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Abstract 

 
 

ACTIVITY DETECTION AND CLASSIFICATION  

ON A SMART FLOOR 

 

Anil Kumar Mullapudi, MS 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Manfred Huber 

Detecting and analyzing human activities in the home has the potential to improve monitoring of 

the inhabitants' health especially for elderly people. There are many approaches to detect and categorize 

human activities that have been applied to data from several devices such as cameras and tactile 

sensors. However, use of these sensors is not feasible in many places due to security and privacy 

concerns or because of users who may not be able to attach sensor to their body. Some of these issues 

can be addressed using less intrusive sensors such as a smart floor. A smart floor setup allows to detect 

human temporal behaviors without any external sensors attached to users. However, use of such indirect, 

environmental sensors also changes the character and quality of the data available for activity 

recognition. In this thesis, an approach to activity detection and classification aimed at smart floor data is 

developed and evaluated. The approach developed here is applied to data obtained from a pressure-

sensor based smart floor and activities of interest include standing, walking, and a miscellaneous class of 

movement.  

 

 The main aim this thesis is to detect and classify human activities from time series data 

which is collected from pressure sensors. No assumption is made here that the data has been segmented 

into activities and thus the algorithm must not only determine the type of activity but also has to identify 

the corresponding region within the data. The activities standing, walking, and other are identified in data 

obtained from pressure sensors which are mounted under the floor. Various features extracted from these 

sensors such as center of pressure, speed, and average pressure are used for the detection and 
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classification.  To identify activities, a Hidden Markov Model (HMM) is trained using a modified Baum-

Welch algorithm that allows for semi-supervised training using a set of labeled activity data as well as a 

larger set of unlabeled pressure data in which activities have not been previously identified.  The goal of 

being able to classify these activities is to allow for general behavior monitoring and, paired with anomaly 

detection approaches, to enhance the ability of the system to detect significant changes in behavior to 

help identify warning signs for health changes in elderly individuals. 
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Introduction 

 

Identifying human activities has become increasingly popular in health care 

monitoring to provide support for assisted living especially for elderly people.  A major 

portion of the elderly population is suffering from age-related conditions such as 

Parkinson’s disease, diabetes, cardiovascular disease, Alzheimer’s disease, different 

chronic diseases and limitations in physical function [1]. To be able to manage these 

conditions efficiently in home settings, there is a significant need to monitor health 

continuously, leading to reduced risks and thus to improved quality of life.  Smart home 

technologies are one of the methodologies to provide useful data to identify human 

activities in everyday settings.  The data for this project is collected from a custom 

designed infrastructure built into an apartment in the context of previous work [2],[3].  IN 

these papers, A brief overview and setup of this smart floor is provided in the related 

work section. For more detail, Oluwatosin et al. [3]  provide a more detailed description of 

the hardware design and architecture of the smart floor infrastructure (2016).  

 
1.1 Motivation Behind the Thesis 

 
The motivation behind the thesis was to provide support for the monitoring of 

people’s health by identifying activities.  This can be achieved by identifying what they 

are doing over time.  Therefore, we need to analyze time series data and apply machine 

learning algorithms (generative models) such as Hidden Markov Models or other time 

series based algorithms to form recognition models that can then be used to improve 

health monitoring. To perform such monitoring efficiently, it is important that the actual 

technology does not directly influence the activities of the people. As a result, it is 
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desirable to be able to perform activity recognition based on sensors that can capture 

common activities continuously and in a transparent and non-intrusive fashion. To 

address this, the smart floor used here provides a technology that captures data without 

the need for any particular interaction of the user (as would be the case with person-

mounted sensors). Moreover, the smart floor provides a means of monitoring that is 

largely invisible to the user and thus minimizes the “white coat effect” where the 

knowledge of the presence of technology or measurements itself changes the way 

persons act and thus the data itself, potentially invalidating previous models. 

Using data from these sensors comes with a number of issues that have to be 

addressed in the choice of activity detection methodology. In particular, the data only 

contains information regarding pressure patters and no information regarding direct 

measurements of body posture or objects a person interacts with. As a result, the 

approach chosen has to be able to built models which can extract relevant information for 

each possible activity from such raw data. To do this, this thesis uses supervised, 

unsupervised, and semi-supervised learning techniques centered around Hidden Markov 

Models to build a activity detection and recognition framework that can operate on such 

data. 
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Related Work 

 
Activity detection can be performed using  several approaches.  The most 

common approaches use either computer vision or attach external sensor to the human 

body.  The data generated in these approaches are generally time series data that has 

then to be interpreted.  The following two sections describe some of the existing activity 

detection methodologies.  

