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ABSTRACT 

 

 

PERSON IDENTIFICATION AND ANOMALY DETECTION USING GAIT PARAMETERS 

EXTRACTED FROM TIME SERIES DATA 

 

SUHAS MANDIKAL RAMA KRISHNA REDDY, MS  

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Manfred Huber  

Gait generally refers to the style of walk and is influenced by a number of parameters 

and conditions. In particular, chronic and temporary health conditions often influence gait 

patterns. As such conditions increase with age, changes in gait pattern and gait disorders 

become more common. Changes in the walking pattern in the elderly can suggest neurological 

problems or age related problems that influence the walk. For example, individuals with 

parkinsonian and vascular dementias generally display gait disorders. Similarly, short term 

changes in muscle tone, strength, and overall condition can reflect in gait parameters. Analysis 

of the gait for abnormal walk can thus serve as a predictor for such neurological disorders or 

disorders related to age and potentially be used as a means for early detection of the onset of 

chronic conditions or to help prevent falls in the elderly. In our research we try to build 

personalized models for individual gait patterns as well as a framework for anomaly detection in 

order to distinguish individuals based solely on gait parameters and in order to try to detect 

deviations in walking based on these parameters. 
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In this thesis we use time series data from pressure monitoring floor sensors to real-

time segment walking data and separate it from data representing other activities like standing 

and turning by using unsupervised and supervised learning. We extract spatio-temporal gait 

parameters from relevant walking segments. We then model walking of individuals based on 

these parameters to predict deviation in walking pattern using the Support Vector Data 

Descriptor (SVDD) method and the One Class Support Vector Machine (OCSVM) for anomaly 

detection. We apply these models to real walking data from 30 individuals to attempt person 

identification to demonstrate the feasibility of building personalized models. 
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Chapter 1  

INTRODUCTION 

 

“Gait is the manner or the style in which people walk”. Walking is a complicated 

process that involves the brain, spinal cord, nerves, muscles, bones and joints. Gait 

analysis serves to assist in the treatment of individual persons and to improve the 

understanding of gait through research. [15]. 

  

1.1 Basic Physiology of Movement 

Gait starts with activity in several areas of the brain. Nervous impulses are sent 

down the spinal cord to activate the motor nerves to allow muscle contraction. Feedback 

from sensors from the muscle and the surrounding areas to the brain causes modification 

in walking pattern. The areas in the brain that are affected during walk are the basal 

ganglia which is responsible for learning and walking patterns, the motor cortex which 

interacts with the muscles to help in movements, the cerebellum that provides the 

feedback on the correctness of the activity, and the spinal cord and the brainstem motor 

nuclei which play a role in generating and controlling movements.[15]. 

 

1.2 Conditions Benefiting from Gait Assessment 

Major diseases that affect the neuromuscular and musculoskeletal systems that 

lead to disorders in gait include cerebral palsy, parkinsonism, muscular dystrophy, 

osteoarthritis, stroke, spinal cord injury, myelodysplasia and multiple sclerosis. [15] 

Cerebral palsy is caused by damage to the brain.  
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1.3 Motivations for Gait Analysis 

Cerebral palsy is caused by damage to any of the parts of the brain concerned 

with walking. Cerebral palsy caused due to the degeneration of the basal ganglia, causes 

shuffling gait [16]. Parkinson’s disease causes reduction in step length and speed [15]. 

Gait problems become increasing with age. Neurological diseases, arthritis and 

acquired foot deformities are common causes of abnormalities in gait in the elderly. 

Neurological diseases like neuropathies, stroke, and parkinsonian syndrome are present 

in 30 -50 % of elderly individuals who are diagnosed for abnormal gait [19][20][21]. Non 

Alzheimer’s dementia such as vascular and parkinsonian dementia show symptoms of 

gait disorder [19][22][23]. Non-Alzheimer’s dementia and vascular dementia in particular 

could be strongly predicted based on neurologic gait abnormalities [19]. 

 

1.4 Our Approach 

Neurological problems, musculoskeletal problems and temporary conditions such 

as injury, neck pain and back pain causes change in gait patterns. Abnormal gait, in turn, 

can cause falls in elderly. Falls are one of the major causes of hospitalization and early 

death in the elderly. In order to predict neurological and musculoskeletal problems at the 

onset of the disease before it becomes chronic and to predict falls, we propose an 

approach to predict change in walking pattern by continuously monitoring gait using 

pressure monitoring floor sensors. We start with performing activity recognition to 

differentiate relevant walking segments for gait parameter extraction from standing, short 

feet movement and turning segments. We extract spatio-temporal parameters from the 

strides extracted. We then use spatio-temporal gait parameters to build individual models 

for person identification and anomaly detection. We use an SVM with linear, polynomial 
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and RBF kernels along with One Class SVM (OC-SVM) and Support Vector Data 

Descriptor (SVDD) methods to perform person Identification. We also use OC-SVM and 

SVDD to identify anomaly in walking. 

 

1.5 Existing Approaches  

Existing approaches for gait analysis generally make use of devices worn on the 

body, video surveillance cameras, electrodes mounted on the skin, needles pierced into 

the muscle, or kinematic systems to name a few, to obtain data for detection of 

abnormality in gait. Traditionally, clinical analysis is carried out to determine neurological 

or musculoskeletal disorders using the measurements obtained from these approaches. 

 

 Modern day approaches involve collection of data using these devices and 

building models to predict deviation in walking pattern. Most of these approaches use 

devices worn on the body or inserted into the shoe or video surveillance cameras to 

extract parameters for model building. In practice, however, it may not be always feasible 

to wear such devices to obtain unobtrusive data for analysis. It would also feel 

uncomfortable to be monitored by cameras. These devices may actually hinder a person 

from normally exhibiting their regular walking behavior. We propose an approach where 

we do not use devices worn on the body and where we are not being recorded by any 

cameras. In our approach we use pressure monitoring sensors embedded beneath the 

floor to gives us continuous data for detection of deviation in normal walking pattern. 

There we largely avoid the white coat effect while obtaining measurements that reflect 

the actual behavior.  
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Chapter 2  

METHODS FOR GAIT ANALYSIS 

 

Here we try to briefly describe the different existing approaches for gait analysis. 

The approaches listed here are not exhaustive but aim to cover most of the popular 

approaches. Gait analysis can be done with and without having technological aids. 

Simple techniques can be used to manage clinical problems. [15]. 

 

2.1 Visual Gait Analysis 

The basic form of Visual Gait Analysis is observation made through the human 

eye. Though visual gait analysis can be used to determine serious gait abnormalities, it 

has serious limitations. It cannot be used to observe high speed events, only movements 

can be observed and not forces, and it depends highly on observation skills. [15]. 

Moreover, objects in the environment, such as furniture, as well as wide and loose 

clothing, including night gowns, can severely limit the data that can be extracted using 

visual observations and computer vision techniques.  

 

2.2 Examination by Video Recording 

Difficulty of observing high speed events by the naked eye can be overcome by 

video recording. Since a permanent record is available, the subject is required to do only 

a few walks. Video recording however does not provide quantitative information which 

could be very useful for analysis. Though quantitative information can be derived from the 

video it can turn out to be inaccurate because of the viewing angle and the distortions 

from the recording camera. [15]. 
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2.3 Analysis using Gait Parameters 

Robinson & Smidt in their research on quantitative gait evaluation [17] provide 

objective information regarding the patient’s gait. They focus on extraction of temporal 

and distance factors such as stride length, step length, cadence and velocity using some 

basic equipment such as stopwatch, portable tape recorder and measuring tape. [15]. 

 

Footswitches and Instrumented Walkways for timing of gait cycle 

Footswitches placed beneath the heel and the fore foot of the shoe are used to 

measure the timing of initial contact, heel strike and toe off. Gait cycle time and swing 

phase duration can be calculated from the obtained data. Double Support and single 

support times are measured by placing switches underneath both feet. [15]. 

Instrumented walkways are used to obtain timings of foot contact and position of foot by 

making use of a conductive walkway and electrical contacts on the shoes to complete the 

circuit to provide the same information as switches. [15]. 

In our research we make use of such temporal and distance factors to model the 

walking of a subject but instead of mounting sensors to the foot of the individual we use 

sensors embedded in the home environment to obtain this data unobtrusively.. 

 

2.4 Electrogoniometers 

Electrogoniometers are devices used to make continuous measurements of the 

angle of a joint. Interactions between the different joints can be analyzed through a 

cyclogram to identify characteristic patterns. Potentiometer devices and flexible strain 

gauges are devices that need to be worn on the body get the measurements. The 

potentiometer measures the joints angle in degrees of the knee and the hip. Flexible 

strain gauges are strips that are attached to the joints to measure the angles. [15]. 
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Usually these devices take significant time and precision to be mounted on the body and 

are thus only practical in clinical settings for short term analysis. 

 

2.5 Pressure On the Floor 

Pressure sensors can be used to identify disease like diabetic neuropathy and 

rheumatoid arthritis where the pressure on the floor is excessive. The pressure 

monitoring devices may be floor mounted or in the insole within a shoe. Glass plate 

examination using a mirror can also be carried out to see which parts of the foot are in 

contact with the floor when the person is walking and to obtain an idea of the pressure 

being applied by the part of the foot. Direct pressure mapping systems transfer ink to 

paper, producing greater imprints in areas of higher pressure. Other approaches include 

use of aluminum foil and carbon paper. Force sensor systems are also used to measure 

the vertical forces beneath the area of the foot. There are in shoe devices that are used 

to measure the pressure and give clinically useful results. [15]. 

 

2.6 Electromyography 

The measurement of the electrical activity of the contracting muscle is called 

Electromyography (EMG). Surface electrodes attached are used to measure the 

electrical activity. Another approach is by using fine wire electrodes using hypodermic 

needles pierced into the muscle to record electric activity. [15]. 

 

2.7 Energy Consumption 

Other approaches involve ways to measure energy expenditure while performing 

an activity. The ratio of oxygen to carbon dioxide in the exhaled air gives the measure of 

the oxygen consumed [15].  Heart rate monitoring is often used as a substitute for oxygen 
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consumption due to a close relationship between oxygen consumption and heart rate 

[18].  

 

2.8 Accelerometers 

Accelerometers are used to measure the acceleration to analyze gait 

parameters. Heel strike transients, which are high acceleration events, are measured 

using accelerometers. 

 

2.9 Force Platforms 

Force platforms measure the ground reaction forces as the subject walks across 

the platform. The output of the force platform gives the acceleration of the body in three 

dimensional space [15]. 

 

2.10 Kinematics 

The geometric description of motion is referred to as kinematics. The motion is 

measured in terms of displacements, velocities and accelerations. Kinematic 

measurements can be made in two dimensions or three dimensions [15].  
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Chapter 3  

RELATED WORK 

 

3.1 Person Identification Based on Gait 

There is a significant amount of research on person identification based on gait. 

Most of the approaches for person identification are based on video data.  

 

C. BenAbdelkader et al [24] perform person identification from spatio-temporal 

features extracted from a video. The features they extracted from the walk were 

estimated stride length and cadence. With data of 17 individuals the person was verified 

with an error rate of 11% and correctly identified with a probability of 40%. 

 

 Liang Wang et al [25] propose a technique for person identification based on 

spatial-temporal silhouette analysis by background subtraction on a video. Principal 

component analysis was applied to reduce the dimensionality of time-varying distance 

signals. Supervised learning was performed on a lower dimensional Eigenspace to 

recognize individuals.  

 

C. BenAbdelkader, R. et al [26] extended their previous work [24] of person 

identification based on stride and cadence by adding height as an additional discriminant. 

They claim that results significantly improved by adding height. Testing over 45 

individuals with height and stride parameters they obtain a detection rate of 49%. With 

stride parameters alone, they obtain an accuracy of 21 %. They also claim that the 

approach is good for low resolution images.  
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Zhang, Z., & Troje, N. F. [27] put forward a technique to identify individuals 

independent of viewpoint using three-dimensional linear models and Bayes rule.  

