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ABSTRACT

MACHINE LEARNING: SEVERAL ADVANCES IN LINEAR DISCRIMINANT

ANALYSIS, MULTI-VIEW REGRESSION AND SUPPORT VECTOR MACHINE

SHUAI ZHENG, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Chris Ding

Machine learning technology is now widely used in engineering, science, finance,

healthcare, etc. In this dissertation, we make several advances in machine learning

technologies for high dimensional data analysis, image data classification, recom-

mender systems and classification algorithms.

In this big data era, many data are high dimensional data which is difficult to

analyze. We propose two efficient Linear Discriminant Analysis (LDA) based methods

to reduce data to low dimensions. Kernel alignment measures the degree of similarity

between two kernels. We propose kernel alignment inspired LDA to find a subspace to

maximize the alignment between subspace-transformed data kernel and class indicator

kernel. Classical LDA uses arithmetic mean of all between-class distances. However,

arithmetic mean between-class distance has some limitations. First, large between-

class distance could dominate the arithmetic mean. Second, arithmetic mean does

not consider pairwise between-class distance and thus some classes may overlap with

each other in the subspace. We propose harmonic mean based LDA to overcome the

limitations of classical LDA.
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Low-rank models can capture the correlations between data. We propose an effi-

cient low-rank regression model for image and website classification and a regularized

Singular Value Decomposition (SVD) model for recommender system. Real life data

often includes information from different channels. These different aspects/channels

of the same object are called multi-view data. In this work, we propose a multi-

view low-rank regression model by imposing low-rank constraints on multi-view data

and we provide a closed-form solution to the multi-view low-rank regression model.

Recommender system is very important for online advertising, online shopping, so-

cial network, etc. In recent applications, regularization becomes an increasing trend.

We present a regularized SVD (RSVD) model for recommender system to improve

standard SVD based models.

Support Vector Machine (SVM) is an efficient classification approach, which

finds a hyperplane to separate data from different classes. This hyperplane is deter-

mined by support vectors. In existing SVM formulations, the objective function uses

L2 norm or L1 norm on slack variables. The number of support vectors is a measure

of generalization errors. In this work, we propose a Minimal SVM, which uses L0.5

norm on slack variables. The result model further reduces the number of support

vectors and increases the classification performance.

vi
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CHAPTER 1

INTRODUCTION

Machine learning technology is now widely used in engineering, science, finance,

healthcare, etc. For example, self-driving car applied machine learning technology to

navigate and detect objects in videos and images; online advertising business needs

recommender system technology to attract most number of web clicks and boost on-

line transactions. All these applications need reliable and accurate machine learning

models. In this dissertation, we make several advances in machine learning tech-

nologies for high dimensional data analysis, image data classification, recommender

systems and classification algorithms.

High dimensional data is very common nowadays. For example, a photo taken

by a smarter phone has about 12 million pixels. If we represent this photo using

pixel vectors, the vector will have dimension of 12 million. High dimensional data

is very difficult to analyze and it takes a lot of storage and computing resources to

process high dimensional data. Linear Discriminant Analysis (LDA) is an efficient

dimensionality reduction algorithm. We propose two efficient LDA based methods to

reduce data to low dimensions. Kernel alignment measures the degree of similarity

between two kernels. We propose kernel alignment inspired LDA (kaLDA) to find

a subspace to maximize the alignment between subspace-transformed data kernel

and class indicator kernel. Classical LDA uses arithmetic mean of all between-class

distances. However, arithmetic mean between-class distance has some limitations.

First, large between-class distance could dominate the arithmetic mean. Second,

arithmetic mean does not consider pairwise between-class distance and thus some
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classes may overlap with each other in the subspace. We propose harmonic mean based

LDA (HLDA) to overcome the limitations of classical LDA. We conducted extensive

experiments using kaLDA and HLDA on image data and found that classification

accuracy can be improved using kaLDA and HLDA.

Low-rank models can capture the correlations between data. We propose an

efficient low-rank regression model for image and website classification. Real life data

often includes information from different channels. These different aspects/channels

of the same object are called multi-view data. For images, multi-view data can be

different features extracted from the same image, such as HOG, SIFT and GIST

features. For website, multi-view data can be word content, images, and hyperlinks

in the same webpage. In this work, we propose a multi-view low-rank regression model

by imposing low-rank constraints on multi-view data and we provide a closed-form

solution to the multi-view low-rank regression model. Results on real life image and

website data show the proposed multi-view low-rank regression model can improve

classification accuracy efficiently.

Recommender system is very important for online advertising, online shopping,

social network, etc. Singular Value Decomposition (SVD) is widely used in rec-

ommender system by exploring correlations between users and correlations between

items. In recent applications, regularization becomes an increasing trend. We present

a regularized SVD (RSVD) model for recommender system and a closed form solution

to RSVD to improve standard SVD based models. Experiments on movie rating and

joke rating data show that recommendations using RSVD is more accurate.

Support Vector Machine (SVM) is an efficient classification approach, which

finds a hyperplane to separate data from different classes. This hyperplane is deter-

mined by support vectors. In existing SVM formulations, the objective function uses

L2 norm or L1 norm on slack variables. The number of support vectors is a measure

2



of generalization errors. In this work, we propose a Minimal SVM, which uses L0.5

norm on slack variables. Experiments on image data show that the Minimal SVM

model further reduces the number of support vectors and increases the classification

performance.

This dissertation is organized as follows: Chapter 2 introduces kernel align-

ment inspired LDA; Chapter 3 introduces harmonic mean based LDA; Chapter 4

introduces multi-view low-rank regression model; Chapter 5 introduces regularized

SVD (RSVD) model for recommender system; Chapter 6 introduces Minimal SVM;

Chapter 7 concludes this dissertation.
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CHAPTER 2

KERNEL ALIGNMENT INSPIRED LINEAR DISCRIMINANT ANALYSIS

2.1 Introduction

Kernel alignment [1] is a way to incorporate class label information into ker-

nels which are traditionally directly constructed from data without using class labels.

Kernel alignment can be viewed as a measurement of consistency between the similar-

ity function (the kernel) and class structure in the data. Improving this consistency

helps to enforce data become more separated when using the class label aligned ker-

nel. Kernel alignment has been applied to pattern recognition and feature selection

recently [2, 3, 4, 5, 6].

In this chapter, we find that if we use the widely used linear kernel and a kernel

built from class indicators, the resulting kernel alignment function is very similar to

the widely used linear discriminant analysis (LDA), using the well-known between-

class scatter matrix Sb and total scatter matrix St. We call this objective function

as kernel alignment induced LDA (kaLDA) [7]. If we transform data into a linear

subspace, the optimal solution is to maximize this kaLDA.

We further analyze this kaLDA and propose a Stiefel-manifold gradient descent

algorithm to solve it. We also extend kaLDA to multi-label problems. Surprisingly,

the scatter matrices arising in multi-label kernel alignment are identical those matrices

developed in Multi-label LDA [8].

We perform extensive experiments by comparing kaLDA with other approaches

on 8 single-label datasets and 6 multi-label data sets. Results show that kernel align-

4



ment LDA approach has good performance in terms of classification accuracy and F1

score.

2.2 From Kernel Alignment to LDA

Kernel Alignment is a similarity measurement between a kernel function and

a target function. In other words, kernel alignment evaluates the degree of fitness

between the data in kernel space and the target function. For this reason, we usually

set the target function to be the class indicator function. The other kernel function is

the data matrix. By measuring the similarity between data kernel and class indicator

kernel, we can get a sense of how easily this data can be separated in kernel subspace.

The alignment of two kernels K1 and K2 is given as [1]:

A(K1,K2) =
Tr(K1K2)√

Tr(K1K1)
√

Tr(K2K2)
. (2.1)

We first introduce some notations, and then present Theorem 1 and kernel

alignment projective function.

Let data matrix be X ∈ Rp×n and X = (x1, · · · ,xn), where p is data dimension,

n is number of data points, xi is a data point. Let normalized class indicator matrix

be Y ∈ Rn×K , which was used to prove the equivalence between PCA and K-means

clustering [9, 10], and

Yik =


1√
nk
, if point i is in class k.

0, otherwise.

(2.2)

where K is total class number, nk is the number of data points in class k. Class mean

is mk =
∑

xi∈k xi/nk and total mean of data is m =
∑

i xi/n.

Theorem 1. Define data kernel K1 and class label kernel K2 as follows:

K1 = XTX, K2 = Y Y T , (2.3)

5



we have

A(K1,K2) = c
TrSb√
TrS2

t

(2.4)

where c = 1/
√

Tr(Y Y T )2 is a constant independent of X.

Furthermore, let G ∈ Rp×k be a linear transformation to a k-dimensional sub-

space

X̃ = GTX, K̃1 = X̃T X̃, (2.5)

we have

A(K̃1,K2) = c
Tr(GTSbG)√
Tr(GTStG)2

(2.6)

where

Sb =
K∑
k=1

nk(mk −m)(mk −m)T , (2.7)

St =
n∑
i=1

(xi −m)(xi −m)T , (2.8)

Theorem 1 shows that kernel alignment can be expressed using scatter matrices

Sb and St. In applications, we adjust G such that kernel alignment is maximized, i.e.,

we solve the following problem:

max
G

Tr(GTSbG)√
Tr(GTStG)2

. (2.9)

In general, columns of G are assumed to be linearly independent.

A striking feature of this kernel alignment problem is that it is very similar to

classic LDA.

2.2.1 Proof of Theorem 1 and Analysis

Here we note a useful lemma and then prove Theorem 1.
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In most data analysis, data are centered, i.e.,
∑

i xi = 0. Here we assume data

is already centered. The following results remain correct if data is not centered. We

have the following relations:

Lemma 1. Scatter matrices Sb, St can be expressed as:

Sb =XY Y TXT , (2.10)

St =XXT . (2.11)

These results are previously known, for example, Theorem 3 of [10].

Proof of Theorem 1. To prove Eq.(2.4), we substitute K1,K2 into Eq.(2.1)

and obtain, noting Tr(AB) = Tr(BA),

A(K1,K2) =
Tr(XY Y TXT )√

Tr(XXT )2
√

Tr(Y Y T )2
= c

TrSb√
TrS2

t

.

where we used Lemma 1. c = 1/
√

Tr(Y Y T )2 is a constant independent of data X.

To prove Eq.(2.6),

A(K̃1,K2) = c
Tr(GTXY Y TXTG)√

Tr(GTXXTG)2
= c

Tr(GTSbG)√
Tr(GTStG)2

,

thus we obtain Eq.(2.6) using Lemma 1.

2.2.2 Relation to Classical LDA

In classical LDA, the between-class scatter matrix Sb is defined as Eq.(2.7), and

the within-class scatter matrix Sw and total scatter matrix St are defined as:

Sw =
K∑
k=1

∑
xi∈k

(xi −mk)(xi −mk)
T , St = Sb + Sw, (2.12)

where mk and m are class means. Classical LDA finds a projection matrix G ∈

Rp×(K−1) that minimizes Sw and maximizes Sb using the following objective:

max
G

Tr
GTSbG

GTSwG
, (2.13)
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or

max
G

Tr(GTSbG)

Tr(GTSwG)
. (2.14)

Eq.(2.14) is also called trace ratio (TR) problem [11]. It is easy to see 1 that Eq.(2.14)

can be expressed as

max
G

Tr(GTSbG)

Tr(GTStG)
. (2.15)

As we can see, kernel alignment LDA objective function Eq.(2.9) is very similar to

Eq.(2.15). Thus kernel alignment provides an interesting alternative explanation of

LDA. In fact, we can similarly show that in Eq.(2.9), Sw is also maximized as in the

standard LDA. First, Eq.(2.9) is equivalent to

max
G

Tr(GTSbG) s.t. Tr(GTStG)2 = η,

where η is a fixed-value. The precise value of η is unimportant, since the scale of G is

undefined in LDA: if G∗ is an optimal solution, and r is any real number, G∗∗ = rG∗

is also an optimal solution with the same optimal objective function value. The above

optimization is approximately equivalent to

max
G

Tr(GTSbG) s.t. Tr(GTStG) = η,

This is same as

max
G

Tr(GTSbG) s.t. Tr(GTSwG) = η − Tr(GTSbG),

In other words, Sb is maximized while Sw is minimized — recovering the LDA main

theme.

1 Eq.(2.14) is equivalent to min Tr(GTSwG)

Tr(GTSbG)
, which is min

(
Tr(GTSwG)

Tr(GTSbG)
+ 1
)
. Reversing to maxi-

mization and using St = Sb + Sw, we obtain Eq.(2.15).
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2.3 Computational Algorithm

In this section, we develop efficient algorithm to solve kaLDA objective function

Eq.(2.9):

max
G

J1 =
Tr(GTSbG)√
Tr(GTStG)2

, s.t. GTG = I. (2.16)

The condition GTG = I ensures different columns of G mutually independent. The

gradient of J1(G) is

∇J1 ,
∂J1

∂G
= 2

A√
TrD2

− 2
TrB

(TrD2)
3
2

CD, (2.17)

where A = SbG, B = GTA, C = StG, D = GTC.

Constraint GTG = I enforces G on the Stiefel manifold. Variations of G on this

manifold is parallel transport, which gives some restriction to the gradient. This has

been been worked out in [12]. The gradient that reserves the manifold structure is

∇J1 −G[∇J1]TG. (2.18)

Thus the algorithm computes the new G is given as follows:

G← G− η(∇J1 −G[∇J1]TG). (2.19)

The step size η is usually chosen as:

η = τ‖G‖1/‖∇J1 −G(∇J1)TG‖1, τ = 0.001 ∼ 0.01. (2.20)

where ‖G‖1 =
∑

ij |Gij|.

Occasionally, due to the loss of numerical accuracy, we use projection G ←

G(GTG)−
1
2 to restore GTG = I. Starting with the standard LDA solution of G, this

algorithm is iterated until the algorithm converges to a local optimal solution. In

fact, objective function will converge quickly when choosing η properly. Figure 2.1

9



Algorithm 1 [G] = kaLDA(X, Y )

Input: Data matrix X ∈ Rp×n, class indicator matrix Y ∈ Rn×K

Output: Projection matrix G ∈ Rp×k

1: Compute Sb and St using Eq.(2.10) and Eq.(2.11)

2: Initialize G using classical LDA solution

3: repeat

4: Compute gradient using Eq.(2.17)

5: Update G using Eq.(2.19)

6: until J1 Converges

shows that J1 converges in about 200 iterations when τ = 0.001, for datasets ATT,

Binalpha, Mnist, and Umist (more details about the datasets will be introduced in

experiment section). In summary, kernel alignment LDA (kaLDA) procedure is shown

in Algorithm 1.

To show the effectiveness of proposed kaLDA, we visualize a real dataset in 2-D

subspace in Figure 2.2. In this example, we take 3 classes of 644-dimension Umist

data, 18 data points in each class. Figure 2.2a shows the original data projected in

2-D PCA subspace. Blue points are in class 1; red circle points are in class 2; black

square points are in class 3. Data points from the three classes are mixed together

in 2-D PCA subspace. It is difficult to find a linear boundary to separate points of

different classes. Figure 2.2b shows the data in 2-D standard LDA subspace. We can

see that data points in different classes have been projected into different clusters.

Figure 2.2c shows the data projected in 2-D kaLDA subspace. Compared to Figure

2.2b, the within-class distance in Figure 2.2c is much smaller. The distance between

different classes is larger.
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Figure 2.1: Objective J1 converges using Stiefel-manifold gradient descent algorithm
(τ = 0.001).

2.4 Extension to Multi-label Data

Multi-label problem arises frequently in image and video annotations, multi-

topic text categorization, music classification. etc.[8]. In multi-label data, a data

point could have several class labels (belonging to several classes). For example, an

image could have “cloud”, “building”, “tree” labels. This is different from the case of

single-label problem, where one point can have only one class label. Multi-label is very

natural and common in our everyday life. For example, a film can be simultaneously

classified as “drama”, “romance”, “historic” (if it is about a true story). A news

article can have topic labels such as “economics”, “sports”, etc.
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(c) 2-D kaLDA subspace.

Figure 2.2: Visualization of Umist data in 2-D PCA, 2-D LDA and 2-D kaLDA
subspace.

Kernel alignment approach can be easily and naturally extended to multi-label

data, because the class label kernel can be clearly and unambiguously defined using

class label matrix Z on both single label and multi-label data sets. The data kernel

is defined as usual. In the following we further develop this approach.