 

2.1 Activity detection based on computer vision system. 

 
One of the general methodologies used for activity recognition is video 

surveillance.  Activities such as jogging, running, walking and other activities can be 

detected using 3D Convolutional Neural Networks [4].  Activities can also be detected by 

identifying the human in video frame sequences based the position and velocity 

parameters [5]. Besides these, there are a significant number of other approaches which 

are based on the computer vision methodologies.  However, these techniques are difficult 

to implement in home environment due to privacy reasons. Also, computer vision based 

approaches often have difficulties with occlusion of parts of the body which is very 

common in home environments where furniture and other objects often only allow partial 

views of the person. Similarly, many recognition approaches require correct body 

segmentation around the legs which is difficult in the context of dresses or nightgowns 

which obscure the shape of the body and thus make the analysis of gait and walking 

activities more difficult.  
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2.2 Activity detection based on external sensors 

 
Activity detection can be performed using external sensors attached to the 

human body.  For example, sensors such as accelerometers, gyroscopes and bend 

sensors can be used to extract data related to the human body to detect human activities 

[6].  Maurer et al., (2006) extracted features from sensors using a windowing technique, 

and applied k-Nearest Neighbor and Naive-Bayes classifiers. As one of the most 

commonly used sensors, accelerometer sensors can be attached to different places of 

the body, and from these sensors, activities are detected by extracting features like 

mean, energy, or frequency-domain entropy [7].  In their paper, Bao et al. used Naive 

Bayes and Decision Table classifiers to detect activities such as walking, sitting, running 

and other similar activities. As opposed to these works, the approach in this thesis is built 

around a sensor system that is embedded in the environment in the form of a smart floor 

rather than carried with the person, posing somewhat different challenges. 
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Technical Background 

 
The input for activity detection and classification in this thesis work is time series 

data which is collected from a smart floor.  This time series data is then converted into 

the frequency-domain to make the data independent of the floor location and thus allow 

the same detection and identification model to be used on every part of the floor. After 

the frequency component generation, Logistic regression and Hidden Markov Models are 

used to classify activities. The rest of this section provides the background of the 

methodologies used in the implementation. 

 

3.1 Discrete Fourier Transformation (DFT): 

Any time series signals can be represented in terms of sinusoidal waveforms [8], 

effectively translating the signal into its frequency components. DFT is a tool that 

efficiently separates the time series signals into these frequency components, providing 

information regarding the strength (or energy) of each of the components. This, in turn, 

allows to analyze the same signal independent of the spatial parameters purely in terms 

of its frequencies, thus representing a complete time series as a set of static parameters. 

In this thesis, the MATLAB “fftn” function is used to obtain the frequency components of a 

time series signals. 

 

3.2 Hidden Markov Model (HMM): 

HMM's are one of most commonly used models for time series data analysis. 

The input to an HMM is a sequence of observations (𝑂1,  𝑂2, . . . 𝑂𝑀).  These observations 

can be collected from any sensor.  From this sequence of observations, a HMM can 

evaluate the likelihood of the observation sequence (and thus its match to the model). 
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Moreover, it can also predict the most likely sequence of internal (hidden) state 

parameters and with this allows to infer the context in which the observations were made. 

In this chapter, the details of the HMM model framework are briefly explained.  Rabiner 

[9] illustrated the capabilities of HMMs with well-defined speech recognition 

examples.  Figure 3-1 shows the basic HMM model structure. 

 

Figure 3-1Hidden Markov Model 

In Figure 3-1,  S1,.,.Sn represents the hidden states, O1,...Ot represents the 

observations. Every state is dependent only on its immediate predecessor state and 

independent of all other previous states. This assumption is called the Markov 

assumption [9].  The transition probabilities between the states are represented in a 

transition matrix (A), and the observation probabilities given the states are represented by 

an observation matrix (B). Every run of the model (i.e. beginning of an observation 

sequence)  starts in a state according to an initial probability which is represented by 

(𝛱).   The overall model is then represented with 𝜆((𝐴, 𝐵, 𝜋)).  An HMM basically solves 

three fundamental problems [9]. They are 1) finding the probability of the observation 

sequence given the model 2) finding the most likely state sequence corresponding with 

an observation sequence given the and 3) estimation of the best model parameters A, B, 

𝛱 given a set of observation sequences.  The algorithms for these three problems are 

briefly explained in the next sections. 
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3.3 Forward algorithm: 

 
The forward algorithm (HMM Problem1 Solution) is used to find the probability of  

an observation sequence given a model [9]. The steps in this algorithm are shown below 

[9]. 

Definition: 𝛼𝑡(𝑖) = 𝑃(𝑂1 𝑂2 𝑂3....𝑂𝑇, 𝑞𝑡 = 𝑆𝑡 | 𝜆) 

1) Initialization    𝛼𝑡(𝑖) =  𝜋𝑖𝑏𝑖(Ο1)      𝑓𝑜𝑟 𝑖 ≤ 𝑁  

2) Induction   𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡(𝑖)𝛼𝑖𝑗
𝑁
𝑖=1 ]𝑏𝑗(Ο𝑡+1)     1 ≤ 𝑡 ≤ 𝑇 − 1    1 ≤ 𝑗 ≤ 𝑁 

3) Termination    𝑃(Ο|𝜆) =  ∑ 𝛼𝑇(𝑖)𝑁
𝑖  

 

Where: 

 𝜋𝑖  represents the initial probability  

 𝑏𝑗(Ο) represent the observation probability 

 𝑎𝑖𝑗 represents the probability of the transition from state i to state j 

 𝜆 represents the model 

 𝑆𝑡 represent State S at time t 

3.4 Backward Algorithm   

 The backward algorithm is also used to find the probability of an observation 

sequence for a given model but operates in the reverse direction, starting with the 

observation from time t+1  [9]. 

Definition:    𝛽𝑡(𝑡) = 𝑃(𝑂𝑡+1, 𝑂𝑡+2. . . 𝑂𝑇|𝑞𝑡 = 𝑆𝑖 , 𝜆)   

1) 𝛽𝑇(𝑖) = 1, 1 ≤ 𝑖 < 𝑁 

2) 𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)𝑁
𝑗=1  𝑡 = 𝑇 − 1, 𝑇 − 2, . . . .1, 1 ≤ 𝑖 ≤ 𝑁 
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3.5 Viterbi Algorithm  

This algorithm is used to find the most probable state sequence for a given 

observation sequence and is also known as the decoding problem [9]-[10]. 

