timers-Arduino

6. https://learn.sparkfun.com/tutorials/pulse-width-modulation

7. http://www.fsaeonline.com/content/2017-18%20FSAE%20Rules%209.2.16a.pdf

8. Electronic Shifting and Clutch Controls, Internal Report, UTA, MAE 4188, August

2011.

9. Pneumatic Clutch, Internal Report, UTA, MAE, August 2011.

10. Electronic Shifting and Clutch Control, Internal Report, UTA, MAE, August 2012.

11. Electronic Shifting, Internal Report, UTA, ME 5358, August 2016.

12. Control System Components, Course work, ME 5341, Robert L. Woods.

http://www.eng.fiu.edu/mme/robotics/EML4551SeniorDesignOrg/Presentation/2015Spring/Team07.pptx
http://www.eng.fiu.edu/mme/robotics/EML4551SeniorDesignOrg/Presentation/2015Spring/Team07.pptx
http://www.ijetae.com/files/Volume5Issue7/IJETAE_0715_58.pdf
http://www.fsae.com/forums/showthread.php?8805-Pneumatic-Clutch
http://www.pedroduino.com/7SegLEDcircuits.php
https://arduino-info.wikispaces.com/Timers-Arduino
https://learn.sparkfun.com/tutorials/pulse-width-modulation
http://www.fsaeonline.com/content/2017-18%20FSAE%20Rules%209.2.16a.pdf

59

Biographical Information

Rahul Chalmela has a Master’s of Science degree in Mechanical Engineering

from The University of Texas at Arlington in 2017, Texas, USA. He earned his Bachelor’s

degree in Mechanical Engineering from University of Mumbai in 2014. He did his Diploma

in Mechanical Engineering (technical course) from Maharashtra State Board of Technical

Education in 2011 from Mumbai.

Rahul has been associated with FSAE since 2013 on a formula student team

Orion Racing India (ORI). He joined the team and immediately was elected as the Air

Intake and Exhaust Lead for the competition, Formula Student Germany 2014. After

finishing his bachelors, he worked on the team as alumni and took lead of the entire

powertrain system, and was also the autocross and endurance driver.

He joined UTA in August 2015 as a Graduate Master’s student and got

associated with UTA Racing since October 2015, where he worked as a deputy Lead for

the powertrain system for the 2016 Michigan competition. For the 2017 Lincoln

competition, he was elected lead for the entire powertrain system.

Rahul’s research interest was the powertrain development and the summer

project of the pneumatic shifter and servo clutch which he later took as his thesis so that

he could develop an efficient, reliable and robust system to change the type of shifting.

