LOAD CARRYING CAPACITY MANAGEMENT OF COMPOUND ANISOTROPIC COMPOSITE RINGS UNDER EXTERNAL PRESSURE

by

SALMAN BAKHRAYBA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2017

Copyright © by Salman Bakhrayba 2017

All Rights Reserved

Acknowledgements

I would like to thank Dr. Andrey Beyle for guiding and encouraging me through my thesis work. His understanding of the subject is profound and I hope one day to be as proficient as him. It was an honor working with him.

I would also like to sincerely extend my thanks to Dr. Endel larve and Dr. Kent Lawrence for serving on the thesis committee and for their valuable time.

Lastly I would like to thank my family, friends and colleagues for supporting me throughout this period to achieve my goal.

April 24, 2017

Abstract

LOAD CARRYING CAPACITY MANAGEMENT OF COMPOUND ANISOTROPIC COMPOSITE RINGS UNDER EXTERNAL PRESSURE

Salman Bakhrayba, MS, Mechanical Engineering

The University of Texas at Arlington, 2017

Supervising Professor: Andrey Beyle

Composites have much higher strength than conventional materials such as steel. This makes it attractive to replace heavy loaded structural elements, made traditionally from steel, by elements made from composites. However, it is not a trivial task for statically indeterminate structures due to anisotropy of strength and elastic properties of composites. Present investigation is done for a ring subjected to external load. Such rings are used as bulkheads in many applications. Dependence of ultimate external pressure on thickness of the ring is nonlinear one. It is related to non-uniformity of distribution of circumferential stresses, with anisotropy of material, with set of other reasons. To improve performance of such structures, three ways were analyzed: increase of transversal compression strength of composite by redistribution of part of the fibers to axial direction, by redistribution of stresses in body using profiling and by making the ring from set of coaxial rings produced from different materials (step-wise non-homogeneity).

iv

Table of Contents

Acknowledgements	iii
Abstract	. iv
List of Illustrations	.vii
List of Tables	x
Chapter 1 Introduction and Background	1
1.1 Thin and Thick-walled Cylinders	2
1.2 Composite Materials	4
1.3 Motivation and Objective	5
1.4 Materials Chosen and Validation of Limitations	9
Chapter 2 Methods Theorized to Increase Ultimate Tolerable Pressure	16
2.1 Artificial Heterogeneity	17
A) Variation of ring material	17
B) Variation of order of compound layers	18
C) Variation of thicknesses of compound layers	20
2.2 Ring Profiling	21
2.3 Redistribution of Fibers	22
Chapter 3 Analytical Model	23
Chapter 4 Results	26
4.1 Base geometry for analytical results	26
4.2 Analytical calculations for artificial heterogeneity	27
A) Variation of ring material	27
B) Variation of order of compound layers	34
C) Variation of thicknesses of different layers	40
4.3 Profiling of ring to improve performance	48

Chapter 5 Conclusion and Future Work	50
Appendix A Calculation of the analytical solutions using PTC MathCAD	
Prime 3.1	51
References	88
Biographical Information	90

List of Illustrations

Figure 1-1 Examples of (a) Thin-walled Cylinder and (b) Thick-walled Cylinders2
Figure 1-2 (a) Diagram of composite rings (b) Example of ring as stiffeners
Figure 1-3 (a)Governing equation for ultimate pressure variance with
thickness of ring and (b) Integral averaged circumferential stresses equation5
Figure 1-4 Graph showing experimental values of q vs. t/r 6
Figure 1-5 Graph depicting non-uniform distribution of stresses upon increase in
thickness and anisotropy of ring material7
Figure 1-6 Graph showing limitation of radial compressive strength with increase in
degree of anisotropy8
Figure 1-7 (a)Ultimate pressure vs. Relative thickness graph of
Material: S2 Glass/epoxy11
(b) Ultimate pressure vs. Relative thickness graph of
Material: T1000-G Carbon/epoxy12
(c) Ultimate pressure vs. Relative thickness graph of
Material: P120 Carbon/epoxy
(d) Superimposition of graphs of the 3 chosen materials14
(e) Zoomed version of (d) depicting limitation imposed by
radial compression strength
Figure 2-1 Rings made from chosen composite materials17
Figure 2-2 Compound rings made from different materials in
various combinations (I) and (II)18
Compound rings made from different materials in
various combinations (III), (IV), (V) and (VI)19
Figure 2-3 Examples of Profiling incorporated in cylindrical structures21

Figure 2-4 (a) Schematic illustrating redistribution of fibers to strengthen structure in
different directions (b) Chord Winding reinforcement (c) Graphs showing
performance increase
Figure 3-1 Lekhnitskii's analytical model for a composite anisotropic ring23
Figure 3-2 (a) Formulae obtained to calculate stresses in principal directions and
(b) System of equations formulated to obtain pressure values
\mathbf{q}_{m} acting on each layer \mathbf{m} 24
Figure 4-1 (a) Single layer base geometry (b) Base geometry for compound layers and
(c) Width of ring26
Figure 4-2 (a) Ring made of S2 Glass/epoxy with external radius 1.5m and internal radius
0.9m under an external pressure of 100 MPa27
(b) Ring made of T1000-G carbon/epoxy with external radius 1.5m and
internal radius 0.9m under an external pressure of 100 MPa28
(c) Ring made of P120 composite with external radius 1.5m and internal
radius 0.9m under an external pressure of 100 MPa28
Figure 4-3 (a) Calculated factors of safety for S2 Glass/epoxy
(b) Calculated factors of safety for T1000-G Carbon/epoxy
(c) Calculated factors of safety for P120 Carbon/epoxy
(d) Superimposition of the three calculated materials'
factors of safety
Figure 4-4 (a) Calculated factors of safety of layers' order 1 2 3 and
(b) Calculated factors of safety of layers' order 1 3 2 35
(c) Calculated factors of safety of layers' order 213 and
(d) Calculated factors of safety of layers' order 2 3 1

(f) Calculated factors of safety of layers' order 3 2 1	7
Figure 4-5 Chart depicting factors of safety of all different orders of layers	9
Figure 4-6 (a)Chart showing factors of safety for compound layers	
with equal thickness4	.1
Figure 4-6 (b)Chart showing factors of safety of compound layers in selected order	
(3 2 1) with different thicknesses	.3
Figure 4-6 (c) Chart depicting values of factors of safety of compound layers in	
selected order (3 2 1) with different thicknesses and	
occurrences of failure highlighted4	.4
Figure 4-7 Figure showing profiling done for base geometry of	
compound layers4	.8
Figure 4-8 Stress distribution for ring (a) without profiling and	
(b) with profiling4	.9

List of Tables

Table 1-1 Anisotropic material properties calculated for chosen fibers and matrix	
(calculated for 70% fiber)	10
Table 2-1 Compound rings material layers in chosen order	
made of different thickness	20
Table 4-1 Factors of safety for ring made of different materials	33
Table 4-2 Factors of safety for different orders of compound layers	38
Table 4-3 Rings made of compound layers of different materials in selected order	
(3 2 1) of equal thickness	40
Table 4-4 Rings made of compound layers in selected order (3 2 1) with different	
thicknesses	42
Table 4-5 Factors of safety of compound layers in selected order (3 2 1)	
with all thickness variations with locations of failure marked	45
Table 4.6 (a) Best geometry for different orders of compound layers with the same	
dimensions	46
(b) Best geometry for compound layers of selected order 3 2 1 with total	
thickness of layers = 7.5 cm	46
(c) Best geometry for compound layers of selected order 3 2 1 with total	
thickness of layers = 15 cm	46
(d) Best geometry for compound layers of selected order 3 2 1 with total	
thickness of layers = 30 cm	47
(e) Best geometry for compound layers of selected order 3 2 1 with total	
thickness of layers = 60 cm	47

Chapter 1

Introduction and Background

Composite materials have much better properties than conventional materials as they can be tailored to meet desired specifications. These properties make them desirable as replacements for conventional materials used in heavy structural elements. Improvements are made by attaining decrease in weight and increase in strength. However, replacing conventional materials with composites is not such a simple task as composites are highly anisotropic and heterogenous. Cylindrical structures are very commonly used as pressure vessels, tanks, etc. Composites are being considered in production of such cylinders due to their excellent properties. This investigation mainly focuses on thin-walled cylinders with low width, i.e., rings under external pressure. Thin walled cylinders or rings under external pressure are used as supporting bulkheads of cylindrical structures (ring frames of fuselages, rocket systems, deep water or underground cable protection systems, etc. and as stiffeners for pressure vessels. Predicting behavior of rings made from anisotropic materials is considerably problematic. To improve performance of such structures under external pressure, numerous formulations have been made in this study.

1.1 Thin and Thick-Walled Cylinders

Thin and thick-walled cylinders are widely used as pressure vessels in commercial as well as in military applications. The use of fiber reinforced and polymerbased composites have been increasing. Various numbers of applications have also been flourishing with this development. Fuel tanks, rocket motor cases, pipes are some examples of pressure vessels made of composite materials. Ever increasing use of this new class of materials in conventional applications is coupled with problems that are intrinsic to the material itself. Determination of material properties, mechanical analysis and design, failure of the structure are some examples which all require a nonconventional approach. Numerous applications concurrently are accompanied by various researches in the related field. Majority of the studies in the analysis of composite pressure vessels finds their origins in Lekhnitskii's approach [1]. The emergence of composite materials with high specific strength and stiffness has drawn both sectors (commercial and military) to consider using composites in the manufacturing of such cylinders.

(a)

(b)

Figure 1-1 Examples of (a)Thin-walled Cylinders and (b) Thick-walled Cylinders

Thin-walled cylinders under internal pressure are used as main parts of pressure vessels, chemical reactors acting under pressure, pipelines transporting gas, oil, different liquids. Thin walled cylinders or rings under external pressure are used as supporting bulkheads of cylindrical structures (ring frames of fuselages, rocket systems, deep water or underground cable protection systems, etc.). Thick-walled cylinders and rings are used in the cases of extremely high levels of internal or external pressure or when they fulfill additional functions besides pressure resistance. Such functions can be thermal or electrical insulation, blast protection, radiation protection, etc.

In isotropic cylinders the difference between thin-walled and thick-walled cylinders is observed when wall thickness is bigger than 10% of the outer radius in bending problems and in thicknesses comparable to the few tens of percent for pressure problems. The focus is mainly on analysis of composite cylinders, with low-width (rings), under external pressure in this study. These kinds of rings are used in applications like bulkheads, in different industries, and as stiffeners for pressure vessels, other cylindrical structures, etc.

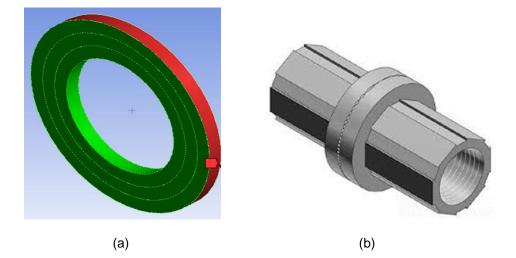


Figure 1-2 (a) Diagram of composite rings (b) Example of rings as stiffeners

1.2 Composite Materials

A composite is defined as a material composed of two or more constituents whose mechanical properties are distinctly different from each other, and phase separated such that at least one of the constituents forms a continuous interconnected region and one of the constituents acts as the reinforcement (and is typically discontinuous) [2]. The resulting composite has physical properties that differ from the original constituents. By nature, experimental stress analysis on composites can be considerably difficult, since composites can be highly anisotropic and heterogeneous. Additionally, for anisotropic materials the principal strain direction does not necessarily coincide with the principal stress direction. Failure mechanisms in composites can be also be significantly more complicated than for traditional isotropic materials [10].

The study of composite materials involves many topics, such as for example, manufacturing processes, anisotropic elasticity, strength of anisotropic materials, and micromechanics [11]. Composite materials have record high mechanical properties and they are pushing out many traditional materials. Modern spacecraft, defense industry, and many other industries are significantly relying on composite materials. Almost half of the body of a modern military aircraft is made from composites. Properties of composite materials can vary in wide range depending on selected constituents but mostly depending on material architecture (usually fiber architecture). Material architecture and properties can be designed for each point of the body, adjusted to acting stresses. Optimization of composite structure is a big branch of modern engineering.

4

1.3 Motivation and Objective

The equation shown below depicts the variance of ultimate pressure, that can be resisted, with thickness of the ring. The ultimate pressure displays linearity (proportional) with increase in thickness of ring. This is the governing equation for pressure variance with thickness of rings (theoretical). However, experimental data significantly deviate from this prediction.

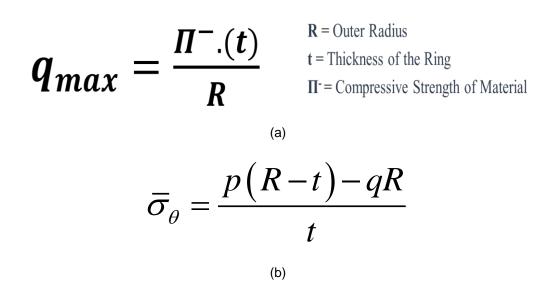


Figure 1-3 (a)Governing equation for ultimate pressure variance with thickness of ring and (b) Integral averaged circumferential stresses equation

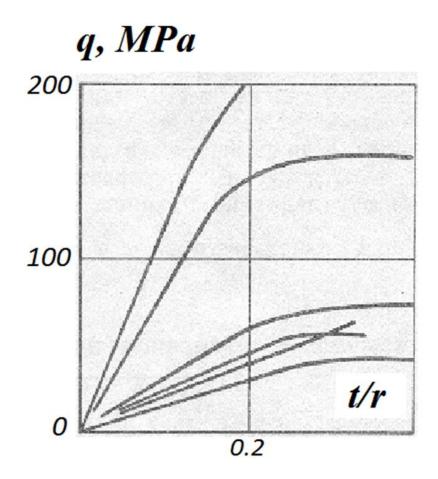


Figure 1-4 Graph showing experimental values of q vs. t/r

The graph illustrated depicts actual experimental values of variation of ultimate external pressure with the thickness of rings made of different composite materials. The limitations of this equation for thick-rings and anisotropy is clearly observed. The curves in the graph show non-uniform variance of thickness with bearable ultimate pressure for anisotropic materials [3].

One of the objective is to increase the ultimate pressure (leading to fracture) that can be resisted by anisotropic materials with increase of thickness.

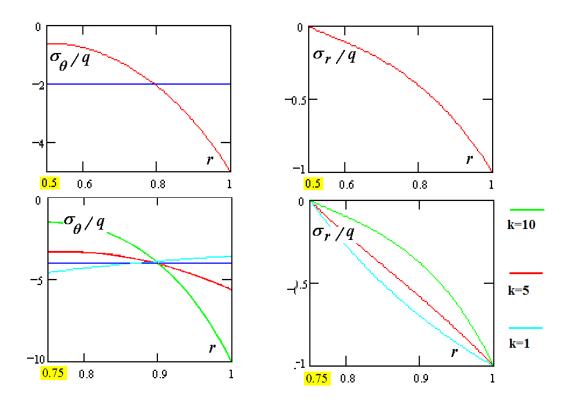


Figure 1-5 Graph depicting non-uniform distribution of stresses upon increase in

thickness and anisotropy of ring material [3]

Here,

 σ_{θ} = Tangential Stress

 σ_r = Radial Stress

q = Pressure

$$\mathbf{k} = \sqrt{\frac{E_{\theta}}{E_r}}$$
 (Degree of Anisotropy)

r = Relative Thickness

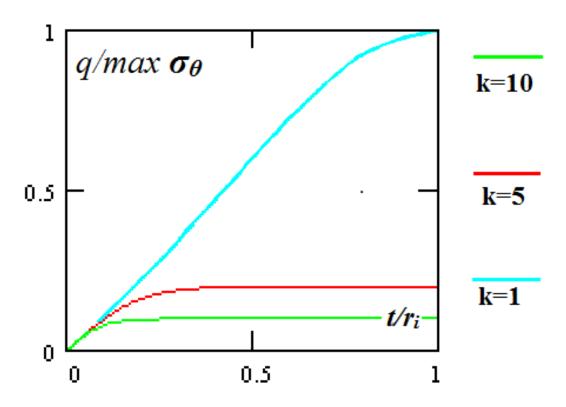


Figure 1-6 Graph showing limitation of radial compressive strength with increase in degree of anisotropy [3]

$$q \leq \left| \Pi_r^- \right|$$

The second limitation observed for the governing equation is that as the degree of anisotropy of the material increases, the more the restriction imposed by radial compression strength on the ultimate tolerable pressure of the ring.

The goal of the study is to overcome or make improvements on these limitations.

1.4 Materials Chosen and Validation of Limitations

The study involves anisotropic materials and their ultimate pressure capabilities. Composites with different aptitudes like high-stiffness (P120 Carbon Fiber), high-strength (T1000-G Carbon Fiber) and high tensile and compressive strengths (S2 Glass Fiber) were chosen to increase performance range. Both carbon fibers have excellent properties, P120 with a very high Young's modulus and T1000-G with high tensile strength [4]. The glass fiber (S2) was selected for its high compressive strength and to balance out the selection of the high stiffness and high strength composites. The chosen composite materials were coupled with an epoxy matrix using a volume fraction of 0.7 and properties along principle directions were calculated by following method [11]:

- I. Obtain the compliance matrix for the fiber and matrix C₁ and C₂.
- II. Calculate for the two elements of compliances b_{ij} for the plane strain state for fiber and matrix.
- III. Calculate bulk moduli K₂₃ for the fiber and matrix
- IV. Calculate the effective elastic properties of the Unidirectional composite
- V. Substitute values of the effective elastic properties for the composite material in the compliance matrix
- VI. Calculate the inverse of this compliance matrix

Composite Material	E _θ (GPa)	E _r (GPa)	U ₁₂	U ₂₃	Π _θ (GPa)	П _r (GPa)	Degree of Anisotropy (k)
P120							
Carbon		a (0.04				o (==
Fiber/Epoxy	582	8.1	0.31	0.34	2.1	0.09	8.477
T1000-G Carbon Fiber/Epoxy	194	8.1	0.321	0.34	4.4	0.1	4.894
S2 Glass Fiber/Epoxy	61.8	13.5	0.253	0.435	3.2	0.13	2.14
Epoxy Matrix	3	3	0.3	0.3	1.11	1.154	1

Table 1-1 Anisotropic material properties calculated for chosen fibers and matrix

(calculated for 70% fiber)

The ultimate pressure vs. relative thickness graphs (like Figure 1-4 and 1-6) are plotted for the chosen composite materials to validate the observed limitations in the previous chapter. These graphs were obtained using PTC Mathcad Prime 3.1. Plots for chosen materials:

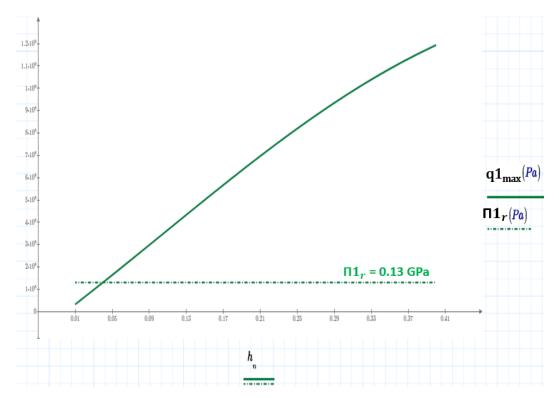


Figure 1-7 (a)Ultimate pressure vs. Relative thickness graph of Material: S2 Glass/epoxy

Here,

q1_{max} = Ultimate pressure

h = Relative Thickness

 $\Pi \mathbf{1}_r$ = Compression Strength of **S2 Glass/epoxy**

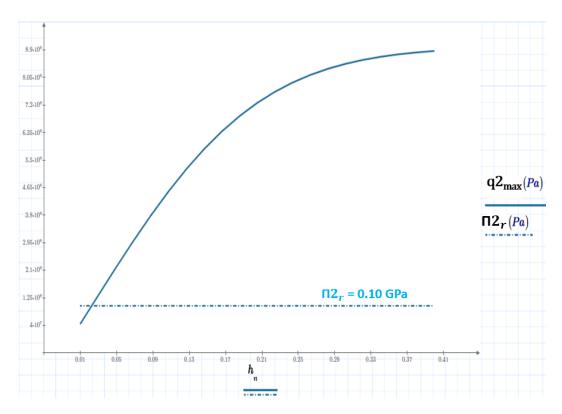


Figure 1-7 (b)Ultimate pressure vs. Relative thickness graph of Material: T1000-G

Carbon/epoxy

Here,

q2_{max} = Ultimate pressure

h = Relative Thickness

 $\Pi 2_r$ = Compression Strength of T1000-G Carbon/epoxy

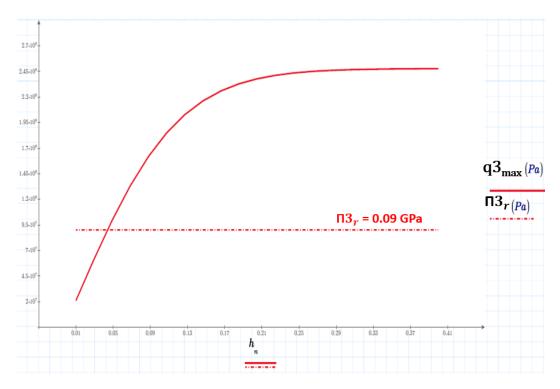


Figure 1-7 (c)Ultimate pressure vs. Relative thickness graph of Material: P120

Carbon/epoxy

Here,

 $q3_{max} = Ultimate pressure$

h = Relative Thickness

 Π_{3_r} = Compression Strength of P120 Carbon/epoxy

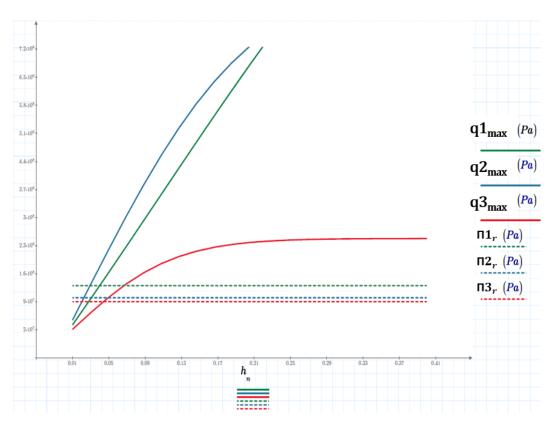


Figure 1-7 (d) Superimposition of graphs of chosen materials

The curves obtained for chosen materials validate the conclusion obtained earlier about variance becoming increasingly non-uniform and non-linear with increase in thickness of anisotropic materials.