Definition: 𝛿(𝑖) = 𝑚𝑎𝑥𝑞1,𝑞2,..,𝑞𝑡−1
𝑃[𝑞1 𝑞2 . . . 𝑞𝑡 = 𝑖, 𝑂1,𝑂2,. . . 𝑂𝑡|𝜆] 

1) 𝛿𝑡(𝑗) = 𝑚𝑎𝑥1≤𝑖≤𝑁 [𝛿𝑡−1(𝑖) 𝑎𝑖𝑗] 𝑏𝑗(𝑂𝑡) 

 
where 𝛿(𝑗)is the maximum probability path at the time t  

 

2) 𝑃* = 𝑚𝑎𝑥1<𝑖<𝑛[𝛿𝑇(𝑖)] 
 

The above two steps will find the maximum probability at every time step from all 

possible paths. After these 2 steps, the results are propagated backwards to trace the 

optimal state sequence path. 

 

3.6 Baum-Welch Algorithm: 

The Baum-Welch algorithm (HMM Problem 3) is one of the most common 

algorithms used to estimate the model parameters 𝜆 = ((𝐴, 𝐵, 𝜋)) [9]. As the observation 

values in HMMs can be either discrete or continuous, slight variations in the algorithm 

exist.  If the observations are discrete random variables, then every state has a 

probability of emitting that observation for all possible values of that discrete random 

variable.  If the observations are continuous, then the observation probability for a given 

state is derived from the probability density function (pdf).  As the data in this thesis is 

continuous, the description here will focus on this case. Here, the following multivariate 

Gaussian pdf function is used to represent the observation probability using mean and 

covariance values of [9].   

𝑏𝑗(𝑂) = ∑ 𝐶{𝑗𝑚}

𝑀

𝑚=1

 ℵ[𝑂, 𝜇𝑗𝑚 , 𝑈𝑗𝑚      1 ≤ 𝑗 ≤ 𝑁] 
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Here 𝑏𝑗(𝑂) is the observation probability at state j,  M is the number of Gaussian 

mixtures,  𝜇𝑗𝑚 , 𝑈𝑗𝑚 are the mean vector and covariance matrix at state j with a mth 

Gaussian mixture. In this thesis work, we used only one mixture, i.e. a single Gaussian 

distribution, at each state. The Baum-Welch algorithm primarily consists of two steps. 

The first step is the Expectation step and the Second step is the Maximization steps. 

Both are shown below 

Expectation Step [9] : 

a) 𝛼𝑡+1(𝑗)    forward probability for each state 

b) 𝛽𝑡(𝑖)   backward probability for each state 

c) 𝜉𝑡(𝑖, 𝑗) =  
𝛼𝑡(𝑖) 𝑎𝑖𝑗 𝑏𝑗(𝑂𝑡+1) 𝛽𝑡+1(𝑗)

∑ ∑ 𝛼𝑡
𝑁
𝑗=1

𝑁
𝑖=1 (𝑖) 𝑎𝑖𝑗 𝑏𝑗(𝑂𝑡+1) 𝛽𝑡+1(𝑗)

  probability of transitioning from 𝑖 to 𝑗 at 

time 𝑡 

d) 𝛾𝑡(𝑖) = ∑ 𝜉𝑁
𝑗=1 (𝑖, 𝑗) probability of being in state i at time t 

Maximization Step [9]: 

a) 𝜋�̀� = 𝛾1(𝑖) initial probability 

b) 𝑎𝑖𝑗̀  =  
expected number of transitions from state𝑆𝑖to state𝑆𝑗

expected number of transitions from stae𝑆𝑗
             Transition probability 

                            =
∑ 𝜉

𝑡
𝑇−1
𝑡=1 (𝑖, 𝑗)

∑ 𝛾𝑇
𝑡=1 (𝑖)

 

c) 𝜇𝑗  =  
∑ 𝛾𝑡

𝑇
𝑡=1 (𝑗) 𝑂𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

  Estimated mean 

d) 𝑈𝑗  =  
∑ 𝛾𝑡

𝑇
𝑡=1 (𝑗)(𝑂𝑡−𝜇𝑗)(𝑂𝑡−𝜇𝑗)

′

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

 Estimated covariance 

Here the mean and covariance are used to compute the observation probability 

of a multi-variate Gaussian. 
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3.7 Logistic Regression 

 
Logistic regression is a linear binary classifier used to solve classification 

problems.  If there are K classes, then K-binary logistic classifiers are required for 

training, where the kth class is trained with positive examples and all the remaining 

classes are trained as negative examples [11].  This is also known as one vs all 

classification approach.  In this thesis work, scikit-learn logistic regression library is used 

to obtain the probability of the class given the observation data[12]. 
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Smart Floor Setup 

4.1 Smart Floor 

When the user is on the on a smart floor, the raw pressure sensor data is collected at 

25Hz. In this thesis work, the data is collected from the already built in the smart floor [3]. 

The smart floor used to collect the data is shown in Figure 4-1. 

