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ABSTRACT

MULTISENSORY INTEGRATION FOR ADAPTIVE PHYSICAL

HUMAN-ROBOT INTERACTION

Isura Ranatunga, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Dan O. Popa

Automated systems have become increasingly prevalent in the 21st century.

With their increased processing power, personal and home robotics has finally come

within reach of the public. There are some challenges to be overcome for robots

to finally work with and around humans. Some of these challenges include complex

social interaction, safety, identifying human intent, unpredictable physical interaction,

and uncertain dynamic environments. The focus of this research is safe, robust, and

intuitive physical interaction with humans utilizing multiple sensor modalities.

In this dissertation, a solution for adaptive physical human-robot interaction is

proposed. The proposed framework consists of three parts. Dynamics compensation:

adaptive dynamics compensation is proposed and extended to control complex, non-

linear, and constantly changing robotic systems. Adaptive force control: adaptive

inverse control techniques are utilized to develop an admittance control system to

compensate for changing task, sensor, and human conditions during interaction.

Human motion study: Dynamic time warping is utilized as a method for movement

vi



characterization and dynamic movement primitives are used to develop a scalable and

adaptable movement representation system.

The proposed framework was inspired by the structure of the human motor

cortex and somatosensory systems. An inner-loop control structure performs the

function of the lower level fast dynamic compensation system while an outer-loop

adaptive force controller enables task, sensor, and human specific control. This type

of controller can adapt to the changing dynamics of the robot as well as compensate

for the changing environmental sensing capacity and interaction scenario.
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CHAPTER 1

Introduction

1.1 Motivation

As robots begin making their way into homes and workplaces, there is an in-

creased interest in the interaction between humans and robots. An important part of

this interaction is Physical Human-Robot Interaction (pHRI). Force data from robots

can be used to improve human safety, interpret human intent, and facilitate human-

guided behavior learning [5, 6]. Robotic skin with embedded pressure, temperature,

and distance sensors are increasingly useful in safe and intuitive human-robot collabo-

ration scenarios. According to Khatib et al., robots will be tasked with enhancing the

human operator’s abilities, providing assistance, and improving the general quality of

life, while humans will be responsible for global knowledge and the correct execution

of tasks [7].

To enable intuitive and comfortable physical interaction in human-robot teams

there is a need to involve human intent in the robot controller design. Traditionally

robot controllers have been developed with trajectory tracking as the objective. Ad-

vances like stable environmental physical interaction including force and impedance

control has largely ignored human interaction. This has led to largely closed inflexible

control structures that make it hard to adapt robots as co-workers and co-inhabitants

in human spaces.

This motivates robust and stable pHRI systems that take into account the

human dynamics and adapt to different users and different tasks. Such systems
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will require estimation of human intent and will be better adapted to close physical

interaction with humans [8].

This work on physical human robot interaction and human intent estimation

will help overcome key challenges in personal robotics. Safe and intuitive physical

interaction with robots will increase the workflow of robot-human teams in factories,

workplaces, and homes. It will also make reliable personal assistants a reality. These

technologies will one day enable efficient, reliable, and cheap solutions for the ageing

population of the world.

1.2 Challenges

For effective human-robot interaction, specifically physical interaction there are

a few challenges to be overcome. Robot dynamics: the robot is a highly nonlinear

system that needs to be controlled to meet specific criteria for safety, performance,

and adaptability. The dynamics of a robot changes as time passes, when picking up

objects, and during physical contact. This motivates a need for controllers that can

compensate for the different highly fluctuating dynamics. Robot sensors: the sensors

of robotic systems need to be accurate to extract meaningful data for the controllers.

However, such accurate sensors are difficult to manufacture, complex to calibrate, and

hard to maintain. The sensors degrade overtime and will need recalibration, such a

process is difficult for large scale arrays of sensors. Human preference: the different

humans interacting with robot systems will have different physical characteristics,

preferences, and intents. The robot controllers need to be aware of and adapt to

these often changing parameters.
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1.3 Contributions

In this dissertation, new controllers motivated by human factors studies and the

human neurophysiological systems are proposed and validated. The controllers enable

close human-robot interaction and co-operation using a two-loop control architecture.

First, an inner-loop is employed to control the usually nonlinear dynamics of a robot.

This controller is based on neuroadaptive inverse dynamics control. Then, an outer-

loop adaptive controller makes the robot system combined with the human operator

behave like a prescribed task model. This two controller structure decouples the

design of the pHRI system. The research contributions of this dissertation are:

1. Inner-loop Cartesian space neuroadaptive controller.

• An inner-loop robot controller that linearises the dynamics of the robot

is proposed. This method uses online learning neural network function

approximation techniques and is called neuroadaptive control. The advan-

tages of the neuroadaptive controllers in joint space for pHRI was studied

by conducting relevant experiments. This method was further extended to

the Cartesian space control and experimentally validated.

2. Outer-loop Adaptive admittance controller using adaptive inverse control.

• An outer-loop, task-specific controller is proposed to adapt the parameters

of a prescribed robot admittance model so that the robot system assists

the human to achieve task-specific objectives. A stability proof of the

combined two-loop design was proposed. The controller was validated in

simulation and experiments on robot hardware.

3. Calibration of tactile robot skin.

• The proposed two-loop controller was extended to tactile robot skin. This

resulted in a controller structure that intrinsically included the sensor cali-

bration and human preference parameters into the same parametric model.
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Experiments were conducted to validate the performance on a simplified

tactile skin.

4. Human motion studies.

• Understanding human motion helps design robots that can help in rehabil-

itation and human-robot interaction. The two-loop controller framework

motivated an understanding of human motion for effective human robot

collaboration. Two different techniques were employed and extended to

enable better inclusion of human motion in the controller framework. Dy-

namic Time Warping (DTW) was used as a measure of human motion

similarity, it was specifically applied to the domain of Autism character-

ization from motion. Dynamic Movement Primitives (DMP) was utilized

for generalized human motion capture and regeneration in the controller

framework.

5. Tools to test pHRI control methods - SkinSim and SkinLearn.

• SkinSim, a new simulator framework for multi-modal, multi-resolution

robot skin, aimed at solving complex design problems is proposed. De-

sign problems for distributed arrays of skin sensors such as placement,

optimizing resolution, networking, and use in feedback loops are difficult

to solve, and highly dependent on the application. SkinSim is designed

to answer questions related to this multi-modal design. It is implemented

using the ROS and Gazebo simulation infrastructures which are supported

by the Open Source Robotics Foundation (OSRF).

• SkinLearn, is a multi-modal skin based human-robot interaction estima-

tion, learning, and control system. The work in adaptive physical human-

robot interaction, intent estimation, and tactile awareness will be imple-

mented as libraries in SkinLearn.
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The technologies developed will help the robotics community by providing open-

source software tools: SkinSim and SkinLearn.

1.4 Dissertation Organization

Chapter 2 provides background and a literature survey on the subjects of this

dissertation. In Chapter 3 the inner-loop neuroadaptive control structure is proposed

and experimentally validated. In Chapter 4 an outer-loop adaptive admittance con-

troller is proposed using adaptive inverse control techniques; a case study is also

proposed. In Chapter 5 human motion is studied and two new methods for motion

comparison and generation are proposed. Chapter 6 describes the development of

SkinSim and SkinLearn, which are opensource software for simulating multi-modal

robotic skin and adaptive control algorithms respectively. Finally, Chapter 7 provides

a conclusion and describes planned future work.
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CHAPTER 2

Background and Literature Survey

The application of humans and robots working in collaboration has promising

results in terms of efficiency and collaborative performance. Work by ABB provides

evidence that a hybrid human-robot cell can improve efficiency as compared to either

a human or robot working alone [33]. Erden et al. present results on impedance

measurement in a collaborative human-robot welding task [34]. Recent developments

in wearable robotic limbs for manufacturing assistance involves close coordination

between human and robotic limbs [35].

2.1 Robot Learning Control

Motivated by the automation of industrial processes requiring repetitive pre-

defined motions, robot controllers have by and large been designed for trajectory

control [36–39]. Techniques such as Computed Torque control have been designed to

achieve this objective with great success [39]. A major challenge with computed

torque control is the need to have a good model of the robot dynamics. Tech-

niques that overcome this modelling need include adaptive control, which estimates

the model parameters, and robust control, which makes the controller resistant to

unknown parameters [39]. Several methods have been proposed to overcome linear-

in-the-parameters assumptions of adaptive controllers, including Neural Networks,

Support Vector Machines, Gaussian Mixture Models and Reinforcement Learning.

These learn the full nonlinear dynamics of the robot online [40–43].
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The use of neural networks (NN) in feedback control systems was first proposed

by [44] and [45]. Overviews of the initial work in NN control are provided by [46]

and [47]. The properties of interest for trajectory tracking using NN based controllers

are the tracking error and NN estimation errors. Some of the first results that included

internal stability, weight bounds, tracking performance guarantees, and controller

robustness was provided in 1995 [48]. Nonlinear-in-the-parameters NN were first

used by F.-C. Chen [49] who used backprop with deadzone weight tuning, and Lewis

[50], who used Narendra’s e-mod term in backprop. Multilayer NN were rigorously

used for discrete-time control by Jagannathan and Lewis [51]. Other rigorous work

with stability proofs was done by Ge et al. [41], Polycarpou [52], Rovithakis and

Christodoulou [53], Poznyak [54], Rovithakis [55] and others. Books on NN feedback

control include [56], [40], [57], [58], Ge et al. [41, 59].