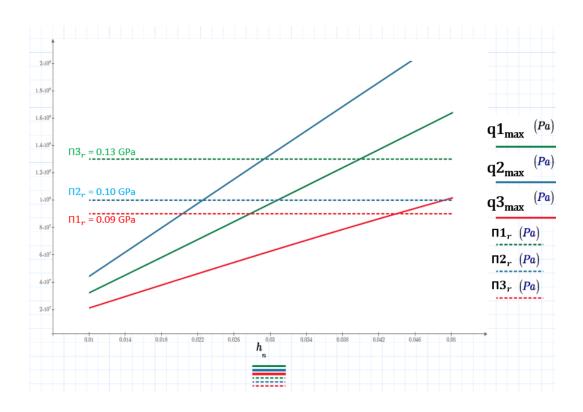


Figure 1-7 (e) Zoomed version of (d) depicting limitation imposed by radial compression strength

Limitation imposed by radial compression strength is observed here. Failure due to radial stresses increases as degree of anisotropy increases. The lowest envelope of these two lines determines the limitation of ultimate pressure. Both limitations have been validated by the graphs plotted for chosen materials.

$$\frac{\Pi_{\theta}^{-}}{\Pi_{r}^{-}} = \sqrt{\frac{E_{\theta}}{E_{r}}}$$

"Ideal" relationship of composite characteristics

Chapter 2

Methods Theorized to Increase Ultimate Tolerable Pressure

From the observations made from previous chapter, it is inferred that the equation becomes increasingly non-linear and non-uniform as the thickness of the ring and the degree of the anisotropy of the ring increases. The limitations of the governing equation for anisotropic rings are clearly observed, hence possible improvements are formulated to overcome these limitations.

Three ways have been theorized in this investigation to increase the ultimate tolerable pressure of the ring:

- 1) Artificial Heterogeneity
- 2) Ring Profiling
- 3) Redistribution of Fibers

2.1 Artificial Heterogeneity

The numerous different parameters such as dimensions, number of layers, thickness of layers and order of layers are altered around to achieve better performance and efficiency values.

A) Variation of ring material:

In our study, we chose 3 different composite materials for analysis and subsequently made rings out of the three materials. Ring made from P120 composite/epoxy (Figure 2-1) Ring made from T1000-G composite/epoxy (Figure 2-1) Ring made from S2 glass composite/epoxy (Figure 2-1)

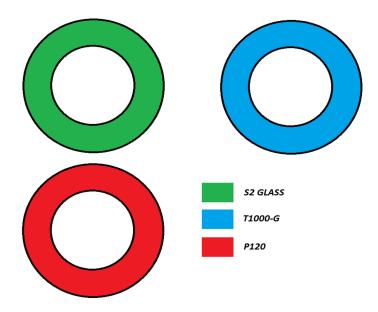
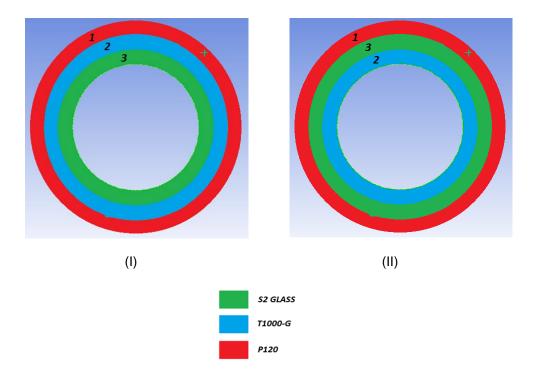
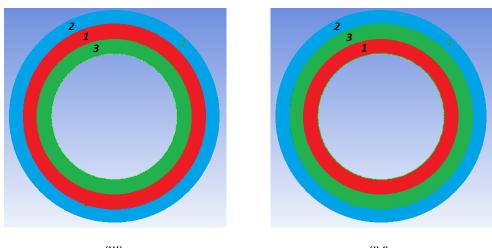




Figure 2-1 Rings made from chosen composite materials

B) Variation of order of compound layers:

Three layers of equal thickness (20cm in this case) made of materials chosen in various dissimilar combinations. Different orders of the material layers can be made. The 1st number in the order represents the outermost layer , 2nd number representing the middle layer and 3rd number represents the innermost layer. Different combinations:

(III)

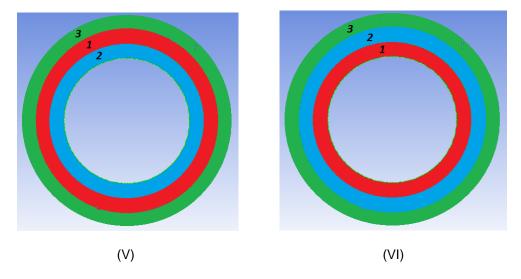


Figure 2-2: (I-VI) Compound rings made from different materials in various combinations

C) Variation of thicknesses of different layers:

The different compound material layers are made of different thickness: In our study, we chose the best order of material layers (based on stress values and factors of safety) and then varied the thickness of the layers in this selected order. Order of material layers carefully chosen: 3 2 1 (Figure 2-VI)

No.	Layer '3' Thickness	Layer '2' Thickness	Layer '1' Thickness	Total Thickness of Ring
1	20 cm	20 cm	20 cm	60 cm
2	10 cm	20 cm	30 cm	60 cm
3	10 cm	15 cm	35 cm	60 cm
4	5 cm	7.5 cm	17.5 cm	30 cm
5	10 cm	10 cm	10 cm	30 cm
6	5 cm	5 cm	5 cm	15 cm
7	4 cm	3 cm	8 cm	15 cm
8	3.5 cm	3.5 cm	8 cm	15 cm
9	4 cm	2 cm	6 cm	12 cm
10	3.5 cm	0.5 cm	3.5 cm	7.5 cm

Table 2-1 Compound rings material layers in chosen order made of different thickness

Colors represents the materials in their chosen order

2.2 Profiling

Profiling is the process of altering body dimensions and geometry to improve performance of structure. Performance increase is achieved through redistribution of stresses to thicker layers or profiles of the body or structure in question. This produces equal distribution of stresses through structure improving tolerance. This formulation was inspired by Stodola's design optimization of flywheels [7].

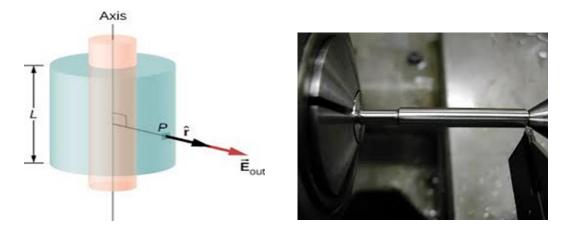


Figure 2-3 Examples of Profiling incorporated in cylindrical structures

2.3 Redistribution of Fibers

This is final formulation made to improve performance of ring. The material is made stronger by increasing tensile and compressive strengths by reinforcing structure with fibers in directions that need strengthening (z-direction for instance).

Through fiber distribution, following effects can be achieved:

- i. Radial reinforcement
- ii. Axial reinforcement
- iii. Chord winding reinforcement

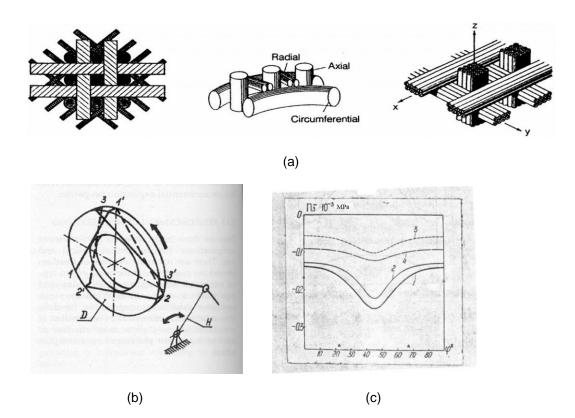


Figure 2-4 (a) Schematic showing redistribution of fibers to strengthen structure in different directions (b) Chord Winding reinforcement (c) Graphs showing performance

increase

Chapter 3

Analytical Model

The analytical solutions were obtained using Lekhnitskii's approach for stress distribution in a composite curvilinear anisotropic ring.

The diagram depicts n layers of composite rings of similar thickness under external pressure **q**. **a** is the internal radius(IR), **b** is the external radius(OR). **a**_{m-1}, **a**_m are IR and OR of layer **m**. σ_{θ}^{m} , σ_{r}^{m} , u_{r}^{m} are stress components and displacements (in principle directions r and θ) of layer m. E_{r}^{m} , E_{θ}^{m} and u_{θ}^{m} are the elastic constants of the material of layer m (in principle directions) [9].

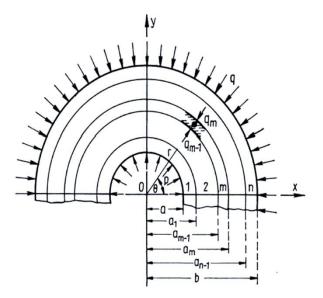


Figure 3-1 Lekhnitskii's Analytical Model for Composite Anisotropic Ring

The analytical model involves following assumptions:

- i. Each layer is orthotropic
- ii. The anisotropy poles of all layers are located at the center (origin of coordinates)
- iii. All layers are rigidly connected, i.e., bonded along the contact surfaces

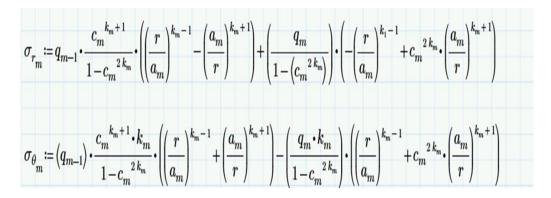


Figure 3-2 (a) Formulae obtained to calculate stresses in principal directions

The stresses in the principal directions (r and θ) are calculated for each layer **m** using the above formulae.

$$q_{m+1}a_{m+1}\alpha_{m+1} + q_m a_m \beta_m + q_{m-1}a_{m-1}\alpha_{m-1} = 0$$

$$(m = 1, 2, ..., n - 1).$$

$$\alpha_m = \frac{2k_m}{E_{\theta}^m} \frac{c_m^{k_m}}{1 - c_m^{2k_m}},$$

$$\beta_m = \frac{1}{E_{\theta}^{(m)}} \left(v_{\theta}^{(m)} - k_m \frac{1 + c_m^{2k_m}}{1 - c_m^{2k_m}} \right)$$

$$- \frac{1}{E_{\theta}^{(m+1)}} \left(v_{\theta}^{(m+1)} + k_{m+1} \frac{1 + c_m^{2k_{m+1}}}{1 - c_m^{2k_{m+1}}} \right)$$

Figure 3-2 (b) System of equations formulated to obtain pressure values qm acting on

each layer m

Factors of safety of different layers are calculated with respect to radial stresses and circumferential stresses:

$$F1_{s1} = \left| \frac{\Pi 1_{\theta}}{\sigma 1_{\theta a}} \right| \qquad F2_{s1} = \left| \frac{\Pi 2_{\theta}}{\sigma_{\theta a}} \right| \qquad F3_{s1} = \left| \frac{\Pi 3_{\theta}}{\sigma_{\theta a}} \right|$$
$$F1_{s2} = \left| \frac{\Pi 1_{\theta}}{\sigma 1_{\theta b}} \right| \qquad F2_{s2} = \left| \frac{\Pi 2_{\theta}}{\sigma_{\theta b}} \right| \qquad F3_{s2} = \left| \frac{\Pi 3_{\theta}}{\sigma_{\theta b}} \right|$$
$$F2_{s3} = \left| \frac{\Pi 2_{r}}{q_{1}} \right| \qquad F3_{s3} = \left| \frac{\Pi 3_{r}}{q_{2}} \right|$$
$$F1_{s3} = \left| \frac{\Pi 1_{r}}{q_{1}} \right| \qquad F2_{s4} = \left| \frac{\Pi 2_{r}}{q_{2}} \right| \qquad F3_{s4} = \left| \frac{\Pi 3_{r}}{q_{3}} \right|$$

F1-Factors of safety for 1st layer, **F2**-Factors of safety for 2nd layer, **F3**-Factors of safety for 3rd layer. These notations are used throughout the report for uncomplicatedness.

- s1 Due to tangential stresses on inner boundary
- s2 Due to tangential stresses on outer boundary
- s3 Due to radial stresses on inner boundary
- s4 Due to radial stresses on outer boundary

Using these Analytical Relations:

(i) Stresses in principle directions for rings of different material with equal thickness are calculated and their factors of safety are determined.

(ii) Stresses in principle directions for compound layers of equal thicknesses (in various combinations) are calculated and subsequent factors of safety are obtained.

(iii) Stresses in principle directions for compound layers of different thicknesses are

calculated and their factors of safety determined.

Chapter 4

Results

4.1 Base Geometry for Analytical Results

The base geometry was used for this investigation to obtain analytical results for

the formulated improvements. Dimensions of geometry used for:

- Single layer geometry: -Inner Radius = 0.9 m Outer Radius = 1.5 m Width of Ring = 20 cm
- 2) Compound layer geometry: Inner Radius = 0.9 m
 Outer Radius = 1.5 m
 Width of Ring = 20 cm
 Thickness of each layer = 20 cm

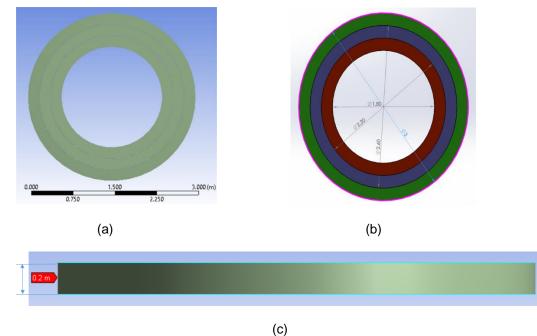


Figure 4-1 (a) Single layer base geometry (b) Base geometry for compound layers and

(c) Width of ring

4.2 Analytical calculations for artificial heterogeneity

Analytical solutions are obtained for the formulations mentioned in previous chapter (2.1 Artificial Heterogeneity) using Lekhnitskii's method. [8] The solutions were calculated using PTC Mathcad Prime 3.1. Mathcad calculations are shown in Appendix A.

A) Variation of ring material:

Stresses for single material rings with equal thickness are calculated and their factors of safety are determined.

Single material ring made from chosen composite materials:

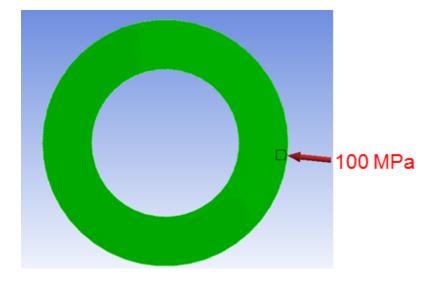


Figure 4-2 (a) Ring made of S2 Glass/epoxy with external radius 1.5m and internal radius 0.9m under an external pressure of 100 MPa

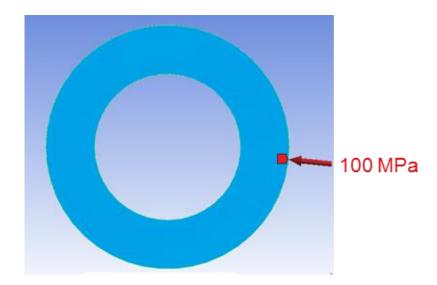


Figure 4.2 (b) Ring made of T1000-G carbon/epoxy with external radius 1.5m and

internal radius 0.9m under an external pressure of 100 MPa

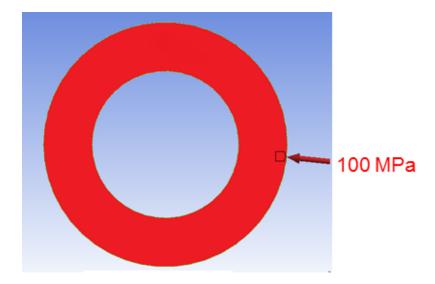
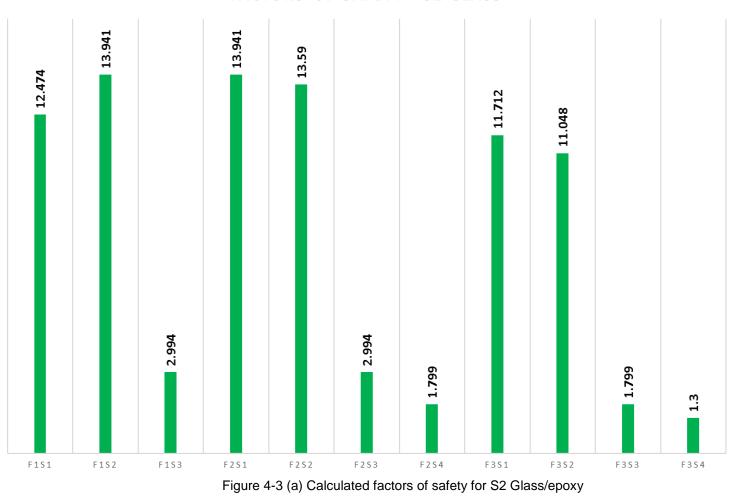
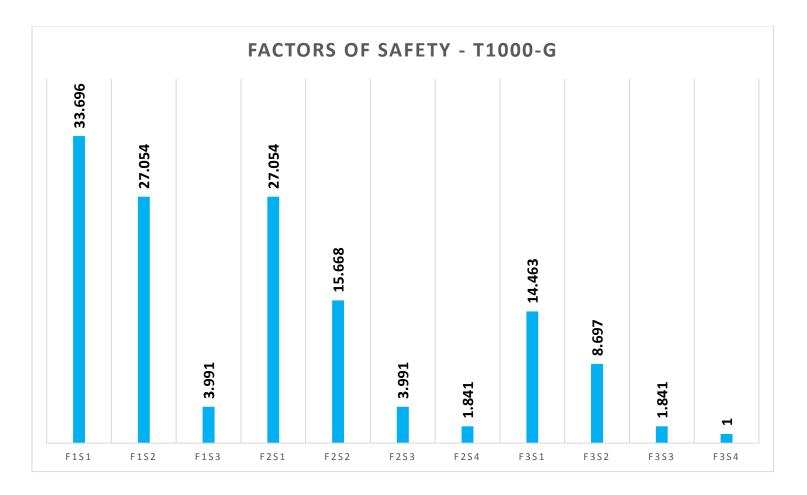
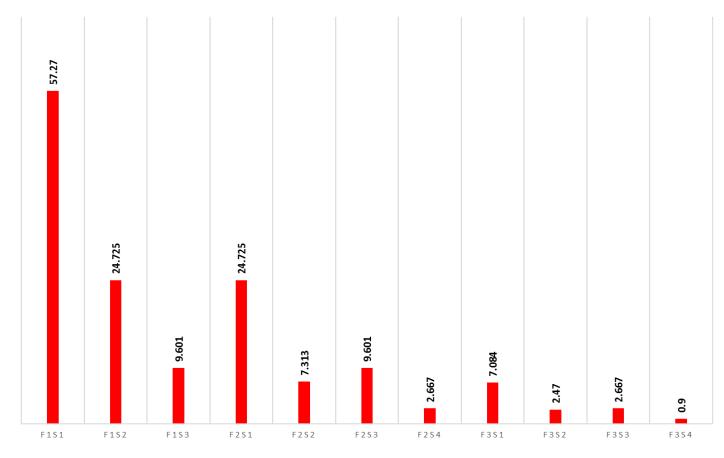
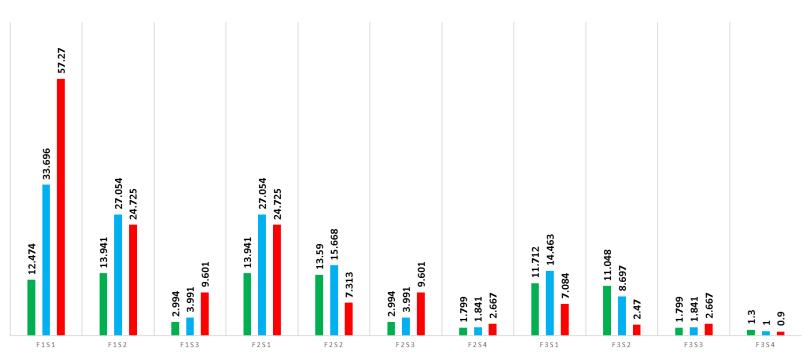



Figure 4-2 (c) Ring made of P120 composite with external radius 1.5m and internal radius 0.9m under an external pressure of 100 MPa

FACTORS OF SAFETY - S2 GLASS


Figure 4-3 (b) Calculated factors of safety for T1000-G Carbon/epoxy

30

FACTORS OF SAFETY - P120

Figure 4-3 (c) Calculated factors of safety for P120 Carbon/epoxy

FACTORS OF SAFETY

■ S2 GLASS ■ T1000-G ■ P120

Figure 4-3 (d) Superimposition of the three calculated materials' factors of safety

Material	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
	51	52	55	51	52	53	54	. •51	. 052	55	- •54
S2											
Glass/epoxy											
	12.474	13.941	2.994	13.941	13.59	2.994	1.799	11.712	11.048	1.799	1.3
T1000-G											
Carbon/epoxy											
	33.696	27.054	3.991	27.054	15.668	3.991	1.841	14.463	8.697	1.841	1
P120											
Carbon/epoxy											
	57.27	24.725	9.601	24.725	7.313	9.601	2.667	7.084	2.47	2.667	0.9

Table 4-1 Factors of safety for ring made of different materials

Inference from above results:

- The factors of safety of S2 Glass/epoxy are well within limits for principle directions in all three layers.
- The factors of safety of T1000-G Carbon/epoxy are mostly within boundaries for principle directions in all three layers except for the outer boundary where radial stress limits are reached (F3_{s4} = 1).
- The factors of safety of P120 Carbon/epoxy are considerably above required restrictions for principle directions in all three layers except for failure due to radial stresses at outer boundary (F3_{s4} = 0.9).

Factors of safety for S2 Glass are within limits in all layers but performances of other two composites are better in the other layers in the principle directions.

Thus, we move on to our next formulation about making rings with compound layers made from different materials and arranging in various combinations to increase the range of factor performance acquired.

(B) Variation of order of compound layers:

Stresses for compound layers of equal thicknesses in various order combinations are calculated and subsequent factors of safety are obtained.

The 1st number in the order represents the outermost layer, 2nd number representing the middle layer and 3rd number represents the innermost layer.