 

Figure 4-1: Smart Floor Setup [3] 

Each tile has an underlying pressure sensor as shown in Figure 4-2.  For 

parameter extraction, the entire floor is divided is into four panels and while collecting the 

data, all four-panels’ readings are transmitted every 40 milliseconds. The detailed 

description of hardware used to setup the smart floor is explained in [3].            

 

Figure 4-2 Tekscan FlexiForce A401 Sensor 
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4.2 Calibration of Smart Floor 

 
Even if there is no person walking on the smart floor, a sensor will emit readings 

due to noise in the sensors. Therefore, to eliminate the noise in the unloaded sensors, 

Oluwatosin et al., represented each sensor in a slope-intercept form.  The slope and 

intercepts are calculated by placing a set of standard weights on the floor [3]. The actual, 

calibrated value for the sensor can then be derived using these parameters and further 

filtered to remove noise-induced readings on remote portions of the floor to eliminate 

outliers when extracting such location-related features as the center of pressure. The 

algorithms used for reconstruction and filtering used here is shown below:    
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 Experiment Overview 

 
As discussed above, the smart floor data is collected from the hardware and 

experiments built and conducted in previous work where the users are asked to perform 

a series of repetitive activities [3]. All these activities are recorded with a Kinect camera to 

provide ground truth data and to aid in manual segmentation of the data (as humans are 

better at interpreting visual data as compared to pressure value arrays.  The activities 

performed in these experiments include standing, walking, slow walking, turning, opening 

a door, closing a door, holding a cup, placing a cup on a table and other actives.  Figure 

5-1  shows the center of pressure (COP) of a subject while he is moving on the smart 

floor during the experiment. 

 

   

Figure 5-1 User COP While Moving on a Smart Floor [3] 
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In this thesis work, the COP and average pressure are used to detect and 

classify the three activities standing, walking and other class of movements. In Figure 

5-1, the COP pattern is not a straight line, because the COP is switching from left leg to 

the right leg. The technical approach to classifying these activities is explained in the next 

section. 
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Technical Approach 

 
Figure 6-1 shows the complete overview of the activity detection and 

classification approach developed in this thesis.  The data collection and calibration are 

explained in the previous sections and the remaining sections of Figure 6-1 are used to 

detect and classify the activities using HMM models. 

 

Figure 6-1 Classification Approach 

 
6.1 Feature Generation: 

In this work, the three main features used for activity detection and classification 

are center of pressure, total pressure, and COP speed.  The center of pressure and total 

pressure components are converted into frequency components to make them location 

independent so they can be used in the HMM without the need for state information in the 

model.  To reduce the dimensions of these generated frequency components to an 

observation space that is tractable in the context of HMM learning and that makes the 

multi-variate Gaussian assumption for the observation probability more realistic, logistic 
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regression is used to generate a new observation space in terms of the classification 

probabilities of the different activity types.  The rest of the sections explained the details 

of each feature and formulation of the frequency components. 

 
6.1.1 Center of pressure 

The center of pressure (COP) is calculated to extract the presence of the user on 

the smart floor and to integrate the pressure distribution of the floor sensors.  The COP is 

a coordinate of user location at time t. The following equation is used to compute the 

COP [3]. 

COP(x) =
∑ 𝑥𝑖𝑖 . 𝐹𝑖

∑ 𝐹𝑖𝑖

 

COP(y) =
∑ 𝑦𝑖𝑖 . 𝐹𝑖

∑ 𝐹𝑖𝑖

 

Here, 𝐹𝑖 is the pressure output and  𝑥𝑖 is the location of the pressure sensor from 

the reference point in the x-direction. 

 
6.1.2 Speed and Total Pressure 

 
The speed is computed from the COP’s (x,y) coordinates. The area on the floor 

surrounding the user will show high-pressure values and all the other sensors which are 

far from the user will be zero due to the noise filtering of the calibration. The total 

pressure is calculated by summing all the non-zero pressure values at time t. 

 

6.1.3 Sliding Window and Frequency Component Generation 

The extracted features COP and average pressure are windowed for a length of 

25-time steps as shown in Figure 6-2.   The reason to choose a window size of 25 is that 
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this corresponds to roughly one second of data and thus is  sufficient to capture COP 

points for at least one step.  

 

Figure 6-2 Sliding Window 

Once the data is windowed, the feature data corresponding to a window is 

translated into frequency components using a multidimensional fast Fourier 

transform(FFT) algorithm. MATLAB “fftn” function is used to get the FFT frequency 

components.  In each window, along with the COP (x,y) coordinates, frequency 

components are also calculated for the total pressure feature.  Thus, with the three-

dimensional features for a length of 25 steps as the input data matrix of size (25x3), the 

corresponding FFT component matrix is of also of size (25x3) (as only the amplitude 

parameters are used and the phase is ignored).  This (25x3) frequency component matrix 

is flattened into a single row with a length of 75.  After this, the speed is added to these 

features.  Here, the speed is the difference between the (x,y) coordinates of the start and 

end positions of each window. Therefore, every sliding window of 25x3 location-specific 

input features is translated into a single data point in the form of a 1x76 row vector which 
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is position independent.   Also, while the original feature window is a time series, each of 

the generated 1x76 row vectors are a static parameter representation of the entire 

window. The brief overview of frequency component generation is shown in  Figure 6-3. 