One important result of our kernel alignment approach for single label data

is that it has close relationship with LDA. For multi-label data, each data point

could belong to several classes. The standard scatter matrices Sb, Sw are ambiguous,

because Sb, Sw are only defined for single label data where each data point belongs to

one class only. However, our kernel alignment approach on multi-label data leads to

new definitions of scatter matrices and similar objective function; this can be viewed
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as the generalization of LDA from single-label data to multi-label data via kernel

alignment approach.

Indeed, the new scatter matrices we obtained from kernel alignment approach

are identical to the so-called “multi-label LDA” [8] developed from a class-separate,

probabilistic point of view, very different from our point of view. The fact that

these two approaches lead to the same set of scatter matrices show that the resulting

multi-label LDA framework has a broad theoretical basis.

We first present some notations for multi-label data and then describe the kernel

alignment approach for multi-label data in Theorem 2. The class label matrix Z ∈

Rn×K for data X ∈ Rp×n is given as:

Zik =


1, if point i is in class k.

0, otherwise.

(2.21)

Let ñk =
∑n

i=1 Zik be the number of data points in class k. Note that for multi-label

data,
∑K

k=1 ñk > n. The normalized class indicator matrix Ỹ ∈ Rn×K is given as:

Ỹik =


1√
ñk
, if point i is in class k.

0, otherwise.

(2.22)

Let ρi =
∑K

k=1 Zik be the number of classes that xi belongs to. Thus ρi are the

weights of xi. Define the diagonal weight matrix Ω = diag(ρ1, · · · , ρn). The kernel

alignment formulation for multi-label data can be stated as

Theorem 2. For multi-label data X, let the data kernel and class label kernel be

K1 = Ω
1
2XTXΩ

1
2 , K2 = Ω−

1
2 Ỹ Ỹ TΩ−

1
2 . (2.23)

We have the alignment

A(K1,K2) = c
TrSb√
TrS2

t

(2.24)
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where c = 1/

√
Tr(Ω−1Ỹ Ỹ T )2 is a constant independent of data X, and Sb, St are

given in Eqs.(2.27, 2.28).

Furthermore, let G ∈ Rp×k be the linear transformation to a k-dimensional

subspace,

X̃ = GTX, K̃1 = Ω1/2X̃T X̃Ω1/2, (2.25)

we have

A(K̃1,K2) = c
Tr(GTSbG)√
Tr(GTStG)2

(2.26)

The matrices Sb, St in Theorem 2 are defined as:

Sb =
K∑
k=1

ñk(mk −m)(mk −m)T , (2.27)

St =
K∑
k=1

n∑
i=1

Zik(xi −m)(xi −m)T , (2.28)

where mk is the mean of class k and m is global mean, defined as:

mk =

∑n
i=1 Zikxi
ñk

, m =

∑n
i=1 ρixi∑K
k=1 ñk

. (2.29)

Therefore, we can seek an optimal subspace for multi-label data by solving Eq.(2.16)

with Sb, St given in Eqs.(2.27,2.28)

2.4.1 Proof of Theorem 2 and Equivalence to Multi-label LDA

Here we note a useful lemma for multi-label data and then prove Theorem 2.

We consider the case the data is centered, i.e.,
∑n

i=1 ρixi = 0. The results also hold

when data is not centered, but the proofs are slightly complicated.

Lemma 2. For multi-label data, Sb, St of Eqs.(2.27,2.28) can be expressed as

Sb =XỸ Ỹ TXT (2.30)

St =XΩXT (2.31)
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Proof. From the definition of mk and Ỹ in multi-label data, we have

XỸ = (m1, · · · ,mK)


√
ñ1

. . .

√
ñK

 .

Thus XỸ Ỹ TXT =
∑K

k=1 ñkmkm
T
k recovers Sb of Eq.(2.27).

To prove Eq.(2.31), note that XΩ = (ρ1x1, · · · , ρnxn), thus

XΩXT =
∑n

i=1 ρixix
T
i .

Proof of Theorem 2. Using Lemma 2, to prove Eq.(2.24),

A(K1,K2) = c
Tr(XỸ Ỹ TXT )√

Tr(XΩXT )2
= c

TrSb√
TrS2

t

,

where c = 1/

√
Tr(Ω−1Ỹ Ỹ T )2 is independent of X.

To prove Eq.(2.26),

A(K̃1,K2) = c
Tr(GTXỸ Ỹ TXTG)√

Tr(GTXΩXTG)2
= c

Tr(GTSbG)√
Tr(GTStG)2

.

For single-label data, ρi = 1, Ω = I, ñk = nk, Eqs.(2.30, 2.31) reduce to

Eqs.(2.10, 2.11), and Theorem 2 reduces to Theorem 1.

As we can see, surprisingly, the scatter matrices Sb, St of Eqs.(2.27, 2.28) arising

in Theorem 2 are identical to that in Multi-label LDA proposed in [8].

2.5 Related Work

Linear Discriminant Analysis (LDA) is a widely-used dimension reduction and

subspace learning algorithm. There are many LDA reformulation publications in re-

cent years. Trace Ratio problem is to find a subspace transformation matrix G such

that the within-class distance is minimized and the between-class distance is maxi-

mized. Formally, Trace Ratio maximizes the ratio of two trace terms,
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Table 2.1: Single-label datasets attributes.

Data n p k

Caltec07 210 432 7
Caltec20 1230 432 20
MSRC 210 432 7
ATT 400 644 40

Binalpha 1014 320 26
Mnist 150 784 10
Umist 360 644 20
Pie 680 1024 68

Table 2.2: Classification accuracy on Single-label datasets (K − 1 dimension).

Data kaLDA LDA TR sdpLDA MMC RLDA OCM
Caltec07 0.7524 0.6619 0.6762 0.5619 0.6000 0.7952 0.7619
Caltec20 0.7068 0.6320 0.4465 0.3386 0.5838 0.6812 0.6696
MSRC 0.7762 0.6857 0.5714 0.5952 0.5667 0.7333 0.7286
ATT 0.9775 0.9750 0.9675 0.9750 0.9750 0.9675 0.9675

Binalpha 0.7817 0.6078 0.4620 0.2507 0.7638 0.7983 0.8204
Mnist 0.8800 0.8733 0.8667 0.8467 0.8467 0.8667 0.8467
Umist 0.9900 0.9900 0.9917 0.9133 0.9633 0.9800 0.9783

Pie 0.8765 0.8838 0.8441 0.8632 0.8676 0.6515 0.6515

maxG Tr(GTSbG)/Tr(GTStG) [11, 13], where St is total scatter matrix and Sb is

between-class scatter matrix. Other popular LDA approach includes, regularized

LDA(RLDA) [14], Orthogonal Centroid Method (OCM) [15], Uncorrelated LDA

(ULDA) [16], Orthogonal LDA (OLDA) [16], etc. These approaches mainly com-

pute the eigendecomposition of matrix S−1
t Sb, but use different formulation of total

scatter matrix St [17].

Maximum Margin Criteria (MMC) [18] is a simpler and more efficient method.

MMC finds a subspace projection matrix G to maximize Tr(GT (Sb−Sw)G). Though

in a different way, MMC also maximizes between-class distance while minimizing

within-class distance. Semi-Definite Positive LDA (sdpLDA) [19] solves the maxi-
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Table 2.3: Multi-label datasets attributes.

Data n p k

MSRC-MOM 591 384 23
Barcelona 139 48 4
Emotion 593 72 6
Yeast 2,417 103 14

MSRC-SIFT 591 240 23
Scene 2,407 294 6

Table 2.4: Classification accuracy on Multi-label datasets (K − 1 dimension).

Data kaLDA MLSI MDDM MLLS MLDA
MSRC-MOM 0.9150 0.8962 0.9044 0.8994 0.9036

Barcelona 0.6579 0.6436 0.6470 0.6524 0.6290
Emotion 0.7634 0.7397 0.7540 0.7529 0.7619

Yeast 0.7405 0.7317 0.7371 0.7364 0.7368
MSRC-SIFT 0.8839 0.8762 0.8800 0.8807 0.8858

Scene 0.8870 0.8534 0.8713 0.8229 0.8771

mization of Tr(GT (Sb−λ1Sw)G), where λ1 is the largest eigenvalue of S−1
w Sb. sdpLDA

is derived from the maximum margin principle.

Multi-label problem arise frequently in image and video annotations and many

other related applications, such as multi-topic text categorization [8]. There are

many Multi-label dimension reduction approaches, such as Multi-label Linear Regres-

sion (MLR), Multi-label informed Latent Semantic Indexing (MLSI) [20], Multi-label

Dimensionality reduction via Dependence Maximization (MDDM) [21], Multi-Label

Least Square (MLLS) [22], Multi-label Linear Discriminant Analysis (MLDA) [8].

2.6 Experiments

In this section, we first compare kernel alignment LDA (kaLDA) with other six

different methods on 8 single label data sets and compare kaLDA multi-label version

with four other methods on 6 multi-label data sets.
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2.6.1 Comparison with Trace Ratio w.r.t. subspace dimension

Eight single-label datasets are used in this experiment. These datasets come

from different domains, such as image scene Caltec [23] and MSRC [24], face datasets

ATT, Umist, Pie [25], and digit datasets Mnist [26] and Binalpha. Table 2.1 summa-

rizes the attributes of those datasets.

Caltec07 and Caltec20 are subsets of Caltech 101 data. Only the HOG feature

is used in this chapter.

MSRC is a image scene data, includes tree, building, plane, cow, face, car and

so on. It has 210 images from 7 classes and each image has 432 dimension.

ATT data contains 400 images of 40 persons, with 10 images for each person.

The images has been resized to 28× 23.

Binalpha data contains 26 binary hand-written alphabets. It has 1014 images

in total and each image has 320 dimension.

Mnist is a handwritten digits dataset. The digits have been size-normalized

and centred. It has 10 classes and 150 images in total, with 784 dimension each image.

Umist is a face image dataset (Sheffield Face database) with 360 images from

20 individuals with mixed race, gender and appearance.

Pie is a face database collected by Carnegie Mellon Robotics Institute between

October and December 2000. In total, it has 68 different persons.

In this part, we compare the classification accuracy of kaLDA and Trace Ratio

[11] with respect to subspace dimension. The dimension of the subspace that kaLDA

can find is not restricted toK−1. After subspace projection, KNN classifier (knn = 3)

is applied to perform classification. Results are shown in Figure 2.3. Solid line denotes

kaLDA accuracy and dashed line denotes Trace Ratio accuracy. As we can see, in

Figures 2.3a, 2.3b, 2.3c, 2.3g, and 2.3h, kaLDA has higher accuracy than Trace Ratio

when using the same number of reduced features. In Figures 2.3d, 2.3e, 2.3f, kaLDA
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Figure 2.3: Classification accuracy w.r.t. dimension of the subspace.
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Table 2.5: Macro F1 score on Multi-label datasets (K − 1 dimension).

Dataset kaLDA MLSI MDDM MLLS MLDA
MSRC-MOM 0.6104 0.5244 0.5593 0.5426 0.5571

Barcelona 0.7377 0.7286 0.7301 0.7341 0.7169
Emotion 0.6274 0.5873 0.6101 0.6041 0.6200

Yeast 0.5757 0.5568 0.5696 0.5691 0.5693
MSRC-SIFT 0.4712 0.4334 0.4522 0.4544 0.4773

Scene 0.6851 0.5911 0.6411 0.5048 0.6568

Table 2.6: Micro F1 score on Multi-label datasets (K − 1 dimension).

Dataset kaLDA MLSI MDDM MLLS MLDA
MSRC-MOM 0.5138 0.4064 0.4432 0.4370 0.4448

Barcelona 0.6969 0.6891 0.6861 0.6904 0.6772
Emotion 0.6203 0.5779 0.6030 0.5961 0.6151

Yeast 0.4249 0.4026 0.4205 0.4216 0.4213
MSRC-SIFT 0.3943 0.3510 0.3637 0.3667 0.3959

Scene 0.6966 0.6006 0.6493 0.5062 0.6643

has competitive classification accuracy with Trace Ratio. However, kaLDA is more

stable than Trace Ratio. For example, in Figure 2.3f and 2.3g, we observe a decrease

in accuracy when feature number increases using Trace Ratio.

2.6.2 Comparison with other LDA methods

We compare kaLDA with six other different methods, including LDA, Trace

Ratio (TR), spdLDA, Maximum Margin Criteria (MMC), regularized LDA (RLDA),

and Orthogonal Centroid Method (OCM). All LDA will reduce data to K−1 dimen-

sion. KNN (knn = 3) will be applied to do the classification after data is projected

into the selected subspace. The other algorithms have already been introduced in

related work section. The final classification accuracy is the average of 5-fold cross

validation, and is reported in Table 2.2. The first column “kaLDA” reports kaLDA

classification accuracy. kaLDA has the highest accuracy on 4 out of 8 datasets, in-

cluding Caltec20, MSRC-MOM, ATT and Mnist. For Umist and Pie, kaLDA results
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are very close to the highest accuracy. Overall, kaLDA performs better than all other

methods.

2.6.3 Multi-label Classification

Six multi-label datasets are used in this part. These datasets include images

features, music emotion and so on. Table 2.3 summarizes the attributes of those

datasets.

MSRC-MOM and MSRC-SIFT data set is provided by Microsoft Research

in Cambridge. It includes 591 images of 23 classes. MSRC-MOM is the Moment

invariants (MOM) feature of images and each image has 384 dimensions. MSRC-

SIFT is the SIFT feature and each image has 240 dimensions. About 80% of the

images are annotated with at least one classes and about three classes per image on

average.

Barcelona data set contains 139 images with 4 classes, i.e., “building”, “flora”,

“people” and “sky”. Each image has at least two labels.

Emotion [27] is a music emotion data, which comprises 593 songs with 6 emo-

tions. The dimension of Emotion is 72.

Yeast [28] is a multi-label data set which contains functional classes of genes

in the Yeast Saccharomyces cerevisiae.

Scene [29] contains images of still scenes with semantic indexing. It has 2407

images from 6 classes.

We use 5-fold cross validation to evaluate classification performance of different

algorithms. K-Nearest Neighbour (KNN) classifier is used after the subspace pro-

jection. The algorithms we compared in this section includes Multi-label informed

Latent Semantic Indexing (MLSI), Multi-label Dimensionality reduction via Depen-

dence Maximization (MDDM), Multi-Label Least Square (MLLS), Multi-label Linear
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Discriminant Analysis (MLDA). These algorithms have been introduced in related

work section.

We compare the performance of kaLDA and other algorithms using macro ac-

curacy (Table 2.4), macro-averaged F1-score (Table 2.5) and micro-averaged (Table

2.6) F1-score. Accuracy and F1 score are computed using standard binary classifica-

tion definitions. In multi-label classification, macro average is a standard class-wise

average, and it is related to number of samples in each class. However, micro average

gives equal weight to all classes [8]. kaLDA achieves highest classification accuracy

on 5 out of 6 datasets. On the remaining MSRC-SIFT dataset, kaLDA result is very

close to the best method MLDA and beat all rest methods. kaLDA achieves highest

macro and micro F1 score on 5 out of 6 datasets. Furthermore, kaLDA has the second

highest macro and micro F1 score on dataset MSRC-SIFT. Overall, kaLDA outper-

forms other multi-label algorithms in terms of classification accuracy and macro and

micro F1 score.

2.7 Conclusion

In this chapter, we propose a new kernel alignment induced LDA (kaLDA).

The objective function of kaLDA is very similar to classical LDA objective. The

Stifel-manifold gradient descent algorithm can solve kaLDA objective efficiently. We

have also extended kaLDA to multi-label problems. Extensive experiments show the

effectiveness of kaLDA in both single-label and multi-label problems.
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CHAPTER 3

HARMONIC MEAN LINEAR DISCRIMINANT ANALYSIS

3.1 Introduction

It is difficult to find patterns from high dimensional data and analyze high

dimensional data, but there are more and more high dimensional data generated

every day in this big data era [30]. One simple example is that the camera quality

of smarter phone becomes better and better nowadays, which means the image taken

is larger and larger and some images may take several megabytes in size. In image

classification, a small image of size 100×100 pixels will have a 10, 000 dimension pixel

vector representation. In biology science, high-dimensional gene expression data is

used to predict tumors and other diseases [31]. High-dimensional data not only costs

a lot of storage, but also costs a lot of computing resources. More importantly, it also

affects the performance of machine learning and data mining algorithms.