1: P120 Carbon/epoxy, 2: T1000-G Carbon/epoxy and 3: S2 Glass/epoxy

- a) Rings made from chosen materials in order 1 2 3 of thickness 20 cm each under external pressure 100 MPa.
- b) Rings made from chosen materials in order 1 3 2 of thickness 20 cm each under external pressure 100 MPa.
- c) Rings made from chosen materials in order 2 1 3 of thickness 20 cm each under external pressure 100 MPa.
- Rings made from chosen materials in order 2 3 1 of thickness 20 cm each under external pressure 100 MPa.
- e) Rings made from chosen materials in order **3 1 2** of thickness 20 cm each under external pressure 100 MPa.
- f) Rings made from chosen materials in order 3 2 1 of thickness 20 cm each under external pressure 100 MPa.

Illustration of above rings shown in Figure 2-2 (I-VI)

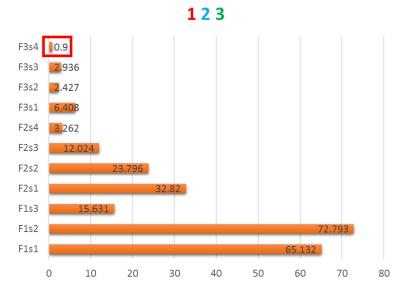


Figure 4-4 (a) Calculated factors of safety of layers' order 1 2 3

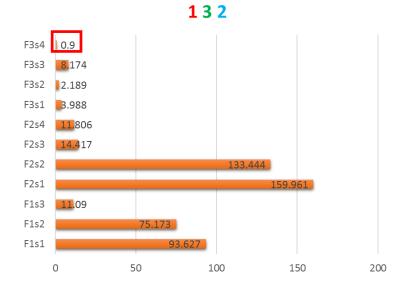


Figure 4-4 (b) Calculated factors of safety of layers' order 1 3 2

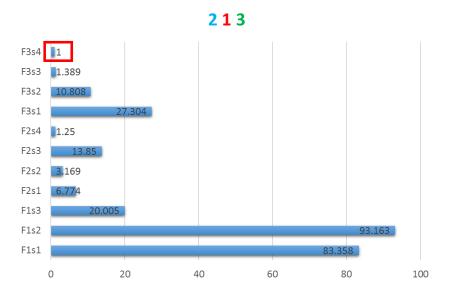


Figure 4-4 (c) Calculated factors of safety of layers' order 213

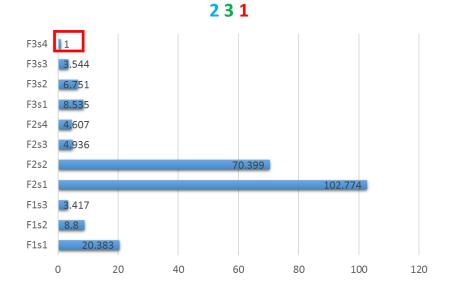


Figure 4-4 (d) Calculated factors of safety of layers' order 2 3 1

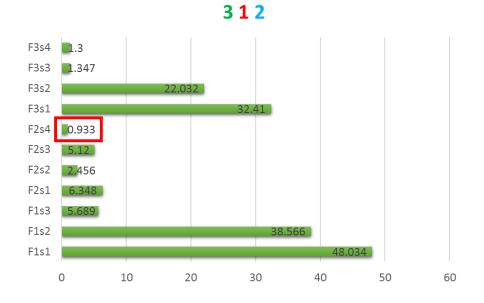


Figure 4-4 (e) Calculated factors of safety of layers' order 3 1 2

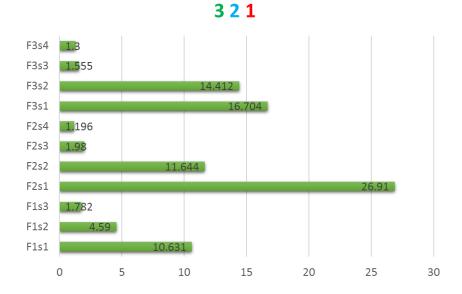


Figure 4-4 (f) Calculated factors of safety of layers' order 3 2 1

Order of layers	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
4.0.0	05 400	70 700	45.004	00.00	00 700	40.004	0.000	0.400	0.407	0.000	
123	65.132	72.793	15.631	32.82	23.796	12.024	3.262	6.408	2.427	2.936	0.9
132	93.627	75.173	11.09	159.961	133.444	14.417	11.806	3.988	2.189	8.174	0.9
213	83.358	93.163	20.005	6.774	3.169	13.85	1.25	27.304	10.808	1.389	1
231	20.383	8.8	3.417	102.774	70.399	4.936	4.607	8.535	6.751	3.544	1
312	48.034	38.566	5.689	6.348	2.456	5.12	0.933	32.41	22.032	1.347	1.3
321	10.631	4.59	1.782	26.91	11.644	1.98	1.196	16.704	14.412	1.555	1.3

Table 4-2 Factors of safety for different orders of compound layers

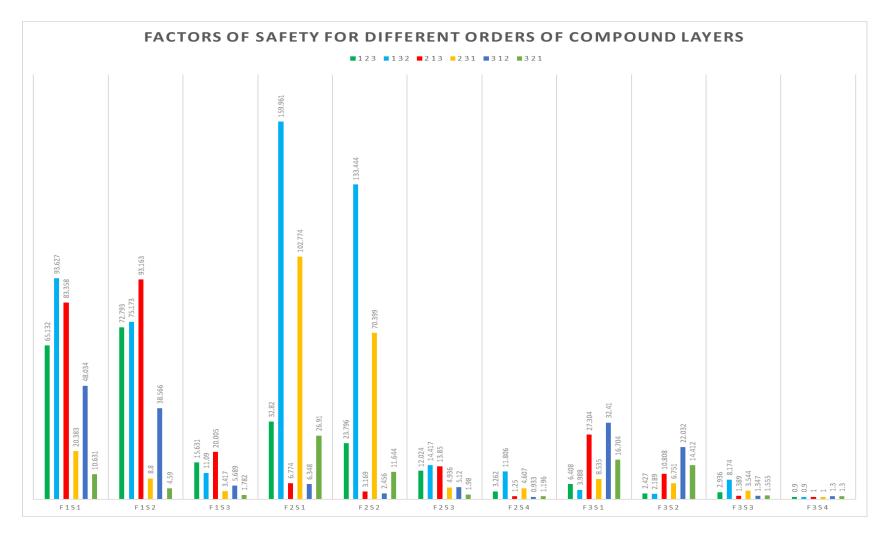
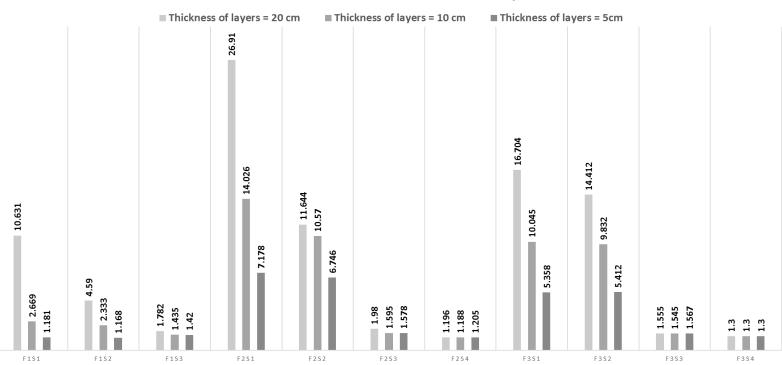


Figure 4-5 Chart depicting factors of safety of all different orders of layers


C) Variation of thicknesses of different layers:

The best order of material layers is selected based on the results obtained and the thickness of each layer is varied to achieve more suitable factors of safety. Stresses for best selected order of compound layers are calculated with thickness variation and their factors of safety determined. From results of different orders of compound layers, it is observed that the order **3 2 1** has the best overall factors of safety relative to the other orders of layers. Order **3 2 1** signifies outermost layer made of S2 glass/epoxy, middle layer made of T1000-G carbon/epoxy and innermost layer made of P120 carbon/epoxy (Figure 2-2 VI).

Rings made of compound layers of different materials in selected order (**3 2 1**) of equal thickness:

Table 4-3 Rings made of compound layers of different materials in selected order (**3 2 1**) of equal thickness

No.	S2 glass layer thickness (Outermost: 3)	T1000-G layer thickness (Middle: 2)	P120 layer thickness (Innermost: 1)	Total Thickness
1	20 cm	20 cm	20 cm	60 cm
2	10 cm	10 cm	10 cm	30 cm
3	5 cm	5 cm	5 cm	15 cm

FACTORS OF SAFETY FOR COMPOUND LAYERS WITH EQUAL THICKNESS

Figure 4-6 (a)Chart showing factors of safety for compound layers with equal thickness

Table 4-4 Rings made of compound layers in selected order (3 2 1) with different

thicknesses:

No.	S2 glass layer thickness (Outermost: 3)	T1000-G layer thickness (Middle: 2)	P120 layer thickness (Innermost: 1)	Total Thickness
1	10 cm	20 cm	30 cm	60 cm
2	10 cm	15 cm	35 cm	60 cm
3	5 cm	7.5 cm	17.5 cm	30 cm
4	4 cm	4 cm	7 cm	15 cm
5	4 cm	3 cm	8 cm	15 cm
6	3 cm	3.5 cm	8.5 cm	15 cm
7	3.5 cm	3.5 cm	8 cm	15 cm
8	4 cm	2 cm	6 cm	12 cm
9	4 cm	2.5 cm	5.5 cm	12 cm
10	3 cm	3 cm	4 cm	10 cm
11	3.5 cm	0.5 cm	3.5 cm	7.5 cm
12	3 cm	1 cm	3.5 cm	7.5 cm
13	2.5 cm	1 cm	4 cm	7.5 cm

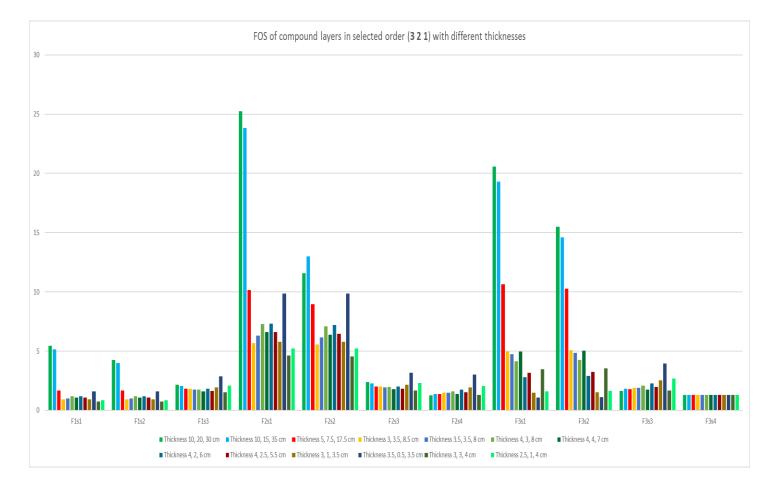
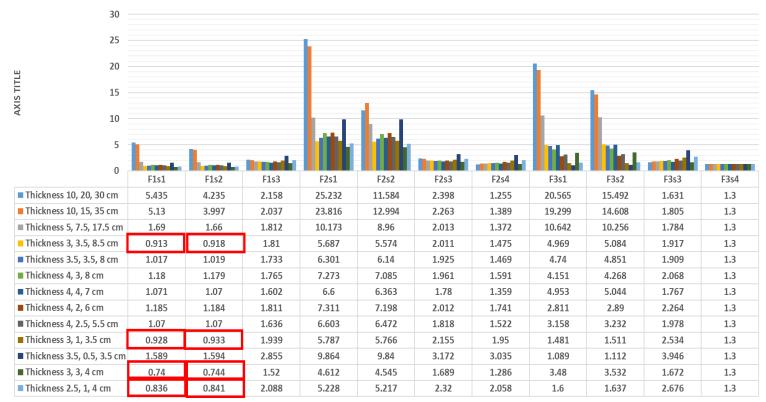



Figure 4-6 (b)Chart showing factors of safety of compound layers in selected order (3 2 1) with different thicknesses

FOS OF COMPOUND LAYERS WITH DIFFERENT THICKNESSES

Figure 4-6 (c) Chart depicting values of factors of safety of compound layers in selected order (3 2 1) with different

thicknesses and occurrence of failure

Table 4-5 Factors of safety of compound layers in selected order (3 2 1) with all thickness variations with locations of

failure marked:

Thickness of layers 3 2 1	F1,1	F1,2	F1 ₅₃	F2 ₅₁	F2 ₅₂	F2 ₅₃	F2₅₄	F3 ₅₁	F3 ₅₂	F3 ₅₃	F3 ₅₄
Thickness of layers = 20 cm	10.631	4.59	1.782	26.91	11.644	1.98	1.196	16.704	14.412	1.555	1.3
Thickness of layers = 10 cm	2.669	2.333	1.435	14.026	10.57	1.595	1.188	10.045	9.832	1.545	1.3
Thickness of layers = 5 cm	1.181	1.168	1.42	7.178	6.746	1.578	1.205	5.358	5.412	1.567	1.3
Thickness 10, 20, 30 cm	5.435	4.235	2.158	25.232	11.584	2.398	1.255	20.565	15.492	1.631	1.3
Thickness 10, 15, 35 cm	5.13	3.997	2.037	23.816	12.994	2.263	1.389	19.299	14.608	1.805	1.3
Thickness 5, 7.5, 17.5 cm	1.69	1.66	1.812	10.173	8.96	2.013	1.372	10.642	10.256	1.784	1.3
Thickness 2.5, 3.75, 8.75 cm	0.791	0.796	1.873	4.942	4.864	2.081	1.417	5.504	5.611	1.842	1.3
Thickness 3, 3.25, 8.75 cm	0.935	0.94	1.853	5.823	5.718	2.059	1.539	4.741	4.865	2.001	1.3
Thickness 3, 3.5, 8.5 cm	0 913	0 918	1.81	5.687	5.574	2.011	1.475	4.969	5.084	1.917	1.3
Thickness 3.5, 3.5, 8 cm	1.017	1.019	1.733	6.301	6.14	1.925	1.469	4.74	4.851	1.909	1.3
Thickness 4, 3, 8 cm	1.18	1.179	1.765	7.273	7.085	1.961	1.591	4.151	4.268	2.068	1.3
Thickness 4, 4, 7 cm	1.071	1.07	1.602	6.6	6.363	1.78	1.359	4.953	5.044	1.767	1.3
Thickness 4, 4, 4 cm	0.934	0.933	1.427	5.761	5.566	1.586	1.211	4.326	4.377	1.574	1.3
Thickness 4, 3, 3 cm	0.882	0.882	1.367	5.446	5.318	1.519	1.232	3.108	3.146	1.602	1.3
Thickness 4, 3, 5 cm	1.002	1.001	1.531	6.18	6.029	1.701	1.38	3.527	3.595	1.794	1.3
Thickness 4, 2.5, 5.5 cm	1.07	1.07	1.636	6.603	6.472	1.818	1.522	3.158	3.232	1.978	1.3
Thickness 4, 2, 6 cm	1.185	1.184	1.811	7.311	7.198	2.012	1.741	2.811	2.89	2.264	1.3
Thickness 3, 3, 4 cm	0.74	0.744	1.52	4.612	4.545	1.689	1.286	3.48	3.532	1.672	1.3
Thickness 2.5, 1, 4 cm	0.836	0.841	2.088	5.228	5.217	2.32	2.058	1.6	1.637	2.676	1.3
Thickness 3, 1, 3.5 cm	0.928	0.933	1.939	5.787	5.766	2.155	1.95	1.481	1.511	2.534	1.3
Thickness 3.5, 0.5, 3.5 cm	1.589	1.594	2.855	9.864	9.84	3.172	3.035	1.089	1.112	3.946	1.3

From the results, best performing geometries were found for different orders of compound layers and for different total thickness of compound layers of selected order.

Table 4.6 (a) Best geometry for **different orders** of compound layers with the same dimensions

of	rder yers	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
3	321	10.631	4.59	1.782	26.91	11.644	1.98	1.196	16.704	14.412	1.555	1.3

Table 4.6 (b) Best geometry for compound layers of selected order 3 2 1 with total

thickness of layers = 7.5 cm

Order of Layers 3 2 1	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
Thickness 3.5, 0.5, 3.5 cm	1.589	1.594	2.855	9.864	9.84	3.172	3.035	1.089	1.112	3.946	1.3

Table 4.6 (c) Best geometry for compound layers of selected order 3 2 1 with total

thickness of layers = **15 cm**

Order of Layers 3 2 1	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
Thickness 4, 3, <mark>8</mark> cm	1.18	1.179	1.765	7.273	7.085	1.961	1.591	4.151	4.268	2.068	1.3

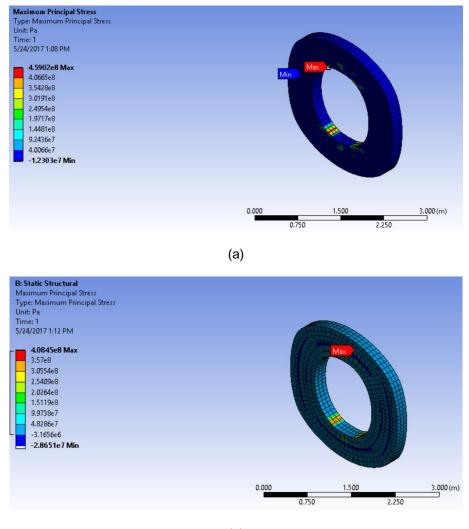
Table 4.6 (d) Best geometry for compound layers of selected order 3 2 1 with total

Order of Layers 3 2 1	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
Thickness 5, 7.5, 17.5 cm	1.69	1.66	1.812	10.173	8.96	2.013	1.372	10.642	10.256	1.784	1.3

thickness of layers = 30 cm

Table 4.6 (e) Best geometry for compound layers of selected order 3 2 1 with total

Order of Layers 3 2 1	F1 _{s1}	F1 _{s2}	F1 _{s3}	F2 _{s1}	F2 _{s2}	F2 _{s3}	F2 _{s4}	F3 _{s1}	F3 _{s2}	F3 _{s3}	F3 _{s4}
Thickness 10, 15, 35 cm	5.13	3.997	2.037	23.816	12.994	2.263	1.389	19.299	14.608	1.805	1.3


thickness of layers = 60 cm

4.3 Profiling to increase ring performance

From formulation made earlier for increasing performance we implement a profile for the geometry used in this study. The best order of compound layers is selected (**3 2 1**) and changes are made to increase the stress tolerance of the ring. The width of the innermost ring layer is increased by 4 cm (2 cm each side). This increase is being carried out as the order **3 2 1** has innermost layer (P120 Carbon) with strongest resistance to tangential stresses (high-stiffness).

Figure 4-7 Figure showing profiling done for base geometry of compound layers

(b)

Figure 4-8 Stress distribution for ring (a) without profiling and (b) with profiling

FEA analysis is done using ANSYS Workbench 17 Academic Edition, the stress distribution of the two geometries (one with profiling and one without) is obtained. The material properties of chosen materials are input in the engineering data. It is observed that the maximum stress experienced by structure is being reduced by about 12.38%, which is a noteworthy decrease.

Chapter 5

Conclusion and Future Work

Conclusion

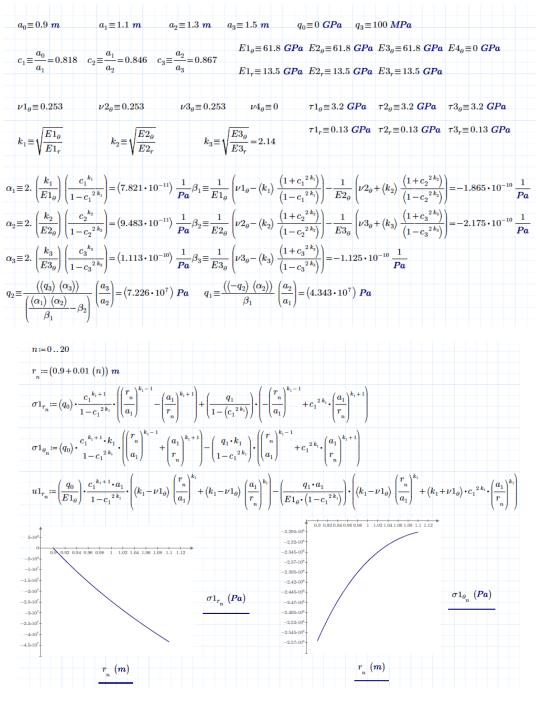
In the investigation, methods were formulated to increase ultimate pressure performance on thin-walled concentric anisotropic rings by changing different parameters and observe the increase in performance with each iteration.

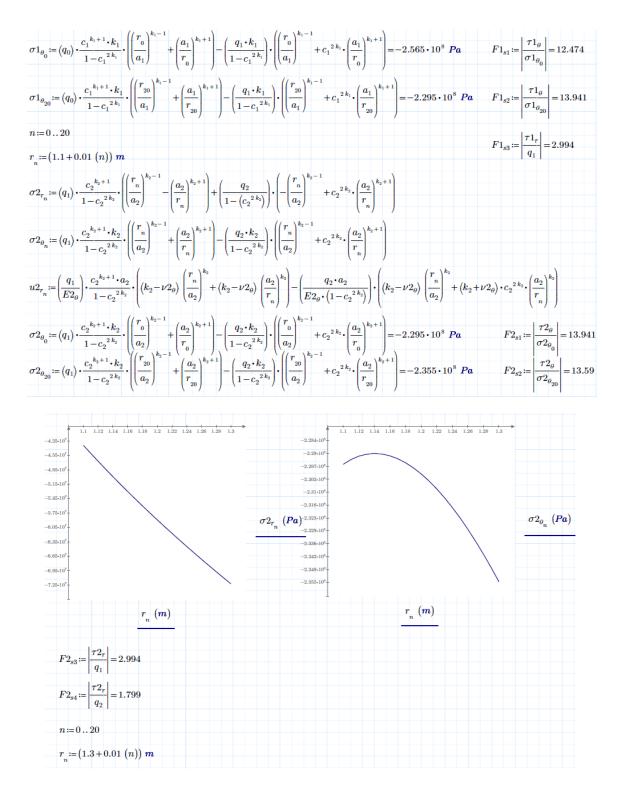
The best performing geometries were also obtained for different dimensions of compound layers of selected order (**3 2 1**) and also for similar proportions of different materials. Improvements made by profiling were validated by Finite Element Analysis (ANSYS Workbench 17 Academic Edition).