 

Geiger, J. T et al [28] present a system to identify individuals based on acoustic 

gait recognition. The sounds are characterized by gait patterns influenced by movement 

of arms and legs. Cepstral features are extracted from the recorded audio signals. 

Hidden Markov models are used for classification. An identification rate of 65.5 % was 

obtained in classifying 155 individuals. 

 

3.2 Anomaly Detection in Gait 

Detection of anomaly in gait early on can prevent neurological diseases or age 

related disorders from becoming chronic at the onset of the disease. Early detection of 

change in walking pattern can also prevent falls in the elderly. There are numerous 

approaches proposed for anomaly detection in gait.  The thesis “Gait analysis on smart 

floor” [10] summarizes the approaches. Some of the recent approaches are described 

here: 

 

Cola et al [32], propose a method to detect deviation in gait by using a wearable 

accelerometer. A single waist mounted accelerometer is used to continuously monitor 

gait in an unsupervised fashion. The experiment was carried out on 30 subjects who 

simulated knee flexion impairment. They claim to have obtained an accuracy of 84% in 

recognition of abnormal gait segments of length 5 seconds. The knee is tied with a strap 

on one of the limbs, two straps are tied around the knee of the same limb and each knee 

is tied around with a strap to simulate mild, severe and a case of both knees having 

impairment. Nearest neighbor technique is used for prediction of abnormality in walk. 
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Begg et al [33] propose a method to automatically classifiy gait patterns of young 

and the old. Gait data is extracted from individual Minimum Foot Clearance histogram-

plots and Poincaré-plot images obtained from continuously walking data of 20 minutes on 

a treadmill. Cross validation using SVM resulted in 83.3% accuracy in comparison with 

75% using neural network. 

 

Martinez et al [34] predict fall risk in elderly from collecting gait data from a 

smartphone. The data is collected in parallel from a pressure sensitive walkway and a 

smartphone. Data collected from the pressure sensitive walkway is used as a ground 

truth. They make use of one class SVM (OC-SVM) [7] and support vector data descriptor 

SVDD [6] methods to detect anomalies. Inertial data collected from the phone is used for 

anomaly detection. Falls risk ratio of each individual was calculated using walkway 

measurements. Based on falls risk ratio 14 participants were determined as at high risk 

from falling and 10 as not. Results indicate OC-SVM with RBF kernels to be better. 

 

Nguyen et al [35] propose skeletal based abnormal gait detection by making use 

of normal gait model. The model is based on human joint positions in time series. The 

feature vector contains values that explain the relationship between each pair of bone 

and joints located in the lower body. Clustering is used to form code words using those 

feature vectors. Sequences of code words of normal human gait cycles are used for 

training the Hidden Markov Model. If the likelihood of belonging to the normal data is 

below a threshold, the data sequence is flagged as anomalous. 
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3.3 Anomaly Detection Using SVDD And OCSVM 

 

One Class Support Vector Machines (OCSVM) are classifiers used for novelty 

detection or outlier detection. These classifiers are used when little information or no 

information about the outlier data is known. The classifiers can be trained only on data 

belonging to the target class i.e. where the data does not contain outlier data. Variants of 

the classifier can be trained on target data and outlier data as well. Some of the existing 

work for anomaly detection using one class Support Vector Machines are as detailed 

below. 

 

Zhang et al [28] propose a method for fall detection using one class SVM on data 

from wearable sensors. They use the data coming from a wearable tri-axial 

accelerometer to capture the movement of the subject. The target data is falls of younger 

individuals and the outlier data is data from regular activities from younger and older 

individuals. Data was collected from low risk fall down, where the subjects fell on support 

cushion, high risk fall down when they fall down on slope and stairs, along with low and 

high intensity activities. They use a Support Vector Data Descriptor to build models. 

Using the SVDD they were able to classify the data of fall and daily movements.  

 

Larry M. Manevitz and Malik Yousef [29] implement variants of one class SVM 

for document classification. They make use of Schölkopf et al ‘s [7] one class SVM and 

outlier SVM [6]  and other approaches like Neural Networks. Schölkopf et al ‘s one class 

SVM does better on smaller data sets while outlier SVM and Neural Networks perform 

better on larger data sets.  
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Zhou et al [30] use one class Support Vector Machine to perform image segmentation to 

extract brain tumors from magnetic resonance images. The approach segments brain 

tumor images with high accuracy. 

 

Zaho Y et al [31] use one class support vector machine for customer churn 

prediction. They used linear, polynomial and Gaussian kernel to perform the 

classification. The Gaussian kernel gave the better results. In comparison with artificial 

neural network, decision tree, Naive Bayes and SVM with Gaussian kernel classifiers, the 

SVM with Gaussian kernel outperformed all approaches. 
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Chapter 4  

TECHNICAL BACKGROUND 

 

4.1 Gait Terminologies and Parameters 

When walking, one limb acts as a support while the other limb moves forward to 

a new support site. Reversing the roles and repeating the process, the individual reaches 

the destination. People usually make contact with the floor on a heel strike; other 

individuals land their foot flat, so the contact of the foot with the floor can be termed as 

initial contact or heel strike. [1] 

In a gait cycle there are two phases, the swing phase and the stance phase. The 

entire period beginning with the initial contact during which the foot is on the ground is 

called stance phase. The swing phase starts with the toe off and is the period during 

which the limb is in the air until the initial contact occurs. The stance and swing action of 

one limb is called a stride. It is also called a gait cycle. A stride consists of two steps. The 

step length is the distance between the heel strikes of the limbs. [1]. 

During single support, one of the limbs supports the body while the other limb is 

in the air. When both the limbs support the body it is called double support. The start of 

double support is when the leading limb which was in the air touches the ground while 

the trailing limb is still touching the ground. During running, double support is not present. 

[1]. Figure 3-1 shows the swing and the stance phase during gait. The swing and the 

stance phase make up the gait cycle. 
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Figure 4-1 Swing phase and stance phase [14] 

4.1.1 Gait Parameters 

Gaits are frequently characterized in terms of a number of gait parameters 

capturing common properties of the individual’s gait. 

Stride Length 

Stride length is the distance from the heel of the first limb to the heel of the same 

limb. Two steps equal a stride.  

Step Length 

This is the distance from the heel of one limb to the heel of the other limb. 

Single Support Time 

Single support time is the time it takes for the initial contact or the heel strike and 

the toe off of the same foot. 
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Step Frequency 

Step frequency is the number of steps the subject walked during a time interval. 

Step Ratio 

Step ratio is the ratio between the two step lengths. Two steps are made during a 

stride. In other words it is the ratio of the distance between two steps of the stride. 

Average Speed 

Average speed is the distance covered between the first heel strike and the third 

heel strike divided by the time it takes to cover the distance. 

Average Step Length 

It is the average of the two step lengths of the stride. 

 

 

4.2 Unsupervised Learning 

In unsupervised learning the training data does not contain any output 

information. The input is a set of training examples 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑁. The task of 

unsupervised learning is to spontaneously find patterns and structure in input data. 

Unsupervised learning can be viewed as a method to create a higher level representation 

of data. Clustering is unsupervised learning. [4]. 

 

Clustering  

Partitioning the data set into subsets is called clustering or cluster analysis. The 

result of clustering produces objects in a cluster that are more similar within a cluster and 

objects between clusters being more dissimilar. Using the same data set as input 

produces different clustering for different clustering algorithms. Previously unknown 

information can be discovered using clustering. Insight into data distribution can be 
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obtained using cluster analysis. Clustering can be used as a preprocessing technique to 

identify clusters so that they can be used for classification. [2] 

In our research we use clustering to group similar data segments. The data 

segments belong to different activities. 

 

Similarity Measure 

The similarity between two points can be determined by the distance between 

them in Euclidean space. There are other approaches to find similarity between two 

points. [2] 

 

4.3 Clustering Methods 

Major clustering methods are described below. 

 

4.3.1 Partitioning Methods 

Given n points, the data is divided into k groups. The partitioning is based on 

distance. Objects in the same cluster are more similar and objects between clusters are 

more dissimilar. Based on this criterion, objects are clustered. To find global optimality it 

would require exhaustive enumeration of all possible partitions. To prevent the 

exhaustive enumeration, approaches such as k-means and k-medoids are used to 

approach global optimum. [2]. 

 

4.3.2 Density-based methods 

Density-based methods cluster objects based on the distance between objects. 

The idea is to grow clusters as long as their density (the number of objects) in the 
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neighborhood exceeds some threshold. Density based clustering can be used to filter out 

noise or outliers. [2]. 

 

4.3.3 Grid-based methods 

The object space is quantized into a fine number of cells that form the grid 

structure. The clustering operations are performed on the quantized space. The approach 

is faster as it does not depend on the number of data points but rather on the number of 

cells. Grids are used in spatial data mining problems including clustering. Grid based 

methods can be integrated with density based methods and hierarchical methods. [2]. 

 

4.3.4 Hierarchical Methods 

Hierarchical methods Build a hierarchy of clusters using data objects. 

Hierarchical methods can be of two types, agglomerative or divisive. The agglomerative 

hierarchical clustering is a bottom up approach where each initial cluster is a singleton 

cluster, and the singleton clusters are merged to eventually form a single cluster which 

includes all the points. Divisive clustering is an approach where all the points belong to 

one cluster initially and the cluster is divided into groups, eventually resulting in a single 

point in each cluster. The formed clustering is cut to obtain clusters [2]. 

In our research we use hierarchical clustering over other approaches as we do 

not use Euclidean distance for similarity measure, but instead use spectral coherence to 

compare similarity between frequency spectra. When using k-means algorithm, the 

number of clusters k must be decided ahead of time. K- means clustering also uses 

Euclidean distance for clustering. Density based approaches can only find spherical 

shaped clusters and discovering clusters of arbitrary shapes becomes difficult. Grid 
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based methods are more suited to spatial data mining problems. For these reasons we 

use Hierarchical Clustering. [2]. 

 

4.4 Linkages for hierarchical clustering 

Agglomerative or divisive clustering uses a distance measure to find the distance 

between two clusters, where each cluster is a set of objects. Some of the popular linkage 

measures are: 

• Single Linkage  

• Complete Linkage 

• Mean Method 

• Average Linkage 

 

4.4.1 Single Linkage 

When using the single linkage criterion we use the smallest distance between  

the two clusters. The smallest distance is the distance between the two most similar 

points belonging to two different clusters [2]. Figure 4-1 is an example for single linkage. 

 

 

 

Figure4-2 Single Linkage 
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4.4.2 Complete Linkage 

When using the complete linkage criterion we use the maximum distance 

between the two clusters. The maximum distance is the largest distance between the two 

points belonging to two different clusters [2]. Figure 4-2 is an example for complete 

linkage.  

 

 

Figure 4-3 Complete Linkage 

 

4.4.3 Mean Method  

Mean linkage uses the distance between the centroid of one cluster to the 

centroid of another cluster. The centroid is computed by averaging the vectors of each 

point belonging to the cluster. [2]. 

 

 

Figure 4-4 Centroid Linkage 
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4.4.4 Average Linkage 

Average linkage uses the average of distance between all points between the 

two clusters. Clusters are merged at each stage based on the smallest distance between 

the two clusters. [2] 

 

In our research we use the complete linkage criterion to merge the clusters. 

Following is an example of 5 points being merged using complete linkage. The matrix is a 

similarity matrix. The values of the matrix are similarity values between any two points. 

Similarity and distance are inversely proportional [2]. A value of 1 represents the highest 

similarity and a value of 0 represents the lowest similarity. Clusters at each level are 

merged based on the highest similarity. When two clusters are merged, the new similarity 

score for the merged cluster is the lowest similarity score (highest distance) of the two 

clusters.  