It has been observed in human factors studies that when a human learns to

use a robot system, his learning has two components [60, 61]. The first component

consists of learning a model to compensate for the dynamics of the robot [61]. The

second component is the learning of a task-specific loop that makes the combined

human-robot model successfully execute the task. This dual approach has been used

for adaptive impedance control of human-robot interactions in task performance by

Suzuki and Furuta [61]. These studies support the idea that a trajectory following

controller should not be closed around the robot alone. Instead, all task-specific

objectives should be closed in an outer task-specific loop that also includes the human

transfer characteristics.
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2.2 Physical Human-Robot Interaction

For robots to work in collaboration with humans good physical Human-Robot

Interaction (pHRI) is vital. According to De Santis et al. [4] safe and dependable pHRI

systems should be developed before introducing robots into human environments.

There are many challenges to moving a robot and accomplishing tasks in envi-

ronments that are inherently cluttered and dynamic. Static obstacles such as furniture

and dynamic obstacles such as humans have to be detected and avoided. Dynamic

situations require fast and real-time reaction to avoid damage, variations in pose

requires good situational awareness and maneuvering skills. Other issues include spe-

cialized tools, heterogeneous architectural structures like doors and stairs, deformable

objects like curtains to manipulate, great variation in the objects to correctly identify,

and noisy imprecise sensors [62].

Current research in robotics has focused on the extensive use of vision, planning,

and optimization to solve these problems [63]. Tasks are performed by systems that

are increasingly complex and depend on vision including 3D sensors [64]. Although

these techniques are powerful, they are not mature enough to deploy in a home

environment where reliability and repeatability are important [65]. The challenge

with using vision is the time required to process and plan, occlusions, and unsuitable

lighting conditions.

(a) Comanipulation. (b) Teaching.

Figure 2.1. pHRI for everyday tasks with PR2.
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2.2.1 Force Control

Direct and indirect force control has been extensively studied in terms of per-

formance and stability [66]. Impedance control pioneered by Hogan [67] is the most

popular form of indirect force control. It allows stable contact by the end effector of

the robot and overcomes many instability issues associated with explicit force con-

trol. However, impedance control requires identifying the robot model as well as the

environmental contact dynamics [68,69]. Recent work by Ficuciello et al. [70] exploits

redundancy to improve the Cartesian space inertia decoupling of a 7 DOF robot arm.

Admittance control, the dual of impedance control, has also been applied in various

robotic applications [71].

m

k

b

ke

Figure 2.2. Simple robot model and force interaction with environment.

Given a simple system model as in Figure 2.2

mẍ+ bẋ+ kx = u− fe (2.1)

where, m is the mass, b is the damping, k is the spring constant, fe is the external

force, and u is the control input.
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2.2.1.1 Explicit Force Control

Involves controlling the contact forces directly using feedback control. In clas-

sical explicit force control schemes the object is to maintain a desired fixed force fd,

the controller u is

u = Kpf (fd − fe) +Kvf (ḟd − ḟe) +Kif

∫
(fd − fe) (2.2)

This does not work in all interaction situations because the interaction moves

from contact to single/multi contact scenarios sporadically in real situations. These

controllers can become unstable due to changes in contact environment [39,68,72,73].

2.2.1.2 Hybrid Force/Position Control

Craig [74] extended the explicit force control technique to control force in the

constrained directions and positions in the unconstrained directions, this enabled

them to move along a known geometry while simultaneously maintaining desired

force in the constrained directions.

2.2.1.3 Impedance Control

In impedance control schemes the robot is given a desired trajectory and the

deviation from this prescribed trajectory reference qd or the error dynamics is made

to follow a pre set model.

u = (m−md)ẍ+ (b− bd)ẋ+ (k − kd)x+mdẍv + bdẋv + kdxv (2.3)

where md, bd, kd are the desired interaction mass, damping and spring constant. The

impedance control method requires a desired trajectory to track or a virtual trajectory

ẍv, ẋv, xv. Hybrid force control is similar but contact and non contact scenarios are

handled using a hybrid force position scheme.
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2.2.1.4 Admittance Control

Recent work [71,75,76] has used admittance control which is the dual of impedance

control. Human forces were used to generate robot motions. This work used admit-

tance control to allow the robot to perform a trajectory control objective. Recently

admittance control has been used in different forms in haptic devices [77] and exoskele-

tons [78] to allow compliant human-robot interaction without a trajectory following

objective.

fe = mm(ẍm − ẍ) + bm(ẋm − ẋ) + km(xm − x) (2.4)

where mm, bm, km are the desired model mass, damping and spring constant. The

admittance model is used to generate the desired model trajectories ẍm, ẋm, and xm

given a force input fe.

The objective is to generate end effector motion from sensed forces. An ad-

mittance model is usually represented as a transfer function [71, 79]. Some authors

have called this an impedance filter [75]. Trajectories generated by the admittance

model are sent to a position tracking inner-loop [71, 75]. Marayong et al. [77] used

admittance control in a haptic device.

2.2.2 Adaptive physical Human-Robot Interaction

Adaptive impedance control was studied by [68, 80–84]. The work on adaptive

impedance and admittance can be divided into two types: environment parameter

estimation to increase the performance of the impedance controller, and adaptation

of the desired mass-spring-damper coefficients to improve interaction with a human.

Human intent has been used to adapt the impedance parameters of robot systems [85].

For instance, Dimeas et al. [86] implements a Fuzzy logic controller for admittance

model adaptation considering human intent. Their method involves offline tuning of
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the parameters. Lecours et al. [87] reports on performance tuning of an assist device

based on separation of the position and velocity space of the robot.

2.2.3 Safety

Safety in an industrial context was explored by Haddadin et al. in several studies

which measured and characterized the results of robot collisions with humans [88–91].

In their work, novel hardware capable of accurate joint torque sensing was developed

to reduce impact forces.

Interest in safe pHRI has motivated hardware modifications including gravity

compensation using a counter balance such as the PR2 [92]. Recent developments

in hardware based safety features include accurate joint torque sensing, gravity com-

pensations, reduced robot weight, and joint torque limiting. Although these methods

have reduced the risk of high energy collisions, they have also significantly reduced

the speed and accuracy of robot manipulators.

In household robot applications the robots are generally compliant and safe with

changing often imprecise dynamic models. The tasks involved also change from pick

and place tasks requiring accurate trajectory tracking, to physical interaction with

humans, as depicted in Fig. 2.1. Model-based computed torque controllers can achieve

good results but they depend on known dynamic models. Even if a robot model is

known, the presence of a payload comparable with the mass of a lightweight robot

will alter the performance of such compensation schemes. Furthermore, nonlinearities

due to the inherent flexibility of lightweight transmission systems will also increase

the uncertainty of such models.
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2.2.4 Robot Skin

Robotics research has developed at a fast pace in the past few decades. It has

matured to a point where real world applications have started to emerge. A major

milestone in applications oriented robotics was achieved by the DARPA robotics

challenge. Robots were developed to assist as teleoperated units in various disaster

rescue scenarios.

This type of work involved some major challenges in robotics, some of which

included dynamics and constraint aware control and planning, contact forces and

torque estimation, dynamic balancing of humanoid robots, etc. The majority of the

tasks involved multiple heterogeneous contact scenarios. The ability of the robot to

correctly sense these contact scenarios and adjust its behaviour appropriately was

crucial.

Research has been conducted into various force sensing devices that are relevant

to robotics. The force/torque sensor or load cell is the most commonly used device

in robotics force control. Tactile sensors have also been developed which includes

technologies like capacitive, resistive, optical, etc. Most currently available tactile

sensors are in discrete form consisting of individual sensing elements. Major research

projects Roboskin and CellularSkin have developed arrays of tactile elements. These

are still at the research level.

Dahiya [1] outlines the need for flexible, stretchable electronic systems to realize

multi-functional electronic skin as seen in Figure 2.3, using the ability to fabricate

single-crystal nanowires 4-50um in width on ultra-thin (10um) flexible polyimide.

Further work on ultra-thin substrates was demonstrated in [93] where hybrid flexible

tactile sensors based on low temperature polycrystalline silicon thin film transistors

were fabricated.
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Figure 2.3. The electronic skin concept with multiple functionalities integrated over
ultra-thin flexible substrates like polyimide [1].

CellulARSkin is a multi-modal, self-organizing electronic skin [94]. The modular

units of the skin perform temperature, acceleration, proximity and normal force sens-

ing (Figure 2.2.4). Each cell has the ability to explore connections and self-organize

which, when combined with the accelerometers, allow the units to determine topol-

ogy and their position on the robot. RoboSKIN (Figure 2.2.4) is another advanced

skin with the ability to communicate between adjacent units. In [95] RoboSKIN is

integrated into the robot iCub along with a method to compensate for temperature

drift of the capacitive tactile sensors (Figure 2.2.4).

(a) Sensor electronics of the
CellulARSkin unit cell [94].