For many high dimensional data, there is an underlying low-dimensional struc-

ture which can capture the latent attributes of the high-dimensional data. Dimen-

sionality reduction algorithms have been proposed to extract important information

and features to help analyze high dimensional data. Dimensionality reduction is im-

portant in many applications of statistics, pattern recognition and machine learning.

Many methods have been proposed for dimensionality reduction, such as principal

component analysis (PCA) [32] and linear discriminant analysis (LDA) [33] [17].

LDA is a popular supervised dimensionality reduction algorithm. To be spe-

cific, let X ∈ Rp×n be the data matrix, and X = (x1, · · · ,xn), where p is data

dimension, n is number of data points. Let G ∈ Rp×k be the transformation ma-
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trix to a k-dimensional subspace. The between-class scatter matrix Sb, within-class

scatter matrix Sw and total scatter matrix St is defined as:

Sb =
K∑
k=1

nk(mk −m)(mk −m)T , (3.1)

Wk =
1

nk

∑
xi∈k

(xi −mk)(xi −mk)
T , (3.2)

Sw =
K∑
k=1

nkWk, (3.3)

St = Sb + Sw, (3.4)

where K is total class number, nk is number of points in class k, mk is the mean of

class k, m is the mean of entire data set:

mk =

∑
xi∈k xi

nk
, m =

∑n
i=1 xi
n

. (3.5)

Sb, Sw and St are semi-positive definite matrices. Classical LDA finds a transforma-

tion matrix G by solving the problem:

max
G

Tr
GTSbG

GTSwG
. (3.6)

There are many other formulations of LDA. The essence of LDA is to maxi-

mize the between-class distance while minimizing within-class distance. To maximize

between-class distance distance in the subspace of G, the following problem can be

maximized:

max
G

K∑
k=1

‖GT (mk −m)‖2 = Tr(GTSbG). (3.7)

To minimize the sum of within-class distance in the subspace of G, the following

problem can be minimized:

min
G

K∑
k=1

∑
xi∈k

‖GT (xi −mk)‖2 = Tr(GTSwG). (3.8)
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To combine the two tasks together, this leads to another similar LDA objective func-

tion, Trace Ratio [11, 13, 34]:

max
G

Tr(GTSbG)

Tr(GTSwG)
, s.t. GTG = I, (3.9)

where constraint GTG = I ensures the columns of solution G are linearly independent.

Null space based LDA (NLDA) [35] is another reformulation of LDA. Since classical

LDA is not well defined when GTSwG = 0, in NLDA, the between-class distance is

maximized in the null space of within-class scatter matrix Sw,

max
G

Tr(GTSbG), s.t. GTSwG = 0, GTG = I (3.10)

which is based on the idea that the null space of Sw contains sufficient discriminant

information.

However, classical LDA, Trace Ratio and many reformulations of LDA have

some limitations. First, they use arithmetic mean of between-class distances, which

gives equal weights to all between-class distances, and large between-class distance

could dominate the result. Second, they do not consider pairwise between-class dis-

tance and thus some classes may overlap with each other in subspace.

In this chapter, we propose two formulations of harmonic mean based Linear

Discriminant Analysis: Harmonic Linear Discriminant HLDA (HLDA) and Harmonic

Linear Discriminant Analysis pairwise (HLDAp), to demonstrate the benefit of har-

monic mean between-class distance and overcome the limitations of classical LDA.

The proposed HLDA and HLDAp differs in the way how the within-class distance

is considered in the objective and HLDAp considers pairwise within-class distance.

We also extend HLDA and HLDAp to multi-label classification problems. Finally, we

present extensive experiments on single-label and multi-label data sets and investigate

the performance of Harmonic Linear Discriminant Analysis with respect to subspace

dimensions.
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(c) Proposed Harmonic Linear
Discriminant Analysis (HLDA) to 2D

space.

Figure 3.1: Limitations of classical LDA.

The chapter is organized as follows: Section 3.2 discusses the limitations of clas-

sical LDA; Section 3.3 and 3.4 introduce the proposed HLDA and HLDAp objectives

and algorithms to solve them; Section 3.5 uses several real data sets to demonstrate

the effectiveness of HLDA and HLDAp, and compares them with PCA, classical

LDA in 2-D space; Section 3.6 discusses the challenges in multi-label classification

and proposes the multi-label version of HLDA and HLDAp; Section 3.7 presents the

experiment results; Section 3.8 introduces the related work and the algorithms we

compared in the experiment part; Section 3.9 concludes the chapter.
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3.2 Limitations of Classical LDA

In Eq.(3.1), between-class distance of classical LDA is computed using the sum

of distances between each class mean and total mean, in other words, using arith-

metic mean of all between-class distances multiplying number of classes. However,

this between-class distance has limitations. First, arithmetic mean of between-class

distance gives equal consideration to all between-class distances, which makes larger

between-class distances could dominate the objective function and thus limits the

performance of LDA. Secondly, it does not consider pairwise between-class distance,

and using distances between each class mean and total mean does not guarantee

all pairwise classes are separated. In fact, using the arithmetic mean of pairwise

between-class distances is equivalent to using distances between each class mean and

total mean, which we will show in Lemma 3.

We use a small data set to show the two limitations of classical LDA. We take

4 classes from UMIST [36] data where each class has 18 points, and project them

to 2D space. Figure 3.1a shows the result of using unsupervised PCA. Figure 3.1b

shows the result in a 2D LDA space (using Eq.(3.6)). Points of different classes are

more separated in LDA than in PCA. However, even though the sum of squared

between-class distance is maximized, class 1 and class 4 are not well separated. First,

large between-class distances dominates the arithmetic mean based LDA results. For

example, distances between class 1 and 2, class 4 and 2 are large, distances between

class 1 and 4 is very small. Second, LDA using Eq.(3.6) maximizes the distance

between each class mean and total class mean, instead of pairwise between-class

distance. Thus, class 1 and class 4 overlap with each other and pairwise between-

class distance is not guaranteed to be maximized.

The limitations of arithmetic mean based between-class distance also exist in

many other formulations of LDA, such as the null space LDA (NLDA), as in Eq.(3.10).
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Similar to classical LDA, NLDA gives equal consideration to all between-class dis-

tances, which makes larger between-class distances could dominate the objective func-

tion and thus limits the performance of NLDA.

3.3 Harmonic Linear Discriminant LDA (HLDA)

In this section, we propose Harmonic Linear Discriminant Linear Discriminant

Analysis (HLDA) objective using the harmonic mean based pairwise between-class

distance to overcome limitations of classical LDA. We first use a lemma to show

that Eq.(3.9) is equivalent to Eq.(3.17). Then we propose HLDA objective and an

algorithm to solve the objective.

3.3.1 Objective Function

As we can see from the demonstration in Figure 3.1, pairwise between-class

distance plays an important role in the projection. Figure 3.1c is a better solution

than Figure 3.1b, because all classes in the solution are clearly separated and no two

classes are too close to each other. In order to achieve this goal, we introduce the use

of pair-wise between-class distance. To incorporate pairwise between-class distance

into our objective, we define pairwise between-class scatter matrix Bk` for class k and

` as:

Bk` = (mk −m`)(mk −m`)
T . (3.11)

For ease of notations, let us define the following simplified sum notation:

∑
k<`

=
K−1∑
k=1

K∑
`=k+1

,
∑
k,`

=
K∑
k=1

K∑
`=1

(3.12)

We now present Lemma 3 to show that Eq.(3.9) is equivalent to Eq.(3.17).
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Lemma 3. Using the definition of Sb in Eq.(3.1) and the definition of Bk` in Eq.(3.11),

we have the following identity:

Tr(GTSbG) =
1

n

∑
k<`

nkn`Tr(GTBk`G), (3.13)

where n =
∑

k nk, nk is number of samples in class k.

Proof. When k = `, Bk` = 0, so we can include k = ` in our following proof:

∑
k<`

nkn`Tr(GTBk`G) =
1

2

∑
k,`

nkn`Tr(GTBk`G)

Tr(GTBk`G) = Tr(GT (mk −m + m−m`)(mk −m + m−m`)
TG)

= Tr(GT (mk −m)(mk −m)TG) (3.14)

+Tr(GT (m` −m)(m` −m)TG) (3.15)

−2Tr(GT (mk −m)(m` −m)TG) (3.16)

In the equation above, for Eq.(3.14),

∑
k,`

nkn`Tr(GT (mk −m)(mk −m)TG)

= (
∑
`

n`)Tr(GT (
∑
k

nk(mk −m)(mk −m)T )G) = nTr(GTSbG).

Eq.(3.15) is the same as Eq.(3.14).

For the Eq.(3.16), because
∑

k nk(mk −m) = 0,

∑
k,`

nkn`Tr(GT (mk −m)(m` −m)TG)

= Tr[GT (
∑
k

nk(mk −m))(
∑
`

n`(m` −m)T )G] = 0.

This completes the proof.
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From Lemma 3, Eq.(3.9) is identical to:

max
G

∑
k<`

nkn`
n

Tr(GTBk`G)

Tr(GTSwG)
, s.t. GTG = I. (3.17)

Let Xk` = Tr(GTBk`G)/Tr(GTSwG). The weighted arithmetic mean of Xk` is

〈X〉arith =

∑
k<` nkn`Xk`∑
k<` nkn`

, (3.18)

Since
∑

k<` nkn` = constant, Eq.(3.17) is the maximization of the arithmetic mean

of Xk`’s.

It is clear that the arithmetic mean is dominated by large Xk`’s. Large Xk`

means class k is well-separated from class `. However, it is the small Xk`’s that we

should focus on since small Xk` means class k is very close to class `.

The weighted harmonic mean is given as

〈X〉harm = 1

/[∑
k<` nkn`/Xk`∑

k<` nkn`

]
. (3.19)

It is clear that small Xk`’s dominate the harmonic mean. In other words, harmonic

mean focuses on (emphasize) the correct or critical parts that we wish to maximize.

For this reason, we propose to maximize the harmonic mean of pairwise between-

class distances. Maximizing the harmonic mean Eq.(3.19) is equivalent to minimizing

∑
k<`

nkn`/Xk`. (3.20)

This leads to our desired objective function of Harmonic Linear Discriminant Analysis

(HLDA):

min
G
J1(G) =

∑
k<`

nkn`
Tr(GTSwG)

Tr(GTBk`G)
, s.t. GTG = I. (3.21)

In summary, HLDA is proposed to weight more heavily the close distance pairs

of classes in the optimization, the difficult part of the discriminant function; whereas
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the standard LDA weights more of large distance pairs, the less important part of the

discriminant function. Thus HLDA formulation is more robust.

Figure 3.1c shows the result of HLDA to project UMIST data to 2D space.

Compared to PCA (Figure 3.1a) and LDA (Figure 3.1b), all classes are separated

clearly and the within-class distance is minimized simultaneously.

3.3.2 Algorithm

We introduce an efficient algorithm to minimize HLDA objective. The gradient

of Eq.(3.21) is given as:

∇J1 ,
∂J1

∂G
=2
∑
k<`

nkn`
SwG

Tr(GTBk`G)
− 2

∑
k<`

nkn`Bk`G
Tr(GTSwG)

(TrGTBk`G)2
. (3.22)

Constraint GTG = I enforces G on the Stiefel manifold. Variations of G on this

manifold is parallel transport, which gives some restriction to the gradient. This has

been been worked out in [12]. The gradient that reserves the manifold structure is

∇J1 −G[∇J1]TG. (3.23)

Thus the algorithm computes the new G is given as follows:

G← G− η(∇J1 −G[∇J1]TG), (3.24)

where η is step size. Due to fact that the manifold preserving gradient of Eq.(23)

only enforces the condition GTG = I to first order, after every 10-20 iterations,

we bring G back to the manifold using SVD decomposition. Mathematically, let

SVD(G) = UΣV T . Then the manifold preserving G = UV T . Since size of G is p× k

and k is subspace dimension which is typically small, this SVD step is very fast.

Algorithm 2 summarizes the steps to solve Eq.(3.21). The objective is optimized in

an iterative fashion. There is no need to do Eigen decomposition or matrix inverse

for scatter matrices.
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Algorithm 2 Stiefel gradient descent algorithm for HLDA.

Input: Data matrix X ∈ Rp×n with n data points in p dimensional space; class

indicator matrix Y ∈ Rn×K , K is number of classes; subspace dimension k

Output: Projection matrix G ∈ Rp×k

1: Initialize G

2: Compute Sw and Bk` using Eq.(3.3) and Eq.(3.11)

3: while Objective value Eq.(3.21) not converge do

4: Compute Stiefel manifold gradient using Eq.(3.23)

5: Update G using Eq.(3.24)

6: end while

While initializing matrix G, if subspace dimension k <= K − 1, we can use

classical LDA Eq.(3.6) solution to initialize G; when k > K − 1, we can use trace

ratio LDA Eq.(3.9) solution to initialize G. This ensures that our approach can find a

better solution than other LDA formulations (see experiments part for comparison).

3.3.3 Comparison to SUM version HLDA

In HLDA, it is also possible to move the within-class distance part Tr(GTSwG)

from the nominator to a separate term as the following

min
G

γTr(GTSwG) +
∑
k<`

nkn`
Tr(GTBk`G)

, (3.25)

s.t. GTG = I,

The advantage here is that the relative weight of the two tasks can be explicitly

controlled by the parameter γ, while in HLDA the relative weight of the two tasks are

prefixed. When γ → ∞, Eq.(3.25) focuses on minimizing within-class distance only,

which is equal to finding the null space of within-class scatter matrix Sw. When γ → 0,
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(a) “1”. (b) “2”. (c) “1” and “2”. (d) “0” to “9”.

Figure 3.2: Mean of digit images.

Eq.(3.25) focuses on maximizing pairwise between-class distance. However, the tuning

of extra parameter γ add significant computational time in real applications. This

framework has been studied in [37], and will not be discussed further in this chapter.

3.4 Harmonic Linear Discriminant Analysis pairwise (HLDAp)

In many datasets, different class has different within-class covariance, the global

average of within-class Sw used in Eq.(3.21) would differ significantly from each class.

However, in general, the average of two classes are likely to be close to each of the

two classes.

For example, consider handwritten digits data MNIST. We take 500 images

from each class. Figure 3.2 shows the mean of digit “1”, mean of digit “2”, mean

of digits “1” and “2”, and mean of digits “0” to “9”. We can see that the mean of

digits “1” and “2” retains some similarity with digits “1” and “2”, whereas the mean

of digits “0” to “9” is very different from digits “1” and “2”.

Using this idea, we believe that using the global average of within-class distances

(variances) of all classes is a less accurate representation as compared to use average

of two class covariances. Fortunately, this pairwise average can be accommodated into
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the framework of Eq.(3.21). For this purpose, we introduce the pair-wise within-class

covariance (scatter matrix) of class k and `

Wk` =
1

nk + n`
(nkWk + n`W`), (3.26)

where Wk and W` can be given from Eq.(3.2).

The objective function of HLDA is then changed to:

min
G
J2(G) =

∑
k<`

nkn`
Tr(GTWk`G)

Tr(GTBk`G)
, (3.27)

s.t. GTG = I,

where constraint GTG = I ensures the columns of solution G are linearly independent.

We call Eq.(3.27) Harmonic Linear Discriminant Analysis pairwise (HLDAp).

Again, we use Stiefel gradient descend method to solve the minimization prob-

lem. The gradient of Eq.(3.27) is:

∇J2 ,
∂J2

∂G
=
∑
k<`

2nkn`[
Wk`G

Tr(GTBk`G)
−Bk`G

Tr(GTWk`G)

(TrGTBk`G)2
]. (3.28)

We then use the natural gradient of Eqs.3.23, 3.24) to enforce G on the Stiefel mani-

fold.

3.5 Illustration

To show the effectiveness of HLDA and HLDAp, Figure 3.3, 3.4, 3.5 and 3.6

visualize real data sets, Iris [38], PIE, YaleB and ATT, in 2-D subspace.

Iris data has 150 samples in total, 3 classes and dimension p = 4. Figure 3.3a,

3.3c, 3.3e show the classical LDA, HLDA and HLDAp 2D projection of Iris data

respectively. The red circle and black square class are very close in these figures.

Figure 3.3b, 3.3d, 3.3f show the SVM results on two classes (red circle and black
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(d) SVM on Iris HLDA.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

g1

g
2

 

 

(e) Iris HLDAp 2D.
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(f) SVM on Iris HLDAp.

