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Abstract 

 
NONPARAMETRIC ADAPTIVE DISTRIBUTION-FREE PROCEDURE FOR 

CROSSOVER DESIGN WITH REPEATED MEASURES 

 

Afshan Boodhwani, PhD 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Shan Sun Mitchell 

 

We propose to apply adaptive nonparametric procedures (Hill, Padmanabhan, & 

Puri, 1988) on 2x2 crossover design with repeated measures.  We will derive the test-

statistics (based on function of ranks) and find their asymptotic distributions.  These test-

statistics will be used to test (a) equality of carryover effects; (b) equality of direct treatment 

effects; (c) equality of carryover effects over time (repeated measures); and (d) equality of 

direct treatment effects over time (repeated measures), as suggested by Johnson and 

Grender (Johnson & Grender, 1993). We will be testing these hypotheses using modified 

versions of the test statistics derived by Johnson and Grender (Johnson & Grender, 1993) 

and Brunner et al. (Brunner, Domhof, & Langer, 2002) tailored to the underlying distribution 

of the data. In addition, we provide examples to illustrate the new methods.  

 

The methods proposed extend the methods developed by Sun (Sun, 1997) for 𝑐𝑐-

sample problems.   
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Chapter 1  

Introduction 

Sample size is often a cause of concern during the initial phase of clinical trials. A 

method commonly used to handle this issue is the crossover design. A crossover design 

is a repeated measure type experiment where each subject is used to compare the types 

of treatments.  

Extensive research has been done on crossover designs using the traditional 

normal distribution models by several authors such as Grizzle, Wallenstein and Fisher, 

Hills and Armitage, and Brown (Johnson & Grender, 1993). Moreover, works from Koch 

(Koch, 1972), Taulbee (Taulbee, 1982), Johnson and Grender (Johnson & Grender, 1993) 

and Brunner et al. (Brunner, Domhof, & Langer, 2002) discuss nonparametric methods for 

2x2 crossover designs. The nonparametric methods discussed use the ranks of the 

observation for analysis for the data. In this paper we propose to instead use functions of 

ranks, called scores. The impetus for working with function (general scores) of ranks was 

provided by the work of Hogg et al. (Hogg, Fisher, & Randles, 1975), which specifies scores 

that are tailored to the given shape of the data. Extensive Monte Carlo studies (Hill, 

Padmanabhan, & Puri, 1988) have established the supremacy of these procedures over 

(i) the usual (nonadaptive) procedure of always working only with the ranks and the 

resulting statistics, such as Wilcoxon, and (ii) the usual parametric procedure (based on 

the assumption of normality of the underlying distribution function). Hogg et al. developed 

their procedures only in the context of hypothesis testing in the two-sample and one-

sample problems. But the results of Puri (Puri M. L., 1965) and Puri and Sen (Puri & Sen, 

1971) ensure that their nice properties also extend to more general situations. Sun (Sun, 

1997) revisited this problem and extended it to resolve the practical problem of handling 

ties. Sun showed, by evaluating relative efficiency of the test statistics based on adaptive 
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nonparametric procedures to that of the standard nonparametric methods, the 

improvement is substantial. 

Since the cross-over design with the repeated measurements longitudinal data is 

much more complicated than the c-sample problems in Sun (Sun, 1997), for example the 

nature of the dependency among periods and blocks as well as the interaction issues, 

hence more sophisticated technicalities are required. That is precisely what this paper 

plans to achieve, as well as establish the supremacy of using adaptive nonparametric 

procedure in 2x2 crossover designs with repeated measure, as compared to both the 

traditional parametric methods, and rank-based nonparametric methods.  
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Chapter 2  

 The 2x2 Crossover Design with Repeated Measures  

Consider its simplest form, a two-treatment, two-period (2x2) crossover design. 

The subjects are randomly assigned to group 1, which receives treatment A followed by 

treatment B, or group 2, which receives the treatments in reverses order. A major 

advantage of this is that each subject serves as their own control, providing a better 

efficiency with a smaller sample size. Of course this is with the assumption that one 

treatment does not alter the subject’s ability to conduct the second treatment. For example, 

crossover design may not be appropriate if testing for a drug that cures a disease. In 

addition to that we need to allow for a wash out period between the two treatments, so the 

lingering effects of one does not impact the other treatment’s effect. This is lingering effect 

is known as the carry-over effect. A 2x2 crossover design is with 𝑝𝑝 repeated measures is 

illustrated in Figure 2-1.  

Figure 2-1: 2x2 Crossover Design with p Repeated Measures. 
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Section 2.1: The Model 

Let 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represent an observation from the 𝑖𝑖𝑡𝑡ℎ group, in the 𝑗𝑗𝑡𝑡ℎ period for the 𝑘𝑘𝑡𝑡ℎ 

subject’s 𝑠𝑠𝑡𝑡ℎ repeated measure. So 𝑖𝑖 = 1,2 groups, 𝑗𝑗 = 1,2 periods, 𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖 (𝑛𝑛1 + 𝑛𝑛2 =

𝑛𝑛) subject, 𝑠𝑠 = 1, … , 𝑝𝑝 repeated measures, 𝑣𝑣 is either treatment A or treatment B, and 𝑣𝑣’ is 

the other treatment. Then the model for the 2x2 crossover design with 𝑝𝑝 repeated 

measures can be expressed in terms of the given fixed effects: 

𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜋𝜋𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑣𝑣𝑖𝑖 + ℎ𝜆𝜆𝑣𝑣′𝑖𝑖                               (2-1) 

where 𝜇𝜇𝑖𝑖 represents the general mean for the 𝑠𝑠𝑡𝑡ℎ repeated measure; 𝜋𝜋𝑖𝑖𝑖𝑖 is the period effect 

of the 𝑗𝑗𝑡𝑡ℎ period in the 𝑠𝑠𝑡𝑡ℎ repeated measure; 𝜏𝜏𝑣𝑣𝑖𝑖 is the direct treatment effect of the 𝜐𝜐𝑡𝑡ℎ 

treatment in the 𝑠𝑠𝑡𝑡ℎ repeated measure and 𝜆𝜆𝑣𝑣′𝑖𝑖 is the carryover effect of 𝜐𝜐′ treatment in the 

𝑠𝑠𝑡𝑡ℎ repeated measure; and ℎ is an indicator variable such that ℎ = 0 if 𝑗𝑗 = 1 and ℎ = 1 if 

𝑗𝑗 = 2.  

This model can also be expressed in a vector form:  

𝐸𝐸[𝒀𝒀𝑖𝑖𝑖𝑖𝑖𝑖] = 𝝋𝝋𝑖𝑖𝑖𝑖 =  (𝜑𝜑𝑖𝑖𝑖𝑖1 … 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖)′ = 𝝁𝝁 + 𝝅𝝅𝑖𝑖 + 𝝉𝝉𝑣𝑣 + ℎ𝝀𝝀𝑣𝑣′    (2-2) 

where 𝝁𝝁 = (𝜇𝜇1 … 𝜇𝜇𝑖𝑖)′,  𝝅𝝅𝑖𝑖 = (𝜋𝜋𝑖𝑖1 … 𝜋𝜋𝑖𝑖𝑖𝑖)′, 𝝉𝝉𝑣𝑣 = (𝜏𝜏𝑣𝑣1 … 𝜏𝜏𝑣𝑣𝑖𝑖)′ and  

𝝀𝝀𝑣𝑣′ = (𝜆𝜆𝑣𝑣′1 … 𝜆𝜆𝑣𝑣′𝑖𝑖)′. Figure 2-2 shows the main effects model for the 2x2 crossover 

design. Notice since the carry-over effect measures an effect the first treatment may have 

on the second treatment, this effect can only be observed in period II. This also implies that 

before we proceed with the analysis of direct treatment effects, a test must be conducted 

to establish the equality of carry-over effects for the two treatments. Thus, in the following 

sections we define a set of hypotheses, which must be tested in order. The results from 

one test may impact the validity of the next test and therefore caution must be taken when 

the results are interpreted. 
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Figure 2-2 Main Effects Model for 2x2 Crossover Design For Fixed Repeated Measure. 

 

Section 2.2: Hypotheses 

To study a 2x2 crossover design with repeated measures there are six particular 

hypotheses that might be of interest. These hypotheses are identified below, however the 

order of testing the hypothesis is important since some tests are based on specific results 

from the previous tests.  

Hypothesis 1: Testing the Equality of Carry-Over Effects 

𝐻𝐻01: 𝜆𝜆𝐴𝐴𝑖𝑖   =  𝜆𝜆𝐵𝐵𝑖𝑖 ,   𝑠𝑠  =  1, 2, . . . , 𝑝𝑝  (2-3) 

In order to proceed to the next hypothesis, we must establish the equality of 

carryover effects thus, Grizzle (Grizzle, 1965) advocates using a higher significance level 

for this hypothesis, such as 0.10 or 0.15. In the event that the first test was rejected, some 

have suggested to rerun the experiment with a longer washout period, or others advocate 

using just the data from the first period to analyze the treatment effects. Koch et al. (Koch, 

Gitomer, Skalland, & Stokes, 1983) discuss the interpretation of direct treatment effects in 

the presence of significant carry-over effects.  
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Hypothesis 2: Testing the Equality of Direct Treatment Effect When Carry-

Over Effects are Equal 

𝐻𝐻02: 𝜏𝜏𝐴𝐴𝑖𝑖   =  𝜏𝜏𝐵𝐵𝑖𝑖 ,   𝑠𝑠  =  1,2, . . . , 𝑝𝑝   (2-4) 

Hypothesis 3: Testing the Equality of Carry-Over Effects over Time 

𝐻𝐻03: 𝜆𝜆1 =  𝜆𝜆2 = ⋯  = 𝜆𝜆𝑖𝑖 ,  where 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝐴𝐴𝑖𝑖 − 𝜆𝜆𝐵𝐵𝑖𝑖;   𝑠𝑠 = 1, 2, . . . , 𝑝𝑝 (2-5) 

Hypothesis 4: Testing the Equality of Direct Treatment Effect over Time when 

Carry-Over Effect over Time is Equal 

If the equality of carry-over effect over time (𝐻𝐻03) has been established, then we 

can further test the data to determine the equality of direct treatment effect over time with 

the hypothesis:  

𝐻𝐻04: 𝜏𝜏1 = 𝜏𝜏2 =  … =  𝜏𝜏𝑖𝑖   ,   where 𝜏𝜏𝑖𝑖 = 𝜏𝜏𝐴𝐴𝑖𝑖 − 𝜏𝜏𝐵𝐵𝑖𝑖;  𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 (2-6) 

Hypothesis 5: Testing the Average Response for Carry-Over Effects 

Johnson and Grender (Johnson & Grender, 1993) indicate that the next two tests 

are more powerful than the previous ones since they are carried out on the average 

responses over the p repeated measures. However, these are only meaningful if we can 

ascertain that the effects being tested do not interact with time. Thus, if 𝐻𝐻03: 𝜆𝜆1 =  𝜆𝜆2 =

⋯  = 𝜆𝜆𝑖𝑖 holds then we can proceed to test the equality of carry-over effects in average 

responses. The hypothesis: 

𝐻𝐻05:�𝜆𝜆𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

=  �𝜆𝜆𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

(2-7) 

Notice that this is a simple c-sample problem as discussed by Sun (Sun, 1997). Sun 

showed, that the results of Puri and Sen (Puri & Sen, 1971) can be extended, with some 

modification, to rounded-off data. The work of Sun (Sun, 1997) has already shown that in 

such cases adaptive procedures outrank the traditional non-adaptive nonparametric 
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methods, and parametric methods. However, for the sake of completeness we will replicate 

the results using the examples identified in this paper.  

Hypothesis 6: Testing the Average Response for Direct Treatment Effects 

 when Average Response for Carry-Over Effects are Equal 

Much like the previous hypothesis, the following proves to be a two-sample 

problem. However, once again we must note that this test is only valid if: 

 𝐻𝐻04: 𝜏𝜏1 = 𝜏𝜏2 =  … =  𝜏𝜏𝑖𝑖   is not rejected, indicating there is no time by direct treatment effect, 

  and 

𝐻𝐻05:∑ 𝜆𝜆𝐴𝐴𝑖𝑖
𝑖𝑖
𝑖𝑖=1 =  ∑ 𝜆𝜆𝐵𝐵𝑖𝑖

𝑖𝑖
𝑖𝑖=1  is not rejected supporting that the carry-over effect for the average 

responses is equal.  

Then the null hypothesis becomes:  

𝐻𝐻06:�𝜏𝜏𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

=  �𝜏𝜏𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

(2-8) 

 In Chapter 4 and Chapter 5 we discuss two different approaches to testing these 

hypotheses. Method 1 is proposed by Johnson and Grender (Johnson & Grender, 1993), 

and Method 2 is based on the work by Brunner et al. (Brunner, Domhof, & Langer, 2002). 

Both these methods rely on the rank of the data, however we have modified it to account 

for the adaptive procedures (Chapter 3) using score functions based on the underlying 

distribution. We will later illustrate the advantage of this method using several examples in 

Chapter 6.  

  



16 
 

Chapter 3  

Nonparametric Adaptive Procedures  

In this chapter we present the adaptive procedure for two-sample problem as 

defined by Hogg et al. (Hogg, Fisher, & Randles, 1975). Let 𝑋𝑋 be a continuous random 

variable with cumulative distribution function (cdf) 𝐹𝐹(𝑥𝑥) then we assume that the marginal 

cdf of 𝑋𝑋𝑖𝑖𝑖𝑖 for 𝑖𝑖 = 1,2 and fixed 𝑗𝑗 would only vary from location shifts 𝜃𝜃𝑖𝑖 i.e. let 𝑋𝑋1 =

(𝑋𝑋11, … ,𝑋𝑋1𝑛𝑛1) and 𝑋𝑋2 = (𝑋𝑋21, … ,𝑋𝑋2𝑛𝑛2) be two random samples with continuous-type 

distribution with unknown cdf 𝐹𝐹1(𝑥𝑥) = 𝐹𝐹(𝑥𝑥 −  𝜃𝜃1) and 𝐹𝐹2(𝑥𝑥) = 𝐹𝐹(𝑥𝑥 −  𝜃𝜃2) respectively. In 

order to test the hypothesis:  

𝐻𝐻0: 𝜃𝜃1 − 𝜃𝜃2 = 0  Vs.  𝐻𝐻𝑎𝑎: 𝜃𝜃1 − 𝜃𝜃2 > 0, 

Hogg et al. (Hogg, Fisher, & Randles, 1975) proposed using the test statistic is based on 

ranks of the observations in the form of ∑ 𝑎𝑎(𝑅𝑅1𝑖𝑖)
𝑛𝑛1
𝑖𝑖=1 , where 𝑅𝑅1𝑖𝑖 denoted the rank of 𝑋𝑋1𝑖𝑖 

among all 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 observations, and 𝑎𝑎(1), 𝑎𝑎(2), … , 𝑎𝑎(𝑛𝑛) denote scores which satisfy 

𝑎𝑎(1) ≤  𝑎𝑎(2) ≤   … ≤  𝑎𝑎(𝑛𝑛) with 𝑎𝑎(1)  ≠ 𝑎𝑎(𝑛𝑛). In the case where ties occurred, Sun (Sun, 

1997) used the average rank scores. Since 𝐹𝐹(𝑥𝑥) is unknown, the traditional nonparametric 

(non-adaptive) method used the Mann-Whitney-Wilcoxon test, where 𝑎𝑎(𝑖𝑖) = 𝑖𝑖 for 𝑖𝑖 =

1,2, … ,𝑛𝑛. This has been established as the locally most powerful test in detecting shifts in 

a logistic distribution, and has good power properties for most underlying distributions 

specifically for moderate- to heavy-tailed error distributions, which are fairly symmetric in 

nature. However, this is not always the case. In many cases the distribution is either light-

tailed and symmetric or skewed. Therefore, if we could detect the shape of the underlying 

distribution, we could improve the power of the test by using appropriate scores.  
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Section 3.1: Shape of the Underlying Distribution 

Since the distribution of 𝐹𝐹(𝑥𝑥) is unknown, we need to rely on the given data to 

determine the shape of the underlying distribution. This shape can be described by its 

procession of symmetry, its tendency to skew, and Kurtosis, the weights of the tails of the 

distribution. These characteristics are described in the following sections. 

 Skewness 

In statistics, skewness is defined as the measure of asymmetry of a distribution. 

The distribution can be either be symmetric (skewness =0), positively skewed, or 

negatively skewed. If the left tail (tail at small end of the distribution) is more pronounced 

than the right tail (tail at the large end of the distribution), the function is said to 

have negative or left skewness. If the reverse is true, it has positive or right skewness. If 

the two are equal, it has zero skewness. This is illustrated in Figure 3-1. 

 

http://mathworld.wolfram.com/Tail.html
http://mathworld.wolfram.com/Negative.html
http://mathworld.wolfram.com/Positive.html
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Figure 3-1: Different Types of Skewness 

 

 Kurtosis  

Another measurement that helps define the shape of the underlying distribution is 

the measure of Kurtosis. It measures the heaviness of the tails as compared to the tails of 

a normal distribution, so any distribution with similar Kurtosis is said to have a moderate-

tailed or mesokurtic distribution. A distribution with longer or fatter tails than a normal 

distribution is said to be heavy-tailed or leptokurtic. On the other hand, if the tails are thinner 

or shorter the distribution is said to be light-tailed or platykurtic. The three types of Kurtosis 

are illustrated in Figure 3-2. 

 

Figure 3-2: Illustration of Different Tail Weights 
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Section 3.2: Score Indicators 

In order to help determine the shape of the underlying distribution, we modify the 

score indicators (𝑄𝑄1,𝑄𝑄2) described by Hogg et al. (Hogg, Fisher, & Randles, 1975) to obtain 

(𝑄𝑄�1,𝑄𝑄�2) as defined by Hill et al. (Hill, Padmanabhan, & Puri, 1988).  

The score indicators (𝑄𝑄1,𝑄𝑄2) as defined by Hogg et al. (Hogg, Fisher, & Randles, 

1975), can be used identify the amount of skewness and level of tail weights of the 

underlying distribution, respectively. Firstly, assume that the underlying distribution is 

symmetric, then an appropriate measure of tail weight is: 

𝑄𝑄2 =  
𝑈𝑈�.05 - 𝐿𝐿�.05

𝑈𝑈�.5 - 𝐿𝐿�.5
 

(3-1) 

where 𝑈𝑈�.05 ,𝑈𝑈�.5 are, respectively, the averages of the largest 5%, and 50% of the order 

statistics of the combined sample, and 𝐿𝐿�.05 ,𝐿𝐿�.5 are, respectively, the averages of the 

smallest 5%, and 50% of the order statistics of the combined sample. However, Hill et al. 

(Hill, Padmanabhan, & Puri, 1988) indicate that while this measure is a good indicator of 

tail weight when (𝜃𝜃1 − 𝜃𝜃2) is close to zero, it may indicate the wrong test statistic if the shift 

is large. For testing purposes, this may not be a big issue, since most tests detect a large 

shift with a high probability. However, an inappropriate test statistic may lead to a large 

confidence interval, which is a serious problem in terms of estimation. Thus, we shall work 

with the weighted average of 𝑄𝑄2 values based on the individual samples (Hill, 

Padmanabhan, & Puri, 1988): 

𝑄𝑄�2 =
(𝑛𝑛1𝑄𝑄2,1 + 𝑛𝑛2𝑄𝑄2,2)

(𝑛𝑛1 + 𝑛𝑛2) 
 

(3-2) 
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where 𝑄𝑄2,𝑖𝑖 is the value of 𝑄𝑄2 as defined by (3-2) restricted to the 𝑖𝑖𝑡𝑡ℎ sample (group). Note 

𝑄𝑄�2 is unaffected by the actual value of (𝜃𝜃1 − 𝜃𝜃2) and therefore performs better in indicating 

the tail-weights.  

 Similarly, we can use the indicator function 𝑄𝑄1 to study the skewness of 𝐹𝐹(𝑥𝑥). The 

function as studied by Fisher, and reported by Hogg (Hogg, Fisher, & Randles, 1975) can 

be written as:  

𝑄𝑄1 =  
𝑈𝑈�.05 - 𝑀𝑀�.5

𝑀𝑀�.5 - 𝐿𝐿�.05
 

(3-3) 

where 𝑈𝑈�.05 ,𝑀𝑀�.5 and 𝐿𝐿�.05 are, respectively, the averages of the top 5%, middle 50% and 

bottom 5%, of the order statistics of the combined sample. However, for reasons explained 

earlier, we once again consider the weighted average of 𝑄𝑄1 values based on the 𝑄𝑄1,i values 

as defined by (3-3) for each 𝑖𝑖𝑡𝑡ℎ  sample considered separately (Hill, Padmanabhan, & Puri, 

1988): 

𝑄𝑄�1 =
(𝑛𝑛1𝑄𝑄1,1 + 𝑛𝑛2𝑄𝑄1,2)

(𝑛𝑛1 + 𝑛𝑛2) 
 . 

(3-4) 

 Using the values obtained from these score indicators, we can identify the shape 

of 𝐹𝐹(𝑥𝑥) and select an appropriate score functions tailored for that particular distribution. 

The benchmark for selecting the appropriate score function is given in Table 3-1, as studied 

by Hogg (Hogg, Fisher, & Randles, 1975) and modified by Hill (Hill, Padmanabhan, & Puri, 

1988).  
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Table 3-1: Benchmark for Selector Functions 

Benchmark Distribution Indicated Score Selected 

𝑄𝑄�2 > 3.8  Heavy-tailed symmetric φW 

½ ≤ 𝑄𝑄�1 ≤ 2, and  2.24 ≤ 𝑄𝑄�2 ≤ 3.8  Moderate-tailed symmetric φW 

½ ≤ 𝑄𝑄�1 ≤ 2, and 𝑄𝑄�2 < 2.24 Light-tailed symmetric φML 

𝑄𝑄�1 < ½, and 𝑄𝑄�2 < 3.8  Skewed Left φSL 

𝑄𝑄�1 > 2, and 𝑄𝑄�2 < 3.8  Skewed Right φSR 

 

Furthermore, the corresponding score functions used based on the score indicators are as 

follows:  

Light-tailed symmetric:                𝜑𝜑𝑀𝑀𝑀𝑀(𝑢𝑢) =

⎩
⎪
⎨

⎪
⎧𝑢𝑢 −

1
4

 0 < 𝑢𝑢 ≤ 1
4�

0
𝑢𝑢 − 3

4

 
 

1
4� < 𝑢𝑢 ≤ 3

4�
3

4� < 𝑢𝑢 < 1

 

Moderate or heavy-tailed symmetric:  𝜑𝜑𝑊𝑊(𝑢𝑢)  =           𝑢𝑢  0 < 𝑢𝑢 < 1 

Skewed left:     𝜑𝜑𝑆𝑆𝑀𝑀(𝑢𝑢) = �
𝑢𝑢 − 1

2
  0 < 𝑢𝑢 ≤ 1

2�

0  1
2� < 𝑢𝑢 < 1

 

Skewed right:     𝜑𝜑𝑆𝑆𝑆𝑆(𝑢𝑢) = �
0  0 < 𝑢𝑢 ≤ 1

2�

𝑢𝑢 − 1
2

 1
2� < 𝑢𝑢 < 1

 

(3-5) 

For each of the hypothesis indicated in Section 2.2: Hypotheses, we will alter (i) 

the test statistic used by Johnson and Grender (Johnson & Grender, 1993); and (ii) the test 

statistic used by Brunner et al. (Brunner, Domhof, & Langer, 2002) , to incorporate the 
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score functions, and illustrate the supremacy of using adaptive procedures in 2x2 

crossover designs with repeated measures using multiple examples.  