(b) RoboSKIN patch: each
triangle hosts 10 sensors [95].

(c) iCub robot with Ro-
boSKIN patches on arms and
torso [95].

Figure 2.4. Robot Skin.
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A discussion of robot skin sensitivity can be found in [96], where rubber skin

is added to an optical three-axis tactile sensor. The rubber, initially implemented

to protect the sensor surface from large applied forces, has the additional effect of

increasing the sensing surface and resolution. In addition to this, [97] demonstrates

hyperacuity in the RoboSKIN. When the sensor encounters an object multiple taxels

are activated simultaneously resulting in a ten-fold improvement of position acuity

over taxel resolution.

An important consideration for robot skin in unstructured environments is the

ability to withstand unintended collisions. The DLR Artificial Skin (Figure 2.5) [2]

is an all-polymer approach to tactile sensing. Orthogonally oriented polymer circuit

tracks provide sensitivity to light touch while also being able to withstand inden-

tation forces up to 50N. Additional soft sensing systems in [98] include elastomers

containing embedded micro-channels filled with liquid metal are used as tactile sen-

sors on complex shapes. These sensors are designed to limit the physical impact on

the host system, human or robot, while providing necessary pressure and/or strain

information.

(a) DLR Artificial Skin wrapped around
a light bulb.

(b) Sensing principle.

Figure 2.5. DLR Artificial Skin [2].
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2.2.5 Human Sensorimotor Ranges

From robotics/kinesiology literature, we learn that realistic Human-Robot In-

teraction and haptics requires a fast response depending on sensory modality includ-

ing [99]:

• Vision - 30 Hz refresh rate

• Force (texture) - 1 KHz bandwidth

• Force (pushing) - bandwidth

• Heat - 10 Hz

• Human motion - 10 Hz

• Displacement - 1 mm

Furthermore, in the human nervous system, interaction requires minimal time

delays, contextual understanding (at O(Hz) bandwidths), robust classification and de-

tection (at O(10 Hz) bandwidths), learning and adaptation (at O(10 Hz) bandwidths),

and motor control (at O(100 Hz) bandwidths.

Human-inspired sensors, include touch/temperature/vibration sensors on the

body, while kinesiology studies have measured human motion performance using typ-

ical motion detection hardware such as: camera Arrays and Markers (these are ex-

pensive and somewhat intrusive), (there are magnetic sensors - susceptible to noise

and intrusive), and Inertial sensors (these need sensor fusion and are intrusive).

Typical human motions experience the following dynamic characteristics [100,

101]:

• Average fast body motion linear speed is at 7-8 m/s

• Average fast body angular velocity is at 1.5-2pi rad/s

• Average cycle for head motion is 1 Hz

• Motion bandwidth < 10 Hz

• Control loop closed at

20



2.2.6 Social Robots

Autism Spectrum Disorder (ASD) is a developmental disorder characterized

by deficiencies in social interaction, speech, cognition, motor coordination, and im-

itation [102]. According to the Autism and Developmental Disabilities Monitoring

(ADDM) Network of the Centers for Disease Control and Prevention (CDC) an av-

erage of 1 in 88 children in the US is diagnosed with an ASD [103]. Although the

cognitive capacity of individuals in the Autism spectrum vary greatly, most of the in-

dividuals have sensorimotor abnormalities. Although Autism was recognized as early

as 1943 by Kanner and accepted to have a biomedical origin by the 1980s, there is

a lack of quantitative diagnosis tools. Currently ASD diagnosis mainly focuses on

qualitative behavior observation which results in imprecise and sometimes arbitrary

categorization of individuals in the Autism spectrum [102,104].

Robotic systems have been developed for use in the therapy of individuals in the

autism spectrum such as FACE, AuRoRa, Kaspar, Nao, and Keepon [104, 105], but

many of them do not engage in dynamic gestural interaction in a truly autonomous,

interactive manner. Studies show that the appearance of the robot plays an important

role in how children relate to and interact with such robots [106–108] and suggest that

imitation and turn-taking are types of interactions useful in motivating and engaging

children with ASD. In these types of projects, the interaction capacity of the robot

is restricted due to lack of objective criteria to rate imitative gestural Human-Robot

Interaction (HRI). A robot called Bandit was used to guide older adults to perform

imitative exercises [109]. This project had a robot perform upper body gestures that

the subject imitated, performance criteria were related to achievement of target poses.

Projects involving robots interacting with individuals, specifically children with ASD

tend to be interdisciplinary projects that have a small number of participants, which

makes a good clinical conclusion difficult. These projects and others involving the
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use of robots for assisting humans in a social, collaborative setting can be considered

part of a relatively new field called Socially Assistive Robotics (SAR) [104].

2.2.6.1 Philip K Dick Android

The Philip K Dick (PKD) android was developed by David Hanson as a copy

of the science fiction writer Philip K Dick. This robot is capable of high fidelity facial

expressions. It is related to many such androids built by David Hanson including

FACE.

Figure 2.6. PKD Android.

2.2.6.2 Zeno

Zeno is a child-size humanoid robot by RoboKind. The appearance of Zeno

is based on a fictitious character - it looks like a 4-7 year old child, and its head is

about 1/4 of a size of an adult human head. Its unique features include life-like skin

made of Frubber material, which is the intellectual property of Hanson Robotics. The

appearance of Zeno is a game changing experience thanks to this material, and to
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Figure 2.7. Zeno.

the robot aesthetics. The head of Zeno is powered by 3 Cirrus CS-101 STD 4g Micro

Servos, 5 Hitec HS-65MG Mighty Metal Gear Feather Micro Servos, 1 Dynamixel

AX-12+ Robot Actuator from Robotis, has 3 degrees of freedom at the neck joint,

and it is capable of panning, tilting the head back and forth as well as left to right. It

also has 2 degrees of freedom in each eye (pan and tilt), and 4 of the servos are used

for generating facial expressions (eye blink, jaw motion for smile, eyebrow motion

for frown, etc.). The visual feedback is obtained from a Mini Color Snake Pinhole

Camera in the left eye.
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2.2.7 Dynamic Time Warping

Figure 2.8. Example DTW match between signals S1 and S2.

Dynamic Time Warping (DTW) is an established signal processing method

that offers a distance measure between signals similar to the Euclidean distance. It

is used for measuring similarity between two sequences which may vary in time or

speed [110]. Time-warping is applied to signals to align them “optimally”, prior to

measuring the distance. Optimal alignment in this context, is the alignment of the

signal time samples that makes the total distance between the signals as small as

possible. This alignment induces a non-linear mapping between the two signals, e.g.

warping of the signals. A good description of the DTW algorithm is given by Keogh

et al. [111]. It has been used for Automatic Speech Recognition (ASR). Optimizations

to the DTW algorithm are outlined in Sakoe and Chiba [110].

Fig. 2.8 shows a typical result when using the DTW algorithm from 1, the gray

lines depict the nonlinear map between the signals. It can be seen from the right side

of Fig. 2.8, where many points from S1 are mapped to a single point of S2, this is

because DTW matches every point of the signals together.
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2.2.8 Dynamic Movement Primitives

Generating human like motion and the metrics associated with it have been

studied by many researchers [112–114]. Gaussian and Bernoulli mixture models

have been used to generalize joint angle movements and to encode human motion

in robots [115, 116]. Ijspeert et al. introduced a general method to encode human

motion by treating them as nonlinear dynamic systems [117]. This was called Dy-

namic Movement Primitives (DMP) and was demonstrated and extended to higher

dimensions and multiple robots [118,119]. DMPs can encode highly nonlinear motion

and generalize them. A motion can be modified by changing the time, beginning

and end points of the trajectory, and the amplitude. DMPs are also robust against

perturbations [119] see Figure 2.9.

Figure 2.9. DMP Example [3] .
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CHAPTER 3

Neuroadaptive Inverse Dynamic Control

The objective of this chapter is to extend and study the behavior of Neuroad-

aptive controllers originally developed by Lewis et. al [40, 48] applied on a real PR2

robot. This work demonstrates the effectiveness of the Neuroadaptive controllers in

joint trajectory following tasks and extends the concepts to Cartesian trajectories.

This chapter is organized as follows: Section 3.1 outlines the joint space con-

troller formulation and results from simulations and real experiments on a PR2 robot

are presented. Then Section 3.2 outlines the Cartesian space controller formulation

and results from simulations and real experiments on a PR2 robot are presented.

Finally, Section 3.3 provides a summary of the chapter.

3.1 Joint Space Controller Formulation

In this section the original Neuroadaptive controller formulation developed by

Lewis et. al [40, 48] is briefly described. The controller formulation used in this

chapter is in joint space assuming desired joint space trajectories.

The general robot dynamic equation with actuator dynamics is [39]

M(q)q̈ + V (q, q̇)q̇ + F (q̇) +G(q) + τd = τ (3.1)

where n is the number of DOF of the robot, q ∈ Rn are the joint positions, M(q)

is the inertia matrix, V (q, q̇) is the Coriolis/centripetal vector, G(q) is the gravity

vector, and F (q̇) is the friction term. The disturbance torque is τd ∈ Rn and τ ∈ Rn

is the control torque. The robot dynamics (3.1) is formulated in joint space. The
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Figure 3.1. Model Reference Neuroadaptive Controller.

following derivation also holds in Cartesian space form with standard modifications

involving the Jacobian [39].