Figure 3.3: Illustration of Iris data (dimension p = 4, sample number n = 150 and
class number K = 3) in 2-D subspace using LDA, HLDA and HLDAp, g1 and g2
are the two subspace dimensions. Figure 3.3b, 3.3d and 3.3f show SVM results on

red circle class and black square class: Figure 3.3b has 5 misclassified samples;
Figure 3.3d and 3.3f have 2 misclassified samples respectively.
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(a) PCA(PIE).
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(b) LDA(PIE).
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(c) HLDA(PIE).
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(d) HLDAp(PIE).

Figure 3.4: Visualization of PIE demo data (dimension p = 1024, sample number
n = 40 and class number K = 4) in 2-D subspace, g1 and g2 are the two subspace

dimensions, PC1 and PC2 are the two principle components of PCA.

square) of Iris data. Figure 3.3b has 5 misclassified samples. Figure 3.3d and 3.3f

have 2 misclassified samples respectively.

Figure 3.4, 3.5 and 3.6 show 2-D projection of PCA, LDA, HLDA and HLDAp

on demo data PIE, YaleB and ATT (see Table 3.1 for more information about these

data). In this demo, we take 4 classes from each data. From Figures (3.4a, 3.4b, 3.5a,

3.5b, 3.6a, 3.6b), we can see that data points from 4 classes are mixed together and it

is difficult to separate any two classes from the the figures. Figures (3.4c, 3.4d, 3.5c,

3.5d, 3.6c, 3.6d) show the project results using Eq.(3.21) and Eq.(3.27). For all three

demo data, 4 classes are clearly separated and there are no overlaps.
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(a) PCA(YaleB).
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(b) LDA(YaleB).
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(c) HLDA(YaleB).
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(d) HLDAp(YaleB).

Figure 3.5: Visualization of YaleB demo data (dimension p = 504, sample number
n = 256 and class number K = 4) in 2-D subspace, g1 and g2 are the two subspace

dimensions, PC1 and PC2 are the two principle components of PCA.

3.6 Multi-label HLDA and HLDAp

In image and video annotation, each image is usually associated with several

different conceptual classes. Let’s take two sample images from MSRC data in Figure

3.7 as an example. Figure 3.7a is annotated using 3 words: sky, plane and grass;

Figure 3.7b is annotated using 3 words: car, building, road. In machine learning,

such problem that requires each data point to be assigned to multiple different classes

is called multi-label classification problem. In contrast, in traditional single-label

classification, which is also called single-label multi-class classification, each data
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(a) PCA(ATT).
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(b) LDA(ATT).
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(c) HLDA(ATT).
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(d) HLDAp(ATT).

Figure 3.6: Visualization of ATT demo data (dimension p = 644, sample number
n = 40 and class number K = 4) in 2-D subspace, g1 and g2 are the two subspace

dimensions, PC1 and PC2 are the two principle components of PCA.

point is only classified into one category. Multi-label multi-class problem is more

generalized than single-label multi-class problem.

An important difference between single-label classification and multi-label clas-

sification is that class memberships in single-label classification are mutually exclusive,

while class memberships in multi-label classification are overlapped with 2 or more

classes. Class memberships can be inferred from label correlations, which can be used

to improve classification. It has stimulated many multi-label learning algorithms [20]

[21] [22] [8].
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(a) sky, plane, grass. (b) car, building, road.

Figure 3.7: Sample images from MSRC data set. Each image is annotated with
several different words. In a multi-label multi-class classification problem, each

image is classified into more than 1 class.

However, Linear Discriminant Analysis (LDA) by nature is derived for single-

label classification. Wang proposed a multi-label formulation of scatter matrices for

multi-label data in [8]. Multi-label class indicator matrix Y ∈ Rn×K is defined as

Yik =


1, if point i is in class k.

0, otherwise.

(3.29)

For data point i,
∑

k Yik > 1, which means that data i belongs to more than 1 class.

Multi-label between-class scatter matrix S̃b and within-class scatter matrix S̃w are

defined as follows [8]:

S̃b =
K∑
k=1

n∑
i=1

Yik(mk −m)(mk −m)T , (3.30)

S̃w =
K∑
k=1

n∑
i=1

Yik(xi −mk)(xi −mk)
T , (3.31)

where mk is the mean of class k and m is global mean, defined as follows:

mk =

∑n
i=1 Yikxi∑n
i=1 Yik

, m =

∑K
k=1

∑n
i=1 Yikxi∑K

k=1

∑n
i=1 Yik

. (3.32)

Eqs.(3.30,3.31) are also equivalent to Eq.(28, 29, 30) in [39].
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Inspired from Eqs.(3.30,3.31), we can define multi-label pair-wise between-class

scatter matrix B̃k` for class k and ` as:

B̃k` = (mk −m`)(mk −m`)
T . (3.33)

nk =
n∑
i=1

Yik, n` =
n∑
i=1

Yi`. (3.34)

We also define the multi-label within-class scatter matrix W̃k for class k as:

W̃k =
1

nk

n∑
i=1

Yik(xi −mk)(xi −mk)
T . (3.35)

3.6.1 Multi-label HLDA

Using Eqs.(3.31, 3.32, 3.33, 3.34), the objective of Multi-label HLDA can be

proposed as:

min
G

∑
k<`

nkn`
Tr(GT S̃wG)

Tr(GT B̃k`G)
, (3.36)

s.t. GTG = I.

Eq.(3.36) can be solved using similar approach as Eq.(3.21).

3.6.2 Multi-label HLDAp

Using Eqs.(3.35), let us define the multi-label pair-wise within-class scatter

matrix W̃k` as:

W̃k` =
1

nk + n`
(nkW̃k + n`W̃`). (3.37)

Using Eqs.(3.33, 3.34, 3.37), the objective of Multi-label HLDAp can be proposed as:

min
G

∑
k<`

nkn`
Tr(GT W̃k`G)

Tr(GT B̃k`G)
, (3.38)

s.t. GTG = I,

Eq.(3.38) can be solved using similar approach as Eq.(3.27).
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Table 3.1: Experiment single-label dataset.

Data dimension p sample number n class number K
UMIST 644 360 20

PIE 1024 680 68
YaleB 504 1984 31
ATT 644 400 40

MNIST 784 1000 10
ISOLET2 617 1560 26
ISOLET3 617 1560 26

Table 3.2: Experiment multi-label dataset.

Data dimension p sample number n class number K
MediaMill 120 6601 74
Barcelona 48 139 4

3.7 Experiments

In this section, we compare the performance of proposed harmonic mean between-

class distance based HLDA and HLDAp with other LDA formulation algorithms and

perform experiments on single-label and multi-label problems. We will show the

convergence and efficiency of proposed algorithm. We will systematically study the

relationship of classification performance with subspace dimension number k.

3.7.1 Data

We use 7 single-label datasets and 2 multi-label datasets in this experiment.

These datasets come from different domains, such as face image, handwritten digits,

speech recognition and multimedia videos. Data attributes are summarized in Table

3.1 and Table 3.2.

Single-label data UMIST [36] is a dataset of 360 face images (Sheffield Face

database) taken from 20 persons with mixed race, gender and appearance. Each

person has 18 images which were resized to 28x23 (644 pixels or dimensions). PIE

[25] is a face database from Carnegie Mellon Robotics Institute. In total, it has
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(a) UMIST

(b) PIE

(c) YaleB

(d) ATT

(e) MNIST

Figure 3.8: Experiment example images.

68 different persons and 10 images for each person with different poses, different

illumination conditions, and different expressions. Images were resized to 32x32 (1024

pixels). YaleB [40] contains images of 31 persons under 9 poses and 64 illumination

conditions. Each person has 64 images with size 24x21 (504 pixels). ATT [41] data

contains 400 images of 40 persons, with 10 images for each person. The images have

been resized to 28x23 (644 pixels). MNIST [26] is a handwritten digits dataset with
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Figure 3.9: HLDA algorithm convergence (Algorithm 2, objective Eq.(3.21)).

10 classes and 100 images of size 28x28 (784 pixels) for each class. In ISOLET2

(Isolated Letter Speech Recognition) [38] data, each English letter was read twice by

30 people. Each recorded voice for a letter was analyzed and data (such as amplitudes,

zero-crossing rates, DFT coefficients, etc.) are collected to form a feature vector of

617 dimensions. There are 26 classes. Each has 60 samples. ISOLET3 is the same

as ISOLET2, but with different speakers. Figure 3.8 shows some example images of

single label data.

Multi-label data MediaMill data [42] is a multi-label data from video concept

detection problems. It has 74 classes and 6601 samples. Barcelona data [7] contains

image moments of 139 images with 4 classes, such as buildings, flora, people and sky.

Each image has at least two labels.
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Figure 3.10: HLDAp algorithm convergence (objective Eq.(3.27)).

3.7.2 Convergence of Algorithm

We take 4 single-label datasets as examples to show the convergence speed of

Algorithm 2. Figure 3.9 and Figure 3.10 show the objective Eq.(3.21) and Eq.(3.27)

converge quickly in 200 to 400 iterations.

3.7.3 Effect of Subspace Dimension

We want to study the effect to subspace dimension k to the performance of

HLDA and HLDAp. We take 4 datasets and apply on them HLDA, HLDAp and

LDA with different subspace dimension k (from 1 to K − 1). Then we use KNN as

classifier to see the classification accuracy. Figure 3.11 shows the results. HLDA gives

better accuracy than HLDAp and LDA on UMIST data when k is less than 3. HLDA

and HLDAp is a little better than LDA when k is larger than 3. For data PIE, HLDA
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Figure 3.11: Accuracy using different subspace dimension k (Check Table 3.3 for the
improvement at K − 1).

and HLDAp gives better accuracy than LDA. For YaleB, the improvement of HLDA

and HLDAp over LDA is significant as well. For data ATT, HLDA and HLDAp gives

better accuracy than LDA.

3.7.4 Single-Label Classification Experiment

The experiment use 5-fold cross validation to evaluate the classification perfor-

mance of different algorithms when dimension is k = K − 1. K-Nearest Neighbour

(KNN) classifier is then used after each dimension reduction algorithm. Table 3.3

shows the classification accuracy of different approaches, and HLDA and HLDAp

give better results.
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Table 3.3: Single-label experiment results (subspace dimension is K − 1, best results
are in bold).

Data HLDA HLDAp LDA TraceRatio MMC RLDA ULDA OLDA OCM OLSLDA sdpLDA
UMIST 0.9950 0.9983 0.9733 0.9533 0.9817 0.9717 0.9733 0.9483 0.9717 0.9733 0.9717

PIE 0.9007 0.8805 0.6559 0.8456 0.8574 0.6265 0.6221 0.6485 0.6265 0.8250 0.6265
YaleB 0.9508 0.9651 0.5683 0.9112 0.9341 0.5009 0.5009 0.6630 0.5288 0.8435 0.5288
ATT 0.9700 0.9825 0.9675 0.8525 0.9675 0.9625 0.9625 0.9500 0.9625 0.9650 0.9625

MNIST 0.8860 0.8830 0.8770 0.7660 0.8650 0.8770 0.8720 0.8620 0.8770 0.7410 0.8770
ISOLET2 0.9286 0.9199 0.9154 0.5596 0.9199 0.8628 0.8737 0.8096 0.8929 0.8769 0.8929
ISOLET3 0.8917 0.9151 0.8859 0.5340 0.8981 0.8276 0.8385 0.7795 0.8641 0.8154 0.8641

Table 3.4: Multi-label experiment results (best results are in bold).

Data HLDA HLDAp MLR MLSI MDDM MLLS MLDA

MediaMill
Accuracy 0.9267 0.9248 0.7705 0.8962 0.9044 0.8994 0.9036
Macro F1 0.5616 0.5420 0.2546 0.5244 0.5593 0.5426 0.5571
Micro F1 0.3988 0.3808 0.2239 0.4064 0.4432 0.4370 0.4448

Barcelona
Accuracy 0.6962 0.6779 0.6089 0.6436 0.6470 0.6524 0.6290
Macro F1 0.7683 0.7534 0.6483 0.7286 0.7301 0.7341 0.7169
Micro F1 0.7257 0.7081 0.5865 0.6891 0.6861 0.6904 0.6772

3.7.5 Multi-Label Classification Experiment

We compare the performance of Multi-label HLDA and Multi-label HLDAp

with 5 other multi-label dimension reduction algorithms on 2 multi-label datasets

in terms of macro accuracy, macro-averaged F1-score and micro-averaged F1-score.

Macro-average is the average based on the overall testing dataset, while micro-average

is the average which gives equal weight to each class. Macro-averaged and micro-

averaged F1-score are widely used as a metric to evaluate classification performance

[43]. MLSI, MDDM, MLLS, MLDA will be introduced in related work section (section

3.8). MLR is muli-label linear regression, which uses the closed-form solution of

standard linear regression. This experiment uses 5-fold cross validation to evaluate

the classification performance of different algorithms when dimension is k = K − 1.

K-Nearest Neighbour (KNN) classifier is then used after each algorithm. Table 3.4

shows that Multi-label HLDA and Multi-label HLDAp give better results over other

algorithms.
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3.8 Related Work

Researchers and engineers nowadays have larger and larger data with very

high dimension to be processed everyday [30]. Many big data technologies including

cloud computing, dimension reduction, accelerating algorithms have been proposed

[44, 45, 46, 47, 7, 48]. Trace ratio problem has been studied thoroughly in recent years.

Many dimension reduction algorithms can be reduced to a trace ratio objective. But

trace ratio problem does not have closed-form solution. Thus how to solve trace ra-

tio efficiently becomes an interesting research topic. Wang [11] proposed an efficient

iterative algorithm to get an approximate solution. Shen [49] proposed a formulation

for solving the trace ratio problem directly. Nie proposed a Trace Ratio criteria for

feature selection[50]. Each feature subset has a feature score, which is computed by

trace ratio. They propose an iterative algorithm to find the global optimal feature

subset. A number of LDA reformulation ideas have be proposed in recent years, such

as PCA+LDA [51], regularized LDA(RLDA) [14], null space LDA (NLDA) [35], Or-

thogonal Centroid Method (OCM) [15], Uncorrelated LDA(ULDA)[16], Orthogonal

LDA (OLDA)[16], etc. Ye introduced a unified framework for generalized LDA in

[17]. The unified framework consists of four steps:

1. Compute the eigenvalues {λi}di=1 and eigenvectors {ui}di=1 of total covariance

matrix St, where d is the dimension of data. So St =
∑d

i=1 λiuiu
T
i .

2. Given a transfer function φ: λ̃i = φ(λi). Construct S̃t =
∑d

i=1 λ̃iuiu
T
i .

3. Compute the eigenvectors of matrix S̃+
t Sb that correspond to the largest q eigen-

values, where q is the rank of Sb and S̃+
t means pseudo-inverse of S̃t. Construct

matrix G using these q eigenvectors.

4. Optional: compute the QR decomposition of G = QR.

The final projection is given as G or Q. In RLDA, the transfer function is

φ(λi) = λi + µ. In ULDA, φ(λi) = λi and the optional QR decomposition is not
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applied. In OLDA, φ(λi) = λi + µ and the optional QR decomposition is applied.

In OCM, the optimal transformation is the top eigenvectors of Sb and the transfer

function is φ(λi) = 1. Maximum Margin Criteria (MMC) [18] finds a projection G to

maximize Tr(GT (Sb − Sw)G). Semi-Definite Positive LDA (sdpLDA) [19] solves the

maximization of Tr(GT (Sb − λ1Sw)G), where λ1 is the largest eigenvalue of S−1
w Sb.

In the following, we introduce some related work about multi-label dimension

reduction.

MLSI. Multi-label informed Latent Semantic Indexing (MLSI) [20] makes use

of supervision information to solve the problem of

max
G

Tr(GT ((1− β)XXTXXT + βXY Y TXT )G),

s.t. GTXXTGT = I,

where the first term is the original Latent Semantic Indexing objective and the second

term is the supervised term.

MDDM. Multi-label Dimensionality reduction via Dependence Maximization

(MDDM) [21] finds a subspace by solving the following problem:

max
G

Tr(GTXHY Y THXTG),

where H = I − eeT/n is the centralizing matrix. MDDM maximizes the dependence

between the original features and associated class labels.