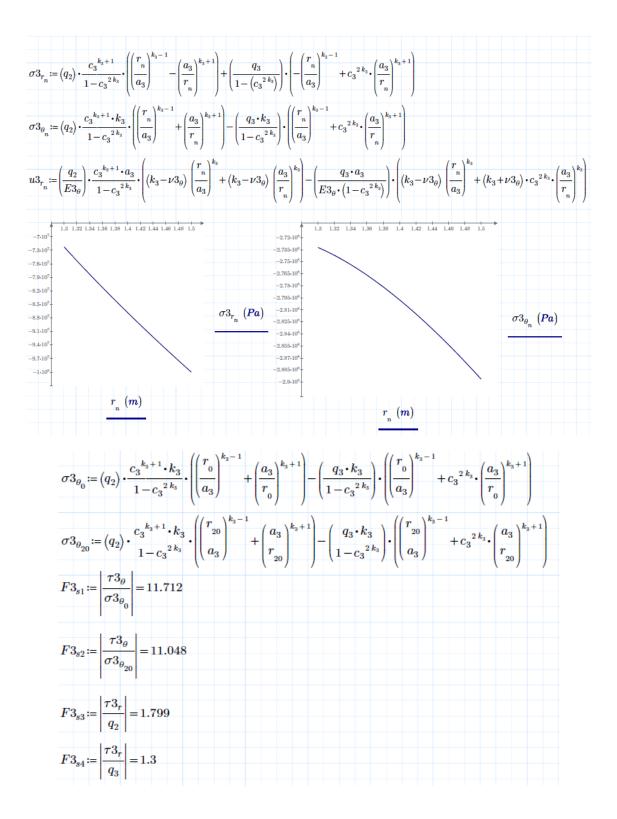
Future Work

Future work can be done in this area by devising a superimposition of the three approaches that were conceptualized.

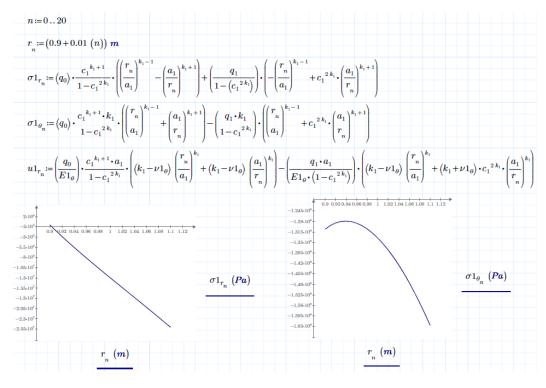
The ring heterogeneity, different orders of compound layers and thicknesses can be varied along with incorporation of profiling and redistribution of fibers along the z-direction.

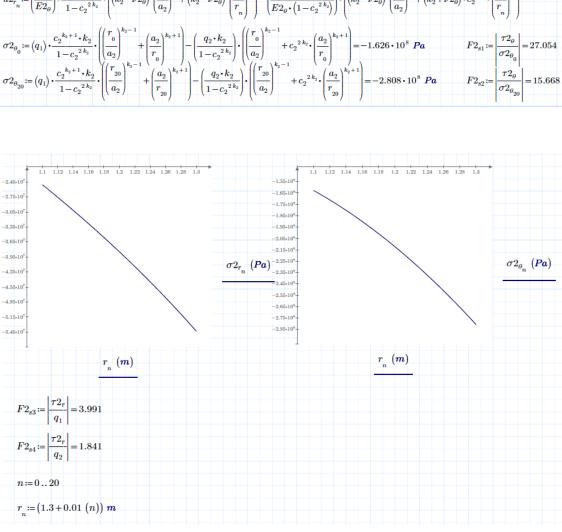

The results can then be validated with a thorough Finite Element Analysis (FEA) with deviation of different constraints to obtain optimum properties.

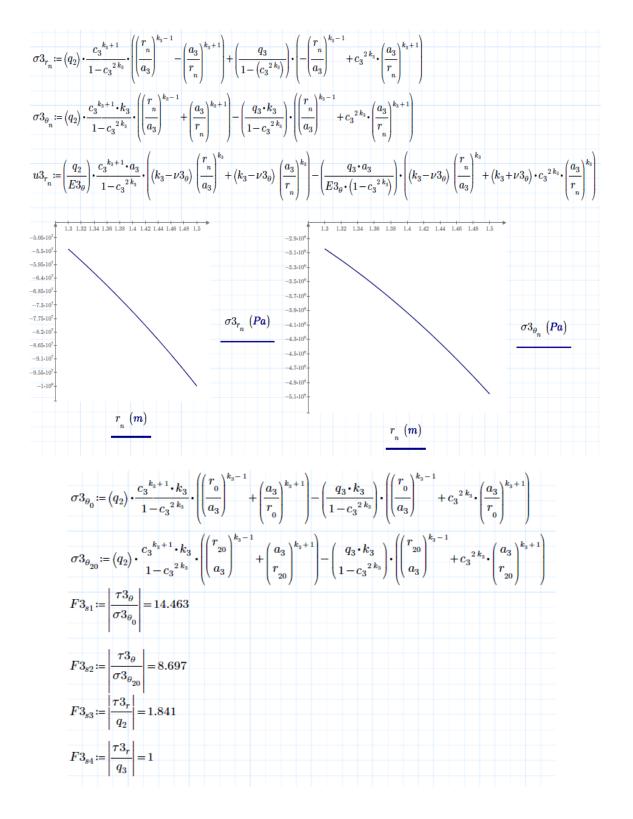

Appendix A


Calculation of Analytical Results using PTC MathCAD Prime 3.1

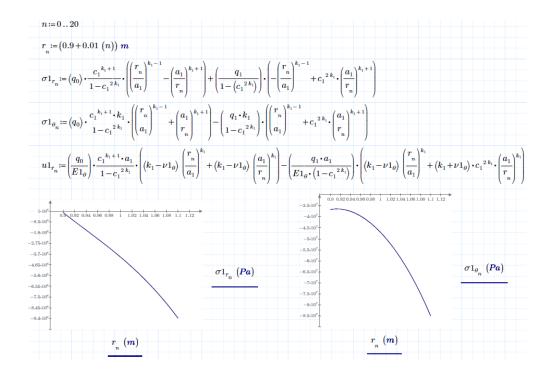
All analytical solutions were calculated using PTC Mathcad Prime 3.1 using Lekhnitskii's solution for stress distribution in composite anisotropic rings. The Mathcad calculations are attached as images in this section.

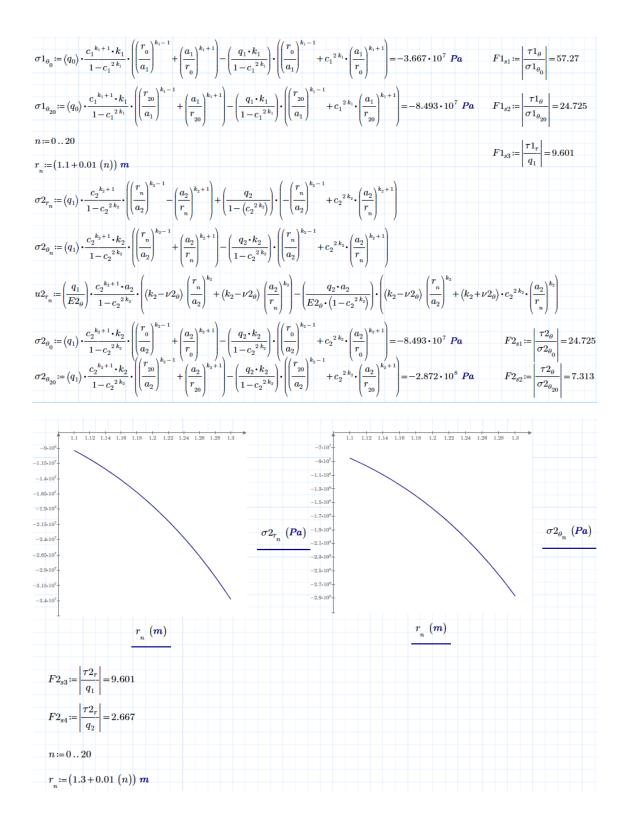

Solution for rings of single material: (a) S2 glass

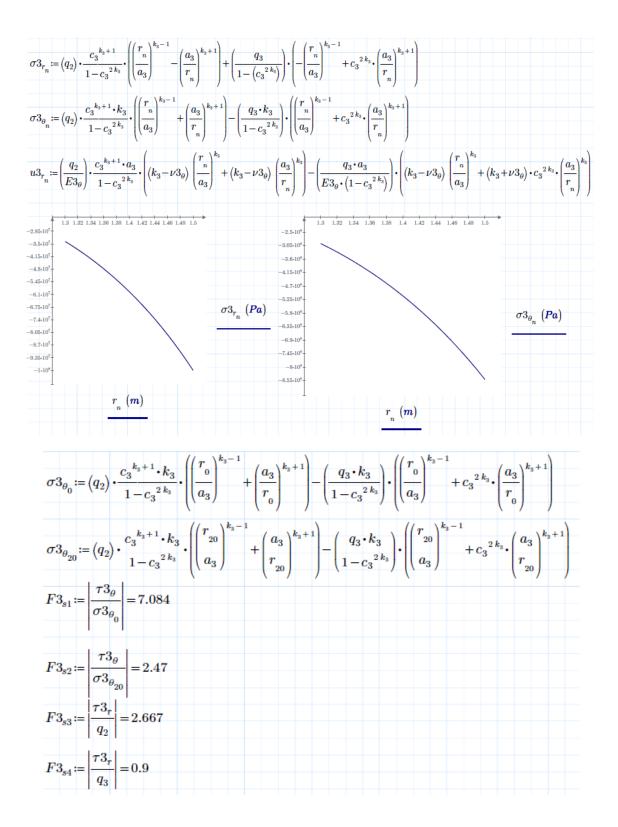




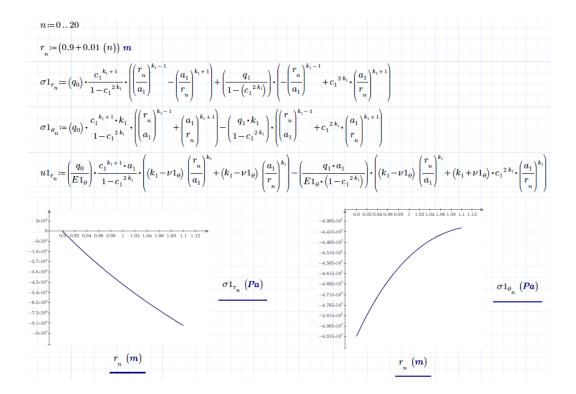
$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 \ m$	$a_2 \equiv 1.3 \ m$	$a_3 \equiv 1.5 \ m \qquad q$	$_0 \equiv 0 \ GPa q_3 \equiv$	≡100 <i>MPa</i>	
$c = \frac{a_0}{10} = 0.818$	$a_1 = \frac{a_1}{1} = 0.846$	$a_2 = \frac{a_2}{a_2} = 0.867$	$E1_{\theta} \equiv 194 \; GPa$	$E2_{\theta} \equiv 194 \; GPc$	a $E3_{\theta} \equiv 194 \ GPa$	$E4_{\theta} \equiv 0 \; GPa$
$c_1 \equiv \frac{a_0}{a_1} = 0.818$	$c_2 = \frac{-0.040}{a_2}$	$a_3 = \frac{-0.007}{a_3}$	$E1_r \equiv 8.1 \ GPa$	$E2_r \equiv 8.1 \ GPa$	$E3_r \equiv 8.1 \ GPa$	
$\nu 1_{\theta} \!\equiv\! 0.321$	$\nu 2_{\theta} \equiv 0.321$	$\nu 3_{\theta} \equiv 0.321$	$\nu 4_{\theta} \equiv 0$	$\tau 1_{\theta} \equiv 4.4 \; GPa$	$ au 2_{ heta} \equiv 4.4 \; GPa$	$ au 3_{ heta} \equiv 4.4 \ GPa$
$k_1 \equiv \sqrt{\frac{E1_{\theta}}{E1_{\pi}}}$	$k_2 \equiv \sqrt{\frac{E2_{\theta}}{E2}}$	$k_3 \equiv $	$\frac{E3_{\theta}}{E3} = 4.894$	$\tau 1_r \equiv 0.10 \ GPc$	$\tau 2_r \equiv 0.10 \ GPa$	$ au 3_r \equiv 0.10 \ GPa$
1	1					
$\alpha_1 \!\equiv\! 2. \left(\frac{k_1}{E 1_{\theta}} \right) \left(\frac{c_1}{1 - c} \right)$	$\left(\frac{k_1}{2k_1}\right) = (2.198 \cdot 10)$	(-11) $\frac{1}{Pa}\beta_1 \equiv \frac{1}{E1_{\theta}}$	$\left(\nu 1_{\theta} - \left(k_{1}\right) \frac{\left(1+c\right)}{\left(1-c\right)}\right)$	$\left(\frac{1}{2} \frac{k_1}{k_1}\right) - \frac{1}{E 2_{\theta}} \left(\nu 2\right)$	$c_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$=-7.09\cdot10^{-11}\frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2}{1-c_2}\right)$	$\left \frac{k_2}{2^{2^{2}k_2}}\right = (2.767 \cdot 10)$	$^{-11}$) $\frac{1}{Pa}\beta_2 \equiv \frac{1}{E2_{\theta}}$	$\left(\nu 2_{\theta} - \left(k_{2}\right) \frac{\left(1+c_{2}\right)}{\left(1-c_{2}\right)}\right)$	$\frac{2^{2k_2}}{2^{2k_2}} - \frac{1}{E3_{\theta}} \left(\nu 3 \right)$	$b_{\theta} + (k_3) \frac{(1 + c_3^{2k_3})}{(1 - c_3^{2k_3})}$	$=-7.917\cdot10^{-11}\frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2. \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3}{1-c_2}\right)$	$\left(\frac{k_3}{3^2 k_3}\right) = (3.324 \cdot 10)$	$(-11) \frac{1}{Pa} \beta_3 \equiv \frac{1}{E3_{\theta}}$	$\left(\nu 3_{\theta}-\left(k_{3}\right) \frac{\left(1+c_{3}\right)}{\left(1-c_{3}\right)}\right)$	$\left(\frac{3^{2k_3}}{3^{2k_3}}\right) = -4.007$	$10^{-11} \frac{1}{Pa}$	
$q_{2} \equiv \frac{\left(\left(q_{3}\right) \left(\alpha_{3}\right)\right)}{\left(\frac{\left(\alpha_{1}\right) \left(\alpha_{2}\right)}{\beta_{1}} - \beta_{2}\right)}$	$\frac{\left(\frac{a_3}{a_2}\right)}{\left(\frac{a_3}{a_2}\right)} = \left(5.433 \cdot 1\right)$	$(0^7) Pa q_1 \equiv (($	$\frac{\left(-q_2\right)\left(\alpha_2\right)}{\beta_1}\left(\frac{a_2}{a_1}\right) =$	$= (2.506 \cdot 10^7) Pc$	a	

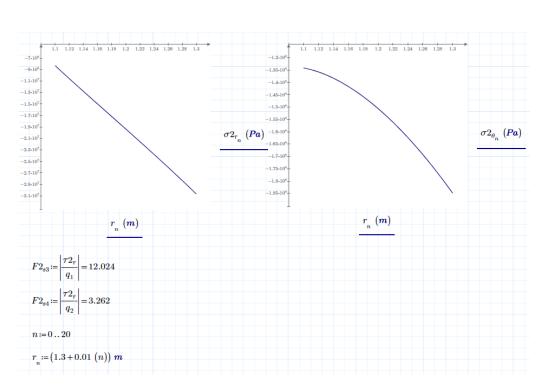


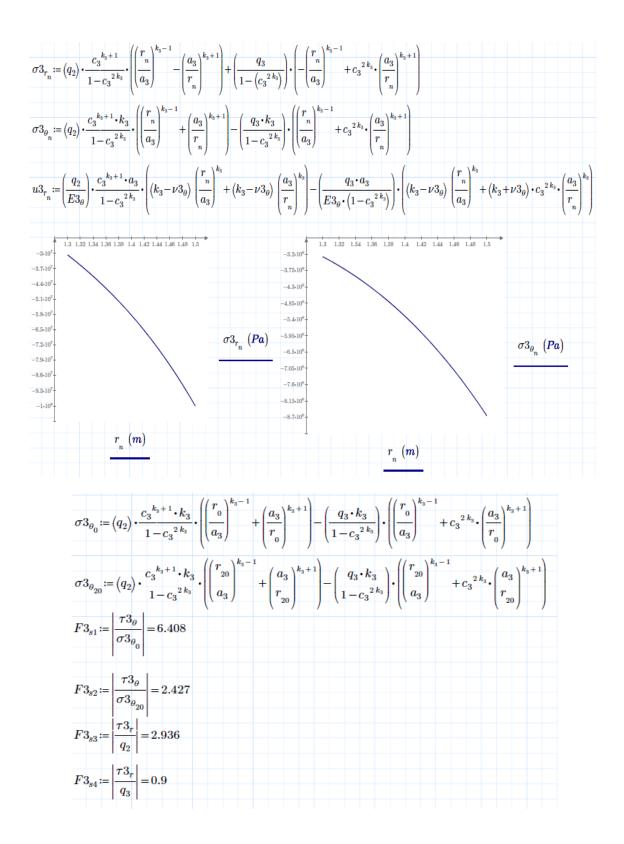


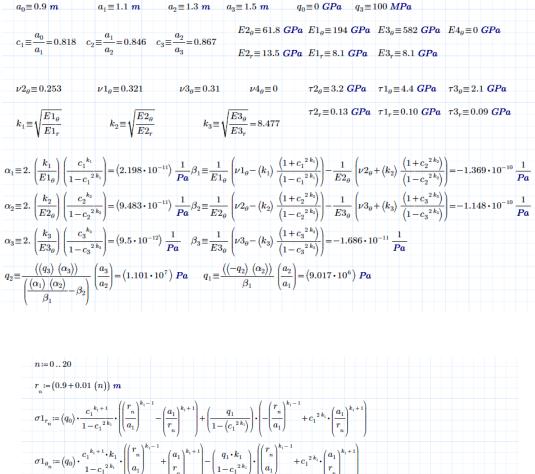

$$\begin{split} & \sigma \mathbf{1}_{\theta_0} = (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1-c_1^{-2k_1}} \cdot \left(\left(\frac{r_0}{a_1} \right)^{k_1-1} + \left(\frac{q_1}{1-c_1^{-2k_1}} \right) \cdot \left(\frac{r_0}{a_1} \right)^{k_1-1} + c_1^{-2k_1} \cdot \left(\frac{a_1}{r_0} \right)^{k_1+1} \right) = -1.306 \cdot 10^8 \ Pa \qquad F \mathbf{1}_{s_1} := \left| \frac{\tau \mathbf{1}_{\theta_0}}{\sigma \mathbf{1}_{\theta_0}} \right| = 33.696 \\ & \sigma \mathbf{1}_{\theta_{20}} := (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1-c_1^{-2k_1}} \cdot \left(\left(\frac{r_2}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_{20}} \right)^{k_1-1} \right) - \left(\frac{q_1 \cdot k_1}{1-c_1^{-2k_1}} \right) \cdot \left(\left(\frac{r_2}{a_0} \right)^{k_1+1} \right) = -1.626 \cdot 10^8 \ Pa \qquad F \mathbf{1}_{s_2} := \left| \frac{\tau \mathbf{1}_{\theta_0}}{\sigma \mathbf{1}_{\theta_{20}}} \right| = 27.054 \\ & n := 0 \dots 20 \\ & r_1 := (1.1 + 0.01 \ (n)) \ m \\ & \sigma \mathbf{2}_{r_1} := (q_1) \cdot \frac{c_2^{k_2+1}}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2+1} \right) + \left(\frac{q_2}{1-(c_2^{-2k_2})} \right) \cdot \left(- \left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) \\ & \sigma \mathbf{2}_{\theta_n} := (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{-2k_2}} \right) \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) \\ & \sigma \mathbf{2}_{\theta_n} := (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{-2k_2}} \right) \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) \\ & \sigma \mathbf{2}_{\theta_n} := (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(k_2 - \nu \mathbf{2}_{\theta} \right) \left(\frac{r_n}{a_2} \right)^{k_2} + \left(\frac{r_n}{a_2} \right)^{k_2} +$$