Define the trajectory-following error as

e = qr − q (3.2)

and the sliding mode error is

r = ė+ Λe (3.3)

where Λ is a positive definite design parameter matrix.

Using (3.1), (3.2) and (3.3) yields the robot model following error dynamics

M(q)ṙ = −V (q, q̇)r + f(x) + τd − τ − τh (3.4)

where

f(x) = M(q)(q̈m + Λė) + V (q, q̇)(q̇m + Λe) + F (q̇) +G(q) (3.5)

is a nonlinear function of unmodeled robot parameters.
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Let an approximation based controller be

τ = f̂(x) +Kvr − v(t) (3.6)

where f̂(x) is the approximation of the robot function f(x) in (3.5), Kvr is the gain

of the outer PD tracking loop, Kv = KT
v > 0 is a diagonal outer-loop gain matrix,

and v(t) is a robustifying signal that compensates for unmodelled and unstructured

disturbances.

Putting (3.6) in (3.4) and simplifying yields the closed loop error dynamics

M(q)ṙ = −V (q, q̇)r −Kvr + f̃(x) + τd + v(t) (3.7)

where f̃(x) = f(x)− f̂(x) is the function approximation error.

The learning loop performance and stability proof is based on prior works [40,

41,48].

The nonlinear function f(x) in (3.5) is unknown. This function can be approx-

imated by a neural network

f(x) = W Tσ(V Tx) + ε (3.8)

where W and V are ideal unknown weights and σ(.) is the activation function. Let

the neural network approximation property given by (3.8) hold for the function f(x),

specified by (3.5) with a given accuracy ‖ε‖ ≤ εN on a compact set [40, 41].

The ideal weights for the NN are unknown, therefore a weight tuning algorithm

is used to update the approximate NN weights Ŵ and V̂ . The input to the NN is

x =
[
eT ėT qTr q̇Tr q̈Tr

]T
. Then the control input is

τ = Ŵ Tσ(V̂ Tx) +Kvr − v (3.9)

The robustifying signal v(t) is

v(t) = −Kz(‖Ẑ‖F + ZB)r (3.10)
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where Kz is the gain of the robustifying term

Ẑ =

Ŵ 0

0 V̂


‖.‖F is the Frobenius norm, and ZB is a bound on the NN weights.

The following are the NN weight update equations

˙̂
W = Fσ̂rT − Fσ̂′V̂ TxrT − κF‖r‖Ŵ (3.11)

˙̂
V = Gx(σ̂′T Ŵ r)T − κG‖r‖V̂ (3.12)

σ̂′ = diag
{
σ(V̂ Tx)

}[
I − diag

{
σ(V̂ Tx)

}]
(3.13)

where F and G are positive definite matrices, and κ > 0 is a small design parameter.

(3.13) assumes that σ(.) is a sigmoid activation function.

3.1.1 Joint Space Neuroadaptive Controller Proof

Assumption 1

The model trajectory is bounded with qB a known scalar bound as follows∥∥∥∥∥∥∥∥∥∥
qm(t)

q̇m(t)

q̈m(t)

∥∥∥∥∥∥∥∥∥∥
≤ qB (3.14)

Assumption 2

The approximation (3.8) holds with a given accuracy ‖ε‖ ≤ εN on a compact

set [40, 48].

Assumption 3

Assume that ZB is a scalar bound on the NN weights such that ‖Ẑ‖F < ZB.
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Proof

Define the weight estimation errors as Ṽ = V −V̂ , W̃ = W−Ŵ , and Z̃ = Z−Ẑ.

Define the Lyapunov function for the inner-loop as

L1[r, W̃ , Ṽ ] =
1

2
rTM(q)r +

1

2
tr{W̃ TF−1W̃}+

1

2
tr{Ṽ TG−1Ṽ } (3.15)

Differentiating this results in

L̇1 = rTM(q)ṙ +
1

2
rTṀ(q)r +

1

2
tr{W̃ TF−1 ˙̃W}+

1

2
tr{Ṽ TG−1 ˙̃V } (3.16)

substituting from (3.7) and (3.8)

L̇1 = −rTKvr +
1

2
rT (Ṁ − 2V )r + tr{W̃ T (F−1 ˙̃W + σ̂rT )}

+ tr{Ṽ T (G−1 ˙̃V + ϕrT Ŵ T σ̂′)}
(3.17)

as shown in [40] this results in

L̇1 = −rTKvr (3.18)

and as a result L1[r, W̃ , Ṽ ] > 0 and L̇1 ≤ 0.

Define Sr ≡ {r | ‖r‖ <
bx − qB
c0 + c2

}, where c0, c2 are computable positive constants.

If r(0) ∈ Sr, then the approximation property holds. More details on Uniform Ulti-

mate Bounds (UUB) of both ‖r‖ and ‖Ẑ‖F so that the approximation property holds

throughout, can be found in [40,41].

3.1.2 Simulation Results

In this section results from simulations on a PR2 robot in the Gazebo simulation

environment is presented. The PR2 is a dual arm robot originally developed at

Stanford [92], see Figure 3.2. It was fully developed and commercialized by Willow

garage. The 7 DOF right arm of this robot was used to conduct the simulations. The
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controller was implemented in using the real-time controller manager framework of

the PR2 in ROS Groovy.

(a) Real robot. (b) Simulated robot in
Gazebo.

Figure 3.2. PR2 service robot.

Gazebo is a robot simulation software that was originally developed in the

Player/Stage project. It is designed to be highly modular and supports ODE [120],

Bullet [121], Simbody [122], and DART [123] physics engines.

The controller parameters used were Kv = 10I7, Λ = 0.5I7, F = 100I7, G =

20I7, κ = 0.07, Kz = 0.001, and Kb = 100, where I7 is the 7×7 identity matrix. A two-

layer Neural Network with 36 inputs including the bias input, 10 hidden layer neurons,

and 7 outputs was used. The sigmoid function σ(x) was used for the activation

functions. The weights Ŵ and V̂ of the network were initialized to zero.
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Table 3.1. Table of Neuroadaptive controller performance on the PR2 in Gazebo for
κ = 0.07, Kv = 3, λ = 9, Zb = 1000, F = 100, and G = 20. ei and τi are the position
tracking error and the control torque for joint i

NN Kz e1 e3 τ1 τ3

Off 1 3.1637 16.6189 90.3642 264.6455

On 1 0.2076 7.4942 253.4427 247.5655

On 0 0.2106 7.4947 254.6869 247.7194

Table 3.1 shows the performance of the neuroadaptive controller in Gazebo.

The low joint error values e1 and e3 show a lower joint trajectory error using the neu-

roadaptive controller. The gains in the outer PD loop was held constant throughout

the experiment.
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Figure 3.3. Joint Position Tracking without Neuroadaptive control.
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Figure 3.4. Control torques without Neuroadaptive control.

Fig. 3.3 shows trajectory tracking with a PD controller; the neural network

component is turned off. The effect of dynamic coupling can be seen in the oscillation

in joint 1. The control torques seen in Fig. 3.4 show the low control torques for joint

1, to correct this the PD controller can be tuned manually.
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Figure 3.5. Position Tracking with Neuroadaptive control.
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Figure 3.6. Control torques with Neuroadaptive control.

The Neuroadaptive controller decouples the joints by cancelling the nonlinear

effects, this is seen in Fig. 3.5 the position error is an order of magnitude smaller

than in Fig. 3.3. The torques in Fig. 3.6 are around the same magnitude as in Fig.

3.4, but the torque of joint 1 is now higher to compensate for the nonlinear dynamics.

Figs 3.3 and 3.5 show the effect of using the Neuroadaptive controller.

3.1.3 Experimental Results

The controller parameters used were Kv = 5I7, Λ = 5I7, F = 100I7, G = 50I7,

κ = 0.07, Kz = 0.001, and Zb = 100, where I7 is the 7×7 identity matrix. A two-layer

Neural Network with 36 inputs including the bias input, 10 hidden layer neurons, and

7 outputs was used. The sigmoid function σ(x) was used for the activation functions.

The weights Ŵ and V̂ of the network were initialized to small random values.
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(a) No payload (b) With payload (c) Collision

Figure 3.7. Experimental setups for comparing NN and PID controllers.

Three different types of experiments were conducted to demonstrate the effec-

tiveness of the neuroadaptive controller as compared to the standard robot PID joint

controllers (Fig. 3.7). The experiments conducted were:

A. Free space motion without payload, in which the arm is following a desired joint

trajectory.

B. Free space motion with payload, in which the end-effector is carrying an object

of unknown mass.

C. Collision experiments, in which an unknown obstacle is encountered during robot

motion.

In all experiments a sinusoidal trajectory was applied to joint 3, i.e. the elbow joint

of the PR2 arm. In the first two experiments, the amplitude of the joint motion was

set to 0.5 radians. Joints 0 through 6 were positioned at q = [0, 0, 0, 1.0, 0, 0, 0]ᵀ,

corresponding to the shoulder pan, shoulder lift, upper arm roll, elbow flex, forearm

roll, wrist flex, and wrist roll joints.