 For each of the hypothesis indicated in Section 2.2, we will alter (i) the test statistic 

used by Johnson and Grender (Johnson & Grender, 1993); and (ii) the test statistic used 

by Brunner et al. (Brunner, Domhof, & Langer, 2002) , to incorporate the score functions, 

and illustrate the supremacy of using adaptive procedures in 2x2 crossover designs with 

repeated measures using multiple examples.  
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Chapter 4  

Nonparametric Adaptive Procedures Tailored to  

Johnson and Grender (J&G) Method   

For each of the six statistics, there are two different methods for calculating the 

nonparametric test statistic based on rank. The first method of calculating the test statistic 

for the given hypothesis was inspired by the methodology described by Johnson and 

Grender (Johnson & Grender, 1993). In the following sections, the technical formulation for 

each of the hypothesis is explored followed by the test statistic for the hypothesis.  

 

Section 4.1 Statistic Measures for the Hypotheses 

 Testing the Equality of Carry-Over Effects 

Consider the null-hypothesis of equality of carry-over effect:  

H0
1: λAs   =  λBs ,   s  =  1, 2, . . . , p  (2-3) 

Looking back at the main effect model in Figure 2-1, note that this is the same as testing 

for the equality of the sum of the effects over the two periods. In other words, we can rewrite 

the null hypothesis as:  

𝐻𝐻01: 𝜑𝜑11𝑖𝑖 + 𝜑𝜑12𝑖𝑖 = 𝜑𝜑21𝑖𝑖 + 𝜑𝜑22𝑖𝑖 ,   𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

𝐻𝐻01: 2𝜇𝜇𝑖𝑖 + (𝜋𝜋1𝑖𝑖 + 𝜋𝜋2𝑖𝑖) + (𝜏𝜏𝐴𝐴𝑖𝑖 + 𝜏𝜏𝐵𝐵𝑖𝑖) + 𝜆𝜆𝐴𝐴𝑖𝑖 = 2𝜇𝜇𝑖𝑖 + (𝜋𝜋1𝑖𝑖 + 𝜋𝜋2𝑖𝑖) + (𝜏𝜏𝐴𝐴𝑖𝑖 + 𝜏𝜏𝐵𝐵𝑖𝑖) + 𝜆𝜆𝐵𝐵𝑖𝑖 , 
     𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 
𝐻𝐻01: 𝜆𝜆𝐴𝐴𝑖𝑖 = 𝜆𝜆𝐵𝐵𝑖𝑖,    𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

(4-1) 

Therefore, it is more beneficial to define a new measure that uses the sum of the 

observations over the two periods. More precisely measurements for testing the carry-over 

effects are given by: 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖  +  𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖 

(4-2) 
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 Testing the Equality of Direct Treatment Effect When Carry-Over Effects are 

Equal 

  After the equality of the carry over effects has been established we can proceed 

to test the hypothesis of equal direct treatment effect. 

H0
2: τAs   =  τBs ,   s  =  1,2, . . . , p   (2-4) 

Under the null hypothesis of equal treatment effects, the within-subject difference satisfy 

the same model in the two groups. Similar to the preceding hypothesis, the hypothesis of 

equal direct treatment effects can be written as the difference of effects over the two 

periods. So,  

𝐻𝐻02: 𝜑𝜑11𝑖𝑖 − 𝜑𝜑12𝑖𝑖 = 𝜑𝜑21𝑖𝑖 − 𝜑𝜑22𝑖𝑖 ,   𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

𝐻𝐻02: (𝜋𝜋1𝑖𝑖 − 𝜋𝜋2𝑖𝑖) + (𝜏𝜏𝐴𝐴𝑖𝑖 − 𝜏𝜏𝐵𝐵𝑖𝑖) − 𝜆𝜆𝐴𝐴𝑖𝑖 = (𝜋𝜋1𝑖𝑖 − 𝜋𝜋2𝑖𝑖) + (𝜏𝜏𝐵𝐵𝑖𝑖 − 𝜏𝜏𝐴𝐴𝑖𝑖) − 𝜆𝜆𝐵𝐵𝑖𝑖 , 
     𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

 
If the carry-over effects are equal then 𝜆𝜆𝐴𝐴𝑖𝑖 = 𝜆𝜆𝐵𝐵𝑖𝑖, which implies the null hypothesis can be 

simplified to  

𝐻𝐻02: 𝜏𝜏𝐴𝐴𝑖𝑖 = 𝜏𝜏𝐵𝐵𝑖𝑖,    𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

(4-3) 

Thus, we define the new generated measure for this test as follows:  

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖 −  𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖     (4-4) 

 
 Testing the Equality of Carry-Over Effect over Time  

Another test that could be important, particularly when the responses for one 

repeated measure seem predominately larger or smaller than the others, is the test of 

carry-over or treatment effect over time.  

H0
3: λ1 =  λ2 = ⋯  = λp ,  where λs = λAs-λBs;   s = 1, 2, . . . , p (2-5) 

Then the new measurements can be generated by:  

 Let,   𝑌𝑌𝑖𝑖1𝑖𝑖𝑘𝑘′ = 𝑌𝑌ijkm – 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘+1),    𝑚𝑚 =  1, 2, … , 𝑝𝑝 − 1, for fixed i, j 
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Then    𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑘𝑘′ +  𝑌𝑌i2km
′  

(4-5) 

 Testing the Equality of Direct Treatment Effect over Time when Carry-Over 

Effect over Time is Equal 

If the equality of carry-over effect over time (𝐻𝐻03) has been established, and the 

equality of direct treatment effect (𝐻𝐻02) has been rejected then we can further test the data 

to determine the equality of direct treatment effect over time with the hypothesis:  

H0
4: τ1 = τ2 =  … =  τp   ,   where τs = τAs-τBs;  s  =  1, 2, . . . , p (2-6) 

The new measurements for the test can be generated as in the previous test with a slight 

variation.  

Let,   𝑌𝑌𝑖𝑖1𝑖𝑖𝑘𝑘′ = 𝑌𝑌ijkm – 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘+1),    𝑚𝑚 =  1, 2, … , 𝑝𝑝 − 1, for fixed i, j 

Then    𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑘𝑘′ −  𝑌𝑌i2km
′  

(4-6) 

 Testing the Average Response for Carry-Over Effects 

Recall, the next two hypotheses are only meaningful if we can ascertain that the 

effects being tested do not interact with time. Thus, if 𝐻𝐻03: 𝜆𝜆1 =  𝜆𝜆2 = ⋯  = 𝜆𝜆𝑖𝑖 holds then we 

can proceed to test the equality of carry-over effects in average responses. The hypothesis: 

𝐻𝐻05:�𝜆𝜆𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

=  �𝜆𝜆𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

(2-7) 

can be tested by using a measure that sums the responses over time and period. So,  

𝑋𝑋𝑖𝑖𝑖𝑖 =  ∑ 𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖
𝑖𝑖
𝑖𝑖=1 + ∑ 𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1 . 

(4-7) 

Notice that once we take the average of the responses, the generated measure is no longer 

dependent on the index 𝑠𝑠. Thus, the model has been reduced to a simple two-sample 
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problem. The work of Sun (Sun, 1997) has already shown that in such cases adaptive 

procedures outrank the traditional non-adaptive nonparametric methods, and parametric 

methods. However, for the sake of completeness we will replicate the results using the 

examples identified in this paper.  

 

 Testing the Average Response for Direct Treatment Effects when Average 

Response for Carry-Over Effects are Equal 

Much like the previous hypothesis, the following proves to be a two-sample 

problem. However, once again we must note that this test is only valid if: 

• 𝐻𝐻04: 𝜏𝜏1 = 𝜏𝜏2 =  … =  𝜏𝜏𝑖𝑖   is not rejected, indicating there is no time by direct 

treatment effect,   and 

• 𝐻𝐻05:∑ 𝜆𝜆𝐴𝐴𝑖𝑖
𝑖𝑖
𝑖𝑖=1 =  ∑ 𝜆𝜆𝐵𝐵𝑖𝑖

𝑖𝑖
𝑖𝑖=1  is not rejected supporting that the carry-over effect for the 

average responses is equal.  

Then the null hypothesis becomes:  

𝐻𝐻06:�𝜏𝜏𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

=  �𝜏𝜏𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

(2-8) 

This can be tested by using a measure generated as follows: 

𝑋𝑋𝑖𝑖𝑖𝑖 =  ∑ 𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖
𝑖𝑖
𝑖𝑖=1 −  ∑ 𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1 .    (4-8) 

Note once again that this results in a two-sample problem. 
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Section 4.2: Test Statistics 

The method described by Johnson and Grender (Johnson & Grender, 1993) for 

calculating the test statistics for the hypothesis described above utilized the rank of the 

new generated measures (i.e. the sums or differences of measures across the two 

periods), the method described here uses the score functions instead to develop an 

adaptive nonparametric procedure for 2x2 crossover designs with repeated measures. 

Recall that the same statistic is utilized in the first four hypotheses with the exception that 

the generated measures, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, differ in each case. Where 𝑖𝑖 = 1,2 groups, 𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖 (𝑛𝑛1 +

𝑛𝑛2 = 𝑛𝑛) subject, and 𝑠𝑠 = 1, … ,𝑝𝑝 repeated measures. Whereas the last two hypotheses are 

𝑐𝑐-sample problems that implement the works of Sun (Sun, 1997). 

 

 Test Statistic for Hypotheses 1-4 

While the generated measures for each of the hypothesis differs, the formula for 

calculating the test statistic for hypotheses 1-4 remains the same. We will first define the 

test statistic, 𝑊𝑊, used to test these hypotheses as described by Johnson and Grender 

(Johnson & Grender, 1993), and later propose a modified test statistic, 𝑊𝑊𝑎𝑎, which tailors 

to the underlying distribution based on adaptive nonparametric procedures of Hoggs et al. 

(Hogg, Fisher, & Randles, 1975). 

In order to determine the 𝑊𝑊 −test statistic used by Johnson and Grender (Johnson 

& Grender, 1993), let 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖denote the rank for each 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 across all 𝑛𝑛 observations. Then the 

sample mean of the ranks is given by:  

𝑅𝑅�𝑖𝑖.𝑖𝑖 = �
𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

(4-9) 

 Thus, the test statistic for a multivariate rank sum test can be described as:  
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𝑊𝑊 = (𝑛𝑛 − 1)�𝑛𝑛𝑖𝑖𝑼𝑼𝑖𝑖
′𝑽𝑽−𝟏𝟏𝑼𝑼𝑖𝑖

2

𝑖𝑖=1

 

 where, 𝑼𝑼 = �𝑅𝑅�𝑖𝑖.1 − 𝑚𝑚 𝑅𝑅�𝑖𝑖.2 − 𝑚𝑚   ⋯ 𝑅𝑅�𝑖𝑖.𝑖𝑖 − 𝑚𝑚� 

And covariance matrix  

𝑽𝑽 = ���𝑹𝑹𝑖𝑖𝑖𝑖 − 𝑚𝑚𝟏𝟏𝒑𝒑�
𝑛𝑛𝑖𝑖

𝑖𝑖=1

2

𝑖𝑖=1

�𝑹𝑹𝑖𝑖𝑖𝑖 − 𝑚𝑚𝟏𝟏𝒑𝒑�′ 

(4-10) 

where 𝑚𝑚 = 1
2

(𝑛𝑛 + 1) and 1p is a p-dimensional vector of ones. However, in order to account 

for the shape of the underlying distribution, we utilize the score functions rather than ranks. 

Recall 𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) is the score function of the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 over the 𝑛𝑛 observations. Moreover, 

let 𝑎𝑎�(𝑅𝑅𝑖𝑖.𝑖𝑖) be the sample mean of the new ranks (using score functions) among all 𝑛𝑛𝑖𝑖 

subjects in the 𝑖𝑖𝑡𝑡ℎgroup for the 𝑠𝑠𝑡𝑡ℎrepeated measure. This can be written as:  

𝑎𝑎�(𝑅𝑅𝑖𝑖.𝑖𝑖) = �  
𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

Thus, the modified test statistic, 𝑊𝑊𝑎𝑎, is given by:  

𝑊𝑊𝑎𝑎 = (𝑛𝑛 − 1)�𝑛𝑛𝑖𝑖𝑼𝑼𝒊𝒊
𝒂𝒂′𝑽𝑽𝒂𝒂−𝟏𝟏𝑼𝑼𝒊𝒊

𝒂𝒂
2

𝑖𝑖=1

 

 where, 

 𝑼𝑼𝒂𝒂 = �𝑎𝑎�(𝑅𝑅𝑖𝑖.1) −𝑚𝑚 𝑎𝑎�(𝑅𝑅𝑖𝑖.2) −𝑚𝑚   ⋯ 𝑎𝑎�(𝑅𝑅𝑖𝑖.𝑖𝑖) −𝑚𝑚� 

𝑽𝑽𝒂𝒂 = ���𝒂𝒂(𝑹𝑹𝑖𝑖𝑖𝑖) −𝑚𝑚𝟏𝟏𝒑𝒑�
𝑛𝑛𝑖𝑖

𝑖𝑖=1

2

𝑖𝑖=1

�𝒂𝒂(𝑹𝑹𝑖𝑖𝑖𝑖) −𝑚𝑚𝟏𝟏𝒑𝒑�′ 

(4-11) 

in which 𝑚𝑚= median of the function of ranks and 1p is a p-dimensional vector of ones. 
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Under the hypothesis of equal distribution of ranks in the two groups, 𝑊𝑊 is 

distributed approximately as the chi-square distribution with 2 degrees of freedom if 𝑛𝑛 is 

large.  

If 𝑛𝑛 is small, the statistical significance of 𝑊𝑊 can be determined using the 

permutation distribution corresponding to 𝑛𝑛!
∏ 𝑛𝑛𝑖𝑖!2
𝑖𝑖=1

 

Since the only modification is using a linear or truncated function of the rank rather 

than the rank itself, the distribution of 𝑊𝑊𝑎𝑎 is the same as the distribution of 𝑊𝑊 under the 

null hypothesis.  

 

 Test Statistic for Hypotheses 5-6 

For the remaining two hypotheses of a 2x2 crossover design with repeated 

measures, which tested average response over each effect, we refer to the simple 𝑐𝑐-

sample problem as discussed by Sun (Sun, 1997). Sun showed, that the results of Puri 

and Sen (Puri & Sen, 1971) can be extended, with some modification, to rounded-off data. 

So let 𝑋𝑋�𝑖𝑖𝑖𝑖 be the measurements 𝑋𝑋𝑖𝑖𝑖𝑖 rounded-off to the nearest integer. Then using the test 

statistic provided in by Sun, developed by Puri and Sen we have:   

𝑆𝑆𝑐𝑐 =
(𝑁𝑁 − 1)∑ 𝑛𝑛𝑖𝑖(��̃�𝑆𝑖𝑖 𝑛𝑛𝑖𝑖⁄ � − 𝑎𝑎�𝑁𝑁)2𝑖𝑖

∑ (𝑎𝑎�𝑁𝑁(𝑖𝑖) − 𝑎𝑎�𝑁𝑁)2𝑖𝑖
 

(4-12) 

where 𝑎𝑎�𝑁𝑁(𝑖𝑖) denotes the scores obtained after applying the average scores method and 

𝑅𝑅�𝑖𝑖𝑖𝑖denotes the rank of 𝑋𝑋�𝑖𝑖𝑖𝑖 in the combined sample of size N. Then �̃�𝑆𝑖𝑖 = ∑ 𝑎𝑎�𝑁𝑁(𝑅𝑅�𝑖𝑖𝑖𝑖)𝑛𝑛1
𝑖𝑖=1 , and 

𝑎𝑎�𝑁𝑁 is the average of the modified scores. 𝑆𝑆𝑐𝑐 has asymptotically a chi-square distribution 

with (𝑐𝑐 − 1) degrees of freedom. 
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Chapter 5  

Nonparametric Adaptive Procedures Tailored to  

F1-LD-F1 Method  

Another way of looking at the hypotheses described in Section 2.2 is a modification 

of the methodology described by Brunner et al. (Brunner, Domhof, & Langer, 2002). Note 

that after attaining the new generated measures using sums or differences of measure 

across the two periods for testing carry-over or direct treatment effects respectively, we 

can utilize the F1-LD-F1 method. An important difference in the F1-LD-F1 method is that 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 is the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, among all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations, as opposed to 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖  being the 

rank for each 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 across 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations in the J&G method.  

Another important difference is that the F1-LD-F1 model contains three 

hypotheses tests within its design. The three tests are:  

• Test for group effects 

• Test for time effects  

• Test for interaction between group and time effects 

In this chapter, we first present the hypotheses and their corresponding test 

statistics in F1-LD-F1 model (Brunner, Domhof, & Langer, 2002), and then we show that 

the formulations of hypotheses in the 2x2 crossover design with repeated measures are 

equivalent to those described in the F1-LD-F1, using either the sum or differences of the 

measures across the two periods.  

  

Section 5.1: F1-LD-F1 Model 

First we explain the F1-LD-F1 model and the hypotheses associated with this 

model. The F1-LD-F1 model is a nonparametric marginal model that makes use solely of 

the independence structure of observations in order to determine from the design which 
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marginal distributions of the observed random vectors are identical. The hypotheses are 

then tested using values that can be obtained from the marginal distributions.  

In this model, 𝑖𝑖 = 1, … ,𝑔𝑔 groups each consisting of 𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖 subjects are 

observed on 𝑠𝑠 = 1, … , 𝑝𝑝 occasions, where the measurements 𝑋𝑋𝑖𝑖𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 are examined. 

The vectors 𝑿𝑿𝑖𝑖𝑖𝑖 = �𝑋𝑋𝑖𝑖𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖�′ are assumed independent, however the components of 

each of these vectors can be dependent on one another. The observations of different 

subjects within the same group are considered as replications of the experiment, as a way 

of modeling the independence structure. Hence, it is reasonable to assume that the 

common distribution functions of the vectors 𝑿𝑿𝑖𝑖𝑖𝑖 are identical, i.e. they do not depend on 

the index 𝑘𝑘. The observations 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 and the marginal distribution 𝐹𝐹𝑖𝑖𝑖𝑖 of this experiment 

design are shown in Figure 5-1.  

 

Figure 5-1: Observations and distributions for a two group F1-LD-F1 model 

 

Next we will discuss the three hypotheses associated with the F1-LD-F1 design 

and the corresponding test statistic. Later in Section 5.2, we will connect these hypotheses 
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of F1-LD-F1 model to the hypothesis of 2x2 crossover design with repeated measures as 

described in Section 2.2.  

 

 Test for Group Effects 

The group effect in an experiment design with repeated measures corresponds to 

the main effect or the average treatment effect for an experimental group over all time 

points. Recall the F1-LD-F1 test can be generalized for experiments with more than two 

groups of subjects, with measurements taken at multiple time points. So the 𝑘𝑘𝑡𝑡ℎ subject in 

the 𝑖𝑖𝑡𝑡ℎ group is observed 𝑝𝑝 times and the results are arranged in the vector form 𝑿𝑿𝒊𝒊𝒊𝒊 =

�𝑋𝑋𝑖𝑖𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖�
′, 𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑔𝑔, which are assumed to be independent. As defined 

earlier, the marginal distribution of the functions of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 are denoted by 𝐹𝐹𝑖𝑖𝑖𝑖(𝑥𝑥).  

Thus in order to understand the technical formulation of the hypothesis of no group 

effects and its test statistic as presented by Brunner et al. (Brunner, Domhof, & Langer, 

2002), consider the mean  𝐹𝐹�𝑖𝑖. =  1
𝑖𝑖

 𝟏𝟏𝑖𝑖′  𝑭𝑭𝒊𝒊, where 1
𝑖𝑖

 𝟏𝟏𝑖𝑖′ = (1
𝑖𝑖

 , … , 1
𝑖𝑖

 ) and 𝑭𝑭𝒊𝒊 = (𝐹𝐹𝑖𝑖1, … ,𝐹𝐹𝑖𝑖𝑖𝑖)′. The 

equality of the means 𝐹𝐹�1. =  ⋯ = 𝐹𝐹�𝑔𝑔. can then be formulated using the centering matrix 𝑷𝑷𝑔𝑔 =

 𝑰𝑰𝑔𝑔 −
1
𝑔𝑔

 𝑱𝑱𝑔𝑔, where 𝑰𝑰𝑔𝑔 is an 𝑔𝑔x𝑔𝑔 identity matrix, and 𝑱𝑱𝑔𝑔 is an 𝑔𝑔x𝑔𝑔 matrix of ones. So contrast 

matrix, 𝐶𝐶𝐴𝐴 can be derived by taking the Kronecker-product 𝐶𝐶𝐴𝐴 =  𝑷𝑷𝑔𝑔 ⨂  1
𝑖𝑖

 𝟏𝟏𝑖𝑖′  . Thus the test 

for no group effect can be written as:  

𝐻𝐻0𝐹𝐹(𝐴𝐴):𝐶𝐶𝐴𝐴𝑭𝑭 = �𝑷𝑷𝑔𝑔 ⊗
1
𝑝𝑝

 𝟏𝟏𝑖𝑖′  �𝑭𝑭 =  �
𝐹𝐹�1. − 𝐹𝐹�..

⋮
𝐹𝐹�𝑔𝑔. − 𝐹𝐹�..