Appendix A shows the working of the hierarchical clustering algorithm using 

complete linkage and a comparison between single linkage and complete linkage. 

 

4.5 Supervised Learning 

Given a training set containing input-output pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2), … … . (𝑥𝑁 , 𝑦𝑁), 

where 𝑥𝑖 is the input and 𝑦𝑖 is the corresponding output, the task of supervised learning is 

to discover a function h approximating the true function f, where 𝑦𝑖 is generated by an 

unknown function y = f(x). [3]. Here h is the hypothesis that performs well on the unseen 

samples. The hypothesis h is obtained by learning, which is searching the space of 

hypotheses to find the one that best approximates f. Classification is supervised learning. 

[3]. 
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Classification 

Given the training data with class labels, the objective is to find a function or a 

model that that distinguishes the classes [2]. 

In our research, we us classification to differentiate activities like standing from 

walking, identifying individuals based on their gait parameters and to detect anomalies in 

the walking pattern. 

 

 

4.5.1 Decision Tree 

A decision tree is a classifier learned from class labeled training tuples. It is a 

flowchart like structure where each node denotes a test on a splitting attribute. The leaf 

nodes hold the class labels. The splitting nodes are represented by rectangles and the 

leaf nodes are represented by circles. Decision trees can have binary splits and non-

binary splits.  When the new data point is tested against the decision tree, it follows a 

branch that eventually leads to the name of the class. The class label is assigned to a 

test point. Figure 4-4 shows a decision tree for buying a computer. [2].  

 

Figure 4-5 An example decision tree for buying a computer. [2] 
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Attribute Selection Measure 

There are three popular attribute selection measures – Information Gain, Gain 

Ratio and Gini Index by which an attribute can be split. Each of these attribute selection 

measures outputs a numeric value associated with an attribute. This numeric value is 

used in deciding the attribute to split by. [2].  

 

Gini Index 

Here we describe constructing decision trees using Gini. Gini Index is used in 

Classification and Regression Trees (CART). The CART algorithm is used to implement 

decision tree in our research. The CART algorithm can be used for classification and for 

regression. In regression the output is a real value. Gini Index measures the impurity of 

D, a data partition or a set of tuples, as  

𝐺𝑖𝑛𝑖(𝐷) = 1 −  ∑ 𝑝𝑖
2

𝑚

𝑖=1

 

where 𝑝𝑖 is the probability the point in the training data set belongs to class 𝐶𝑖 

and m is the number of classes. 𝑝𝑖 is estimated as 
|𝐶𝑖,𝐷|

|𝐷|
.  [2]. 

The CART algorithm performs binary split. When performing a binary split, a 

weighted sum of impurity of each resulting partition is computed. [2]. 

𝐺𝑖𝑛𝑖𝐴(𝐷) =  
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) 

A reduction in the impurity by the binary split is given by 

∆𝐺𝑖𝑛𝑖(𝐴) = 𝐺𝑖𝑛𝑖(𝐷) −  𝐺𝑖𝑛𝑖(𝐴)(𝐷) 

The attribute that gives the highest reduction in the impurity is chosen as the 

splitting attribute. This technique holds for both, discrete and continuous valued attribute. 
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Continuous valued attributes are made categorical by using bins. Each possible split 

point is considered for continuous valued attributes. [2]. 

Appendix A shows the working of CART algorithm. 

 

4.5.2 Gaussian Naïve Bayes Classifier 

Another classifier used in this research is the Gaussian Naïve Bayes Classifier. 

The Gaussian Naïve Bayes classifier is used for continuous valued inputs. 

𝑃(𝐶𝑙𝑎𝑠𝑠|𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  can be found by computing: 

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝐶𝑙𝑎𝑠𝑠)𝑃(𝐶𝑙𝑎𝑠𝑠)

∑ 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝐶𝑙𝑎𝑠𝑠𝑖𝑖 )
 

Ignoring the normalizing factor we compute 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝐶𝑙𝑎𝑠𝑠)𝑃(𝐶𝑙𝑎𝑠𝑠) where 𝑃(𝐶𝑙𝑎𝑠𝑠) 

is the prior probability. [2]. 

A Gaussian has two parameters, mean and variance. The 𝑝(𝑓𝑖|𝐶𝑙𝑎𝑠𝑠) can be 

computed by plugging in the value of the feature 𝑓𝑖, using the mean and the variance of 

that feature. 

1

√2𝜋𝜎2
𝑒𝑥𝑝

−
1
2

(
|𝑓𝑖 −𝑚|

2

𝜎2 )
  

Here, 𝑓𝑖 is the input feature, m is the mean of the feature and σ is the standard deviation 

of the feature. 𝑀𝑎𝑥𝑐𝑙𝑎𝑠𝑠𝑖
(𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝐶𝑙𝑎𝑠𝑠𝑖)𝑃(𝐶𝑙𝑎𝑠𝑠𝑖))  gives the class to which the set of 

features are more likely to belong. [2]. 
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4.5.3 Support Vector Machines 

 

Figure 4-6 SVM on linearly separable data [2]. 

4.5.3.1 SVM for Linearly Separable Data 

Another classifier used in our research is the Support Vector Machine (SVM). 

Variants of SVM are used for classification purposes. Let D be the data set given as 

(𝑋𝑖,𝒚𝒊), where 𝑋𝑖 is the training tuples associated with class labels 𝑦𝑖. 𝑦𝑖 takes a value +1 

or -1 indicating the class.  There are infinitely many hyperplanes that can separate the 

two classes. The hyperplane is also called the decision boundary. The SVM finds the 

maximum marginal hyperplane. The margins are parallel to the hyperplane and lie on the 

support vectors. Figure 3-9 shows the case of a linear SVM. [2]. 

The separating hyperplane is written as: 

𝑊. 𝑋 + 𝑏 = 0, 

where W is the weight vector and b is the bias. The length of the weight vector is 

equal to the number of features.  𝑊. 𝑋 + 𝑏 > 0 is satisfied for the points lying above the 

separating hyperplane.  𝑊. 𝑋 + 𝑏 < 0 is satisfied for the points lying below the separating 
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hyperplane.[2]. 

 

For 𝑦𝑖 = 1, the data points satisfy the equation 

𝑊𝑋 + 𝑏 ≥ 1                            (1) 

where W is the weight vector, X is the input vector and b is the bias. This 

equation holds because all of the points belonging to 𝑦𝑖 = 1 are on one side of the 

margin.  

Similarly, for 𝑦𝑖 = -1, it satisfies the equation 

𝑊𝑋 + 𝑏 ≤ −1                        (2) 

This equation holds because all of the points belonging to 𝑦𝑖 = -1 are on one side 

of the margin. [2]. 

Combining the two equations results in: 

𝑦𝑖(𝑊𝑋 + 𝑏) ≥ 1, ∀𝑖               (3) 

Weights are minimized to maximize the margin. The width of the margin is given by 

2

||𝑊||
 where ||𝑊|| is the Euclidean norm of W, which is equal to√𝑊. 𝑊

2
.  [2]. 

 

Rewriting Equation 3 using Lagrangian formulation and solving for the solution using 

Karush – Kuhn – Tucker conditions a separating hyperplane is obtained. The separating 

hyperplane is shown below. The equation makes use of Largange multipliers 𝛼𝑖.  

∑ 𝑦𝑖𝛼𝑖𝑋𝑖𝑋
𝑇

𝑙

𝑖=1

+  𝑏0 

Here 𝑦𝑖 is the class label of support vector 𝑋𝑖. 𝑋
𝑇 happens to be the input vector. 

𝛼𝑖 > 0 for support vectors.  [2]. 
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The number of support vectors and not the dimensionality of the data determines the 

complexity of the learned classifier. A lower number of support vectors even when the 

dimensionality is too high gives a good generalization. [2].  

 

4.5.3.2 Linearly Inseparable data 

The approach used for linearly separable data holds for data that is linearly 

inseparable with mapping of input data to higher dimensions. Figure 3-10 shows linearly 

inseparable data. The input data is mapped to a higher dimensional space using a non-

linear mapping and the algorithm searches for a linearly separating hyperplane in that 

non-linear space. The maximum margin hyperplane in the non-linear space forms a 

separating boundary in the original space. [2]. 

In solving the quadratic optimization problem of the linear SVM, the training 

tuples appear in the form of a dot product. Instead of computing the dot product on the 

transformed data, kernel function 𝐾(𝑋𝑖 , 𝑋𝑗) is used on the original input making 𝐾(𝑋𝑖 , 𝑋𝑗) 

= 𝜙(𝑋𝑖). 𝜙(𝑋𝑗).  This way all calculations are made in the input space. [2]. 

 

 

Figure 4-7 Non-linearly separable data 
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Some of the kernel functions we used are: 

• Polynomial Kernel of degree d: 𝐾(𝑋𝑖 , 𝑋𝑗) = (1 + 𝑋𝑖 . 𝑋𝑗) 

• Gaussian radial basis function kernel: 𝐾(𝑋𝑖 , 𝑋𝑗) = 𝑒
−

||𝑋𝑖 −𝑋𝑗||
2

2𝜎2  

 

4.5.3.3 SVM to Handle Outliers (The Non-separable Case) 

Using a linear SVM with hard margin it would not be possible to find a solution to 

the problem shown in Figure 3-11, as the data is inseparable in linear space. The 

constraints 1 and 3 discussed earlier are relaxed by introducing slack variables 𝜉𝑖, where 

i = 1,…,l. The length of the training data is denoted by the variable l. [5]. 

The equations then become: 

𝑊𝑋 + 𝑏 ≥ 1 − 𝜉𝑖  𝑓𝑜𝑟 𝑦𝑖 =  + 1 

and 

𝑊𝑋 + 𝑏 ≤ −1 + 𝜉𝑖  𝑓𝑜𝑟 𝑦𝑖 = −1 

where 𝜉𝑖 ≥ 0 ∀𝑖. In particular, 𝜉𝑖 is greater than 0 for outliers and is equal to 0 when the 

points lie on the correct side of the margin. ∑ 𝜉𝑖𝑖  is an upper bound on the number of 

training errors. A cost parameter C is multiplied with the sum of the errors, where, the 

value for the parameter C is chosen by the user. A larger C corresponds to assigning 

higher penalty for errors. [5]. 
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Figure 4-8 SVM using non-linearly separable data [5] 

The objective function to be minimized is of the form 

1

2
||𝑊||

2
+ 𝐶 ∑ 𝜉𝑖

𝑖

 

Using Lagrangian formulation and solving for the solution using Karush – Kuhn – 

Tucker conditions a separating hyperplane using Largange multipliers 𝛼𝑖 is obtained: 

∑ 𝑦𝑖𝛼𝑖𝑋𝑖𝑋
𝑇

𝑙

𝑖=1

+  𝑏0 

where 0 <  𝛼𝑖 < 𝐶 is the additional constraint that needs to be satisfied. [5]. 

 

4.5.4 Support Vector Data Description  (SVDD) 

Support Vector Data Description is used for novelty detection or outlier detection. 

A spherically shaped decision boundary around a set of objects is constructed by a set of 

support vectors describing the sphere boundary. The method is used to obtain 

description of a set of objects. This description should cover the class of objects 
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represented by the training set. The SVDD should ideally reject all other possible objects 

in the object space. [6]. 

A sphere with minimum volume containing most of the objects is found. To allow 

data points outside the sphere, slack variables 𝜉𝑖are introduced. Of the sphere, described 

by center a and radius R, the radius is minimized as 

F(R, a, 𝜉𝑖) = 𝑅2 + 𝐶 ∑ 𝜉𝑖 

under the constraints 

(𝑥𝑖  a)𝑇(𝑥𝑖  a) ≤ 𝑅2 + 𝜉𝑖          ∀𝑖,  𝜉𝑖 ≥ 0 

𝐶 is here a trade off between the volume of the sphere and the target objects rejected.[6]. 