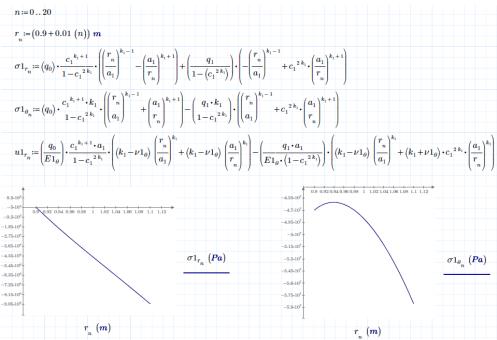
$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 m$	$a_2 \equiv 1.3 \ m$	$a_3 \equiv 1.5 \ m$	$q_0 \equiv 0 \ GPa q_3 \equiv 0$	≡100 MPa	
$c_1 \equiv \frac{a_0}{a_1} = 0.818$	$c_{2} = \frac{a_{1}}{a_{1}} = 0.846$	$a_2 = \frac{a_2}{a_2} = 0.867$	$E1_{\theta} \equiv 582 \; GPa$	$E2_{\theta} \equiv 582 \ GP$	$a E3_{\theta} \equiv 582 GPa$	$E4_{\theta} \equiv 0 \ GPa$
	$a_2 = a_2$		<i>E</i> 1 _{<i>r</i>} ≡8.1 <i>GPa</i>	$E2_{\tau} \equiv 8.1 \ GPc$	$E3_r \equiv 8.1 \ GPa$	
$\nu 1_{\theta} \equiv 0.31$	$\nu 2_{\theta} \equiv 0.31$	$\nu 3_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$ au_{ heta} \equiv 2.1 \; GPa$	$ au 2_{\theta} \equiv 2.1 \; GPa$	$ au 3_{ heta} \equiv 2.1 \; GPa$
$k_1 \!\equiv\! \sqrt{\frac{E 1_{\theta}}{E 1_r}}$	$k_2 \!\equiv\! \sqrt{\frac{E2_\theta}{E2_r}}$	$k_3 \equiv $	$\frac{\overline{E3_{\theta}}}{E3_{r}} = 8.477$	$\tau 1_r \equiv 0.09 \ GP$	$a \tau 2_r \equiv 0.09 \ GPa$	$ au 3_r \equiv 0.09 \; GPa$
$\alpha_1 \!\equiv\! 2. \left(\frac{k_1}{E 1_{\theta}} \right) \left(\frac{c_1}{1 - c_1} \right) $	$\left(\frac{k_1}{k_1^{2k_1}}\right) = (5.499 \cdot 10)$	$^{-12}\left(\frac{1}{Pa}\beta_1\equiv\frac{1}{E1_{\theta}}\right)$	$\left(\nu 1_{\theta} - \left(k_{1}\right) \frac{\left(1 + e^{2}\right)}{\left(1 - e^{2}\right)}\right)$	$\left(\frac{k_1^{2k_1}}{k_1^{2k_1}}\right) - \frac{1}{E2_{\theta}} \left(\nu \right)$	$2_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$= -3.196 \cdot 10^{-11} \frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2}{1-c_2}\right) $	$\left \frac{k_2}{2^{2k_2}}\right = (7.511 \cdot 10)$	$^{-12}$) $\frac{1}{Pa}\beta_2 \equiv \frac{1}{E2_{\theta}}$	$\left(\nu 2_{\theta} - \left(k_{2}\right) \frac{\left(1 + \epsilon\right)}{\left(1 - \epsilon\right)}\right)$	$\left \frac{k_2^{2k_2}}{k_2^{2k_2}}\right - \frac{1}{E3_{\theta}} \left(\nu_{2}^{2k_2}\right)$	$B_{\theta} + (k_3) \frac{(1 + c_3^{2k_3})}{(1 - c_3^{2k_3})}$	$= -3.378 \cdot 10^{-11} \frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2. \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3}{1-c_3}\right)$	$\left \frac{k_3}{k_3^{2}k_3}\right = (9.5 \cdot 10^{-12})$	$\left(\frac{1}{Pa} \beta_3 \equiv \frac{1}{E3_{\theta}}\right)$	$\left(\nu 3_{\theta}-\left(k_{3}\right) \frac{\left(1+\alpha\right)}{\left(1-\alpha\right)}\right)$	$\left(\frac{c_3^{2k_3}}{c_3^{2k_3}}\right) = -1.686$	$10^{-11} \frac{1}{Pa}$	
$q_2 \equiv \frac{\left(\left(q_3\right) \left(\alpha_3\right)\right)}{\left(\frac{\left(\alpha_1\right) \left(\alpha_2\right)}{\beta_1} - \beta_2\right)}$	$\frac{1}{a_2} \left(\frac{a_3}{a_2} \right) = \left(3.374 \cdot 1 \right)$	$(0^7) \boldsymbol{Pa} q_1 \equiv \underline{(())}$	$rac{\left(-q_{2} ight)\left(lpha_{2} ight) ight)}{eta_{1}}\left(rac{a_{2}}{a_{1}} ight)$	$= (9.374 \cdot 10^6) P$	a	

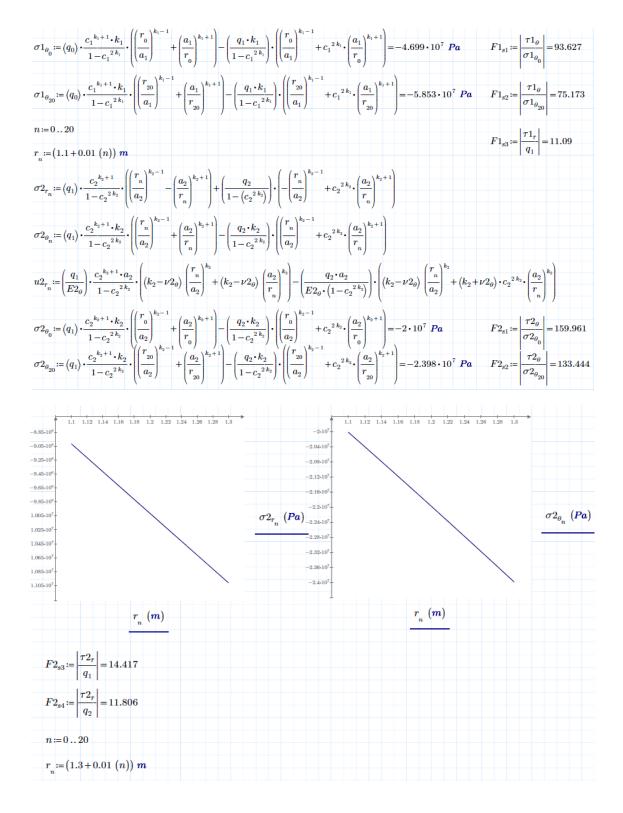


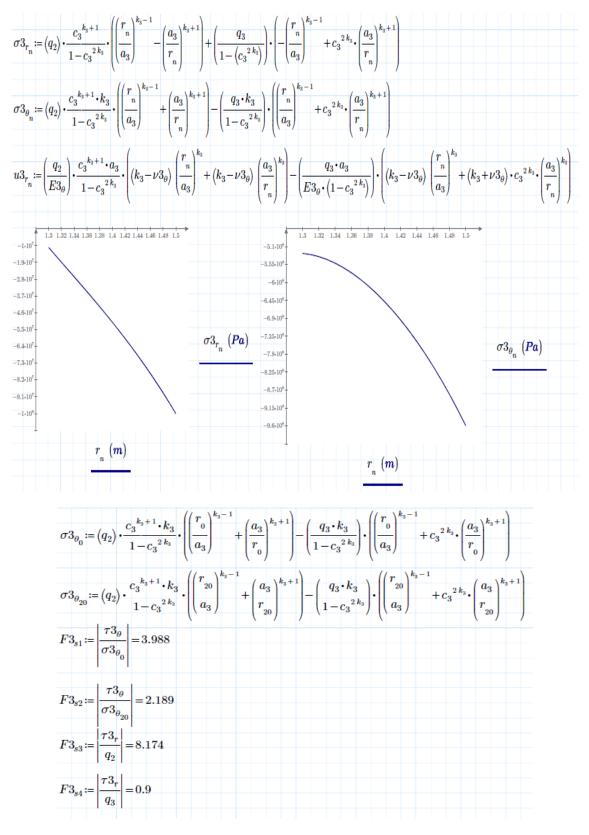


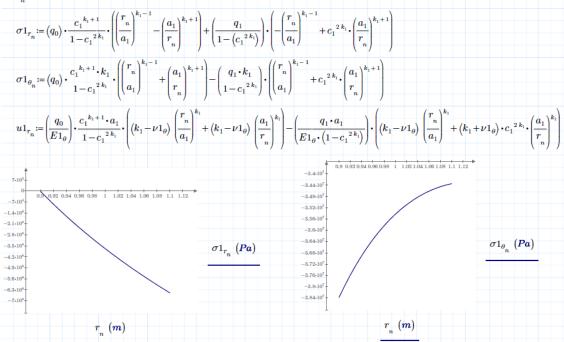

$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 \ m$	$a_2 \equiv 1.3 m$	$a_3 \equiv 1.5 m$	$q_0 \equiv 0 \ GPa$	$q_3 \equiv 100 \ MPa$	
$c_1 \equiv \frac{a_0}{a_1} = 0.818$	$a_1 = \frac{a_1}{a_1} = 0.846$	$c = \frac{a_2}{0.867}$	$E1_{\theta} \equiv 61.8$ G	$EPa E2_{\theta} \equiv 194$	$GPa E3_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \ GPa$
$c_1 = \frac{a_1}{a_1} = 0.818$	$c_2 = \frac{-0.340}{a_2}$	$c_3 = \frac{-0.807}{a_3}$	$E1_r \equiv 13.5 \ G$	$EPa E2_r \equiv 8.1$	$GPa E3_r \equiv 8.1 \ GPa$	
$\nu 1_{\theta} \equiv 0.253$	$\nu 2_{\theta} \equiv 0.321$	$\nu 3_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$\tau 1_{\theta} \equiv 3.2$ (GPa $ au 2_{ heta} \equiv 4.4$ GPa	$ au 3_{ heta} \equiv 2.1 \; GPa$
$k_1 \!\equiv\! \sqrt{\frac{E 1_{\theta}}{E 1_r}}$	$k_2 \!\equiv\! \sqrt{\frac{E2_\theta}{E2_r}}$	$k_3\equiv$	$\sqrt{\frac{E3_{\theta}}{E3_{r}}} = 8.477$	$\tau 1_r \equiv 0.13$	$GPa \tau 2_r \equiv 0.10 \ GPa$	$ au_{3_r} \equiv 0.09 \ GPa$
$\alpha_1 \equiv 2. \left(\frac{k_1}{E 1_{\theta}}\right) \left(\frac{c_1}{1-c_1}\right) = 0$	$\left(\frac{k_1}{k_1}\right) = (7.821 \cdot 10)$	$\left(1^{-11}\right) \frac{1}{Pa} \beta_1 \equiv \frac{1}{E1}$	$\frac{1}{1+\theta} \left(\nu 1_{\theta} - \left(k_{1} \right) \frac{\left(1 + \frac{1}{2} \right)}{\left(1 + \frac{1}{2} \right)^{2}} \right)$	$\left(\frac{+c_1^{2k_1}}{-c_1^{2k_1}}\right) - \frac{1}{E2_{\theta}}$	$= \left(\nu 2_{\theta} + \left(k_{2}\right) \frac{\left(1 + c_{2}^{2 k_{2}}\right)}{\left(1 - c_{2}^{2 k_{2}}\right)}\right)$	$\left(\frac{1}{1}\right) = -1.205 \cdot 10^{-10} \frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2}{1-e}\right)$	$\frac{k_2}{k_2}$ = (2.767 · 10)	$\left(\frac{1}{Pa} \beta_2 \equiv \frac{1}{E2} \right)$	$\frac{1}{2_{\theta}}\left(\nu 2_{\theta}-\left(k_{2}\right)\frac{\left(1+\frac{1}{2}\right)}{\left(1+\frac{1}{2}\right)^{2}}\right)$	$\left(\frac{+c_2^{2k_2}}{-c_2^{2k_2}}\right) - \frac{1}{E3_{\theta}}$	$-\left(\nu 3_{\theta}+\left(k_{3}\right) \frac{\left(1+c_{3}^{2k_{3}}\right)}{\left(1-c_{3}^{2k_{3}}\right)}\right)$	$\left(\frac{1}{10}\right) = -5.371 \cdot 10^{-11} \frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2. \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3}{1-c_2}\right)$	3 /		- (-	-3 //		
$q_{2} \equiv \frac{\left(\left(q_{3}\right) \left(\alpha_{3}\right)\right)}{\left(\frac{\left(\alpha_{1}\right) \left(\alpha_{2}\right)}{\beta_{1}} - \beta_{2}\right)}$	$\frac{1}{a_2} \left(\frac{a_3}{a_2} \right) = \left(3.066 \cdot 1 \right)$	10^7) Pa $q_1 \equiv q_1$	$\frac{\left(\left(-q_{2}\right)\left(\alpha_{2}\right)\right)}{\beta_{1}}\left(\frac{a_{2}}{a_{1}}\right)$	$\left(\frac{2}{1}\right) = (8.317 \cdot 10^6)$	ⁱ) Pa	

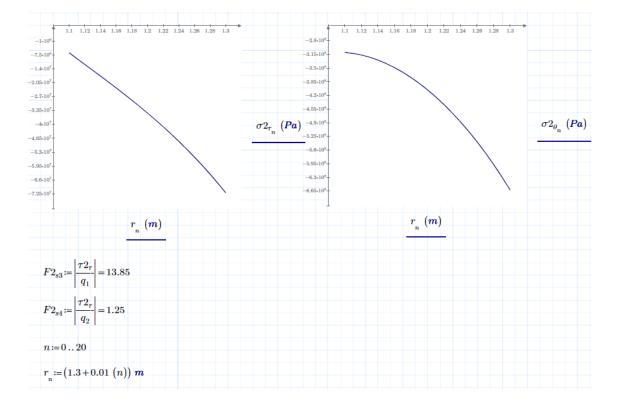

Solution for rings of compound layers in different orders: (i) 1 2 3

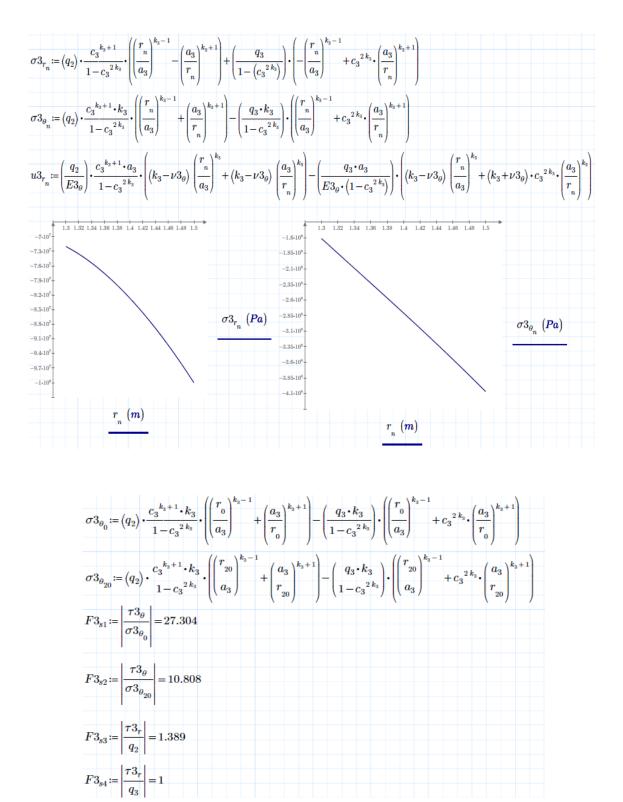



$\sigma 1_{\theta_0} \coloneqq \left(q_0\right) \cdot \frac{c_1^{-k_1+1} \cdot k_1}{1-c_1^{-2-k_1}} \cdot \left(\left(\frac{r_0}{a_1}\right)^{k_1-1} + \left(\frac{a_1}{r_0}\right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1-c_1^{-2-k_1}}\right) \cdot \left(\left(\frac{r_0}{a_1}\right)^{k_1-1} + c_1^{-2-k_1} \cdot \left(\frac{a_1}{r_0}\right)^{k_1+1} \right) = -4.913 \cdot 10^7 \mathbf{Pa}$	$F1_{s1} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_0}} \right = 65.132$
$\sigma 1_{\theta_{20}} \coloneqq (q_0) \cdot \frac{c_1^{k_1 + 1} \cdot k_1}{1 - c_1^{2k_1}} \cdot \left(\left(\frac{r_{20}}{a_1} \right)^{k_1 - 1} + \left(\frac{a_1}{r_{20}} \right)^{k_1 + 1} \right) - \left(\frac{q_1 \cdot k_1}{1 - c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_{20}}{a_1} \right)^{k_1 - 1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_{20}} \right)^{k_1 + 1} \right) = -4.396 \cdot 10^7 \ Pa$	$F1_{s2} := \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_{20}}} \right = 72.793$
n := 020	$F1_{s3} := \frac{ \tau 1_r }{ q_1 } = 15.631$
$r_n = (1.1 + 0.01 \ (n)) \ m$	1 21
$\sigma 2_{r_n} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1}}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2}\right)^{k_2-1} - \left(\frac{a_2}{r_n}\right)^{k_2+1} \right) + \left(\frac{q_2}{1-(c_2^{-2k_2})}\right) \cdot \left(-\left(\frac{r_n}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n}\right)^{k_2+1} \right)$	
$\sigma_{2_{\theta_{n}} \coloneqq} (q_{1}) \cdot \frac{c_{2}^{k_{2}+1} \cdot k_{2}}{1-c_{2}^{-2k_{2}}} \cdot \left(\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right) - \left(\frac{q_{2} \cdot k_{2}}{1-c_{2}^{-2k_{2}}}\right) \cdot \left(\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right) - \left(\frac{q_{2} \cdot k_{2}}{1-c_{2}^{-2k_{2}}}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right)$	
$u2_{r_{n}} \coloneqq \left(\frac{q_{1}}{E2_{\theta}}\right) \cdot \frac{c_{2}^{k_{2}+1} \cdot a_{2}}{1-c_{2}^{-2k_{2}}} \cdot \left(\left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right)^{k_{2}} + \left(k_{$	$(-\nu 2_{\theta}) \cdot c_2^{2k_2} \cdot \left(\frac{a_2}{r_n}\right)^{k_2}$
$ \begin{split} \sigma 2_{\theta_0} &\coloneqq \left(q_1\right) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{-2k_2}}\right) \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) = -1.341 \cdot 10^8 \ \textbf{Pa} \\ \sigma 2_{\theta_{20}} &\coloneqq \left(q_1\right) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_{20}}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_{20}}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{-2k_2}}\right) \cdot \left(\left(\frac{r_{20}}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_{20}}\right)^{k_2+1} \right) = -1.849 \cdot 10^8 \ \textbf{Pa} \end{split}$	$F2_{s1} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_0}} \right = 32.82$
$\sigma 2_{\theta_{20}} \coloneqq (q_1) \cdot \frac{c_2^{k_2 + 1} \cdot k_2}{1 - c_2^{2k_2}} \cdot \left \left(\frac{r_{20}}{a_2} \right)^{-} + \left(\frac{a_2}{r_{20}} \right)^{k_2 + 1} \right - \left(\frac{q_2 \cdot k_2}{1 - c_2^{2k_2}} \right) \cdot \left \left(\frac{r_{20}}{a_2} \right)^{-} + c_2^{2k_2} \cdot \left(\frac{a_2}{r_{20}} \right)^{k_2 + 1} \right = -1.849 \cdot 10^8 \ Pa$	$F2_{s2} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_{20}}} \right = 23.796$