 

 
                         Figure 6-3 Frequency Component Generation 

 
6.1.5 Feature Dimension Reduction Using Logistic Regression 

Since the generated feature components in the above section are of 76 

dimensions, it is difficult to build a HMM model, because the state space is high in HMM 

for one observation with 76 features, and the sizes of mean and covariance matrices are 

high. Moreover, it is unlikely that in this 76 dimensional observation space the 

assumption that the observation probabilities follow a Gaussian is realistic. Therefore, the 

76 dimensions are reduced to three dimensions with the help of Logistic Regression.  In 

this work, a one vs all logistic classifier is used to compute the probability of each class 

for the input observation of length 76.  Since, we have three classes, 3 probability values 

for each class are generated using the logistic regression model and these three 

probability values are normalized to maintain the sum of all class probabilities as one.   

Along with the dimensionality reduction, the logistic regression model is validated for all 

class labels to verify whether the data is distinguishable or not. The accuracy results of 

logistic regression for the five subjects are shown below table Table 6-1. 
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Users Classification Accuracy Using Logistic 
Regression 

Subject1 80.23 

Subject2 91.11 

Subject3 83.96 

Subject4 89.52 

Subject5 89.53 

Table 6-1  Classification Accuracy Using Logistic Regression 

 
It is important to note here that the Logistic Regression is based only on one 

second of data and can thus not be expected to be able to identify and classify complex 

behaviors with high precision, in particular in the presence of activities which share parts. 

As a consequence, the regression results derived on a sliding window are used here as 

the observation sequence for a HMM that can capture longer-term patterns needed to 

distinguish activities.  

6.2 Manual Labeling: 

To train the regression model and evaluate its performance, labeled data is 

needed. To obtain this, the labels are derived manually by visualizing each window of 

length 25. For each of the activities of standing, walking, and other class of movements in 

he experimental data described previously, manual labels are assigned based on the 

observed COP trajectory and the available visual data.  

6.2.1. Standing: 

Figure 6-4 shows a representative pattern of the COP when a subject is 

standing. In this figure, all COP points can be viewed as a single group, approximately in 

the same location. It means, there is no significant difference in change of COP when the 

user is standing on the smart floor. Therefore, this kind of window is labeled as Standing. 
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Figure 6-4 Center of Pressure Window of Length 25, When User is Standing 

 
6.2.2 Walking: 

Figure 6-5 shows a representative pattern of the COP when a subject is walking 

on the smart floor. In Figure 6-5, all COP points are spread for a length correspond to a 

gait cycle.  There is a significant difference in the location of the COP when the user is on 

the smart floor. Hence, the window is labeled as walking. 
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Figure 6-5  COP of Walking Window 

6.2.3 Miscellaneous class of movement 

Figure 6-6 shows a representative  pattern of the COP when the subject is 

performing some movements other than standing and walking. In  Figure 6-6, all COP 

points are spread in a limited area of the floor and not arching along a walking trajectory. 

This corresponds to situations such as when the user is turning or doing small feet 

movements.  This pattern of window is labeled as other movement class.  
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Figure 6-6 COP pattern of movement class 

6.4 HMM Classifier 

The regression discussed above provides the observations for the HMM model 

used here. The goal of this model is to capture longer-term relations in activities and to 

more precisely capture the points where transitions between activities occur. To build the 

HMM we present variations of the Baum Welch algorithm for partially and semi-

supervised applications. 

If we train the HMM with the regular Baum-Welch algorithm, we cannot encode 

the knowledge of class labels in the hidden states. Since, however, the proposed HMM in 

this thesis work is to provide the class label specific knowledge, it has to be embedded 

into the the hidden states.  Therefore, every state has a meaning and based on the most 
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likely state sequence it is possible to detect and classify activities.  The following three 

HMM-based approaches were developed to classify the activities: 

  

1. HMM Classifier based on Heuristic Approach (Model1) 

 2. HMM Classifier based on biased expectation Approach1 (Model2) 

 3. HMM Classifier based on biased expectation Approach2 (Model3) 

 

6.4.1 HMM Classifier based on Heuristic Approach (Model1) 

In this approach, the data is trained with a regular Baum-Welch algorithm without 

any modification to it. Since this does result in a model that does not affiliate activity 

labels with states, a heuristic has been developed for the label prediction,. To illustrate 

this heuristic approach, a simple example with three activities and a model with three 

hidden states is shown in Figure 6-7  and Figure 6-8.  In Figure 6-7, each hidden state is 

assumed to represent one class of activity (indicated in the state) but the label itself is not 

known during HMM construction. Based on observations sequences from the smart floor, 

the states will transition from one state to another state with a certain probability. To learn 

the model parameters for the HMM applied to the data, which is shown in Figure 6-7, the 

Baum-Welch algorithm is used.  This Baum-Welch algorithm learns the model 

parameters in two steps such as expectation and maximization steps as explained in the 

technical background, these steps will be repeated for several iterations until the 

maximum likelihood of the model reaches to convergence.   
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Figure 6-7 HMM with three states 

 

 

 
Figure 6-8  HMM with a single Gaussian for each state 

 
In the heuristic approach, after every iteration of Baum-Welch training, the 

accuracy of classification is tested by using the Viterbi decoding algorithm for every 

possible combination of state to label mappings.   For example, after the first iteration, the 

output of Viterbi decoding generates a state sequence 𝑆1,  𝑆2, 𝑆3, The accuracy of 

classification is derived by comparing the state sequence with all possible labels.  The 

following combinations of state to label mappings are possible for the state sequence 

𝑆1,  𝑆2,  𝑆3. 
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Standing Label Walking Label Movement Label 

𝑆1 𝑆2 𝑆3 

𝑆1 𝑆3 𝑆2 

𝑆2 𝑆1 𝑆3 

𝑆2 𝑆3 𝑆1 

𝑆3 𝑆1 𝑆2 

𝑆3 𝑆2 𝑆1 

Table 6-2 State to Label Mapping 

From Table 6-2, the state to label mapping that results in the highest accuracy is 

chosen as the best representation of hidden state labels. Although this highest accuracy 

combination will change initially every few iterations, it is found that the state to label 

mapping combination tends to converge  after a certain number of Baum-Welch 

iterations.  Therefore, it is possible using this heuristic to classify activities based on this 

highest accuracy state to label mapping combination.   