Using Lagrangian formulation and solving for the solution using Karush – Kuhn – 

Tucker conditions the equation to determine if the test point lies within the hypersphere is 

obtained. 

A test object z is accepted when 

(𝑧   𝑎)
𝑇

(𝑧   𝑎) ≤  𝑅2 

Expressing the center of the sphere in terms of support vectors, a test object is accepted 

when 

(𝒛. 𝒛) − 𝟐 ∑ 𝜶𝒊(𝒛. 𝒙𝒊) +  ∑ 𝜶𝒊𝜶𝒋(𝒙𝒊. 𝒙𝒋) ≤  𝑹𝟐 

where,  0 ≤  𝛼𝑖  ≤ 𝐶,   ∑ 𝛼𝑖 = 1, 𝑎 =  ∑ 𝛼𝑖𝑖 𝑥𝑖. 𝛼𝑖  𝑎𝑛𝑑 𝛼𝑗 are the Lagrange multipliers of the 

support vectors [6]. 

Appendix A shows varying decision boundaries on banana data set using SVDD. 
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4.5.5 One Class Support Vector Machine (OCSVM) 

One class SVM is an algorithm for novelty or outlier detection. A hyperplane in 

the feature space offset by a parameter 𝜌 separates the data points from the origin. The 

data is separated from the origin by minimizing: 

1

2
 ||𝑤||2 + 

1

𝑣𝑙
∑ 𝜉𝑖 - 𝜌 

subject to the constraints, 

(𝑤. 𝜙(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖,         𝜉𝑖   ≥ 0 

where, 𝜙(𝑥𝑖) is the transformed feature, 𝜉𝑖 is the slack variable to allow outliers. [7]. 

Decision Function 𝑓(𝑥) = sign((w. 𝜙(𝑥)) −  𝜌)  should be positive for most of the 

values contained in the training set. Using Lagrangian formulation and solving for the 

solution using Karush – Kuhn – Tucker conditions the equation to determine if the test 

point lies on one side of the hyperplane representing the object space is determined by 

the kernel expansion which results in 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖 k(𝑥𝑖 , 𝑥) −  𝜌) 

with the constraints 0 ≤  𝛼𝑖  ≤
1

𝑣𝑙
,   ∑ 𝛼𝑖 = 1. Here, 𝑣 is the upper bound on the number of 

support vectors and lower bound on the number of outliers. l is the size of the training 

data and 𝛼𝑖 is the support vector [7]. The value of 𝜌 can be computed as ∑ 𝛼𝑗𝑗 k(𝑥𝑗 , 𝑥𝑖) 
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Chapter 5  

DATA 

5.1 Data Collection 

For data collection we use a pressure sensitive smart floor and experimental data 

obtained in previous work [10]. A series of pressure monitoring sensors are here placed 

underneath the floor tiles to record pressure data. Pressure exerted by a subject while 

performing activities like standing and walking are collected at the rate of 25Hz. Data is 

transmitted continuously from the floor containing 128 sensors placed under 128 tiles to a 

nearby computer. The size of each tile is 30 cm x 30 cm. The laid out tiles form a grid of 8 

x 16 tiles. Data was collected from 35 participants consisting of 11 males and 24 females. 

Balance and walking data were collected from each of the participants. Figure 5-1 shows 

the floor that generates the data and the layout of sensors underneath the floor. [10]. 

 

Figure 5-1 (i) Is the floor that generates the data (ii) Is the layout of sensors underneath 

the floor [10]. 



 

47 

5.2 Walking Trial 

The subjects walked the full length of the floor twice, from the start position to the 

end position, at their regular pace. They then walked towards opening the cabinet that 

was adjacent to the floor before walking back to the stopping position. The subjects 

further picked up a cup placed on a table adjacent to the floor near the stopping position 

and continued to walk towards the start position. To complete the walking trial, the 

subject was asked to perform a slow walk. More information about other test and 

activities performed are detailed in the thesis, “Gait Analysis on a Smart Floor for Health 

Monitoring” [10]. Figure 5-2 shows the normal walk and slow walk trials carried out by 

each subject.  
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Figure 5-2 Normal and slow walk trials carried out by each subject. (i) - (ii) Is the normal 

walk trial. (iii) Is the slow walk trial. [10] 

5.3 Data Calibration and Preprocessing 

128 units of Tekscan FlexiForce A401, sensors each with an output between 0 to 

1023 were used. The sensors behave linearly and adhere to the slope-intercept form w = 

ax + b. Where w is the weight in pounds that is to be determined, x is the raw output from 

the sensor and, a is the coefficient and b is the constant. [10]. 

After calibration of the data, we obtain the pressure being exerted by the subject 

while standing or walking on the floor along with the weight of the tile. The weight of the 

tile is subtracted from the data after finding mode for each sensor. This allows us to 

extract the pressure exerted by the subject on the floor. [10]. 
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5.4 The Data 

The data comprises the location coordinates x and y and the associated pressure 

value. The pressure value is determined by averaging the pressure over the region of 

activated sensors. Segmenting strides requires segmenting relevant walking data. Using 

this data as an input to a learning algorithm to classify the segments as walking or not 

walking would not be feasible as the location parameters are constantly varying and carry 

no meaning. We therefore transform the features from time domain to the frequency 

domain, where each feature represents amplitude at a specific frequency. The size of the 

time series data that needs to be transformed to frequency domain for activity recognition 

should be chosen in such a way that the segment should be long enough to differentiate 

short feet movement from walking and short enough so that multiple activities are not 

merged. If the length of the segment is too long there would be a high chance of the 

segment combining two or more activities. For example, the segment could contain data 

of walking activity and turning activity. Owing to the mixture of data, such segments will 

have to be discarded as they would result into erroneous gait parameters.  

 

5.5 Segment Size 

In the research, “gait analysis on smart floor for health monitoring” [10] one of the 

30 subjects had the lowest step frequency of 1.3135 steps per second, which translates 

to around 78 steps per minute. Also, the number of steps per minute is on an average 

between 81 to 125 for individuals in the age group 65 to 80 [15]. One second of data 

should therefore include at least one heel strike of the walk. Therefore we determine one 

second of continuous data to be of sufficient size for activity recognition. Data is 
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generated at 25Hz. One second of data contains 25 data points. 25 data points form a 

data segment. The data segment is a matrix of 25 X 3 values. 

 

5.6 Periodicity  

The data segment may or may not be periodic. In case of standing segments, the 

data could be periodic as the person is balancing the weight of the body. In case of 

walking the data is not periodic due to the shorter length of the segment. Data segments 

containing a mixture of different activities like standing and walking are non-periodic. 

Fourier Transform can be applied for both periodic and non-periodic data to obtain the 

underlying frequencies [13]. 

 

5.7 Features and Feature Transformation 

The input data is a time series data segment. We compute Fourier Transform of 

this data. We set the segment length to 25 i.e. the number of data values that are in one 

segment which need to be transformed to frequency domain. 

To compute Discrete Fourier Transform of the data segment we use the Fast 

Fourier Transform function fftn of Matlab to convert the data to frequency spectrum along 

the three dimensions of the data segment.  

 

5.7.1 Feature Extraction 

To extract walk segments we use unsupervised learning to form clusters and 

then use supervised learning to differentiate walk segments from the rest of the data. 

 

 

 



 

51 

Clustering 

The data of each individual across 30 subjects is broken down into segments, 

where each segment contains 25 data points. The segments are converted from time 

domain to frequency domain using multidimensional Fourier Transform to obtain the 

frequency spectrum along each dimension. We group similar segments by clustering. 

 

Similarity Metric for Clustering 

To find similarity between two frequency spectrums we compute spectral 

coherence between them.  This allows us to look at how coherent the two frequencies 

are rather than how close the magnitudes of the corresponding frequencies are. For 

example, if a simple signal in one dimension is multiplied by a random number, the 

spectral coherence between the signals is the highest, while the Cartesian distance 

between these two signals can be large when the multiplicative factor is a large value or 

a small value. Hence the approach of using Cartesian distance as a distance metric to 

obtain similarity between the signals is discarded. To simply put, we are interested in the 

signature of the frequency spectrum and using spectral coherence as a similarity 

measure allows us to compare the signatures of the frequencies.  

Since the similarity metric is not Cartesian distance, k-means clustering approach 

is discarded. Agglomerative hierarchical clustering approach was used to form clusters 

using spectral coherence as a similarity metric on data segments of 30 subjects.  

 

Linkage 

We used the complete linkage criterion for the agglomerative hierarchical 

clustering because of its global closeness property [2]. Complete linkage ensures that 

similar segments are tightly grouped together.  
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Cluster Evaluation 

A simple visualization representing the floor of the lab was created to plot the 

location parameters of the data segments. The purity of the cluster was assessed by 

visualizing the plot showing the movement of the center of pressure. The labels of the 

clusters were assigned by visualizing the segments of the cluster. 

 

5.8 Types of Segments and their Characteristics 

5.8.1 Standing Segments 

The parameters show little change in the location parameters. The plot in Figure 

5-3 shows the center of pressure (COP). The center of pressure is in a highly dense 

region. The pressure values associated with these values are within a similar range.   

 

Figure 5-3 (i) – (iv) Standing COP trial segments.  
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5.8.2 Walking Segments 

There are two kinds of walking segments, normal walk and slow walk segments. 

The normal walk resembles the regular walk of the subject while in slow walk, the length 

of the steps is much shorter than the regular walk segments. Also, the slow walk takes 

more time than normal walk. The average distance between each center of pressure 

(COP) point to the next COP point is more in regular walk segment compared to slow 

walk segment. 

 

Figure 5-4 (i) – (iv) Walking COP trial segments.  
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5.8.3 Short Feet Movement or Transfer of Pressure 

There are short feet movements that are similar to walk segments but much 

shorter in length. Their COP points look like those between standing and slow walking. 

Transfer of pressure from one leg to another also creates the COP plot pattern as that of 

short feet movement.  

 

Figure 5-5 (i) – (ii) Short feet movement COP trial segments.  

 

5.8.4 Turning Segments 

Turning segments contain a loop in the COP trail. Some COP trail segments also 

have the shape of L during turning. 

 

Figure 5-6 (i) – (ii) Turning COP trial segments.  
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5.8.5 Mixture Segments 

These segments can be a combination of any of the above segments. Since the 

segment length has 25 rows, most often the mixture segments contain activities of two 

kinds as the segment is one second in length.   

 

5.9 Cluster Formation 

Clustering is performed on data of 30 subjects. The data segments include 

activities described above. The label of the segments is unknown and is to be assigned. 

A label assigned to a cluster assigns labels to each of the data segments of the cluster. 

The first segments to get clustered are the standing segments owing to higher coherence 

among them in the frequency domain. The short feet segments are similar to the standing 

segments and get clustered with the standing segments once the standing segments are 

clustered together. The walking segments are likely to get clustered based on the angle 

of walking. Walk segments along an angle are more likely to get clustered. Short feet 

segments and turning segments which are similar to walk segments are likely to get 

clustered. The walk segments are the ones that get clustered at the end owing to the 

larger variation in the frequency spectra.  

 

5.9.1 Cluster Overlapping, Cluster Properties and Cluster Labels 

Figure 5-7 shows overlap among clusters of different activities. The short feet 

movement and turn segments are labeled as noise class. The noise class overlaps with 

the standing segments and relevant walk segments. The standing segments are called 

the standing class. The relevant walk segments are those segments that contain walking 

data which is suitable for stride extraction. The relevant walk segments which include 



 

56 

some of the noise data are labeled as the walking class while assigning labels to the 

clusters. Clusters contain small amount of noise.  

 

 

Figure 5-7 Different classes and their overlapping.  