MLLS. Multi-Label Least Square (MLLS) [22] tries to find a subspace through

solving the following problem:

max
G

Tr(GT (I − αM)−1(M−1XY Y
TXTM−1)G),

M =
1

n
XXT + (α + β)I.
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MLDA. Multi-label Linear Discriminant Analysis (MLDA) [8] finds a projec-

tion matrix G to maximize an objective function which is very similar to classical

single label LDA:

max
G

Tr
GT S̃bG

GT S̃wG
,

where S̃b and S̃w can be computed from Eq.(3.30) and Eq.(3.31).

3.9 Conclusion

In this chapter, we proposed two formulations of harmonic mean based Linear

Discriminant Analysis: Harmonic Linear Discriminant Analysis (HLDA) and Har-

monic Linear Discriminant Analysis pairwise (HLDAp), to overcome the limitations

of classical LDA. HLDA and HLDAp make use of weighted harmonic mean of pair-

wise between-class distance and gives higher priority to maximize small between-class

distances. We extended HLDA and HLDAp to multi-label classification problems.

Extensive experiments of HLDA and HLDAp on single-label and multi-label data

sets show that HLDA and HLDAp have better performance than approaches using

arithmetic mean based between-class distance and the potential benefit of harmonic

mean based LDAs.
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CHAPTER 4

MULTI-VIEW LOW-RANK REGRESSION

4.1 Introduction

In many tasks, a single object can be described using information from different

channels (or views). For example, a 3-D object can be described using pictures from

different angles; a website can be described using the words it contains, and the

hyperlinks it contains; an image can be described using different features, such as

SIFT feature, and HOG feature; in daily life, a person can be characterized using age,

height, weight and so on. These data all comes from different aspects and channels.

Multi-view problems aim to improve existing single view model by learning a model

utilizing data collected from multiple channels [52] [53] [54].

Low-rank regression model has been proved to be an effective learning mech-

anism by exploring the low-rank structure of real life data [55] [56] [57]. Existing

regression models only work on single view data. To be specific, linear regression

finds a linear model with respect to the single view feature data to fit target class

data [58]. Let matrix B ∈ Rp×c be the parameter of the linear model. Linear re-

gression solves a problem of minB ||Y −XTB||2F , where X = [x1,x2, ...,xn] ∈ Rp×n is

the single view feature data matrix and Y ∈ Rn×c is the target class indicator ma-

trix. Ridge regression can achieve better results by adding a Frobenius norm based

regularization on linear regression loss objective [59] [60]. Ridge regression solves the

problem minB ||Y −XTB||2F +λ||B||2F , where λ is the regularization weight parameter.

Cai [57] showed that when B is low-rank, regression is equivalent to linear discrim-
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inant analysis based regressions. However, all these work only works for single-view

problems.

In this chapter, we propose a multi-view low-rank regression model [48] by

imposing low-rank constraints on regression model. This model can be solved using

closed-form solution directly. In linear regression, low rank parameter matrix Bν is

dependent on view ν. Through theoretical analysis, we show that multi-view low-

rank regression model is equivalent to do regression in the subspace of each view.

In other words, let Bν = AνB, and it is equivalent to find the shared regression

parameter matrix B under the subspace transformation Aν with respect to view ν.

Extensive experiments performed on 4 multi-view datasets show that the proposed

model outperforms single-view regression model and reveals that low-rank structure

can improve the classification result of a full-rank model.

Notations. In this chapter, matrices are written in uppercase letters, such as

X, Y . Vectors are written in bold lower case letters, such as x, y. Tr(X) means the

trace operation for matrix X.

4.2 Multi-view Low Rank Regression

Assume that there are v views and c classes, pν is the dimension of view ν, nj is

the sample size of the j-th class, and n is the total sample size. Let Xν = [xν1, ...,x
ν
n] ∈

Rpν×n be the data matrix of view ν, ν = 1, 2, ..., v, and Y = [y1, ...,yc] ∈ Rn×c is the

normalized class indicator matrix, i.e. Yij = 1/
√
nj if the i-th data point belongs to

the j-th class and Yij = 0 otherwise.
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We try to minimize the residual of low rank regression model in each class and

in each view. Loss function of multi-view low rank ridge regression can be proposed

as in Eq.(4.1):

J0 =
v∑

ν=1

c∑
k=1

{‖yk − (XT
ν β

ν
k + f νk e)‖2

2 + λν‖βνk‖2
2}

=
v∑

ν=1

{‖Y − (XT
ν B

ν + EF ν)‖2
F + λν‖Bν‖2

F} (4.1)

where projection matrix Bν = [βν1 , ..., β
ν
c ] ∈ Rpν×c, bias F ν = diag(f ν1 , ..., f

ν
c ), E =

[e, ..., e] ∈ Rn×c. e is a n-dimensional column vector with all elements equal to 1.

λν is the regularization parameter of view ν. Let’s introduce low rank projection Bν

with rank s, s < min(pν , c),

βνk = Aνbk, or Bν = AνB, (4.2)

where Aν ∈ Rpν×s, and B = (b1, ...,bc) ∈ Rs×c. Therefore, the objective function

Eq.(4.1) can be written as:

J1 =
v∑

ν=1

{‖Y − (XT
ν AνB + EF ν)‖2

F + λν‖AνB‖2
F} (4.3)

It is noteworthy that from Eq.(4.3), we can see that multi-view low-rank regression

model is equivalent to do regression in the subspace of each view. Matrix Aν is the

subspace matrix of view ν. Matrix B is the shared regression parameter matrix of all

views.

4.2.1 Closed form solution

We now present the closed form solution of the Multi-view Low Rank Regres-

sion. Before we talk about the closed form solution, we present Lemma 4 to simplify

Eq.(4.3).
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Lemma 4. The bias f νk can be solved and eliminated from J1, which is thus simplified

into

J1 =
v∑

ν=1

{‖Y c −XcT
ν AνB‖2

F + λν‖AνB‖2
F} (4.4)

where bias f νk relates to B as

f ν∗k = ȳk − x̄TνAνb
ν
k (4.5)

and Xc
ν = Xν − x̄eT is centered data matrix of view ν and Y c = Y − (ȳ1, ..., ȳc)e is

centered class indicator matrix.

Proof. Taking derivative of Eq.(4.3) w.r.t. f νk and setting it to zero, the optimal

solution of f νk is given as in Eq.(4.5), where ȳk is a real number, ȳk =
∑n

i=1 yki/n,

x̄ν =
∑n

i=1 xνi /n ∈ Rpν×1. Substituting Eq.(4.5) into Eq.(4.3), we have Eq.(4.4).

In the rest of this chapter, we focus on solving Eq.(4.4). For simplicity of

notations, we drop c in Xc
ν and use Xν to denote the centered Xν . Similarly, we drop

c in Y c and use Y to denote the centered Y .

Now we present Theorem 3 to give the closed form solution of multi-view low-

rank regression model.

Theorem 3. The optimal solution of J1({Aν}, B) is the following:

1. {Aν} is given by the optimal solution of the following problem:

max
{Aν}

Tr(G−1HY Y THT ) (4.6)

where

G = G({Aν}) ,
∑
ν

ATν (XνX
T
ν + λνI)Aν , (4.7)

H = H({Aν}) ,
∑
ν

ATνXν (4.8)
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2. B is given by

B∗ = G−1H. (4.9)

Proof. Taking derivative of Eq.(4.4) w.r.t. B, we have

∂J

∂B
= −2

∑
ν

ATνXνY + 2
∑
ν

ATνXνX
T
ν AνB + 2λν

∑
ν

ATνAνB. (4.10)

Setting Eq.(4.10) to zero, we have Eq.(4.9).

Substituting Eq.(4.9) in Eq.(4.4), we have

J = −min
{Aν}

Tr(G−1HY Y THT ) (4.11)

where G = G({Aν}) ,
∑

ν A
T
ν (XνX

T
ν + λνI)Aν ,

H = H({Aν}) ,
∑

ν A
T
νXν . Eq.(4.11) is equivalent to Eq.(4.6).

Furthermore, we present Theorem 4 to give the closed form solution for Eq.(4.6).

Let

A =



A1

A2

...

Av


, X =



X1

X2

...

Xv


, (4.12)

Sb =XY Y TXT , (4.13)

St =diag(X1X
T
1 + λ1I, ..., XvX

T
v + λvI), (4.14)

Theorem 4. Eq.(4.6) is equivalent to

max
A

Tr[(ATStA)−1ATSbA], (4.15)

where the optimal solution A∗ is given by eigenvectors of S−1
t Sb that correspond to

the s largest eigenvalues.
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Algorithm 3 Multi-view low-rank regression

Input: Data matrix Xν ∈ Rpν×n, class indicator matrix Y ∈ Rn×c, regularization weight

parameter λν , rank s < c, ν = 1, 2, ..., v

Output: Matrix Aν ∈ Rpν×s and B ∈ Rs×c, ν = 1, 2, ..., v

1: Compute Sb and St using Eq.(4.13) and Eq.(4.14)

2: Compute Aν using the optimal solution of Eq.(4.15)

3: Compute B using Eq.(4.9)

Table 4.1: Multi-view datasets attributes.

Data n c v pν
MSRC 210 7 4 1302, 512, 100, 256
Caltech 1230 20 4 1302, 512, 100, 256
Cornell 195 5 3 107, 20, 15
Cora 2708 7 3 101, 180, 75

4.2.2 Algorithm

We present Algorithm 3 to summarize the steps of multi-view low-rank re-

gression model. One of the advantages of our model is that it can be solved using

closed-form solution directly. The input of this algorithm is (1) centered and normal-

ized data matrix Xν ∈ Rpν×n from view ν, where ν = 1, 2, ..., v , v is view number,

pν is the dimension of view ν and n is sample number, (2) class indicator matrix

Y ∈ Rn×c, (3) regularization weight parameter λν , (4) rank s, which is less than the

class number c. The output of this algorithm is matrix Aν ∈ Rpν×s and B ∈ Rs×c.

We can compute Sb and St using Eq.(4.13) and Eq.(4.14). In step 2, we compute A,

which is those eigenvectors of S−1
t Sb that correspond to the s largest eigenvalues. We

should use Eq.(4.12) to restore Aν from A. Finally, we compute B using Eq.(4.9).
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4.3 Multi-view Full Rank Regression

Low-rank regression model has been proved to be an effective learning mech-

anism by exploring the low-rank structure of real life data. Will the multi-view

low-rank regression model be able to capture the low-rank structure and improve the

performance of a full-rank model? We will compare the performance of multi-view

low-rank regression model with a full-rank model in experiment section.

In the case of multi-view full-rank regression, rank s = c, there is no constraint

on Bν in Eq.(4.1) and we will not use Eq.(4.2). To be specific, we will minimize the

objective Eq.(4.4):

J1 =
v∑

ν=1

{‖Y −XT
ν B

ν‖2
F + λν‖Bν‖2

F} (4.16)

Eq.(4.16) can be solved using close form solution. Taking derivative of Eq.(4.16) w.r.t.

Bν and setting it to zero, the optimal solution of Bν is given as

Bν = (XνX
T
ν + λνI)−1XνY, (4.17)

where I ∈ Rpν×pν is an identity matrix.

4.4 Connections to other Multi-view work

Various multi-view learning models have been studied and all multi-view models

are expected to have better performance than single view models. Existing multi-view

approaches mainly are inspired from spectral clustering and subspace learning. de

Sa [53] developed a spectral clustering algorithm for only two views by creating a

bipartite graph based on the “minimizing-disagreement” idea. Zhou [54] developed

a multi-view spectral clustering model via generalizing the single view normalized

cut to the multi-view case. They try to find a cut which is close to be optimal

on each single-view graph by exploiting a mixture of Markov chains associated with

56



1 2 3 4 5 6
5

10

15

20

Rank

R
e

s
id

u
a

l

 

 

No bias

With bias

(a) MSRC

0 5 10 15 20
35

40

45

50

55

60

65

Rank

R
e

s
id

u
a

l

 

 

No bias

With bias

(b) Caltech

1 2 3 4
6

7

8

9

10

11

Rank

R
e

s
id

u
a

l

 

 

No bias

With bias

(c) Cornell

1 2 3 4 5 6
11

12

13

14

15

16

Rank

R
e

s
id

u
a

l

 

 

No bias

With bias

(d) Cora

Figure 4.1: Effect of regression bias in Eq.(4.3).

graphs of different views. Kumar [61] proposed a co-training flavour spectral cluster-

ing algorithm and use spectral embedding from one view to constrain the similarity

graph used for the other view. Kumar [62] used the philosophy of co-regularization,

which has been used in the past for semi-supervised learning problems, to make the

clusterings in different views agree with each other.

Multi-view learning models from the point of view of subspace learning mainly

try to find a subspace for each view and then develop a learning model across views in

their subspaces. Canonical-Correlation Analysis (CCA) [63] was first used to study

the correlation of two views in their respective subspaces. Hardoon [64] [65] de-

signed an Kernel Canonical-Correlation Analysis to extract patterns from two views.

Chaudhuri [66] proposed a CCA-based subspace multi-view learning approach to find
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Figure 4.2: Classification using different voting or sum methods.

a subspace such that the objects of different classes are well-separated and within-class

distance is minimized. Greene [67] developed a Non-negative Matrix Factorization

(NMF) [68] approach to effectively identify common patterns and reconcile between-

view disagreements by combining data from multiple views.

The proposed multi-view low-rank regression model should be categorized into

the class of subspace learning multi-view. The important contribution of this chapter

is that we developed low-rank regression model to study multi-view problems. Sur-

prisingly, there exists closed form solution to multi-view low-rank regression model.
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4.5 Experiments

In this section, we perform extensive experiments on 4 multiple-view datasets.

Through model learning, we systematically explore the best settings of regression

bias, regularization weight parameter λν and how to do classification using multi-

view regression. We compare the classification accuracy of multi-view low-rank ridge

regression with single-view regression, linear regression and full rank ridge regression.

4.5.1 Datasets

Various multi-view datasets are used. These datasets include image datasets

MSRC [24] and Caltech [23], website dataset Cornell [69] and scientific publication

dataset Cora [70]. Cornell and Cora are downloaded from [71]. Summary of the

datasets attributes are presented in Table 4.1, where n is sample number, c is class

number, v is view number and pν lists the dimensions of different views.

MSRC is an image scene data, including trees, buildings, planes, cows, faces,

cars and so on. It has 210 images from 7 classes. We extract different features from

this data. The 4 views we used in this chapter are CENTRIST(1302 dimensions),

GIST (512 dimensions), HOG (100 dimensions) and LBP (256 dimensions).

Caltech is a subset of Caltech 101 image data. It has images from 20 classes,

including Faces, Leopards, Motorbikes, binocular, Brain, Camera, etc.. This data has

1230 images and 4 features are extracted from this data, including CENTRIST(1302

dimensions), GIST (512 dimensions), HOG (100 dimensions) and LBP (256 dimen-

sions).

Cornell contains 195 documents over the 5 types (student, project, course,

staff, faculty). There exists referral links among these documents. We use 3 views to

describe the same document, including content view (107 dimensions), inbound-link

view (20 dimensions) and outbound-link view (15 dimensions).
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Figure 4.3: Regularization weight parameter λν .

Cora consists of 2708 scientific publications classified into one of seven classes

(Neural Networks, Rule Learning, Reinforcement Learning, Probabilistic Methods,

Theory, Genetic Algorithms, Case Based). The citation network consists of links

among those publications. The 3 views used in our experiments include content view

(101 dimensions), inbound-link view (180 dimensions) and outbound-link view (75

dimensions).

4.5.2 Model learning

Through model learning, we systematically explore the best settings of regres-

sion bias, regularization weight parameter λν and how to do classification using multi-

view regression.
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Figure 4.4: Classification results of multi-view vs. single view data.

Effect of regression bias To validate that adding bias to regression will reduce

fitting residual, Figure 4.1 compares the residual of class indicator matrix Y using

two f νk values: (1). using Eq.(4.5), denoted by “With bias” line (red circle line),

(2)f νk = 0, denoted by “No bias” line (blue dot line). Residual r is defined as

r =
v∑

ν=1

‖Y −XT
ν AνB‖2

F . (4.18)

r is the summation of label matrix residuals over all views. Theoretically, adding bias

F ν could produce a more accurate fitting model, which means a model has smaller

residual r. We examine this property by using rank s = 1, ..., c − 1. As we can see

from Figure 4.1, for all the 4 datasets, the residual using bias is always smaller than

the residual without bias using all different ranks. In Figure 4.1a, 4.1c, and 4.1d, the
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residual with bias (“With bias” line) is smaller than the residual without bias (“No

bias” line). For MSRC data, the residual with bias is about 3 less than the residual

without bias; for Caltech data, Figure 4.1b shows that the residual with bias is less

than residual without bias; for Cornell data, the residual with bias is about 2 less on

all rank numbers; for Cora data, the residual with bias is about 2 less on all rank

numbers. In all, our results show that multi-view regression using bias could produce

more accurate fitting models with less model residuals. In the following experiments,

the default setting of all experiments is using bias.