Five different rates or angular frequencies were tested in experiment A. In ex-

periment B, a soda can weighing 355 grams was used as a payload. The highest

rate was not tested because the motion became too distorted due to torque satu-

ration and the desired reference trajectory could no longer be followed. In experi-

ment C, the amplitude was changed to 0.75 radians and the arm joints were set to
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q = [0, 0, 1.57, 0.75, 0, 0, 0]ᵀ. A 1 liter water bottle was placed in the path of the grip-

per directly in front of the PR2 (Fig. 3.7c). Ten collision were performed with each

controller by executing the sinusoidal trajectory with a rate of 3 radians per second.

3.1.3.1 Free space motion

The experiments without a payload was carried out to compare the performance

of the controllers in free space. To quantify the joint tracking performance, the error

(3.2) at each time step ∆t = 0.001sec was computed over a period of 10 seconds. The

2-norm was computed for each joint and then summed:

∑6

i=0
‖qr − q‖2 (3.19)

where i is the joint number. Similarly, the norm of the torques was computed for

each joint and then combined into a torque performance value:

∑6

i=0
‖τ‖2 (3.20)

Figs. 3.8a and 3.8b show the executed trajectory q and desired reference trajectory

qr for joints 1, 3, and 5, which correspond to the shoulder lift, elbow flex, and wrist

flex joints. As expected, the shoulder pan and the roll joints displayed little to no

error and are therefore not depicted. At 5 radians per second both controllers have

degraded performance, with the PID controller performing worse. Fig. 3.12a shows

the the total error of the two controllers at five different rates. The tracking error

is initially lower for the PID controller, but increases more dramatically with the

joint velocities. The joint tracking is more consistent for the neuroadaptive controller

because it can compensate for changes in the robot dynamics. The standard PID

controller can only be tuned for a limited range of joint velocities and fails when

those are exceeded.
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Figure 3.8. Joint tracking performance without a payload at 5 rad/s.
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Figure 3.9. Joint tracking performance with a 355g payload at 4 rad/s.

The neuroadpative controller also performs better from a safety point of view

when considering the lower torque values clearly shown in Figs. 3.10a and 3.10b.

Interestingly, joint 5 (wrist flex) has the largest control effort while the PID controller

generates the highest torques for joint 3 (elbow flex). The total joint torque is depicted

in Fig. 3.13a. At 1 radians per second the performance is comparable. As the joint

velocities increase, the PID control torque increases rapidly and diverges faster than

the neuroadaptive controller.
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Figure 3.10. Control torque without payload at 5 rad/s.

Time (s)
0 1 2 3 4 5 6 7 8 9 10

T
or

qu
e

-800

-600

-400

-200

0

200

400

600

τ1

τ3

τ5

(a) Neuroadaptive

Time (s)
0 1 2 3 4 5 6 7 8 9 10

T
or

qu
e

-800

-600

-400

-200

0

200

400

600

τ1

τ3

τ5

(b) PID

Figure 3.11. Control torque with a 355g payload at 4 rad/s.

3.1.3.2 Free space motion with Payload

The added payload changes the manipulator dynamics by increasing the end-

effector inertia. In traditional computed torque or inverse dynamics controllers, this

change in manipulator dynamics has to be detected and explicitly added to the con-

troller. Since the weight of the object is unknown to the robot in this experiment,

the tracking performance is worse even at a lower rates.

Similarly to the previous section, the joint tracking performance of the neuroad-

aptive controller outperforms the PID controller at the highest tested rate as shown

in Figs. 3.9a and 3.9b. In addition, the control torques generated by the PID con-

troller are much higher than those generated by the neuroadaptive controller (Figs.

3.11a and 3.11b). However, at lower rates the difference is less profound as depicted

in Figs. 3.12b and 3.13b.

The results for Sections 3.1.3.1 and 3.1.3.2 are summarized in Table 3.2.

38



Rate [rad/sec]
1 2 3 4 5

∑
‖e
‖
2

10 -1

100

101

NN
PID

(a) No payload

Rate [rad/sec]
1 2 3 4

∑
‖e
‖
2

10 -1

100

101

NN
PID

(b) With payload

Figure 3.12. Total joint tracking error for movement frequencies (log scale).

3.1.3.3 Results with Collision

In this section the contact forces experienced at the end effector of the robot

during collisions is presented. The force tangential to the circular motion of the elbow

flex joint (joint 3) was measured during a 2.5 second time interval. Typical results

for the neuroadaptive and PID controller are shown in Fig. 3.14.

The results of running ten trials are represented in Table 3.3. The maximum

force ‖F‖∞ and impulse ‖F‖1∆t was computed for each trial. The neuroadaptive

controller produces an average maximum contact force of 4.85N, which is lower than
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Figure 3.13. Total control torque for movement frequencies (log scale).

the PID value of 6.99N. Furthermore, the average impulse is lower at 0.56Ns compared

to 0.89Ns. Hence, the neuroadaptive controller results in lower collision energies

and could therefore be considered a safer alternative to the standard PID controller.

This is especially important in human environments, which are highly dynamic and

unpredictable. In physical HRI interaction scenarios, the controller has to be accurate

and responsive, while minimizing the risk of human injury.
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Table 3.2. Neuroadaptive (NA) and PID controller joint error and torque performance
results for experiment A and B

Rate Payload
∑
‖e‖2

∑
‖τ‖2

(rad/s) (g) NA PID NA PID

1

0

0.17 0.08 236.62 252.54

2 0.20 0.17 270.49 327.73

3 0.27 0.28 345.46 457.11

4 0.40 0.49 474.83 730.07

5 0.60 4.31 693.16 5492.36

1

355

0.34 0.10 500.32 478.82

2 0.34 0.21 493.11 544.68

3 0.39 0.35 537.95 669.06

4 0.81 7.28 945.80 9119.96
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Figure 3.14. Contact force versus time during the collision experiment.
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Table 3.3. Neuroadaptive (NA) and PID controller collision performance results for
10 trails

Controller
‖F‖∞ (N) ‖F‖1∆t (N s)

Mean STD Mean STD

NA 4.8532 0.7982 0.5577 0.0456

PID 6.9937 0.5683 0.8867 0.0474

3.2 Cartesian Space Controller Formulation

Given this formulation for joint space neuroadaptive robot control in Section

3.1, a neural network controller can now be extended to Cartesian space dynamics as

shown in Fig 3.15.
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ẋ

e

ė
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Figure 3.15. Model reference neuroadaptive controller.

Given the model output xm(t) and robot state x(t), the model following error

will be e = xm − x. To drive e to zero, define a sliding mode error r = ė+ Γe where

Γ = ΓT > 0 is a positive definite matrix.
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From (3.1), the robot model following error dynamics can be written as

Λ(q)ṙ = −µ(q, q̇)r + f(ϕ)− fc − fh (3.21)

where

f(ϕ) = Λ(q)(ẍm + Γė) + µ(q, q̇)(ẋm + Γe) + J†TF (q̇) + gx(q) (3.22)

is a nonlinear function of unmodeled robot parameters and argument

ϕ =
[
eT ėT xTm ẋTm ẍTm qT q̇T

]T
(3.23)

This function can be approximated by a neural network

f(ϕ) = W Tσ(V Tϕ) + ε (3.24)

where W and V are ideal unknown weights, σ(.) is an activation function, and ε is

the approximation error, as detailed in [40].

The ideal weights W and V for the neural network (NN) are unknown. There-

fore the weight tuning algorithms of [40, 48] are used to update approximate NN

weights Ŵ and V̂ .

Take the control input as

fc = Ŵ Tσ(V̂ Tϕ) +Kvr − v(t)− fh (3.25)

where Kv = KT
v > 0 is a diagonal outer-loop gain matrix,

v(t) = −Kz(‖Z‖F + ZB)r (3.26)

is the robustifying signal as detailed in [40], Kz is the gain of the robustifying term,

Ẑ =
[
Ŵ 0

0 V̂

]
, ‖.‖F is the Frobenius norm, and ZB is a scalar bound on the NN weights

such that ‖Ẑ‖F < ZB.
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The NN weight update equations are

˙̂
W = Fσ(V̂ Tϕ)rT − Fσ′(V̂ Tϕ)V̂ TϕrT − κF‖r‖Ŵ (3.27)

˙̂
V = Gϕ(σ′(V̂ Tϕ)T Ŵ r)T − κG‖r‖V̂ (3.28)

where F and G are positive definite matrices, σ′(ξ) = dσ(ξ)
dξ

, and κ > 0 is a small

design parameter. It can be formally shown using a Lyapunov argument, that under

reasonable assumptions, the error signal e will converge to zero. Therefore this inner-

loop control scheme tracks Cartesian space trajectories xm generated by the human

and the outer-loop controller [40,48].