� = �
0
⋮
0
� = 𝟎𝟎  

(5-1) 

where 𝐹𝐹�.. = 1
𝑔𝑔𝑖𝑖
∑ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1

𝑔𝑔
𝑖𝑖=1 . Traditionally, F1-LD-F1 produces three test-statistics, a Wald 

Type Statistic (WTS), an ANOVA Type Statistic (ATS) and a modified ANOVA Type 

Statistic (mod ATS). However, for medium and small size statistics the ATS is preferable 
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to achieve better approximation. Thus, here the concentration is on ATS. The ATS test 

statistic defined by Brunner et al. (Brunner, Domhof, & Langer, 2002) is:  

 

𝐹𝐹𝑛𝑛(𝐴𝐴) =  
𝑔𝑔

(𝑔𝑔 − 1)∑ 𝜎𝜎�𝑖𝑖
2

𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1

�(𝑅𝑅�𝑖𝑖.. − 𝑅𝑅�...)2
𝑔𝑔

𝑖𝑖=1

 

   (5-2) 

where 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 is the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 over all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations. Thus, the means over 

all groups, respectively, are denoted by:  

𝑅𝑅�𝑖𝑖𝑖𝑖. =
1
𝑝𝑝
�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

𝑅𝑅�𝑖𝑖.. =
1
𝑛𝑛𝑖𝑖
�𝑅𝑅�𝑖𝑖𝑖𝑖.

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

𝑅𝑅�... =
1
𝑔𝑔
�𝑅𝑅�𝑖𝑖..

𝑔𝑔

𝑖𝑖=1

 

and 

𝜎𝜎�𝑖𝑖2 =
1

𝑛𝑛𝑖𝑖 − 1�(𝑅𝑅�𝑖𝑖𝑖𝑖. − 𝑅𝑅�𝑖𝑖..)2
𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

      (5-3) 

Moreover, under the null hypothesis 𝐻𝐻0𝐹𝐹(𝐴𝐴), the distribution of 𝐹𝐹𝑛𝑛(𝐴𝐴) can be 

approximated by the central 𝐹𝐹(𝑓𝑓𝐴𝐴,𝑓𝑓0)-distribution. Such that the degrees of freedom are 

given by:  

𝑓𝑓𝐴𝐴 =
(g − 1)2

1 + 𝑔𝑔(𝑔𝑔 − 2)

⎣
⎢
⎢
⎢
⎡∑ �𝜎𝜎�𝑖𝑖

2

𝑛𝑛𝑖𝑖
�
2

𝑔𝑔
𝑖𝑖=1

�∑ 𝜎𝜎�𝑖𝑖
2

𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1 �

2

⎦
⎥
⎥
⎥
⎤
 

and 
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𝑓𝑓0 =
(∑ 𝜎𝜎�𝑖𝑖

2

𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1 )2

�∑ 1
ni − 1��

𝜎𝜎�𝑖𝑖
2

𝑛𝑛𝑖𝑖
�
2

�𝑔𝑔
𝑖𝑖=1 �

 

(5-4) 

The test statistics obtained, after modifying to account for the adaptive procedure 

is:  

𝐹𝐹𝑛𝑛𝑎𝑎(𝐴𝐴) =  
𝑔𝑔

(𝑔𝑔 − 1)∑ 𝜎𝜎�𝑖𝑖𝑎𝑎
2

𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1

�(𝑎𝑎�(𝑅𝑅𝑖𝑖..) − 𝑎𝑎�(𝑅𝑅...))2
𝑔𝑔

𝑖𝑖=1

 

(5-5) 

where 𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) is the score function of the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 over all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations. 

Thus, the means over all groups, respectively, are denoted by:  

𝑎𝑎�(𝑅𝑅𝑖𝑖𝑖𝑖.) =
1
𝑝𝑝
�𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖

𝑖𝑖=1

 

𝑎𝑎�(𝑅𝑅𝑖𝑖..) =
1
𝑛𝑛𝑖𝑖
�𝑎𝑎�(𝑅𝑅𝑖𝑖𝑖𝑖.)
𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

𝑎𝑎�(𝑅𝑅...) =
1
𝑔𝑔
�𝑎𝑎�(𝑅𝑅𝑖𝑖..)
𝑔𝑔

𝑖𝑖=1

 

and  

𝜎𝜎�𝑖𝑖𝑎𝑎
2 =

1
𝑛𝑛𝑖𝑖 − 1

�(𝑎𝑎�(𝑅𝑅𝑖𝑖𝑖𝑖.) − 𝑎𝑎�(𝑅𝑅𝑖𝑖..))2
𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

(5-6) 

Moreover, under the null hypothesis 𝐻𝐻0𝐹𝐹(𝐴𝐴), since the only change in the test 

statistic results from applying a function of ranks rather than the rank itself, the distribution 

of 𝐹𝐹𝑛𝑛𝑎𝑎(𝐴𝐴) can be approximated by the central 𝐹𝐹(𝑓𝑓𝐴𝐴𝑎𝑎, 𝑓𝑓0𝑎𝑎)-distribution. The proof is similar to 
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one provided by Brunner et al. (Brunner, Domhof, & Langer, 2002). Such that the degrees 

of freedom are given by:  

𝑓𝑓𝐴𝐴𝑎𝑎 =
(𝑔𝑔 − 1)2

1 + 𝑔𝑔(𝑔𝑔 − 2)

⎣
⎢
⎢
⎢
⎡∑ �𝜎𝜎�𝑖𝑖

𝑎𝑎2

𝑛𝑛𝑖𝑖
�
2

𝑔𝑔
𝑖𝑖=1

(∑ 𝜎𝜎�𝑖𝑖𝑎𝑎
2

𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1 )2

⎦
⎥
⎥
⎥
⎤
 

and 

𝑓𝑓0𝑎𝑎 =
(∑ 𝜎𝜎�𝑖𝑖𝑎𝑎

2

𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1 )2

�∑ 1
ni − 1��

𝜎𝜎�𝑖𝑖𝑎𝑎
2

𝑛𝑛𝑖𝑖
�
2

�𝑔𝑔
𝑖𝑖=1 �

 

(5-7) 

 Test for Time effects 

Another question of interest in a F1-LD-F1 model is the investigation of separate 

time effects within each group. The hypothesis of no time effect can be written as:  

𝐻𝐻0𝐹𝐹(𝑇𝑇): 𝐶𝐶𝑖𝑖𝑭𝑭 = �
1
𝑔𝑔

 𝟏𝟏𝑔𝑔′ ⊗  𝑷𝑷𝒑𝒑�𝑭𝑭 =  �
𝐹𝐹�.1 − 𝐹𝐹�..

⋮
𝐹𝐹�.𝑖𝑖 − 𝐹𝐹�..

� = �
0
⋮
0
� = 𝟎𝟎  

 (5-8) 

where 𝑪𝑪𝒑𝒑 = �1

𝑔𝑔
 𝟏𝟏𝑔𝑔

′ ⨂𝑷𝑷𝑝𝑝 �, 𝑷𝑷𝑖𝑖 =  𝑰𝑰𝑖𝑖 −
1
𝑖𝑖

 𝑱𝑱𝑖𝑖, where 𝑰𝑰𝑖𝑖 is a 𝑝𝑝xp identity matrix, and 𝑱𝑱𝑖𝑖 is 

an 𝑝𝑝x𝑝𝑝 matrix of ones is the centering matrix and 𝐹𝐹�.. = 1
𝑔𝑔𝑖𝑖
∑ ∑ 𝐹𝐹𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1

𝑔𝑔
𝑖𝑖=1 .  

Next in order to calculate the test statistic for each group, we calculate the vectors 

of midranks, and their means within each group denoted by:  

𝑹𝑹𝒊𝒊𝒊𝒊 = �𝑅𝑅𝑖𝑖𝑖𝑖1, … ,𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖�
′ ,                             𝑖𝑖 = 1, … ,𝑔𝑔;  𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖, 

𝑹𝑹�𝒊𝒊. = 1
𝑛𝑛𝑖𝑖
∑ 𝑹𝑹𝒊𝒊𝒊𝒊
𝑛𝑛𝑖𝑖
𝑖𝑖=1  , 

𝑹𝑹� .. = 1
𝑔𝑔
∑ 𝑹𝑹�𝒊𝒊.
𝑔𝑔
𝑖𝑖=1  , 
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𝑅𝑅�𝑖𝑖.𝑖𝑖 = 1
𝑛𝑛𝑖𝑖
∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1   

𝑅𝑅�..𝑖𝑖 = 1
𝑔𝑔
∑ 𝑅𝑅�𝑖𝑖.𝑖𝑖
𝑔𝑔
𝑖𝑖=1  , 

𝑅𝑅�… = 1
𝑖𝑖
∑ 𝑅𝑅�..𝑖𝑖
𝑖𝑖
𝑖𝑖=1  . 

 (5-9) 

Then based on the works of Brunner et al. (Brunner, Domhof, & Langer, 2002), the 

covariance matrix needed for the average time effect can be estimated by:  

𝑺𝑺�𝑖𝑖 =
1
𝑔𝑔2
�𝑽𝑽�𝑖𝑖

𝑔𝑔

𝑖𝑖=1

 , 

𝑽𝑽�𝑖𝑖 =
𝑛𝑛

𝑁𝑁2𝑛𝑛𝑖𝑖(𝑛𝑛𝑖𝑖 − 1)
�(𝑹𝑹𝒊𝒊𝒊𝒊 − 𝑹𝑹�𝒊𝒊.)(𝑹𝑹𝒊𝒊𝒊𝒊 − 𝑹𝑹�𝒊𝒊.)′
𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

(5-10) 

where 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  is the total number of subjects, and 𝑁𝑁 = 𝑛𝑛𝑝𝑝 is the total number of 

observations in the experiment. Then again, using the ATS test-statistic we have:  

𝐹𝐹𝑛𝑛(𝑇𝑇) =  
𝑛𝑛

𝑁𝑁2𝑡𝑡𝑡𝑡(𝑪𝑪𝒑𝒑𝑺𝑺�𝒑𝒑)
�(𝑹𝑹� ..𝑖𝑖 − 𝑹𝑹�…)2
𝑖𝑖

𝑖𝑖=1

 . 

(5-11) 

The distribution of this test statistic can be approximated by the central 𝐹𝐹(𝑓𝑓𝑇𝑇 ,∞)-

distribution. Such that: 

𝑓𝑓𝑇𝑇 =
�𝑡𝑡𝑡𝑡(𝑪𝑪𝒑𝒑𝑺𝑺�𝒑𝒑)�2

𝑡𝑡𝑡𝑡(𝑪𝑪𝒑𝒑𝑺𝑺�𝒑𝒑𝑪𝑪𝒑𝒑𝑺𝑺�𝒑𝒑)
 

          (5-12) 

 We now look at the modified version of this test statistic by applying the score 

functions in order to account for the shape of the underlying distribution. Let 𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) is the 



37 
 

score function of the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 over all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations as described in 

Chapter 3 then:  

𝒂𝒂(𝑹𝑹𝒊𝒊𝒊𝒊) = �𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖1), … , 𝑎𝑎�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖��
′

 ,                           𝑖𝑖 = 1, … ,𝑔𝑔;  𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖 , 

𝒂𝒂�(𝑹𝑹𝒊𝒊.) = 1
𝑛𝑛𝑖𝑖
∑ 𝒂𝒂(𝑹𝑹𝒊𝒊𝒊𝒊)𝑛𝑛𝑖𝑖
𝑖𝑖=1  , 

𝑎𝑎�(𝑅𝑅𝑖𝑖.𝑖𝑖) = 1
𝑛𝑛𝑖𝑖
∑ 𝑎𝑎(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) 𝑛𝑛𝑖𝑖
𝑖𝑖=1 , 

𝑎𝑎�(𝑅𝑅..𝑖𝑖) = 1
𝑔𝑔
∑ 𝑎𝑎�(𝑅𝑅𝑖𝑖.𝑖𝑖)𝑔𝑔
𝑖𝑖=1  ,  

𝑎𝑎�(𝑅𝑅...) = 1
𝑖𝑖
∑ 𝑎𝑎�(𝑅𝑅..𝑖𝑖)𝑖𝑖
𝑖𝑖=1  . 

(5-13) 

Moreover, the new covariance matrix can be estimated by:  

𝑺𝑺�𝑖𝑖𝑎𝑎 =
1
𝑔𝑔2

�𝑽𝑽�𝑖𝑖𝑎𝑎
𝑔𝑔

𝑖𝑖=1

 , 

𝑽𝑽�𝑖𝑖𝑎𝑎 =
𝑛𝑛

𝑁𝑁2𝑛𝑛𝑖𝑖(𝑛𝑛𝑖𝑖 − 1)
�(𝒂𝒂(𝑹𝑹𝒊𝒊𝒊𝒊) − 𝒂𝒂�(𝑹𝑹𝒊𝒊.))(𝒂𝒂(𝑹𝑹𝒊𝒊𝒊𝒊) − 𝒂𝒂�(𝑹𝑹𝒊𝒊.))′
𝑛𝑛𝑖𝑖

𝑖𝑖=1

. 

(5-14) 

where 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  is the total number of subjects, and 𝑁𝑁 = 𝑛𝑛𝑝𝑝 is the total number of 

observations in the experiment. Then again, using the ATS test-statistic we have:  

𝐹𝐹𝑛𝑛𝑎𝑎(𝑇𝑇) =  
𝑛𝑛

𝑁𝑁2𝑡𝑡𝑡𝑡(𝑪𝑪𝒑𝒑𝑺𝑺�𝑖𝑖𝑎𝑎)
�(𝑎𝑎�(𝑅𝑅..𝑖𝑖) − 𝑎𝑎�(𝑅𝑅...))2
𝑖𝑖

𝑖𝑖=1

. 

(5-15) 

The distribution of this test statistic can be approximated by the central 𝐹𝐹(𝑓𝑓𝑇𝑇𝑎𝑎,∞)-

distribution. Such that: 

𝑓𝑓𝑇𝑇𝑎𝑎 = �𝑡𝑡𝑡𝑡(𝑪𝑪𝒑𝒑𝑺𝑺�𝑖𝑖𝑎𝑎)�2

𝑡𝑡𝑡𝑡(𝑪𝑪𝒑𝒑𝑺𝑺�𝑖𝑖𝑎𝑎𝑪𝑪𝒑𝒑𝑺𝑺�𝑖𝑖𝑎𝑎)
�  

(5-16) 
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 Test for Interaction between Group and Time Effects 

Yet another question of investigation is whether the profiles of the time curves for 

the treatment groups are different. This question is particularly important as we use the F1-

LD-F1 model to test the hypotheses of a 2x2 crossover design, since certain assumptions 

cannot be made if the interaction is significant. 

The hypothesis of no interaction between group and time can be written as: 

𝐻𝐻0𝐹𝐹(𝐴𝐴𝑇𝑇): 𝐶𝐶𝐴𝐴𝑇𝑇𝑭𝑭 = �𝑷𝑷𝒈𝒈 ⊗  𝑷𝑷𝒑𝒑�𝑭𝑭 =  �
𝐹𝐹�11 − 𝐹𝐹�1. − 𝐹𝐹�.1 + 𝐹𝐹�..

⋮
𝐹𝐹�𝑔𝑔𝑖𝑖 − 𝐹𝐹�𝑔𝑔. − 𝐹𝐹�.𝑖𝑖 + 𝐹𝐹�..

� = �
0
⋮
0
� = 𝟎𝟎  

(5-17) 

where 𝑷𝑷𝑏𝑏 =  𝑰𝑰𝑏𝑏 −
1
𝑏𝑏

 𝑱𝑱𝑏𝑏, where 𝑰𝑰𝑏𝑏 is a 𝑏𝑏x𝑏𝑏 identity matrix, and 𝑱𝑱𝑏𝑏 is a 𝑏𝑏x𝑏𝑏 matrix of ones for 

any arbitrary natural number 𝑏𝑏. Once again, in order to test the interaction hypothesis for 

small and medium sample sizes, the ATS is preferred. To obtain the quadratic form for this 

hypothesis, Brunner et al. (Brunner, Domhof, & Langer, 2002) utilize the matrix 𝑻𝑻𝐴𝐴𝑇𝑇 = 𝑷𝑷𝑔𝑔 ⊗

𝑷𝑷𝑖𝑖, so that the test statistic becomes:  

𝐹𝐹𝑛𝑛(𝐴𝐴𝑇𝑇) =  
𝑛𝑛

𝑁𝑁2𝑡𝑡𝑡𝑡(𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏)
��(𝑹𝑹�𝑖𝑖.𝑖𝑖 − 𝑹𝑹�𝑖𝑖.. − 𝑹𝑹� ..𝑖𝑖 + 𝑹𝑹�…)2

𝑖𝑖

𝑖𝑖=1

 ,
𝑔𝑔

𝑖𝑖=1

 

(5-18) 

where the midranks and their means are defined as in (5-8), and 𝑽𝑽�𝒏𝒏 in (5-9) . The 

distribution of 𝐹𝐹𝑛𝑛(𝐴𝐴𝑇𝑇)  under 𝐻𝐻0𝐹𝐹(𝐴𝐴𝑇𝑇) can be approximated by a central 𝐹𝐹(𝑓𝑓𝐴𝐴𝑇𝑇 ,∞)-

distribution. Such that: 

𝑓𝑓𝐴𝐴𝑇𝑇 =
�𝑡𝑡𝑡𝑡(𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏)�2

𝑡𝑡𝑡𝑡(𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏)
. 

          (5-19) 

Next, we look at the test statistic for 𝐻𝐻0𝐹𝐹(𝐴𝐴𝑇𝑇) tailored to the shape of the underlying 

distribution given by:  
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𝐹𝐹𝑛𝑛𝑎𝑎(𝐴𝐴𝑇𝑇) =  
𝑛𝑛

𝑁𝑁2𝑡𝑡𝑡𝑡(𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏𝒂𝒂)
��(𝑎𝑎�(𝑅𝑅𝑖𝑖.𝑖𝑖) − 𝑎𝑎�(𝑅𝑅𝑖𝑖..) − 𝑎𝑎�(𝑅𝑅..𝑖𝑖) + 𝑎𝑎�(𝑅𝑅...))2

𝑖𝑖

𝑖𝑖=1

 ,
𝑔𝑔

𝑖𝑖=1

 

(5-20) 

where the midranks of the score functions and their means are defined as in (5-12) and 𝑽𝑽�𝒏𝒏𝒂𝒂 

in (5-13) . The distribution of 𝐹𝐹𝑛𝑛𝑎𝑎(𝐴𝐴𝑇𝑇)  under 𝐻𝐻0𝐹𝐹(𝐴𝐴𝑇𝑇) can be approximated by a central 

𝐹𝐹(𝑓𝑓𝐴𝐴𝑇𝑇𝑎𝑎 ,∞)-distribution. Such that: 

𝑓𝑓𝐴𝐴𝑇𝑇𝑎𝑎 =
�𝑡𝑡𝑡𝑡(𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏𝒂𝒂)�2

𝑡𝑡𝑡𝑡(𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏𝒂𝒂𝑻𝑻𝐴𝐴𝑇𝑇𝑽𝑽�𝒏𝒏𝒂𝒂)
. 

          (5-21) 

Note that 𝐻𝐻0𝐹𝐹(𝐴𝐴𝑇𝑇) is equivalent to testing if for all monotone transformation of the 

observations, the expectation can be decomposed into a total effect, group effect and time 

effect. Importantly, that an additive decomposition exists for every monotone 

transformation.  

Since the validity of the nonparametric hypothesis is invariant under arbitrary 

monotone transformations of the observation, the equivalence of certain hypothesis can 

only hold in certain cases. Importantly, if 𝐻𝐻0𝐹𝐹(𝐴𝐴𝑇𝑇) holds then in a two-way location model 

such that: 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖~𝐹𝐹𝒊𝒊𝒊𝒊(𝑥𝑥 − 𝜇𝜇is), 𝑖𝑖 = 1, … ,𝑔𝑔; 𝑠𝑠 = 1, … . , 𝑝𝑝, the following hypothesis are 

equivalent:  

      𝐻𝐻0
𝜇𝜇(𝐴𝐴): �𝑷𝑷𝑎𝑎 ⊗

1
𝑖𝑖

 𝟏𝟏𝑖𝑖′  � 𝝁𝝁 = 𝟎𝟎 ⇔  𝐻𝐻0𝐹𝐹(𝐴𝐴): �𝑷𝑷𝑔𝑔 ⊗
1
𝑖𝑖

 𝟏𝟏𝑖𝑖′  � 𝑭𝑭 = 𝟎𝟎                   and 

𝐻𝐻0
𝜇𝜇(𝑇𝑇): �

1
𝑔𝑔

 𝟏𝟏𝑔𝑔′ ⊗  𝑷𝑷𝑖𝑖�𝝁𝝁 = 𝟎𝟎 ⇔  𝐻𝐻0𝐹𝐹(𝑇𝑇) : �
1
𝑔𝑔

 𝟏𝟏𝑔𝑔′ ⊗  𝑷𝑷𝑖𝑖� 𝑭𝑭 = 𝟎𝟎 

where 𝑭𝑭 = (𝐹𝐹11, … ,𝐹𝐹𝑔𝑔𝑖𝑖)′ and 𝝁𝝁 = (𝜇𝜇11, … , 𝜇𝜇𝑔𝑔𝑖𝑖)′ (Brunner, Domhof, & Langer, 2002). This is 

particularly useful in Section 5.2 as we connect the F1-LD-F1 hypotheses to the 2x2 

crossover design hypotheses described in Section 2.2. 
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Section 5.2: Interpreting Hypotheses in 2x2 Cross-Over Design 

using F1-LD-F1 Hypotheses  

The hypotheses for the F1-LD-F1 design can be used to test the hypotheses 

identified for 2x2 crossover designs with repeated measures in Section 2.2. The important 

step is to ensure that in order to test the carryover effects in a crossover design, we must 

use the generated measures as described in (4-2), whereas to test the direct treatment 

effects in a crossover design we utilize the generated measures described in (4.5). 

 

 Testing the Equality of Carry-Over Effects and Carry-Over Effects over Time 

in the Crossover Design 

Recall that before the direct treatment effect can be tested, the equality of carry-

over effects must be established. Moreover, the suggestion by Grizzle (Grizzle, 1965), an 

alpha value of 0.10 or 0.15 is recommended.  

 

Proposition 5-1: Assume no interaction effect in the F1-LD-F1 model with the generated 

measure as described in (4-2), then  

a) The hypothesis of no carry-over effect in a crossover design described in (2.3) 

is equivalent to testing for no group effect in the F1-LD-F1 design described (5-1) 

b) The hypothesis of no carry-over effect over time in a crossover design described 

in (2.5) is equivalent to testing for no time effect in the F1-LD-F1 design 

described in (5-8) .  

