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ABSTRACT

Nonlinear Model Predictive Control for Cooperative Control and Estimation

Pengkai Ru, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Kamesh Subbarao

Recent advances in computational power have made it possible to do expen-

sive online computations for control systems. It is becoming more realistic to perform

computationally intensive optimization schemes online on systems that are not intrin-

sically stable and/or have very small time constants. Being one of the most important

optimization based control approaches, model predictive control (MPC) has attracted

a lot of interest from the research community due to its natural ability to incorporate

constraints into its control formulation.

Linear MPC has been well researched and its stability can be guaranteed in the

majority of its application scenarios. However, one issue that still remains with linear

MPC is that it completely ignores the system’s inherent nonlinearities thus giving a

sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would natu-

rally yield a globally optimal solution and take into account all the innate nonlinear

characteristics. While an exact solution to a nonlinear MPC problem remains ex-

tremely computationally intensive, if not impossible, one might wonder if there is a

middle ground between the two. We tried to strike a balance in this dissertation by

employing a state representation technique, namely, the state dependent coefficient
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(SDC) representation. This new technique would render an improved performance in

terms of optimality compared to linear MPC while still keeping the problem tractable.

In fact, the computational power required is bounded only by a constant factor of the

completely linearized MPC.

The purpose of this research is to provide a theoretical framework for the design

of a specific kind of nonlinear MPC controller and its extension into a general coop-

erative scheme. The controller is designed and implemented on quadcopter systems.
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Executive Summary

Model Predictive Control (MPC) is becoming more and more popular due to

its ability to explicitly incorporate constraints into the control formulation. With the

advancement of faster and cheaper computers, computationally intensive tasks are no

longer as formidable as they used to be. All of this has helped to foster the research

community’s interest in MPC, especially on its application to nonlinear and/or fast

dynamic systems.

The purpose of this dissertation is to provide a theoretical framework for syn-

thesis of a nonlinear MPC scheme for cooperative control and estimation. Research

on Linear MPC has sufficiently matured over the years but its nonlinear counterpart

still has severe challenges to meet. It is well known that guaranteeing stability for

linear MPC can be easily achieved by adding additional constraints on the terminal

state. In this dissertation, we showed that similar results can be achieved for non-

linear systems. The key idea is using a technique called State Dependent Coefficient

formulation. This formulation transforms a nonlinear system into a pseudo-linear

form by produce a system matrix that is dependent on the current state. By using

this, we can both use the established results from linear MPC and potentially exploit

the benefits of the inherent nonlinearities of the system.

For constrained nonlinear systems, feasibility is one of the main issues that

needs to be addressed before anything else. To achieve this, we provide Linear Matrix

Inequality (LMI) conditions to check if the control parameters selected are realistic

for certain state and input constraints.

xvi



Furthermore, it is proved that as long as an appropriate sampling interval is

chosen, a sampled-data implementation of aforementioned nonlinear MPC algorithm

would be guaranteed stable.

We also extended the nonlinear MPC to a cooperative control framework.

Paired with an established consensus algorithm, stability of the formation controller

is also shown. Extra constraints were added to avoid collisions between different

vehicles during the formation process. A cooperative estimation algorithm is also

presented to complement the cooperative control task for scenarios of reconnaissance

and surveillance.

All of the above mentioned algorithms are applied to quadcopters in simulation.

xvii



CHAPTER 1

Introduction and Dissertation Outline

1.1 Introduction

Model Predictive Control (MPC), also known as Receding Horizon Control

(RHC), is a control technique in which the current control action is obtained by

optimizing a prespecified objective function over a finite horizon, at each sampling

instant, based on the current state and model of the system. The objective is a

function of both system state and future inputs. The model is used for predicting the

behavior of the system if certain control inputs were to be implemented. After the

optimization problem is solved, only the first control in the acquired control action

sequence would be applied to the plant. And the same process is repeated at the next

sampling instant. The scheme is shown in Fig. (1.1).

1.1.1 Model Predictive Control of Linear and Nonlinear Systems

Linear Model Predictive Control (LMPC) is MPC applied to linear systems.

The stability of such a controller is one of the main issues that researchers are most

concerned about. To guarantee the closed-loop stability of such controller, many tech-

niques have been proposed and successfully proven. In [1], it is shown that by adding

a terminal equality constraint, which is the same as an infinite terminal weighting ma-

trix, the closed-loop system using LMPC is stable. But terminal equality constraint

is very restrictive and may render the problem intractable or infeasible. To further

relax the constraint, [2, 3] proved that if the terminal weighting matrix satisfies a

certain inequality condition, then the closed-loop system is stable. Also [4] showed

1
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Figure 1.1. Model Predictive Control Scheme.

that such a terminal weighting matrix can be obtained by solving a Linear Matrix

Inequality (LMI). But in most control systems, input variables are often limited in a

certain range and state values are often bounded. LMPC can explicitly incorporate

these constraints into the optimization. Similar to unconstrained systems, stability

for constrained LMPC can be proved in the same way together with feasibility con-

ditions. The same terminal equality condition also guarantees stability as long as

the system is feasible. [4] proposed an invariant ellipsoid constraint and derived an

explicit feasibility condition to guarantee stability. Other method like dual-mode re-

2



ceding horizon control was also proposed by switching control laws based on whether

the state is inside or outside a certain ellipsoid [2].

In reality, dynamical systems are often represented by nonlinear differential

equations. MPC applied to nonlinear systems is termed as Nonlinear Model Predictive

Control (NMPC). NMPC offers a better solution than its linear counterpart in terms

of optimality and stability. As with LMPC, numerous approaches have been proposed

to guarantee the stability of NMPC controllers. By imposing a terminal equality

constraint and using the value function as the Lyapunov function, it is shown that

the corresponding NMPC controller is stable [2, 5]. [6] further relaxed the constraint

by requiring the state to enter a neighborhood of the origin at the end of the horizon

to guarantee closed-loop stability. Once the state entered that neighborhood, the

control is switched to a local linear controller to drive the state to the origin. [7, 8]

employed a different approach by using a quadratic terminal cost as well as a terminal

inequality constraint. [9, 10] used an end point penalty which is the cost incurred if

a locally stabilizing linear control law is applied at the end of the time horizon. The

linear control law is exponentially stable locally near the origin. [11, 12] achieved a

global stabilizing control law by finding a global Control Lyapunov Function (CLF)

and including additional state constraints that require the derivative of the CLF

along the receding horizon trajectory to be negative and also that the decrease in

the value of the CLF be greater than that obtained using the controller derived from

CLF. [13] proposed to utilize a special class of CLFs as terminal cost in the receding

horizon scheme to guarantee stability. The benefit of this approach is that there is

no need to impose terminal equality and/or inequality constraints and it would speed

up computation significantly.

3



1.1.2 MPC Framework for Cooperative UAV Formations

Research on control of multivehicle systems performing cooperative tasks dates

back to the late 1980s, initially beginning in the field of mobile robotics [14]. [15]

offered a concise definition of “cooperative”as: a collection of N vehicles that are

performing a shared task that are dependent on the relationship between the locations

of the individual vehicles. And each vehicle is a dynamical system whose position is

given by its location in 3-dimensional space. Cooperative control has been gaining

interest in the research community because of its wide ranging applications such as

formation flight, cooperative classification and surveillance, cooperative attack and

rendezvous, distributed aperture observing and air traffic control.

In this dissertation, we only focus on formation control problems. Three gen-

eral approaches have been proposed in the literature to solve the problem. 1. Con-

sensus based approaches: both continuous [16, 17] and discrete [18–20] convergence

algorithms have been proposed and proven to be stable. While the authors proved

stability they did not address constraints on the states and inputs of the vehicles and

their implication on the stability (See [21, 22] for a detailed survey on this topic); 2.

Optimization based approaches: Model Predictive Control (MPC) can directly incor-

porate states and inputs constraints into the cooperative control problem. In [23],

MPC is used for stabilizing three vehicle formations with input constrained dynam-

ics on configuration space SE(2) (See Ref. [24, chapter 4]). The same approach is

extended to a more general framework in [25] to do task specification for multiple ve-

hicles. [26] proposed a distributed version of MPC applied to multi-vehicle formation

stabilization, by penalizing the deviation of vehicle trajectory from the its open-loop

counterpart and enabling sufficiently fast MPC updates, the stability is guaranteed.

Similar approach is implemented in [27] by using mixed-integer linear programs and

it guarantees collision avoidance and constraint fulfillment. 3. Potential field based

4



approaches: [28,29] used the concept of “virtual leaders” to guide the motion of other

vehicles. Asymptotic stability is guaranteed for various schooling and flocking behav-

iors.

1.1.3 Cooperative Estimation and MPC Framework for Target Tracking

Tracking moving target(s) using sensor network(s) is an important application

for military, law enforcement and defense systems, which require a good estimate

of the target location. [30, 31] investigated mobile target estimation and tracking

using in wireless ad hoc networks. But the sensor networks used are stationary and

predetermined. Similar problems have been solved using a vision based approach

in [32, 33]. The algorithm employed is based on multi-agent optimization technique

to obtain an estimation of the pose of a 3D moving object from 2D vision data.

Different variations of Kalman Filter are also used. [34] proposed a gradient-search

based decentralized algorithm using mobile nodes as a sensor network to estimate

the state of a dynamic target using range only measurements. [35] proposed three

distributed Kalman filtering algorithms for sensor networks to estimate the state

of a dynamic target while assuming its model is known. [36] employed an adaptive

cooperative Kalman filtering technique to measure large-scale environmental fields.

[37] used an information-theoretic approach while [38] combined Binary Bayesian Grid

Filters (BBGF) with Rapidly-expanding Random Tree (RRT) planner to determine

paths to be followed by the group vehicles to track the target.

Here we only consider a sub-problem of sensor network(s), namely cooperative

estimation. More specifically, we consider the problem of estimating the location of a

moving target in real-time using multiple UAVs and employing control laws to keep

them close to the target.
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– K. Subbarao, C. Tule, and P. Ru, Nonlinear model predictive control ap-

plied to trajectory tracking for unmanned aerial vehicles, in AIAA Atmo-
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June 2015 (Ref. [39]).

– P. Ru and K. Subbarao, Nonlinear model predictive control for unmanned
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• Proposed a cooperative control formulation based on NMPC and proved its

stability.

– P. Ru, K. Subbarao, Cooperative Control of Unmanned Aerial Vehicles

based on Nonlinear Model Predictive Control, AIAA Guidance, Naviga-

tion, and Control Conference, AIAA Science and Technology Forum and

Exposition 2017, Grapevine, TX, USA, January 2017. (Ref. [41]).

• Proposed a cooperative estimation framework based on EKF and trilateration

method.

– P. Ru, K. Subbarao, Cooperative Estimation of Moving Target Position

Using Unmanned Aerial Vehicles, AIAA Information Systems Infotech @

Aerospace, AIAA Science and Technology Forum and Exposition, Grapevine,

TX, USA, January 2017. (Ref. [42]).
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1.3 Dissertation Outline

This dissertation is organized as follows: In Chapter 2, some preliminary con-

cepts are introduced including stability of dynamical systems, optimization, graph

theory, and mathematical model of a quadrotor. Chapter 3 details Model Predictive

Control applied to linear systems. Aspects about constraints incorporation and con-

ditions for stability are provided. Chapter 4 introduces State Dependent Coefficient

based Nonlinear Model Predictive Control. Aspects about constraints incorporation

and conditions for stability are provided. Proof for convergence of errors for its sam-

pled data implementation is also given. Both linear MPC and nonlinear MPC are

evaluated in representative simulations and their results are discussed. In Chapter

5, a cooperative control framework based on the aforementioned nonlinear MPC is

presented. Combined with an established consensus algorithm, conditions for stabil-

ity are given. A new cooperative estimation algorithm is presented in Chapter 6 by

combining extended Kalman filter and trilateration. Finally, in Chapter 7, concluding

remarks are stated. Fig. (1.2) shows a graphical overview of this dissertation with

shaded block representing the work covered.
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Figure 1.2. Model Predictive Control Overview.
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CHAPTER 2

Preliminaries

2.1 Definitions

Define the 2-norm of a vector x ∈ <n as:

‖x‖ =
√

xTx (2.1)

A matrix Q ∈ <m×n is positive definite (Q > 0) if xTQx > 0 for all x 6= 0.

Suppose that A ∈ <m×n is full rank and n ≥ m. Solutions X to the problem

AX = Y can be parameterized as X = A−1Y + MV for arbitrary matrices V.

A−1 = AT (AAT )−1 is the right inverse of A and M spans the null space of A with

its columns orthogonal to each other. The numbers of rows of V is equal to the

dimension of the null space of A.

A continuous function V : <n → < is a locally positive definite function if for

some ε > 0 and some continuous, strictly increasing function α : <+ → <,

V (0) = 0, and, V (x) ≥ α(||x||) ∀ x ∈ Bε

A continuous function V : <n → < is a positive definite function if for some

ε > 0 and some continuous, strictly increasing function α : <+ → <,

V (0) = 0, and, V (x) ≥ α(||x||) ∀ x ∈ Bε

And α(p)→∞ as p→∞.

A continuous function V : <n → < is decrescent if for some ε > 0 and some

continuous, strictly increasing function β : <+ → <,

V (x) ≤ β(||x||) ∀ x ∈ Bε
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Nonlinear (convex) inequalities can be converted to Linear Matrix Inequality

(LMI) form using Schur complements. The basic idea is as follows: the LMI Q(x) S(x)

S(x)T R(x)

 > 0 (2.2)

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depends affinely on x (x ∈ <n) , is

equivalent to

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0. (2.3)

In other words, the set of nonlinear inequalities (2.3) can be represented as the LMI

(2.2).

2.2 Stability of Dynamical Systems

In this dissertation, we are only concerned with stability of equilibrium points of

a dynamical system in the sense of Lyapunov. For a more comprehensive coverage of

stability theory, please refer to [43,44]. An equilibrium point is stable if all solutions

starting at nearby points stay nearby; otherwise, it is unstable. It is asymptotically

stable if all solutions starting at nearby points not only stay nearby, but also tend to

the equilibrium point as time approaches infinity.

Consider the autonomous system

ẋ = f(x) (2.4)

where f : D → <n is locally Lipschitz map from a domain D ⊂ <n into <n. Suppose

x = 0 is an equilibrium point of system (2.4); that is , f(0) = 0.

The equilibrium point x = 0 of (2.4) is:

• stable (in the sense of Lyapunov) if, for each ε > 0, there is δ = δ(ε) > 0 such

that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀ t ≥ 0
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• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0

For system (2.4), let V (x) be non-negative function with derivative V̇ (x) along

the trajectories of the system.