Classification using regression In multi-view regression, there are different

ways to do classification. For single-view low-rank regression [57],

min
A,B
‖Y −XTAB‖2

F + λ‖AB‖2
F , (4.19)

where A ∈ Rp×s, B ∈ Rs×c and AB is the low-rank regression parameter matrix, the

following decision function is applied to classify a testing point x ∈ Rp×1 into one of

the c classes,

arg max
1≤j≤c

(y)j, (4.20)

where vector y = xTAB ∈ R1×c, class j corresponds to the index of the maximum

value in vector y.

In multi-view case, we predict a class using each view and then use majority

voting to decide the final class. For example, for view ν, we use the following decision

function to classify a testing point xν ∈ Rp×1 into one of the c classes,

arg max
1≤j≤c

(yν)j, (4.21)

where vector yν = xTνAνB ∈ R1×c, xν is the data vector of view ν, ν = 1, 2, ..., v.

Thus we predict a class label using every view. We have v predicted classes and apply
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majority voting on v results. The class with most votes is assigned to this data point.

If the top two classes get same number of votes, we assign them with 0.5 probability,

etc.. We call this majority voting as “Voting” in Figure 4.2.

In this regression prediction problem, however, we can theoretically derive an-

other voting method denoted as “Sum”. Since our starting point is Eqs.(4.1-4.3),

after obtaining Aν and B through training, for a testing point x, we learn y that

minimizes the difference between label vector y and projected data of each views

xTνAνB:

min
y

v∑
ν=1

‖y − xTνAνB‖2
F . (4.22)

It is obvious that the solution of Eq.(4.22) is given as

y = (
v∑

ν=1

xTAνB)/v. (4.23)

Once y is computed, we use Eq.(4.20) to obtain the class.

The classification accuracy using the two methods, Sum and Voting, is shown

in Figure 4.2. As we can see from the results, for data Caltech, Cornell and Cora,

Sum method has better results than Voting method obviously. Overall, the Sum

voting method is better for regression based classification approach for multi-view

regression. In the following experiments, the default setting of every experiment is

using Sum method.

Regularization weight parameter λν Regularization weight parameter λν

affects the regression model and classification accuracy directly. Many researchers

tune this regularization weight parameter exponentially within a specific domain, such

as from 10−5 to 105. It is very time consuming and misleading. In fact, regularization

weight parameter λν has direct contribution to the eigenvalues of (XνX
T
ν + λνI), as

shown in Eq.(4.7). A large λν could change the distribution of eigenvalues of (XνX
T
ν +
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λνI) significantly. While a small λν preserves the original eigenvalues distribution of

XνX
T
ν . Thus, we constrain λν to be the following 3 cases:

1. The summation for all the eigenvalues of XνX
T
ν . This will change the distribu-

tion of eigenvalues of (XνX
T
ν + λνI) more significantly. Since Xν is normalized

row-wisely, λν = Tr(XνX
T
ν ) = pν , where pν is dimension of view ν. In Figure

4.3, result using this method is denoted as “p”.

2. The average of all the eigenvalues of XνX
T
ν . So λν = Tr(XνX

T
ν )/pν = 1, where

pν is dimension of view ν. In Figure 4.3, result using this method is denoted as

“1”.

3. The 90%th largest eigenvalue. For example, if XνX
T
ν has 200 non-zero eigenval-

ues sorted from large to small, we let λν be the 90%× 200 = 180th eigenvalue.

This will change the distribution of eigenvalues of (XνX
T
ν + λνI) slightly and

still preserve the original eigenvalue distribution of XνX
T
ν . In Figure 4.3, result

using this method is denoted as “p90”.

Figure 4.3a shows that, for MSRC data, λν = 1 and “p90” performs better than using

the summation of all eigenvalues (λν = pν). In Figure 4.3b, λν = 1 can beat “p90”

and λν = pν . In Figure 4.3c, λν = 1 also has the best accuracy for rank s = 2, 3, 4.

For data Cora, using different λν does not affect accuracy too much. Over all, we

choose λν as the average of all eigenvalues of XνX
T
ν , which is λν = 1. In the following

experiments, the default setting of every experiment is using λν = 1.

4.5.3 Comparison with single view

Multi-view regression uses data or information from multiple channels, such as

different image features, both webpage citations view and contents view. Generally,

we expect that multi-view regression can produce better results by exploiting infor-

mation from multiple views. In this part, we compare multi-view low-rank regression
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Figure 4.5: Comparison of ridge regression and linear regression.

with single-view low-rank regression (see [57]). Figure 4.4 shows that multi-view low-

rank regression produces better classification accuracy than single-view regression for

different ranks (rank s is from 1 to c− 1). “MV” denotes multi-view accuracy, “V1”,

“V2”, ..., denote the accuracy using different single view. For example, Figure 4.4a

shows that, for data MSRC, multi-view regression has much higher accuracy than all

single-view low-rank regression when rank s = 2, 3, 4, 5, 6. Figure 4.4b shows that,

when rank s > 4, multi-view regression has much higher accuracy than all the four

single views. In Figure 4.4c, view “V1” has very good accuracy, but multi-view re-

gression has better results than view “V1” when s = 1, 3. In Figure 4.4d, multi-view

outperforms single-view when s = 4, 5, 6.
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Figure 4.6: Comparison of low-rank and full-rank.

4.5.4 Comparison of ridge regression and linear regression

Linear regression (when λν = 0) and ridge regression (when λν 6= 0) are closely

related. Previous research [59] [57] shows that ridge regression will have better per-

formance than linear regression. However, all existing work is based on single view.

Does multi-view ridge regression produce better results than multi-view linear re-

gression? We will examine the performance of multi-view linear regression and ridge

regression on the 4 multi-view data with respect to different ranks. We can get lin-

ear regression by simply setting λν = 0 in our existing multi-view ridge regression

model. Figure 4.5 shows that multi-view low-rank ridge regression (“Ridge” line in

the figure) produces better classification accuracy than multi-view low-rank linear

regression (when λν = 0, “Linear” line in the figure) in datasets MSRC, Caltech
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and Cornell. For dataset Cora, ridge regression get slightly better results than linear

regression when rank s = 3, 4, 5, 6.

4.5.5 Comparison of low-rank and full-rank

In real life, low-rank reveals the underlying structure of datasets and removes

the noise and redundant information in the datasets. Low-rank regression model has

been proved to be an effective learning mechanism by exploring the low-rank structure

of real life data [55] [56] [57]. For full-rank regression, there is no constraint on Bν

in Eq.(4.1). We minimize the objective function of full-rank regression Eq. (4.16)

and use the closed-form optimal solution given by Eq.(4.17) to solve the full-rank

objective.

Figure 4.6 compares classification accuracy using low-rank multi-view regression

and full-rank multi-view regression. The blue dot line is the low-rank classification

accuracy for rank s = 1, ..., c − 1, where c is class number. The red dash line is

full-rank classification accuracy with rank s = c. The horizontal axis denotes rank

of regression and the vertical axis denotes classification accuracy. As we can see,

for all the 4 datasets, low-rank regression model can always beat full-rank regression

model. For example, in Figure 4.6a, low-rank results with s = 5 and s = 6 have

higher accuracy than full-rank with s = 7 (red dash line). In Figure 4.6b, low-rank

results with s = 11 to s = 19 have higher accuracy than full-rank with s = 20. Figure

4.6c shows low-rank results with s = 2, 3, 4 have higher accuracy than full-rank with

s = 5. Figure 4.6d shows low-rank results with s = 4, 5, 6 have higher accuracy than

full-rank with s = 7.
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4.6 Conclusion

In this chapter, we proposed a multi-view low-rank regression model. We pro-

vide a closed-form solution to multi-view low-rank regression model. Extensive exper-

iments conducted on 4 multi-view datasets show that multi-view low rank regression

outperforms full-rank regression counterpart and single-view counterpart in terms of

classification accuracy.
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CHAPTER 5

REGULARIZED SINGULAR VALUE DECOMPOSITION AND APPLICATION

TO RECOMMENDER SYSTEM

5.1 Introduction

Singular value decomposition (SVD), its statistical form principal component

analysis (PCA) and Karhunen-Loeve Transform in signal processing, are one of the

most widely used mathematical formalism/decomposition in machine learning, data

mining, pattern recognition, artificial intelligence, computer vision, signal processing,

etc..

Mathematically, SVD can be seen as the best low-rank approximation to a

rectangle matrix. The left and right singular vectors are mutually orthogonal, and

provide orthogonal basis for row and column subspaces. When the data matrix are

centered as in most statistical analysis, the singular vectors become eigenvectors of the

covariance matrix and provide mutually uncorrelated/de-correlated subspaces which

are much easier to use for statistical analysis. This form of SVD is generally referred

to as PCA, and is widely used in statistics.

In its most simple form, SVD/PCA provides the most widely used dimension

reduction for pattern analysis and data mining. SVD/PCA has numerous applications

in engineering, biology, and social science [32] [72], such as handwritten zip code

classification [73], human face recognition [74], gene expression data analysis [75],

recommender system [76].

In recent developments of machine learning and data mining, regularization

becomes an increasing trend. Adding a regularization term to the loss function can

69



increase the smoothness of the factor matrices and introduce more zero components to

the factor matrices, such as sparse PCA [77] [78]. Sparse PCA has many applications

in text mining, finance and gene data analysis [79] [80]. In this chapter, we present

a regularized SVD (RSVD), present an efficient computational algorithm, and pro-

vide several theoretical analysis. We show that although the RSVD is a non-convex

formulation, it has a global optimal closed-form solution. Finally, we apply RSVD

to recommender system on four real life datasets. RSVD based recommender system

outperforms the standard SVD based recommender system.

Notations. In this chapter, matrices are written in uppercase letters, such as

X, Y . Tr(X) denotes the trace operation for matrix X.

5.2 Regularized SVD (RSVD)

Assume there is a matrix X ∈ Rn×m. Regularized SVD (RSVD) tries to find

low-rank approximation using regularized factor matrices U and V . The objective

function is proposed as

J1 = ‖X − UV T‖2
F + λ‖U‖2

F + λ‖V ‖2
F , (5.1)

where low-rank regularized factor matrices U ∈ Rn×k and V ∈ Rm×k, k is the rank

of regularized SVD. Minimizing Eq.(5.1) is a multi-variable problem. We will now

present a faster Algorithm 4 to solve this problem.

Eq.(5.1) can be minimized in 2 steps:

A1. Fixing V , solve U . Take derivative of Eq.(5.1) with respect to U and set it

to zero,

∂J1

∂U
= −XV + UV TV + λU = 0. (5.2)
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Thus we have Eq.(5.3):

U = XV (V TV + λI)−1. (5.3)

A2. Fixing U , solve V . Take derivative of Eq.(5.1) with respect to V and set it

to zero,

∂J1

∂V
= −XTU + V UTU + λV = 0. (5.4)

Thus we can get the solution Eq.(5.5):

V = XTU(UTU + λI)−1. (5.5)

It is easy to prove that function value J1 is monotonically decreasing. To mini-

mize objective function of Eq.(5.1), we propose an iterative Algorithm 4. We initialize

V using a random matrix. Then we minimize Eq.(5.1) iteratively, until it converges.

The converge speed is actually affected by the regularization weight parameter λ. In

experiment section, we will show that RSVD converges faster than SVD (λ = 0).

Will the random initialization of matrix V in step 1 of Algorithm 4 affect the

final solution? Is the solution of Algorithm 4 unique? Below, we present theoretical

analysis and vigorously prove that there is a unique global solution and the above

iterative algorithm converge to the global solution.

5.3 RSVD solution is in SVD subspace

Here we establish two important theoretical results: Theorems 5 and 6, which

show RSVD solution is in SVD subspace.

The singular value decomposition (SVD) of X is given as

X = FΣGT , (5.6)
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Algorithm 4 Regularized SVD (RSVD)

Input: Data matrix X ∈ Rn×m, rank k, regularization weight parameter λ

Output: Factor matrices U ∈ Rn×k, V ∈ Rm×k

1: Initialize matrix V using a random matrix

2: repeat

3: Compute U using Eq.(5.3)

4: Compute V using Eq.(5.5)

5: until J1 converges

where F = (f1, · · · , fr) ∈ Rn×r are the left singular vectors, G = (g1, · · · , gr) ∈ Rm×r

are the right singular vectors, Σ = diag(σ1, ..., σr) ∈ Rr×r contains singular values,

and r is the rank of X. σ1, ..., σr are sorted in decreasing order.

We now present Theorem 5 and 6 to show that RSVD solution is in subspace

of SVD solution. Let V be the optimal solution of RSVD. Let the QR decomposition

of V ∈ Rm×k be

V = V⊥Ω, (5.7)

where V⊥ ∈ Rm×k is an orthonormal matrix and Ω ∈ Rk×k is an upper triangular

matrix.

Theorem 5. Matrix Ω in Eq.(5.7) is a diagonal matrix.

Proof. Substituting Eq.(5.3) back into Eq.(5.1), we have a formulation of V only,

J1(V ) = Tr(XTX −XTXV (V TV + λI)−1V T + λV TV ). (5.8)

Using Eq.(5.7) and fixing V⊥, we have

J1(Ω) = Tr(A−BΩ(ΩTΩ + λI)−1ΩT + λΩTΩ), (5.9)
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where A = XTX,B = V T
⊥X

TXV⊥ are independent of Ω. Let the eigen-decomposition

of ΩTΩ = CΛCT ,Ω = Λ1/2CT . Eq.(5.9) now becomes

J1(Λ) = Tr(A−BΛ1/2(Λ + λI)−1Λ1/2 + λΛ), (5.10)

where C cancel out exactly. Thus J1 is independent of C; J1 depends on the eigen-

values of ΩTΩ. For this reason, we can set C = I, Ω = Λ1/2 is a diagonal matrix.

Theorem 6. RSVD solution V⊥ of Eq.(5.7) is in the subspace of SVD singular vectors

G, as in Eq.(5.6).

Proof. Using Eq.(5.7) and fixing Ω, Eq.(5.8) can be written as

J1(V⊥) = Tr(A− V T
⊥GΣ2GTV⊥D + E), (5.11)

where A = XTX,D = Ω(ΩTΩ + λI)−1ΩT , E = λΩTΩ is independent of V⊥.

We now show that

(L1) For any V⊥, J1(V⊥) has a lower bound Jb:

J1(V⊥) ≥ Jb = Tr(A− Σ2D + E), (5.12)

and

(L2) the optimal V ∗⊥ = G.

To prove (L2), we see that when V ∗⊥ = G,

J1(V ∗⊥) = Tr(A−GTGΣ2GTGDΣ2D + E) = Jb, (5.13)

i.e., J1(V⊥) reaches the lowest possible value, the global minima. Thus V ∗⊥ = G is the

global optimal solution.

To prove (L1) we use Von Neumann’s trace inequality, which states that for

any two matrices P,Q, with diagonal singular value matrix ΛP and ΛQ respectively,
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|Tr(PQ)| ≤ Tr(ΛPΛQ). In our case, Q = D = Ω(ΩTΩ + λI)−1ΩT is already a non-

negative diagonal matrix. P = V T
⊥GΣ2GTV⊥, and P ’s singular values are Σ2 > 0.

Thus we have

Tr(V T
⊥GΣ2GTV⊥D) ≤ Tr(Σ2D). (5.14)

Adding constant matrices A,E and notice the negative sign, the inequality Eq.(5.14)

gives the lower bound Eq.(5.12). This proves (L1).

5.4 Closed form solution of RSVD

The key results of this chapter is that although RSVD is non-convex, we can

obtain the global optimal solution, as below.

Using Theorems 5 and 6, we now present the closed form solution of RSVD.

Given Eq.(5.3) and Eq.(5.7), as long as we solve Ω, we can get the closed form solution

of RSVD U and V . The closed form solution is presented in Theorem 7.