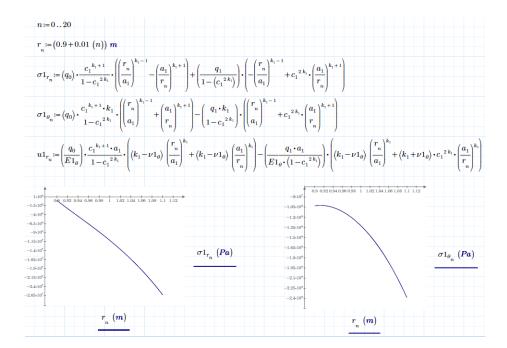


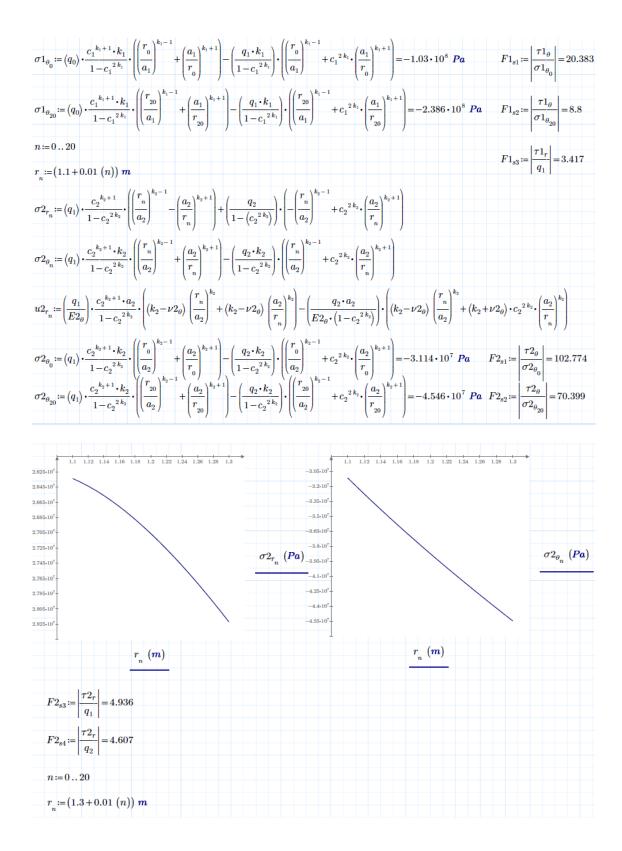

(ii) 1 3 2

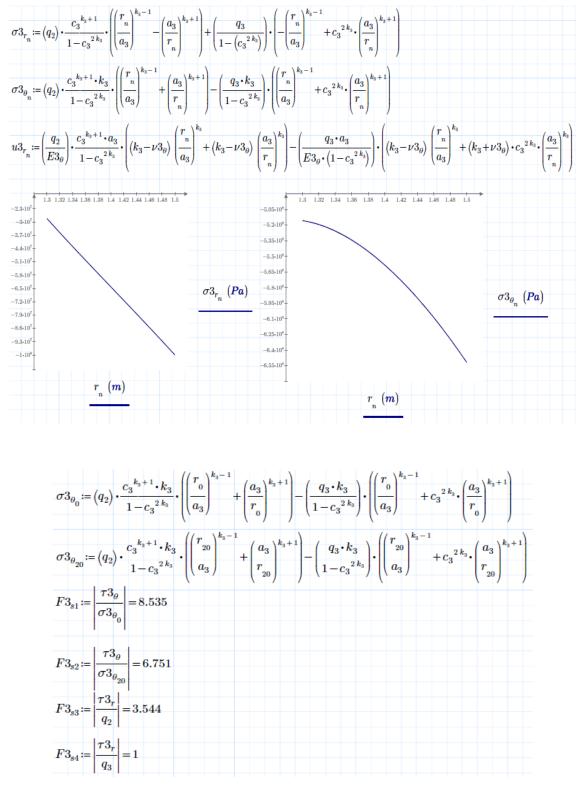



	(iii)	2	1	3
--	-------	---	---	---

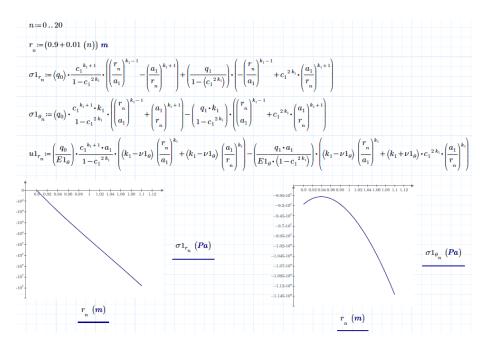
$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 \ m$	$a_2 \equiv 1.3 \ m$	$a_3 \equiv 1.5 \ m$ $q_0 \equiv 0 \ GPa$ $q_3 \equiv 100 \ MPa$
$c_1 \equiv \frac{a_0}{2} = 0.818$	$c_2 \equiv \frac{a_1}{a_2} = 0.846$	$c_3 \equiv \frac{a_2}{2} = 0.867$	$E1_{\theta} \equiv 61.8 \ GPa \ E3_{\theta} \equiv 194 \ GPa \ E2_{\theta} \equiv 582 \ GPa \ E4_{\theta} \equiv 0 \ GPa$
	- a ₂	a ₃	$E1_r \equiv 13.5 \ \mathbf{GPa} E3_r \equiv 8.1 \ \mathbf{GPa} E2_r \equiv 8.1 \ \mathbf{GPa}$
$\nu 1_{\theta}\!\equiv\!0.253$	$\nu 3_{\theta} \equiv 0.321$	$\nu 2_{\theta}\!\equiv\!0.31$	$ u 4_{\theta} \equiv 0$ $\tau 1_{\theta} \equiv 3.2 \ GPa$ $\tau 3_{\theta} \equiv 4.4 \ GPa$ $\tau 2_{\theta} \equiv 2.1 \ GPa$
$k_1 \equiv \sqrt{\frac{E 1_{\theta}}{E 1_r}}$	$k_2 \!\equiv\! \sqrt{\frac{E2_\theta}{E2_r}}$	$k_3 \equiv $	$\sqrt{\frac{E3_{\theta}}{E3_{r}}} = 4.894 \qquad \tau_{1_{r}} \equiv 0.13 \ GPa \ \tau_{3_{r}} \equiv 0.10 \ GPa \ \tau_{2_{r}} \equiv 0.09 \ GPa$
$\alpha_1 \equiv 2. \left(\frac{k_1}{E 1_{\theta}}\right) \left(\frac{c_1}{1-e_1}\right) = 0$	$\left(\frac{k_1}{c_1^{2k_1}}\right) = \left(7.821 \cdot 10\right)$	$(-11) \frac{1}{Pa} \beta_1 \equiv \frac{1}{E 1_{\theta}}$	$ = \frac{1}{E_{\theta}} \left(\nu 1_{\theta} - \left(k_{1}\right) \frac{\left(1 + c_{1}^{2 k_{1}}\right)}{\left(1 - c_{1}^{2 k_{1}}\right)} \right) - \frac{1}{E 2_{\theta}} \left(\nu 2_{\theta} + \left(k_{2}\right) \frac{\left(1 + c_{2}^{2 k_{2}}\right)}{\left(1 - c_{2}^{2 k_{2}}\right)} \right) = -9.836 \cdot 10^{-11} \frac{1}{Pa} $
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2}{1-e}\right)$	$\left \frac{k_2}{c_2^{2}k_2}\right = (7.511 \cdot 10)$	$^{-12}\left(\frac{1}{Pa}\beta_2\equiv\frac{1}{E2_{\theta}}\right)$	$ = \frac{1}{e^{2k_{\theta}}} \left(\nu 2_{\theta} - \left(k_{2}\right) \frac{\left(1 + c_{2}^{-2k_{2}}\right)}{\left(1 - c_{2}^{-2k_{2}}\right)}\right) - \frac{1}{E3_{\theta}} \left(\nu 3_{\theta} + \left(k_{3}\right) \frac{\left(1 + c_{3}^{-2k_{3}}\right)}{\left(1 - c_{3}^{-2k_{3}}\right)}\right) = -5.924 \cdot 10^{-11} \frac{1}{Pa} $
			$= \left(\nu 3_{\theta} - \left(k_{3}\right) \frac{\left(1 + c_{3}^{2 k_{3}}\right)}{\left(1 - c_{3}^{2 k_{3}}\right)}\right) = -4.007 \cdot 10^{-11} \frac{1}{Pa}$
$q_{2} \equiv \frac{\left(\left(q_{3}\right) \left(\alpha_{3}\right)\right)}{\left(\frac{\left(\alpha_{1}\right) \left(\alpha_{2}\right)}{\beta_{1}} - \beta_{2}\right)}$	$\frac{1}{a_2} \left(\frac{a_3}{a_2} \right) = (7.2 \cdot 10^7)$	$(\mathbf{p}) \mathbf{P} \mathbf{a} \qquad q_1 \equiv \underline{(\mathbf{p})}$	$\frac{\left(\left(-q_{2}\right)\left(\alpha_{2}\right)\right)}{\beta_{1}}\left(\frac{a_{2}}{a_{1}}\right) = \left(6.498\cdot10^{6}\right) \boldsymbol{Pa}$
n := 0 20			
$r_n := (0.9 + 0.01)$	(n)) m		
	$((r)^{k_1-1})$	() (+1) ($\begin{pmatrix} (r)^{k_1-1} \\ (k_1+1) \end{pmatrix}$

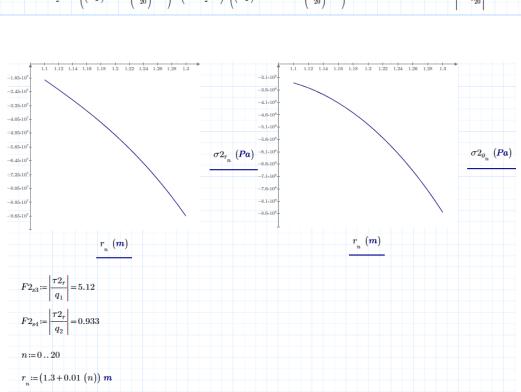


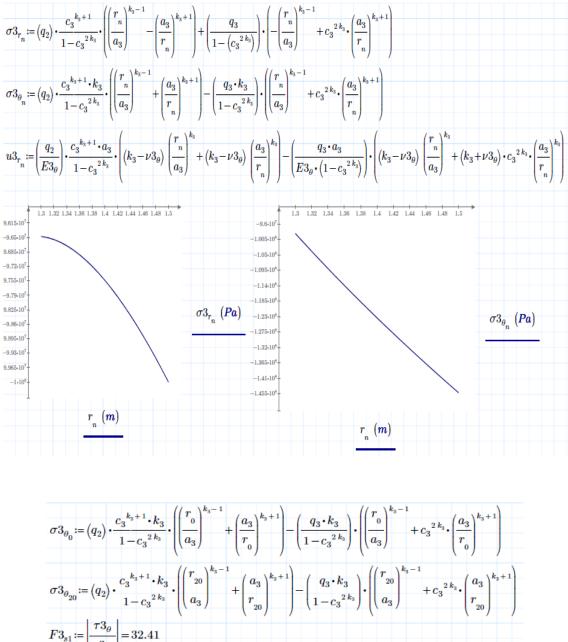

$\sigma 1_{\theta_0} \coloneqq (q_0) \cdot \frac{c_1^{-k_1+1} \cdot k_1}{1 - c_1^{-2-k_1}} \cdot \left(\left(\frac{r_0}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_0} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1 - c_1^{-2-k_1}} \right) \cdot \left(\left(\frac{r_0}{a_1} \right)^{k_1-1} + c_1^{-2-k_1} \cdot \left(\frac{a_1}{r_0} \right)^{k_1+1} \right) = -3.839 \cdot 10^7 \ \mathbf{Pa}$	$F1_{s1} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_0}} \right = 83.358$
$\sigma 1_{\theta_{20}} \coloneqq (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1-c_1^{2k_1}} \cdot \left(\left(\frac{r_{20}}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_{20}} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1-c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_{20}}{a_1} \right)^{k_1-1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_{20}} \right)^{k_1+1} \right) = -3.435 \cdot 10^7 \ \mathbf{Pa}$	$F1_{s2} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_{20}}} \right = 93.163$
$n \coloneqq 020$ $r_n \coloneqq (1.1 + 0.01 (n)) m$	$F1_{s3} \coloneqq \left \frac{\tau 1_r}{q_1} \right = 20.005$
$\sigma 2_{r_n} \coloneqq (q_1) \cdot \frac{c_2^{k_2 + 1}}{1 - c_2^{2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2 - 1} - \left(\frac{a_2}{r_n} \right)^{k_2 + 1} \right) + \left(\frac{q_2}{1 - (c_2^{-2k_2})} \right) \cdot \left(- \left(\frac{r_n}{a_2} \right)^{k_2 - 1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2 + 1} \right)$	
$\sigma 2_{\theta_n} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1 - c_2^{2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} + \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1 - c_2^{-2k_2}} \right) \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right)$	
$u2_{r_{n}} \coloneqq \left(\frac{q_{1}}{E2_{\theta}}\right) \cdot \frac{c_{2}^{k_{2}+1} \cdot a_{2}}{1-c_{2}^{-2k_{2}}} \cdot \left(\left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right)$	$\nu 2_{\theta} \big) \cdot c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2} \bigg)$
$ \begin{split} \sigma 2_{\theta_0} &\coloneqq \left(q_1\right) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1 - c_2^{-2k_2}} \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1 - c_2^{-2k_2}}\right) \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) = -3.1 \cdot 10^8 \ \textbf{Pa} \\ \sigma 2_{\theta_{20}} &\coloneqq \left(q_1\right) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1 - c_2^{-2k_2}} \cdot \left(\left(\frac{r_{20}}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_{20}}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1 - c_2^{-2k_2}}\right) \cdot \left(\left(\frac{r_{20}}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_{20}}\right)^{k_2+1} \right) = -6.627 \cdot 10^8 \ \textbf{Pa} \end{split} $	$F2_{s1} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_0}} \right = 6.774$
$\sigma_{2_{\theta_{20}}} := (q_1) \cdot \frac{c_2^{k_2 + 1} \cdot k_2}{1 - c_2^{2k_2}} \cdot \left \left \frac{r_{20}}{a_2} \right + \left \frac{k_2}{r_{20}} \right ^{k_2 + 1} - \left \frac{q_2 \cdot k_2}{1 - c_2^{2k_2}} \right \cdot \left \frac{r_{20}}{a_2} \right + c_2^{2k_2} \cdot \left \frac{a_2}{r_{20}} \right ^{k_2 + 1} \right = -6.627 \cdot 10^8 \ \textbf{Pa}$	$F2_{s2} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_{20}}} \right = 3.169$

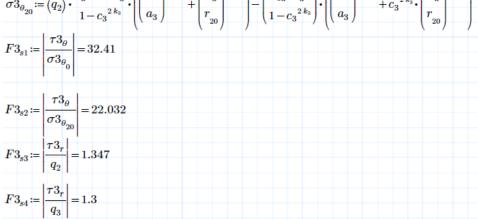


(iv)	2	3	1
------	---	---	---

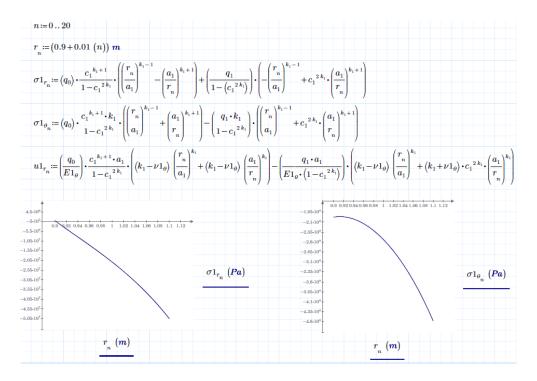

$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 \ m$	$a_2 \equiv 1.3 \ m$	$a_3 \equiv 1.5 \ m$	$q_0 \equiv 0 \ GPa q_3$	₃ ≡100 <i>MPa</i>	
$c_1 \equiv \frac{a_0}{a_1} = 0.818$ c	$a_2 \equiv \frac{a_1}{a_1} = 0.846$	$a_3 \equiv \frac{a_2}{2} = 0.867$	$E2_{\theta} \equiv 61.8 \ GPc$	a <i>E</i> 3 _θ ≡194 <i>G</i> I	Pa $E1_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \ GPa$
	- a ₂	a ₃	$E2_r \equiv 13.5 \ GPc$	$E3_r \equiv 8.1 \ GP$	$Pa = E1_r \equiv 8.1 \ GPa$	
$\nu 2_{\theta} \equiv 0.253$	$\nu 3_{\theta} \equiv 0.321$	$\nu 1_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$\tau 2_{\theta} \equiv 3.2 \; GP$	a $\tau 3_{\theta} \equiv 4.4 \ GPa$	$\tau 1_{\theta} \equiv 2.1 \; GPa$
$k_1 \!\equiv\! \sqrt{\frac{E 1_{\theta}}{E 1_r}}$	$k_2 \!\equiv\! \sqrt{\frac{E2_\theta}{E2_r}}$	$k_3 \equiv 1$	$\frac{\overline{E3_{\theta}}}{E3_{r}} = 4.894$	$ au 2_r \equiv 0.13 \ GI$	$Pa \tau 3_r \equiv 0.10 \ GPa$	$\tau 1_r \equiv 0.09 \; GPa$
$\alpha_1\!\equiv\!2.\left(\!\frac{k_1}{E1_\theta}\!\right)\left(\!\frac{c_1{}^k}{1\!-\!c_1}\right)$	$\left(\frac{1}{2k_1}\right) = (5.499 \cdot 10)$	$\left(\frac{1}{Pa}\beta_1\equiv\frac{1}{E1_{\theta}}\right)$	$\frac{1}{2}\left(\nu 1_{\theta} - \left(k_{1}\right) \frac{\left(1+c_{1}\right)}{\left(1-c_{2}\right)}\right)$	$\left(\frac{2k_1}{2k_1}\right) = \frac{1}{E2_{\theta}} \left(\iota$	$\nu 2_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$=-1.201\cdot10^{-10}\frac{1}{Pa}$
$\alpha_2 \equiv 2. \left(\frac{k_2}{E2_{\theta}}\right) \left(\frac{c_2^{k}}{1-c_2}\right)$	$\left(9.483 \cdot 10^{-2}\right) = (9.483 \cdot 10^{-2})$	$(-11) \frac{1}{Pa} \beta_2 \equiv \frac{1}{E2_{\theta}}$	$\frac{1}{2}\left(\nu 2_{\theta}-\left(k_{2}\right) \frac{\left(1+\alpha\right)}{\left(1-\alpha\right)}\right)$	$\left(\frac{2^{2}k_{2}}{2^{2}k_{2}}\right) - \frac{1}{E3_{\theta}} \left(\nu$	$\nu_{3_{\theta}} + (k_3) \frac{(1 + c_3^{2k_3})}{(1 - c_3^{2k_3})}$	$=-1.402\cdot10^{-10}\frac{1}{Pa}$
$\alpha_3 \equiv 2. \left(\frac{k_3}{E3_{\theta}}\right) \left(\frac{c_3^{\ k}}{1-c_3}\right)$, ,		((3 / /		
$q_{2} \equiv \frac{\left(\left(q_{3}\right) \left(\alpha_{3}\right)\right)}{\left(\frac{\left(\alpha_{1}\right) \left(\alpha_{2}\right)}{\beta_{1}} - \beta_{2}\right)}$	$\left(\frac{a_3}{a_2}\right) = \left(2.822 \cdot 1\right)$	$(0^7) \boldsymbol{Pa} q_1 \equiv \underline{(}$	$\frac{\left(-q_2\right)\left(\alpha_2\right)}{\beta_1}\left(\frac{a_2}{a_1}\right) =$	$= (2.634 \cdot 10^7)$	Pa	

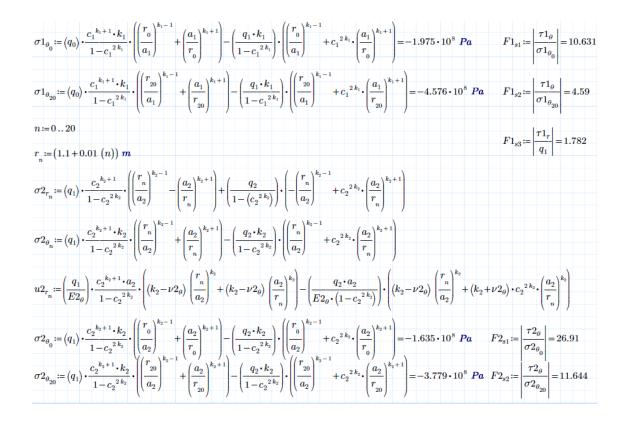


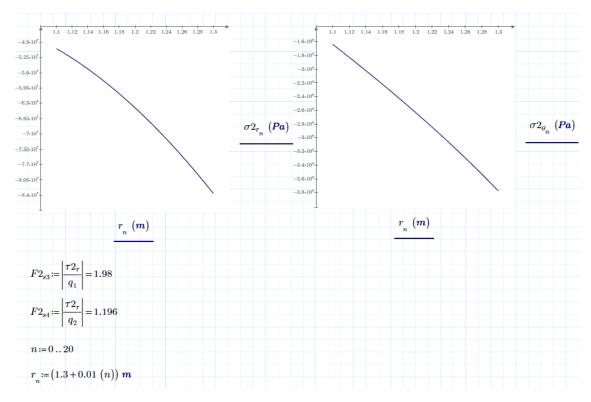

$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 \ m$	$a_2 \equiv 1.3 \ m$	$a_3 \equiv 1.5 \ m$	$q_0 \equiv 0 \ GPa q_3$	≡100 <i>MPa</i>	
$c_1 \equiv \frac{a_0}{a_1} = 0.818$	$c_1 = \frac{a_1}{1} = 0.846$	$c_{-} = \frac{a_2}{-0.867}$	$E3_{\theta} \equiv 61.8 \ GH$	Pa $E1_{\theta} \equiv 194 \ GP$	$E_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \ GPa$
			$E3_r \equiv 13.5 \ GF$	Pa $E1_r \equiv 8.1 \ GPc$	$E2_r \equiv 8.1 \ GPa$	
$\nu 3_{\theta} \equiv 0.253$	$\nu 1_{\theta} \equiv 0.321$	$\nu 2_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$\tau 3_{\theta} \equiv 3.2 \; GPc$	$ au au_{ heta} \equiv 4.4 \; GPa$	$ au 2_{ heta} \equiv 2.1 \; GPa$
$k_1 \!\equiv\! \sqrt{\frac{E 1_{\theta}}{E 1_r}}$	$k_2 \!\equiv\! \sqrt{\frac{E2_\theta}{E2_r}}$	$k_3 \equiv 1$	$\frac{\boxed{E3_{\theta}}}{E3_{r}} = 2.14$	$ au 3_r \equiv 0.13 \ GF$	$\tau a \tau 1_r \equiv 0.10 \ GPa$	$\tau 2_r \equiv 0.09 \; GPa$
$\alpha_1 \!\equiv\! 2. \left(\frac{k_1}{E 1_{\theta}} \right) \left(\frac{c_1}{1 - c_1} \right) $	$\left(\frac{k_1}{k_1^{2k_1}}\right) = (2.198 \cdot 10)$	$0^{-11} \frac{1}{Pa} \beta_1 \equiv \frac{1}{E 1_{\theta}}$	$-\left(\nu 1_{\theta} - \left(k_{1}\right) \frac{\left(1 + \frac{1}{\left(1 - \frac{1}{2}\right)}\right)}{\left(1 - \frac{1}{2}\right)}\right)$	$\left(\frac{c_1^{2 k_1}}{c_1^{2 k_1}}\right) - \frac{1}{E 2_{\theta}} \left(\nu\right)$	$2_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$=-4.872 \cdot 10^{-11} \frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2}{1-e}\right)$	$\left \frac{k_2}{k_2^{2}k_2}\right = (7.511 \cdot 10)$	$\left(1-\frac{1}{Pa}\right)\frac{1}{Pa}\beta_2 \equiv \frac{1}{E2_{\theta}}$	$-\left(\nu 2_{\theta}-\left\langle k_{2}\right\rangle \frac{\left(1+\left(1-\nu\right)^{2}\right)}{\left(1-\nu\right)^{2}}\right)$	$\left(\frac{c_2^{2 k_2}}{c_2^{2 k_2}}\right) - \frac{1}{E3_{\theta}} \left(\nu\right)$	$3_{\theta} + (k_3) \frac{(1 + c_3^{2k_3})}{(1 - c_3^{2k_3})}$	$=-1.365 \cdot 10^{-10} \frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2 \!\cdot \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3}{1-c_3}\right)$	$\binom{k_3}{k_3}{\binom{2}{3}^{2}k_3} = (1.113 \cdot 10)$	$\left(1-10\right)\frac{1}{Pa}\beta_3 \equiv \frac{1}{E3_{\theta}}$	$-\left(\nu 3_{\theta}-\left(k_{3}\right) \frac{\left(1+\right)}{\left(1-\right)}\right)$	$\frac{c_3^{2k_3}}{c_3^{2k_3}} = -1.125$	$\cdot 10^{-10} \frac{1}{Pa}$	
$q_2 \equiv \frac{\left(\left(q_3\right) \left(\alpha_3\right)\right)}{\left(\frac{\left(\alpha_1\right) \left(\alpha_2\right)}{\beta_1} - \beta_2\right)}$	$\frac{1}{a_2} \left(\frac{a_3}{a_2} \right) = \left(9.648 \cdot \right)$	10^7) Pa $q_1 \equiv \underline{(}$	$\frac{\left(-q_2\right)\left(\alpha_2\right)\right)}{\beta_1}\left(\frac{a_2}{a_1}\right)$	$= \left(1.758 \cdot 10^7\right) \mathbf{F}$	Pa	