• If V (x) is locally positive definite and V̇ (x) ≤ 0 locally in x, then the origin of

the system is locally stable (in the sense of Lyapunov).

• If V (x) is locally positive definite and decrescent, and V̇ (x) ≤ 0 locally in

x, then the origin of the system is uniformly locally stable (in the sense of

Lyapunov).

• If V (x) is locally positive definite and decrescent, and −V̇ (x) locally positive

definite, then the origin of the system is locally uniformly asymptotically stable.

• If V (x) is positive definite and decrescent, and −V̇ (x) locally positive definite,

then the origin of the system is globally uniformly asymptotically stable.

2.3 Optimization

Given x0, assume a discrete system model:

xk+1 = Axk + Buk, (2.5)

where A ∈ <n×n, B ∈ <n×m, xk ∈ <n, and uk ∈ <m are the system matrix, input

matrix, states, and inputs, respectively.

The following optimization problems are relevant to this work.
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2.3.1 Unconstrained Optimization

2.3.1.1 Linear Quadratic Regulator (LQR)

We start with the simplest case: Linear Quadratic Regulator (LQR). The per-

formance objective for LQR is of the form:

J(xk,uk) =
1

2

∞∑
i=0

(xTk+iQxk+i + uTk+iRuk+i) (2.6)

where Q ∈ <n×n is the state weighting matrix and Q > 0. R ∈ <m×m is the input

weighting matrix and R > 0. The control input that would minimize the objective

function can be shown as:

uk = −(R + BTPB)−1BTPAxk (2.7)

in which P is the solution of the discrete algebraic Riccati Equation:

ATPA−P + Q−ATPB(R + BTPB)−1BTPA = 0

2.3.1.2 Finite Horizon Quadratic Cost with Terminal Equality Constraint Regulator

Given horizon N , the performance objective is chosen as:

J(xk,uk) =
1

2

N−1∑
i=0

(xTk+iQxk+i + uTk+iRuk+i) (2.8)

where Q ∈ <n×n, R ∈ <m×m and Q > 0, R > 0. A terminal equality constraint is to

be enforced so the system state goes to the origin at the end of the horizon:

xk+N = 0 (2.9)

The control inputs that minimize the above objective function is:

uk = −R−1BTPk+1Axk (2.10)

where

Pk = A−1(I + Pk+1A
−TQA−1)−1Pk+1A + BR−1BT (2.11)

with boundary condition Pk+N = BR−1BT .
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2.3.1.3 Finite Horizon Quadratic Cost with Free Terminal State Regulator

Given horizon N , the performance objective is chosen as:

J(xk,uk) =
1

2

N−1∑
i=0

(xTk+iQxk+i + uTk+iRuk+i) +
1

2
xTk+NQfxk+N (2.12)

where Q,Qf ∈ <n×n, R ∈ <m×m and Q,Qf > 0, R > 0. Qf is termed as the

terminal weighting matrix. No constraint is enforced on the terminal state. The

control inputs that minimize the objective function is:

uk = −R−1BT (I + Kk+1BR−1BT )−1Kk+1Axk (2.13)

where

Kk = ATKk+1A−ATKk+1B(R + BTKk+1B)−1BTKk+1A + Q (2.14)

with boundary condition Kk+N = Qf . This is an initial value problem and Kk is

obtained by solving Eq. (2.14) backwards.

2.3.2 Constrained Optimization

The system of Eq. (2.5) is represented in the following predictive form (see

Ref. [40]):

xk+i+1 = Axk+i + Buk+i (2.15)

with input and state constraints:

ulb ≤ uk+j ≤ uub, j = 0, 1, · · · , N − 1

zlb ≤ Czxk+j ≤ zub, j = 0, 1, · · · , N (2.16)

States on [k, k +N ] can be formulated in batch form as:

Xk = Fxk + HUk (2.17)
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where Xk, F, H, Uk are given as:

Xk =



xk

xk+1

...

xk+N−1


, Uk =



uk

uk+1

...

uk+N−1


, F =



I

A

...

AN−1



H =



0

B 0

AB B 0

...
...

. . . . . .

AN−2B AN−3B . . . B 0


And terminal state

xk+N = ANxk + B̄Uk (2.18)

where

B̄ =

[
AN−1B AN−2B · · · AB B

]
Constraints in Eq. (2.16) can be re-written as:

ulb

ulb
...

ulb


≤ Uk ≤



uub

uub
...

uub


,



zlb

zlb
...

zlb


≤ CzXk ≤



zub

zub
...

zub


(2.19)

where

Cz =



Cz

Cz

Cz

Cz
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2.3.2.1 Finite Horizon Quadratic Cost with Terminal Equality Constraint Regulator

Again, consider the following performance objective function:

J(xk,uk) =
1

2

N−1∑
i=0

(xTk+iQxk+i + uTk+iRuk+i) (2.20)

where Q ∈ <n×n, R ∈ <m×m and Q > 0, R > 0. A terminal equality constraint is to

be enforced so the system state goes to the origin at the end of the horizon:

xk+N = 0 (2.21)

which means ANxk + B̄Uk = 0. We can parameterize Uk based on this as shown in

Eq. (2.22).

Uk = −B̄−1ANxk + MÛk (2.22)

where Ûk is a matrix containing the independent variables. The constraints (2.19)

need to be reformulated as:

ulb

ulb
...

ulb


+ B̄−1ANxk ≤ MÛk ≤



uub

uub
...

uub


+ B̄−1ANxk (2.23)

If there is a feasible solution for the system of Eq. (2.15) and the objective function

Eq. (2.20) with constraints specified by Eq. (2.16) at the initial time, then the next

solution is guaranteed to exist. The optimization problem for the above case can be

summarized to the following Semi-Definite Programming (SDP) problem:

min
Ûk

γ1 (2.24)

subj. to:

 γ1 − V1 − (2(ANxk)
T B̄−TW − 2HT Q̄Fxk)MÛk −2ÛT

k

√
V2

−2
√
V2Ûk I

≤ 0

(2.19)
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where

V1 = (ANxk)
T B̄−TWB̄−1(ANxk) + (Fxk)

T Q̄(Fxk)− 2HT Q̄FxkB̄
−1ANxk

V2 = MT (HT Q̄H + R̄)M

and

Q̄ =



Q

Q

. . .

Q


, R̄ =



R

R

. . .

R


And after obtaining the optimal Û∗k from (2.24), substitute the value back to

Eq. (2.22) to get Uk.

Uk = −B̄−1ANxk + MÛ∗k

2.3.2.2 Finite Horizon Quadratic Cost with Free Terminal Cost Regulator

Again, the performance objective function is chosen as:

J(xk,uk) =
1

2

N−1∑
i=0

(
xTk+iQxk+i + uTk+iRuk+i

)
+

1

2
xTk+NQfxk+N (2.25)

where Q,Qf ∈ <n×n, R ∈ <m×m and Q,Qf > 0, R > 0. No constraint is enforced

on the terminal state. The same constraints as in Eq. (2.19) applies here as well.

ulb

ulb
...

ulb


≤ Uk ≤



uub

uub
...

uub


,



zlb

zlb
...

zlb


≤ CzXk ≤



zub

zub
...

zub


(2.26)
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The solution to this problem can be transformed into the following SDP problem:

min
Uk

(γ1 + γ2) (2.27)

subj. to:

 γ1 − 2xTkFT Q̄HUk − xTkFT
k Q̄Fkxk UT

k

Uk (HT Q̄H + R)−1

 ≥ 0

 γ2 [ANxk + B̄Uk]
T

ANxk + B̄Uk Q−1
f

 ≥ 0

(2.19)

and the optimal control U∗k can be obtained from solving Eq. (2.27).

2.3.3 Linear Matrix Inequality and Semi-Definite Programming

A brief introduction to Semi-Definite Programming (SDP) is given here. SDP

can effectively solve many optimization problems involving Linear Matrix Inequalities

(LMI). For a more detailed explanation, please refer to [45,46].

Consider the problem of minimizing a linear function of a variable x ∈ <m

subject to a matrix inequality:

minimize cTx (2.28)

subject to F(x) ≥ 0

where

F(x) , F0 +
m∑
i=1

xiFi

And vector c ∈ <m and m+1 symmetric matrices F0, . . ., Fm ∈ <n×n. The inequality

sign in F(x) ≥ 0 means that F(x) is positive definite, i.e., zTF(x)z ≥ 0 for all z ∈ <n.

Inequality F(x) ≥ 0 is called an linear matrix inequality and the problem (2.28)

is called a semidefinite program. A semidefinite program is a convex optimization
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problem because its objective and constraint are convex: for x, y ∈ D ⊂ <m, if

F(x) ≥ 0 and F(y) ≥ 0, then for any λ ∈ [0, 1],

F(λx + (1− λ)y) = λF(x) + (1− λ)F(y) ≥ 0

SDP can represent many important optimization problems. Consider a linear

programming problem:

minimize cTx (2.29)

subject to Ax + b ≥ 0

in which the inequality denotes component-wise inequality. And x, c ∈ <m, A ∈

<n×m, b ∈ <n. A vector v ≥ 0 if only if the matrix diag(v) is positive semidefinite,

we can reformulate (2.29) as a SDP with F(x) = diag(Ax + b), where

F0 = diag(b), Fi = diag(ai), i = 1, . . . ,m

and ai ∈ <n, A = [a1 . . . am]. The notation diag denotes:

diag(v) =



v1 0 · · · 0

0 v2 · · · 0

...
...

. . .
...

0 · · · · · · vn


Also consider a quadratic programming (QP) problem, which will be used ex-

tensively later in this dissertation:

minimize
1

2
xTPx + qTx + r (2.30)

subject to Ax + b ≥ 0

18



where P ∈ <m×m, P > 0, q ∈ <n, r ∈ <, A ∈ <n×m, and b ∈ <n. This QP problem

can be expressed in SDP form as:

minimize t (2.31)

subject to

 t− r − qTx xT

x 2P−1

 ≥ 0

diag(b) +
m∑
i=1

xi diag(ai) ≥ 0

where [a1 . . . am] = A.

In particular, SDP can also represent a quadratically constrained quadratic

programming (QCQP) problem. For example, a convex quadratic constraint like

(Ax + b)T (Ax + b)− cTx− d ≤ 0

can be written as:  I Ax + b

(Ax + b)T cTx + d

 ≥ 0

The left-hand side depends affinely on x: it can be expressed as

F(x) = F0 + x1F1 + · · ·+ xkFk ≥ 0

with

F0 =

 I b

bT d

 , Fi =

 0 ai

aTi ci

 , i = 1, . . . , L

where A = [a1 . . . ak].

2.4 Graph Theory

A brief tutorial on graph theory is given here. Information exchange between

vehicles are often modeled by directed or undirected graphs. A directed graph is a
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pair (N , E), where N = {1, . . . , n} is a finite nonempty node set and E ⊂ N × N

is an edge set of ordered pairs of nodes, called edges. The edge (i, j) ∈ E denotes

vehicle j can obtain information from vehicle i. And i is called the parent node and

i is the child node. Self edges (i, i) ∈ E are allowed.

A directed graph is strongly connected if there is a directed path from every

node to every other node. A rooted directed tree is a directed graph in which every

node has exactly one parent except for one node, called the root, which has no parent

and which has a directed path to every other node.

A subgraph (N1, E1) of (N , E) is a graph such that N1 ⊂ N and E1 ⊂ (E
⋂
N1×

N1). The graph (N , E) has or contains a rooted directed spanning tree if a rooted

directed spanning tree is a subgraph of (N , E). The existence of a rooted directed

spanning tree is a weaker condition than being strongly connected.

2.5 Quadcopter Platform

2.5.1 Introduction to Quadcopter

A Quadcopter helicopter platform (often just called Quadcopter), is an under-

actuated helicopter with two pairs of rotors in a cross configuration capable of spinning

at different angular velocities in order to achieve translational and rotational motion.

Rotor pair (1, 3) spins in one direction while the pair (2, 4) spins in the opposite

(see Figure 2.1). Quadcopters can achieve different motions by imbalance of different

pairs of rotor speed or simultaneous changes of all 4 rotors.

Quadcopters have been gaining popularity as research platforms because of their

simplicity of design, their low cost of manufacturing compared to other unmanned

aerial vehicles. Because they are challenging vehicles to control, wherever operated

in an indoor environment or in the open field, they make a great platform for re-
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Figure 2.1. Diagram of a quadcopter top view.

search and development. Quadcopters have applications in both military and the

civil sectors, some of which include, surveillance and reconnaissance, search and res-

cue, communications, logistics missions, fire fighting, agriculture, wildlife monitoring,

terrain mapping, cave exploration, atmospheric monitoring, advertising, sports and

entertainment, and law enforcement [47–51].

There is extensive literature on attitude stabilization, trajectory tracking, and

formation stabilization of quadcopters. Virtually every possible control technique,

linear control such as PID and linear quadratic methods, robust linear control, and

nonlinear control [52, 53] techniques such as nonlinear model predictive control [39],

adaptive control [54], iterative learning control [55], neural networks [56], backstep-

ping [57], and sliding mode control among others have been tried and tested in sim-

ulations.
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2.5.2 Quadcopter Model: Governing Equations of Motion

As shown in Fig. (2.2), let OEXEYEZE denote an Earth-fixed Inertial frame

and OBXBYBZB a body-fixed frame whose origin OB is at the center of mass of the

quadrotor. The inertial position of the quadrotor is defined by p = (x, y, z)T and the

attitude by three Euler angles: roll, pitch, and yaw (Θ = [φ θ ψ]T ). R ∈ SO(3) is the

orthogonal rotation matrix to orient the quadrotor using the Euler angles following

the 3-2-1 sequence of rotations. VB = (Vx, Vy, Vz)
T and Ω = (p, q, r)T represents for

the inertial velocity in the body fixed frame and body angular velocities, respectively.

Figure 2.2. Quadcopter.
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Neglecting the aerodynamic and gyroscopic effects, the quadrotor model can be

shown as (Ref. [58]): 

ṗ = RT
BIVB

V̇B = −Ω×VB + RBI(gê3) + T
m

ê3

Θ̇ = W(φ, θ, ψ)Ω

Ω̇ = J−1(−Ω× JΩ + τ )

(2.32)

Where ê3 = [0 0 1]T , τ = [τ1 τ2 τ3]T and

RBI(φ, θ, ψ) =


CθCψ CθSψ −Sθ

SθCψSφ − SψCφ SθSψSφ + CψCφ CθSφ

SθCψCφ + SψSφ SθSψCφ − CψSφ CθCφ



W(φ, θ, ψ) =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 J =


Jx

Jy

Jz

 (2.33)

and C· and S· denote the trigonometric functions sin · and cos ·, respectively.