 

Proof:  

In order to test for the equality of carry-over effects in a 2x2 crossover design with 

repeated measures, we will utilize new generated measure described in Chapter 4. 



41 
 

Xiks =  Yi1ks  +  Yi2ks 
(4-2) 

Bruner et al. (Brunner, Domhof, & Langer, 2002) recommend a more general 

model when looking at the nonparametric models. With the assumption that:  

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  ~ 𝐹𝐹𝑖𝑖𝑖𝑖 ,    𝑖𝑖 = 1,2 ;  𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

where 𝑭𝑭 = �𝑭𝑭1𝑭𝑭2
� = (𝐹𝐹11 ⋯ 𝐹𝐹1𝑖𝑖 𝐹𝐹21 ⋯ 𝐹𝐹2𝑖𝑖)′ = is a vector of the marginal distributions, 

and that the vectors 𝑿𝑿𝑖𝑖𝑖𝑖 =  (𝑋𝑋𝑖𝑖𝑖𝑖1 ⋯ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)′ are independent. Under the assumption that 

the difference in the marginal distribution for each group must be a location shift.  

  𝐹𝐹1𝑖𝑖(𝑥𝑥) = 𝐹𝐹𝒊𝒊(𝑥𝑥 − λAs) 

𝐹𝐹2𝑖𝑖(𝑥𝑥) = 𝐹𝐹𝒊𝒊(𝑥𝑥 − λ𝐵𝐵𝑖𝑖) ,                        𝑠𝑠 = 1, 2, … , 𝑝𝑝 

(5-22) 

Thus, we have a technical formulation for the hypothesis of equality of carryover 

effects in the 2x2 crossover design, which is equivalent to the group effect in the F1-LD-F1 

design with the new measure, given that the interaction effect is not significant.  Note that 

if the interaction test in F1-LD-F1 design is significant then this method cannot be used to 

test the 2x2 crossover hypotheses as the assumption that the difference in the marginal 

distribution for each group is a location shift is violated.  

Then using the marginal distributions for the new measure, the nonparametric 

hypothesis becomes:  

𝐻𝐻01: 𝐹𝐹1𝑖𝑖 = 𝐹𝐹2𝑖𝑖,                𝑠𝑠 = 1, … , 𝑝𝑝 

(5-23) 

A contrast matrix can be formulated as:  

𝑪𝑪 =  �
1 0

⋱
0 1

−1 0
⋱

0 −1
�
𝑖𝑖x2𝑖𝑖

 

So the hypothesis in terms of the contrast matrix becomes:  
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𝐻𝐻01:𝑪𝑪𝑭𝑭 = �
1 0

⋱
0 1

−1 0
⋱

0 −1
�
𝑖𝑖x2𝑖𝑖

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝐹11
⋮
𝐹𝐹1𝑖𝑖
𝐹𝐹21
⋮
𝐹𝐹2𝑖𝑖⎦

⎥
⎥
⎥
⎥
⎤

2𝑖𝑖𝑝𝑝1

=  �
𝐹𝐹11 − 𝐹𝐹21

⋮
𝐹𝐹1𝑖𝑖 − 𝐹𝐹2𝑖𝑖

� = �
0
⋮
0
� = 𝟎𝟎. 

(5-24) 

Note if there is no interaction effect in the F1-LD-F1 model then this is analogous to: 

𝐻𝐻01:𝑪𝑪𝝀𝝀 = �
1 0

⋱
0 1

−1 0
⋱

0 −1
�
𝑖𝑖x2𝑖𝑖

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆𝐴𝐴1
⋮
𝜆𝜆𝐴𝐴𝑖𝑖
𝜆𝜆𝐵𝐵1
⋮
𝜆𝜆𝐵𝐵𝑖𝑖⎦

⎥
⎥
⎥
⎥
⎤

2𝑖𝑖𝑝𝑝1

=  �
𝜆𝜆𝐴𝐴1 − 𝜆𝜆𝐵𝐵1

⋮
𝜆𝜆𝐴𝐴𝑖𝑖 − 𝜆𝜆𝐵𝐵𝑖𝑖

� = �
0
⋮
0
� = 𝟎𝟎. 

(5-25) 

Moreover the time effect for this model provides a test for testing the hypothesis of 

equality of carry-over effects over time, given there is no interaction effect. 

𝐻𝐻03: 𝜆𝜆1 =  𝜆𝜆2 = ⋯  = 𝜆𝜆𝑖𝑖 ,  where 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝐴𝐴𝑖𝑖 − 𝜆𝜆𝐵𝐵𝑖𝑖;   𝑠𝑠 = 1, 2, . . . , 𝑝𝑝 

⟺𝐻𝐻03(𝑇𝑇): 𝐶𝐶𝑖𝑖𝑭𝑭 = �
1
𝑔𝑔

 𝟏𝟏𝑔𝑔′ ⊗  𝑷𝑷𝒑𝒑�𝑭𝑭 =  �
𝐹𝐹�.1 − 𝐹𝐹�..

⋮
𝐹𝐹�.𝑖𝑖 − 𝐹𝐹�..

� = �
0
⋮
0
� = 𝟎𝟎. 

(5-26) 

If the carry-over effect is not significant, we can proceed to test the direct treatment 

effects. In the event that carry-over is significant, as indicated earlier, the experimenter is 

advised to either rerun the experiment with a longer washout period, or others use just the 

data from the first period to analyze the treatment effects.  
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 Testing the Equality of Direct Treatment Effects when Carry-Over are Equal 

and Direct Treatment Effects over Time when Carry-Over are Equal 

Once the equality of carry over effects has been established, direct treatment 

effects may be tested. The procedure is similar to the preceding section. 

 

Proposition 5-2: Assume no interaction effect in the F1-LD-F1 model with the generated 

measure as described in 

 Xiks =  Yi1ks- Yi2ks     (4-5),  

then  

a) The hypothesis of no direct treatment effect in a crossover design described in 

(2.4) is equivalent to testing for no group effect in the F1-LD-F1 design described 

in (5-1) .  

b) The hypothesis of no direct treatment effect over time in a crossover design 

described in (2.6) is equivalent to testing for no time effect in the F1-LD-F1 

design described in (5-8).  

 

Proof:  

To measure the direct treatment effect in a crossover design, we can utilize a F1-

LD-F1 model with the different set of generated measures described by: 

Xiks =  Yi1ks- Yi2ks     (4-5) 

Using the model described by Brunner et al. (Brunner, Domhof, & Langer, 2002), 

given that:  

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  ~ 𝐹𝐹𝑖𝑖𝑖𝑖 ,    𝑖𝑖 = 1,2 ;  𝑠𝑠  =  1, 2, . . . , 𝑝𝑝 

where 𝑭𝑭 = �𝑭𝑭1𝑭𝑭2
� = (𝐹𝐹11 ⋯ 𝐹𝐹1𝑖𝑖 𝐹𝐹21 ⋯ 𝐹𝐹2𝑖𝑖)′ is a vector of the marginal distributions, 

and that the vectors 𝑿𝑿𝑖𝑖𝑖𝑖 =  (𝑋𝑋𝑖𝑖𝑖𝑖1 ⋯ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)′ are independent. Such that: 
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𝐹𝐹1𝑖𝑖(𝑥𝑥) =  𝐹𝐹𝑖𝑖 �𝑥𝑥 − �𝜏𝜏𝐴𝐴𝑖𝑖- 𝜏𝜏𝐵𝐵𝑖𝑖��                                   

𝐹𝐹2𝑖𝑖(𝑥𝑥) = 𝐹𝐹𝑖𝑖�𝑥𝑥 − (𝜏𝜏𝐵𝐵𝑖𝑖 - 𝜏𝜏𝐴𝐴𝑖𝑖)�,            𝑠𝑠 = 1,2, … , 𝑝𝑝 

(5-27) 

If the interaction effect is not significant then using these generated measures, the 

hypothesis can be written as:  

𝐻𝐻02:  𝐹𝐹1𝑖𝑖 = 𝐹𝐹2𝑖𝑖 ,             𝑠𝑠 = 1,2, … , 𝑝𝑝 

(5-28) 

The technical formulation for testing the equality of direct treatment effect, when 

carry-over effect is equal, is analogous to the first test. Moreover, similar to the carry-over 

effects, this model can be used to test the equality of direct treatment effect (group effects) 

and the equality of direct treatment effect over time (time effect) if there is no interaction 

effect.  

 

 Testing Average Response for Carry-Over Effects and Average Response for 

Direct Treatment Effects when Carry-Over Effects are Equal 

With the assumption that the effect being tested is equal over time, we can conduct 

the following two tests using the methods discussed by Sun (Sun, 1997). These tests can 

also be formulated using the marginal distributions. Consider the hypothesis of equality of 

carry-over effects in average responses. The hypothesis as described in (2-7): 

𝐻𝐻05:�𝜆𝜆𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

=  �𝜆𝜆𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

can be tested by using a measure that sums the responses over time and period. So, as 

described in (4-7) the new generated measure is given by  

𝑋𝑋𝑖𝑖𝑖𝑖 =  ∑ 𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖
𝑖𝑖
𝑖𝑖=1 + ∑ 𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1 . 

Such that     𝑋𝑋𝑖𝑖𝑖𝑖  ~ 𝐹𝐹𝑖𝑖  ,      𝑖𝑖 = 1,2  
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With the assumption  

𝐹𝐹1(𝑥𝑥) = 𝐹𝐹 �𝑥𝑥 −�𝜆𝜆𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

� 

𝐹𝐹2(𝑥𝑥) = 𝐹𝐹 �𝑥𝑥 −�𝜆𝜆𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

� 

(5-29) 

So under the assumption that the carry-over effect is the same for the average responses, 

our null hypothesis becomes:  

𝐻𝐻05:  𝐹𝐹1 = 𝐹𝐹2 

(5-30) 

However, this is a 𝑐𝑐-sample problem instead of an F1-LD-F1 model, so we can use 

the test statistic described in (4-12).  

 Testing the next hypothesis of equality of average responses for direct treatment 

effects when average responses for carry over effects is similar in formulation with the 

exception that the generated measures take the difference of the sum of observations 

over time across the two  periods. Recall that the hypothesis from (2-8) 

𝐻𝐻06:�𝜏𝜏𝐴𝐴𝑖𝑖

𝑖𝑖

𝑖𝑖=1

=  �𝜏𝜏𝐵𝐵𝑖𝑖

𝑖𝑖

𝑖𝑖=1

 

This can be tested by using a measure generated as follows: 

Xik =  ∑ Yi1ks
p
s=1 -  ∑ Yi2ks

p
s=1 .    (4-8) 

As noted earlier, this is a two-sample problem that can be tested using the 

statistic 𝑆𝑆𝑐𝑐 described in (4-12).  
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Chapter 6  

Numerical Example 

In this chapter we will use multiple examples to demonstrate the use of the test 

statistics derived earlier based on score functions, and compare this to the traditional 

nonparametric methods. By means of the examples we will demonstrate the supremacy of 

these adaptive nonparametric methods over the traditional rank-based methods.  

 

Section 6.1: Collagen bits (BITS) Example  

 As an example of the two methods described previously, consider the numerical 

example provided by Johnson and Grender (Johnson & Grender, 1993). The example 

utilizes data from a 2x2 crossover design for an experiment developed to evaluate the 

presence of collagen bits (BITS) in a 1:8 concentration of Optipranolol suspended in 

Murocel. There were a total of 12 participants, 7 in the first group which received treatments 

in the order of BITS/No BITS and 5 in the second group which received treatment in the 

reverse order i.e. No BITS/BITS. There was a 7-day washout period between the two 

treatments in each group. The response variable (Y𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) considered was the difference in 

intraocular pressure from baseline, this was measured on each eye and the resulting data 

are presented in Table 6-1 

Table 6-1: Change in Right (R) and Left (L) Eye Pressure 

Sequence Sub Period I Period II 

R L R L 

BITS/ 

NO BITS  

1 2 3 6 6 

2 1 1 5 7 

3 4 2 4 2 

4 8 5 6 2 

5 6 6 6 7 
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Sequence Sub Period I Period II 

R L R L 

 6 5 2 5 5 

7 - 1 0 4 4 

NO BITS/ 

BITS 

8 4 6 7 6 

9 7 6 1 2 

10 6 8 -2 -2 

11 5 8 5 2 

12 5 5 4 2 

 

 Therefore, based on the model described in Section 2.1 

E[Yijks] = φijs = µs + πjs + τvs + hλv's                                (2-1) 

the experiment has two groups or sequences, so 𝑖𝑖 = 1,2, with 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 = 7 + 5 = 12 

subjects, moreover it’s a two period design thus 𝑗𝑗 = 1,2 periods; 𝑠𝑠 = 1,2 repeated 

measures since measurements are taken from the right eye and left eye for each subject; 

and 𝑣𝑣 corresponds to either treatment BITS or NO BITS, and 𝑣𝑣’ is the other treatment. With 

the given model, we then proceed to test the hypotheses associated with 2x2 crossover 

design as described in Section 2.2. 

 

 Adaptive Nonparametric Procedures Tailored to J&G Method 

In order to test each of the six hypotheses indicated in Section 2.2 using the 

nonparametric adaptive J&G method, first the underlying distribution of the data must be 

determined. Then the hypotheses can be tested and compared to the results to those 

obtained from the traditional nonparametric rank-based method proposed by Johnson and 

Grender (Johnson & Grender, 1993). Recall caution is taken to conduct the six hypotheses 

in order, since the results from one may impact the validity of the next test. 



48 
 

 

Testing the Equality of Carry-Over Effects  

From the previous sections we know that the null-hypothesis of equality of carry-

over effect can be written as:  

H0
1: λAs   =  λBs ,   s  =  1, 2, . . . , p  (2-3) 

In order to test this hypothesis we will use the measure defined by: 

Xiks =  Yi1ks  +  Yi2ks    (4-2) 

So for each repeated measure, 𝑠𝑠, we use the sum of the within-subject measures 

across the two periods, the new measures generated for the two repeated measures, and 

their corresponding ranks are illustrated in Table 6-2. Next we need to identify the shape 

of the underlying distribution, in order to apply the appropriate score function. For the right 

eye the selector functions are: 

𝑄𝑄�1 =
(𝑛𝑛1𝑄𝑄1,1 + 𝑛𝑛2𝑄𝑄1,2)

(𝑛𝑛1 + 𝑛𝑛2) 
=

(7 ∗ 0.941 + 5 ∗ 0.4)
(7 + 5) 

= 0.716 . 

And, 

𝑄𝑄�2 =
(𝑛𝑛1𝑄𝑄2,1 + 𝑛𝑛2𝑄𝑄2,2)

(𝑛𝑛1 + 𝑛𝑛2) 
=

(7 ∗ 2.316 + 5 ∗ 2.333)
(7 + 5) 

= 2.323 . 

 

Thus, the distribution is moderate-tailed and therefore the score function used is 

𝜑𝜑𝑊𝑊(𝑢𝑢)  =           𝑢𝑢  0 < 𝑢𝑢 < 1 

where 𝑢𝑢 =  𝑟𝑟𝑎𝑎𝑛𝑛𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑘𝑘𝑒𝑒𝑎𝑎𝑖𝑖𝑚𝑚𝑟𝑟𝑒𝑒 𝑜𝑜𝑣𝑣𝑒𝑒𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑜𝑜𝑘𝑘𝑏𝑏𝑖𝑖𝑛𝑛𝑒𝑒𝑐𝑐 𝑖𝑖𝑎𝑎𝑘𝑘𝑖𝑖𝑠𝑠𝑒𝑒
(𝑛𝑛1+𝑛𝑛2) +1

. Similarly for the left eye we obtain 

selector functions (𝑄𝑄�1,𝑄𝑄�2) = (1.646, 2.233) indicating a light-tailed distribution, therefore 

the score function used is : 

             𝜑𝜑𝑀𝑀𝑀𝑀(𝑢𝑢) =

⎩
⎪
⎨

⎪
⎧𝑢𝑢 −

1
4

 0 < 𝑢𝑢 ≤ 1
4�

0
𝑢𝑢 − 3

4

 
 

1
4� < 𝑢𝑢 ≤ 3

4�
3

4� < 𝑢𝑢 < 1
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Based on the adaptive ranks, as shown in Table 6-2 we can then calculate the test 

statistic, 𝑊𝑊𝑎𝑎 =  0.548 with a p-value 0.76. There is not enough evidence to reject the null 

hypothesis, indicating carryover effects are equal for the two treatments. However, when 

the test was conducted using traditional nonparametric rank-based method, we obtained 

𝜒𝜒2 = .77, p-value=0.68 asymptotically, or p-value=0.75 using 792 permutations for the W-

statistic observed. Even with a higher cut-off of 𝛼𝛼 = 0.15 as suggested by Grizzle (Grizzle, 

1965), we fail to reject the null hypothesis in both cases. 

 
 

Table 6-2: Generated Measure for Testing Carry-Over Effects (Sum over Period), Corresponding 

Ranks, and Adaptive Ranks of the Right and Left Eye Change in Pressure based on (3-5) 

 
 

Sequence Sub 
Sum Sum Ranks Adaptive Ranks 

R L R L R L 
BITS/ 

NO BITS 
1 8 9 5 9 0.385 0 

2 6 8 3 7.5 0.231 0 

3 8 4 5 1.5 0.385 -0.018 

4 14 7 12 5 0.923 0 

5 12 13 11 12 0.846 0.030 

6 10 7 8.5 5 0.654 0 

7 3 4 1 1.5 0.077 -0.018 

NO BITS/ 
BITS 

8 11 12 10 11 0.769 0.009 

9 8 8 5 7.5 0.385 0 

10 4 6 2 3 0.154 0 

11 10 10 8.5 10 0.654 0 

12 9 7 7 5 0.538 0 
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Testing the Equality of Direct Treatment Effects when Carry-Over Effects are Equal 

 After the equality of carry-over effects has been established, we proceed to test 

the direct treatment effects. The hypothesis from Section 2.2 can be written as:  

H0
2: τAs   =  τBs ,   s  =  1,2, . . . , p   (2-4) 

Then using the generated measures as defined in Section 4.1, we have: 

Xiks =  Yi1ks- Yi2ks     (4-4) 

Based on these new generated measures, the selector functions (𝑄𝑄�1,𝑄𝑄�2) are (0.676, 3.531) 

for the right eye, and (1.393, 2.362 ) for the left eye, indicating a moderate-tailed distribution 

in each case. The new generated measures, their ranks and the adaptive ranks are 

illustrated in Table 6-3. 

Table 6-3: Generated Measure for Testing Direct Treatment Effects (Differences over Period), 

Corresponding Ranks, and Adaptive Ranks of the Right and Left Eye Change in Pressure 

Sequence Sub 
Difference Diff Ranks Adaptive Ranks 

R L R L R L 
BITS/ 

NO BITS 
1 -4 -3 2.5 3.5 0.192 0.269 
2 -4 -6 2.5 1 0.192 0.077 

3 0 0 6.5 6.5 0.500 0.5 
4 2 3 10 8.5 0.769 0.654 

5 0 -1 6.5 5 0.500 0.385 

6 0 -3 6.5 3.5 0.500 0.269 
7 -5 -4 1 2 0.077 0.154 

NO BITS/ 
BITS 

8 -3 0 4 6.5 0.308 0.5 
9 6 4 11 10 0.846 0.769 

10 8 10 12 12 0.923 0.923 
11 0 6 6.5 11 0.500 0.846 
12 -1 3 9 8.5 0.692 0.654 
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 Since the distribution for both the right and the left eye are moderate-tailed, the 

test statistic under the adaptive procedure is similar to the test statistic for the rank-based 

analysis, as expected. 𝑊𝑊𝑎𝑎 = 𝑊𝑊 = 7.12 with a p-value of 0.03. The exact test based on the 

permutation distribution resulted in a p-value of 0.01. Hence, there is sufficient evidence to 

reject the null hypothesis, indicating there is a difference in the two treatment effects.  

 

Testing the Equality of Carry-Over Effect over Time 

 In order to test the next two hypotheses, the procedure is the same except the new 

measures are differences between two repeated measures. Thus, from Section 2.2 the test 

for carry-over effect over time can be written as:  

H0
3: λ1 =  λ2 = ⋯  = λp ,  where λs = λAs-λBs;   s = 1, 2, . . . , p (2-5) 

and can be measured by taking the sum across period of the difference in measures of the 

right and the left eye in each period. Notice in this particular case, we now have a 

𝑐𝑐 −sample problem, and so we can utilize the test statistic 𝑆𝑆𝑐𝑐 as described by Sun (Sun, 

1997). The generated measures, their corresponding ranks, and the adaptive ranks are 

summarized in Table 6-4. 

The underlying distribution has (𝑄𝑄�1,𝑄𝑄�2) values of (1.050, 2.833) indicating a 

moderate-tailed distribution. Thus, 𝑆𝑆𝑐𝑐 = 0.172 with a p-value of 0.678, which is the same as 

the p-value obtained under the two-sample Wilcoxon rank-sum test. Therefore we conclude 

there is insufficient evidence to reject the null hypothesis, supporting that the carry-over 

effect are equal for each repeated measure. 
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Table 6-4: Generated Measure for Testing Carry-Over Effects over Time, Corresponding Ranks, 

and Adaptive Ranks of the Difference (R-L) between Right and Left Eye Change  

in Pressure based on  (3-5) 

Sequence Sub 
Period I Period II 

Sum Sum 
Rank 

Adaptive 
Rank (R-L) (R-L) 

BITS/ 
NO BITS 

1 -1 0 -1 4.5 0.346 
2 0 -2 -2 1.5 0.115 
3 2 2 4 11 0.846 
4 3 4 7 12 0.923 
5 0 -1 -1 4.5 0.346 
6 3 0 3 10 0.769 
7 -1 0 -1 4.5 0.346 

NO BITS/ 
BITS 

8 -2 1 -1 4.5 0.346 
9 1 -1 0 7.5 0.577 

10 -2 0 -2 1.5 0.115 
11 -3 3 0 7.5 0.577 
12 0 2 2 9 0.692 

 
 

 

 

Testing the Equality of Direct Treatment Effect over Time when Carry-Over Effect 

over Time is Equal 

 After establishing the equality of carry-over effect over time, we can proceed to 

the test direct treatment effect over time as described earlier by the hypothesis:  

H0
4: τ1 = τ2 =  … =  τp   ,   where τs = τAs-τBs;  s  =  1, 2, . . . , p (2-6) 

 Using the difference over period of the difference in each repeated measure, we 

obtain the new generated measure, once again obtaining a two-sample problem. The new 

measures and their corresponding ranks, and adaptive ranks are shown in Table 6-5. The 

underlying distribution was moderate-tailed since on (𝑄𝑄�1,𝑄𝑄�2) = (1.465, 3.037).  Appropriate 

score function was selected accordingly and the resulting test statistic obtained was 𝑆𝑆𝑐𝑐 =

3.879 𝑤𝑤ith a p-value of 0.049. As expected due to the moderate-tailed shape of the 
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underlying distribution, the p-value for the Wilcoxon rank-sum test is the same, indicating 

direct treatment effect over time is marginally significant.  