3.2.1 Simulation Results

First the inner-loop controller in Fig. 3.15 was simulated. The model used for

simulation is the 2-link planar robot of Example 3.2-2 in [40]. The parameters are

m1 = 0.8kg, m2 = 2.3kg, l1 = 1m, l2 = 1m, and g = 9.8m/s2. The prescribed robot

admittance model parameters are Mm = 1, Dm = 1, and Km = 1. The controller

parameters are Kv = 10I2, Λ = 20I2, F = 100I2, G = 20I2, κ = 0.1, Kz = 1, and

ZB = 100, where I2 is the 2× 2 identity matrix. A two-layer Neural Network with 18

inputs, including the bias input, 20 hidden layer neurons and 2 outputs was used. The

sigmoid function σ(ξ) =
1

1 + e−ξ
is used as the activation function. The weights V̂

of the neural network are initialized to random values. The weights Ŵ are initialized

to zero, because random values could destabilize the controller.
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Figure 3.16. Simulation Response with Neuroadaptive Controller.
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Figure 3.17. Simulation Response without Neuroadaptive Controller.

Fig. 3.16 shows that the motion generated by the prescribed robot admit-

tance model xm and the robot system response x to the force input fh are virtually

identical. Since the Neuroadaptive controller compensates the nonlinear dynamics,
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the PD gains of the outer loop can be small. Fig. 3.17 shows the low performance

achieved by low PD control gains when the controller (3.25) is implemented without

the NN compensation term Ŵ Tσ(V̂ Tϕ) and robustifying term v(t). The performance

is noticeably worse than that in Fig. 3.16.
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3.2.2 Experimental Results
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(a) Inner-loop neuroadaptive controller enabled.
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Figure 3.18. Inner-loop actual robot vs prescribed robot admittance model PR2
Cartesian space position.

The controller parameters are Kv = 5I6, Λ = 20I6, F = 100I6, G = 200I6,

κ = 0.3, Kz = 0.001, and ZB = 100, where I6 is the 6 × 6 identity matrix. A two-

layer Neural Network with 44 inputs including the bias input, 10 hidden layer neurons,
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and 6 outputs was used. The sigmoid function σ(ξ) is the activation function. As in

the simulation the weights V̂ of the neural network are initialized to random values

and the weights Ŵ are initialized to zero.

3.3 Summary

In this chapter a neuroadaptive control scheme in joint space and Cartesian

space was presented. A stability proof was also outlined. The performance of the

neuroadaptive controller was compared against independent joint control via experi-

ments on a PR2 robot. Results demonstrated the effectiveness of the neuroadaptive

controllers in joint trajectory following tasks, and during handling of objects with un-

known mass. In particular, our controller had superior tracking performance at high

joint rates, and much lower joint torques while lifting payloads. Tests were also con-

ducted to demonstrate the performance of the neuroadaptive controller compared to

a PID controller during impact. This test was conducted to demonstrate the inherent

safety afforded by the neuroadaptive controller by reducing the impact forces.
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CHAPTER 4

Adaptive Admittance Control using Adaptive Inverse Filtering

This chapter develops a second loop using an adaptive admittance control for

human-robot interaction. This approach follows the human factors studies [60, 61]

that indicate human learning in task performance has two components: a robot-

specific component whereby a robot dynamics model is learned to compensate for

robot nonlinearities, and a component where task-related details are learned. An

inner robot torque controller is first designed as shown in Chapter 3 that contains

no task information. The objective of this controller is to cause the robot to be-

have like a prescribed admittance model. This is in contrast to most of the work in

robot impedance control [67,83] and robot neural network control [40,41] in that the

objective is not trajectory following. This robot-specific controller is shown in Fig.

4.1.

Σ

-

Prescribed Robot

Admittance Model

Controller Robot
fh

xm

x

e

τ

Figure 4.1. Inner-loop robot-specific model reference neuroadaptive control.
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Given the inner-loop robot torque control, a task-specific controller is next

designed in an outer-loop that takes into account the human dynamics model, which

may be unknown, and the task performance objectives. This outer task-specific loop

is shown in Fig. 4.2 and adapts the robot admittance model in Fig. 4.1. The

robot-specific controller is designed in Section 4.1, and the task-specific control loop

is designed in Section 4.4.

-
Σ

Prescribed Task

Reference Model

Prescribed Robot

Admittance Model

fh
Human

xm

ǫ

xr

xr

xd

Figure 4.2. Outer-loop task-specific control for adapting robot admittance.

The approach presented here has the additional advantage that if the same

task is performed with the same human and a different robot, the inner-loop control

automatically adjusts the robot controller so the robot appears to the human as the

same admittance model. Also, if the human operator changes, the outer-loop control

automatically adapts the robot admittance model to the new human dynamics.

This chapter is organized as follows: In Section 4.1 an inner-loop robot con-

troller that causes a robot to behave like a prescribed admittance model is proposed.

In Section 4.4 an outer-loop controller is proposed. This adapts the parameters of the

prescribed robot admittance model so that the robot system assists the human achieve
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task-specific objectives. In Section 4.4.1 results from simulating the proposed con-

troller on a 2-link planar robot in MATLAB is presented. Experimental results from

an implementation case study of the proposed inner-loop and outer-loop controllers

on a PR2 robot is presented in Section 4.4.2. A case study to test the controller is

proposed in Section 4.7. Finally, Section 4.8 provides a summary of the chapter.

4.1 Inner-loop Robot Controller for Admittance Model Following

4.1.1 Prescribed Robot Admittance Model and Error Dynamics

To change the behavior of the robotic system a prescribed robot admittance

model is selected

Mmẍm +Dmẋm +Kmxm = fh (4.1)

where Mm is a prescribed mass matrix, Dm is a prescribed damping matrix, and Km

is a prescribed spring constant matrix.

Remark 2

The admittance model (4.1) is the desired robot response from human input

force fh to Cartesian space motion. This is not the same as standard robot control

approaches where it is desired for the trajectory tracking error dynamics to have a

prescribed impedance model [40,41,82,83].

To design a torque control to make the robot dynamics (3.1) behave like the

prescribed admittance model (4.1) define the model-following error

e = xm − x (4.2)

The rest of the controller derivation follows that of the Cartesian space controller

from Section 3.2.

51



4.2 Outer Task Loop for Adaptation of Robot Admittance Model in Continuous

Time

In the previous section it was shown how to design a neuroadaptive controller

to make a robot behave like a prescribed admittance model. That design did not

require any task or trajectory information. In this section an outer-loop task-specific

controller is proposed. This adapts the parameters of the prescribed robot admit-

tance model (4.1) so that the robot system assists the human to achieve task-specific

objectives. This separation of robot-specific design and task-specific design follows

human factors studies [60,61] and is facilitated by the fact that the admittance model

parameters in (4.1) appear nowhere in the control design in Chapter 3, e.g. equa-

tions (3.5), (3.6). See Remark 2. This enables independent design of the inner and

outer-loop controllers.

-¡ ¡

M(s)
Prescribed Robot
Admittance Model

D(s)
Prescribed Task
Reference Model

xm(t)

ǫ(t)

xr(t)

xr(t)

xd(t)

fh(t)

Σ

H(s)

Human

Figure 4.3. Prescribed robot admittance model adaptation using adaptive inverse
filtering.

The human, robot admittance model, and task reference model are shown in

Fig 4, which further details Fig. 4.2. The unknown human transfer function is

denoted as H(s). Studies of the human neuromuscular system have shown that

humans adapt to unknown dynamics and task-specific objectives [60, 61]. There is
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further evidence [61] that the skilled human operator achieves task-specific objectives

by making the combined human-robot system behave like a linear system with wide

bandwidth. This is called the crossover model. Motivated by this evidence, the

prescribed task reference model is taken as a linear system D(s), which depends on

the task being performed.

Our design separation into an inner robot control loop and an outer task per-

formance loop admits the performance of a broad range of tasks. For instance, in

medical applications such as stroke rehabilitation repetitive motion tasks based on

following medically motivated trajectories are often used [124]. Therefore, we con-

sider here a broad class of tasks which require the human-robot combined system to

follow a reference trajectory. In this case, xr(t) in Fig. 4.3 is the reference trajectory.

The adaptive inverse control approach pioneered by Widrow et al. [125] is used

to develop the outer-loop task-specific controller in Fig. 4.3. The approach is to

design a method for tuning the admittance model in (4.1), denoted here by M(s), so

that the overall human-robot transfer characteristics are given by a prescribed task

model D(s).

The derivation of the model following robot control loop in the previous section

is valid for either joint space or task space coordinates. To be compatible with these

human performance observations, in this section it is assumed that the robot dynamics

(3.1) are given in Cartesian space, and that the prescribed admittance model (4.1) is

likewise given in Cartesian space. Then, the outer task loop design in Fig. 4.3 uses the

measured human force fh(t) and the desired human-robot combined response xd(t).

Using the Wiener-Hopf equation and Fourier transform theory [125], the re-

quired Wiener filter M(s) that achieves the objective of M(s)H(s) = D(s) can be
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solved for in terms of the power spectral densities (PSD) Φfhxd and Φfhfh [125, 126]

as

M(s) =
Φfhxd(s)

Φfhfh(s)
=
D(s)

H(s)
(4.3)

this solution does not require knowledge of the transfer characteristics H(s) or D(s)

in Fig. 4.3. It requires knowledge of the complete statistical properties of fh(t) and

xd(t) to design M(s). Since these are not generally available in pHRI scenarios, an

adaptive inverse filter is used to estimate M(s). This only requires measuring fh(t)

and xd(t). It is known that properly designed adaptive inverse filters converge to the

Wiener solution in the mean [125,126].