The constants g,m,J in the equation denote the standard gravity acceleration,

the mass and moment of inertia of the quadcopter, respectively. The variables T and

τ represent the total thrust and torques about the body axes of the quadcopter.

In addition, the relations between the total thrust, torque and lifting forces

provided by each rotor can be expressed as:

T

τ1

τ2

τ3


=



−1 −1 −1 −1

0 −L 0 L

L 0 −L 0

−c c −c c





F1

F2

F3

F4


(2.34)
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in which L is the distance from the rotor to the center of gravity (CG) of the quad-

copter, c relates the rotor angular moment to the rotor lift (normal force). Combining

Eq. (2.32) and (2.34), a more comprehensive model can be written as:



ṗ

V̇B

Θ̇

Ω̇


=



RT
BIVB

−ΩVB + RBI(gê3)

W(φ, θ, ψ)Ω

J−1(−Ω× JΩ)


+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

− 1
m

− 1
m

− 1
m

− 1
m

0 0 0 0

0 0 0 0

0 0 0 0

0 −J−1
x L 0 J−1

x L

J−1
y L 0 −J−1

y L 0

−J−1
z c J−1

z c −J−1
z c J−1

z c





F1

F2

F3

F4



(2.35)

Let x = [pT VB
T ΘT ΩT ]T and u = [F1 F2 F3 F4]T . Eq. (2.35) can be

compactly written as:

ẋ = f(x) + Bcu (2.36)

Given the nature of the quadcopter, we restrict the range of operation of the

vehicle as shown below. For e.g., at a pitch angle of θ = ±π
2
, the matrix W(φ, θ, ψ)

in Eq. (2.33) becomes singular.

−π ≤ φ ≤ π

−π
2

< θ < π
2

−π < ψ < π

(2.37)
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Each rotor is assumed to behave approximately as a first order system (See

Ref. [59]):

Ḟi = λF (F c
i − Fi), i = 1, 2, 3, 4 (2.38)

where F c
i denotes the commanded value for rotor lift (thrust) and λF denotes

first order actuator time constant (assumed same for all the rotors). Also we constrain

the force each rotor is able to exert onto the body:

0 ≤ Fi ≤ κimg, κi ∈ (
1

4
, 1] (2.39)
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CHAPTER 3

Linear Model Predictive Control

3.1 System Linearization

Given a nonlinear system of the form:

ẋ = f(x(t),u(t)) (3.1)

where x(t) ∈ <n are the system states and u(t) ∈ <m are the system outputs as

functions of time t. In general m < n and f is vector valued function in C2. To

apply linear model predictive control, we need to have dynamic system represented

by linear form. This is often achieved by linearization. System 3.1 can be linearized

about a desired equilibrium operating point. The values of the states and inputs for

such an operating point will be denoted as the ordered pair, {xT ,uT}. The linearized

system can be expressed as:

∆ẋ = Ac∆x + Bc∆u (3.2)

where ∆x = x− xT , ∆u = u− uT , and

Ac =
∂f

∂x

∣∣∣∣
x=xT ,u=uT

, Bc =
∂f

∂u

∣∣∣∣
x=xT ,u=uT

and the subscript c denotes it is a continuous system. Assuming a sampling interval

Ts, the equivalent discretized system can be formulated as:

∆xk+i+1 = A∆xk+i + Buk+i (3.3)

where k is the current sample and {A,B} is the discrete equivalent of {Ac,Bc}.

A ∈ <n×n is the state matrix and B ∈ <n×m is the input matrix.
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Based on the model of (3.3), the controller predicts the future states progression

as a function of current states and future inputs. Finite horizon MPC means only

a certain number of steps are predicted. The number of steps N is termed as the

prediction horizon. The prediction equations bears the same form as (2.17):

∆Xk = F∆xk + H∆Uk (3.4)

∆xk+N = AN∆xk + B̄∆Uk (3.5)

where

∆Xk =



∆xk

∆xk+1

∆xk+2

...

∆xk+N−1


, ∆Uk =



∆uk

∆uk+1

∆uk+2

...

∆uk+N−1


and F, H, and B̄ are defined the same as in (2.17).

3.2 Controller Design

The controller is designed to track a desired trajectory or a desired state while

at the same time it should minimize the controller effort required. A penalty function

is chosen to penalize the deviation of current states and the desired trajectory and

the norm of actuator inputs. It is of the form:

J(∆xk,∆Uk) = (∆Xk −∆Xr
k)
T Q̄(∆Xk −∆Xr

k) + ∆UT
k R̄Uk

+ (∆xk+N −∆xrk+N)TQf (∆xk+N −∆xrk+N) (3.6)
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The reference trajectory ∆xr is often known in advance. And ∆Xr
k is defined as:

∆Xr
k =



∆xrk

∆xrk+1

...

∆xrk+N−1


(3.7)

This implies that the controller is able to predict a series of adequate inputs that will

drive the system towards the desired goal. The term Q̄ and R̄ are defined as:

Q̄ =



Q

Q

. . .

Q


, R̄ =



R

R

. . .

R


where Q,Qf ∈ <n×n and R ∈ <m×m are all diagonal and they satisfy Q ≥ 0, Qf ≥ 0

and R ≥ 0. Qf is chosen based on the solution to the discrete algebraic Riccati

equation using

ATPA−P + Q−ATPB(R + BTPB)−1BTPA = 0

Qf is set equal to P. With proper substitution, it follows that,

J(∆xk,∆Uk) = ∆UT
k

[
HT Q̄H + R̄ + B̄TQfB̄

]
∆Uk

+ 2
(

(F∆xk −∆Xr
k)
T Q̄H +

(
AN∆xk −∆xrk+N

)T
QfB̄

)
∆Uk

+ (F∆xk −∆Xr
k)
T Q̄ (F∆xk −∆Xr

k)

+
(
AN∆xk −∆xrk+N

)T
Qf

(
AN∆xk −∆xrk+N

)
(3.8)

3.3 Constraints

There are often two kinds of constraints present on a dynamical system, input

constraints and state constraints. In many control systems, input variables cannot
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be arbitrarily large and may have some limitations, such as magnitude limits. Also

state values must be bounded in many cases often for safety reasons.

3.3.1 Input Constraints

Input constraints often follow a general form

ulb ≤ uk+i ≤ uub, i = 1, . . . , N − 1

where ulb is called the lower bound and uub is called the upper bound. However, the

MPC problem is solved to obtain the perturbation controls since the model employed

is the linearized dynamics about the equilibrium point. Since, uk+i = uT + ∆uk+i, it

can be seen that ulb ≤ uT + ∆uk+i ≤ uub. Alternately, ulb−uT ≤ ∆uk+i ≤ uub−uT .

These constraints can be expressed in matrix form as follows: Im×m

−Im×m

∆uk+i ≤

 (uub − uT )

− (ulb − uT )

 (3.9)

where Im×m is an m × m identity matrix. After proper arrangement, the input

constraint can be represented as:

MU∆Uk ≤ ∆Ub (3.10)

where

MU =



 Im×m

−Im×m

 Im×m

−Im×m


. . .  Im×m

−Im×m
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∆Ub =



 (uub − uT )

− (ulb − uT )


 (uub − uT )

− (ulb − uT )


... (uub − uT )

− (ulb − uT )




3.3.2 Actuator Rate Constraints

It is also necessary to constrain the rate of change of actuator inputs since

the quadcopter motors often function similar to a first order system and abrupt

changes cannot be implemented in reality (Ref. [60]). Let u̇max denote the maximum

admissible rate of change, the constraints can be expressed as:

− u̇maxTs ≤ ∆uk+n −∆uk+n−1 ≤ u̇maxTs, n = 1, . . . , N − 1. (3.11)

After proper arrangement, the above constraint can be expressed in terms of input

constraints in the form of:

− U̇maxTs ≤ (MU1 −MU2)∆Uk ≤ U̇maxTs (3.12)

where

MU1 = [0(N−1)m×m I(N−1)m×(N−1)m], MU2 = [I(N−1)m×(N−1)m 0(N−1)m×m]

U̇max =



u̇max

u̇max
...

u̇max
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Thus summarized as:

MU̇∆Uk ≤ U̇b

where

MU̇ =

 MU1 −MU2

MU2 −MU1

 , U̇b =

 U̇maxTs

U̇maxTs


3.3.3 State and Output Constraints

Output constraints are categorized here as well because they are often a combi-

nations of some or all of the states. States can also be considered as a special case of

output when output matrix C = I. If a particular output is defined as ∆z = Cz∆xk,

the constraints are represented as zlb ≤ Czxk+i ≤ zub for i = 0, 1, 2, . . . , N − 1, where

zlb and zub are the upper and lower bounds for the output variables. Since xk+i =

xT+∆xk+i, zlb ≤ Cz (xT + ∆xk+i) ≤ zub. Thus, zlb−CzxT ≤ Cz∆xk+i ≤ zub−CzxT .

It can be represented in matrix form as: Cz

−Cz

∆xk+i ≤

 (zub −CzxT )

− (zlb −CzxT )

 (3.13)

With proper arrangement and substitution of ∆Xk from (3.5), the constraints can be

expressed in terms of ∆Uk as:

Cz (F∆xk + H∆Uk) ≤ ∆Zb (3.14)
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where

Cz =



 Cz

−Cz

 Cz

−Cz


. . .  Cz

−Cz





∆Zb =



 (zub −CzxT )

− (zlb −CzxT )


 (zub −CzxT )

− (zlb −CzxT )


... (zub −CzxT )

− (zlb −CzxT )




3.3.4 Combined Input and State Constraints

Both the input and output variable constraints can be integrated into one equa-

tion as shown below.

MU∆Uk ≤ ∆Ub from Eq. (3.10)

Cz (F∆xk + H∆Uk) ≤ ∆Zb from Eq. (3.14)

or CzH∆Uk ≤ ∆Zb − CzF∆xk

∴ Γ∆Uk ≤ Υ (3.15)
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where Υ is a matrix containing both input and output variable constraints and

Γ =


MU

MU̇

CzH

 , Υ =


∆Ub

U̇b

∆Zb − CzF∆xk


3.4 Stability

See Appendix section (9.1).

3.5 Simulation Setup

The above algorithm is implemented in simulation on a quadcopter. The 6-

degree of freedom equations of motion were linearized at a certain hover position

denoted as

xT = [pT 01×3 01×3 01×3]T , uT = [
mg

4

mg

4

mg

4

mg

4
]T

where p ∈ <3 is any constant position. Here, p = 03×1 is used. uT is the thrust

values needed to maintain hover. And the corresponding matrices Ac and Bc are:

Ac =



03×3 I3×3 03×3 03×3

03×3 03×3 Ac,Θ 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3


where

Ac,Θ =


0 −g 0

g 0 0

0 0 0


and Bc matrix is the same as in Eq. (2.35).

Simulation results are combined with NMPC and shown in section (4.6).
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CHAPTER 4

Nonlinear Model Predictive Control

4.1 State Dependent Coefficient based Pseudo-Linear Quadratic Control Formula-

tion

In this section, the State Dependent Riccati Equation (SDRE) formulation is

summarized. The essential idea is to utilize the State Dependent Coefficient (SDC)

factorization (Ref. [61]) of the nonlinear dynamics. The SDC based control technique

provides a sub-optimal solution to the control problem, but without imposing any

state and/or input constraints. A state space representation of the quadcopter is

obtained, where each of its system matrices are now expressed as functions of the

current state (Ref. [62]). This method uses the quadratic form performance index to

solve for an infinite horizon optimal problem, for which its solution is locally stable

(Ref. [63]). This can be considered to be an improvement over the Linear Quadratic

Control formulation for the linear time invariant (LTI) systems (see Ref. [64]). The

developments in this section are key to the NMPC solution discussed in the next

section. Consider a dynamic system as in (3.1), The SDRE formulation involves

transforming the nonlinear system into the following state space form,

ẋ = Ac(x)x + Bc(x)u (4.1)

Where x ∈ <n is the state vector, u ∈ <m is the input vector, and Ac(x) ∈ <n×n

and Bc(x) ∈ <n×m are the pseudo-linear system matrices in the SDC form and

the pairs (Ac(x),Bc(x)) are stabilizable ∀x ∈ <n. It is important to note that this

representation of Ac(x) and Bc(x) is not unique in general, except for a scalar system.

Different state dependent coefficient matrices can be obtained from the equations of
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motion, and a solution to the optimization problem may or may not exist. However,

we derive a particular factorization (shown later) and the existence of the sub-optimal

controller is assumed. The SDC LQT (linear quadratic tracker) formulation minimizes

the infinite horizon objective function:

min J(x,u) =

∫ ∞
0

[
(x− xr)TQ(x)(x− xr) + uTR(x)u

]
dt (4.2)

Where Q(x) ≥ 0 is a positive semidefinite matrix and R(x) > 0 is a positive definite

matrix with appropriate dimensions. The discrete-time equivalent of Eq. (4.1) is

obtained by using a zero-order-hold (zoh) with a specified sample time. Let the

discrete-time equivalent of the system be of the following form:

xk+1 = A(xk)xk + B(xk)uk (4.3)

Where, A(xk) and B(xk) are discrete approximations of the continuous Ac(x) and

Bc(x) respectively.

From the description of the quadcopter, we note that B(xk) = B (a constant

matrix). Since Eq. (4.3) is of the pseudo-linear form, the system matrices can be

considered to be constants for each sampling interval i.e.,[tk, tk+1) with tk+1 − tk =

∆t (Ref. [65]). The SDC LQT optimization problem then requires the solution for

the Discrete-time Algebraic Riccati Equation (DARE) which is of the form:

Q(xk) + A(xk)
TP(xk)A(xk)−P(xk)

−A(xk)
TP(xk)B(xk)

(
B(xk)

TP(xk)B(xk) + R(xk)
)−1

B(xk)
TP(xk)A(xk) = 0

where Qk and Rk are discrete equivalents of the weight matrices. The solution P(xk)

from Eq. (4.4) is then used to compute the Kalman gain sequence as shown in Ref. [66].

K(xk) =
(
B(xk)

TP(xk)B(xk) + R(xk)
)−1

B(xk)
TP(xk)A(xk)
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So that

uk = −K(xk)(xk − xrk) (4.4)

is the solution to the SDC LQT control problem.

4.2 SDC Representation of the Quadcopter Dynamics

It should be noted that in Eq. (4.1), the first term Ac(x)x vanishes if x = 0.