 

Table 6-5: Generated Measure for Testing Direct Treatment Effects over Time, Corresponding 

Ranks, and Adaptive Ranks based on (3-5) 

Sequence Sub 
Period I Period II 

Difference Diff Rank Adaptive 
Rank (R-L) (R-L) 

BITS/ 
NO BITS 

1 -1 0 -1 6 0.462 
2 0 -2 2 10.5 0.808 
3 2 2 0 8 0.615 
4 3 4 -1 6 0.462 
5 0 -1 1 9 0.692 
6 3 0 3 12 0.923 
7 -1 0 -1 6 0.462 

NO BITS/ 
BITS 

8 -2 1 -3 2 0.154 
9 1 -1 2 10.5 0.808 

10 -2 0 -2 3.5 0.269 
11 -3 3 -6 1 0.077 
12 0 2 -2 3.5 0.269 

 

Testing the Average Responses 

 Under the assumption that the effects do not vary over time, we can continue 

testing the equality of average responses for carry-over effects (hypothesis described by 

(2-7)) and the equality of average response for direct treatment effects when average 

responses for carry-over effects are equal (hypothesis described in (2-8)). Note that both 

these tests are two-sample problems, thus we employ the testing procedures of Sun (Sun, 

1997). Moreover, in this example the direct treatment over time was marginally significant 

with 𝑆𝑆𝑐𝑐 = 3.879 with a p-value of 0.049 therefore caution must be taken when interpreting 

the results of the test for average responses for direct treatment effects.  



54 
 

 As discussed in Section 4.1, the generated measure for these hypotheses are the 

sum (or differences) over the two periods for the sum of responses in each repeated 

measure (R+L), represented in Table 6-6 along with their ranks and adaptive ranks based 

on (3-5).  First, we test the average responses for carry-over effects. With (𝑄𝑄�1,𝑄𝑄�2) =

(0.905, 3.056) the indicator functions suggest that the underlying distribution is moderate-

tailed. Using the appropriate score function, we obtain 𝑆𝑆𝑐𝑐 = 0.007 with a p-value of 0.935. 

Under the Wilcoxon rank-sum test a similar p-value was obtained indicating there is 

insufficient evidence to reject the null hypothesis of equal average responses for carry-over 

effects.  

 Thus, we continue with the next hypothesis testing the average responses of direct 

treatment effects. Note as mentioned earlier, since direct treatment effects over time was 

marginally significant based on the results of hypothesis H0
4, caution must be taken when 

interpreting the results from this test. The generated measures for this test are obtained by 

taking the difference across periods of the sum of responses from all repeated measures 

(R+L) as shown in Table 6-6. The underlying distribution for these generated measures is 

light-tailed as indicated by (𝑄𝑄�1,𝑄𝑄�2) = (1.287, 2.139). Based on that we attain the test-

statistic 𝑆𝑆𝑐𝑐 = 3.004 with a p-value of 0.083, which fails to reject the null hypothesis that 

average responses for direct treatment effects are equal. Under the Wilcoxon rank-sum 

test the p-value was 0.0344 supporting the alternate hypothesis that the average response 

for direct treatment effects are not equal. However, based on the work of Sun (Sun, 1997), 

we know the supremacy of adaptive procedures over the rank-based nonparametric 

procedures in a two-sample problem indicating that based on the evidence we cannot 

conclude that the average response for direct treatment effects are not equal.  
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Table 6-6: Generated Measure for Testing Average Responses, Corresponding Ranks, and 

Adaptive Ranks of the Sum (R+L) of Right and Left Eye Change in Pressure based on (3-5) 

Seq Sub 
Period 

I 
Period 

II Sum Sum 
Ranks 

Sum 
Adaptive 
Ranks 

Diff Diff  
Ranks 

Diff 
Adaptive 

Rank (R+L) (R+L) 

BITS/ 
NO 

BITS 
  
  
  
  
  

1 5 12 17 7.5 0.577 -7 3 0 
2 2 12 14 4 0.308 -10 1 -0.030 
3 6 6 12 3 0.231 0 7 0 
4 13 8 21 10 0.769 5 9 0 
5 12 13 25 12 0.923 -1 6 0 
6 7 10 17 7.5 0.577 -3 4.5 0 
7 -1 8 7 1 0.077 -9 2 -0.009 

NO 
BITS/ 
BITS 

  
  
  

8 10 13 23 11 0.846 -3 4.5 0 
9 13 3 16 5.5 0.423 10 11 0.009 

10 14 -4 10 2 0.154 18 12 0.030 
11 13 7 20 9 0.692 6 10 0 
12 10 6 16 5.5 0.423 4 8 0 

 
 

 Adaptive Nonparametric Procedures Tailored to F1-LD-F1 Design 

Another way of testing the hypotheses for a 2x2 crossover design with repeated 

measures was described in Chapter 5. In this section, we will work through the BITS 

example using the adaptive nonparametric procedures tailored to the F1-LD-F1 design and 

compare the results to those obtained by the traditional rank-based F1-LD-F1 design. 

However, since hypotheses 5 and 6 of the crossover design for testing the equality of 
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average responses are in fact two-sample problems, those will not be repeated in this 

section.  

 

Testing the Equality of Carry-Over Effects and Carry-Over Effects over Time in the 

Crossover Design 

The first F1-LD-F1 design we will look at tests the carry-over effects, and carry-

over effect over time in the crossover design. The generated measures used for these are 

described by:  

Xiks =  Yi1ks  +  Yi2ks    (4-2) 

Recall in a F1-LD-F1 design we consider the 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 as the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, among all 𝑁𝑁 =

𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖𝑎𝑎
𝑖𝑖=1  observations. Thus, in order to determine the shape of the underlying 

distribution, we consider the combined sample of all 𝑁𝑁 = 2(7 + 5) = 24 observations. 

Based on the combined sample, we determine that the underlying distribution is moderate-

tailed for these generated measures. The 𝑄𝑄�1 and 𝑄𝑄�2 values are 0.994 and 

2.605 respectively.  

Thus, using the appropriate score function from (3-5), we first consider the 

interaction effect between group and time. The interaction effect was not significant with a 

test-statistic of 0.648 and a p-value of 0.517. This implies that we can use the tailored F1-

LD-F1 design to test the crossover hypotheses. The group effect in the F1-LD-F1 design 

is not significant with a test-statistic of −0.385 and a p-value of 0.700 indicating that carry-

over effects in the crossover design are equal. Finally, consider the time effect in the F1-

LD-F1 design, which has a test statistic of 1.031 and a p-value of 0.303 suggesting that the 

carry-over over time in the crossover design is equal. Since the underlying distribution was 

moderate-tailed, the p-values obtained from the rank-based F1-LD-F1 model were exactly 

the same in each case, as one might expect.  
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Testing the Equality of Direct Treatment Effects when Carry-Over are Equal and 

Direct Treatment Effects over Time when Carry-Over are Equal 

After the equality of carry-over effects has been established, we continue to test 

the direct treatment effects. Using the generated measure given by:  

Xiks =  Yi1ks- Yi2ks     (4-5) 

we can use the F1-LD-F1 design to test for the direct treatment effects and direct treatment 

effects over time in the crossover design. The shape of the underlying distribution for the 

new generate measures is light-tailed based on score indicator values of (0.824, 1.934). 

Thus, the results from the tailored F1-LD-F1 method mirror those obtained by the rank-

based F1-LD-F1 method. The interaction effect between group and time is not significant 

with test-statistic of 0.574, which results in a p-value of 0.566. Therefore by Proposition 5-2, 

we can use the F1-LD-F1 model to test the crossover hypotheses.  

Next consider the group effect which has a test-statistic of −2.132 and a p-value 

of 0.033 which implies that the direct treatment effect is not equal. However, the time effect 

has a test-statistic of −0.318 with a p-value of 0.750 indicating direct treatment effects over 

time are equal. Note with the J&G method, the direct treatment effects over time was 

marginally significant. Moreover, if we look at the results from the rank-based F1-LD-F1 

model, the interaction effect had a test statistic of 1.865 with a p-value of 0.062. Based on 

the argument provided by Grizzle (Grizzle, 1965), since we want the interaction effect to 

be insignificant, a higher alpha value is recommended. Thus indicating that we cannot use 

the rank-based F1-LD-F1 model to test the crossover hypotheses for direct treatment 

effects.  
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Section 6.2  Sleep Apnea Effect on Blood Pressure Example 

Our next example is in fact the inspiration for this research. An experiment was 

conducted by Alex et al. (Alex, et al., 2014) in order to better understand the relation 

between severity of sleep apnea and arterial blood pressure (BP), and to develop new 

metrics to analyze the effects of sleep apnea on BP. In this study, 26 healthy subjects were 

asked to do a series of breath hold experiments in a repeatable and controlled environment 

to simulate sleep apnea. BP waveforms were continuously monitored and the features 

extracted for study were: Pulse pressure, Slope of systolic/diastolic trend and Area under 

waveform (Area), in addition to the traditionally used metrics of Systolic, Diastolic and Mean 

arterial blood pressures (MAP). These features are illustrated in Figure 6-1.  

 

Figure 6-1 Different Blood Pressure Features Extracted From the Waveform for the Experiment 

(Alex R. M., 2010) 

 

Further, to measure the effects of sleep apnea severity, two separate experimental 

protocols were implemented with different inter-breath hold intervals. Moreover, the study 

also measured the effect of different postures on blood pressure thus the subjects’ posture 

varied between sitting and supine position. In our study however, we focus on the slope of 
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systolic trend, and slope of diastolic trend measures obtained in the supine position (Figure 

6-2).  

 

Figure 6-2 Data Collected While the Subject is in Supine Position (Alex R. M., 2010) 

 
In this experiment a baseline blood pressure was measured while the subject was 

in a normal breathing, or resting stage. Then the subject is asked to hold their breath for 

as long as they can, followed by a timed normal breathing period. This process is repeated 

five times. There are two protocols designed to account for the severity of sleep apnea. 

Protocol A, which corresponds to a less severe apnea, allows a normal breathing time of 

90 second between each breath hold, and a pre and post experiment normal breathing rest 

of 60 seconds. In Protocol B, to reflect a more severe apnea, the interval between breath 

holds is reduced to 30 seconds, while the pre and post experiment normal breathing time 

remains constant at 60 seconds. Each subject follows both protocols, although which 

protocol is implemented first is randomly selected. The two protocols are demonstrated in 

Figure 6-3. 
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Figure 6-3 Two Breath Hold (BH) Protocols Simulating Sleep Apnea (Protocol B is More Severe 

Form of Sleep Apnea Compared to Protocol A) (Alex R. M., 2010) 

 
Due to the nature of the experiment, to analyze the effects of the severity of sleep 

apnea on BP (Protocol A versus Protocol B), a 2x2 crossover design with repeated 

measures is utilized, with 𝑖𝑖 = 1,2 groups, and 𝑠𝑠 = 1, … ,5 repeated measures. Moreover, 

since the normality assumption was not satisfied, a nonparametric analysis was 

recommended. In order to test the hypotheses of a crossover design we employed and 

compared the adaptive and rank-based methods for both the J&G design and the F1-LD-

F1 design, where the first step was to determine the shape of the underlying distribution 

for each generated measure. The results are summarized in Table 6-7. Note that the J&G 

design looks at the shape of the underlying distribution for each repeated measure 

separately, while the F1-LD-F1 design looks at the overall shape of the underlying 

distribution for all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖𝑎𝑎
𝑖𝑖=1  observations.  
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Table 6-7 Shape of Underlying Distribution for Slope of Systolic Trend and Slope of Diastolic Trend 

Hypotheses    Systolic Slope Diastolic Slope 

        
Hypothesis 1:  s=1 Moderate Tailed Moderate Tailed 
Equal  Carry-Over effects s=2 Light Tailed Moderate Tailed 
  s=3 Right Skewed Moderate Tailed 
  s=4 Right Skewed Moderate Tailed 
  s=5 Right Skewed Moderate Tailed 
  overall Moderate Tailed Moderate Tailed 
        
Hypothesis 2:  s=1 Right Skewed Left Skewed 
Equal Direct Treatment effects s=2 Moderate Tailed Moderate Tailed 
When Carry-Over Effect is Equal s=3 Moderate Tailed Moderate Tailed 
  s=4 Right Skewed Light Tailed 
  s=5 Light Tailed Moderate Tailed 
  overall Moderate Tailed Moderate Tailed 
        
Hypothesis 3: m=1 Moderate Tailed Heavy Tailed 
Equal Carry-Over Effect Over Time m=2 Moderate Tailed Right Skewed 
  m=3 Light Tailed Light Tailed 
  m=4 Moderate Tailed Moderate Tailed 
        
Hypothesis 4: m=1 Moderate Tailed Moderate Tailed 
Equal Direct Treatment Effect Over Time m=2 Moderate Tailed Moderate Tailed 
When Carry-Over Effect Over Time is Equal m=3 Moderate Tailed Left Skewed 
  m=4 Moderate Tailed Moderate Tailed 
        
Hypothesis 5:   Moderate Tailed Light Tailed 
Equal Average Response for Carry-over 
Effects 

      

        
Hypothesis 6:   Moderate Tailed Moderate Tailed 
Equal Average Response for Direct-
Treatment Effects 

      

        
 

Based on this information, we were able to select the appropriate score functions 

and compare the four methods of testing the crossover hypotheses. However, the F1-LD-

F1 considers all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations together. Thus, for an F1-LD-F1 model we 
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have a large sample size. Using the recommendation by Brunner et al. (Brunner, Domhof, 

& Langer, 2002) we use the Wald Type Statistic (WTS) rather than the ANOVA Type 

Statistic (ATS) used earlier. This is summarized in Table 6-8 for the slope of systolic trend 

and in Table 6-9 for the slope of diastolic trend, along with the result obtained from the J&G 

method. 

Table 6-8 Test Statistics and P-Values for Analysis of Slope of Systolic Trend 

 

 

Table 6-9 Test Statistics and P-Values for Analysis of Slope of Diastolic Trend 

 

Testing the 
Slope of 

Systolic Trend 

J&G Adaptive J&G F1-LD-F1 (WTS) Adaptive F1-LD-F1 
(WTS) 

𝑊𝑊 p-value  𝑊𝑊𝑎𝑎 p-value 𝑄𝑄𝑛𝑛 p-value 𝑄𝑄𝑛𝑛𝑎𝑎 p-value 
Hypothesis 1 3.178 0.204 16.861 <0.001 0.321 0.571 0.321 0.571 
Hypothesis 2 5.811 0.055 20.639 <0.001 2.806 0.094 2.806 0.094 
Hypothesis 3 6.067 0.048 4.281 0.117 6.762 0.149 6.762 0.149 
Hypothesis 4 1.655 0.437 1.655 0.437 5.814 0.213 5.814 0.213 
Hypothesis 5 90 0.623 1.492 0.222         
Hypothesis 6 59 0.286 1.432 0.232         

Interaction Effect ( 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖) 7.413 0.116 7.413 0.116 

Interaction Effect ( 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖 −  𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖) 5.387 0.250 5.387 0.250 

Testing the 
Slope of 
Diastolic 

Trend 

J&G Adaptive J&G F1-LD-F1 Adaptive F1-LD-F1 

𝑊𝑊 p-value  𝑊𝑊𝑎𝑎 p-value 𝑄𝑄𝑛𝑛 p-value 𝑄𝑄𝑛𝑛𝑎𝑎 p-value 
Hypothesis 1 6.006 0.050 6.006 0.050 0.010 0.920 0.010 0.920 
Hypothesis 2 4.400 0.111 14.001 <0.001 0.470 0.493 0.470 0.493 
Hypothesis 3 5.994 0.050 15.400 <0.001 1.274 0.281 1.274 0.281 
Hypothesis 4 4.716 0.095 14.862 <0.001 0.108 0.966 0.108 0.966 
Hypothesis 5 80 >0.999 1.553 0.213         
Hypothesis 6 76 0.856 0.049 0.826         

Interaction Effect ( 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖) 0.840 0.477 0.840 0.477 

Interaction Effect ( 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑌𝑌𝑖𝑖1𝑖𝑖𝑖𝑖 −  𝑌𝑌𝑖𝑖2𝑖𝑖𝑖𝑖) 1.099 0.351 1.099 0.351 
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Notice from Table 6-8 that the adaptive J&G method indicates that there is a 

significant difference in carry-over effect (hypothesis 1) for the slope of systolic trend which 

the rank-based J&G method was unable to detect. This is further validated by looking at 

the slope of the diastolic trend from Table 6-9 which also suggests a significant carry-over 

effect. Recall based on Grizzle’s (Grizzle, 1965) recommendation we use an alpha value 

of .15 to test the carryover effect. This is an important distinction since a significant carry-

over effect impacts the validity of the remaining hypotheses.  

Moreover, the F1-LD-F1 (WTS) for the slope of systolic trend indicates than the 

interaction effect is significant and thus, this model cannot be used to test the hypotheses 

of the crossover design. However, this is not the case for the slope of diastolic trend in 

Table 6-9. In fact here the results contradict those obtained by the J&G method. Since the 

J&G method analyzes the shape of the distribution for each of the repeated measures 

separately, rather than the F1-LD-F1 method which combines all observations across all 

repeated measures, in our opinion the former method is more reliable.  
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Chapter 7  

Conclusion and Discussions 

The objective of the research was to tailor existing methods for nonparametric 

analysis of 2x2 crossover designs to the shape of the underlying distribution of the data 

given. Hence, existing methods developed by Johnson and Grender (Johnson & Grender, 

1993) and Brunner et al. (Brunner, Domhof, & Langer, 2002) were modified using adaptive 

procedures as described by Hogg et al. (Hogg, Fisher, & Randles, 1975) and revised by 

Hill et al. (Hill, Padmanabhan, & Puri, 1988). This idea was supported by the work of Sun 

(Sun, 1997) who showed that in a 𝐶𝐶-sample problem adaptive nonparametric method is 

better since the lengths of the simultaneous confidence intervals for adaptive 

nonparametric methods are shorter compared to those of non-adaptive nonparametric and 

parametric methods, and the relative asymptotic efficiency is better compared to non-

adaptive nonparametric methods. We extended this idea from a 𝐶𝐶-sample to a 2x2 

crossover design.  Some observations are highlighted in the following sections.  

 

Section 7.1 Comparing Adaptive to Non-adaptive Methods 

 It was observed that for moderate-tailed and heavy–tailed symmetric distributions, 

there was no difference in the adaptive or non-adaptive methods. However, when the 

distribution was skewed or light-tailed, differences in the test-statistic were detected.  This 

difference was particularly important in the sleep apnea example described in Section 6.2 

when looking at the slope of systolic trend. In this example, the traditional nonparametric 

method of Johnson and Grender failed to detect reject the null hypothesis of equal carry-

over effects, however with the adaptive modification the null hypothesis was rejected 

indicated that the experiment should either be redone, or we should only use the data from 

period I to examine the direct treatment effects. This conclusion was also supported by the 
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results from the slope of diastolic trend where both the adaptive and non-adaptive J&G 

method resulted in rejecting the null hypothesis of equal carry-over effects. In our opinion 

since both the systolic slope and diastolic slope were from the same pool of subjects, the 

results observed for the hypothesis of equal carry-over effects should be similar.  

Similarly, when looking at the F1-LD-F1 design, the collagen bits example in 

Section 6.1 was interesting. While the traditional F1-LD-F1 method could not be used to 

test the direct treatment effects due to signification group and time interaction, when 

modified using adaptive procedure to account for the light-tailed symmetric shape of the 

underlying distribution, it was observed that that the interaction was not significant and 

thus, the model could be used to test the 2x2 crossover hypotheses. However, with large 

sample sizes or repeated measures, such as in the case of sleep apnea example in Section 

6.2, it was more difficult to apply adaptive procedure to the traditional F1-LD-F1 design, as 

discussed in Section 7.2. 

 

Section 7.2 Comparing J&G Method to F1-LD-F1 Method 

Two methods described in this paper are the J&G method (Johnson & Grender, 

1993) and the F1-LD-F1 method (Brunner, Domhof, & Langer, 2002). A key difference in 

the two methods is how the data is ranked, while 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 is the rank for each 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 across 𝑛𝑛 =

∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  observations for each 𝑠𝑠𝑡𝑡ℎmeasure in the J&G method, the F1-LD-F1 method 

combines all 𝑝𝑝 repeated measures so that 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 is the rank of 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, among all 𝑁𝑁 = 𝑝𝑝 ∙ ∑ 𝑛𝑛𝑖𝑖
𝑔𝑔
𝑖𝑖=1  

observations.  However, by combining observations from all repeated measures, the F1-

LD-F1 method fails to account for the attributes of the underlying distribution for each 

repeated measure. This can particularly be observed in Table 6-7 looking hypothesis 1 in 

the case of the slope of systolic trend where most repeated measures are not moderate-

tailed symmetric but when we look at all 𝑁𝑁 observations together, the data seems to be 
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moderate-tailed. This may be due to the fact that we have 5 repeated measures thus a 

large sample size 𝑁𝑁. 

Moreover, while the J&G method is specifically designed to test the hypotheses 

for crossover design, the F1-LD-F1 method is sometimes restricted by the propositions 

defined in Section 5.2 when the interaction term is significant. Therefore, in our opinion the 

former method is more reliable.  

 

Section 7.3 Limitations 

Although based on the work of Sun (Sun, 1997) and the numerical examples 

studied for this research both indicate that the nonparametric adaptive procedure for 

crossover design with repeated measures is better than the traditional nonparametric 

methods for crossover design with repeated measures, however the research has certain 

limitations.  

The examples used in each case were preexisting datasets provided to us, 

therefore the true results for the hypotheses were unknown. We could extend the study to 

create simulated data sets were predetermined results for the six hypotheses tested and 

then identify which of the four methods is best at replicating those results.  

Another issue faced was the sample size issue, especially with the F1-LD-F1 case. 

For the F1-LD-F1 method we proposed to apply the adaptive procedure for small sample 

sizes, however this is often not the case if we have multiple repeated measures since the 

F1-LD-F1 combines the observations across all repeated measures.  