Theorem 7. Let SVD of the input data X be X = FΣGT as in Eq.(5.6). Let (U∗, V ∗)

be the global optimal solution of RSVD. We have

U∗ = Fk, V
∗ = GkΩ (5.15)

where Fk = (f1, · · · , fk), Gk = (g1, · · · , gk), and Ω = diag(ω1, ..., ωk) ∈ Rk×k,

ωi =
√

(σi − λ)+, , i = 1, · · · , k (5.16)

Proof. Substituting Eq.(5.7) back to Eq.(5.8) and using GTG = I, we have

J1(Ω) = Tr(A− Σ2Ω2(Ω2 + λI)−1 + λΩ2), (5.17)
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where A = GΣ2GT is a constant independent of Ω. Noting that all the matrices are

diagonal, we can minimize J1 element-wisely with respect to ωi, i = 1, ..., k. Taking

the derivative of J1 respect to ωi and setting it to zero, we have

ω2
i = (σi − λ)+, (5.18)

because ωi ≥ 0. From this, we finally have Eq.(5.16).

One consequence of Theorem 7 is that the choice of parameter λ become obvious:

it should be closedly related to parameter k, the rank of U, V .

We should set λ such that {ωi} > 0 so that no columns of U, V are waisted.

Another point to make is that directly computing U, V from Algorithm 1 is

generally faster than compute the SVD of X, because generally, k are much smaller

than rank(X), thus computing full rank SVD of X is not necessary.

Computational complexity analysis. From Theorem 3, a single SVD com-

putation can obtain the global solution. If we desire a strong regularization, we set λ

large, and compute SVD upto the appropriate rank using Eq.(5.18). The computation

complexity is O[k(n + m) min(n,m)]. We may use Algorithm 1 to directly compute

RSVD without computing SVD. Theoretically, this is faster than computing the SVD

because the regularization term (V TV +λI)−1 makes Algorithm 4 converge faster for

larger regularization λ. The The computation complexity is O(kmn). Inverting the

k × k matrix (V TV + λI) is fast since k is typically much smaller than min(n,m).

Numerical experiments are given below.

5.5 Application to Recommender Systems

Recommender system generally uses collaborative filtering [76]. This is often

viewed as a dimensionality reduction problem and their best-performing algorithm is

based on singular value decomposition (SVD) of a user ratings matrix. By exploiting
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the latent structure (low rank) of user ratings, SVD approach eliminates the need for

users to rate common items. In recent years, SVD approach has been widely used as

an efficient collaborative filtering algorithm [81] [76] [82] [83] [84].

User-item rating matrix X generally is a very sparse matrix with only values

1,2,3,4,5. Zeros elements imply that matrix entry has not been filled because each

user usually only rates a few items. Similarly, each item is only rated by a small

subset of users. Thus recommender system is in essence of estimating missing values

of the rating matrix.

Assume we have a user-item rating matrix X ∈ Rn×m, where n is the number

of users and m is the number of items (i.g., movies). Some ratings in matrix X

are missing. Let Ω be the set of i, j indexes that the matrix element has been set.

Recommender system using SVD solves the following problem:

min
U,V
‖X − UV T‖2

Ω, (5.19)

with fixed rank k of U, V , where for any matrix A, ‖A‖2
Ω =

∑
(i,j)∈Ω A

2
ij.

Low-rank U and V can expose the underlying latent structure. However, be-

cause X is sparse, U, V is forced to match a sparse structure and thus could overfit.

Adding a regularization term will make U and V more smooth, and thus could reduce

the overfitting. For this reason, we propose the regularized SVD recommender system

as the following problem

min
U,V
‖X − UV T‖2

Ω + λ‖U‖2
F + λ‖V ‖2

F . (5.20)

Both Eqs.(5.19,5.20) are solved by an EM-like algorithm [85] [86], which first fills

the missing values with column or row averages, solving the low-rank reconstruction

problem as the usual problem without missing values, and then update the missing

values of X using the new SVD result. This is repeated until convergence. The RSVD

algorithm presented above is used to solve Eqs.(5.19,5.20).
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Table 5.1: Recommender system datasets.

Data user (n) item (m)

MovieLens 943 1682
RottenTomatoes 931 1274

Jester1 1731 100
Jester2 1706 100
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Figure 5.1: RSVD convergence speed comparison at different λ, see Eq.(5.23).

5.6 Experiments

Here we compare recommender systems using the Regularized SVD of Eq.(5.20)

and classical SVD of Eq.(5.19) on four datasets.

Datasets. Table 5.1 summarizes the user number n and item number m of the 4

datasets.
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(d) Jester2(k = 14, λ = 3)

Figure 5.2: RSVD share the same SVD subspace, see Eqs.(5.24,5.25).

MovieLens [87] [88] This data set consists of 100,000 ratings from 943 users

on 1,682 movies. Each user has at least 20 ratings and the average number of ratings

per user is 106.

RottenTomatoes [87] [89] [90] This dataset contains 931 users and 1,274

artists. Each user has at least 2 movie ratings and the average number of ratings

per user is 17.

Jester1 [81] Jester is an online Joke recommender system and it has 3 .zip files.

Jester1 dataset contains 24,983 users and is the 1st .zip file of Jester data. In our

experiments, we choose 1,731 users with each user having 40 or less joke ratings. The

average number of ratings per user is 37.
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Figure 5.3: Convergence of the solution to Recommender Systems of Eqs.(5.19,5.20)
as the iteration of EM steps.

Jester2 [81] Jester2 dataset contains 23,500 users and is the 2nd .zip file of

Jester data. In our experiments, we choose 1,706 users with each user having 40 or

less joke ratings. The average number of ratings per user is 37.

5.6.1 Training data

Following standard approach, we convert all rated entries to 1 and all missing

value entries remains zero. The evaluation methodology is: (1) construct training data

by converting some 1s in the rating matrix into 0s, which is called “mask-out”, (2)

check if recommender algorithms can correctly recommend these masked-out ratings.

Suppose we are given a set of user-item rating records, namely X ∈ Rn×m, where X
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Figure 5.4: Precision and Recall curves on MovieLens.

is the rating matrix, n is user number and m is item number. Each row of X denotes

one user. To evaluate the performance of a recommender system algorithm, we need

to know how accurate this algorithm can predict those 1s. We refer to the original

data matrix as ground truth and mask out some ratings for some selected users. The

mask-out process is as follows:

1. Find training users: those users with more than t ratings are selected as training

users, where t is a threshold and t is a number related to the average ratings

per user (mrating). t controls the number of training users (nuser).

2. Mask out training ratings: for nuser selected training users, select nmask ratings

randomly per training user. In the user-item matrix X, we change those 1s into

0s.

80



0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Precision

R
e

c
a

ll

 

 

SVD

RSVD(lambda=3)

RSVD(lambda=5)

RSVD(lambda=10)

(a) k=3

0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Precision

R
e

c
a

ll

 

 

SVD

RSVD(lambda=3)

RSVD(lambda=5)

RSVD(lambda=10)

(b) k=5

0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Precision

R
e

c
a

ll

 

 

SVD

RSVD(lambda=3)

RSVD(lambda=5)

RSVD(lambda=10)

(c) k=7

0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Precision

R
e

c
a

ll

 

 

SVD

RSVD(lambda=3)

RSVD(lambda=5)

RSVD(lambda=10)

(d) k=9

Figure 5.5: Precision and Recall curves on RottenTomatoes.

Table 5.2: Training data parameter settings.

Data t nuser mrating nmask
MovieLens 100 361 106 90

RottenTomatoes 40 86 17 35
Jester1 37 803 37 35
Jester2 37 774 37 35

Table 5.2 shows the training data mask-out settings used in our experiments. It

should be noted that these parameters are only one setting of constructing training

datasets. Different settings will not make much difference, as long as we compare

different recommender system algorithms on the same training dataset.
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Figure 5.6: Precision and Recall curves on Jester1.

5.6.2 Top-N recommendation evaluation

To check if recommender algorithms can correctly recommend these masked-out

ratings, we use Top-N recommendation evaluation method. Top-N recommendation

is an algorithm to identify a set of N items that will be of interest to a certain users

[91] [92] [84]. We use three metrics widely used in information retrieval community:

recall, precision and F1 measure. For each user, we first define three sets: M, T and

H:

M: Mask-out set. Size is nmask. This set contains the ratings that are masked

out(those values in data matrix X were changed from 1 to 0).

T: Top-N set. Size is N . This set contains the N ratings that has the highest

values (score) after using recommendation algorithm.
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Figure 5.7: Precision and Recall curves on Jester2.

H: Hit set. This set contains the ratings that appear both in M set and T set,

H = M ∩ T.

Recall and precision are then defined as follows:

Recall =
size of set H
size of set M

,Precision =
size of set H
size of set T

(5.21)

F1 measure [93] combines recall and precision with an equal weight in the following

form:

F1 =
2× Recall× Precision

Recall + Precision
(5.22)

We will get a pair of recall and precision using each N . In experiments, we use N

from 1 to 2nmask, where nmask is the number of ratings masked out per user. Thus,

we can get a precision-recall curve in this way.
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5.6.3 RSVD convergence speed comparison

Convergence speed is important for a faster iterative algorithm. We will com-

pare the convergence speed of RSVD with iterative SVD algorithm (λ = 0). We define

residual dVt to measure the difference of Vt and Vt−1 in two consecutive iterations:

dVt = ‖Vt − Vt−1‖F , (5.23)

where t is the iteration number of Algorithm 4. We compare RSVD with SVD (λ = 0)

using different regularization weight parameter λ = 3, 5, 10. Figure 5.1 shows the dVt

decreases quickly along with iterations and RSVD converges faster than SVD.

5.6.4 RSVD share the same SVD subspace

From Theorem 6, we know that the solution of RSVD should be in the subspace

of SVD solution. Formally, let Ut, Vt be the solution of RSVD after t iterations, F,G

be the solution of SVD, X = FGT . We now introduce Eq.(5.24) and Eq.(5.25) to

measure the difference between Ut, Vt and F,G. rt1 and rt2 are defined as

rt1 = ‖Ut − FAt‖2
F , (5.24)

rt2 = ‖Vt −GBt‖2
F . (5.25)

In order to minimize rt1 and rt2, the solution of At and Bt can be given as:

At = (F TF )−1F TUt, (5.26)

Bt = (GTG)−1GTVt. (5.27)

Substituting Eq.(5.26) and Eq.(5.27) back to Eq.(5.24) and Eq.(5.25), we get the

minimized residual rt1 and rt2. If rt1 and rt2 are equal to 0, it means that RSVD

solution Ut and Vt share the same subspace as SVD solution F and G. Figure 5.2

shows residual rt2 and rt3 converges to 0 after a few iterations.

84



5.6.5 Convergence of recommender system solution

Solutions to the recommender systems Eqs.(5.19,5.20) converge. The EM-like

algorithm has been shown effective in solving recommender systems [85] [86] [83] .

We show the solution (Xt)Ω converges after t iterations of EM-like iterations by using

the difference,

dXt =
1√
NΩ

‖Xt −Xt−1‖Ω. (5.28)

where NΩ is size of set Ω. Figure 5.3 shows the experiment result of dXt. As we can

see, for all the 4 datasets, the solution converges in about 100 to 200 iterations.

5.6.6 Precision-Recall Curve

In this part, we compare the precision and recall of RSVD and SVD using

different rank k and regularization weight parameter λ. We use these k and λ settings

because both RSVD and SVD models with these settings produce the best precision

and recall. All the curves are the average results of 5 random run.

Figure 5.4 shows MovieLens data using SVD and RSVD with rank k = 3, 5, 7, 9.

For each rank k, we compare SVD and RSVD with regularization weight parameter

λ = 3, 5, 10. As we can see, for each rank k, RSVD performs better than SVD

generally. Choosing λ properly could improve SVD algorithm and achieve the best

precision and recall results.

Figure 5.5 shows RottenTomatoes data using SVD and RSVD with rank k =

3, 5, 7, 9. In all figures, RSVD with λ = 5 performs the best.

Figure 5.6 shows Jester1 data using SVD and RSVD with rank k = 14, 16, 18, 20.

It is very easy to find that RSVD with λ = 5, 10 produce the best precision result for

this data.
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Table 5.3: F1 measure (best values are in bold.).

Data SVD RSVD RSVD RSVD
(λ = 3) (λ = 5) (λ = 10)

MovieLens (k=3) 0.3700 0.3850 0.3922 0.4005
MovieLens (k=5) 0.3875 0.4100 0.4199 0.4232
MovieLens (k=7) 0.4152 0.4391 0.4439 0.4231
MovieLens (k=9) 0.4220 0.4497 0.4542 0.4244

RottenTomatoes (k=3) 0.1220 0.1308 0.1337 0.1235
RottenTomatoes (k=5) 0.1302 0.1413 0.1436 0.1176
RottenTomatoes (k=7) 0.1315 0.1501 0.1543 0.1228
RottenTomatoes (k=9) 0.1422 0.1614 0.1651 0.1240

Jester1 (k=14) 0.6587 0.8241 0.8668 0.8665
Jester1 (k=16) 0.6201 0.8151 0.8667 0.8659
Jester1 (k=18) 0.6188 0.8213 0.8672 0.8666
Jester1 (k=20) 0.6077 0.8177 0.8667 0.8658

Jester2 (k=14) 0.6506 0.8305 0.8730 0.8730
Jester2 (k=16) 0.6261 0.8277 0.8732 0.8725
Jester2 (k=18) 0.6114 0.8288 0.8729 0.8723
Jester2 (k=20) 0.5908 0.8259 0.8721 0.8722

Figure 5.7 shows Jester2 data using SVD and RSVD with rank k = 14, 16, 18, 20.

We can see from the results that RSVD with λ = 5, 10 produce the best precision

result. As in Jester1 data, RSVD algorithm improves SVD significantly.

5.6.7 F1 measure

F1 measure combines precision and recall at the same time and can be used a

good metric. F1 measure is defined in Eq.(5.22). Since each N gives a pair of precision

and recall, we use F1 measure when N = nmask as the standard. Because N = nmask,

if all the masked-out ratings are predicted correctly, the size of set H can be exactly

nmask, which means recall is 1. F1 measure ranges from 0 to 1. A higher F1 measure

(close to 1) means that an algorithm has better performance.

Table 5.3 shows the F1 measure of the four datasets. Each row denotes a dataset

with a specific rank k. The best F1 measure is denoted in bold. As we can see, for all

the datasets and ranks that we experimented, λ = 5 is a good setting that produces
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the highest F1 measure. In all, RSVD performs much better than SVD in terms of

F1 measure. In applications, we can test different λ and rank k setting to find the

best setting for specific problems.

5.7 Conclusion

In conclusion, SVD is the mathematical basis of principal component analysis

(PCA). We present a regularized SVD (RSVD), present an efficient computational

algorithm, and provide several theoretical analysis. We show that although RSVD is

non-convex, it has a closed-form global optimal solution. Finally, we apply regularized

SVD to the application of recommender system and experimental results show that

regularized SVD (RSVD) outperforms SVD significantly.

87



CHAPTER 6

MINIMAL SUPPORT VECTOR MACHINE

6.1 Introduction

Support Vector Machine (SVM) is an efficient classification approach, which

finds a hyperplane to separate data from different classes. SVM has been widely used

in object classification, face recognition, text categorization and so on. In most of

these cases, SVM generalization performance either matches or is significantly better

than that of competing methods [94].

Suppose we have n training samples from two classes {xi, yi}, i = 1, ..., n, label

indicator yi ∈ {−1, 1}, xi ∈ Rk×1, where k is data dimension. In linear separable

case, suppose the hyperplane which separates the two classes is wTx + b = 0, where

w ∈ Rk×1 is normal to the hyperplane, wT is the transpose of vector w. Let d+

(d−) be the shortest distance from the separating hyperplane to the closest positive

(negative) example. Define the margin of a separating hyperplane to be d+ + d−.

Support Vector Machine finds such a separating hyperplane with the largest margin

and all the training data satisfy the following constraints:

wTxi + b ≥ +1 for yi = +1, (6.1)

wTxi + b ≤ −1 for yi = −1. (6.2)

Combine the two equations into one:

yi(w
Txi + b)− 1 ≥ 0 ∀i. (6.3)

Let the distance from origin of coordinate to the hyperplane wTx + b = 0 be d0, and

let d0w/‖w‖ be the point on the hyperplane that is closest to the origin, w/‖w‖ is a
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unit vector that gives the direction perpendicular to the hyperplane. Since this point

is on the hyperlane, we have wT [d0w/‖w‖] + b = 0, thus d0 = |b|/‖w‖. Similarly,

distance from origin to hyperplane wTx + b = −1 is |b+ 1|/‖w‖; distance from origin

to hyperplane wTx + b = +1 is |b − 1|/‖w‖. Hence, d+ = d− = 1/‖w‖, and the

margin is 2/‖w‖. Thus, for linear separable case, SVM objective is given as:

min
1

2
‖w‖2, (6.4)

s.t. yi(w
Txi + b)− 1 ≥ 0 ∀i.