For the quadcopter case (2.36), f(x) doesn’t completely vanish when x = 0. Thus a

slight change is needed in Eq. (4.1) to account for this. The quadcopter system will

be transformed into the form:

ẋ = Ac(x)x + Bc(x)δu (4.5)

where δu = u − uT and uT represents the constant force term that is required to

balance the weight of the quadcopter. It is assumed that the quadcopter starts from

an initial equilibrium state. The new control design then focuses on synthesis of δu.

One possible way to factorize the equations of motion into the SDC form is presented

in Eq. (4.6).

Ac(x) =



03×3 RT
BI 03×3 03×3

03×3 A22 A23 A24

03×3 03×3 03×3 W

03×3 03×3 03×3 A44


(4.6)

Where

A22 =


0 r

2
− q

2

− r
2

0 p
2

q
2
−p

2
0

 , A23 =


0 −g sin θ

θ
0

g cos θ sinφ
φ

0 0

g (cos θ+1)(cosφ−1)
2φ

g (cosφ+1)(cos θ−1)
2θ

0
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A24 =


0 −w

2
v
2

w
2

0 −u
2

−v
2

u
2

0

 , A44 =


0 (Jy−Jz)r

2Jx

(Jy−Jz)q

2Jx

(Jz−Jx)r
2Jy

0 (Jz−Jx)p
2Jy

(Jx−Jy)q

2Jz

(Jx−Jy)p

2Jz
0


and Bc is the same as in Eq. (2.35). But one issue that arises from using this form

is that some terms in matrix A23 become infinite when the denominators become 0.

To prevent this from happening, the first three terms of Taylor series expansions of

sin θ, sinφ, (cos θ− 1), and (cosφ− 1) are used here to provide a close approximation

(In reality, the approximations only differ from their true values 4% at most in the

range of (−π
2
, π

2
)). By doing this, A23 can be expressed as shown in (4.7).

A23 =


0 −g(1− θ2

3 !
+ θ4

5 !
) 0

g cos θ(1− φ2

3 !
+ φ4

5 !
) 0 0

g cos θ+1
2

(−φ
2

+ φ3

4 !
− φ5

6 !
) g cosφ+1

2
(− θ

2
+ θ3

4 !
− θ5

6 !
) 0

 (4.7)

Considering the specific aspects of the quadcopter as detailed above, the discretized

system for the derivation of NMPC is summarized below:

xk+1 = A(xk)xk + B δuk (4.8)

Where we have used the fact that for this system B(xk) = B (a constant matrix).

Following the same approach as outlined for the linear MPC, we arrive at the N step

state prediction equations (similar to Eq. (3.5)):

Xk = F(xk)xk + H(xk)∆Uk (4.9)
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Where,

Xk =



xk

xk+1

xk+2

...

xk+N−1


, ∆Uk =



δuk

δuk+1

δuk+2

...

δuk+N−1


, F(xk) =



I

A(xk)

A(xk)2

...

A(xk)N−1



H(xk) =



0

B 0

A(xk)B B 0

...
...

...
. . .

A(xk)N−2B A(xk)N−3B · · · B 0


Similarly, the terminal state is given by:

xk+N = A(xk)Nxk + B̄(xk)∆Uk

where

B̄(xk) =
[
A(xk)N−1B A(xk)N−2B · · · A(xk)B B

]

4.3 Controller Design

The nonlinear MPC uses the same algorithm as the linear MPC to calculate

the solution to the minimization of the cost function outlined in Eq. (3.6). The

main difference between the linear and nonlinear version of the MPC is that now,

the objective function depends on the current states of the system and needs to be
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calculated at the start of each sample interval. The objective function Eq. (3.6) then

becomes:

J(xk,Uk) = ∆UT
k

(
H(xk)T Q̄H(xk) + R̄ + B̄(xk)

T
QfB̄(xk)

)
∆Uk

+ 2
[
(F(xk)xk −Xr

k)
T Q̄H(xk) + (A(xk)Nxk − xrk+N)TQfB̄(xk)

]
∆Uk

+ (F(xk)xk −Xr
k)
T Q̄(F(xk)xk −Xr

k)

+ (A(xk)Nxk − xrk+N)TQf (A(xk)Nxk − xrk+N) (4.10)

The cost function seen to be quasi-quadratic and the regular quadratic pro-

gramming method is used to solve for the control (Eq. (4.10)).

4.4 Constraints

Similar to Eq. (3.15), the input and output variable constraints are integrated

into one equation of the form

Γ(xk)∆Uk ≤ Υ(xk) (4.11)

where Υ(xk) is a matrix containing both input and output variable constraints and

Γ(xk) =


MU

MU̇

Cz(xk)H(xk)

 , Υ(xk) =


∆Ub

U̇b

Zb − Cz (xk)(F(xk)xk + H(xk)UT )
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Where,

∆Ub =



 (uub − uT )

− (ulb − uT )


 (uub − uT )

− (ulb − uT )


... (uub − uT )

− (ulb − uT )





, Zb =



 zub

−zlb


 zub

−zlb


... zub

−zlb





4.5 Stability and State Convergence

See Appendix section (9.2).

4.6 Simulation Results

For both LMPC and NMPC cases, the system dynamics presented in (2.36) sub-

ject to constraints (2.37) and (2.39) is simulated. Three different reference trajectories

are generated to evaluate the effectiveness of the control laws: a) Helical, b) Spherical

Spiral, and c) Straight Line Segments as shown in Fig. (4.1), (4.2), (4.3), (4.4), (4.5)

and (4.6).

In order to further assess the effectiveness of the NMPC scheme, simulations

were performed with simultaneous high frequency disturbance torques injected in

the roll and pitch channels starting at 5s. The disturbances are two exponentially

decaying sinusoidal functions during t ∈ (5, 10)(s):

δτ = e−0.1t [sin(10t) cos(10t) 0]T
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The disturbance is used to approximate the effects of wind during typical out-

door flight conditions. The same reference trajectories were being tracked and the

results are shown in Fig. (4.7), (4.8), (4.9), (4.10), (4.11), and (4.12).

Varying prediction horizons for linear and nonlinear MPC are performed and

their performances are summarized in the Table (4.1) and (4.2). The average RMS

is calculated by using:

Average RMS =

√√√√ 1

Nt

Nt∑
i=1

‖pi − pri‖2
2

where Nt is the size of the entire simulation horizon. The average control effort is

calculated by using:

Average Control Effort =
1

Nt

Nt∑
i=1

∆uTi ∆ui

The data shows that nonlinear MPC yields better position tracking and uses less

control effort.

Table 4.1. RMS of Position Tracking Errors

Trajectory Nonlinear/Linear N = 10 N = 15 N = 25 N = 35 N = 45
Helical Nonlinear 0.5663 0.5824 0.5831 0.5757 0.5832
Helical Linear 0.8075 0.8348 0.8484 0.8364 0.8334

Spherical Spiral Nonlinear 1.4739 1.4725 1.4725 1.4720 1.4726
Spherical Spiral Linear 1.4984 1.5000 1.5016 1.5009 1.5009

Straight Line Nonlinear 0.3112 0.3020 0.3169 0.3160 0.3155
Straight Line Linear 0.3722 0.3575 0.3633 0.3612 0.3603

4.7 Concluding Remarks

Fig. (4.1) and (4.2) shows the reference trajectory and the tracking errors for

both the linear and nonlinear MPC cases tracking a helical trajectory. It can be
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Table 4.2. Average Control Effort

Trajectory Nonlinear/Linear N = 10 N = 15 N = 25 N = 35 N = 45
Helical Nonlinear 0.3838 0.3724 0.3652 0.3665 0.3674
Helical Linear 0.4205 0.4107 0.4057 0.4084 0.4114

Spherical Spiral Nonlinear 0.1687 0.1689 0.1700 0.1707 0.1710
Spherical Spiral Linear 0.1910 0.1913 0.1914 0.1913 0.1913

Straight Line Nonlinear 0.2125 0.1433 0.1282 0.1280 0.1296
Straight Line Linear 0.2245 0.1593 0.1388 0.1379 0.1367

seen that both controllers achieve good tracking, however the transient response of

the nonlinear MPC is better. Clearly the speed of response with regards to position

tracking errors is much better the nonlinear MPC.

Fig. (4.3) and (4.4) shows the results of tracking a spherical spiral trajectory.

As with previous case, both the controllers achieve successful tracking.

Fig. (4.5) and (4.6) shows the results of tracking a straight line trajectory seg-

ments between two waypoints. As with the previous cases, successful tracking are

achieved for both controllers. And the superior transient performance of the nonlin-

ear MPC is clearly seen.

Figures (4.7), (4.8), (4.9), (4.10), (4.11), and (4.12) showed the performance of

linear and nonlinear MPC subject to disturbances. Under disturbances, linear MPC

and nonlinear MPC both performed well with acceptable amount of tracking errors

and kept the input within bounds. The controllers provide a feedforward cancellation

of the input disturbance. It can be seen from the figures that the nonlinear MPC

significantly outperforms the linear MPC regards to transient performance.
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4.8 Comparison with a Feedback Linearization Controller

In [67], a feedback-linearization based nonlinear controller is used to control

a quadcopter. A comparison of feedback-linearization and MPC is made here to

showcase the effectiveness of MPC in handling constraints.

The quadcopter equations of motion can be represented in the alternative form

as below:

ẋ =



x4

x5

x6

(SθCψCφ + SψSφ) T
m

(SθSψCφ − CψSφ) T
m

g + CθCφ
T
m

x7

x8

x9

x8x9
Jy−Jz
Jx

+ τ1
Jx

x7x9
Jz−Jx
Jy

+ τ2
Jy

x7x8
Jx−Jy
Jz

+ τ3
Jz



(4.12)
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where

x =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12



=



x

y

z

ẋ

ẏ

ż

φ

θ

ψ

φ̇

θ̇

ψ̇


A two loop control system structure is used here with the position loop as the outer

loop and the attitude loop as the inner loop. The outer loop generates attitude

command for inner loop to track. Detailed stability proof can be found in [67]. The

control command can be generated by (assuming ψd = 0):

ẍ1 = ũ1 = −k1,i(x1 − xd1)− k1,d(x4 − xd4) (4.13)

ẍ2 = ũ2 = −k2,i(x2 − xd2)− k2,d(x5 − xd5) (4.14)

ẍ3 = ũ3 = −k3,i(x3 − xd3)− k3,d(x6 − xd6) (4.15)

T d =
√

(ũ3 − g)2 + ũ2
1 + ũ2

2 (4.16)

θd = arctan(
ũ1

ũ3 − g
) (4.17)

φd = arcsin(
ũ2m

T d
) (4.18)
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The command φd, θd, ψd can be used for inner loop tracking.

τ1 = Jx

(
−x8x9

Jy − Jz
Jx

− k7,i(x7 − xd7)− k7,dx10

)
(4.19)

τ2 = Jy

(
−x7x9

Jz − Jx
Jy

− k8,i(x8 − xd8)− k8,dx11

)
(4.20)

τ3 = Jz

(
−x7x8

Jx − Jy
Jz

− k9,i(x9 − xd9)− k9,dx12

)
(4.21)

The gains used for feedback linearization is fine tuned so that it has comparable

performance compared to MPC as shown in Fig. (4.16) (Going from p = [1, 1, 1] →

p = [0, 0, 0]) and (4.18) (Going from p = [2, 2, 2] → p = [0, 0, 0]). Good tracking

performance is observed in both controllers with feedback linearization with slightly

faster response and mild overshoot.

The same condition is simulated under a different set of actuator constraints

0 ≤ Fi ≤ 2.45 with other setting as before. Results are shown in Fig. (4.20) and

(4.22). It can be observed from Fig. (4.25) and (4.23) that feedback linearization

controller’s input saturated much more than LMPC.

When the starting position shifted to p = [3, 3, 3], the feedback linearization

base controller becomes unstable while LMPC continues to track properly as shown

in Fig. (4.24). This is due to the input and state violation that were committed by

the feedback linearization controller.
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Figure 4.1. Trajectory 1: Helical Trajectory.

46



0 5 10 15 20

Time (s)

-5

0

5
u:

 (
m

/s
)

Body Velocity

NMPC LMPC

0 5 10 15 20

Time (s)

-5

0

5

v:
 (

m
/s

)

0 5 10 15 20

Time (s)

-5

0

5

w
: (

m
/s

)

0 5 10 15 20
-200

0

200

p:
 (

de
g/

s)

Angular Velocity

0 5 10 15 20
-50

0

50

q:
 (

de
g/

s)

0 5 10 15 20

Time (s)

-1

0

1
r:

 (
de

g/
s)

0 5 10 15 20
0

1

2

3

F
1
: (

N
)

NMPC LMPC

0 5 10 15 20
0

1

2

3

F
2
: (

N
)

0 5 10 15 20

Time (s)

0

1

2

3

F
3
: (

N
)

0 5 10 15 20

Time (s)

0

1

2

3

4

F
4
: (

N
)

Figure 4.2. Trajectory 1: Helical Trajectory.
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Figure 4.3. Trajectory 2: Spherical Spiral Trajectory.
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Figure 4.4. Trajectory 2: Spherical Spiral Trajectory.
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Figure 4.5. Trajectory 3: Straight Line Trajectory.
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Figure 4.6. Trajectory 3: Straight Line Trajectory.
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Figure 4.7. Trajectory 1: Helical Trajectory (With Disturbance).
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Figure 4.8. Trajectory 1: Helical Trajectory (With Disturbance).
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Figure 4.9. Trajectory 2: Spherical Spiral Trajectory (With Disturbance).
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Figure 4.10. Trajectory 2: Spherical Spiral Trajectory (With Disturbance).
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Figure 4.11. Trajectory 3: Straight Line Trajectory (With Disturbance).
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Figure 4.12. Trajectory 3: Straight Line Trajectory (With Disturbance).
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Figure 4.14. Reference Velocity for Spherical Spiral Trajectory.
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60



0 5 10 15 20
-1

0

1
e

x
: 

(m
)

Position Errors

FL LMPC

0 5 10 15 20
-1

0

1

e
y
: 

(m
)

0 5 10 15 20

Time (s)

-1

0

1

e
z
: 

(m
)

0 5 10 15 20
-20

0

20

: 
(d

e
g

)

Euler Angles

0 5 10 15 20
-10

0

10

: 
(d

e
g

)

0 5 10 15 20

Time (s)

-1

0

1
: 

(d
e

g
)

0 5 10 15 20

Time (s)

-1

0

1

u
: 
(m

/s
)

Body Velocity

FL LMPC

0 5 10 15 20

Time (s)

-2

0

2

v
: 
(m

/s
)

0 5 10 15 20

Time (s)

-1

0

1

w
: 
(m

/s
)

0 5 10 15 20
-100

0

100

p
: 
(d

e
g
/s

)

Angular Velocity

0 5 10 15 20
-50

0

50

q
: 
(d

e
g
/s

)

0 5 10 15 20

Time (s)

-2

0

2

r:
 (

d
e
g
/s

)

Figure 4.16. Regulator case 1: feedback linearization vs. LMPC.
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Figure 4.17. Regulator case 1 input: feedback linearization vs. LMPC.
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Figure 4.18. Regulator case 2: feedback linearization vs. LMPC.
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Figure 4.19. Regulator case 2 input: feedback linearization vs. LMPC.
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Figure 4.20. Regulator case 1 (0 ≤ Fi ≤ 2.45): feedback linearization vs. LMPC.
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Figure 4.21. Regulator case 1 input (0 ≤ Fi ≤ 2.45): feedback linearization vs.
LMPC.
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Figure 4.22. Regulator case 2 (0 ≤ Fi ≤ 2.45): feedback linearization vs. LMPC.
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Figure 4.23. Regulator case 2 input (0 ≤ Fi ≤ 2.45): feedback linearization vs.
LMPC.
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Figure 4.24. Regulator case 3: feedback linearization vs. LMPC.
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Figure 4.25. Regulator case 3 input: feedback linearization vs. LMPC.
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CHAPTER 5

Cooperative Control based on Nonlinear Model Predictive Control

For the sake of simplicity, we will drop the bracketed term (xk) representing

dependency and use the subscript k instead: for example, A(xk) would simply be

written as Ak and so on.