Finally, as with the case of any statistical model, the test statistic and generated 

measures provided here are specifically to test the six hypotheses described in Section 

2.2. However, it is upon the experimenter of determine the validity of the hypotheses in 
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real-world terms, and determine the validity of the 2x2 crossover design model for their 

experiment. 
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Appendix A 

Data From the Sleep Apnea Example  
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Table 0-1 Data for Slope of Systolic Trend 

 

 

 
 
 

Sequence Sub ST1 2 ST1 4 ST1 6 ST1 8 ST1 10 ST2 2 ST2 4 ST2 6 ST2 8 ST2 10
1 3 1.433365 0.95523 1.084191 0.605368 0.672902 1.119691 1.899888 1.589624 1.344086 1.33907
1 6 0.818107 0.679277 0.731157 0.664597 0.660964 0.586591 0.907461 0.654896 0.6315 0.553009
1 11 0.990327 0.932311 1.280855 0.85872 0.891577 0.972024 1.592012 1.276553 1.308612 1.256946
1 14 0.31216 0.787068 0.649242 0.401476 0.908363 1.965116 1.697505 -0.10073 0.795615 1.344323
1 15 1.743167 0.75088 0.579732 1.118014 0.564022 1.236704 1.203729 1.117942 1.130481 0.585753
1 16 0.893415 0.842711 1.189994 1.206263 0.875676 0.82586 0.496797 1.377594 1.128223 0.655106
1 17 0.870137 1.351827 1.066114 3.286514 0.60759 1.193422 1.494326 1.073147 0.846728 0.880282
1 18 1.318665 1.020203 1.060041 0.892884 1.180401 1.006404 1.688725 0.722106 1.323583 1.246562
1 25 1.232255 0.773087 0.934827 1.051683 0.802462 1.081932 0.997791 0.959038 0.84885 0.736026
1 27 1.167128 1.046115 0.879355 0.919296 1.291751 0.852619 1.195883 0.963292 1.54538 0.711665
2 1 2.089123 1.898565 2.504945 2.108077 1.893189 2.229742 2.2044 2.263624 2.806488 2.880644
2 2 1.679709 1.08767 2.325147 1.327482 1.698273 1.264595 2.036816 1.02914 2.426875 1.856125
2 4 0.292335 0.423303 0.57364 0.424304 0.57748 0.475057 0.475961 0.441884 0.512591 0.459488
2 5 0.940403 0.897161 0.330365 1.389076 0.920277 1.156629 1.091258 1.191778 1.321212 0.254425
2 7 0.832518 1.261772 1.318729 1.249405 1.13381 1.100204 1.749151 0.951884 0.734926 0.993977
2 8 1.197632 1.648106 1.397585 2.073675 1.829748 1.620038 0.998026 1.498683 1.8528 1.042208
2 10 1.129965 0.860305 1.057365 0.879373 0.893259 0.833983 0.796109 0.748023 0.8292 0.493605
2 12 0.218515 0.368614 0.801166 0.34679 0.359231 0.323118 0.221543 0.415916 0.494428 0.974632
2 13 0.572927 0.724654 0.604085 0.690043 0.520954 -0.08529 0.244068 0.711165 0.497568 0.706826
2 19 2.406304 1.164706 0.825318 0.68063 0.595274 1.021506 0.075173 1.965716 1.054371 0.7937
2 20 0.769469 1.00983 0.641886 0.906909 1.569029 0.988003 1.076628 0.719185 1.413388 1.319075
2 21 0.792039 1.243799 0.911348 1.051952 1.040248 0.340992 1.3182 0.186366 1.02299 0.471149
2 22 0.772357 1.369351 1.495304 0.975168 1.20853 1.052675 0.936809 1.07896 1.033591 1.342287
2 23 0.48357 0.623172 0.77097 0.970364 0.543473 0.898355 0.259419 1.265781 0.484595 0.715913
2 24 0.523627 0.612846 0.890227 1.579735 0.72517 0.547783 0.627419 0.697304 0.994643 0.56835
2 26 1.189519 1.125358 0.694809 1.000747 1.0286 0.628104 2.865978 0.888764 0.700785 1.983465
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Table 0-2 Data for Slope of Diastolic Trend 

Sequence Sub ST1 2 ST1 4 ST1 6 ST1 8 ST1 10 ST2 2 ST2 4 ST2 6 ST2 8 ST2 10
1 3 0.864481 0.67684 0.973713 0.527332 0.501993 0.511162 1.118513 0.873574 0.829553 0.686144
1 6 0.769912 0.621037 0.779812 0.64816 0.568255 0.505068 0.834901 0.613598 0.556842 0.509019
1 11 0.570306 0.710074 0.992727 0.64734 0.70188 0.77003 1.321779 1.019563 1.027622 0.824891
1 14 0.214157 0.441403 0.294442 -0.09783 0.617368 0.926002 2.781038 -0.05036 0.4572 1.334781
1 15 1.006665 0.66745 0.635346 0.523069 0.42319 1.528611 0.905746 0.858616 0.59785 0.655727
1 16 0.603037 0.615479 0.90965 0.867676 0.506823 0.533866 0.374708 0.997666 0.80608 0.461008
1 17 0.133866 0.544955 0.567776 1.165346 -0.0816 0.546329 1.014713 0.761755 0.480093 0.49544
1 18 1.021984 0.763382 0.629403 0.639445 1.130142 0.698041 1.323654 0.584152 1.11138 1.063217
1 25 0.770766 0.448815 0.653497 0.993116 0.942696 1.131153 -0.16983 0.611798 0.347395 0.762023
1 27 0.899263 1.368214 0.883983 0.782694 0.671354 0.520781 0.900055 0.811662 1.262795 0.527873
2 1 1.632993 1.501814 1.359796 1.781435 2.071422 1.399204 1.35171 1.929044 1.594386 0.982429
2 2 1.027177 1.510289 0.723758 1.801988 1.30308 1.388089 0.819657 1.815525 1.024468 1.264564
2 4 0.46246 0.425371 0.370501 0.348924 0.296053 0.208774 0.460243 0.545083 0.338422 0.350911
2 5 0.910099 1.076205 0.81753 1.095711 0.345058 0.941531 0.708682 0.493737 1.282727 0.803095
2 7 1.040946 1.426316 0.768181 0.55603 0.945327 0.80507 0.813237 1.046944 1.36009 1.133375
2 8 0.981108 0.429257 0.59193 1.050676 0.658543 0.30407 0.934275 0.763624 1.394695 1.045013
2 10 0.691895 0.644469 0.718641 0.667507 0.438443 1.003316 0.79055 0.915331 0.772949 0.750898
2 12 0.478709 0.221744 0.614518 0.508209 0.637141 0.288278 0.322798 0.773002 0.306478 0.332395
2 13 -0.17058 0.199631 0.516286 0.331825 0.674984 0.641015 0.634812 0.584807 0.616918 0.456759
2 19 0.412634 -0.11268 1.122479 1.058303 0.731629 3.032795 1.296722 0.519653 0.443891 0.422281
2 20 0.725685 1.206938 0.921576 1.379203 1.614151 0.76774 1.00819 0.626575 0.941792 1.595279
2 21 0.273543 0.66132 0.414323 0.275868 0.256879 0.663599 0.498614 0.790166 0.813069 0.829395
2 22 0.623917 0.689017 1.055969 0.967249 1.188081 0.360704 1.038124 1.057447 0.891281 1.100303
2 23 0.053076 0.771813 0.489834 0.653148 0.786846 0.485048 0.584847 0.633409 1.174143 0.627201
2 24 0.435291 0.591408 0.528147 0.772167 0.42021 0.581063 0.527332 0.555248 1.25568 0.535433
2 26 -0.46347 2.425572 0.242121 0.620174 0.99172 -0.52161 0.717597 0.169036 0.688308 0.240981
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Appendix B 

R Functions and Codes  
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############################################################################## 

##NewRank Function- Determines the shape of the underlying method using indicator function 
(Hill et al. 1988) 

##and applies the appropriate score function to the ranks  

##Developed by Afshan Boodhwani @2016 

############################################################################## 

 

NewRank=function(Sum,Sequence) { 

  Sequence<-as.numeric(Sequence) 

  Rank.Sum=rank(Sum) 

  

  library(plyr) 

   

  count=count(Sequence) 

  n=1:length(count) 

   

  for(i in 1:length(count)){ 

    n[i]=count$freq[i] 

  } 

  N=sum(n) 

   

  #Sratify using Sequence 

  Seq1.Sum=1:n[1] 

  Seq2.Sum=1:n[2] 

  j=1 

  k=1 

   

  for(i in 1:N) { 

    if(Sequence[i]==1){ 
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      Seq1.Sum[j]=Sum[i] 

      j=j+1 

    } 

    if(Sequence[i]==2){ 

      Seq2.Sum[k]=Sum[i] 

      k=k+1 

    } 

  } 

   

  #Assigning Ranks Based on Sequence  

  Rank1.Sum=rank(Seq1.Sum) 

  Rank2.Sum=rank(Seq2.Sum) 

   

  #Calculating Q1 

  cutoff=quantile(Rank1.Sum, c(.95, .75,.5,.25, .05)) 

   

  j1=0 

  j2=0 

  j3=0 

  j4=0 

  j5=0 

  U.05=0 

  L.05=0 

  U.5=0 

  L.5=0 

  M.5=0 

   

  #This will take care of duplicates 
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  Sort.Rank=sort(Rank1.Sum, decreasing=TRUE) 

  Sort.Sum=sort(Seq1.Sum, decreasing=TRUE) 

   

  fifth.n1=ceiling(n[1]*.05) 

  fifty.n1= ceiling(n[1]*.5) 

   

  #Intermediate variables 

  for(i in 1:n[1]){ 

    if(Sort.Rank[i]>=cutoff[1] & j1 < fifth.n1){ 

      U.05=(U.05+Sort.Sum[i]) 

      j1=j1+1 

    } 

     

    if(Sort.Rank[i]<=cutoff[5] & j2 < fifth.n1){ 

      L.05=(L.05+Sort.Sum[i]) 

      j2=j2+1 

    } 

     

    if(Sort.Rank[i]>=cutoff[3] & j3 < fifty.n1){ 

      U.5=(U.5+Sort.Sum[i]) 

      j3=j3+1 

    } 

     

    if(Sort.Rank[i]<=cutoff[3] & j4 < fifty.n1){ 

      L.5=(L.5+Sort.Sum[i]) 

      j4=j4+1 

    } 
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    if(cutoff[4]<Sort.Rank[i]& Sort.Rank[i]<=cutoff[2] & j5 < fifty.n1){ 

      M.5=(M.5+Sort.Sum[i]) 

      j5=j5+1 

    } 

  } 

   

  U.05=U.05/j1 

  L.05=L.05/j2 

  U.5=U.5/j3 

  L.5=L.5/j4 

  M.5=M.5/j5 

   

  Q11=(U.05-M.5)/(M.5-L.05) 

  Q21=(U.05-L.05)/(U.5-L.5) 

   

  #Working with Seq2  

  #Calculating Q12 

  cutoff=quantile(Rank2.Sum, c(.95, .75,.5,.25, .05)) 

   

  j1=0 

  j2=0 

  j3=0 

  j4=0 

  j5=0 

  U.05=0 

  L.05=0 

  U.5=0 

  L.5=0 
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  M.5=0 

   

  #This will take care of duplicates 

  Sort.Rank=sort(Rank2.Sum, decreasing=TRUE) 

  Sort.Sum=sort(Seq2.Sum, decreasing=TRUE) 

   

  fifth.n2=ceiling(n[2]*.05) 

  fifty.n2= ceiling(n[2]*.5) 

   

  #Intermediate variables 

  for(i in 1:n[2]){ 

    if(Sort.Rank[i]>=cutoff[1] & j1 < fifth.n2){ 

      U.05=(U.05+Sort.Sum[i]) 

      j1=j1+1 

    } 

     

    if(Sort.Rank[i]<=cutoff[5] & j2 < fifth.n2){ 

      L.05=(L.05+Sort.Sum[i]) 

      j2=j2+1 

    } 

     

    if(Sort.Rank[i]>=cutoff[3] & j3 < fifty.n2){ 

      U.5=(U.5+Sort.Sum[i]) 

      j3=j3+1 

    } 

     

    if(Sort.Rank[i]<=cutoff[3] & j4 < fifty.n2){ 

      L.5=(L.5+Sort.Sum[i]) 
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      j4=j4+1 

    } 

     

    if(cutoff[4]<=Sort.Rank[i] & Sort.Rank[i]<=cutoff[2] & j5 < fifty.n2){ 

      M.5=(M.5+Sort.Sum[i]) 

      j5=j5+1 

    } 

  } 

   

  U.05=U.05/j1 

  L.05=L.05/j2 

  U.5=U.5/j3 

  L.5=L.5/j4 

  M.5=M.5/j5 

   

  Q12=(U.05-M.5)/(M.5-L.05) 

  Q22=(U.05-L.05)/(U.5-L.5) 

   

  ###########Weighted Measures 

  Q1bar=((n[1]*Q11)+(n[2]*Q12))/N 

  Q1bar 

  Q2bar=((n[1]*Q21)+(n[2]*Q22))/N 

  Q2bar 

  #############Score Selection 

  Score="Unknown" 

  Desp="Unknown" 

  U=Rank.Sum/(N+1) 

  J.U=U 



 

77 
 

   

  if(Q2bar > 3.8){ 

    Score="W" 

    Desp="Heavy Tailed" 

    J.U=U 

  } else if (.5 <= Q1bar & Q1bar <= 2 & 2.24 <= Q2bar & Q2bar<= 3.8){ 

    Score="W" 

    Desp="Moderate Tailed" 

    J.U=U 

  } else if (.5 <= Q1bar & Q1bar <= 2 & Q2bar < 2.24) { 

    Score="ML" 

    Desp="Light Tailed" 

    for(i in 1:length(J.U)){ 

      if(0<U[i] & U[i]<.25){ 

        J.U[i]=-1*((U[i]-.25)^2) 

      }  else if (.25<=U[i] & U[i]<=.75){ 

        J.U[i]=0 

      }else if (.75 < U[i] & U[i] < 1){ 

        J.U[i] = (U[i]-.75)^2} 

    } 

  } else if (Q1bar < .5 & Q2bar < 3.8){ 

    Score="SL" 

    Desp="Left Skewed" 

    for(i in 1:length(J.U)){ 

      if(0<U[i] & U[i]<= .5){ 

        J.U[i]=0 

      }  else if (.5<U[i] & U[i]<1){ 

        J.U[i]=((U[i]-.5))} 
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    }  

  } else if (Q1bar > 2 & Q2bar < 3.8){ 

    Score="SR" 

    Desp="Right Skewed" 

    for(i in 1:length(J.U)){ 

      if(0<U[i] & U[i]<= .5){ 

        J.U[i]=((U[i]-.5)) 

      } else if (.5<U[i] & U[i]<1){ 

        J.U[i]=0} 

    } 

  } else { 

    Score="Error" 

    Desp="Error"  

    U=0 

    J.U=0 

  } 

  

  output<-list(J.U,  

       Desp,c(Q11,Q12,Q1bar), c(Q21,Q22,Q2bar)) 

names(output)<-c("Apadtive Ranks","Underlying Distribution","Q1","Q2") 

names(output$Q1)<-c("Q11","Q12","Q1bar") 

names(output$Q2)<-c("Q21","Q22","Q2bar") 

output 

  } 
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# R code for ADAPTIVE F1_LD_F1 macro 

# 

# Input: 

#  y: a vector of variable of interest 

#  group: a vector of group variable (factor level) 

#  time : a vector of time variable 

#  subject : a vector of independent subjects 

# 

# Optional Input: 

#  w.pat: pattern matrix of order group level x time level 

#  w.t : vector of order time level, pattern for interaction 

#  w.g : vector of order group level, group pattern 

#  time.name: name of the time vector. "Time" is set as default. 

#  group.name: name of the time vector. "Group" is set as default. 

#               description: description of the output. Default is set to TRUE (show description) 

#  time.order: a vector of time levels specifying the order. 

#  group.order: a vector of group levels specifying the order. 

# 

f1.ld.f1.adap<- function(y, time, group, subject, w.pat=NULL, w.t=NULL, w.g=NULL, 
time.name="Time", group.name="Group",  

                     description=TRUE, time.order=NULL, 
group.order=NULL,plot.RTE=TRUE,show.covariance=FALSE, order.warning=TRUE) 

{ 

  #        For model description see Brunner et al. (2002) 

  #        f1.ld.f1.adap Author: Afshan Boodhwani  

  #                     Department of Mathematics, University of Texas at Arlington, Texas, USA  

  # 

  #        F1-LD-F1 Author: Mahbub Latif (mlatif@gwdg.de) 

  #                     Department of Medical Statistics, Goettingen, Germany 
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  # 

  #         Version:  01-01 

  #         Date: February 18, 2003 

  # 

  #        Editied by: Kimihiro Noguchi 

  #         Version:  01-02 

  #         Date: August 18, 2009 

  # 

  #        Editied by: Kimihiro Noguchi 

  #         Version:  01-03 

  #         Date: December 24, 2009 

  # 

  #    Key Variables: 

  #                time: time factor 

  #                t: number of levels of time 

  #                a: number of levels of group 

  #                N: total number of observations 

  #                ind: indicator of whether there exists a missing observation (0=Yes,1=No) 

  #                N.na: total number of missing observations 

  #                subject: total number of subject 

  #                rscore: ranks of the variable of interest 

  #                rankmean: mean rank for each level of time 

  #                Nobs: total number of observations for each level of time 

  #                RTE: relative treatment effects 

   

  #    check whether the input variables are entered correctly 

   

  var<-y 
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  if(is.null(var)||is.null(time)||is.null(group)||is.null(subject)) 

    stop("At least one of the input parameters (y, time, group, or subject) is not found.") 

   

  sublen<-length(subject) 

  varlen<-length(var) 

  timlen<-length(time) 

  grolen<-length(group) 

   

  if((sublen!=varlen)||(sublen!=timlen)||(sublen!=grolen)) 

    stop("At least one of the input parameters (y, time, group, or subject) has a different length.") 

   

  
##############################################################################
####### 

  # The following are the helper functions for the main function 

  # List of functions: 

  # rte: outputs the relative treatment effect 

  # case2x2: outputs statistics for 2 x 2 design 

  # wald.test: outputs Wald-type test statistics 

  # ANOVA.test: outputs ANOVA-type test statistics 

  # Simple.time.test: outputs test statistics for time effect 

  # pair.comp.test: outputs test statistics for paired comparison test statistics 

  # pattern.group: outputs test statistics for patterned alternatives for group effects 

  # df.p: calculates degrees of freedom for patterned alternatives 

  # one: changes matrix to a vector 

  # I: creates an identity matrix 

  # J: creates a unit matrix 

  # count.subj: counts the number of subjects in each level of group 

  # vi: calculates the variance equation (8.18) 
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  # V: calculates the block diagonal covariance matrix 

  # mean.factor: calculates the mean of each factor 

  # df: calculates the degrees of freedom 

  # tr: calculates the trace of the matrix 

  
##############################################################################   

  # rte function for relative treatment effects 

  rte <- function(group, time, indx, rscore) 

  { 

    a <- nlevels(group); 

    t <- nlevels(time); 

    tab <- t(matrix(mean.factor(rscore, group:time, indx), t, a)) 

    rankmean.g <- as.vector(apply(tab, 1, mean)); 

    rankmean.y <- as.vector(apply(tab, 2, mean)); 

    rankmean.gy <- mean.factor(rscore,group:time, indx) 

    RankMean <- c(rankmean.g, rankmean.y, rankmean.gy); 

     

    # no of observations per factors 

    Nobs <- c(tapply(indx, group, sum), tapply(indx, time, sum), tapply(indx, group:time, sum)) 

     

    # rte 

    RTE <- (1/sum(indx))*(RankMean - median(rscore)) 

     

    # output 

     

    out <- data.frame(RankMeans=RankMean, Nobs=Nobs, RTE=RTE) 

    levels(group) <- paste(group.name,glevel,sep="") 

    levels(time) <- paste(time.name,tlevel,sep="") 

    row.names(out)<-c(levels(group), levels(time), levels(group:time)) 
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    return(out) 

  } 

   

  ## Case 2 x 2 as described in 8.1.2. 

  case2x2 <- function(group, time, subj, rscore, ind) 

  { 

    rscore <- rscore*ind 

    rscore.s <- split(rscore, group) 

    subj.s <- split(subj, group) 

    ind.s <- split(ind, group) 

    sigma2 <- rep(0,2) 

    Un <- 0 

    Un.const <- 0 

    v.den <- 0 

    UnT <- 0 

    UnT.c <- 0 

    vT <- 0 

    UnAT <- 0 

     

    for(i in 1:2) 

    { 

      junk <- t(sapply(split(as.vector(rscore.s[[i]]), as.vector(subj.s[[i]])), matrix)) 

      junk.i <- t(sapply(split(as.vector(ind.s[[i]]), as.vector(subj.s[[i]])), matrix)) 

      junk<-as.matrix(junk) 

      junk.i<-as.matrix(junk.i) 

      junk.m <- apply(junk,2,sum)/apply(junk.i,2,sum) 

      junk.s <- apply(junk,1,sum) 
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      # Group effect 

      Un <- Un + sum(junk.m)*(-1)^(i+1) 

      sigma2[i] <- sum((junk.s - sum(junk.m))^2)/(nrow(junk)-1) 

      Un.const <- Un.const + sigma2[i]/nrow(junk) 

      v.den <- v.den+(sigma2[i]/nrow(junk))^2/(nrow(junk)-1) 

       

      # Time 

      junk.d <- apply(junk,1,diff) 

      tau2 <- sum((junk.d - diff(junk.m))^2)/(nrow(junk)-1) 

      UnT <- UnT - diff(junk.m) 

      UnT.c <- UnT.c + tau2/nrow(junk) 

      vT <- vT + (tau2/nrow(junk))^2/(nrow(junk)-1) 

       

      # Interaction 

      UnAT <- UnAT + diff(junk.m)*(-1)^i 

    } 

     

    # Group effect 

    Un <- Un/sqrt(Un.const) 

    v <- Un.const^2/v.den 

    if(!is.na(Un)&&(v > 0)) 

    { 

      pGN <- (pnorm(abs(Un),lower.tail=FALSE))*2 

      pGT <- (pt(abs(Un), v,lower.tail=FALSE))*2 

    } 

    else 

    { 

      pGN <- NA 
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      pGT <- NA 

    } 

    out <- data.frame(Statistics=Un, NN=pGN, DF=v, tt=pGT) 