 

Each of the data points is an individual cluster before merging. The clusters are 

merged one point at a time to form the hierarchy of clusters, eventually leading to one 

cluster that includes all data points [2]. If this clustering is cut at the lowest level i.e. at a 

height where each individual point is a cluster we would have to assign labels for each 

point. Doing so will result in not taking advantage of the clustering process. Contrary to 

cutting the cluster at the lowest height, cutting the cluster at very high levels will result in 

a high degree of overlapping between the classes. Figure 5-8 shows cutting the cluster at 

the lowest level and cutting the cluster at a higher level. Cutting the cluster at the lowest 

level results in {A}, {B}, {C}, {D}, {E}, {F}, and {G} each being an individual cluster thus 

resulting in 7 clusters. Cutting the cluster at a higher level as shown in Figure 4-6 results 

in 3 clusters {A,B,C}, {D,E} and {F, G}.  
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Figure 5-8 Cutting the cluster. [11] 

 

3673 segments from 30 subjects are clustered. Cutting the cluster at a height 

where 80% of the points belonged to a cluster containing more than one point, resulted in 

the following:  

 Large clusters of standing data. 

 Small clusters of walking data. 

 Walking cluster that exists as singleton cluster. 

 Small noise clusters.  

 Short feet movement overlapping with standing data. 

 Short feet movement and turning segments overlapping with walking data.  

The clusters were labeled as standing or walking or as noise segments by visualizing the 

COP trail of all the segments belonging to the cluster. Figure 5-9 shows the visualization 

used to assign labels to the segments. Owing to the overlap of noise class with walking 

class, the walking class was further separated into noise and relevant walk segments and 

is as shown in Figure 5-10. Relevant walk segments were further classified as start of 



 

58 

walk, end of walk and mid walk segments. The walking class data across 30 subjects 

was manually labeled as noise or start of walk or end of walk or mid walk segments. 

 

Figure 5-9 Visualization of the current segment. 

 

 

Figure 5-10 Overlap of noise and relevant walk segments 

 

5.9.2 Labeling of Walk Segments 

Using the visualization with three windows, one window showing the current 

segment, the other two windows showing the next segment and the previous segment, 

labels were assigned to the current segment. Segments that involved standing activity at 

first and walking activity towards the end of the segment were labeled as startOfWalk. 
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Segments that involved walking activity in the beginning of the segment and gradually 

having standing activity were labeled as endOfWalk. Based on the boundaries of the floor 

and prior knowledge about the activity along with visualization, endOfWalk labels were 

carefully assigned. The segments that were in between startOfWalk segments and 

endOfWalk segments were labeled as midWalk segments. Any other mixture segments 

that do not fit into the category described above were added to noise category.  Figure 5-

11 shows the setup to assign label for the current segment based the COP trial of the 

current segment, previous segment and next segment. 

         

Figure 5-11 Visualization of (ii) current, (i) previous and (iii) next segment used in 

assigning label for the current segment 
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5.11 Classification 

The input data for classification is the frequency spectrum matrix of size 25 X 3 

converted into a vector. Classification is carried out in two stages. At stage one we 

classify the frequency spectrum as belonging to either one of the classes: standing, noise 

or walking. When stage one classifies the result as walking, we use stage two 

classification to determine if the walk segment is relevant. At stage two of classification, 

we separate walk segments from noise. We also used stage two data to classify relevant 

walk segments as startOfWalk segments, endOfWalk segments, midWalk segments from 

noise segments. Since beginning of walk and end of walk segments usually are not 

correct representation of one’s walking, they could be discarded when sufficient mid walk 

segments are available. MidWalk segments are a more accurate representation of the 

person’s walk.  

The classifiers used at stage one are Decision Tree and Gaussian Naïve Bayes 

Classifiers. The classifiers used in stage two are Decision Tree, Linear Support Vector 

Machines and Gaussian Naïve Bayes. To classify relevant walk segments as startOfWalk 

segments, endOfWalk segments, midWalk segments from noise segments, we used 

Decision Tree and Gaussian Naïve Bayes Classifier. 

The training data for classification was the data belonging to 15 subjects and the 

testing was carried out on the data belonging to the remaining 15 subjects which was not 

used during training. Though it is possible to determine if the segment is an end of walk 

segment or beginning of walk segment based on the predicted class of the next segment 

or the previous segment, creating classes of data as startOfWalk, endOfWalk and 

midWalk to perform classification was to see if the segments could be accurately 

classified in the frequency domain. The results of using the classifiers such as decision 

tree, Gaussian Naïve Bayes and Linear SVM on start and end segments were between 
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60% – 70% and hence it was not used. Also, leaving out startOfWalk and endOfWalk 

segments will reduce partially relevant walk segments for feature extraction. 

 

5.12 Stride Extraction 

In this research we extract gait parameters using the methods from [10] based on 

the initial contact (heel strike) time and toe off time. The heel strike and toe off times are 

found using the center of pressure speed. The center of pressure speed has a peek 

value when a heel strike occurs. The toe off occurs when the center of pressure speed 

drops. With this information strides can be determined. The double support – single 

support detection algorithm [10] is used in extracting strides. Figure 5-12 shows a floor 

with COP trail when a person is walking. It shows the heel strike and toe off time. The 

location of heel strike on the floor is where single support takes place.   

 

Figure 5-12 COP trail, heel strike time, toe off time and COP Speed. 
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After extracting relevant walk segments, such segments are passed as an input 

to the double support – single support detection algorithm [10] to identify strides. On 

obtaining the heel strike and the toe off times the strides are determined for gait 

parameter extraction. The strides overlap with previous strides if there are more than 

three heel strikes. We extract the gait parameters from these overlapping strides as 

shown in Figure 5-13. 

 

Figure 5-13 Overlapping strides for gait parameter extraction 

5.13 Features 

The features are extracted from the strides using the algorithms detailed in the 

research “Gait analysis on a smart floor for health monitoring” [10]. Figure 5-14 shows 

some of the spatial features that are extracted from the stride. The following features are 

extracted from the stride:  

1. Stride length 

2. Step length - 1 
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3. Step length – 2  

4. Distance between heel strike of the leading foot and toe off of the trailing foot - 1 

5. Distance between heel strike of the leading foot and toe off of the trailing foot – 2 

6. Average step length 

7. Step time - 1 

8. Step time - 2 

9. Single support time - 1 

10. Single support time -2 

11. Step frequency 

12. Average speed 

13. Feet 

14. & 15. Step length ratios 

 

 

Figure 5-14 Features of a stride. 
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Foot  

Determining the leading foot is necessary to separate the step length made by 

the right foot from that of the left foot during the stride. The foot can be determined using 

the stride vector and the step vector. Considering the stride vector to be in the direction of 

walk, the foot can be identified by taking the normal of the stride vector and computing 

the dot product of the stride vector and the step vector. A positive result denotes one foot 

while the negative result denotes the other foot. [10]. 

 

Feature Ordering 

The features extracted contain the foot parameter which indicates the leading 

foot of the stride. If the foot parameter is one it indicates one of the two feet and when it is 

negative it is the other feet. The distance and the time parameters need to be ordered 

such that each feature column represents the data of the particular foot. The features 

need to be swapped so the data is consistent with each foot. The features swapped are 

step lengths, step times, step ratios, single support times, distances from heel strike of 

the leading foot and trailing foot.  

 

5.14 Model Building 

We build personalized models for each individual for person identification and 

anomaly detection.  

The models built for person identification are: 

 One vs Rest Models 

1. Linear Support Vector Machine 

2. Support Vector Machine with RBF kernel 

3. Support Vector Machine with Polynomial Kernel – Order 2 
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4. Support Vector Machine with Polynomial Kernel – Order 3 

 One Class Models 

5.  Support Vector Data Descriptor (SVDD) using RBF kernel 

6. One Class Support Vector Machine(OCSVM) using RBF kernel 

 

The models built for anomaly detection are: 

 One Class Models 

1. Support Vector Data Descriptor (SVDD) using RBF kernel 

2. One Class Support Vector Machine (OCSVM) using RBF kernel 

 

In one versus rest models the training data used to build a model for an individual 

comprises data belonging to both, the individual and the data belonging to other 

individuals. The data belonging to the individual is the target class data and the data 

belonging to all other individuals is the outlier class data. The built model is tested against 

the target class data and the outlier class data.  

For a one class model, the training data comprises data belonging only to the 

individual i.e. the target class data [6][7]. The data belonging to other individuals is not 

used in building the model. The built model is tested against the target class data and 

outlier class data. 

 

5.15 Synthetic Data Augmentation 

For most subjects, the number of strides extracted that belong to normal walk is 

between 15 to 25. A feature vector is extracted from each stride. One of the subjects 

among the 30 subjects had only 5 strides. As a result, synthetic data was generated for 

the subject based on the existing strides using interpolation techniques. 10 newly 
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generated points were added to the individual’s existing set to increase the stride count of 

normal walking data to 15.  

In building models for individuals, two thirds of the data was used for training and 

one thirds of the data was used for testing. The number of features in the feature vector 

is 14. The number of feature vectors for each of the subjects that was used for training 

was between 10 to 16. Building the model on less training data and more features 

resulted in overfitting. Overfitting could be established by lower training errors and higher 

test errors [4]. 

 For the reasons mentioned above, synthetic data generation was necessary. The 

algorithm for synthetic data generation using linear interpolation of existing data points is 

as detailed below.  

 

 

Algorithm 1: Synthetic Data Generation  

Input: 

- originalData: Gait parameters extracted from strides belonging to a subject. 

- percentOfPoints: Percentage of points having at least one neighbor. 

- noOfPointsToGenerate: No of synthetic  data points to generate. 

Output: 

- syntheticData: Generated synthetic data. 

 

distanceMatrix = ComputeCartesianDistanceBetweenPoints(data); 

lowerTriangleDistanceMatrix = 

SetDiagonalAndUpperTriangleToMax(distanceMatrix); 

 

% sortedDistance is the sorted distance of the lower triangle 

% xVector contains corresponding x value of the sorted distance 

% yVector contains corresponding y value of the sorted distance 
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[sortedDistance, xVector, yVector] = …                         

         SortDataByLowestDistance(lowerTriangleDistanceMatrix); 

noOfPoints = size(originalData,1); 

noOfPointsWithAtLeastOneNeighbor = ceil (noOfPoints * percentOfPoints); 

dataGenerationPoints = [ ]; 

while (length (dataGenerationPoints) < noOfPointsWithAtLeastOneNeighbor) 

 for i=1 to length (sortedDistance) 

  % add the points according to the lowest distance 

 dataGenerationPoints = [dataGenerationPoints; xVector(i); 

yVector(i)]; 

 % remove duplicate points 

 dataGenerationPoints = Unique(dataGenerationPoints); 

end 

end 

 

cutOffDistance = sortedDistance(x(i),y(i)); 

originalAndSynData = originalData; 

 

while (originalAndSynData  < noOfPointsToGenerate +…  

 Number_Of_Rows(originalData)) 

 

% randomly choose two different points from the data set     

% originalAndSynData and creates a new data point which is the sum of  

% alpha times the vector of one point  and 1 - alpha times the vector of 

% another point. The new data point can be created only if the distance 

% between the two points are less than or equal to the cutOffDistance. 