To design an adaptive inverse filter the transfer function of the Weiner filter

M(s) is taken as

M(s) =
b1s

mθ−1 + b2s
mθ−2...+ bmθ

snθ + a1snθ−1 + a2snθ−2...+ anθ
(4.4)

where nθ is the degree of the denominator of M(s) and mθ − 1 the degree of its

numerator. M(s) is implemented as an adaptive ARMA filter using the D3 direct

form state-space realization [127] defined as follows.

χ̇i = χi+1 i = 1, ...,mθ − 1

χ̇mθ = fh(t)

(4.5)

φ̇i = φi+1 i = 1, ..., nθ − 1

φ̇nθ = xd(t)

(4.6)

The ideal Wiener filter is written as

xd(t) = h(t)θ(t) (4.7)

where

h(t) = [φnθ , φnθ−1, ..., φ1, χmθ , χmθ−1, ..., χ1] (4.8)
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θ(t) = [−a1,−a2, ...,−anθ , b1, b2, ..., bmθ ]
T (4.9)

The robot admittance model output in Fig. 4.3 is generated by the Weiner

filter M(s) written as

xm(t) = h(t)θ̂(t) (4.10)

where θ̂(t) is the estimated parameter vector of Wiener filter coefficients. This param-

eter vector is updated based on newly observed data xd(t), fh(t) by using a Kalman

filter [125, 126, 128]. This effectively computes the Weiner-Hopf solution (4.3). The

ideal filter coefficients are constant so that

θ̇(t) = 0 (4.11)

To set up the Kalman filter, the desired output xd(t) from the prescribed task

model and the input fh(t) to the adaptive filter are used as the input signals to

(4.5),(4.6). Then, the coefficients θ(t) of the Weiner filter are estimated using the

Kalman filter covariance and estimate update equations

K(t) = P (t)hT (t)R−1(t) (4.12)

Ṗ (t) = −K(t)h(t)P (t) (4.13)

˙̂
θ(t) = K(t)[xd(t)− h(t)θ̂(t)] (4.14)

where K(t) is the filter gain, P (t) is the covariance, θ̂(t) is the estimated Wiener filter

parameter vector, Nθ̂ = nθ + mθ is the size of θ̂(t). The Kalman filter is initialized

by setting θ̂(0) = 0 and P (0) = δ−1INθ̂ , INθ̂ is the Nθ̂ × Nθ̂ identity matrix. The

regularization parameter δ is chosen as a small positive constant for high Signal to

Noise ratio (SNR), a large positive constant for low SNR [129]. The Kalman filter

converges to the Wiener solution by driving the error residual ε(t) = xd(t)− xm(t) =

h(t)[θ(t)− θ̂(t)], to zero.
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It is shown in Theorem 1 in Section 4.3 the Kalman filter parameter vector θ̂(t)

converges to the ideal filter parameter vector θ(t) of the adaptive inverse filter M(s)

which is effectively the prescribed robot admittance model (4.1). Then, M(s) is used

to generate the robot admittance model output xm(t) in (4.2) and its derivatives as

required in the robot controller (3.6). The derivatives ẋm(t) and ẍm(t) are obtained

using a filtered derivative. The robot admittance model signals xm(t), ẋm(t), ẍm(t)

are finally fed to the robot inner control loop in Fig. 3.15.

4.3 Combined System Stability Analysis

In this section the overall closed-loop stability of the entire proposed two-loop

system in Fig. 3.15 and Fig. 4.3 is studied. The following standard assumptions are

needed.

Assumption 1

The model trajectory is bounded with qB a known scalar bound as follows∥∥∥∥∥∥∥∥∥∥
xd(t)

ẋd(t)

ẍd(t)

∥∥∥∥∥∥∥∥∥∥
≤ qB (4.15)

Assumption 2

The approximation (3.24) holds with a given accuracy ‖ε‖ ≤ εN on a compact

set [40, 48].
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Assumption 3

WB is a scalar bound on the NN weights such that ‖Ŵ‖F < WB, where ‖.‖F is

the Frobenius norm.

Define the inner-loop weight estimation error as

W̃ = W − Ŵ (4.16)

Define the outer-loop adaptive filter parameter estimation error error as

θ̃(t) = θ̂(t)− θ(t) (4.17)

The next theorem is the main result in this section.

Theorem 1

Given that the Assumptions 1, 2, and 3 hold. Let the control be designed as

in (3.9) and (4.10). Let the NN weight tuning be (3.12), and let θ̂(t) in (4.10) be

updated using (4.12), (4.13), and (4.14). Then the the sliding mode error (3.3), the

NN weight estimation error (4.16), and the adaptive filter parameter estimation error

(4.17) are UUB.

Proof

The derivative of (4.17) is

˙̃θ(t) =
˙̂
θ(t)− θ̇(t) (4.18)

substituting (4.14) and (4.11) we obtain

˙̃θ(t) = K(t)[xd(t)− h(t)θ̂(t)] (4.19)

Furthermore from (4.7) and (4.17) we obtain

˙̃θ(t) = K(t)[h(t)θ(t)− h(t)θ̂(t)] (4.20)
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˙̃θ(t) = −K(t)h(t)θ̃(t) (4.21)

Define the Lyapunov function for the combined inner-loop outer-loop system as

L[r, W̃ , Ṽ , θ̃] =
1

2
rTM(q)r +

1

2
tr{W̃ TF−1W̃}

+ θ̃T (t)P−1(t)θ̃(t)

(4.22)

Taking the derivative of P (t)P−1(t) [130] results in

d

dt
[P (t)P−1(t)] = Ṗ (t)P−1(t) + P (t)Ṗ−1(t) = 0 (4.23)

rearranging and substituting (4.12), (4.13) gives

Ṗ−1(t) = P−1(t)P (t)hT (t)R−1(t)h(t)P (t)P−1(t) (4.24)

Ṗ−1(t) = hT (t)R−1(t)h(t) (4.25)

Differentiating (4.22) results in

L̇ =rTM(q)ṙ +
1

2
rTṀ(q)r + tr{W̃ TF−1 ˙̃W}

+ ˙̃θT (t)P−1(t)θ̃(t) + θ̃T (t)P−1(t) ˙̃θ(t)

+ θ̃T (t)Ṗ−1(t)θ̃(t)

(4.26)

substituting from (3.7), (3.24), (3.12), (4.25), and (4.21) and simplifying results in

L̇ =− rTKvr +
1

2
rT (Ṁ − 2V )r + rT (ε+ τd)

+ κ‖r‖tr{W̃ T (W − W̃ )}

− θ̃T (t)hT (t)R−1(t)h(t)θ̃(t)

(4.27)

Since Ṁ − 2V is skew symmetric,
1

2
rT (Ṁ − 2V )r = 0, and therefore

L̇ ≤ − ζ(t)T ζ(t)− ‖r‖[Kvmin‖r‖

+ κ‖W̃‖F (‖W̃‖F −WB)− (εN + dB)]

(4.28)
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where Kvmin is the minimum singular value of Kv, dB is the bound of the disturbance,

and ζ(t) ≡
√
R−1h(t)θ̃(t).

L̇ ≤− ζ(t)T ζ(t)− ‖r‖[κ(‖W̃‖F −WB/2)2

− κW 2
B/4 +Kvmin‖r‖ − (εN + dB)]

(4.29)

The term inside the square brackets is guaranteed positive as long as

‖r‖ > κW 2
B/4 + (εN + dB)

Kvmin

≡ br (4.30)

or

‖W̃F‖ > WB/2 +
√
κW 2

B/4 + (εN + dB)/κ ≡ bW (4.31)

Now consider the dynamics (4.21) with output ζ(t) =
√
R−1h(t)θ̃(t). Then

ζ(t) → 0 implies θ̃(t) → 0 if (4.21) and ζ(t) is uniformly completely observable.

This occurs if ζ(t) is persistently exciting. That is, there exists T > 0, α > 0 s.t.

αI 6
∫ t
t−T h

T (t)R−1h(t)dt.

Therefore ‖r‖, ‖W̃F‖, θ̃(t) are UUB and θ̃(t)→ 0. Thus the two-loop controller

is stable. �

4.4 Outer Task Loop for Adaptation of Robot Admittance Model Discrete Time

Version

In the previous section the continuous time derivation of the Outer Task Loop

was proposed. In this section a discrete time version is proposed. This is more suitable

for implementation with a sampled real-time robot controller.
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Figure 4.4. Prescribed robot admittance model adaptation using adaptive inverse
filtering.

Adaptive inverse control is generally implemented in discrete-time. Therefore

let discrete-time models of the human (4.32), inner-loop prescribed robot admittance

model (4.1), and outer-loop prescribed task model (4.47) be H(z), M(z), and D(z)

respectively.

The human dynamics used is

H(s) =
Kds+Kp

Ts+ 1
, (4.32)

this model is widely described in the literature [61]. It is usually described as part of

a closed form loop with error as the input; here it is assumed that the input is the

reference position and the human is working in open loop.