The same N step future state:

Xk = Fkxk + Hk∆Uk

xk+N = AN
k xk + B̄k∆Uk (5.1)

5.1 Formation Graph and Information Consensus

Consider a set of Nv quadcopters, the i-th vehicle being described by:

xik+1 = Ai
kx

i
k + B∆uik (5.2)

where xik,∆uik are states and inputs of the i-th vehicle and all of quadcopters follow

the same model as described in Eq. (4.8). Similarly, we arrive at the N step prediction

equations for the i-th vehicle as Eq. (5.1):

Xi
k = Fi

kx
i
k + Hi

k∆Ui
k (5.3)

And the terminal state:

xik+N = (Ai
k)
Nxik + B̄i

k∆Ui
k

We use a directed graph pair (N , E) (shown in Fig. (5.1)) to model the information

exchange among vehicles, where N = {1, ..., Nv} is the node set representing each

vehicle in the formation and E ⊂ N × N is the edge set of ordered pairs of nodes,
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called edges. The edge (i, j) ∈ E denotes that vehicle j can access the current state of

vehicle i (i.e. in Fig. (5.1), the edge (3, 5) means vehicle 5 can access the information

from vehicle 3). Self edges (i, i) ∈ E are allowed (i.e. in Fig. (5.1) , vehicle 2 can access

its own location). We are using a leader-follower scheme in which only one of the

vehicles, the leader, would have access to the external reference trajectory and the rest

act as followers and maintain a formation relative to the leader (shown in Fig. (5.1),

vehicle 1 is the leader and vehicles 2 - 6 are followers). Using xi,rk+n (n = 1, . . . , N) to

denote reference trajectory for i-th vehicle for the horizon [k+1, k+N ], the reference

trajectories for each vehicle are determined as follows. For the leader, xi,rk+n is given

by the external reference trajectory. For the followers, the following proven stable

consensus scheme from Ref. [19] is used here for generating reference trajectories.
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Figure 5.1. A directed graph example.

xi,rk+n =
1∑Nv

j=1 Gij

Giix
i,r
k+n−1 +

∑
(i,j)∈E
j 6=i

Gij(x
j
k + dij)

 n = 1, . . . , N. (5.4)

where dij denotes the relative position between vehicle i and j desired in the forma-

tion. And G is a matrix associated with the graph defined as: Gii = 1, ∀i ∈ N and

Gij = 1, ∀(j, i) ∈ E .

73



5.2 Controller Design

With reference trajectories determined, consider the following objective function

for vehicle i:

J(xik) =
[
Xi
k −Xi,r

k

]T
Q̄
[
Xi
k −Xi,r

k

]
+ (∆Ui

k)
T R̄∆Ui

k

+
[
xik+N − xi,rk+N

]T
Qf

[
xik+N − xi,rk+N

]
(5.5)

where

Q̄ =



Q

Q

. . .

Q


, R̄ =



R

R

. . .

R


, Xi,r

k =



xi,rk

xi,rk+1

xi,rk+2

...

xi,rk+N−1


and Q,Qf ∈ <n×n and R ∈ <m×m and they satisfy Q ≥ 0, Qf ≥ 0 and R > 0.

5.3 Constraints

5.3.1 Combined Input and State Constraints

The same combined constraints as Eq. (4.11) in previous chapter are summa-

rized here as:

Γ(xk)∆Uk ≤ Υ(xk) (5.6)

5.3.2 State Constraints - Collision Avoidance

The second part of state constraints stems from collision avoidance. In order

to ensure the vehicles do not collide with each other, a predetermined safe distance

ds is to be enforced between them. The distance between any two vehicles xik and xjk

should always be greater than ds.

∀(i, j) ∈ E , ‖Cp(xik+n − xjk)‖ ≤ ds, n = 1, . . . , N. (5.7)
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Where Cp is the output matrix corresponding to position p and Cp = [I3×3 03×3 03×3 03×3].

For i-th vehicle, the constraints on its states can be expressed as:

Cz
(
Fxik + H∆Ui

k

)
≤ ∆Zi

b

∀(i, j) ∈ E , ‖Cp(xik+n − xjk)‖ ≤ ds, n = 1, . . . , N. (5.8)

5.4 Stability

It is proved in Ref. [19] that if all the associated interaction topologies contain

a spanning tree, the discrete update scheme described in Eq. (5.4) achieves consensus

asymptotically. As shown in Fig. (5.2), (5.3), (5.4), and (5.5), in all scenarios, vehicle

1 is the leader, which is also the root node of all spanning trees. Let Ek represent

the communication topology during the time interval (tk, tk+1), if each Ek (k ∈ N)

contains a spanning tree, the reference trajectory of each vehicle given by Eq. (5.4)

would eventually converge to its designated location relative to the leader as shown

in Eq. (5.9).

‖xi,rk+n − (x1
k + di1)‖ → 0, i = 2, 3, · · · , Nv. (5.9)

as n → ∞. All reference trajectories converge asymptotically. Each agent employs

an MPC controller to track its respective reference trajectory by minimizing its cost

function described by Eq. (5.5), which has been proven stable in Ref. [39]. By com-

bining the consensus strategy and the MPC tracking controller, the entire system

achieves consensus asymptotically as t→∞.

The communication topology spanning tree constraint can be further relaxed

to repeating occurrences of a set of topologies by which only their union needs to con-

tain a spanning tree for consensus to be achieved. If there exists an infinite sequence

of uniformly bounded, nonoverlapping time intervals [kjTs, (kj + lj)Ts), j = 1, 2, . . .,

starting at k1 = 0, with the property that each interval [(kj + lj)Ts, kj+1Ts) is uni-
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Figure 5.2. 1. Triangular formation:
weakly connected overall.
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Figure 5.3. 2. Triangular forma-
tion: weakly connected overall, follow-
ers strongly connected.

formly bounded and the union of the graphs across each interval [(kj + lj)Ts, kj+1Ts)

has a spanning tree, the discrete update scheme described in Eq. (5.4) achieves con-

sensus asymptotically (See Ref. [19] Theorem 3.10). Combining this requirement with

the MPC controller for tracking would also guarantee the stability of the formation

controller.

5.5 Simulation Results

In this section simulation results are presented for formation tracking for a group

of vehicles using the method detailed in the preceding sections. Two formations and

two connectivity conditions are considered here as shown in Fig. (5.2), (5.3), (5.4),

and (5.5). Safe distance to avoid collision is set as ds = 0.4(m). In scenarios 1 and

3, all the vehicles are weakly connected with vehicle 1 being the root node. Every

follower vehicle is either directly or indirectly connected to the root node. While

in scenarios 2 and 4, besides the overall weakly connected condition with vehicle 1
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Figure 5.4. 3. Hexagonal formation:
weakly connected overall.
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Figure 5.5. 4. Hexagonal formation:
weakly connected overall, followers
strongly connected.

being the root node, the follower nodes are strongly connected. Each follower vehicle

is able to access information from any other follower vehicles. In all scenarios, root

node vehicle 1 is the leader with access to the external reference trajectory.

Fig. (5.6) and (5.7) showed the formation history of 6 vehicles with weakly

connected graph tracking a triangular shape formation starting from a straight line

formation. Fig. (5.6) showed the formation history when looked in the X-Y plane

and X-Z plane. The first plot in Fig. (5.7) showed its trajectory in 3D space and the

second one showed its reference at different stages of its trajectory.

Fig. (5.8) and (5.9) showed the the same desired formation with its followers

strongly connected. In comparison, it can be seen that strongly connected follow-

ers graph significantly reduces z position divergence of the vehicles without loss of

performance in x and y directions.
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The same phenomenon can be observed from Fig. (5.10), (5.11), (5.12), and (5.13),

which showed the formation history of 6 vehicles tracking a hexagon formation with

connectivity conditions shown in Fig. (5.4) and (5.5).

5.6 Concluding Remarks

A new strategy for formation stabilization is proposed by combining an existing

consensus strategy and a nonlinear model predictive control law derived from a state

dependent coefficient formulation that employs a novel parameterization to avoid

singularities. The consensus strategy is used here to generate reference trajectories

for the individual NMPC controller to track. By doing this, consensus is achieved

while input, input rate, state, and output constraints are explicitly incorporated at

the same time. Simulations are performed to show the effectiveness of the control

strategy and it shows the beneficial effects of having followers strongly connected.

The control law ensures stable formation convergence as long as certain interaction

topology conditions are met. Those conditions were discussed as well.
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Figure 5.6. 1. Triangular 6-vehicle formation, weakly connected overall.

79



0.4
2

0.3

0.2

1

z:
 (

m
) 0.1

0

10

y: (m)

0

3D TRACKING

-0.1

5

x: (m)

-1
0

-2 -5

X
1

X
2

X
3

X
4

X
5

X
6 Ref

0.35
1

0.3

0.25

0.2

0.5

0.15

z:
 (

m
)

0.1

0.05

1.5

y: (m)

0

0

3D Reference

1

-0.05

0.5
0

x: (m)

-0.5-0.5
-1

-1.5
-2-1 -2.5

X
2

X
3

X
4

X
5

X
6

Figure 5.7. 1. Triangular 6-vehicle formation, weakly connected overall.

80



-2 -1 0 1 2 3 4 5 6 7 8

x: (m)

-4

-3

-2

-1

0

1

2

3

4
y

: 
(m

)

Formation History: X-Y

X
1

X
2

X
3

X
4

X
5

X
6 Ref

-4 -2 0 2 4 6 8 10

x: (m)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

z:
 (

m
)

Formation History: X-Z

X
1

X
2

X
3

X
4

X
5

X
6 Ref

Figure 5.8. 2. Triangular 6-vehicle formation, weakly connected overall, followers
strongly connected.
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Figure 5.10. 3. Hexagonal 6-vehicle Formation, weakly connected overall.
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CHAPTER 6

Cooperative Estimation

Here, the cooperative estimation problem is solved with a dynamically varying

inter-vehicle communication topology using limited measurements of a moving target.

The conditions for a successful estimation problem are provided and the algorithm is

evaluated in representative simulations. A covariance intersection based fusion with

multiple estimates is performed that de-emphasizes target position estimates asso-

ciated with large covariances, which typically happens when a vehicle in the team

doesn’t receive sufficient measurements for extended periods of time. Cooperative

control is not the primary focus of this chapter, so long as this vehicle is in com-

munication with some others that do obtain direct target measurements, it could be

steered towards the target and stays close to the team.

6.1 Problem Formulation

Consider a set of Nv vehicles, each equipped with range sensors, that is able

to detect the absolute distance between itself and the target. At any time instant,

tk, let −→r i = [xi yi zi]
T , (i = 1, · · · , Nv) represent the Inertial position of the i-th

vehicle. At this instant, let −→r t = [xt yt zt]
T represent the Inertial position of the

target. The distance between any two vehicles is denoted as dij = ‖−→r j −−→r i‖. Note,

‖−→r j − −→r i‖ =
√

(−→r j −−→r i) · (−→r j −−→r i). The operator ‘·’ in −→p · −→q represents the

dot product between the two vectors −→p and −→q .
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Figure 6.1. Example scenario: single target and multiple unmanned aerial vehicles.

Fig. (6.1) shows a typical formation scenario for the cooperative estimation

problem as solved in this paper (Graph is in 2D). All agent vehicles are procuring

measurements from the target. The measurements can be range and angles. At

the same time, they also have inter-vehicle communications with other neighboring

vehicles, i.e., in Fig. (6.1), vehicle 2 also gets information from vehicle 1,3, and 4.

This allows vehicle 2 to make a better estimate of the location of the vehicle.

Define the operator ‘∧’ to denote the enumerated list of vehicles in communica-

tion with any specific vehicle (including communication with itself) ‘and’ can transmit

target range information. For example, as per Fig. (6.1), < 1 ∧ {t, 1, 2, 3, 4} > = {t, 1},

< 2 ∧ {t, 1, 2, 3, 4} > = {t, 1, 2, 3, 4}. Also define λi = λ(i, {· · · }) ∈ Z+ to
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denote the size of this enumerated list. Thus, λ1 = λ(1, {t, 1, 2, 3, 4}) = 2 and

λ2 = λ(2, {t, 1, 2, 3, 4}) = 5. The trilateration based estimation problem is posed

for all i when λi ≥ 4 and is explained in the next section. When λi < 4, the target

state estimate is constructed using an extended Kalman filter (EKF) utilizing an ap-

propriate target model.

Problem Statement: Given Nv vehicles in a group with some inter-vehicle con-

nection topology at time instant tk, with all or a subset of the group receiving

measurements from a moving target, the objective is to estimate the inertial po-

sition of the target such that the estimation errors ‖ [x̃t ỹt z̃t]
T
k ‖ are minimized.

[x̃t ỹt z̃t]
T
k = [x̂t ŷt ẑt]

T
k − [xt yt zt]

T
k , where [x̂t ŷt ẑt]

T
k is the fused estimate of the

target true position [xt yt zt]
T
k at time tk.

6.2 Solution Methodology

The solution methodology for the problem outlined in the previous section is

presented here. The algorithm for implementing the cooperative estimation scheme

is illustrated. The details of the steps involved in the estimation process are outlined

in the next sections.