 

dataPoint1 = randi(size(originalAndSynData,1)); 

dataPoint2 = randi(size(originalAndSynData,1)); 

 

if dataPoint1 == dataPoint2 

 continue; 

end 

alpha = rand; 

beta = 1 – rand; 

 

newPoint = alpha*originalAndSynData(dataPoint1,:)  + 

     beta*originalAndSynData(dataPoint2,:); 

%Augment new Point 
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originalAndSynData = [originalAndSynData; newPoint]; 

end 

syntheticData = RemoveOriginalData(originalAndSynData, originalData); 

 

return syntheticData; 

end 

 

 

K – fold averaging using One Versus Rest SVM Models for Person Identification 

The feature vectors of normal walk of an individual were randomly sampled 

without replacement to create three folds of data. The number of feature vectors per 

individual was in the range 15 – 25. When the number of feature vectors is 15, the size of 

the training data would be 10 and the size of the validation data would be 5. Increasing 

the number of folds would drastically reduce the number of data points in the validation 

set. Decreasing the number of folds to 2 would decrease the training data size. Hence, 3 

fold validation was the better choice.  

After dividing the data points into three folds, two folds were used in synthetic 

data generation and the other fold was used for testing. 100 data points were 

synthetically generated using the two folds that was reserved for synthetic data 

generation. Testing was carried out without augmenting the test set and with augmenting 

the test set. Augmented test set contains data points that were used in synthetic data 

generation in addition to the data points of the fold reserved for testing. The data points 

used in synthetic data set generation are not used for training. All other points that were 

not used in synthetic data generation were used for training the model. If folds 2 and 3 

are used in data generation fold 1 is used for testing. If for subject 1 the synthetic data is 

generated using fold 2 and 3, fold 1 is used for testing. Synthetic data generated in this 

case is called Synthetic Data for Subject 1 for Test Fold 1. This is abbreviated as 

SDS1TF1 and is shown in Figure 5-15. Similarly, SDS1TF2 is synthetic data for subject 1 
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for test fold 2. Figure 5-15 shows the synthetic data for subject 2 and subject 3 for test 

fold 1. A model is built for each individual for each fold of test set. The training data also 

includes the other subject data also referred to as the outlier data. The outlier data from 

different subjects is from the folds that generated the data for the individual. For example, 

when a model is built for a subject using data generated from folds 2 and 3, the outlier 

data of the remaining subjects must also come from the same folds. This is done so that 

the models are not trained using the test set of other individuals as outlier class data. 

70% of the outlier data is used for training and 30% is used for testing.  

 Figure 5-16 shows the training data and test data for one class classifier. The 

only difference from the one-versus-rest approach is that the training data does not 

include data of other individuals. The test data however includes the data of other 

individuals. Since RBF kernel is used for the SVDD and OCSVM, grid search technique 

[12] is used to find the optimal values for gamma and Nu. Gamma is the width parameter 

of the Gaussian and Nu is the fraction of outliers in the original data. Nu is varied 

between 0.01 – 0.2 in increments of 0.01. Gamma is varied between 5 – 8. Increasing 

gamma increases the decision boundary. The increase in the decision boundary with 

increase in the width parameter gamma was seen earlier in the technical section. For 

lower values of the gamma parameter, the decision boundary does not fit the target data 

correctly. Many points that belong to the target data are omitted by the decision boundary 

owing to the decision boundary formed around the denser regions of the target data. The 

optimal values for the parameters gamma and Nu are chosen based on the lower 

average of target train error and target test error. Target train error is the error on the 

subject training data and target test error is the error on the subject test data. 
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Figure 5-15 Training data and test data for one-versus-rest classifier. 

 

 

Figure 5-16 Training data and test data for one class classifier. 
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Classification 

We use the test data belonging to a fold i of the subject and use models across 

all subjects that have been trained with data other than fold i to predict the number of test 

points that belong to the model. Figure 5-17 explains the process. The results of the k – 

folds across all models are averaged to obtain the average across the folds of the 

probability that the data belongs to the particular individual. The test data includes 

augmented and un-augmented data sets. Augmented data set is as described earlier. In 

Figure 5-15 the data belongs to subject 1. The figure consists of 3 subjects and 3 models 

for each subject. For each of the folds belonging to the subject, after classifying using all 

models belonging to the fold, we average the results to get the probability of the data 

belonging to an individual. The data is said to belong to a subject based on the probability 

values across all models of all subjects on the subject’s data. It is predicted that the data 

belongs to a particular individual based on the highest probability. Figure 5-17 shows that 

the data belongs to subject 1 with a probability of 0.62. Here, the data used to test 

belongs to subject 1. This approach is used for both, one-versus-rest classifiers and one 

class classifiers.  
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Figure 5-17 Averaging predictions across all models per fold for person identification for 

one-versus-rest classifier. 
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Chapter 6  

RESULTS AND ANALYSIS 

 

6.1 Classification at Stage 1 

At this stage we classify input data as Noise or Standing or Walking segments. 

The classifiers used to separate Noise, Standing and Walking segments are Gaussian 

Naïve Bayes and Decision Tree. Of the 30 subjects, the data of 15 subjects were used in 

building the model. The classifiers were tested on the untrained 15 other subjects. The 

classification is performed on both, training data and testing data. Table 6-1 and 6-2 

gives classification results using Gaussian Naïve Bayes Classifier on Training and 

Testing Data. 

 

Table 6-1 Classification Results on Training Data 

Gaussian Naïve Bayes Classifier  – Training Data 

 Actual Class 

 

 

Predicted  

Class 

 Noise Standing Walking 

Noise 167 94 138 

Standing 40 1064 0 

Walking 8 0 441 
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Table 6-2 Classification Results on Testing Data 

Gaussian Naïve Bayes Classifier  – Testing Data 

 Actual Class 

 

 

Predicted  

Class 

 Noise Standing Walking 

Noise 149 76 98 

Standing 21 942 0 

Walking 8 0 428 

 

The classification between standing and walking on training data and testing data 

using Gaussian Naïve Bayes classifier as shown above results in zero false positives and 

zero false negatives i.e., none of the walking data is classified as standing data and none 

of the standing data is classified as walking data. Walking data not being classified as 

standing data ensures that, data is not lost as a result of misclassification. Standing data 

not being classified as walking data ensures spurious gait parameters are not extracted. 

A high percentage of walking data, about 23.8% and 18.6% belonging to training data 

and test data respectively is classified as noise data. Standing data being classified as 

noise or noise data being classified as standing data does not affect our requirement. A 

low percentage of data, about 4.57% and 5% belonging to training data and test data 

respectively is classified as walking data. These segments are more similar to walking 

data. Such segments have to be in sequence for spurious gait parameters to be 

extracted. Such a sequence should have at least three heel strikes to be considered for 
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stride extraction. For a COP speed point to be called as a heel strike the value should be 

greater than the average of all the COP speed values for that segment. This makes the 

chances of extracting parameters from noise data very low. Standing data being 

classified as noise or noise data being classified as standing data does not affect our 

requirement. 

Table 6-3 and 6-4 shows the result of classification using Decision Tree. 

 

Table 6-3 Classification Results on Training Data 

Decision Tree Classifier  – Training Data 

 Actual Class 

 

Predicted  

Class 

 Noise Standing Walking 

Noise 210 4 4 

Standing 1 1154 0 

Walking 4 0 575 
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Table 6-4 Classification Results on Testing Data 

Decision Tree Classifier  – Testing Data 

 Actual Class 

 

Predicted  

Class 

 Noise Standing Walking 

Noise 129 25 31 

Standing 16 993 0 

Walking 32 0 495 

 

 

The classification between standing and walking on training data and testing data 

using Decision Tree classifier results again in zero false positives and zero false 

negatives. A low percentage of walking data, about 0.69% and 5.9% belonging to training 

data and test data respectively is classified as noise data. About 1.8% and 19.87% of 

noise data belonging to training data and test data respectively is classified as walking 

data. 

Even though the percentage of noise data being classified as walking data is 

high with Decision Tree as compared to  Gaussian Naïve Bayes classifier, we use 

Decision Tree as our model as 5.9% of walking data is classified as noise while the 

Gaussian Naïve Bayes classifier classifies 18.6% of the data to be noise when using test 

data. Extracting gait parameters from noise data is less likely based on the above 

discussion. Also, since we use another classifier at stage two to differentiate between 

noise and relevant walking segments, choosing Decision Tree over Gaussian Naïve 

Bayes classifier ensures we have more walking segments for gait parameter extraction.  
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Table 6-5 shows the overall accuracy using Naïve Bayes and Decision Tree 

Classifiers on training data and test data. 

 

Table 6-5 Overall Accuracy of Classifiers 

Classifiers Accuracy 

 Train Test 

Naïve Bayes 85.655738% 88.262638% 

Decision Tree 99.334016% 93.957002% 

 

 

 

6.2 Classification at Stage 2 

At stage 2 we classify relevant walking segments for gait parameter extraction 

from noise. The classifiers used in this stage are Decision Tree, Gaussian Naïve Bayes 

and Linear Support Vector Machines. Of the 30 subjects, data involving walking and 

noise segments of the 15 subjects were used in building the model. The classifiers were 

tested on the data of untrained 15 subjects. Classification was performed on both, 

training data and testing data. Table 6-6 and 6-7 gives classification results using 

Gaussian Naïve Bayes Classifier on Training and Testing Data. 
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Table 6-6 Classification Results on Training Data 

Gaussian Naïve Bayes Classifier  – Training Data 

 Actual Class 

 

Predicted  

Class 

 Noise Walking 

Noise 70 149 

Walking 11 349 

 

Table 6-7 Classification Results on Testing Data 

Gaussian Naïve Bayes Classifier  – Testing Data 

 Actual Class 

 

Predicted  

Class 

 Noise Walking 

Noise 90 65 

Walking 12 359 

 

 Using Gaussian Naïve Bayes Classifier, the number of noise points misclassified 

as relevant walk segments is 13.5% and 11.7% for training and test data, respectively. 

The percentage of relevant walk segments being classified as noise is 29.9% and 15.3% 

for training and test data, respectively.  

Table 6-8 and 6-9 gives classification results using Decision Tree for training and 

testing data. 
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Table 6-8 Classification Results on Training Data 

Decision Tree Classifier  – Training Data 

 Actual Class 

 

Predicted  

Class 

 Noise Walking 

Noise 74 3 

Walking 7 495 

 

Table 6-9 Classification Results on Testing Data 

Decision Tree Classifier  – Testing Data 

 Actual Class 

 

Predicted  

Class 

 Noise Walking 

Noise 53 17 

Walking 49 407 

 

Using Decision Tree Classifier, the number of noise points misclassified as 

relevant walk segments is 8.6% and 48% for training and test data respectively. The test 

error on the noise points being classified as walking is very high which makes it not 

suitable for classification. The percentage of relevant walk segments being classified as 

noise is 0.6% and 4% for training and test data respectively which is very low. 

Table 6-10 and 6-11 gives classification results using Linear Support Vector 

Machines for training and testing data. 
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Table 6-10 Classification Results on Training Data 

Linear Support Vector Machines  – Training Data 

 Actual Class 

 

Predicted  

Class 

 Noise Walking 

Noise 66 16 

Walking 15 482 

 

 

Table 6-11 Classification Results on Testing Data 

Linear Support Vector Machines  – Testing Data 

 Actual Class 

 

Predicted  

Class 

 Noise Walking 

Noise 73 8 

Walking 29 416 
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Using Linear Support Vector Machines, the number of noise points misclassified 

as relevant walk segments is 18.6% and 28% for training and test data, respectively. The 

percentage of relevant walk segments being classified as noise is 3.2% and 1.8% for 

training and test data, respectively. Decision Tree has 48% of noise points being 

misclassified as walk during testing while Gaussian Naïve Bayes classifier has 11.7% 

and Support Vector Machine (SVM) has 28% misclassifications. Owing to the high 

percentage of errors in classifying noise segments, decision tree is not considered for 

classification. Gaussian Naïve Bayes (GNB) classification has 15.3% of walk points being 

misclassified as noise during testing while SVM has 1.8% of misclassifications. Though 

the percentage of noise points being misclassified as walk is relatively higher using SVM 

compared to GNB, as mentioned earlier, the chances of extracting gait parameters from 

noise data is less. Hence we use SVM over GNB for classification. 