     

    # Time effect 

    UnT <- UnT/sqrt(UnT.c) 

    vT <- UnT.c^2/vT 

    if(!is.na(UnT)&&(vT > 0)) 

    { 

      pTN <- (pnorm(abs(UnT),lower.tail=FALSE))*2 

      pTT <- (pt(abs(UnT),vT,lower.tail=FALSE))*2 

    } 

    else 

    { 

      pTN <- NA 

      pTT <- NA 

    } 

    out <- rbind(out, c(UnT,pTN,vT,pTT)) 

     

    # Interaction 

    UnAT <- UnAT/sqrt(UnT.c) 

    if(!is.na(UnAT)&&(vT > 0)) 

    { 

      pATN <- (pnorm(abs(UnAT),lower.tail=FALSE))*2 

      pATT <- (pt(abs(UnAT),vT,lower.tail=FALSE))*2 

    } 

    else 

    { 



 

86 
 

      pATN <- NA 

      pATT <- NA 

    } 

    out<- rbind(out, c(UnAT,pATN,vT,pATT)) 

    names(out) <- c("Statistic","p-value(N)","df","p-value(T)") 

    row.names(out) <- c(group.name, time.name, paste(group.name,":",time.name,sep="")) 

    return(list(case2x2=out)) 

  } 

   

  # Wald test to test average group effect, average time effect, and global interaction effect 

  wald.test <- function(group, time, subject, rscore, ind, ni) 

  { 

    n <- sum(ni); 

    N <- sum(ind) 

    a <- nlevels(group) 

    t <- nlevels(time) 

    V <- V(group, time, subject, rscore, ind, a, t, ni)$V 

    R <- V(group, time, subject, rscore, ind, a, t, ni)$R 

     

    # unconditional time mean 

    tab <- t(matrix(mean.factor(rscore, group:time, ind), t, a)) 

    t.mean <- as.vector(apply(tab, 2, mean)); 

     

    # Average group effect 

    p <- (R - 0.5)/N; # RTE group x time 

    Pa <- I(a) - (1/a) * J(a) 

    Pt <- I(t) - (1/t) * J(t) 

    Pat <- kronecker(Pa, Pt) 
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    # second last equation of page 134 

    cpg <- sqrt(n) * Pa %*% kronecker(I(a), (1/t)*t(one(t))) %*% p; 

     

    # last equation of page 134 

    Sigma <- kronecker(Pa,  (1/t)*t(one(t))) %*% V %*%  kronecker(Pa, (1/t)*one(t)); 

     

    # equation (8.10) 

    cvc <- Pa %*% Sigma %*% Pa 

    Q.a <- t(cpg) %*% ginv(cvc) %*% cpg; 

     

    df.a <- tr(cvc%*%ginv(cvc)) 

    if(!is.na(Q.a) && (Q.a > 0)) pval.a <- round(pchisq(Q.a, df.a,lower.tail=FALSE),Inf) 

    else pval.a <- NA; 

    A <- c(W=Q.a, df=df.a, pval=pval.a); 

     

    # Average time effect, eqn (8.9) 

    S <- kronecker((1/a)*t(one(a)), I(t)) %*% V %*% kronecker((1/a)*one(a), I(t)) 

     

    cpt <- Pt %*% t.mean; 

     

    # equation (8.20) 

    cvc <- Pt %*% S %*% Pt 

    Q.t <- (n/N^2)*t(cpt) %*% ginv(cvc) %*% cpt; 

    df.t <- tr(cvc%*%ginv(cvc)) 

    if(!is.na(Q.t) && (Q.t > 0)) pval.t <- round(pchisq(Q.t, df.t,lower.tail=FALSE),Inf) 

    else pval.t <- NA; 

    T <- c(Q.t, df.t, pval.t); 
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    # Global interaction effect 

    Cat <- kronecker(Pa, Pt); # book notation of page 141 

     

    # equation (8.26) 

    cvc <- Cat %*% V %*% t(Cat) 

    Q.at <- (n/N^2)*t(Cat %*% R) %*% ginv(cvc) %*% Cat %*% R; 

    df.at <- tr(cvc%*%ginv(cvc)) 

    if(!is.na(Q.at) && (Q.at > 0)) pval.at <- round(pchisq(Q.at, df.at,lower.tail=FALSE), Inf) 

    else pval.at <- NA; 

    AT <- c(Q.at, df.at, pval.at); 

     

    # results 

    out.w <- rbind(A, T, AT); 

    colnames(out.w) <- c("Statistic", "df", "p-value") 

    rownames(out.w) <- c(group.name,time.name,paste(group.name,":",time.name,sep="")) 

    out <- list(Wald.test=out.w); 

  } 

   

  # To test average group effect, average time effect, and global interaction effect 

  anova.test <- function(group, time, subject, rscore, ind, a, ni) 

  { 

    group <- as.factor(group) 

    time <- as.factor(time) 

    t <- nlevels(time) 

     

    t.mean <- apply(t(matrix(mean.factor(rscore, group:time, ind), t, a)),2,mean) 
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    n <- sum(ni); 

    N <- sum(ind) 

     

    V <- V(group, time, subject, rscore, ind, a, t, ni)$V 

    R <- V(group, time, subject, rscore, ind, a, t, ni)$R 

     

    # Average group effect 

    p <- (R - 0.5)/N; # RTE corresponding group x time 

    Pa <- I(a) - (1/a) * J(a); # centering matrix 

    Pt <- I(t) - (1/t) * J(t); # centering matrix 

    Pat <- kronecker(Pa, Pt); 

     

    # second last equation of page 134 

    cpg <- sqrt(n) * Pa %*% kronecker(I(a), (1/t)*t(one(t))) %*% p; 

    Sigma <- kronecker(Pa,  (1/t)*t(one(t))) %*% V %*%  kronecker(Pa, (1/t)*one(t)); 

     

    # average group effect 

    # equation (8.11) 

    F.a <- t(cpg) %*% cpg/sum(diag(Pa %*% Sigma)); 

    # equation (5.7) 

    df1.a <- sum(diag(Pa %*% Sigma))^2/sum(diag((Pa %*% Sigma) %*% (Pa %*% Sigma))); 

    if((!is.na(F.a))&&(!is.na(df1.a))&&(F.a > 0)&&(df1.a > 0)) pval.a<-
pchisq(F.a*df1.a,df1.a,lower.tail=FALSE) 

    else pval.a<-NA; 

    A <- round(c(B=F.a, df=df1.a, pval=pval.a), Inf); 

     

    # average time effect 

    # equation (8.9) 

    S <- kronecker((1/a)*t(one(a)), I(t)) %*% V %*% kronecker((1/a)*one(a), I(t)) 
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    cpt <- Pt %*% t.mean; 

     

    # equation (8.21) 

    F.t <- (n/N^2) * (t(cpt) %*% cpt)/sum(diag(Pt %*% S)); 

    df1.t <- sum(diag(Pt %*% S))^2/sum(diag(Pt %*% S %*% Pt %*% S)); 

    if((!is.na(F.t))&&(!is.na(df1.t))&&(F.t > 0)&&(df1.t > 0)) pval.t<-
pchisq(F.t*df1.t,df1.t,lower.tail=FALSE) 

    else pval.t<-NA; 

    T <- round(c(F.t, df1.t, pval.t),Inf); 

     

    # Global interaction effect 

    F.at <- n * t(p) %*% Pat %*% p/sum(diag(Pat %*% V)); 

    df1.at <- sum(diag(Pat %*% V))^2/sum(diag(Pat %*% V %*% Pat %*% V)); 

    if((!is.na(F.at))&&(!is.na(df1.at))&&(F.at > 0)&&(df1.at > 0)) pval.at<-
pchisq(F.at*df1.at,df1.at,lower.tail=FALSE) 

    else pval.at<-NA; 

    AT <- round(c(F.at, df1.at, pval.at), Inf); 

    out.box <- rbind(A, T, AT); 

    colnames(out.box) <- c("Statistic", "df", "p-value") 

    rownames(out.box) <- c(group.name,time.name,paste(group.name,":",time.name,sep="")) 

    # modified Box-approximation 

    df1 <- df(V, a, t, ni, ind)$df1 

    df2 <- df(V, a, t, ni, ind)$df2 

    if((!is.na(F.a)) && (!is.na(df1)) && (!is.na(df2)) && (F.a > 0) && (df1 > 0) && (df2 > 0)) 
pval.mb <- pf(F.a, df1, df2,lower.tail=FALSE) 

    else pval.mb <- NA 

    A <- rbind(round(c(B=F.a, df1=df1, df2=df2, pval=pval.mb), Inf)); 

    colnames(A) <- c("Statistic", "df1", "df2","p-value") 
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    rownames(A) <- c(group.name) 

    out <- list(ANOVA.test=out.box, ANOVA.test.mod.Box=A); 

     

    return(out); 

  } 

   

  # Simple time test to test time effect 

  simple.time.test <- function(name.group, a , t, ni, N, pat.dat, V1, R1) 

  { 

    # simple time effect 

    Pt <- I(t) - (1/t) * J(t); 

    wald <- as.data.frame(matrix(0, a, 3)); 

    rownames(wald)<-name.group 

    anova <- as.data.frame(matrix(0, a, 3)); 

    rownames(anova)<-name.group 

    normal <- as.data.frame(matrix(0, a, 4)); 

    rownames(normal)<-name.group 

    names(wald) <- c("Statistic", "df", "p-value"); 

    names(anova) <- c("Statistic", "df", "p-value"); 

    names(normal) <- c("Statistic", "p-value(N)", "df", "p-value(T)"); 

    n <- sum(ni); k <-1; 

     

    for(i in 1:a) 

    { 

      V <- V1[k:(i*t), k:(i*t)]; 

      R <- R1[k:(i*t),1]; 

      k <- i*t + 1; 

      cp <- Pt %*% R; 
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      Q.s <- round((n/N^2) * t(cp) %*% ginv(Pt %*% V %*% Pt) %*% cp, Inf); 

      F.s <- round((n/N^2) * t(cp) %*% cp/sum(diag(Pt %*% V)), Inf); 

      df <- tr((Pt %*% V %*% Pt)%*%ginv(Pt %*% V %*% Pt)) 

      df1 <- round(sum(diag(Pt %*% V))^2/sum(diag(Pt %*% V %*% Pt %*% V)), Inf); 

      if((!is.na(Q.s)) && (!is.na(df)) && (Q.s > 0) && (df > 0)) pval <- round(pchisq(Q.s, 
df,lower.tail=FALSE), Inf) 

      else pval <- NA; 

      if((!is.na(F.s)) && (!is.na(df1)) && (F.s > 0) && (df1 > 0)) pval1<-
round(pchisq(F.s*df1,df1,lower.tail=FALSE), Inf) 

      else pval1 <- NA 

      out <- c(Q.s, df, pval); 

      out1 <- c(F.s, df1, pval1); 

      wald[i,] <- out; 

      anova[i,] <- out1; 

       

      # pattern effect 

      if(!is.null(pat.dat)) 

      { 

        pi <- (R - 0.05)/N; 

        s2 <- (ni[i]/n) * as.numeric(pat.dat[i,]) %*% Pt %*% V %*% Pt %*% 
as.numeric(pat.dat[i,]); 

        L <- round(sqrt(ni[i]/s2) * as.numeric(pat.dat[i,]) %*% Pt %*% pi, Inf); 

        p.nor <- round((pnorm(L,lower.tail=FALSE)), Inf); 

        df1 <- ni[i] -1; 

        pval <- round((pt(L, df1,lower.tail=FALSE)), Inf); 

        normal[i,] <- c(L, p.nor, df1, pval); 

      } 

    } 
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    sim.time.effect <- list(Wald.test.time=wald, ANOVA.test.time=anova); 

    if(!is.null(pat.dat)) pat.time.effect <- list(pattern.time=normal) 

    else pat.time.effect <- list(pattern.time=NULL) 

     

    return(c(sim.time.effect, pat.time.effect)); 

  } 

   

  # pairwise comparison test statistics 

  pair.comp.test <- function(data, ni, w, lev.grp) 

  { 

    a <- nlevels(factor(data[,1])); 

    t <- nlevels(factor(data[,2])); 

    n <- sum(ni) 

    N <- sum(data[,5]) 

     

    Pt <- I(t) - (1/t)*J(t) 

    V11 <- V(data[,1], data[,2], data[,3], data[,4], data[,5], a, t, ni)$V; 

     

    # arranging output 

    out <- as.data.frame(matrix(0, 3*choose(a,2), 3)); 

    out.pat <- as.data.frame(matrix(0, choose(a,2), 4)); 

    names(out) <- c("Statistic", "df", "p-value"); 

    names(out.pat) <- c("Statistic", "p-value(N)", "df", "p-value(T)") 

    Test <- rep(c(group.name,time.name,paste(group.name,":",time.name,sep="")), choose(a,2)); 

    Pairs <- rep(0, 3*choose(a ,2)); 

     

     

    k <- 1; 
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    ll <-1 

    for(i in 1:(a-1)) 

    { 

      for(j in (i+1):a) 

      { 

        data.p <- data[data[,1]==i | data[,1]==j,] 

        ni.p <- matrix(c(ni[i],ni[j]), 2,1); 

         

        nn <- sum(ni.p) 

        NN <- sum(data.p[,5]); 

         

        gr <- data.p[,1] 

        tm <- data.p[,2] 

        subj <- data.p[,3] 

        rs <- data.p[,4] 

        ind <- data.p[,5] 

         

        V <- V(as.numeric(gr), tm, subj, rs, ind, 2, t, ni.p)$V 

        R <- V(as.numeric(gr), tm, subj, rs, ind, 2, t, ni.p)$R 

         

        out[k:(k+2),] <- anova.test(gr, tm, subj, rs, ind, 2, ni.p)$ANOVA.test 

        Pairs[k:(k+2)] <- paste(group.name,lev.grp[i], ":",group.name,lev.grp[j],sep="") 

        k <- k + 3; 

         

        # pattern interactions 

        if(!is.null(w)) 

        { 

          w <- matrix(w, t,1) 
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          sign <- t(w)%*%Pt%*%(V[1:t,1:t]+V[(t+1):(2*t),(t+1):(2*t)])%*%Pt%*%w 

          out.pat[ll,1] <- sqrt(nn/sign)*t(w-mean(w))%*%(R[1:t,] - R[(t+1):(2*t),])/NN 

          out.pat[ll,2] <- pnorm(out.pat[ll,1],lower.tail=FALSE) 

          posA <- matrix(0, a, 1); 

          posA[i,]<- 1; posA[j,] <- 1; 

          CC <- t(w)%*%Pt 

          M <- kronecker(diag(c(posA)),CC) 

          S <- M%*%V11%*%t(M) 

          lambda <- solve(diag(c(ni))-I(a)) 

          out.pat[ll,3] <- tr(S)^2/tr(S*S*lambda) 

          out.pat[ll,4] <- pt(out.pat[ll,1],out.pat[ll,3],lower.tail=FALSE) 

          row.names(out.pat)[ll] <- paste(group.name,lev.grp[i],":",group.name,lev.grp[j],sep=""); 

          ll <- ll + 1 

        } 

      } 

    } 

     

    out <- cbind(Pairs, Test, out); 

    if(!is.null(w)) pair.comp<- list(pair.comparison=out, 
pattern.pair.comparison=round(out.pat,Inf)) 

    else pair.comp <- list(pair.comparison=out, pattern.pair.comparison=NULL) 

    return(pair.comp); 

  } 

   

  # patterned alternatives for group effects 

  pattern.group <- function(group, time, subject, rscore, ind, a, t, ni, g.mean, w.g) 

  { 

    n <- sum(ni) 

    N <- sum(ind) 
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    Pa <- I(a) - (1/a)*J(a) 

    V <- V(group, time, subject, rscore, ind, a, t, ni)$V 

    S <- kronecker(Pa, (1/t)*t(one(t)))%*%V%*%kronecker(Pa, (1/t)*one(t)) 

    w.g <- matrix(w.g, a, 1) 

    lambda <- solve(diag(c(ni))-I(a)) 

    c <- Pa%*%w.g 

     

    g <- (g.mean-.5)/N 

    Kn <- sqrt(n)*t(w.g)%*%Pa%*%g 

    sign <- t(c)%*%S%*%c 

     

    df<- df.p(V, a, t, ni, ind, w.g) 

     

    Ln <- Kn/sqrt(sign) 

    pval.t <- pt(Ln, df,lower.tail=FALSE) 

    pval.n <- pnorm(Ln,lower.tail=FALSE) 

    out<-rbind(round(c(Ln=Ln, pval.N=pval.n, df=df, pval.t=pval.t),Inf)) 

    colnames(out) <- c("Statistic", "p-value(N)", "df", "p-value(T)") 

    rownames(out) <- c(group.name) 

    return(list(pattern.group=out)) 

  } 

   

  # degrees of freedom calculatin for patterned alternative 

  df.p <- function(V, a, t, ni, ind, w) 

  { 

    Pa <- I(a) - (1/a)*J(a) 

    lambda <- solve(diag(c(ni)) - I(a)) 

    c <- (diag(c(t(w)%*%Pa)))^2 
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    m <- kronecker(I(a), (1/t)*t(one(t))) 

    s <- m%*%V%*%t(m) 

    x <- c*s 

    df <- (tr(x))^2/tr((x%*%x)*lambda) 

    return(df) 

  } 

   

  # one vector 

  one <- function(d) return(matrix(1, d, 1)); 

   

  # Identity matrix 

  I <- function(d) 

  { 

    junk <- rep(1, length=d); 

    junk <- diag(junk); 

    return(junk); 

  } 

   

  # Unit matrix 

  J <- function(d1, d2=d1) return(matrix(1,d1,d2)); 

   

  # count the number of subjects in each level of group 

  count.subj <- function(group, subject) 

  { 

    group <- as.factor(group) 

    table <- table(group, subject); 

    n <- matrix(0,nlevels(group), 1); 

    for(i in 1:nlevels(group)) n[i] <- length(colnames(table)[table[i,] > 0]); 
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    return(n); 

  } 

   

  # variance Vi equation (8.18) 

  Vi <- function(data) 

  { 

    time <- factor(data$time) 

    subj <- factor(data$subj) 

    srank <- data$rscore 

    indx <- data$indx 

     

    t <- nlevels(time) 

    n0 <- nlevels(subj) 

     

    # matrix of order subject x time, R_ik - R_i 

    srank.m <- matrix(tapply(srank, subj:time, sum), t, n0) 

    ind.m <- matrix(tapply(indx, subj:time, sum), t, n0) 

     

    junk <- srank.m*ind.m; 

    t.junk <- t(ind.m); 

     

    R <- apply(junk,1,sum)/apply(ind.m, 1,sum); 

    junk1 <- t(junk -R) 

     

    V <- matrix(0, t, t); 

     

    for(i in 1:t) 

    { 
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      for(j in 1:t) 

      { 

        ls <- sum(t.junk[,i]); 

        if(i==j) V[i,i] <- sum(t.junk[,i]*junk1[,i]^2)/(ls*(ls-1)) 

        else 

        { 

          lss <- sum(t.junk[,i]*t.junk[,j]); 

          kss <- (ls-1)*(sum(t.junk[,j])-1) + lss - 1; 

          V[i,j] <- sum(t.junk[,i]*t.junk[,j]*junk1[,i]*junk1[,j])/kss; 

        } 

      } 

    } 

     

    out <- list(R=R,V=V); 

    return(out); 

  } 

   

  # block diagonal covariance matrix 

  V <- function(group, time, subj, rscore, indx, a, t, ni) 

  { 

    group <- as.factor(group) 

    subj <- as.factor(subj) 

    time <- as.factor(time) 

    data <- data.frame(group, time, subj, rscore, indx) 

     

    n <- sum(ni); 

    N <- sum(indx); 
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    # split rscore by group 

    split.d <- split(data, data$group) 

     

    # calculating covariance matrix for average group, time and global interaction effect 

    V <- matrix(0, a*t, a*t); 

    R <- matrix(0, a*t, 1); 

    i <- 1; k <- 1; 

    while(i <= a) 

    { 

      V[k:(i*t), k:(i*t)] <-  Vi(split.d[[i]])$V; 

      R[k:(i*t), 1] <- Vi(split.d[[i]])$R; 

      k <- i*t + 1; 

      i <- i+1; 

    } 

    V <- V*n/N^2; 

    out <- list(V=V, R=R); 

  } 

   

  # mean of each factor 

  mean.factor <- function(y, fact, indx) 

  { 

    tab <- tapply(y, fact, sum) 

    ind <- tapply(indx, fact, sum) 

    return(c(tab/ind)) 

  } 

   

  # degrees of freedom calculation 

  df <- function(V, a, t, ni, ind) 
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  { 

    Pa <- I(a) - (1/a)*J(a) 

    Pt <- I(t) - (1/t)*J(t) 

    c <- kronecker(Pa, (1/t)*t(one(t))) 

    tt <- t(c)%*%ginv(c%*%t(c))%*%c 

    tem1 <- tt%*%V; 

    df1 <- (tr(tem1))^2/tr(tem1%*%tem1) 

    dpr <- Pa*I(a) 

    mat <- kronecker(I(a), (1/t)*t(one(t))) 

    va <- mat%*%V%*%t(mat) 

    lambda <- solve(diag(c(ni)) - I(a)) 

    tem1 <- (tr(dpr%*%va))^2 

    tem2 <- tr(dpr%*%dpr%*%va%*%va%*%lambda) 

    df2 <- tem1/tem2 

    return(list(df1=df1, df2=df2)) 

  } 

   

  # trace calculation 

  tr <- function(x) return(sum(diag(x))) 

   

  # end of helper functions 

  
##############################################################################   

  # main function 

   

  library(MASS) 

  glevel <- unique(group) 

  tlevel <- unique(time) 

  slevel <- unique(subject) 
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  t <- length(tlevel) 

  s <- length(slevel) 

  a <- length(glevel) 

   

  if((t*s)!=length(var)) 

    stop("Number of levels of subject (",s, ") times number of levels of time (",t,") 

         is not equal to the total number of observations (",length(var),").",sep="") 

   

  #    time order vector 

   

  if(!is.null(time.order)) 

  { 

    tlevel <- time.order 

    tlevel2 <- unique(time) 

     

    if(length(tlevel)!=length(tlevel2)) # if the levels of the order is different from the one in the 
data 

      stop("Length of the time.order vector (",length(tlevel), ") 

           is not equal to the levels of time vector (",length(tlevel2),").",sep="") 

     

    if(mean(sort(tlevel)==sort(tlevel2))!=1)     # if the elements in the time.order is different from 
the time levels 

      stop("Elements in the time.order vector is different from the levels specified in the time 
vector.",sep="") 