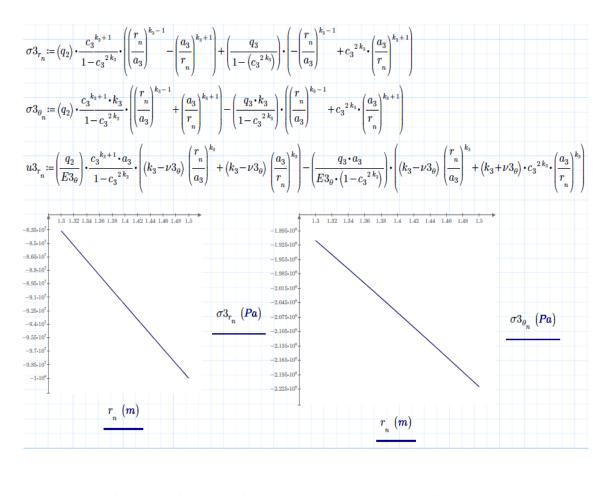


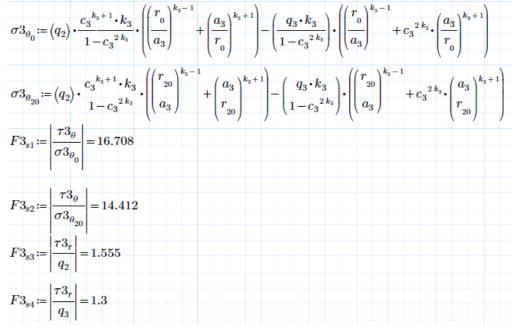
(v) 3 1 2

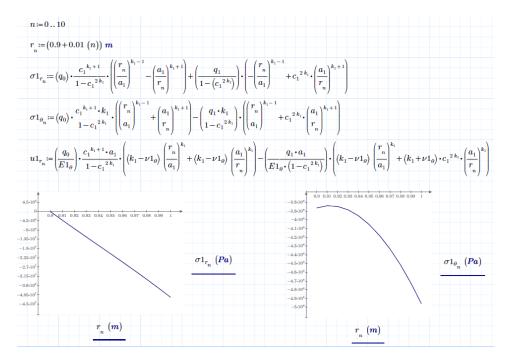

$\sigma 1_{\theta_0} \coloneqq (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1-c_1^{2k_1}} \cdot \left(\left(\frac{r_0}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_0} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1-c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_0}{a_1} \right)^{k_1-1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_0} \right)^{k_1+1} \right) = -9.16 \cdot 10^7 \mathbf{Pa}$	$F1_{s1} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_0}} \right = 48.034$
$\sigma 1_{\theta_{20}} \coloneqq (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1 - c_1^{2k_1}} \cdot \left(\left(\frac{r_{20}}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_{20}} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1 - c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_{20}}{a_1} \right)^{k_1-1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_{20}} \right)^{k_1+1} \right) = -1.141 \cdot 10^8 \ \mathbf{Pa}$	$F1_{s2} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_{20}}} \right = 38.566$
n := 020 $r_n := (1.1 + 0.01 (n)) m$	$F1_{s3} \coloneqq \left \frac{\tau 1_{\tau}}{q_1} \right = 5.689$
$\sigma 2_{r_n} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1}}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2}\right)^{k_2-1} - \left(\frac{a_2}{r_n}\right)^{k_2+1} \right) + \left(\frac{q_2}{1-(c_2^{-2k_2})}\right) \cdot \left(- \left(\frac{r_n}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n}\right)^{k_2+1} \right)$	
$\sigma_{2_{\theta_{n}}} \coloneqq (q_{1}) \cdot \frac{c_{2}^{k_{2}+1} \cdot k_{2}}{1-c_{2}^{2k_{2}}} \cdot \left(\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right) - \left(\frac{q_{2} \cdot k_{2}}{1-c_{2}^{2k_{2}}}\right) \cdot \left(\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + c_{2}^{2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right) = \left(\frac{q_{2} \cdot k_{2}}{1-c_{2}^{2k_{2}}}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} + \left($	
$u2_{r_{n}} \coloneqq \left(\frac{q_{1}}{E2_{\theta}}\right) \cdot \frac{c_{2}^{k_{2}+1} \cdot a_{2}}{1-c_{2}^{-2k_{2}}} \cdot \left(\left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) + \left(k_{2}-\nu 2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right)^{k_{2}} + \left(k_{2}-\nu 2_{\theta}\right)^{k_{2}}$	$\nu 2_{\theta}) \cdot c_2^{2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2} \right)$
$ \begin{split} \sigma 2_{\theta_0} &\coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{2k_2}} \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{2k_2}}\right) \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + c_2^{2k_2} \cdot \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) = -3.308 \cdot 10^8 \ \textbf{Pa} \\ \sigma 2_{\theta_{20}} &\coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{2k_2}} \cdot \left(\left(\frac{r_{20}}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_{20}}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{2k_2}}\right) \cdot \left(\left(\frac{r_{20}}{a_2}\right)^{k_2-1} + c_2^{2k_2} \cdot \left(\frac{a_2}{r_{20}}\right)^{k_2+1} \right) = -8.551 \cdot 10^8 \ \textbf{Pa} \end{split} $	$F2_{s1} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_0}} \right = 6.348$
$\sigma 2_{\theta_{20}} \coloneqq (q_1) \cdot \frac{c_2^{k_2 + 1} \cdot k_2}{1 - c_2^{2k_2}} \cdot \left[\left(\frac{r_{20}}{a_2} \right)^2 + \left(\frac{a_2}{r_{20}} \right)^{k_2 + 1} \right] - \left(\frac{q_2 \cdot k_2}{1 - c_2^{2k_2}} \right) \cdot \left[\left(\frac{r_{20}}{a_2} \right)^2 + c_2^{2k_2} \cdot \left(\frac{a_2}{r_{20}} \right)^{k_2 + 1} \right] = -8.551 \cdot 10^8 \ \textbf{Pa}$	$F2_{s2} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_{20}}} \right = 2.456$

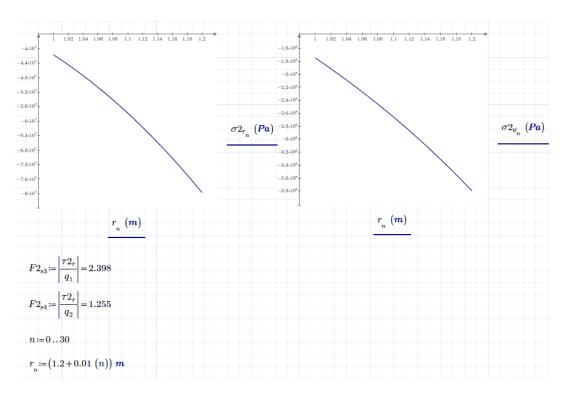





(vi) 3	21
--------	----

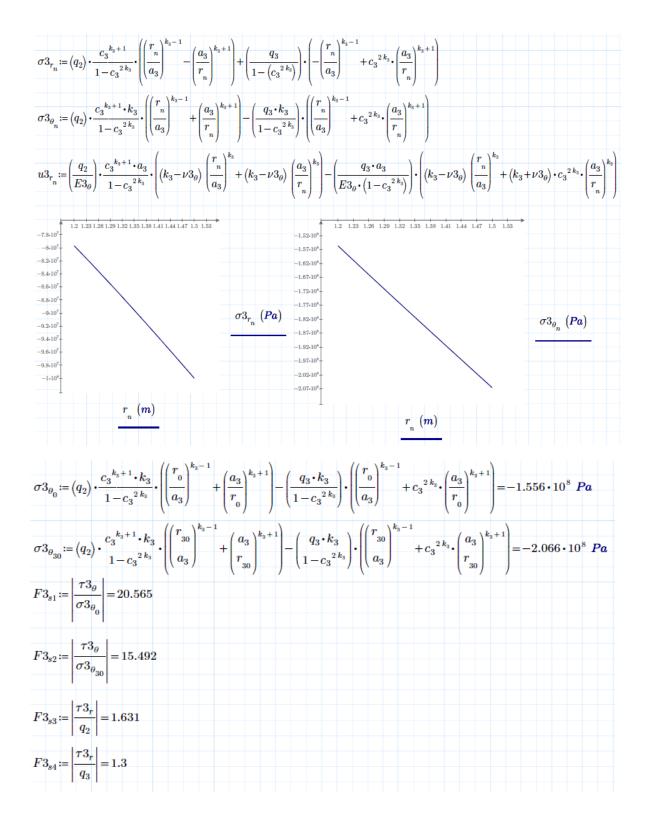

$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1.1 m$	$a_2 \equiv 1.3 \ m$	$a_3 \equiv 1.5 \ m$	$q_0 \equiv 0 \ GPa q_3 \equiv$	100 MPa	
$c_1 = \frac{a_0}{1} = 0.818$	$c_2 \equiv \frac{a_1}{a_2} = 0.846$	$a_2 = \frac{a_2}{-0.867}$	$E3_{\theta} \equiv 61.8 \ GP$	$a E2_{\theta} \equiv 194 \ GPa$	$E1_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \ GPa$
	$a_2 = -0.040$		$E3_r \equiv 13.5 \ GP$	a $E2_r \equiv 8.1 \ GPa$	$E1_r \equiv 8.1 \ GPa$	
$\nu 3_{\theta} \equiv 0.253$	$\nu 2_{\theta} \equiv 0.321$	$\nu 1_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$ au 3_{ heta} \equiv 3.2 \; GPa$	$ au 2_{ heta} \equiv 4.4 \; GPa$	$ au 1_{ heta} \equiv 2.1 \; GPa$
$k_1 \equiv \sqrt{\frac{E1_{\theta}}{E1}}$	$k_2 \equiv \sqrt{\frac{E2_{\theta}}{E^2}}$	$k_3 \equiv $	$\frac{E3_{\theta}}{E} = 2.14$	$\tau 3_r \equiv 0.13 \ GPc$	$\tau 2_r \equiv 0.10 \ GPa$	$\tau 1_r \equiv 0.09 \; GPa$
$V E_{r}$	$\gamma E2_r$	V	E3 _r			
$\alpha_1 \!\equiv\! 2. \left(\!\frac{k_1}{E 1_\theta}\!\right) \left(\!\frac{c_1}{1-c}\right)$	$\left(\frac{k_1}{k_1}\right) = (5.499 \cdot 10)$	$^{-12}\right)\frac{1}{Pa}\beta_{1}\equiv\frac{1}{E1_{\theta}}$	$\left(\nu 1_{\theta} - \left(k_{1}\right)\frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)}\right)$	$\left(\frac{c_1^{2k_1}}{c_1^{2k_1}}\right) - \frac{1}{E2_{\theta}} \left(\nu 2\right)$	$_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$=-5.413\cdot10^{-11}\frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E 2_\theta}\!\right) \left(\!\frac{c_2}{1-c}\right)$	$\left \frac{k_2}{k_2^{2k_2}}\right = (2.767 \cdot 10)$	$^{-11}\right)\frac{1}{Pa}\beta_{2}\equiv\frac{1}{E2_{\theta}}$	$\left(\nu 2_{\theta} - \left\langle k_{2}\right\rangle \frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)}\right)$	$\left(\frac{c_2^{2k_2}}{c_2^{2k_2}}\right) - \frac{1}{E3_{\theta}} \left(\nu 3\right)$	$_{\theta} + (k_3) \frac{(1 + c_3^{2k_3})}{(1 - c_3^{2k_3})}$	$= -1.565 \cdot 10^{-10} \frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2. \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3}{1-c_3}\right)$	5 /		(0 //	$10^{-10} \frac{1}{Pa}$	
$q_2 \equiv \frac{\left(\left(q_3\right) \left(\alpha_3\right)\right)}{\left(\frac{\left(\alpha_1\right) \left(\alpha_2\right)}{\beta_1} - \beta_2\right)}$	$\frac{1}{a_2} \left(\frac{a_3}{a_2} \right) = \left(8.36 \cdot 10 \right)$	p^{7}) Pa $q_1 \equiv \underline{(}$	$\frac{\left\langle -q_2 ight angle \left(lpha_2 ight) ight angle }{eta_1} \left(rac{a_2}{a_1} ight)$	$= \left(5.05 \cdot 10^7\right) \boldsymbol{Pa}$		

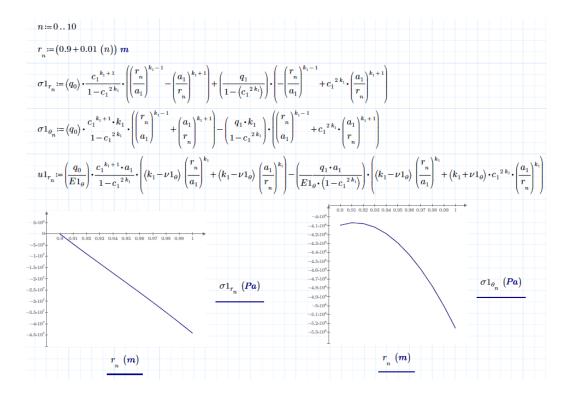


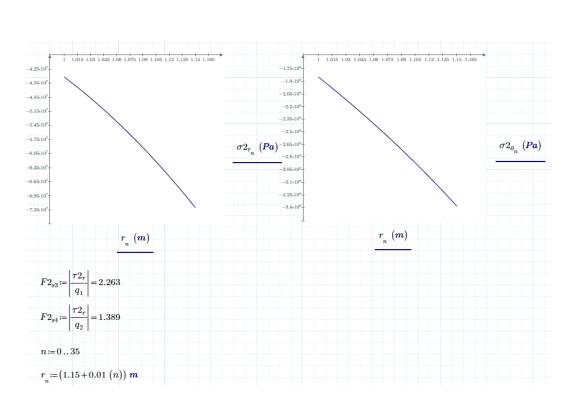


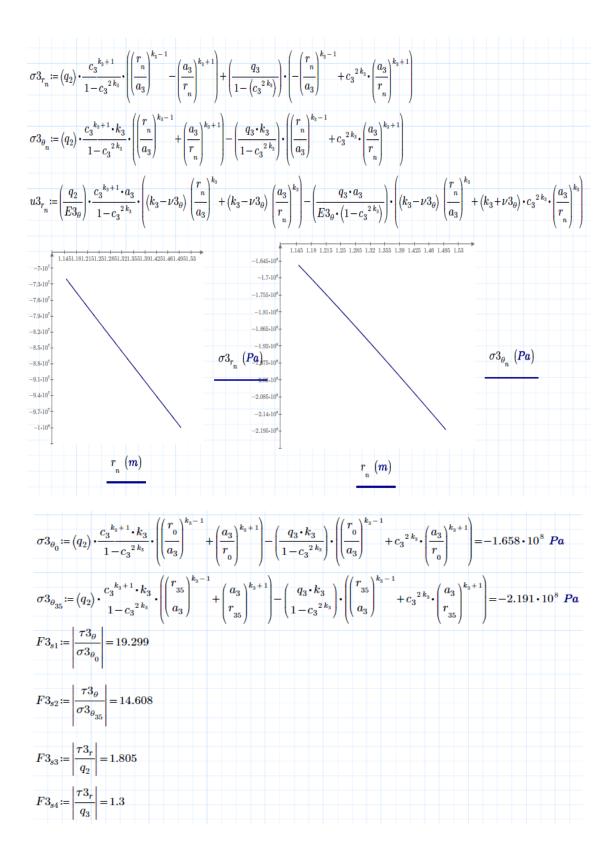
Some solutions for selected order (3 2 1) of compound layers with different thicknesses:

(A) Thickness 10, 20, 30 cm

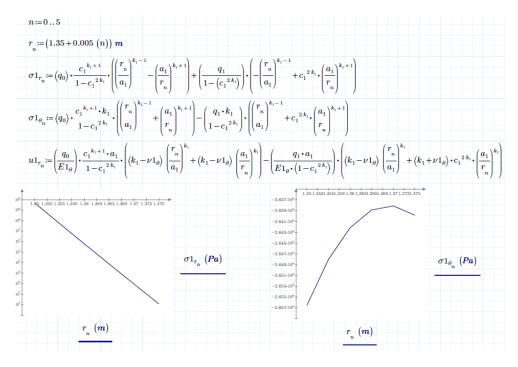

$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1 m$	$a_2 \equiv 1.2 \ m$	$a_3 \equiv 1.5 m$	$q_0 \equiv 0 \ GPa \qquad q_3 \equiv 0$	≡100 <i>MPa</i>	
$c_1 \equiv \frac{a_0}{a_1} = 0.9$	$a_1 = a_1 = 0.833$	$a_2 = \frac{a_2}{0.8}$	$E3_{\theta} \equiv 61.8 \ GP$	a $E2_{\theta} \equiv 194 \; GPc$	a $E1_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \ GPa$
$c_1 = \frac{a_1}{a_1} = 0.5$	$a_2 = \frac{a_2}{a_2}$	$a_3 = \frac{-0.0}{a_3}$	$E3_r \equiv 13.5 \ GP$	a E2 _r ≡8.1 GP a	$E1_r \equiv 8.1 \ GPa$	
$\nu 3_{\theta} \equiv 0.253$	$\nu 2_{\theta}\!\equiv\!0.321$	$\nu 1_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$ au 3_{ heta} \equiv 3.2 \; GPa$	$ au 2_{ heta} \equiv 4.4 \; GPa$	$ au 1_{ heta} \equiv 2.1 \; GPa$
$k_1 \equiv \sqrt{\frac{E 1_{\theta}}{E 1_{\theta}}}$	$k_2 \equiv \sqrt{\frac{E2_{\theta}}{E2_{\theta}}}$	k3≡1	$\left \frac{E3_{\theta}}{2\pi} \right = 2.14$	$ au 3_r \equiv 0.13 \ GP 0$	a $\tau 2_r \equiv 0.10 \ GPa$	$\tau 1_r \equiv 0.09 \; GPa$
$VE1_r$	$\sim \sqrt{E2_r}$		E3 _r			
$\alpha_1 \!\equiv\! 2. \left(\!\frac{k_1}{E 1_\theta}\!\right) \left(\!\frac{c_1^{-k}}{1-c_1^{-k}}\right)$	$\left \frac{k_1}{k_1} \right = (1.433 \cdot 10)$	$(-11) \frac{1}{\boldsymbol{P}\boldsymbol{a}} \beta_1 \equiv \frac{1}{E \boldsymbol{1}_{\theta}}$	$\frac{1}{2}\left(\nu 1_{\theta} - \left(k_{1}\right)\frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)}\right)$	$\left(\frac{c_1^{2k_1}}{c_1^{2k_1}}\right) - \frac{1}{E2_{\theta}} \left(\nu 2\right)$	$\mathcal{L}_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$=-5.696 \cdot 10^{-11} \frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2^{-k}}{1-c_2^{-k}}\right)$	$\left \frac{k_2}{2^{2k_2}}\right = (2.484 \cdot 10^{2})$	$\left(\frac{1}{Pa}\beta_2 \equiv \frac{1}{E2_6}\right)$	$\int_{0}^{1} \left(\nu 2_{\theta} - \langle k_2 \rangle \frac{\left(1 + e^{-\frac{1}{2}}\right)}{\left(1 - e^{-\frac{1}{2}}\right)}\right) d\theta $	$\left(\frac{c_2^{2k_2}}{c_2^{2k_2}}\right) - \frac{1}{E3_{\theta}} \left(\nu^3\right)$	$B_{\theta} + (k_3) \frac{(1 + c_3^{2k_3})}{(1 - c_3^{2k_3})}$	$=-1.158\cdot 10^{-10} \frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2. \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3^{-k}}{1-c_3^{-k}}\right)$	$\left \frac{k_3}{3^2 k_3}\right = (6.983 \cdot 10^3)$	$(-11) \frac{1}{Pa} \beta_3 \equiv \frac{1}{E3_6}$	$\frac{1}{2}\left(\nu 3_{\theta}-\left(k_{3}\right) \frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)}\right)$	$\left \frac{c_3^{2k_3}}{c_3^{2k_3}} \right = -7.385 \cdot $	$10^{-11} \frac{1}{Pa}$	
$q_{2} \equiv \frac{\left(\left(q_{3}\right) \left(\alpha_{3}\right)\right)}{\left(\frac{\left(\alpha_{1}\right) \left(\alpha_{2}\right)}{\beta_{1}} - \beta_{2}\right)}$	$-\left(\frac{a_3}{a_2}\right) = \left(7.969 \cdot 1\right)$	0^7) Pa $q_1 \equiv \frac{1}{2}$	$rac{\left(\left(-q_{2} ight)\left(lpha_{2} ight) ight)}{eta_{1}}\left(rac{a_{2}}{a_{1}} ight)$	$= (4.171 \cdot 10^7) P_{0}$	a	

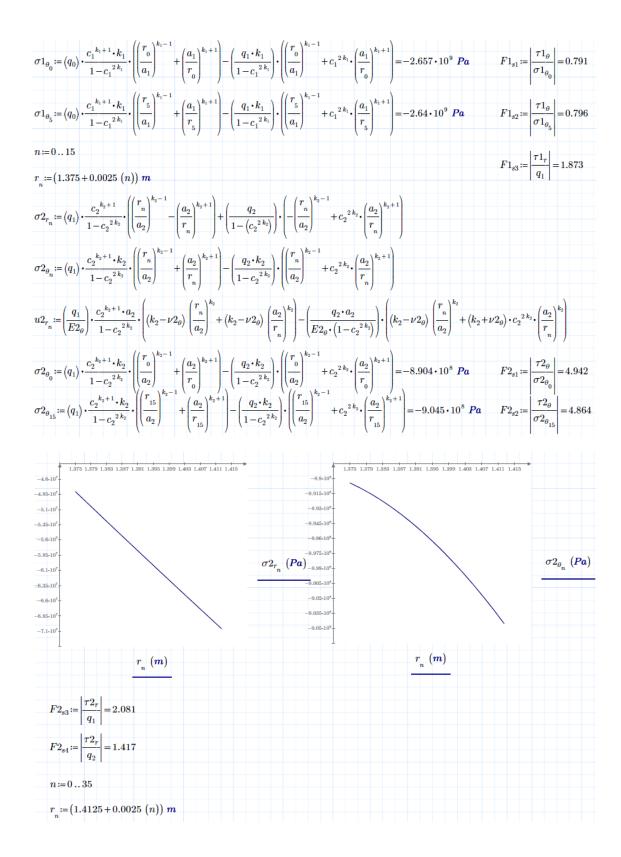

$\sigma_{1_{\theta_{10}}:=}(q_{0}) \cdot \frac{c_{1}^{k_{1}+1} \cdot k_{1}}{1-c_{1}^{2k_{1}}} \cdot \left(\left(\frac{r_{10}}{a_{1}} \right)^{k_{1}-1} + \left(\frac{a_{1}}{r_{10}} \right)^{k_{1}+1} \right) - \left(\frac{q_{1} \cdot k_{1}}{1-c_{1}^{2k_{1}}} \right) \cdot \left(\left(\frac{r_{10}}{a_{1}} \right)^{k_{1}-1} + c_{1}^{2k_{1}} \cdot \left(\frac{a_{1}}{r_{10}} \right)^{k_{1}+1} \right) = -4.959 \cdot 10^{8} \ \boldsymbol{Pa} \qquad F_{1s_{2}:=} \left \frac{\tau_{1\theta}}{\sigma_{1\theta_{10}}} \right = 4.235 $
n:=020
$r_n := (1 + 0.01 \ (n)) \ m$
$\sigma 2_{r_n} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1}}{1 - c_2^{2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} - \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) + \left(\frac{q_2}{1 - \left(c_2^{-2k_2} \right)} \right) \cdot \left(- \left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right)$
$\sigma_{2_{\theta_{n}} \coloneqq} (q_{1}) \cdot \frac{c_{2}^{k_{2}+1} \cdot k_{2}}{1-c_{2}^{2k_{2}}} \cdot \left(\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right) - \left(\frac{q_{2} \cdot k_{2}}{1-c_{2}^{2k_{2}}}\right) \cdot \left(\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + c_{2}^{2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}+1} \right) = \left(\frac{q_{2} \cdot k_{2}}{1-c_{2}^{2k_{2}}}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}-1} + \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}-1} + \left($
$u2_{r_{n}} \coloneqq \left(\frac{q_{1}}{E2_{\theta}}\right) \cdot \frac{c_{2}^{k_{2}+1} \cdot a_{2}}{1-c_{2}^{2k_{2}}} \cdot \left(\left(k_{2}-\nu2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu2_{\theta}\right) \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu2_{\theta}\right) \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}+\nu2_{\theta}\right) \cdot c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}+\nu2_{\theta}\right) \cdot c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{r_{n}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}+\nu2_{\theta}\right) \cdot c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}} + \left(k_{2}+\nu2_{\theta}\right) \cdot c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{r_{n}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}+\nu2_{\theta}\right) \cdot c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}} + \left(k_{2}+\nu2_{\theta}\right) \cdot c_{2}^{-2k_{2}} \cdot \left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{r_{n}}{E2_{\theta} \cdot \left(1-c_{2}^{-2k_{2}}\right)}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(\frac{r_{n}}{r_{n}}\right)^{k_{2}} \cdot \left(\frac{r_{n}}{r_{n}}\right)^{k_{2}} + \left(\frac{r_{n}}{r_$
$ \frac{\sigma 2_{\theta_0} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1 - c_2^{-2k_2}}}{r_2_{\theta_{20}} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1 - c_2^{-2k_2}}}{(q_2)^{k_2-1} + \left(\frac{a_2}{r_0}\right)^{k_2+1} - \left(\frac{q_2 \cdot k_2}{1 - c_2^{-2k_2}}\right) \cdot \left(\frac{r_0}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_0}\right)^{k_2+1} - 1.744 \cdot 10^8 \text{ Pa} \qquad F2_{s_1} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_0}}\right = 25.232 + 25$