Table 6-12 shows the overall accuracy of train and test data using different 

classifiers at stage 2 of classification. 

 

Table 6-12 Overall accuracy of train and test data using different classifiers. 

Classifiers Stage 2 (Separate Noise and Walk Segments) 

 Train Test 

Naïve Bayes 72.366149% 85.361217% 

Decision Tree 98.272884% 87.452471% 

Linear SVM 94.645941% 92.965779% 
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6.3 Impurity in clusters  

Clusters have impurity in them based on the height at which the hierarchical 

clustering is cut. As shown in Figure 5-8, if the clustering is cut at a lower height, the 

clusters obtained will be more pure compared to clusters cut at a higher height. Purity 

refers to the similarity of the points in the cluster. The more similar the points within the 

cluster are, the higher the purity of the cluster. The impurity of the cluster is high when cut 

at a higher level. Impurity is the lowest when all clusters are singleton clusters. Impurity is 

the highest when all points belong to a single cluster. 

The hierarchical clustering is cut at 80% of the height. Some of the clusters have 

impurity in them. Noise points are part of standing and walking segments. Walk segments 

also have noise segments. The impurities are low and they introduce noise when the 

whole cluster is assigned a label. The results of clustering are therefore not exact results 

but are a good approximation. Therefore, when classifying, the model might be correctly 

classifying the data when the point is an outlier belonging to a wrong cluster. This could 

mean that the classification accuracies are better than what is observed. 

 

6.4 Person Identification 

Two kinds of classifiers are used for person identification, one-versus-rest 

classifiers and one class classifiers. The one-versus-rest classifiers are Linear SVM, 

SVM with polynomial kernel of order 2, SVM with polynomial kernel of order 3 and SVM 

with RBF kernel. The one class classifiers are Support Vector Data Descriptor with RBF 

Kernel and One Class SVM with RBF Kernel. Tables 6-14 to 6-16 show accuracy of 

training and testing for 3 subjects across 3 folds and 4 classifiers. The target test data 

includes seeds that generated the synthetic data. The models are not trained with these 

seeds. The models built here are the ones described in Figure 5-15. 
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Table 6-14 Accuracy for subject 1 across 3 folds using one-versus-rest classifier 

  Target Train 

Data 

Target Test 

Data 

Outlier Train 

Data 

Outlier Test 

 Data 

 

 

Fold 1 

poly -2 100% 56.521% 100% 91.851% 

poly -3 100% 73.913% 100% 88.518% 

RBF 93.333% 34.782% 100% 100% 

Linear 86.666% 26.086% 99.206% 85.555% 

 

 

Fold 2 

poly -2 100% 65.217% 100% 96.296% 

poly -3 100% 60.869% 100% 100% 

RBF 99.047% 56.521% 100% 100% 

Linear 80% 39.130% 99.047% 99.259% 

 

 

Fold 3 

poly -2 100% 56.521% 100% 97.407% 

poly -3 100% 56.521% 100% 100% 

RBF 98.095% 34.782% 100% 100% 

Linear 95.238% 43.478% 97.460% 100% 
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Table 6-15 Accuracy for subject 2 across 3 folds using one-versus-rest classifier 

  Target Train 

Data 

Target Test 

Data 

Outlier Train 

Data 

Outlier Test 

Data 

 

 

Fold 1 

poly -2 100% 61.904% 100% 95.555% 

poly -3 100% 66.666% 100% 100% 

RBF 99.047% 57.142% 99.682% 100% 

Linear 96.190% 80.952% 99.365% 100% 

 

 

Fold 2 

poly -2 100% 66.666% 100% 97.037% 

poly -3 100% 66.666% 100% 96.296% 

RBF 100% 66.666% 100% 99.629% 

Linear 80% 52.380% 99.206% 96.666% 

 

 

Fold 3 

poly -2 100% 81.818% 100% 99.259% 

poly -3 100% 63.636% 100% 100% 

RBF 99.038% 59.090% 100% 100% 

Linear 94.230% 63.636% 99.682% 99.629% 
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Table 6-16 Accuracy for subject 3 across 3 folds using one-versus-rest classifier 

  Target Train 

Data 

Target Test 

Data 

Outlier Train 

Data 

Outlier Test 

 Data 

 

 

Fold 1 

poly -2 100% 78.571% 100% 98.888% 

poly -3 100% 85.714% 100% 98.518% 

RBF 98.058% 64.285% 100% 98.888% 

Linear 98.058% 92.857% 100% 97.777% 

 

 

 Fold 2 

poly -2 100% 57.142% 100% 95.185% 

poly -3 100% 64.285% 100% 97.777% 

RBF 99.029% 50% 100% 98.888% 

Linear 99.029% 64.285% 100% 88.518% 

 

 

Fold 3 

poly -2 100% 71.428% 100% 98.518% 

poly -3 100% 78.571% 100% 97.777% 

RBF 100% 78.571% 100% 98.888% 

Linear 100% 85.714% 100% 97.037% 

 

Using the models and the approach described in Figure 5-17 we predict the 

subjects to whom the data belongs after validation. Table 6-17 and 6-18 show the correct 

number of predictions without the seeds included in the test data and with the test data 

including the seeds respectively. 
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Table 6-17 Correctly predicted subjects on test data not containing seeds. Predictions 

made using validation for each of the 4 SVM classifiers. 

No of Subjects Poly - 2  Poly – 3 RBF Linear 

Correctly Predicted Subjects 

First 10 8 6 7 5 

First 20 12 10 12 7 

First 30 16 15 11 8 

 

 

Table 6-18 Correctly predicted subjects on test data containing seeds. Predictions made 

using validation for each of the 4 SVM classifiers. 

No of Subjects Poly - 2  Poly – 3 RBF Linear 

Correctly Predicted Subjects 

10 10 10 10 10 

20 20 20 20 17 

30 30 30 30 22 

 

Without the seeds being part of the test data set, the percentage of correctly 

identified individuals is 65% for the first 10 individuals, 51.25 % for the first 20 individuals 

and 41.66% for the first 30 individuals. This is due to the increase in the subjects causes 

increase in the data and that there is a similarity among data points of different subjects. 
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It can be noticed that as the number of subjects increase the error increases across all 

classifiers. The polynomial kernel of order 2 performs better than the other kernels to 

identify individuals. 

 With the augmented test set containing the seed points, the percentage of 

correctly identified individuals is much higher compared to using the test set not 

containing the seed points. The percentage of correctly identified individuals is 100% for 

the first 10 individuals, 96.25% for the first 20 individuals and 93.33% for the first 30 

individuals. The results of augmented test set is better than the test set not containing the 

seeds, because the synthetic data was generated using the seeds was used in building 

the models. All the models except of the linear SVM gives 100% accuracy in predicting 

the individuals. The linear SVM does better when there are fewer subjects to classify. 

Tables 6-19 to 6-21 show the accuracy on target train data, target test data and 

outlier data and average accuracy on each of the folds based on maximum target training 

accuracy, maximum target test accuracy, maximum outlier accuracy and max average 

accuracy using Support Vector Data Descriptor. Average accuracy is the average 

accuracy of target train data and target test data. Nu is number of outliers in the data. 

Sigma is the width parameter of the Gaussian in the RBF kernel. The model is chosen 

based on the highest average accuracy. The parameters of the Gaussian kernel are 

chosen based on grid search on Nu and Sigma. The test data includes the seed data that 

generated the synthetic data. The models built here are the ones described in Figure  

5-16. 
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Table 6-19 Accuracy of target prediction and outlier prediction for fold 1 on subject 1 

using SVDD. 

 

Table 6-20 Accuracy of target prediction and outlier prediction for fold 2 on subject 1 

using SVDD. 

 

Sorted On 

Target 

Train 

Data 

Target 

Test 

Data 

Outlier  

Data 

Average 

Accuracy 

(Target Train 

+ Target Test) 

Nu Sigma 

maxTargetTrainAccuracy 94.28% 42.85% 86.32% 68.57% 0.16 6.4 

maxTargetTestAccuracy 93.33% 42.85% 82.89% 68.09% 0.16 8 

maxOutlierAccuracy 53.33% 0% 98.22% 26.66% 0.01 5 

maxAverageAccuracy 94.28% 42.85% 86.32% 68.57% 0.16 6.4 

 

 

 

Sorted On 

Target 

Train 

Data 

Target 

Test 

Data 

Outlier  

Data 

Average 

Accuracy 

(Target Train 

+ Target Test) 

Nu Sigma 

maxTargetTrainAccuracy 96.19% 61.90% 74.67% 79.047% 0.07 8 

maxTargetTestAccuracy 96.19% 61.90% 74.67% 79.047% 0.07 8 

maxOutlierAccuracy 55.23% 0% 99.96% 27.61% 0.06 5.2 

maxAverageAccuracy 96.19% 61.90% 74.67% 79.04% 0.07 8 
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Table 6-21 Accuracy of target prediction and outlier prediction for fold 3 on subject 1 

using SVDD. 

 

Sorted On 

Target 

Train 

Data 

Target 

Test 

Data 

Outlier  

Data 

Average 

Accuracy 

(Target Train 

+ Target Test) 

Nu Sigma 

maxTargetTrainAccuracy 99.03% 27.27% 92.45% 63.15% 0.04 7.9 

maxTargetTestAccuracy 97.11% 59.09% 89.53% 78.10% 0.07 8 

maxOutlierAccuracy 61.53% 0% 99.90% 30.76% 0.13 5 

maxAverageAccuracy 97.11% 59.09% 89.53% 78.10% 0.07 8 

 

 

Table 6-22 and 6-23 show prediction of subjects without the seed data included 

in the test set and with including the seeds in the test set respectively. Using the models 

and the approach described in Figure 5-17 we predict the subjects to whom the data 

belongs after validation. Without the seeds being part of the test data set, the percentage 

of correctly identified individuals is 40% for the first 10 individuals, 40% for the first 20 

individuals and 31.03% for the first 29 individuals. The test results are not good because 

the bound includes the data belonging to other subjects. As a result there are higher 

misclassifications.  It can be noticed that as the number of subjects increase the error 

increases. 

With the seeds being part of the test data set, the percentage of correctly 

identified individuals is 60% for the first 10 individuals, 65% for the first 20 individuals and 

44.82% for the first 29 individuals. The results are better because of the addition of the 

seeds into the test set that generated the synthetic data. 
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Table 6-22 Correctly predicted subjects on test data not containing seeds using SVDD.  

No of Subjects SVDD-RBF  

Correctly Predicted Subjects 

10 4 

20 8 

29 9 

 

Table 6-23 Correctly predicted subjects on test data containing seeds using SVDD.  

No of Subjects SVDD-RBF 

Correctly Predicted Subjects 

10 6 

20 13 

29 13 

 

Tables 6-24 to 6-26 show the accuracy on target train data, target test data and 

outlier data and average accuracy on each of the folds based on maximum target training 

accuracy, maximum target test accuracy, maximum outlier accuracy and max average 

accuracy using One Class Support Vector Machines. Average accuracy is the average 

accuracy of target train data and target test data. Nu is number of outliers in the data. 

Gamma is they hyper parameter of the RBF kernel. The model is chosen based on the 

highest average accuracy. The parameters of the Gaussian kernel are chosen based on 
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grid search on Nu and Gamma. The test data includes the seed data that generated the 

synthetic data. The models built here are the ones described in Figure 5-16. 

Table 6-24 Accuracy of target prediction and outlier prediction for fold 1 on subject 1 

using OCSVM. 