  } 

   

  #    group order vector 

   

  if(!is.null(group.order)) 
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  { 

    glevel <- group.order 

    glevel2 <- unique(group) 

     

    if(length(glevel)!=length(glevel2)) # if the levels of the order is different from the one in the 
data 

      stop("Length of the group.order vector (",length(glevel), ") 

           is not equal to the levels of group vector (",length(glevel2),").",sep="") 

     

    if(mean(sort(glevel)==sort(glevel2))!=1)     # if the elements in the group.order is different 
from the group levels 

      stop("Elements in the group.order vector is different from the levels specified in the group 
vector.",sep="") 

  } 

   

  #    sort data 

   

  sortvector<-double(length(var)) 

  newtime<-double(length(var)) 

  newsubject<-double(length(var)) 

  newgroup<-double(length(var)) 

   

  for(i in 1:length(var)) 

  { 

    row<-which(subject[i]==slevel) 

    col<-which(time[i]==tlevel) 

    newsubject[i]<-row 

    newtime[i]<-col 

    newgroup[i]<-which(group[i]==glevel) 
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    sortvector[((col-1)*s+row)]<-i 

  } 

   

  subject<-newsubject[sortvector] 

  var<-var[sortvector] 

  time<-newtime[sortvector] 

  group<-newgroup[sortvector] 

   

  #    sort again by group, and assign new subject numbers to subjects 

   

  grouptemp<-order(group[1:s]) 

  groupplus<-(rep(c(0:(t-1)),e=s))*s 

  groupsort<-(rep(grouptemp,t))+groupplus 

   

  subject<-rep(c(1:s),t) 

  var<-var[groupsort] 

  time<-time[groupsort] 

  group<-group[groupsort] 

   

  #    organize data 

   

  group<-factor(group) 

  time<-factor(time) 

  subject<-factor(subject) 

   

  score <- var 

  N.na <- sum(is.na(score)) 

  ind <- 1 - is.na(score) 
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  N <- sum(ind) 

  rscore <- NewRank(score,group)$`Apadtive Ranks`*ind 

   

  data <- cbind(group, time, subject, rscore, ind)  

  ni <- count.subj(group, subject) 

  n <- sum(ni); # number of subjects in the experiment 

  model.name<-"F1 LD F1 Adaptive Model" 

   

  if(description==TRUE) 

  { 

    cat(" Total number of observations: ",sum(ind),"\n") 

    cat(" Total number of subjects:  " , n,"\n") 

    cat(" Total number of missing observations: ",N.na,"\n") 

    cat("\n Class level information ") 

    cat("\n ----------------------- \n") 

    cat(" Levels of", time.name, "(sub-plot factor time) : ", t,"\n") 

    cat(" Levels of", group.name, "(whole-plot factor group) : ", a,"\n") 

    cat("\n Abbreviations ") 

    cat("\n ----------------------- \n") 

    cat(" RankMeans = Rank means\n") 

    cat(" Nobs = Number of observations\n") 

    cat(" RTE = Relative treatment effect\n") 

    cat(" case2x2 = tests for 2-by-2 design\n") 

    cat(" Wald.test = Wald-type test statistic\n") 

    cat(" ANOVA.test = ANOVA-type test statistic with Box approximation\n") 

    cat(" ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box 
approximation\n") 

    cat(" Wald.test.time = Wald-type test statistic for simple time effect\n") 

    cat(" ANOVA.test.time = ANOVA-type test statistic for simple time effect\n") 
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    cat(" N = Standard Normal Distribution N(0,1)\n") 

    cat(" T = Student's T distribution with respective degrees of freedom\n") 

    if(!is.null(w.pat)) 

    { 

      pattern.string<-c(w.pat) 

    } 

    else 

    { 

      pattern.string<-"no pattern specified" 

    } 

    if(!is.null(w.t)) 

    { 

      pattern.string.t<-w.t 

    } 

    else 

    { 

      pattern.string.t<-"no pattern specified" 

    } 

    if(!is.null(w.g)) 

    { 

      pattern.string.g<-w.g 

    } 

    else 

    { 

      pattern.string.g<-"no pattern specified" 

    } 

     

    cat(" pattern.time (time effects) = Test against patterned alternatives in time using normal 
distribution (",pattern.string,")","\n") 
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    cat(" pair.comparison = Tests for pairwise comparisions (without specifying a pattern)","\n") 

    cat(" pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in 
time (",pattern.string.t,")","\n") 

    cat(" pattern.group (group effects) = Test against patterned alternatives in group 
(",pattern.string.g,")","\n") 

    cat(" covariance = Covariance matrix","\n") 

    cat(" Note: The description output above will disappear by setting description=FALSE in the 
input. See the help file for details.","\n\n") 

  } 

   

  if(order.warning==TRUE) 

  { 

    cat(" F1 LD F1 Adaptive Model ") 

    cat("\n ----------------------- \n") 

    cat(" Check that the order of the time and group levels are correct.\n") 

    cat(" Time level:  " , paste(tlevel),"\n") 

    cat(" Group level:  " , paste(glevel),"\n") 

    cat(" If the order is not correct, specify the correct order in time.order or group.order.\n\n") 

  } 

   

  # unconditional group and time means 

  tab <- t(matrix(mean.factor(rscore, group:time, ind), t, a)) 

  g.mean <- as.vector(apply(tab, 1, mean)); 

  t.mean <- as.vector(apply(tab, 2, mean)); 

   

  # covariance matrix 

  V2 <- V(group, time, subject, rscore, ind, a, t, ni)$V; 

  R <- V(group, time, subject, rscore, ind, a, t, ni)$R; 
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  SING.COV <- FALSE 

  if(qr(V2)$rank < (t*a)) SING.COV <- TRUE 

  if(SING.COV) 

  { 

    cat("\n Warning(s):\n") 

    cat(" The covariance matrix is singular. \n") 

  } 

   

   

  sdat <- NULL 

  rte <- list(RTE=rte(group, time, ind, rscore)) 

  rte.plot<-data.frame(rte) 

  namen.plot<-rownames(rte.plot)[(a+1):(a+t)] 

  namen.plot.g<-rownames(rte.plot)[1:a] 

  #rte <- data.frame(rte(group, time, ind, rscore)) 

  ### case2x2 is available only when there is no missing observation in the 2-by-2 design. 

  ### otherwise, it returns NULL. 

  if(a==2 && t==2 && N.na==0) 

  { 

    out2 <- case2x2(group, time, subject, rscore, ind) 

  } 

  else 

  { 

    out2 <- list(case2x2=NULL) 

  } 

  wald.test.t <- wald.test(group, time, subject, rscore, ind, ni); 

  anova.test.t <- anova.test(group, time, subject, rscore, ind, a, ni); 

  out2 <- c(out2, wald.test.t, anova.test.t) 
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  simple.time.test.t <- simple.time.test(glevel, a, t, ni, N, w.pat, V2, R); 

  pair.comp.t <- pair.comp.test(data, ni, w.t, glevel) 

  out2 <- c(out2, simple.time.test.t,pair.comp.t) 

   

  if(!is.null(w.g)) pattern.g <- pattern.group(group, time, subject, rscore, ind, a, t, ni, g.mean, w.g) 

  else pattern.g <- NULL 

  if (show.covariance == FALSE) { 

    V2 <- NULL} 

  old.rte <- data.frame(f1.ld.f1(y, time, group, subject, description=FALSE, plot.RTE=FALSE, 
show.covariance=FALSE, order.warning=FALSE)$RTE) 

    out <- c(sdat, old.rte, out2, pattern.g, list(covariance=V2), model.name=model.name) 

  if (plot.RTE == TRUE) { 

trad=f1.ld.f1(y, time, group, subject, description=FALSE, plot.RTE=TRUE, 
show.covariance=FALSE, order.warning=FALSE) 

  } 

   

  return(out) 

} 
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################################################################ 

## Johnson and Grender test statistic for 4 repeated measures  

################################################################ 

JG.4<-function(R.iks,Sequence){ 

i=unique(Sequence) 

 library("stringi") 

s=nrow(R.iks) #repeated measures 

n1=sum(stri_count_fixed(Sequence, 1)) 

n2=sum(stri_count_fixed(Sequence, 2)) 

n=c(n1,n2) 

 

Rbar.i.s=cbind(c(sum(c(R.iks[1,1:n1]/n1)),sum(c(R.iks[2,1:n1]/n1)),sum(c(R.iks[3,1:n1]/n1)),su
m(c(R.iks[4,1:n1]/n1))), 

               
c(sum(c(R.iks[1,(n1+1):(n1+n2)]/n2)),sum(c(R.iks[2,(n1+1):(n1+n2)]/n2)),sum(c(R.iks[3,(n1+1)
:(n1+n2)]/n2)),sum(c(R.iks[4,(n1+1):(n1+n2)]/n2)))) 

 

m=c(median(R.iks[1,1:(n1+n2)]),median(R.iks[2,1:(n1+n2)]),median(R.iks[3,1:(n1+n2)]),media
n(R.iks[4,1:(n1+n2)])) 

 

##Matrix U 

U=matrix(1,nrow=s,ncol=length(i)) 

 

for(k in (1:length(i))){ 

  for(j in (1:s)){ 

    U[j,k]=Rbar.i.s[j,k]-m[j] 

  } 

} 

 

##Covariance Matrix 



 

111 
 

library(data.table) 

V=(R.iks-m) %*% t(R.iks-m) 

V.inv=solve(V)    #Matrix Inverse 

 

 

 

#W Statistic 

Mult=i 

for(k in (1:length(i))){ 

  Mult[k]=t(U[,k])%*%V.inv%*%U[,k] 

} 

 

J=0 

for(k in (1:length(Mult))){ 

  J=J+(n[k]*Mult[k]) 

} 

W=(sum(n)-1)*J 

 

##P-value using Chi-squared Distribution with 2 degrees of freedom (johnson and Grender) 

output<-list(W, 1-pchisq(W,2)) 

names(output)<-c("Test statistic","p-value")              

 output 

} 
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################################################################ 

## Johnson and Grender test statistic for 5 repeated measures  

################################################################ 

JG.5<-function(R.iks,Sequence){ 

  i=unique(Sequence) 

  library("stringi") 

  s=nrow(R.iks) #repeated measures 

  n1=sum(stri_count_fixed(Sequence, 1)) 

  n2=sum(stri_count_fixed(Sequence, 2)) 

  n=c(n1,n2) 

   

Rbar.i.s=cbind(c(sum(c(R.iks[1,1:n1]/n1)),sum(c(R.iks[2,1:n1]/n1)),sum(c(R.iks[3,1:n1]/n1)),su
m(c(R.iks[4,1:n1]/n1)),sum(c(R.iks[5,1:n1]/n1))), 

                 
c(sum(c(R.iks[1,(n1+1):(n1+n2)]/n2)),sum(c(R.iks[2,(n1+1):(n1+n2)]/n2)),sum(c(R.iks[3,(n1+1)
:(n1+n2)]/n2)),sum(c(R.iks[4,(n1+1):(n1+n2)]/n2)),sum(c(R.iks[5,(n1+1):(n1+n2)]/n2)))) 

    
m=c(median(R.iks[1,1:(n1+n2)]),median(R.iks[2,1:(n1+n2)]),median(R.iks[3,1:(n1+n2)]),media
n(R.iks[4,1:(n1+n2)]),median(R.iks[5,1:(n1+n2)])) 

   

  ##Matrix U 

  U=matrix(1,nrow=s,ncol=length(i)) 

   

  for(k in (1:length(i))){ 

    for(j in (1:s)){ 

      U[j,k]=Rbar.i.s[j,k]-m[j] 

    } 

  } 

   

  ##Covariance Matrix 
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  library(data.table) 

  V=(R.iks-m) %*% t(R.iks-m) 

  V.inv=solve(V)    #Matrix Inverse 

     

  #W Statistic 

  Mult=i 

  for(k in (1:length(i))){ 

    Mult[k]=t(U[,k])%*%V.inv%*%U[,k] 

  } 

   

  J=0 

  for(k in (1:length(Mult))){ 

    J=J+(n[k]*Mult[k]) 

  } 

  W=(sum(n)-1)*J 

   

  ##P-value using Chi-squared Distribution with 2 degrees of freedom (johnson and Grender) 

  output<-list(W, (1-pchisq(W,2))) 

  names(output)<-c("Test statistic","p-value")              

  output 

} 
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################################################################ 

##Collagen BIT Example 

################################################################ 

mydata=read.table("C:/Eye Example.csv",header=TRUE,sep=",") 

attach(mydata) 

 

#F1-Ld-F1 Measure 

 

Measure.Carry <- c(R1+R2,L1+L2) 

Measure.Direct <- c(R1-R2,L1-L2) 

 

sequence <- c(Sequence,Sequence) 

subject=c(Sub,Sub) 

 

## F1-LD-F1 Test [rank-based, adaptive] 

f1.ld.f1(Measure.f1ldf1,c(rep(1,12),rep(2,12)),sequence,subject, description = FALSE) 

f1.ld.f1.adap(Measure.f1ldf1,c(rep(1,12),rep(2,12)),sequence,subject, description = FALSE) 

 

##J&G Method  

Seq=as.numeric(Sequence) 

   

Sum.R=R1+R2 

Sum.L=L1+L2 

 

Diff.R=R1-R2 

Diff.L=L1-L2 
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h01.R<-NewRank(Sum.R,Seq)$'Apadtive Ranks' 

h01.L<-NewRank(Sum.L,Seq)$'Apadtive Ranks' 

h02.R<-NewRank(Diff.R,Seq)$'Apadtive Ranks' 

h02.L<-NewRank(Diff.L,Seq)$'Apadtive Ranks' 

 

## Use the correct scores based on the hypothesis being tested  

R.iks=rbind(h02.R,h02.L) 

             

Sequence=Seq 

i=unique(Sequence) 

library("stringi") 

s=nrow(R.iks) #repeated measures 

n1=sum(stri_count_fixed(Sequence, i[1])) 

n2=sum(stri_count_fixed(Sequence, i[2])) 

n=c(n1,n2) 

 

Rbar.i.s=cbind(c(sum(c(R.iks[1,1:n1]/n1)),sum(c(R.iks[2,1:n1]/n1))), 

               c(sum(c(R.iks[1,(n1+1):(n1+n2)]/n2)),sum(c(R.iks[2,(n1+1):(n1+n2)]/n2)))) 

 

m=c(median(R.iks[1,1:(n1+n2)]),median(R.iks[2,1:(n1+n2)])) 

 

##Matrix U 

U=matrix(1,nrow=s,ncol=length(i)) 

 

for(k in (1:length(i))){ 

  for(j in (1:s)){ 

    U[j,k]=Rbar.i.s[j,k]-m[j] 

  } 
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} 

 

##Covariance Matrix 

library(data.table) 

V=(R.iks-m) %*% t(R.iks-m) 

V.inv=solve(V)    #Matrix Inverse 

 

 

 

#W Statistic 

Mult=1:length(i) 

for(k in (1:length(i))){ 

  Mult[k]=t(U[,k])%*%V.inv%*%U[,k] 

} 

 

J=0 

for(k in (1:length(Mult))){ 

  J=J+(n[k]*Mult[k]) 

} 

W=(sum(n)-1)*J 

 

##P-value using Chi-squared Distribution with 2 degrees of freedom (johnson and Grender) 

k<-list(W,1-pchisq(W,2)) 

names(k)<-c("W", "p-value") 

k 

c(names(h01.R)[1],names(h01.L)[1]) 
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##############################################################################
########### 

## Using Test Statistic developeped by Sun (1997) for c-sample problems 

##############################################################################
########### 

 

library(plyr) 

count=count(Sequence) 

 

n1=count[1,2] 

n2=count[2,2] 

N=n1+n2 

 

 

Seq=as.numeric(Sequence) 

 

###Input the correct generated measure based on the hypothesis being tested 

Measure=(R1-L1)+(R2-L2) 

 

Mes.tilda=round(Measure) 

 

#Adaptive 

Adp.Mes=NewRank(Mes.tilda,Sequence)$`Apadtive Ranks` 

a.bar=mean(Adp.Mes) 

 

S.tilda1=sum(Adp.Mes[1:n1]) 

S.tilda2=sum(Adp.Mes[(n1+1):N]) 

 

Numerator=(N-1)*((n1*((S.tilda1/n1)-a.bar)^2)+(n2*((S.tilda2/n2)-a.bar)^2)) 
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Denominator=sum((Adp.Mes-a.bar)^2) 

 

Test.statistic=Numerator/Denominator 

c(Test.statistic,pchisq(Test.statistic,1,lower.tail=FALSE)) 

 

##Rank based method 

Rank.Mes=rank(Measure) 

 

##USING EXACT WILCOXON DISTRIBUTION 

wilcox.test(Rank.Mes[1:n1],Rank.Mes[(n1+1):(n1+n2)],alternative="two.sided",conf.int=TRUE,
correct = FALSE) 

wilcox.test(Measure~Seq,alternative="two.sided",conf.int=TRUE,correct = FALSE) 
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################################################################### 

###Slope of Systolic and Diastolic Trend Example 

###J&G Method 

################################################################### 

########Attach the correct file 

##SysSlope Example 

Mydata1=read.table("C:/ SysSlope.csv",header=TRUE,sep=",") 

 

##DiaSlope 

Mydata2=read.table("C:/ DiaSlope.csv",header=TRUE,sep=",") 

 

attach(Mydata) 

names(Mydata) 

 

 

##Load NewRank function 

 

##Rank Averages for each Sequence (fixed time point) 

###Hyp 1 and 2 (use sum for carry over effects and diff for treatment effects) 

R.iks=rbind(NewRank((ST1.2-ST2.2),Sequence)$`Apadtive Ranks`, 

            NewRank((ST1.4-ST2.4),Sequence)$`Apadtive Ranks`, 

            NewRank((ST1.6-ST2.6),Sequence)$`Apadtive Ranks`, 

            NewRank((ST1.8-ST2.8),Sequence)$`Apadtive Ranks`, 

            NewRank((ST1.10-ST2.10),Sequence)$`Apadtive Ranks` 

             ) 

 

c((NewRank((ST1.2-ST2.2),Sequence))$`Underlying Distribution`,(NewRank((ST1.4-
ST2.4),Sequence))$`Underlying Distribution`, 
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  (NewRank((ST1.6-ST2.6),Sequence))$`Underlying Distribution`,(NewRank((ST1.8-
ST2.8),Sequence))$`Underlying Distribution`,(NewRank((ST1.10-
ST2.10),Sequence))$`Underlying Distribution`) 

 

R.iks2=rbind(rank((ST1.2-ST2.2)), 

            rank((ST1.4-ST2.4)), 

            rank((ST1.6-ST2.6)), 

            rank((ST1.8-ST2.8)), 

            rank((ST1.10-ST2.10))) 

 

JG.5(R.iks,Sequence) 

 

###Hyp 3 and 4 (use sum for carry over effects over time and diff for trtment effects over time) 

R.iks=rbind(NewRank(((ST1.2-ST1.4)-(ST2.2-ST2.4)),Sequence)$`Apadtive Ranks`, 

              NewRank(((ST1.4-ST1.6)-(ST2.4-ST2.6)),Sequence)$`Apadtive Ranks`, 

              NewRank(((ST1.6-ST1.8)-(ST2.6-ST2.8)),Sequence)$`Apadtive Ranks`, 

              NewRank(((ST1.8-ST1.10)-(ST2.8-ST2.10)),Sequence)$`Apadtive Ranks`) 

             

c((NewRank(((ST1.2-ST1.4)-(ST2.2-ST2.4)),Sequence))$`Underlying 
Distribution`,(NewRank(((ST1.4-ST1.6)-(ST2.4-ST2.6)),Sequence))$`Underlying Distribution`, 

  (NewRank(((ST1.6-ST1.8)-(ST2.6-ST2.8)),Sequence))$`Underlying 
Distribution`,(NewRank(((ST1.8-ST1.10)-(ST2.8-ST2.10)),Sequence))$`Underlying 
Distribution`) 

 

R.iks=rbind(rank((ST1.2-ST1.4)-(ST2.2-ST2.4)), 

               rank((ST1.4-ST1.6)-(ST2.4-ST2.6)), 

               rank((ST1.6-ST1.8)-(ST2.6-ST2.8)), 

               rank((ST1.8-ST1.10)-(ST2.8-ST2.10)))     

 

JG.4(R.iks,Sequence)  
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################################################################### 

###Slope of Systolic and Diastolic Trend Example 

###F1-LD-F1 Method 

################################################################### 

#Variables defined  

Carry<-c((ST1.2+ST2.2),(ST1.4+ST2.4),(ST1.6+ST2.6),(ST1.8+ST2.8),(ST1.10+ST2.10)) 

Direct<-c((ST1.2-ST2.2),(ST1.4-ST2.4),(ST1.6-ST2.6),(ST1.8-ST2.8),(ST1.10-ST2.10)) 

 

Measure.f1ldf1 <- Carry 

sequence <- c(Sequence,Sequence,Sequence,Sequence,Sequence) 

subject=c(Sub,Sub,Sub,Sub,Sub) 

n=length(Sequence) 

time=c(rep(1,n),rep(2,n),rep(3,n),rep(4,n),rep(5,n)) 

 

## Test  

f1.ld.f1(Measure.f1ldf1,time,sequence,subject, description = FALSE)$Wald.test 

f1.ld.f1.adap(Measure.f1ldf1,time,sequence,subject, description = FALSE)$Wald.test 
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################################################################ 

## Plots generated for the thesis write-up  

################################################################ 

 

layout(matrix(c(0,1,1,0,2,2,3,3), 2, 4, byrow = TRUE)) 

 plot(density(rnorm(10000),bw=1), col='red', lwd=3, main="Symmetric Distribution", xlab="") 

 plot(density(-x,bw=1), col='red', lwd=3, main="Left Skewed", xlab="(Negatively Skewed)") 

 plot(density(x,bw=1), col='red', lwd=3, main="Right Skewed",xlab="(Positively Skewed)") 

  

 par(mfrow=c(1,1)) 

  

 x=rnorm(100000) 

 plot(density(x),col="red", lwd=3, ylim=c(0, 0.5),main="Kurtosis",xlab="") 

 lines(density(x*.8),col="green",lwd=3) 

 lines(density(x*1.25),col="blue",lwd=3) 

 legend("topright", col="black",inset=.05, title="Tail Weights", 

        c("Light-Tailed","Moderate-Tailed","Heavy-Tailed"), fill=c("green","red","blue"), 
horiz=FALSE) 
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