At any given time instant tk,

for i = 1 : Nv do

if λi ≥ 4 then

→ solve trilateration using nonlinear least squares.

→ Store i−̂→r t,k (Target Position Estimate), iPt,k (Covariance)

→ Fuse all
(
i−̂→r t,k, iPt,k

)
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else

→ Implement EKF

→ Store i−̂→r t,k (Target Position Estimate), iPt,k (Covariance)

end if

end for

The algorithm is repeated for all k →∞.

6.2.1 Constant Velocity Target Model with Only Range Measurements

6.2.1.1 Trilateration based Estimation

The trilateration based estimation procedure is outlined in this section. If

vehicle i can access the information from at least three other vehicles apart from

getting the target position directly, i.e., λi ≥ 4, the target dynamics is not required

and a nonlinear least squares algorithm can be solved to determine the target’s Inertial

position. Assume the two neighboring vehicles that i can access information from are

j1, j2, and j3 the relations between the target location and locations of the vehicles

at time tk can be represented as:

(xi − xt)2 + (yi − yt)2 + (zi − zt)2 = d2
ti

(xj1 − xt)2 + (yj1 − yt)2 + (zj1 − zt)2 = d2
tj1

(xj2 − xt)2 + (yj2 − yt)2 + (zj2 − zt)2 = d2
tj2

(xj3 − xt)2 + (yj3 − yt)2 + (zj3 − zt)2 = d2
tj3

(6.1)

Note, in Eq. (6.1), xi, yi, zi, xj1 , yj1 , zj1 , xj2 , yj2 , zj2 , xj3 , yj3 , zj3 are known

from the individual position data that is exchanged. Additionally, dti, dtj1 , dtj2 , and

dtj3 are also exchanged. The only unknowns are xt, yt, and zt that can be solved

using a nonlinear least squares algorithm.
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Eq. (6.1) can also be written as, h(xt, yt, zt,p) = d, where

p = [xi yi zi xj1 yj1 zj1 xj2 yj2 zj2 xj3 yj3 zj3 ]T

and d =
[
d2
ti d

2
tj1
d2
tj2
d2
tj3

]T
.

The Jacobian of h(xt, yt, zt,p) with respect to the target state at time tk is

represented as Hk(xt, yt, zt,p) =
∂h

∂rt

∣∣
tk

and can be expressed as,

Hk(xt, yt, zt,p) = −2



xi − xt yi − yt zi − zt

xj1 − xt yj1 − yt zj1 − zt

xj2 − xt yj2 − yt zj2 − zt

xj3 − xt yj3 − yt zj3 − zt


The covariance of the target’s Inertial position estimate can be obtained as

iPt,k =
[
Hk(xt, yt, zt,p)THk(xt, yt, zt,p)

]−1

6.2.1.2 Target Model based Extended Kalman Filter Estimation

If vehicle i can only access one other neighboring vehicle’s information or none,

the method detailed in previous subsection would be insufficient to determine the

location of the target. To help better estimate the target position under similar

circumstances, we introduce a target model and use it for target state propagation.

Assume the model of the target can be shown as Eq. (6.2).

ṙt = f(rt,u) + Gw (6.2)
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The output of the system is defined as range measurements the vehicle is able to

access:

ỹk = h(rt) + vk =


(ri − rt)

T (ri − rt)

(rj1 − rt)
T (rj1 − rt)

...

+ vk (6.3)

Where w ∼ N(0,Q(t)) and vk ∼ N(0,R) represent the process noise and measure-

ment noise respectively and are assumed to be uncorrelated. Based on the model

and the output, a continuous-discrete extended Kalman filter (EKF) can be used to

estimate the target location. The EKF formulation can be summarized as follows:

Initialization: r̂t(t0)= r̂t0

P0 = E{r̃t0(r̂t0)T}

Gain Update: K−k = P−k HT
k (r̂−tk)[Hk(r̂

−
tk)P

−
k HT

k (r̂−tk)] (6.4)

Hk(r̂
−
tk)=

∂h

∂rt

∣∣∣∣
r̂−tk

State & Covariance r̂+
tk = r̂−tk + Kk[ỹk − h(r̂−tk)] (6.5)

Update: P+
k = [I−KkHk(r̂

−
k )]P−k (6.6)

State & Covariance ˙̂rt = f(r̂t,u) (6.7)

Propagation: Ṗ(t) = F(t)P(t) + P(t)F(t)T + G(t)Q(t)G(t)T (6.8)

F(t) =
∂f

∂r̂t

∣∣∣∣
r̂t,u

(6.9)

Where

∂h

∂rt

∣∣∣∣
r̂−tk

= 2


(x̂t − xi) (ŷt − yi) (ẑt − zi)

(x̂t − xj1) (ŷt − yj1) (ẑt − zj1)

...
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6.2.2 Point Mass Aircraft Model with Range, Azimuth Angle, and Elevation Angle

Measurements

In this case, vehicle i can receive measurements of range, azimuth angle, and el-

evation angle from UAV to Target. The continuous-time state model and the discrete-

time measurements for reference UAV can be summarized as:

Ẋt = f2(Xt,u
c, t) + G2w2

ỹk = h2(Xk) + vk (6.10)

where Xt = [xt, yt, zt, Vt, γ, χ]T is the state vector; ỹk = [rk, φk, θk]
T is the

measurement vector; uc = [V c, acv, a
c
h]
T is the input vector.

And the target model f2 used here is:

ẋt = Vt cosχ cos γ V̇t = V c − Vt

ẏt = Vt sinχ cos γ γ̇ =
acv
Vt

żt = Vt sin γ χ̇ =
ach

Vt cos γ

Notice here target’s (V c, acv, a
c
h) are not available to agents.

The measurement function is :

h2(Xk) =


√

(xt − xi)2 + (yt − yi)2 + (zt − zi)2

tan−1( yt−yi
xt−xi )

sin−1( zt−zi√
(xt−xi)2+(yt−yi)2+(zt−zi)2

)

+


vr

vφ

vθ

 (6.11)

A few matrices that are needed for the EKF process are defined here as well:

F =
∂f2

∂X̂t

∣∣∣∣
X̂t

=

 03×3 F12

03×3 F22

 (6.12)

H =
∂h2

∂X̂t

∣∣∣∣
X̂t

=

[
H1 H2

]
(6.13)
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where

F12 =


cos γ̂ cos χ̂ −V̂t sin γ̂ cos χ̂ −V̂t cos γ̂ sin χ̂

cos γ̂ sin χ̂ −V̂t sin γ̂ sin χ̂ V̂t cos γ̂ cos χ̂

sin γ̂ V̂t cos γ̂ 0

 , F22 =


−1 0 0

0 0 0

0 0 0



H1 =


x̂t−xi
r̂

ŷt−yi
r̂

ẑt−zi
r̂

yi−ŷt
(x̂t−xi)2+(ŷt−yi)2

x̂t−xi
(x̂t−xi)2+(ŷt−yi)2

− (x̂t−xi)(ẑt−zi)
r̂2
√

(x̂t−xi)2+(ŷt−yi)2
− (ŷt−yi)(ẑt−zi)
r̂2
√

(x̂t−xi)2+(ŷt−yi)2

√
(x̂t−xi)2+(ŷt−yi)2

r̂2


and H2 = 03×3, r̂ =

√
(x̂t − xi)2 + (ŷt − yi)2 + (ẑt − zi)2.

In the above formulation, h2(Xk) and H can be expanded to accommodate

measurements received from other vehicles.

6.3 Simulation Results

Simulations are performed to show the effectiveness of the algorithm as shown

in Fig. (6.2 - 6.5).

Fig. (6.6) showed the true target position progression w.r.t time for the point

mass aircraft model.

6.4 Concluding Remarks

In Fig. (6.2 - 6.5), the ylabel of the 4th subplot of each figure indicates which

algorithm the vehicle is using. (EKF,1), (EKF,2), (EKF,3), and (EKF,4) means

EKF is used with information from 1 vehicle, 2 vehicle, 3 vehicles, and 4 vehicles,

respectively.

In the first plot of Fig. (6.2), at first, the vehicle is able to receive information

from 3 other vehicles and trilateration base method is used. It can be seen that it

estimates the target location reasonably well. Starting from t = 2.5s, the vehicle loses
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communication from one of the vehicles and starts using (EKF,3). The estimation

becomes smoother since a approximate model of the target is introduced. At t = 5s, it

lost one more accessible vehicle, and started using (EKF,2). The decrease of number

of accessible vehicles also caused an increase of estimation covariance. Second plot of

Fig. (6.2) showed the estimation error when its interaction topology is reversed.

In Fig. (6.3), the vehicles are using (EKF,3) and (EKF,2) throughout the sim-

ulation.

Fig. (6.4) and (6.5) showed the tracking performance with similar topology

changes with with range, azimuth angle, and elevation angle measurements for a

point mass aircraft model.
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Figure 6.2. Constant velocity model, target position estimation from vehicle 1 and 2.
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Figure 6.3. Constant velocity model, target position estimation from vehicle 3 and 4.
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Figure 6.4. Point mass aircraft model, target position estimation from vehicle 1 and
2.
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Figure 6.5. Point mass aircraft model, target position estimation from vehicle 3 and
4.
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CHAPTER 7

Cooperative Control and Estimation

In this chapter, the cooperative control and estimation algorithms mentioned

in preceding chapters are combined. Each vehicle generates an estimate of the target

based on the measurements it made and the information it received from its acces-

sible neighbors. The target becomes the leader here and the estimates each vehicle

generates is used to track the target. In the cooperative control scheme, the agents

have two objectives. First, maintain a desired relative distance to the target. Sec-

ond, maintain a desired formation with the other agents. The two objectives are

weighted based on their importance, which is characterized by their covariance. In

simple terms, if target estimation is good, stay closer to target estimates. If target

estimation is bad, stay closer to formation.

7.1 Solution Methodology

Fig. (7.1) shows the overall cooperation scheme. The process works as follows:
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Figure 7.1. Cooperative control and estimation.

1. UAVs obtain measurements regarding the target, respectively.

2. For each vehicle, based on its own measurements and information it received

from its communicating neighbours (described in ‘Connection Topology’block.),

it generates a target estimation of its own.

102



3. There are two algorithms for target estimation for each vehicle:

(a) Trilateration (when measurements are sufficient enough).

(b) Extended Kalman filter (when measurements are not sufficient).

4. Target estimation and location information from communicating neighbours are

fed into a consensus algorithm to generate reference trajectories for vehicles.

This process is broken down into two steps, shown in Fig. (7.2).

(a) Neighbour consensus: a desired location for vehicle 1 is generated based

its neighbouring agents’ location.

A reference generation equation similar to Eq. (5.4) is used here:

xi,rk+n,f =
1∑Nv

j=1 Gij

Giix
i,r
k+n−1 +

∑
(i,j)∈E
j 6=i

Gij(x
j
k + dij)

 (7.1)

where n = 1, · · · , N .

(b) Target estimation fusion: the desired location for vehicle 1 from previous

step is then weighted and averaged with the desired location calculated

from target estimate.

xi,rk+n = (P−1
fi

+ P−1
ti

)−1
(
P−1
fi

xi,rk+n,f + P−1
ti

(x̂it + dit)
)

(7.2)

where xi,rk+n,f is from Eq. (7.1), dit is the relative position between vehicle

i and target. And Pfi is covariance value artificially assigned to generated

desired location from accessible neighboring agents.

5. An MPC controller is used to compute control for each vehicle to track their

respective reference trajectory.

6. That control inputs are then fed back to respective vehicles for execution.
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Figure 7.2. Reference generation for MPC.
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7.2 Simulation Setup and Results

The desired formation is shown in Fig. (7.3). This formation here is slightly

different than the one used in cooperative control to help better estimate z position

of the target. Using the method detailed in the preceding section and setting Pfi =

diag(0.1, 0.1, 0.1). Two simulations with different connection topology conditions are

simulated and their results are shown in Fig. (7.4 - 7.9).
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Figure 7.3. Desired formation for cooperative control and estimation.
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CHAPTER 8

Summary, Conclusions and Future Work

8.1 Summary and Conclusions

The purpose of this dissertation is to develop a Model Predictive Control (also

known as receding horizon control or moving horizon control) framework that is suit-

able for control of unmanned aerial vehicles. The developed scheme is then extended

to perform cooperative control and estimation for multiple unmanned aerial vehicles.

The main idea behind Model Predictive Control is to solve successive sequences

of open-loop finite horizon optimal control problems in real time. The control inputs

obtained from this formulation is then applied to the system but only for a fraction

of the horizon length. The one property that makes MPC so attractive is that it

is able incorporate constraints explicitly into the problem formulation. Linear con-

strained MPC has been extensively studied while nonlinear constrained cases remains

relatively barren.

Two main issues arise from the nonlinear MPC problem. The first is optimiza-

tion for a general nonlinear problem over even a small horizon is very computationally

intensive, if not impossible. The second is stability conditions for nonlinear MPC con-

trollers are often too complicated or too restrictive, if not impossible to check against.

We developed a novel nonlinear MPC algorithm based on State Dependent Co-

efficient (SDC) formulation. SDC transforms a nonlinear system into a pseudo-linear

form by employing a system matrix A that is dependent on the current state x. It

makes use of the existing mature linear MPC framework as well as exploit the inher-

ent nonlinearities of the system itself. It was shown that by choosing an appropriate
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sampling interval, a sampled-data implementation of the proposed nonlinear MPC

algorithm leads to a stable system. And for more specific constrained cases, a LMI

condition is provided to guarantee feasibility and stability for constrained nonlinear

systems.

The algorithm is then applied to an unmanned aerial vehicle, known as a quad-

copter. Its linear counterpart is also implemented in simulation as control experi-

ments. Three representative trajectories were tracked and the performances of linear

MPC and nonlinear MPC are compared and discussed. It is shown from the simula-

tion that nonlinear MPC proved to be superior in trajectory tracking and disturbance

rejection.

In the next step, the control scheme is extended to control multiple vehicles in a

distributed fashion to perform a shared task. Combined with an established consensus

algorithm, we showed that as long as the underlying communication topology among

the vehicles contains a spanning tree, the stability of the formation controller is

guaranteed. The topologies constraint can be further relaxed to the union of the

underlying graphs of infinite nonoverlapping time intervals having a spanning tree.

In Chapter 6, the topic of cooperative estimation is discussed to complement

the aforementioned cooperative control scheme. Two methods for target location

estimation are discussed and simulated.

In Chapter 7, the cooperative estimation and cooperative control are combined.