While this is a simple extension that often work, the Model 1 approach does not 

guarantee that it will converge to a constant state to label mapping all the time. Moreover, 

it is also not feasible to implement this approach if the number of states is increasing 

because the number of state to label mapping combinations will increase exponentially 

with the increase in the number of states.  These problems are addressed in the Model2 

and Model 3 approaches which are explained in the next sections. 

 
6.4.2 HMM Classifier based on biased expectation Approach1 (Model 2) 
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In the Model2 approach, the model is trained with a modified Baum-welch 

algorithm. The main idea in the Model2 approach is to annotate the hidden states with 

the class labels before the training and then forcing the distributions of supervised 

observation sequences into the annotated hidden states during training.  This process will 

augment the expectation of hidden states during the expectation phase of the Baum-

Welch algorithm with the match to the corresponding class label in the observation 

sequences, effectively reducing the expectation of the state to 0 if it does not match the 

correct label.  This biased expectation approach is illustrated in a simple example shown 

in Figure 6-9 that shows the hidden state transitions and the observation sequences for 

the three class labels. In the Model2 approach, each class can be represented with one 

hidden state or multiple hidden states. In Figure 6-9, Class1 is represented with the 

hidden states S1,S2,..., S5;  Class2 is represented with the states S6,S7,..., S10;  Class3 is 

represented with S11,S12,..., S15.  In this example, if the input observation belongs to class1 

during time t, then the modified Baum-Welch algorithm will make the expectation of 

reaching the hidden states S6, S7,...,  S15  zero at time t.  Since states S6, S7,...,  S15 do not 

belong to class 1, Model2 is biasing those observations to reach only class1 hidden 

states S1, S2,...,  S5.   

 

Figure 6-9 HMM with a biased expectation approach 
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The following explains how the biased expectation is achieved through the 

Baum-Welch algorithm in more detail. As discussed in the technical background, in the 

Baum-Welch algorithm exception step, the third step is to calculate the probability of 

transitioning from state 𝑖 to 𝑗 during time t. This is represented with 𝜉𝑡(𝑖, 𝑗), and this step is 

modified in the Model2 approach.  In the Model2 approach, if the 𝑖𝑡ℎ state belongs to 

class1 and the 𝑗𝑡ℎ state belongs to class 2, which is consistent with the labels on the 

corresponding observations in the observation sequence, then the remaining class 

probabilities are set  to zero as shown in Figure 6-10. Here, the zero probabilities are 

represented with “-inf" since all the computations in Model2 are implemented in terms of 

log likelihoods. 

 

Figure 6-10 HMM Transitions When Observations are Changed from Class1 to Class2 
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Similarly, if the 𝑖𝑡ℎ observation belongs to class2 and the 𝑗𝑡ℎ observation belongs 

to class3, the biased expectation from state  𝑖  to state 𝑗  are high and all other 

probabilities are set to zero as shown in Figure 6-11. 

 

Figure 6-11 HMM Transitions When Observations are Changed From Class2 to Class3 

 

After the above-mentioned biased expectation, the 𝜉𝑡(𝑖, 𝑗)  transition probabilities 

have to be normalized with the sum of all log likelihoods. The experimental results for 

Model2 are shown in Chapter 7. 

 

6.4.3 HMM Classifier based on biased expectation Approach2 (Model 3) 

The Model 3 approach’s goal is the same as the for the Model2 approach, 

however, the modification of the Baum-Welch algorithm is done in the forward and 

backward algorithms, instead of changing 𝜉𝑡(𝑖, 𝑗).  This is a more stringent label 

enforcement scheme which effectively zeros out entire trajectories rather than single 

states. The main idea is to set the probability values to zero of any state along the state 
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trajectory has an inconsistent label.  The general forward probability equation is shown 

below.  

                                 𝛼𝑡+1(𝑗)  =  [∑ 𝛼𝑡
𝑁
𝑖=1 (𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑂𝑡+1)                         

In the above equation, 𝑏𝑗(𝑂𝑡+1) is the observation probability at state j while emitting the 

observation at t+1 at 𝑗𝑡ℎ state.   Here, if  𝑗 belongs to class 1 and the future observation 

𝑂𝑡+1 belongs to the other class, then the 𝑏𝑗(𝑂𝑡+1) is set to zero in the update because the 

state at  j  is not consistent with future observation. To illustrate the effect of this 

approach, consider the HMM with three hidden states S1, S2, and S3 corresponding to 

the three activities and the observation sequence (1-standing, 2-walking,3-movement) 

with the following labels [1,1,1,1,1] for the time from t=1 to t=5.  Here class1 is 

represented with S1, class2 is represented with S2 and class3 is represented by S3.  In 

this example, since all the observation sequence labels belong to class1, the state S2 

and S3 forward probabilities will become zero due to the Model3 biased expectation 

modification.  This effect of the Model3 approach on the forward probabilities is shown in 

Table 6-3.  