This can be solved using constrained optimization [94]. In testing, given a test data

x, we determine the class labels using sign(wTx + b).

When SVM is applied to non-separable data, non-negative slack variables ξi,

i = 1, ..., n are introduced to the constraints Eq.(6.1) and Eq.(6.2):

wTxi + b ≥ +1− ξi for yi = +1, (6.5)

wTxi + b ≤ −1 + ξi for yi = −1, (6.6)

ξi ≥ 0, ∀i. (6.7)

Slack variables ξi measures training error. To minimize training errors and integrate

slack variables into objective function, the non-separable SVM is given as:

min
1

2
‖w‖2 + C

∑
i

ξi, (6.8)

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0, ∀i,

where C is a parameter that controls the weight of penalty to errors. Those training

data that satisfy yi(w
Txi + b) = 1 − ξi, with ξi ≥ 0, are called support vectors. We

say that the constraints of support vectors are active. Support vectors decides the

direction of the hyperplane.

89



Nonlinear SVM is a generalized version of linear SVM. Suppose we have a

mapping function that maps the data to some other Eculidean space H, Φ : Rk×1 →

H. A kernel function using this mapping is K(xi,xj) = Φ(xi) · Φ(xj). Both in the

training and testing process, we would only use the kernel function K and there is no

need to know explicitly what Φ is.

Number of support vectors is a measure of generalization errors. Reducing

number of support vectors can improve model prediction capability and classification

accuracy can be improved. From the objective of Eq.(6.8), we can see that one way

to reduce number of support vectors is to increase parameter C. However, we found

that number of support vectors in Eq.(6.8) is not sensitive to C. In this work, we

propose a Minimal SVM, which uses L0.5 norm on slack variables. In Minimal SVM,

number of support vectors is sensitive to C. On 7 binary classification tasks from 4

datasets, Minimal SVM further reduces the number of support vectors and increases

the classification accuracy.

6.2 Motivation

In this section, we use a toy data set to show that number of support vectors in

Eq.(6.8) is not sensitive to C. The toy data contains 100 2-dimensional random points

from two classes, with 50 points in each class. Data points of each class are randomly

generated by a normal distribution function. The two classes are non-separable.

As we discussed in introduction, the hyperplane direction of SVM is determined

by w and b. The width of margin is 2/‖w‖. Parameter C controls the weights of

non-separable data errors. Figure 6.1a, 6.1c, 6.1e show the results using objective

Eq.(6.8) when C = 1, 50, and 100. The solid black line is line wTx + b = 0. The two

dash black lines are wTx + b = −1 and wTx + b = 1. Two classes are denoted in blue

circle and red triangle. Support vectors are those points with black squares.
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(a) C = 1, nSV = 15,
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(b) C = 1, nSV = 14,
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(c) C = 50, nSV = 14,
margin 2/||w|| = 1.6305.
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(d) C = 50, nSV = 9,
margin 2/||w|| = 0.5885.
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(e) C = 100, nSV = 14,
margin 2/||w|| = 1.6309.
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(f) C = 100, nSV = 7,
margin 2/||w|| = 0.5725.

Figure 6.1: Comparison of SVM objective Eq.(6.8) and Eq.(6.9) on toy data (nSV
is number of support vectors).
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From Figure 6.1a, 6.1c, 6.1e, we can see that the number of support vectors

can be further reduced and the number of support vectors is 15 when C = 1 and 14

when C = 50, C = 100. The width of margin is decreased when C increases. 2/‖w‖

is 1.7752 when C = 1, 1.6305 when C = 50, and 1.6309 when C = 100.

6.3 Minimal Support Vector Machine

Lp norm is a generalized version of L1 and L2 norm. When 0 ≤ p ≤ 1, Lp

norm introduces sparsity and has been used for feature selection [95]. In this chapter,

we propose to solve the following Minimal Support Vector Machine (Minimal SVM)

objective:

min
1

2
‖w‖2 + C

∑
i

ξpi , (6.9)

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0 ∀i.

When p = 1, Eq.(6.9) is the same as Eq.(6.8). When p → 0,
∑

i ξ
p
i approaches the

number of nonzeros for ξi,∀i. At small p, Eq.(6.9) will reduce number of nonzero ξi

and the number of support vectors.

The primal Lagrangian of Eq.(6.9) is:

LP =
1

2
‖w‖2 + C

∑
i

ξpi −
∑
i

αi{yi(wTxi + b)− 1 + ξi} −
∑
i

µiξi, (6.10)

where αi and ξi are the Lagrange multipliers to enforce the positive constraints. The

KKT conditions for the primal problem are given as:

∂LP
∂w

= w −
∑
i

αiyixi = 0, (6.11)

∂LP
∂b

= −
∑
i

αiyi = 0, (6.12)

yi(w
Txi + b)− 1 + ξi ≥ 0, (6.13)
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ξi ≥ 0, (6.14)

αi ≥ 0, (6.15)

µi ≥ 0, (6.16)

αi{yi(wTxi + b)− 1 + ξi} = 0, (6.17)

ξi(pCξ
p−1
i − αi) = 0. (6.18)

xTi is the transpose of row vector xi. Eq.(6.17, 6.18) are KKT complementarity

conditions. Eq.(6.17) is the same as Eq.(55) in [94]. We can get Eq.(6.18) using

∂LP/∂ξi = 0 and µiξi = 0.

For ease of notation, we append b to vector w and append value 1 to xi

w′ = [w, b] (6.19)

x′i = [xi, 1] (6.20)

Using Eqs.(6.14, 6.15, 6.17), Eq.(6.9) becomes a function with respect to vector w′.

When αi > 0, we have the following equation:

ξi = (1− yiw′Tx′i)+, (6.21)

where, for a number x, when x > 0, (x)+ = x; when x <= 0, (x)+ = 0. When αi = 0,

from Eq.(6.18), we have pCξpi = 0, which implies ξi = 0.

Using Eq.(6.21), Eq.(6.9) becomes:

min
1

2
w′

T
Dw′ + C

∑
i

(1− yiw′Tx′i)
p
+, (6.22)

where D ∈ R(k+1)×(k+1) is an identity matrix with the last diagonal element D(k +

1, k + 1) being 0. Eq.(6.22) can be solved using gradient descent with momentum

[96].
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Algorithm Since the derivative of function (x)+ is not well defined when x = 0,

we use the auxiliary function

(x)+ = lim
s→+∞

1

s
log(1 + exp sx), (6.23)

where s is a large number, for example, s = 100, s = 200.

The gradient of Eq.(6.22) is:

∇J(w′) = Dw′ − pC
∑
i

yimin
p−1
i

1 +mi

x′i, (6.24)

where

mi = exp s(1− yiw′Tx′i), (6.25)

ni =
1

s
log(1 +mi). (6.26)

Let η > 0 be the learning rate, ε ∈ [0, 1] be the momentum coefficient, ∇J(w′t) be

the gradient of Eq.(6.22) at iteration t.

vt+1 = εvt − η∇J(w′t), (6.27)

w′t+1 = w′t + vt+1, (6.28)

vt is initialized as vector of zeros. When optimal w′ is found, we can get w and b

using Eq.(6.19).

Algorithm 5 summarizes the steps to solve Eq.(6.9). Using the solution w and b

of Algorithm 5, testing data x can be classified using sign(wTx+ b). Support vectors

are those points with positive ξi computed from Eq.(6.21).

Figure 6.1b, 6.1d, 6.1f are the results of applying objective Eq.(6.9) with p = 0.5

on the same toy data. We can see that the number of support vectors is reduced

significantly when C increases from 1 to 100.
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Algorithm 5 Gradient descent with Momentum to solve Eq.(6.9).

Input: Training data and label {xi, yi}, i = 1, ..., n, parameter C, learning rate η,

momentum coefficient ε

Output: w, b

1: Initialize w, b, v0

2: Form w′ and x′i using Eqs.(6.19, 6.20)

3: while Not converge do

4: Compute gradient using Eq.(6.24)

5: Compute v using Eq.(6.27)

6: Update w′ using Eq.(6.28)

7: end while

Table 6.1: Data attributes.

Data Dimension Number of points in each class
MSRC 432 30
ATT 644 10

Binalpha 320 39
Caltech101 432 30

6.4 Experiments

In experiments, we select 7 binary classifcation tasks from 4 data sets as ex-

amples. We use p = 0.5 and study the convergence of Algorithm 5 and compare the

classification performance of Minimal SVM and standard SVM.

6.4.1 Data

Four image datasets are used in this experiment. Data attributes are summa-

rized in Table 6.1. Example images are shown in Figure 6.2.
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(a) MSRC

(b) ATT

(c) Binalpha

(d) Caltech101

Figure 6.2: Experiment example images.

Table 6.2: Experiment results (p = 0.5).

MSRC ATT BinAlpha Caltech101
SVM Test Acc 0.67 0.85 0.89 0.70 0.90 0.57 0.73

Train Acc 0.95 1.00 0.99 0.99 1.00 0.98 1.00
# SV 38.20 11.00 53.00 42.20 32.40 43.40 36.40

Minimal SVM Test Acc 0.72 0.90 0.90 0.73 0.92 0.58 0.75
Train Acc 0.95 1.00 0.99 0.97 1.00 0.95 0.98

# SV 22.40 2.00 33.40 31.80 18.40 30.80 17.80
Angle θ 5.95 1.87 5.72 5.60 3.16 6.75 1.99
Dist d 0.13 0.06 0.12 0.11 0.09 0.14 0.04

MSRC[97] is an image scene data from MSRC data base v1, which includes

tree, building, plane, cow, face, car and so on. 432-dimensional HOG feature is used

in this chapter.

ATT [41] data contains 400 images of 40 persons, with 10 images for each

person. The images has been resized to 28× 23 pixels.

Binalpha data contains 26 binary hand-written alphabets. We use the 320-

dimensional pixels feature.

Caltech101 [23] contains 101 object categories. We use the 432-dimensional

HOG feature in this chapter.
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Figure 6.3: Objective function Eq.(6.9) converges using Algorithm 5.

6.4.2 Convergence of Algorithm

Algorithm 5 is very efficient on the experiment datasets. Figure 6.3 shows

Algorithm 5 on the four datasets converges in less than 50 iterations.

6.4.3 Evaluation

Table 6.2 shows the evaluation results using four data sets. Each column is a

two-class classification experiments using standard SVM Eq.(6.8) solution wL1 and

Minimal SVM Eq.(6.9) solution wL05 with p = 0.5. We compare the classification

accuracy of testing, training and number of support vectors (# SV). Angle θ measures

the angle degree between wL1 and wL05:

θ = arccos
wL1 ·wL05

||wL1||||wL05||
180

π
. (6.29)
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Distance d is the normalized Euclidean distance computed as:

d =
||wL1 −wL05||
||wL1||

. (6.30)

All experiments are the average of 5-fold cross validation results. The test accuracy

and train accuracy number the is between 0 and 1, the larger the better. The number

of support vectors are the smaller the better. Best results are in bold in Table 6.2.

We can see that, Minimal SVM gives the best test classification on these two classes

classification test and has much less support vectors compared to standard SVM. To

further investigate the difference of wL1 and wL05, we found that the angle degree

difference is between 1.87 to 6.75 degrees. The normalized Euclidean distance is

between 0.04 and 0.14.

6.5 Conclusion

In this work, we proposed a Minimal SVM, which uses Lp norm on slack vari-

ables. We solve the objective using gradient descent with momentum by introducing

a smoothing auxilary function. On 7 binary classification tasks, the proposed model

further reduces the number of support vectors and increases the classification accuracy

compared to standard SVM.

98



CHAPTER 7

CONCLUSIONS

In this dissertation, we made several advances in machine learning technologies

for high dimensional data analysis, image data classification, recommender systems

and classification algorithms. For high dimensional data analysis, we proposed two ef-

ficient Linear Discriminant Analysis (LDA) based methods, kernel alignment inspired

LDA and harmonic mean based LDA, which can reduce high dimensional data to

low dimensions, overcome the limitations of classical LDA and improve classification

accuracy. For image data classification, we proposed a multi-view low-rank regression

model which uses the correlations between different views of image data and imposes

a low-rank constraints on multi-view data. For recommender system, we presented a

regularized SVD (RSVD) model for recommender system to improve standard SVD

based recommender system models. Finally, we proposed a Minimal Support Vector

Machine (SVM) which uses Lp norm on slack variables. Minimal SVM further reduces

the number of support vectors and increases the classification accuracy compared to

standard SVM.
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[61] A. Kumar and H. Daumé, “A co-training approach for multi-view spectral clus-

tering,” in Proceedings of the 28th International Conference on Machine Learn-

ing. ACM, 2011, pp. 393–400.

[62] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spectral cluster-

ing,” in Advances in Neural Information Processing Systems, 2011, pp. 1413–

1421.

[63] H. Hotelling, “Relations between two sets of variates,” Biometrika, pp. 321–377,

1936.

106



[64] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis:

An overview with application to learning methods,” Neural computation, vol. 16,

no. 12, pp. 2639–2664, 2004.

[65] D. R. Hardoon and J. Shawe-Taylor, “Convergence analysis of kernel canonical

correlation analysis: theory and practice,” Machine Learning, vol. 74, no. 1, pp.

23–38, 2009.

[66] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, “Multi-view cluster-

ing via canonical correlation analysis,” in Proceedings of the 26th International

Conference on Machine Learning. ACM, 2009, pp. 129–136.

[67] D. Greene and P. Cunningham, “A matrix factorization approach for integrat-

ing multiple data views,” in Machine Learning and Knowledge Discovery in

Databases. Springer, 2009, pp. 423–438.

[68] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix

factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[69] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and

S. Slattery, “Learning to construct knowledge bases from the world wide web,”

Artificial Intelligence, vol. 118, no. 1, pp. 69–113, 2000.

[70] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “A machine learning ap-

proach to building domain-specific search engines,” in IJCAI, vol. 99. Citeseer,

1999, pp. 662–667.

[71] C. Grimal, “Multi-view datasets,” http://lig-membres.imag.fr/grimal/data.

html, 2014, [Online; accessed 11/17/2014].

[72] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,”

Journal of computational and graphical statistics, vol. 15, no. 2, pp. 265–286,

2006.

107

http://lig-membres.imag.fr/grimal/data.html
http://lig-membres.imag.fr/grimal/data.html


[73] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.

Springer Series in Statistics New York, 2001, vol. 1.

[74] P. J. Hancock, A. M. Burton, and V. Bruce, “Face processing: Human perception

and principal components analysis,” Memory & Cognition, vol. 24, no. 1, pp. 26–

40, 1996.

[75] O. Alter, P. O. Brown, and D. Botstein, “Singular value decomposition for

genome-wide expression data processing and modeling,” Proceedings of the Na-

tional Academy of Sciences, vol. 97, no. 18, pp. 10 101–10 106, 2000.

[76] D. Billsus and M. J. Pazzani, “Learning collaborative information filters.” in

ICML, vol. 98, 1998, pp. 46–54.

[77] H. Shen and J. Z. Huang, “Sparse principal component analysis via regularized

low rank matrix approximation,” Journal of multivariate analysis, vol. 99, no. 6,

pp. 1015–1034, 2008.

[78] Y. Guan and J. G. Dy, “Sparse probabilistic principal component analysis,” in

International Conference on Artificial Intelligence and Statistics, 2009, pp. 185–

192.

[79] Y. Zhang, A. dAspremont, and L. El Ghaoui, “Sparse pca: Convex relaxations,

algorithms and applications,” in Handbook on Semidefinite, Conic and Polyno-

mial Optimization. Springer, 2012, pp. 915–940.

[80] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet, “A direct for-

mulation for sparse pca using semidefinite programming,” SIAM review, vol. 49,

no. 3, pp. 434–448, 2007.

[81] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant

time collaborative filtering algorithm,” Information Retrieval, vol. 4, no. 2, pp.

133–151, 2001.

108



[82] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative fil-

tering recommendation algorithms,” in Proceedings of the 10th international con-

ference on World Wide Web. ACM, 2001, pp. 285–295.
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