The estimates obtained from cooperative estimation are used as external tracking

commands for cooperative control. Cooperative control enables vehicles that are not

in direct communication with the target to be able to stay close as long as they are

in contact with as least one neighboring vehicles that are indirectly connected to the

target.
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8.2 Future Work

8.2.1 Experimental Validation

The next natural step of this research would be to implement the above al-

gorithm on actual hardware. Currently, we are actively working on bringing this

algorithm onto the ASL quadcopter platform. The biggest obstacle in this would be

timely computation of control inputs. MATLAB is great but is not available for an

outdoor environment. Transforming the MATLAB code into embedded C/C++ code

would be necessary. A few functions that are available in MATLAB but not in C++

would need to be rewritten.

8.2.2 Optimal SDC Representation

The SDC representaion for quadcopter used in this dissertation is better than

its linear counterpart, but is probably not optimal. A investigation could be done to

find a better function A(x) that would require less control effort and better tracking

and/or better transient response. In fact, it is not clear whether there exists a globally

optimal SDC representation for the MPC method employed. That would need to be

investigated as well.

8.2.3 MPC for Formation Consensus

The formation convergence in this dissertation is achieved through a consensus

scheme. The benefits of this method is it lowers the computation load on each vehicle.

But if a central workstation is available in certain scenarios, MPC can be used for

reference trajectory generation for each vehicle.
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CHAPTER 9

Appendix

9.1 Stability of Linear MPC

Stability of Unconstrained Linear MPC

Without loss of generality, the proof of stability will be given only for the

regulator case. For trajectory tracking problems, we can always construct an error

system with the new state being e = x − xr. With the proper feedforward input,

the new system would be of the same form as the regulator. The cost function in

Eq. (3.8) can be simplified respectively as:

J(∆xk,∆Uk) = ∆UT
k

(
HT Q̄H + R̄ + B̄TQfB̄

)
∆Uk

+ 2
(

(F∆xk)
T Q̄H +

(
AN∆xk

)T
QfB̄

)
∆Uk

+ (F∆xk)
T Q̄ (F∆xk) +

(
AN∆xk

)T
Qf

(
AN∆xk

)
(9.1)

Assuming there are no constraints present on the inputs or states, the optimal control

∆U∗k can be determined by setting
∂J (∆xk,∆Uk)

∂∆Uk

= 0, i.e.,

∆U∗k = −
(
HT Q̄H + R̄ + B̄TQfB̄

)−1 [
HT Q̄F + B̄TQfA

N
]

∆xk (9.2)

And the control input ∆u∗k can be extracted as follows.

∆u∗k = [Im×m 0m×m · · · 0m×m]∆U∗k (9.3)

Combining Eq. (9.2) and (9.3), ∆uk can be simplified.

∆u∗k = −Kk∆xk (9.4)
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where

Kk = [Im×m 0m×m · · · 0m×m]
(
HT Q̄H + R̄ + B̄TQfB̄

)−1 [
HT Q̄F + B̄TQfA

N
]

(9.5)

According to Ref. [2], if Qf in Eq. (9.1) satisfies the following inequality:

Qf ≥ Q + KT
kRKk + (A−BKk)TQf (A−BKk) (9.6)

for some Kk ∈ Rm×n, then the system of Eq. (3.3) driven by control ∆u∗k of Eq. (9.3)

is stable.

Proof : The optimal cost J(∆xk,∆U∗k) satisfies the following monotonicity condition:

J(∆xk,∆U1∗
k , N + 1) ≤ J(∆xk,∆U2∗

k , N) (9.7)

where N denotes the prediction horizon and ∆U1∗
k , ∆U2∗

k represent the optimal con-

trol derived from minimizing their respective cost functions. Imagine a new control

input ∆U1
k by using ∆U2∗

k up to time k+N − 1 and ∆uk+N = −Kk∆xk+N , the cost

for this control would be:

J(∆xk,∆U1
k, N + 1) =

k+N−1∑
i=k

(∆xTi Q∆xi + ∆uTi R∆ui) + ∆xTk+NQ∆xk+N

+ ∆xk+NKk
TRKk∆xk+N

+ ∆xTk+N(A−BKk)TQf (A−BKk)∆xk+N (9.8)

Since J(∆xk,∆U1∗
k , N + 1) is optimal and denoting ∆J = J(∆xk,∆U1∗

k , N + 1) −

J(∆xk,∆U2∗
k , N), the following applies:

∆J ≤ J(∆xk,∆U1
k, N + 1)− J(∆xk,∆U2∗

k , N)

≤ ∆xTk+NQ∆xk+N + ∆xk+NKTRK∆xk+N

+ ∆xTk+N(A−BKk)TQf (A−BKk)∆xk+N −∆xTk+NQf∆xk+N

≤ ∆xTk+N [Q + Kk
TRKk + (A−BKk)TQf (A−BKk)−Qf ]∆xk+N

≤ 0 (9.9)
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thus proving the cost monotonicity condition. From the cost monotonicity condition,

the following non-increasing sequence can be obtained:

J(∆xk,∆U∗k, N) = ∆xTkQ∆xk + ∆uTkR∆uk + J(∆xk+1,∆U∗k+1, N − 1)

≥ ∆xTkQ∆xk + ∆uTkR∆uk + J(∆xk+1,∆U∗k+1, N)

≥ J(∆xk+1,∆U∗k+1, N) (9.10)

Since a non-increasing sequence bounded from below converges to a constant, and

J(∆xk,∆U∗k, N) ≥ 0, and hence, J(∆xk,∆U∗k, N)→ a nonnegative constant as k →

∞. Thus,
i+j∑
k=i

(
∆xTkQ∆xk + ∆uTkR∆uk

)
→ 0, j = 0, 1, 2, · · · (9.11)

which leads to the following equation:

i+j∑
k=i

∆xTk [(A−BKk)
j]T (Q+KT

kRKk)[(A−BKk)
j]∆xk → 0, j = 0, 1, 2, · · · (9.12)

It is proved in Ref. [66] that if (A,C) is observable, then(A−BKk),

 √
Q

√
RKk




is observable for any Kk. Thus, the only solution that could guarantee this is the

trivial solution ∆xk = 0. Hence system (3.3), driven by control ∆u∗k of Eq. (9.3) by

minimizing the quadratic cost (9.1), is stable.

Stability of Constrained Linear MPC

Again without loss of generality, we will only consider stability for the regulator

case. To guarantee the same monotonicity condition as Eq. (9.7), it must be guar-

anteed that the system is feasible. The following Linear Matrix Inequalities (LMI)
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are constructed for this purpose. There must exist a set of (Qf ,Q,R,Kk,∆Uk) that

satisfy the following conditions:

γ < ∞ (9.13)

 γ − 2∆xTk

[
FQ̄H +

(
AN
)T

QfB̄
]

∆Uk ∆UT
k

∆Uk

(
HT Q̄H + R̄ + B̄TQfB̄

)−1

 ≥ 0

(9.14)

Γ∆Uk ≤ Υ (9.15)



Q−1
f Q−1

f (A−BKk)T Q−1
f

√
Q Q−1

f Kk
T
√

R

(A−BKk)Q−1
f Q−1

f 0n×n 0n×n
√

QQ−1
f 0n×n In×n 0n×n

√
RKk(Qf )

−1 0n×n 0n×n In×n


≥ 0

(9.16)

 Im×m

−Im×m

Kk

(
AN∆xk + B̄∆Uk

)
≤

 (uub − uT )

− (ulb − uT )

 (9.17)

 Cz

−Cz

 (A−BKk)
(
AN∆xk + B̄∆Uk

)
≤

 (zub −CzxT )

− (zlb −CzxT )

 (9.18)

Since the constraints are constant, this condition only needs to be checked once

at the beginning. After obtaining a suitable (Qf ,Q,R) from above LMI, ∆U∗k is

obtained by solving the following optimization problem:

∆U∗k = arg min
∆Uk

γ

subject to Eqs. (9.13), (9.14), (9.15), (9.16), (9.17) and (9.18).
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Solving the above optimization problem, yields ∆u∗k,

∆u∗k = [Im×m 0m×m · · · 0m×m]∆U∗k (9.19)

The same proof of asymptotic stability from unconstrained case can be used here.

Thus, system (3.3) driven by control (9.19) subject to constraints (3.15) is stable.
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9.2 Stability of Nonlinear MPC

Stability of Unconstrained Sampled-Data NMPC based on SDC formulation

Assumptions:

• (Ac(x), Bc(x)) is point-wise controllable. Thus, ∀ x ∈ <n, i.e., ∃ Kc(x) ∈

<m×n such that (Ac(x)−Bc(x)Kc(x)) is point-wise Hurwitz.

• Kc(x) is obtained as a solution to the SDRE outlined in section 4.1. The control

law is thus expressed as,

uc = −Kc(x)(x− xr) (9.20)

• xr(t) is an admissible reference state trajectory, i.e. xr(t) satisfies the governing

equations of motion as well as the state constraints.

• The reference control inputs ur(t) obtained from Eq. (3.1) together with xr(t),

and ẋr(t) satisfy the control constraints discussed previously.

In this section we will first show that for an appropriate sample time ∆t the

ZOH control computed as

uc(k∆t) = −Kc(x(k∆t)) (x(k∆t)− xr(k∆t))

when applied to the nonlinear system in Eq. (3.1) results in bounded trajectory track-

ing errors, i.e. ‖x(k∆t)− xr(k∆t)‖ < ε, ε > 0 for k > kN , where kN ∈ Z+. For the

rest of the discussion, we will simply write x(k∆t) and uc(k∆t) as xk and uk.

For t ∈ [k∆t, (k+ 1)∆t), the frozen in time SDC representation for the system

is considered, thus the states evolve as,

˙̃x = Ac(x̂k)x̃ + Bc(x̂k)uk, x̃(k∆t) = xk, t ∈ [k∆t, (k + 1)∆t)] (9.21)

At the next sampling interval [(k + 1)∆t, (k + 2)∆t), x̃((k + 1)∆t) is replaced with

xk+1 measured from the original system Eq. (4.1), and the same process starts over
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again. To avoid potential ambiguities, the solution of differential Eq. (9.21) at the

end of the interval, namely, the value of x̃ as t → (k + 1)∆t, is denoted as x̃′k+1.

Note, the control input uc is constant during the interval [k∆t, (k + 1)∆t)]. Under

the assumptions stated earlier, the control for Eq.(9.21) will stabilize the original

system Eq. (4.1) provided the control law given by Eq. (9.20) will achieve Uniformly

Globally Asymptotically Stability (UGAS) for system (3.1). It should be noted here,

this algorithm is merely a sampled-data implementation of Eq. (9.20). Ref. [68] proved

the stability of sampled-data control based on SDC provided that Pk obtained from

Eq. (4.4) converges to a constant matrix, in other words, limk→∞Pk exists. However,

the convergence of Pk is hard, if not impossible to guarantee. Here we offer an

alternative proof with a different, albeit under restrictive assumptions, hoping to

shed some light on this issue.

Without loss of generality, we would only prove the stability of the system for

the regulator case, meaning xr = 0 at all time. Firstly, xk 6= 0 since xk = 0 dictates

uk = 0, which makes it trivial.

With a constant input uk during time interval t ∈ [k∆t, (k + 1)∆t], we obtain

xk+1 from the following:

xk+1 = xk +

∫ (k+1)∆t

k∆t

[
f(x(τ)) + g(x(τ))uk

]
dτ (9.22)

and obtain x̃′k+1 from :

x̃′k+1 = eA(xk)∆txk +

∫ (k+1)∆t

k∆t

(
eA(xk)(s−τ)B(xk)uk

)
dτ (9.23)

The control input uk is designed based on (9.23) such that:

‖x̃′k+1‖ < ‖xk‖

It should be noted that such an input uk will always exist since the system in

Eq. (4.1) is assumed point wise controllable. The local truncation error (between the
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true nonlinear system and the discretized pseudo-linear system subject to the ZOH

control law) at the end of the time interval is defined as:

ek+1 = x̃′k+1 − xk+1 (9.24)

Define a term λ(xk,∆t) as:

λ(xk,∆t) =
‖ek+1‖

‖x̃′k+1‖ − ‖xk‖

By taking the limit of λ(·,∆t) when ∆t→ 0 we obtain:

lim
∆t→0

λ(xk,∆t) = lim
∆t→0

‖x̃′k+1 − xk+1‖
‖x̃′k+1‖ − ‖xk‖

= lim
∆t→0

‖x̃′k+1 − xk+1‖
∆t

1
‖x̃′k+1‖−‖xk‖

∆t

Let

λF (xk,∆t) =
‖x̃′k+1 − xk+1‖

∆t
, λG(xk,∆t) =

‖x̃′k+1‖ − ‖xk‖
∆t

One can then obtain:

lim
∆t→0

λF (xk,∆t) = lim
∆t→0

‖x̃′k+1 − xk+1‖
∆t

= lim
∆t→0

‖(x̃′k+1 − xk)− (xk+1 − xk)‖
∆t

→ 0

lim
∆t→0

λG(xk,∆t) = lim
∆t→0

‖x̃′k+1‖ − ‖xk‖
∆t

=
xTk
(
f(xk) + g(xk)uk

)
‖xk‖

Also we can deduct xk 6= 0 ⇒ f(xk) + g(xk)uk 6= 0. A stabilizing uk dictates

xTk
(
f(xk) + g(xk)uk

)
6= 0. From all of this it can be concluded that:

lim
∆t→0

λ(xk,∆t) =
lim∆t→0 λF (xk,∆t)

lim∆t→0 λG(xk,∆t)
→ 0

xTk

(
f(xk)+g(xk)uk

)
‖xk‖

= 0

Thus, ∃ ∆t ∈ (0,∞) that ensures the corresponding λ(xk,∆t) ∈ (0, 1). It leads to:

‖ek+1‖ = λ(xk,∆t)
∣∣‖x̃′k+1‖ − ‖xk‖

∣∣ < ‖xk‖ − ‖x̃′k+1‖
122



Combined with Eq. (9.24) one can then easily deduce that ‖xk+1‖ < ‖xk‖ which

means that the system would progress successively as, ‖xi+1‖ < ‖xi‖ i→ 0, 1, 2, . . ..

Therefore, one can conclude that ∃∆t ∈ [0,∞) that guarantees a control law designed

based on Eq. (9.21) will stabilize the original system described by Eq. (3.1). Thus, it

is shown that the sampled-data ZOH controller based on the pseudo-linear represen-

tation in Eq. (4.1) also ensures that the states of the true nonlinear system stay close

to the states evolving based on Eq. (4.1). The next section focuses on the constrained

sampled-data NMPC based on the SDC system.