 

 

Observation 

Sequence Labels 

  1   1   1   1   1 

Time steps t=0 t=1 t=2 t=3 t=4 

State S1 -1.83 -19.4 -31.6 -41.64 -47.45 

State S2 -123.6 -inf -inf -inf -inf 

State S3 -917.9 -inf -inf -inf -inf 

 

Table 6-3  Forward Probability For The Observations [1,1,1,1,1] 
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Similarly, the forward probabilities for the observation sequence [1, 3, 3, 3, 2] are 

shown in Table 6-4 

 

Observation 

Sequence Labels 

  1   3   3   3   2 

Time steps t=0 t=1 t=2 t=3 t=4 

State S1 -4.488 -inf -inf -inf -inf 

State S2 -177.3 -inf -inf -inf -78.6 

State S3 -953.2 -21.6 -34.5 -41.86 -inf 

 

Table 6-4 Forward Probability For The Observations [1,3,3,3,2] 

 
Like the modifications in the above forward algorithm approach, the backward 

algorithm also temporarily sets observation probabilities to zero if the future observation 

is not consistent, i.e. belongs to a different class label than the existing hidden state class 

label.  In the Model3 approach, since we modified the forward and backward algorithms, 

the Baum-Welch maximization step must be normalized, so that no transition probability 

is changed to zero since that would be unalterable later on. The normalization of 

transition probabilities, mean and covariance are shown in the equations below: 

 

 a)   𝑎𝑖𝑗̀  =  
[∑ 𝜉𝑡

𝑇−1
𝑡=1 (𝑖,𝑗)]+1

[∑ 𝛾𝑇
𝑡=1 (𝑖)]+𝑁

  Transition probability 

 b)    𝜇𝑗  =  
∑ [𝛾𝑡(𝑗)+

𝑁

𝑇
]𝑇

𝑡=1  𝑂𝑡

∑ [𝛾𝑡(𝑗)]𝑇
𝑡=1 +𝑁

   Estimated mean 

 c)   𝑈𝑗  =  
∑ [𝛾𝑡(𝑗)+

𝑁

𝑇
]𝑇

𝑡=1 (𝑂𝑡−𝜇𝑗)(𝑂𝑡−𝜇𝑗)
′

∑ [𝛾𝑡(𝑗)]𝑇
𝑡=1 +𝑁

  Estimated covariance 
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Experiments and Results 

 
7.1 Model Validation on Synthetic Data 

To verify the models, simple test data generated with a separate HMM with 

known model parameters is used to train the HMM models. The test data is generated for 

a length of 1000 samples using a HMM with three hidden states. The initialization of the 

model parameters is shown below.  

 

 𝜋 = [0.6 0.3 0.1] 

 𝐴 = [
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

] 𝑚𝑒𝑎𝑛𝑠 = [
0.0 0.0 0.0
3.0 −3.0 3.0
5.0 10.0 7.0

]      𝑐𝑜𝑣𝑎𝑟𝑠 = [
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

] 

where 𝜋 and 𝐴 are the initial and transition probabilities, respectively. 

 

Using the above model initialization parameters, three test sequences are 

generated. Among those three sequences, two sequences are used for training and the 

third sequence is used for testing.  Model1 is trained with two sequences with a random 

initialization and generated the following mean and transition probabilities after training. 

 

                               Model-1 generated means =
4.98 10.02 6.99
3.05 −3.01 3.01

−0.02 0.03 −0.01
 

 

 Model-1 generated transition probabilities = 
0.77 0.09 0.12
0.10 0.81 0.08
0.08 0.08 0.83
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The Model-1 generated transition probabilities and means are approximately the 

same as the test data initialization parameters, indicating its ability to reconstruct the 

model.  It can be noticed here that due to the use of the standard Baum-Welch algorithm, 

the generated means and covariances for state1 and state2 are swapped within the 

model as the algorithm  during training dynamically choose the hidden states depending 

on the observation and transition probabilities.  This is one of reason Model1 approach is 

using the heuristic to identify the highest accuracy for all the combinations of state to 

label mappings. The trained model is used to test the third input sequence and achieved 

99.90% of classification accuracy.  That is, the Model1 generated state sequence with 

the corresponding state to label mapping is an almost perfect match to the test data state 

sequence.  

 

7.2 Model1 experiments and results 

The data collected for five subjects is used here and manually labeled. Each of 

the subject’s data includes all three activities [3]. Four subjects are used to train the 

model using the Model1 approach which is then tested on all four training users and one 

the new subject. The results of the experiment are shown in Table 7-1.  

Number of states = 3 

Subjects used for training Model2 Classification Accuracy 

User 1 78.92 

User 2 92.38 

User 3 83.80 

User 4 91.92 

                            Average accuracy = 86.75 

Subjects used for Testing Model2 Classification Accuracy 

User 5 92.30 

Table 7-1  Model 1 Testing Results With Random Initialization 
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In in the next experiment, five cross-fold validation is performed 30 times, that is overall 

150 times the model is trained with different random initializations and mean and 

standard deviation of the performance results are calculated. These results are shown in 

Table 7-2 

 

30 Cross-fold validations Mean Standard Deviation 

Training 82.18 17.85 

Testing 88.40 18.89 

 

Table 7-2 Model1 Experiment Results With 3 States for 30 Five-fold Cross Validations 

 
7.3 Model2 experiments and results 

 
As in the previous experiment, four subjects are used to train the HMM with the 

Model2 approach and tested against all four trained subjects and a new subject. The 

results of the experiment with the Model-2 approach is shown in Table 7-3. 