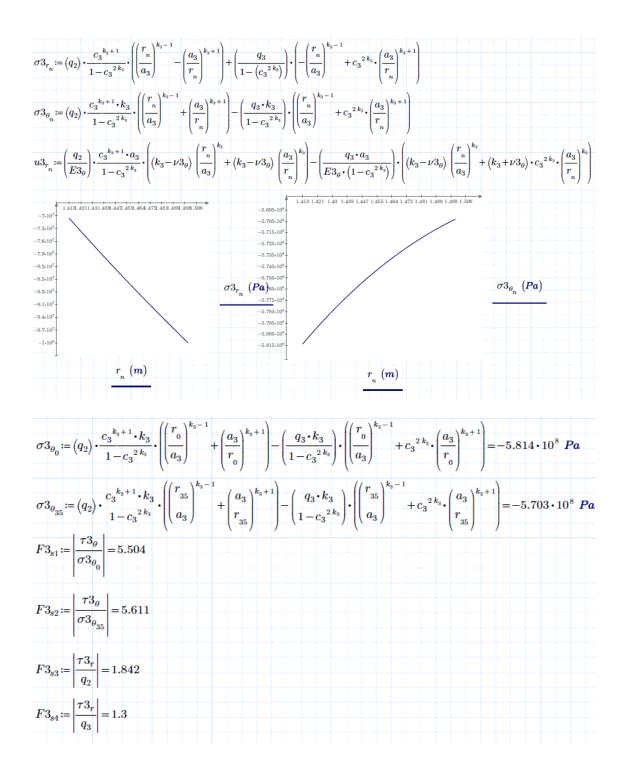

$\sigma_{1_{\theta_{10}}:=}(q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1-c_1^{2k_1}} \cdot \left(\left(\frac{r_{10}}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_{10}} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1-c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_{10}}{a_1} \right)^{k_1-1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_{10}} \right)^{k_1+1} \right) = -4.959 \cdot 10^8 \ Pa \qquad F1_{s_2}:= \left \frac{\tau 1_{\theta_1}}{\sigma 1_{\theta_{s_0}}} \right = 4.235 $	$\sigma 1_{\boldsymbol{\theta}_{0}} \coloneqq \left(q_{0}\right) \cdot \frac{c_{1}^{-k_{1}+1} \cdot k_{1}}{1-c_{1}^{-2k_{1}}} \cdot \left(\left(\frac{r_{0}}{a_{1}}\right)^{k_{1}-1} + \left(\frac{a_{1}}{r_{0}}\right)^{k_{1}+1}\right) - \left(\frac{q_{1} \cdot k_{1}}{1-c_{1}^{-2k_{1}}}\right) \cdot \left(\left(\frac{r_{0}}{a_{1}}\right)^{k_{1}-1} + c_{1}^{-2k_{1}} \cdot \left(\frac{a_{1}}{r_{0}}\right)^{k_{1}+1}\right) = -3.864 \cdot 10^{8} \ \boldsymbol{Pa} \qquad F 1_{s_{1}} \coloneqq \left(\frac{r_{0}}{s_{1}}\right)^{k_{1}-1} + c_{1}^{-2k_{1}} \cdot \left(\frac{r_{0}}{s_{1}}\right)^{k_{1}+1} + c_{1}^{-2k_{1}} \cdot \left(\frac{r_{0}}{s_{1}}\right)^{k_{1}+1} = -3.864 \cdot 10^{8} \ \boldsymbol{Pa} \qquad F 1_{s_{1}} \coloneqq \left(\frac{r_{0}}{s_{1}}\right)^{k_{1}-1} + c_{1}^{-2k_{1}} \cdot \left(\frac{r_{0}}{s_{1}}\right)^{k_{1}+1} + c_{1}^{-2k_{1}} \cdot$	$\frac{\tau 1_{\theta}}{\sigma 1_{\theta_0}} = 5.435$
	$\sigma 1_{\theta_{10}} \coloneqq (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1-c_1^{2k_1}} \cdot \left(\left(\frac{r_{10}}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_{10}} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1-c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_{10}}{a_1} \right)^{k_1-1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_{10}} \right)^{k_1+1} \right) = -4.959 \cdot 10^8 \ \boldsymbol{Pa} \qquad F 1_{s2} = -4.959 \cdot 10^8 \ \boldsymbol{Pa} = -4.959 $	$\coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_{10}}} \right = 4.235$


(B) Thickness 10, 15, 35 cm

$a_0 \equiv 0.9 \ m$	$a_1 \equiv 1 m$	$a_2 \equiv 1.15 \ m$	$a_3 \equiv 1.5 \ m$	$q_0 \equiv 0 \ GPa q_3 \equiv$	≡100 <i>MPa</i>	
$c_1 \equiv \frac{a_0}{a_0} = 0.9$	$c_2 \equiv \frac{a_1}{a_2} = 0.87$	$c_2 \equiv \frac{a_2}{a_2} = 0.767$	$E3_{\theta} \equiv 61.8 \ GP$	$Ea E2_{\theta} \equiv 194 GPe$	a $E1_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \; GPa$
a_1	a2 a2	a ₃	$E3_{r} \equiv 13.5 \ GP$	a $E2_r \equiv 8.1 \ GPa$	$E1_r \equiv 8.1 \ GPa$	
$\nu 3_{\theta} \equiv 0.253$	$\nu 2_{\theta} \equiv 0.321$	$\nu 1_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	$ au 3_{ heta} \equiv 3.2 \ GPa$	$ au 2_{\theta} \equiv 4.4 \; GPa$	$\tau 1_{\theta} \equiv 2.1 \; GPa$
$k_1 \equiv \sqrt{\frac{E1_{\theta}}{E1}}$	$k_2 \equiv \sqrt{\frac{E2_{\theta}}{E2_r}}$	$k_3 \equiv $	$\frac{E3_{\theta}}{E2} = 2.14$	$ au 3_r \equiv 0.13 \ GP$	$a \tau 2_r \equiv 0.10 \ GPa$	$\tau 1_r \equiv 0.09 \ GPa$
γ L ¹ τ	V E2 _r	V				
$\alpha_1 \equiv 2. \left(\frac{k_1}{E 1_{\theta}}\right) \left(\frac{c_1}{1-e_1}\right)$	$\left(1.433 \cdot 10^{\frac{k_1}{2}}\right) = (1.433 \cdot 10^{\frac{k_1}{2}})$	$\left(\frac{1}{Pa}\beta_1 \equiv \frac{1}{E1_{\theta}}\right)$	$-\left(\nu 1_{\theta}-\left(k_{1}\right) \frac{\left(1+\left(1-\frac{1}{2}\right)^{2}\right)}{\left(1-\frac{1}{2}\right)^{2}}\right)$	$\frac{c_1^{2k_1}}{c_1^{2k_1}} - \frac{1}{E2_{\theta}} \left(\nu 2 \right)$	$2_{\theta} + (k_2) \frac{(1 + c_2^{2k_2})}{(1 - c_2^{2k_2})}$	$=-6.401 \cdot 10^{-11} \frac{1}{Pa}$
$\alpha_2 \!\equiv\! 2. \left(\!\frac{k_2}{E2_\theta}\!\right) \left(\!\frac{c_2}{1-e_2}\right) $	$\binom{k_2}{c_2^{2}} = (3.416 \cdot 10)$	$\left(\frac{1}{Pa}\beta_2 \equiv \frac{1}{E2_{\theta}}\right)$	$\cdot \left(u 2_{ heta} - \langle k_2 \rangle \frac{\left(1 + \left(1 + \left(1 - u \right)\right)\right)}{\left(1 - u \right)} \right)$	$\frac{\left(c_2^{2k_2}\right)}{\left(c_2^{2k_2}\right)} - \frac{1}{E3_{\theta}} \left(\nu S_{\theta}\right)$	$B_{\theta} + \langle k_3 \rangle \frac{\left(1 + c_3^{2 k_3}\right)}{\left(1 - c_3^{2 k_3}\right)}$	$=-1.122\cdot10^{-10}\frac{1}{Pa}$
$\alpha_3 \!\equiv\! 2. \left(\!\frac{k_3}{E3_\theta}\!\right) \left(\!\frac{c_3}{1-e_3}\right) $	$\left(\frac{k_3}{c_3^2}\right) = (5.774 \cdot 10)$	$\left(\frac{1}{Pa}\beta_3 \equiv \frac{1}{E3_{\theta}}\right)$	$\left(\nu 3_{\theta}-\left(k_{3}\right) \frac{\left(1+1+1\right)}{\left(1-1+1\right)}\right)$	$\left(\frac{c_3^{2k_3}}{c_3^{2k_3}}\right) = -6.323$	$10^{-11} \frac{1}{Pa}$	
$q_2 \equiv rac{\left(\left(q_3 ight)\left(lpha_3 ight) ight)}{\left(rac{\left(lpha_1 ight)\left(lpha_2 ight)}{eta_1} - eta_2}$	$\frac{1}{a_2} \left(\frac{a_3}{a_2} \right) = (7.201 \cdot 1)$	$(10^7) Pa q_1 \equiv \underline{(}$	$rac{\left(-q_{2} ight)\left(lpha_{2} ight) ight)}{eta_{1}}\left(rac{a_{2}}{a_{1}} ight)$	$=(4.419\cdot 10^7) P$	a	




$\sigma_{1_{\theta_{0}}} \coloneqq (q_{0}) \cdot \frac{c_{1}^{k_{1}+1} \cdot k_{1}}{1-c_{1}^{2k_{1}}} \cdot \left(\left(\frac{r_{0}}{a_{1}}\right)^{k_{1}-1} + \left(\frac{a_{1}}{r_{0}}\right)^{k_{1}+1} \right) - \left(\frac{q_{1} \cdot k_{1}}{1-c_{1}^{2k_{1}}}\right) \cdot \left(\left(\frac{r_{0}}{a_{1}}\right)^{k_{1}-1} + c_{1}^{2k_{1}} \cdot \left(\frac{a_{1}}{r_{0}}\right)^{k_{1}+1} \right) = -4.094 \cdot 10^{8} Pa$	$F1_{s1} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_0}} \right = 5.13$
$\sigma 1_{\theta_{10}} \coloneqq (q_0) \cdot \frac{c_1^{k_1+1} \cdot k_1}{1 - c_1^{2k_1}} \cdot \left(\left(\frac{r_{10}}{a_1} \right)^{k_1-1} + \left(\frac{a_1}{r_{10}} \right)^{k_1+1} \right) - \left(\frac{q_1 \cdot k_1}{1 - c_1^{2k_1}} \right) \cdot \left(\left(\frac{r_{10}}{a_1} \right)^{k_1-1} + c_1^{2k_1} \cdot \left(\frac{a_1}{r_{10}} \right)^{k_1+1} \right) = -5.254 \cdot 10^8 \mathbf{Pa}$	$F1_{s2} \coloneqq \left \frac{\tau 1_{\theta}}{\sigma 1_{\theta_{10}}} \right = 3.997$
n := 015 $r_n := (1 + 0.01 (n)) m$	$F1_{s3} := \left \frac{\tau 1_r}{q_1} \right = 2.037$
$\sigma 2_{r_n} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1}}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} - \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) + \left(\frac{q_2}{1-(c_2^{-2k_2})} \right) \cdot \left(- \left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right)$	
$\sigma 2_{\theta_n} \coloneqq (q_1) \cdot \frac{c_2^{-k_2+1} \cdot k_2}{1 - c_2^{-2k_2}} \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} + \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1 - c_2^{-2k_2}} \right) \cdot \left(\left(\frac{r_n}{a_2} \right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2+1} \right) = 0$	
$u2_{r_{n}} \coloneqq \left(\frac{q_{1}}{E2_{\theta}}\right) \cdot \frac{c_{2}^{k_{2}+1} \cdot a_{2}}{1-c_{2}^{2k_{2}}} \cdot \left(\left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu2_{\theta}\right)\left(\frac{a_{2}}{r_{n}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) - \left(\frac{q_{2} \cdot a_{2}}{E2_{\theta} \cdot \left(1-c_{2}^{2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) - \left(\frac{r_{n}}{E2_{\theta} \cdot \left(1-c_{2}^{2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) - \left(\frac{r_{n}}{E2_{\theta} \cdot \left(1-c_{2}^{2k_{2}}\right)}\right) \cdot \left(\left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}}\right) - \left(\frac{r_{n}}{E2_{\theta} \cdot \left(1-c_{2}^{2k_{2}}\right)}\right) \cdot \left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k_{2}-\nu2_{\theta}\right)\left(\frac{r_{n}}{a_{2}}\right)^{k_{2}} + \left(k$	$\cdot \nu 2_{\theta} \big) \cdot c_2^{2 k_2} \cdot \left(\frac{a_2}{r_n} \right)^{k_2} \right)$
$ \begin{split} & \overline{\sigma2_{\theta_0} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{-2k_2}}\right) \cdot \left(\left(\frac{r_0}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_0}\right)^{k_2+1} \right) = -1.847 \cdot 10^8 \ \textbf{Pa} \\ & \overline{\sigma2_{\theta_{15}} \coloneqq (q_1) \cdot \frac{c_2^{k_2+1} \cdot k_2}{1-c_2^{-2k_2}} \cdot \left(\left(\frac{r_{15}}{a_2}\right)^{k_2-1} + \left(\frac{a_2}{r_{15}}\right)^{k_2+1} \right) - \left(\frac{q_2 \cdot k_2}{1-c_2^{-2k_2}}\right) \cdot \left(\left(\frac{r_{15}}{a_2}\right)^{k_2-1} + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_{15}}\right)^{k_2+1} \right) = -3.386 \cdot 10^8 \ \textbf{Pa} \end{split} $	$F2_{s1} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_0}} \right = 23.816$
$\sigma_{2_{\theta_{15}}} = (q_1) \cdot \frac{c_2^{-2} \cdot \cdot \cdot k_2}{1 - c_2^{-2k_2}} \cdot \left \left \frac{1}{a_2} \right = + \left(\frac{a_2}{r_{15}} \right)^{k_2 + 1} - \left(\frac{q_2 \cdot k_2}{1 - c_2^{-2k_2}} \right) \cdot \left \frac{1}{a_2} \right = + c_2^{-2k_2} \cdot \left(\frac{a_2}{r_{15}} \right)^{k_2 + 1} = -3.386 \cdot 10^8 \ Pa$	$F2_{s2} \coloneqq \left \frac{\tau 2_{\theta}}{\sigma 2_{\theta_{15}}} \right = 12.994$



(C) Thickness 2.5, 3.75, 8.75 cm

$a_0 \equiv 1.35 \ m$	$a_1 \equiv 1.375 \ m$	$a_2 \equiv 1.4125 \ m c$	$a_3 \equiv 1.5 \ m \qquad q_0$	$_{0}\equiv 0 \ GPa q_{3}\equiv$	100 MPa	
$c_1 \equiv \frac{a_0}{2} = 0.982$	$c_2 \equiv \frac{a_1}{a_2} = 0.973$ c	$a_3 \equiv \frac{a_2}{a_3} = 0.942$	Ŭ.	Ū	$E1_{\theta} \equiv 582 \ GPa$	$E4_{\theta} \equiv 0 \ GPa$
	<i>u</i> ₂	<i>u</i> ₃	$E3_r \equiv 13.5 \ GPa$	$E2_r \equiv 8.1 \ GPa$	$E1_r \equiv 8.1 \ GPa$	
$\nu 3_{\theta} {\equiv} 0.253$	$\nu 2_{\theta} \equiv 0.321$	$\nu 1_{\theta} \equiv 0.31$	$\nu 4_{\theta} \equiv 0$	·	$ au 2_{\theta} \equiv 4.4 \; GPa$	
$k_1 \!\equiv\! \sqrt{\frac{E 1_{\theta}}{E 1_r}}$	$k_2 \!\equiv\! \sqrt{\frac{E2_\theta}{E2_r}}$	$k_3 \equiv $	$\frac{\overline{E3_{\theta}}}{E3_{r}} = 2.14$	$ au_{3_r} \equiv 0.13 \ GPa$	$ au_r \equiv 0.10 \ GPa$	$\tau 1_r \equiv 0.09 \; GPa$
$\alpha_1 \!\equiv\! 2. \left(\frac{k_1}{E 1_{\theta}} \right) \left(\frac{c_1}{1-c_1} \right) \left(\frac{c_2}{1-c_2} \right) \left(c_2$	$\left(\frac{k_1}{2}\right)_{1}^{2k_1} = (9.326 \cdot 10^{-1})_{1}^{2k_1}$	$\left(\frac{1}{Pa}\beta_1\equiv\frac{1}{E1_{\theta}}\right)$	$\left(\nu 1_{\theta} - \left(k_{1}\right)\frac{\left(1+c_{1}\right)}{\left(1-c_{1}\right)}\right)$	$\left \frac{1}{2} \frac{k_1}{k_1}\right\rangle = \frac{1}{E2_{\theta}} \left(\nu 2_{\theta}\right)$	$_{0} + (k_{2}) \frac{(1 + c_{2}^{2} k_{2})}{(1 - c_{2}^{2} k_{2})}$	$= -2.882 \cdot 10^{-10} \frac{1}{Pa}$
	2 /	, i i i i i i i i i i i i i i i i i i i		. //	(3)	$=-4.658\cdot10^{-10}\frac{1}{Pa}$
$\alpha_3 \equiv 2. \left(\frac{k_3}{E3_\theta}\right) \left(\frac{c_3}{1-c_3}\right) \left($	o /		(()	. ,,		
$q_{2} \equiv \frac{\left(\left(q_{3}\right) \left(\alpha_{3}\right)\right)}{\left(\frac{\left(\alpha_{1}\right) \left(\alpha_{2}\right)}{\beta_{1}} - \beta_{2}\right)}$	$\frac{1}{a_3} \left(\frac{a_3}{a_2} \right) = (7.057 \cdot 10)$	$(0^7) Pa q_1 \equiv \underline{(())}$	$\frac{\left(-q_2\right)\left(\alpha_2\right)\right)}{\beta_1}\left(\frac{a_2}{a_1}\right) =$	$(4.805 \cdot 10^7) Pa$		

References

- Parnas, Levend, and Nuran Katırcı. "Design of fiber-reinforced composite pressure vessels under various loading conditions." Composite structures 58.1 (2002): 83-95.
- [2] Gibson, Ronald F. Principles of composite material mechanics. CRC press, 2016.
- [3] Yu. M. Tarnopol'skii, A.I. Beyle. Chapter 7. "Thick-walled Tubes and Rings made from Composites". In: Composite materials: Handbook. Ed. by V. V. Vasilyev and Yu. M. Tarnopol'skii. Mashinostroyenie Pub., Moscow, 1990, pp.442-486 (in Russian). ISBN 5 217 01113 0
- [4] Chung, Deborah DL, and Deborah Chung. Carbon fiber composites. Butterworth-Heinemann, 2012.
- [5] An Introduction to the Theory of Elasticity for Engineers and Physicists Richard Vynne Southwell, Clarendon Press, 1936 - Elasticity - 509 pages
- [6] Theory of Elasticity Hardcover Import, 1970 by S.P. Timoshenko (Author), J.N. Goodier (Author)
- [7] Mechanics of Composite Materials (Dover Civil and Mechanical Engineering)by Richard M. Christensen (Author), Engineering (Author)
- [8] Kress, G. R. "Shape optimization of a flywheel." Structural and Multidisciplinary Optimization 19.1 (2000): 74-81.
- [9] Lekhnitskii, S.G.; Tsai, S.W.; and Cherom, T.: Anisotropic plates. Gordon and Breach Science Publishers, New York, 1968
- [10] Sharpe, William N. Springer handbook of experimental solid mechanics. Springer Science & Business Media, 2008.
- [11] Jones, R. M. Mechanics of Composite Materials. Second Edition. Philadelphia: Taylor & Francis, Inc., 1999.

- [12] Voyiadjis, George Z., and Peter I. Kattan. Mechanics of composite materials with MATLAB. Springer Science & Business Media, 2005.
- [13] Mazumdar, Sanjay. Composites manufacturing: materials, product, and process engineering. CrC press, 2001.
- [14] Vasiliev, Valery, and Evgeny V. Morozov. Mechanics and analysis of composite materials. Elsevier, 2001.
- [15] Lekhnitskii, S. G. "Theory of the elasticity of anisotropic bodies." (1977).
- [16] Milton, Graeme W. "The theory of composites." The Theory of Composites, by Graeme W. Milton, pp. 748. ISBN 0521781256. Cambridge, UK: Cambridge University Press, May 2002. (2002): 748.

Biographical Information

Salman Bakhrayba earned his Bachelor's degree from Manipal Institute of Technology Manipal, India in May 2015. He then decided to pursue his Master's degree in Mechanical Engineering from the University of Texas at Arlington in Fall'15. He has been involved in research in areas like Finite Element Analysis, Mechanics of Materials, Structure Design and Energy Harvesting. Salman plans to pursue his career in the path where his knowledge and skills are fully utilized.