 

Sorted On 

Target 

Train 

Data 

Target 

Test 

Data 

Outlier  

Data 

Average 

Accuracy 

(Target Train + 

Target Test) 

Nu Gamma 

maxTargetTrainAccuracy 98.100% 26.41% 71.43% 62.25% 0.09 0.02 

maxTargetTestAccuracy 5.7100% 97.53% 9.52% 51.62% 0.06 0.01 

maxOutlierAccuracy 98.100% 26.41% 71.43% 62.25% 0.09 0.02 

maxAverageAccuracy 98.100% 26.41% 71.43% 62.25% 0.09 0.02 

 

Table 6-25 Accuracy of target prediction and outlier prediction for fold 2 on subject 1 

using OCSVM. 

 

Sorted On 

Target 

Train 

Data 

Target 

Test 

Data 

Outlier  

Data 

Average 

Accuracy 

(Target Train 

+ Target Test) 

Nu Gamma 

maxTargetTrainAccuracy 81.90% 30.80% 66.67% 56.35% 0.20 0.02 

maxTargetTestAccuracy 6.670% 88.17% 23.81% 47.42% 0.03 0.01 

maxOutlierAccuracy 80% 27.49% 85.71% 53.75% 0.06 0.02 

maxAverageAccuracy 76.19% 45.68% 61.90% 60.93% 0.19 0.01 
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Table 6-26 Accuracy of target prediction and outlier prediction for fold 3 on subject 1 

using OCSVM. 

 

Sorted On 

Target 

Train 

Data 

Target 

Test 

Data 

Outlier  

Data 

Average 

Accuracy 

(Target Train 

+ Target Test) 

Nu Gamma 

maxTargetTrainAccuracy 62.50% 58.81% 50% 60.66% 0.15 0.02 

maxTargetTestAccuracy 14.42% 70.84% 27.27% 42.63% 0.15 0.02 

maxOutlierAccuracy 39.42% 57.32% 54.55% 48.37% 0.20 0.02 

maxAverageAccuracy 62.50% 58.81% 50% 60.66% 0.15 0.02 

 

Table 6-27 and 6-28 show prediction of subjects without the seed data included 

in the test set and with including the seeds in the test set respectively. Using the models 

and the approach described in Figure 5-17 we predict the subjects to whom the data 

belongs after validation. Without the seeds being part of the test data set, the percentage 

of correctly identified individuals is 0% for the first 10 individuals, 0% for the first 20 

individuals and 3.4% for the first 29 individuals. The test results are not good because the 

bound includes the data belonging to other subjects. One class SVM is a one sided 

bound in a nonlinear space, whereas SVDD is hypershpere in the nonlinear space.  As a 

result there are higher misclassifications compared to SVDD.  Only one subject could be 

identified correctly. 

With the seeds being part of the test data set, the percentage of correctly 

identified individuals is 0% for the first 10 individuals, 0% for the first 20 individuals and 

3.4% for the first 29 individuals. The results are the same compared to the test set 
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without the seeds. This is due to the poor accuracy of the individual models to 

differentiate between the target data and the outlier data. 

 

Table 6-27 Correctly predicted subjects on test data not containing seeds using OCSVM. 

No of Subjects OCSVM-RBF  

Correctly Predicted Subjects 

10 0 

20 0 

29 1 

 

 

Table 6-28 Correctly predicted subjects on test data containing seeds using OCSVM. 

No of Subjects OCSVM-RBF 

Correctly Predicted Subjects 

10 0 

20 0 

29 1 
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6.5 Anomaly Detection 

Using the models built above for normal walk detection, anomaly detection was 

carried out on abnormally slow walk data of the subject to detect if the abnormally slow 

walk would be predicted as anomaly. 3 models from above belonging to each individual 

are used to predict if the input slow stride from the subject is an anomaly. The accuracy 

of the 3 models is averaged to get the final accuracy. Table 6-29 and 6-30 show the 

average accuracy of models for an individual to predict slow walk data as not belonging 

to the subject using SVDD and OCSVM respectively.  The SVDD does better than the 

OCSVM. The OCSVM does poorly because of the one-sided bound in the nonlinear 

space while the SVDD is a hypersphere in the nonlinear space. Also, the generalization 

of the OCSVM is bad and can be observed from Tables 6-24 to 6-26. The outlier 

detection accuracy is poor, there by misclassifying a lot of outliers to be target. 
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Table 6-29 Anomaly detection using SVDD 

Subject 

Subject 

Accuracy  

Accuracy 
1 100% 

2 100% 

3 100% 

4 100% 

5 100% 

6 100% 

7 100% 

8 100% 

9 100% 

10 93.33% 

11 100% 

12 100% 

13 100% 

14 100% 

15 100% 

16 100% 

17 100% 

18 100% 

19 100% 

20 75% 

21 100% 

22 100% 

23 100% 

24 100% 

25 100% 

26 93.33% 

27 100% 

28 100% 

29 100% 
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Table 6-30 Anomaly detection using OCSVM 

Subject Accuracy 

 

Accuracy 

1 61.11% 

2 91.67% 

3 50% 

4 77.78% 

5 42.85% 

6 66.67% 

7 76.67% 

8 72.22% 

9 46.15% 

10 60% 

11 54.16% 

12 44.44% 

13 72.22% 

14 71.428% 

15 33.33% 

16 45.833% 

17 80% 

18 100% 

19 42.85% 

20 66.67% 

21 91.667% 

22 40% 

23 93.33% 

24 16.667% 

25 50% 

26 66.67% 

27 83.33% 

28 86.667% 

29 76.19% 
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Chapter 7  

FUTURE WORK 

 

Walk data was further classified into beginning of walk, mid walk and end of walk. 

It would be interesting to see if person identification or anomaly detection can be 

improved using only mid walk segments as start of walk and end of walk segments may 

not accurately represent one’s walking pattern. This would require more data to be 

generated as we would have to leave out start of walk and end of walk segments. 

In this thesis we generate synthetic data by interpolation as original data was 

insufficient and was resulting in overfitting. Synthetic data of 100 points was generated 

using two folds of data. Further experiments can be carried out by increasing the data 

size to see if increase in data could result in better results. 

More walking data needs to be collected for each individual so that the need for 

synthetic data doesn’t arise. Using synthetic data might give biased results. The models 

have to be validated again to obtain results on data not containing synthetic data. Person 

identification has to be carried out to see if individuals can be correctly predicted.  

The parameters need to be tuned for the SVM to obtain optimal results. Basic 

grid search optimization is used to find parameters that best fit the model for the 

individual. Other techniques include grid search optimization with cross validation. This 

might help in tuning the model better. Other approaches to classification could be tried to 

see accuracy of the models can be improved. The width parameter of the Gaussian is 

limited to 8 as further increasing the width would allow outlier data to be classified as 

individual’s data. The tradeoff between decrease in the outlier accuracy and increase in 

accuracy for target identification with increase in the width of the Gaussian of the RBF 
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kernel has to be determined to set the limit of the width of the Gaussian while performing 

grid search. 

The one class classifiers were used with RBF kernel, as this is the default choice. 

While polynomial kernel of order 2 resulted in better person identification using one 

versus rest classifiers, SVDD with polynomial kernel might give better results at 

identifying individual’s stride and hence aid in better person identification.  

Currently, strides are randomly sampled to obtain training and testing data. It 

would be interesting to see if we could get the same person identification results if data 

used are sequences of strides for training and testing instead of randomly sampling 

strides. 
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Chapter 8  

CONCLUSION 

 

Using pressure monitoring floor we identify individuals walking on the floor and detect 

deviation in walking pattern to predict neurological problems on the onset so as to 

prevent it from becoming chronic. It can also be used for fall prediction in the elderly, 

which is one of the causes for death in the elderly. In this thesis, we managed to get high 

accuracy in classifying relevant walk segments from standing, short feet movement, 

turning and mixed segments. We also extracted gait parameters to build models for 

individuals for person identification and anomaly detection. We could identify 16 

individuals out of 30 individuals on validation data not containing seed data points which 

was used in synthetic data generation for training the models. We could identify all the 

individuals on including the seed data on validation data which included seed data points. 

Using SVDD, we could identify abnormally slow walking data as anomalous with very 

high accuracy. The results of this research are promising for person identification and 

anomaly detection.  
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Appendix A 

WORKING OF ALGORITHMS BY EXAMPLE 

 

A.1 Hierarchical Clustering using Complete Linkage 

  Figure 1 shows merging of 5 points, (vi) shows a dendrogram which is a tree like 

structure that shows the merging between the clusters. [2].     

 

Figure 1 is a similarity matrix of 5 points clustered hierarchically using complete linkage. 

(i) is the similarity matrix, (ii)-(v) is the similarity matrix after merging at each stage. (vi) is 

the dendrogram of the clustering. 
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Comparison between Single Linkage and Complete Linkage 

Figure 2 shows a set of points that are clustered using single linkage and 

complete linkage criterion. The dendrogram of the clustering of single linkage and 

complete linkage of the data shown in figure 2 is shown in figure 3. On both the clustering 

the dendrogram is cut at a certain height to obtain two clusters. The clusters of single 

linkage are defined by proximity while the clusters of the complete linkage are defined by 

global closeness [2]. Form figure 3, it can be observed that the points within the cluster 

are closer to each other using complete linkage when compared to single linkage.  

 

 

 

Figure 2 Set of points to be clustered [2]. 
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Figure 3 Clustering using single linkage and complete linkage. It also shows the clusters 

obtained when the dendrogram is cut to give 2 clusters for single linkage and complete 

linkage. [2][8] 

 

A.2 Working of CART Algorithm by Example 

The working of the CART algorithm is explained below using an example data 

set shown in figure 4. The CART algorithm creates a binary split using Gini Index. The 

attribute with the lowest Gini Index is used as the splitting attribute. If the attribute have 

more than 2 values, the split is created using one value versus the rest of values. This 

process is repeated for all the values of the attribute. The example shows an exhaustive 

search to find the attribute to split by at the root level using a binary split. [2]. 
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Figure 4 Sample data set [2] 

𝐺𝑖𝑛𝑖(𝐷) = 1 −   (
9

14
)

2

−  (
5

14
)

2

 = 0.459 

 

 

 

 

 

Gini index for the subsets {youth} and {middle-aged, senior} is given by: 



 

104 

 = 
10

14
(1 − (

5

10
)

2

− (
5

10
)

2

) +
4

14
(1 − (

4

4
)

2

− (
0

4
)

2

) 

= 0.3571 

 

 

Gini index for the subsets {youth, middle-aged} and {senior} is given by: 
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Gini index for the subsets {youth} and {middle-aged, senior} is given by: 
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105 

 

 

 

Gini index for the subsets {medium, low} and {high} is given by: 
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Gini index for the subsets {high, medium} and {low} is given by: 

 = 
10

14
(1 − (

6

10
)

2

− (
4

10
)

2

) +
4

14
(1 − (

1

4
)

2

− (
3

4
)

2

) 

= 0.4499 
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Gini index for the subsets {high, low} and {medium} is given by: 
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Gini index for credit rating is given by: 
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Gini index for student is given by: 
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The binary split by age {Youth & Senior} (or {Middle-Aged}) gives the highest 

reduction in impurity, which is equal to 0.459 – 0.3571 = 0.1019. 

 

A.3 Formation of decision boundary using support vector data descriptor on banana 

data set  

 

Using the dd toolbox provided by Tax, et al [9], a target data set in the shape of a 

banana and the outlier data set outside the banana data set are generated. The dd 

toolbox [9] is used to learn a decision boundary around the target data using radial basis 

function kernel for different widths of the Gaussian and by setting the percentage of 

outliers in the target data to be equal to 10 percent. Figure 5 shows the data and the 

decision boundary around the target data with increasing sigma (width of the Gaussian) 

and nu = 0.1 (fraction of outliers in the target data). 
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Figure 5 SVDD boundary (i) Target data is red and outlier data is blue. (ii) Decision 

boundary around the target data when sigma = 5. (iii) Decision boundary around the 

target data when sigma = 10. (iv) Decision boundary around the target data when sigma 

= 15. [9] 
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