Stability of Constrained Sampled-Data NMPC based on SDC System

The only difference between the constrained sampled-data NMPC and con-

strained linear MPC is that the feasibility of the system needs to be checked at the

start of every sampling interval. For simplicity, the brackets will be replaced as sub-

script to indicate its dependence on xk, (·)(xk) would be written as (·)k. Similarly for

each xk, there must exist a set of (Qfk,Qk,Rk,Kk,∆Uk) that satisfy the following

conditions:

γk <∞ (9.25)

[
γk − 2

[
(Fkxk)T Q̄NkHk +

(
AN

k xk

)T
QfkB̄k

]
∆Uk ∆UT

k

∆Uk

(
HT

k Q̄NkHk + R̄Nk + B̄T
k QfkB̄k

)−1

]
≥ 0 (9.26)

Γ(xk)∆Uk ≤ Υ(xk) (9.27)
Q−1
fk Q−1

fk (Ak −BkKk)T Q−1
fk

√
Qk (Qfk)−1KT

k

√
Rk

(Ak −BkKk)(Qfk)−1 (Qfk)−1 0n×n 0n×n
√

QkQ
−1
fk 0n×n In×n 0n×n

√
RkKkQ

−1
fk 0n×n 0n×n In×n

 ≥ 0 (9.28)
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 Im×m

−Im×m

Kk(A
N
k xk + B̄k∆Uk) ≤

 (uub − uT )

− (ulb − uT )

 (9.29)

 Czk

−Czk

 (Ak −BkKk)[A
N
k xk + B̄k(UT + ∆Uk)] ≤

 zub

−zlb

 (9.30)

After obtaining a suitable (Qfk,Qk,Rk) from above LMI, ∆U∗k is obtained by doing

the following optimization:

∆U∗k = arg min
∆Uk

γk

subject to the conditions specified in Eqs. (9.25), (9.26), (9.27), (9.28), (9.29), and

(9.30). Upon solving the optimization problem, ∆u∗k can be obtained by

∆u∗k = [Im×m 0m×m · · · 0m×m]∆U∗k (9.31)
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9.3 Derivation for Solving the Trilateration based Estimation

qk =


d2
i − (xik)

2 − (yik)
2 − (zik)

2 − [d2
j1
− (xj1k )2 − (yj1k )2 − (zj1k )2]

d2
j1
− (xj1k )2 − (yj1k )2 − (zj1k )2 − [d2

j2
− (xj2k )2 − (yj2k )2 − (zj2k )2]

d2
j2
− (xj2k )2 − (yj2k )2 − (zj2k )2 − [d2

j3
− (xj3k )2 − (yj3k )2 − (zj3k )2]


Using Linear Least Squares, the location of the target pt can be expressed as:

[xt yt zt]
T = (HT

kHk)
−1HT

k qk

This method can be used to provide a good initial estimation for nonlinear least

squares algorithm.
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9.4 Simulation Parameters for Linear/Nonlinear MPC

The following parameters were used for all the simulations. The parameters for

the control law synthesis were the same regardless of the reference trajectories and

the linear/nonlinear control themes.

• Mass: m = 0.8 (kg).

• Moment of inertia: J =


0.0224

0.0224

0.0436

 (kg ·m2).

• Distance from the center of the rotor to CG of the quadcopter: L = 0.165 (m).

• Ratio of rotor angular momentum to rotor lift: c = 0.002167 (m).

• Gravitational acceleration: g = 9.8 (m/s2).

• Rotor actuator time constant: λF = 50.

• Control horizon for linear and nonlinear MPC: N = 25.

• Prediction horizon for linear and nonlinear MPC: M = 25.

• Control horizon for nonlinear MPC used in cooperative control: N = 5.

• Sample time: ∆t = 0.05 (s).

• State weighting matrix: Q = diag [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

• Input weighting matrix: R = diag [1, 1, 1, 1].

• Input constraint coefficient: κi = 1 (i = 1, 2, 3, 4).

126



REFERENCES

[1] W. Kwon and A. Pearson, “A modified quadratic cost problem and feedback sta-

bilization of a linear system,” IEEE Transactions on Automatic Control, vol. 22,

no. 5, pp. 838–842, Oct 1977.

[2] W. H. Kwon and S. H. Han, Receding horizon control: model predictive control

for state models. Springer Science & Business Media, 2006.

[3] W. H. Kwon and K. B. Kim, “On stabilizing receding horizon controls for linear

continuous time-invariant systems,” IEEE Transactions on Automatic Control,

vol. 45, no. 7, pp. 1329–1334, Jul 2000.

[4] J. W. Lee, W. H. Kwon, and J. Choi, “On stability of constrained receding

horizon control with finite terminal weighting matrix,” in Control Conference

(ECC), 1997 European, July 1997, pp. 313–318.

[5] S. S. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws for a gen-

eral class of constrained discrete-time systems: Stability and moving-horizon ap-

proximations,” Journal of Optimization Theory and Applications, vol. 57, no. 2,

pp. 265–293, 1988.

[6] H. Michalska and D. Q. Mayne, “Robust receding horizon control of constrained

nonlinear systems,” IEEE Transactions on Automatic Control, vol. 38, no. 11,

pp. 1623–1633, Nov 1993.

[7] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear systems

and a neural approximation,” Automatica, vol. 31, no. 10, pp. 1443 – 1451, 1995.

127



[8] H. Chen and F. Allower, “A quasi-infinite horizon nonlinear model predictive

control scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205

– 1217, 1998.

[9] L. Magni and R. Sepulchre, “Stability margins of nonlinear receding-horizon

control via inverse optimality,” Systems and Control Letters, vol. 32, no. 4, pp.

241 – 245, 1997.

[10] G. D. Nicolao, L. Magni, and R. Scattolini, “Stabilizing receding horizon control

of nonlinear time varying systems,” IEEE Transactions on Automatic Control,

vol. 43, no. 7, pp. 1030–1036, Jul 1998.

[11] J. A. Primbs, “Nonlinear optimal control: a receding horizon approach,” Ph.D.

dissertation, California Institute of Technology, 1999.

[12] J. A. Primbs, V. Nevistic, and J. C. Doyle, “A receding horizon generalization

of pointwise min-norm controllers,” IEEE Transactions on Automatic Control,

vol. 45, no. 5, pp. 898–909, May 2000.

[13] A. Jadbabaie, “Receding horizon control of nonlinear systems: A control lya-

punov function appoach,” Ph.D. dissertation, California Institute of Technology,

2000.

[14] L. E. Parker, Current State of the Art in Distributed Autonomous Mobile

Robotics. Tokyo: Springer Japan, 2000, pp. 3–12. [Online]. Available:

http://dx.doi.org/10.1007/978-4-431-67919-6 1

[15] R. M. Murray, “Recent research in cooperative control of multivehicle systems,”

Journal of Dynamic Systems, Measurement, and Control, vol. 129, no. 5, pp.

571–583, 2007.

[16] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents

with switching topology and time-delays,” IEEE Transactions on Automatic

Control, vol. 49, no. 9, pp. 1520–1533, Sept 2004.

128

http://dx.doi.org/10.1007/978-4-431-67919-6_1


[17] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle

formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–

1476, Sept 2004.

[18] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic

Control, vol. 48, no. 6, pp. 988–1001, June 2003.

[19] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under

dynamically changing interaction topologies,” IEEE Transactions on automatic

control, vol. 50, no. 5, pp. 655–661, 2005.

[20] L. Moreau, “Stability of multiagent systems with time-dependent communication

links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp. 169–182, Feb

2005.

[21] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in

multi-agent coordination,” in Proceedings of the 2005, American Control Con-

ference, 2005., June 2005, pp. 1859–1864 vol. 3.

[22] ——, “Information consensus in multivehicle cooperative control,” IEEE Control

Systems, vol. 27, no. 2, pp. 71–82, April 2007.

[23] W. B. Dunbar and R. M. Murray, “Model predictive control of coordinated multi-

vehicle formations,” in Decision and Control, 2002, Proceedings of the 41st IEEE

Conference on, vol. 4, Dec 2002, pp. 4631–4636.

[24] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[25] R. O. Saber, W. B. Dunbar, and R. M. Murray, “Cooperative control of multi-

vehicle systems using cost graphs and optimization,” in American Control Con-

ference, 2003. Proceedings of the 2003, vol. 3, June 2003, pp. 2217–2222.

[26] W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for

multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549 –

129



558, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0005109806000136

[27] F. Borrelli, T. Keviczky, and G. J. Balas, “Collision-free uav formation flight

using decentralized optimization and invariant sets,” in Decision and Control,

2004. CDC. 43rd IEEE Conference on, vol. 1, Dec 2004, pp. 1099–1104.

[28] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coordi-

nated control of groups,” in Decision and Control, 2001. Proceedings of the 40th

IEEE Conference on, vol. 3, 2001, pp. 2968–2973 vol.3.

[29] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sen-

sor networks:adaptive gradient climbing in a distributed environment,” IEEE

Transactions on Automatic Control, vol. 49, no. 8, pp. 1292–1302, Aug 2004.

[30] C.-Y. Chong, F. Zhao, S. Mori, and S. Kumar, “Distributed tracking in wireless

ad hoc sensor networks,” in Information Fusion, 2003. Proceedings of the Sixth

International Conference of, vol. 1, July 2003, pp. 431–438.

[31] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor collabora-

tion,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 61–72, Mar 2002.

[32] T. Hatanaka, M. Fujita, and F. Bullo, “Vision-based cooperative estimation via

multi-agent optimization,” in 49th IEEE Conference on Decision and Control

(CDC), Dec 2010, pp. 2492–2497.

[33] T. Hatanaka and M. Fujita, “Cooperative estimation of averaged 3-d moving

target poses via networked visual motion observer,” IEEE Transactions on Au-

tomatic Control, vol. 58, no. 3, pp. 623–638, March 2013.

[34] T. H. Chung, V. Gupta, J. W. Burdick, and R. M. Murray, “On a decentralized

active sensing strategy using mobile sensor platforms in a network,” in Decision

and Control, 2004. CDC. 43rd IEEE Conference on, vol. 2, Dec 2004, pp. 1914–

1919 Vol.2.

130

http://www.sciencedirect.com/science/article/pii/S0005109806000136
http://www.sciencedirect.com/science/article/pii/S0005109806000136


[35] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in Decision

and Control, 2007 46th IEEE Conference on, Dec 2007, pp. 5492–5498.

[36] F. Zhang and N. E. Leonard, “Cooperative filters and control for cooperative

exploration,” IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 650–

663, March 2010.

[37] M. Stachura and E. W. Frew, “Cooperative target localization with a

communication-aware unmanned aircraft system,” Journal of Guidance, Con-

trol, and Dynamics, vol. 34, no. 5, pp. 1352–1362, 2011.

[38] P. Scerri, T. Von Gonten, G. Fudge, S. Owens, and K. Sycara, “Transitioning

multiagent technology to uav applications,” in Proceedings of the 7th

International Joint Conference on Autonomous Agents and Multiagent Systems:

Industrial Track, ser. AAMAS ’08. Richland, SC: International Foundation

for Autonomous Agents and Multiagent Systems, 2008, pp. 89–96. [Online].

Available: http://dl.acm.org/citation.cfm?id=1402795.1402812

[39] K. Subbarao, C. Tule, and P. Ru, “Nonlinear model predictive control applied to

trajectory tracking for unmanned aerial vehicles,” in AIAA Atmospheric Flight

Mechanics Conference, no. AIAA 2015-2857, Dallas, TX, June 2015.

[40] P. Ru and K. Subbarao, “Nonlinear model predictive control for unmanned aerial

vehicles,” Journal of Aerospace Engineering, May 2017, to be published.

[41] ——, “Cooperative control of unmanned aerial vehicles based on nonlinear model

predictive control,” in AIAA Guidance, Navigation, and Control Conference,

AIAA Science and Technology Forum and Exposition 2017., Grapevine, TX,

USA, January 2017.

[42] ——, “Cooperative estimation of moving target position using unmanned aerial

vehicles,” in AIAA Information Systems-AIAA Infotech @ Aerospace, AIAA Sci-

131

http://dl.acm.org/citation.cfm?id=1402795.1402812


ence and Technology Forum and Exposition 2017, Grapevine, TX, USA, January

2017.

[43] H. K. Khalil and J. Grizzle, Nonlinear systems. Prentice hall New Jersey, 1996,

vol. 3.

[44] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction

to robotic manipulation. CRC press, 1994.

[45] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequal-

ities in system and control theory. SIAM, 1994, vol. 15.

[46] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review,

vol. 38, no. 1, pp. 49–95, 1996.

[47] R. Materna, “Highlights from aerospace industry report 2012: Facts, figures and

outlook for the aviation and aerospace manufacturing industry,” p. 258, 2012.

[48] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller, J. S.

Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight assembled

architecture installation: Cooperative construction with flying machines,” IEEE

Control Systems, vol. 34, no. 4, pp. 46–64, August 2014.

[49] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. D.

Andrea, “A platform for aerial robotics research and demonstration: the flying

machine arena,” Mechatronics, pp. 41–54, 2014.

[50] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor teams,”

Autonomous Robots, vol. 33, pp. 323–336, 2012.

[51] E. deVries and K. Subbarao, “Cooperative control of swarms of unmanned aerial

vehicles,” in 49th AIAA Aerospace Sciences Meeting and Conference, no. AIAA

2011-78, Orlando, FL, January 2011.

[52] A. Das, K. Subbarao, and F. L. Lewis, “Dynamic inversion with zero-dynamics

stabilization for quadrotor control,” IET Control Theory & Applications (for-

132



merly IEE Proceedings Control Theory & Applications), vol. 3, no. 3, pp. 303–

314, March 2009.

[53] E. deVries and K. Subbarao, “Backstepping based nested multi-loop control

laws for a quadrotor,” in 11th International Conference on Control, Automa-

tion, Robotics and Vision, Singapore, December 2010.

[54] Z. Zuo and P. Ru, “Augmented l1 adaptive tracking control of quad-rotor un-

manned aircrafts,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 50, no. 4, pp. 3090–3101, October 2014.

[55] A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-based itera-

tive learning for precise quadrocopter trajectory tracking,” Autonomous Robots,

vol. 33, no. 1, pp. 103–127, 2012.

[56] A. Das, F. L. Lewis, and K. Subbarao, “Backstepping approach for controlling

a quadrotor using neural networks,” Journal of Intelligent & Robotic Systems,

Springer, vol. 56, pp. 127–151, September 2009.

[57] Z. Zuo, “Trajectory tracking control design with command-filtered compensation

for a quadrotor,” IET Control Theory Applications, vol. 4, no. 11, pp. 2343–2355,

November 2010.

[58] B. N. Pamadi, Performance, Stability, Dynamics, and Control of Airplanes.

AIAA, 2004.
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