 

Number of states = 3 

Subjects used for training Model2 Classification Accuracy 

User 1 91.76 

User 2 84.73 

User 3 92.53 

User 4 91.57 

                                 Average accuracy = 90.15 

Subjects used for Testing Model2 Classification Accuracy 

User 5 79.80 

Table 7-3 Model 2 Testing Results With Random Initialization 

 



 

43 

In Table 7-3, the testing accuracy is higher than the training average accuracy, 

because these results are based on a single random initialization of the Model2 

approach. For a better accuracy, 30 five cross-fold validations are performed on all the 

five users. In the five cross-fold validation, the test and training users are swapped for all 

possible combinations.  The mean and standard deviation of all these 30 five cross-fold 

validations with 3 hidden states and 6 hidden states are shown in Table 7-4 and Table 

7-5. 

 

 Mean Standard Deviation 

Training 88.25 1.18 

Testing 88.27 5.22 

 
Table 7-4  Model2 Experiment Results With 3 States for 30 Five-fold Cross Validations 

 

30 Cross-fold validations Mean Standard Deviation 

Training 88.09 1.73 

Testing 87.85 6.66 

 
Table 7-5  Model2 Experiment Results With 6 States for 30 Five-fold Cross Validations 

 
Although the means of training and testing are similar, the standard deviation of 

the test data is very high when compared to training. Therefore, the training accuracy is 

more consistent than testing accuracy (which is to be expected). The results of three 

states are better than six states. This might indicate that the HMM is a local optimal 

solution algorithm and the results vary based on initialization of the model. 
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7.4 Model3 experiments and results: 

The same five subjects used in Model2 are used for testing Model3. The test 

results with one initial random initializations are shown below Table 7-6. 

Number of states = 3 

Subjects used for training Model3 Classification Accuracy 

User 1 79.42 

User 2 92.34 

User 3 92.57 

User 4 91.92 

                                        Average accuracy = 89.06 

Subjects used for Testing Model2 Classification Accuracy 

User 5 84.23 

 

Table 7-6 Model3 Testing Results With Random Initialization 

 

The Model3 approach is also tested with three states and six states against five 

subjects and the results are shown in Table 7-7. 

 

 Mean Standard Deviation 

Training 88.03 1.96 

Testing 88.17 5.40 

 

Table 7-7  Model3 Experiment Results With 3 States for 30 Five-fold Cross Validations 
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 Mean Standard Deviation 

Training 87.91 2.32 

Testing 87.01 7.19 

 

Table 7-8 Model3 Experiment Results With 6 States for 30 Five-fold Cross Validations 

 

 

 
7.5 Model2 Semi-Supervised Learning 

In this experiment, supervised HMM models are used to label the unlabeled 

users’ data. Then  both labeled and unlabeled users’ data is used to train a new 

generalized HMM model.  For this experiment, the labeled data is collected for 5 subjects 

and unlabeled data is extracted for 20 subjects. Four HMM models are constructed from 

labeled data with different random initializations and each HMM model is used to label all 

20 subjects.  After labeling, all 25 subjects (combined data) are used to build a new HMM 

model and performed a five cross-fold validation. The results of this Semi-Supervised 

approach are shown in the table below. Thes steps of this approach are shown below: 

 

1. A HMM Models is generated from 5 labeled subjects 

2. Label the unlabeled data for 20 subjects using the HMM model from step1. 

3. Combine all the labeled and unlabeled data that is combined data contains 

overall 25 subjects. 

4. Building a new HMM models using combined data. 

5. The new trained HMM model from step4 is used for testing 5 labeled users in a 

five-fold cross validation manner. 
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To test this approach, five-fold cross validation is again applied and in each fold Step5 is 
repeated 30 times to calculate the testing and training accuracies. The results are shown 

 REF _Ref48149
9769 \h  

Table 7-9. 

 Mean Standard Deviation 

Training 95.42 0.37 

Testing 93.43 10.46 

 
Table 7-9 Semi-Supervised Learning Results 

 
The results show that the generalized models with a larger number of subjects have 

higher accuracy. 
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Conclusion and Future work 

 
Activity detection and recognition is an important function in the context of health 

monitoring. In this thesis, an approach using regression and Hidden Markov Models is 

presented and evaluated on smart floor data. Three modified versions of Baum-Welch 

are used and extended into a semi-supervised training approach. The proposed three 

models are shown to be able to detect and classify the activities such as standing, 

walking, and other class of movement with high accuracy on the experimental test data 

obtained form a real smart floor. The heuristic method introduced in Model1 does not 

scale well with the increase in the number of states. Model2 and Model3, on the other 

hand, have no such limitations and achieved approximate similar and even better results 

than Model1. In all cases, some manual labeling of data has to be performed. TO reduce 

this burden, a semi-supervised approach is finally tested and evaluated that uses both, a 

small set of labeled data and a larger amount of unlabeled data. The preliminary 

experiments performed here show that this approach benefits from the unlabeled data 

and achieves higher accuracy than using only the labeled data. 
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