It is desired to adapt the prescribed robot admittance model M(z) to make the

combined human-robot transfer characteristic H(z)M(z) equal the task model D(z),

as seen in Fig. 4.4. This outer task loop design uses sampled versions of fh and the

desired model output xd with a sampling period of Ts, namely fh(k) = fh(kTs), and

xd(k) = xd(kTs).
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Let M(z) be given in ARMA form by

xm(k) =− a1xm(k − 1)...− anθxm(k − nθ) + b0fh(k)

+ b1fh(k − 1) + ...+ bmθfh(k −mθ)

(4.33)

where nθ is the degree of the denominator of M(z) and mθ the degree of its numerator.

Then M(z) is implemented as

xm(k) ≡ hT (k)θ (4.34)

where the measured regression vector is

hT (k) = [− xm(k − 1), ...,−xm(k − nθ),

fh(k), fh(k − 1), ..., fh(k −mθ)]

(4.35)

and the ideal ARMA parameter vector is

θ = [a1...anθ , b0, b1, ..., bmθ ] (4.36)

The estimated ARMA parameter vector θ̂(k) can be updated based on newly

observed data xm(k+1), fh(k+1) by using a Recursive Least Squares (RLS) algorithm

[126]. This effectively computes the Weiner-Hopf solution (4.3). The desired output

xd(k) from the prescribed task model and the input fh(k) to the adaptive filter are

used as the input signals to the RLS algorithm. This converges to the Wiener solution

by driving the error ε(k) = xd(k)− xm(k), to zero which makes the combined human

and prescribed robot admittance model behave like the prescribed task reference

model by solving H(z)M(z) = D(z).

The RLS covariance and estimate update equations are

K(k + 1) =
P (k)h(k + 1)

λ+ h(k + 1)P (k)h(k + 1)
(4.37)

P (k + 1) =
P (k)−K(k + 1)hT (k + 1)P (k)

λ
(4.38)
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θ̂(k + 1) = θ̂(k) +K(k + 1)(xd(k + 1)− hT (k + 1)θ̂(k)) (4.39)

where K(k) is the filter gain, P (k) is the covariance, θ̂(k) is the ARMA parameter

vector, Nθ̂ = nθ +mθ is the size of θ̂(k), 0 < λ ≤ 1 is the forgetting factor.

The RLS algorithm is initialized by setting θ̂(0) = 0 and P (0) = δ−1INθ̂ , INθ̂

is the Nθ̂ × Nθ̂ identity matrix. The regularization parameter δ is chosen as a small

positive constant for high Signal to Noise ratio (SNR), a large positive constant for

low SNR [129].

The RLS algorithm converges to the ideal ARMA parameter vector θ of the

adaptive inverse filterM(z) which is effectively the prescribed robot admittance model

(4.1). It is used to generate the robot admittance model output xm(t) in (4.2) and its

derivatives as required in the robot controller (3.6). The derivatives ẋm(t) and ẍm(t)

are obtained by applying zero-order hold (ZOH) and backward difference to xm(k).

Remark 3

The outer-loop adaptation using RLS with forgetting factor λ < 1, enables

tracking of time-varying human operator dynamics H(s).

4.4.1 Simulation Results

In this section, the results from simulating the proposed controller on a 2-link

planar robot in MATLAB is presented.

The simulation of the inner-loop robot controller is the same as in the previous

Chapter. Simulation trials were conducted using 9 different combinations of ah and bh

values for the human model (4.32), see Table 4.1. These simulate 9 different human

operators engaging in pHRI. Two sets of simulations were performed for each of the

9 different combinations of ah and bh.
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(a) Outer-loop robot admittance model adaptation enabled.
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(b) Outer-loop robot admittance model adaptation disabled.

Figure 4.6. Outer-loop simulation response for the human dynamics case H3.
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Table 4.1. Simulation trials with and without outer-loop adaptation for different
human models

Human Model Set 1 RLS ON Set 2 RLS OFF

ah bh de de

H1 5 5 0.211 7.151

H2 5 10 0.227 147.036

H3 5 20 0.276 220.151

H4 10 5 0.077 287.553

H∗5 10 10 0.071 0.071

H6 10 20 0.080 146.256

H7 20 5 0.041 869.040

H8 20 10 0.037 294.016

H9 20 20 0.028 3.491

In Set 1, the RLS adaptation in Section 4.4 is enabled, and adapts the robot

admittance model. In Set 2, the RLS adaptation is disabled. The tuned ARMA

parameters for human model H∗5 are used as the constant prescribed robot admittance

model for all the trials with no adaptation. The parameters of the task reference

model (4.47) is selected as ad = bd = 10. The reference task goal xr is given as a

step function, this corresponds to a point-to-point motion in Cartesian space. The

prescribed robot admittance model (4.1) is adapted by using the RLS algorithm

described in Section 4.4. The outer-loop operates at a sampling frequency of 20 Hz,

and uses sampled versions of the inner loop signals fh and xd. The size of the ARMA

parameter vector (4.36) is Nθ̂ = 8, and the forgetting factor λ is 0.98. Models are

constant during each simulation.
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Table 4.1 shows the errors between the desired task model, xd(k), and prescribed

robot admittance model trajectories, xm(k). The trials with no adaptation, in Set

2, have errors that are orders of magnitude higher than in Set 1. Specifically, Table

4.1 shows the effect of changes to the human model with and without the outer-loop

adaptation, where de =
N∑
k=1

‖ek‖2 with ‖e‖2 =
√
e2
x + e2

y, the 2-norm of the error

ε(k) = xd(k) − xm(k) for the x and y axis respectively. Moreover, when the human

model changes, in Set 1 the adaptive mechanism results in lower outer-loop errors de,

but when the adaptive mechanism is disabled, in Set 2, the admittance model xm(k)

deviates significantly from the prescribed task model xd(k), causing large errors de.

The results show that the outer-loop adaptation makes the combined human-robot

system behave like the prescribed task reference model D(s) (4.47) for all the 9 human

operator characteristics.

Fig. 4.6a and Fig. 4.6b show the trajectories for a representative run, with and

without the RLS adaptation respectively. Here xd is the desired task reference output

and xm is the desired robot admittance model output. The human model parameters

used were ah = 5 and bh = 20, that is case H3. The tuned ARMA parameters (4.36)

for H∗5 were used in the no adaptation case. Fig. 4.6a shows the performance of the

controller when the RLS adaptation mechanism is enabled, the admittance model

trajectories xm clearly follow the prescribed task model trajectories xd. Fig. 4.6b

shows the performance when the adaptation mechanism is disabled and fixed ARMA

parameters (4.36) are used. The admittance model output xm does not follow the

prescribed task reference model trajectories xd.
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(a) Human interaction. (b) Point to point motion task.

(c) Experimental setup.

Figure 4.7. Experimental setup with the PR2 in the UTARI Living Lab.

4.4.2 Experimental Results

In this section a case study of the inner-loop and outer-loop controllers imple-

mented on the 7 DOF right arm of the PR2 robot is presented.

The experiments were conducted on the UT Arlington Research Institute PR2

robot, which is currently used in its Living Laboratory, see Fig. 4.7a. The controller

was implemented using the real-time controller manager framework of the PR2 in

ROS Groovy. The real-time loop on the PR2 runs at 1000 Hz and communicates with

the sensors and actuators on an EtherCAT network. Human force is measured using

an ATI Mini40 Force/Torque (FT) Sensor attached between the gripper and forearm
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of the PR2. The inner-loop runs at a loop rate of 1000 Hz and the outer-loop runs at

20 Hz.

The experimental setup was the same for both the inner-loop and outer-loop

experiments. A person was asked to sit in front of the PR2, at a fixed distance as

seen in 4.7a. They were asked to hold the gripper of the PR2 with their right hand

and move between two points P1 (Red) and P2 (Blue) which are along the Y axis of

the robot frame seen in Figs. 4.7a, 4.7b, and 4.7c. The controller used all 7 joints of

the right arm, and used the FT sensor to detect human force input fh.

In this experiment the outer-loop task specific controller in Fig. 4.4 is enabled.

This experiment demonstrates the ability of the outer-loop task specific controller to

adapt to different human dynamics. Two sets of experiments were conducted with

three male human subjects between the ages of 20 and 30. In Set 1, the experiments

were conducted with the RLS adaptation enabled. In Set 2, the RLS adaptation was

disabled and the ARMA filter parameters (4.36) were fixed to those tuned for subject

S∗1 . The point-to-point reference task goal xr is sent to the user via voice commands.

The PR2 says ‘red ’ when the goal is P1 and ‘blue’ when the goal is P2. This keeps

the task reference internal to the robot and external to the human in sync.

Table 4.2. Mean µ and standard deviation σ of error de for different human subjects
with and without outer-loop adaptation

Set 1 RLS ON Set 2 RLS OFF

Mean µ σ Mean µ σ

S∗1 69.7241 8.2262 273.8417 28.6228

S2 76.2001 29.6413 182.1220 18.7060

S3 55.6336 4.2584 257.2599 92.8642
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Figure 4.8. Outer-loop error plot for subjects S1, S2, and S3.

Table 4.2 shows the experimental data. Each of the three subjects performed

the experiment 6 times, 3 times for Set 1 and 3 times for Set 2. The mean µ and

standard deviation σ per user per set are presented in Table 4.2 and Fig. 4.8. The

outer-loop error de is calculated as de =
N∑
k=1

‖ek‖2 with ‖e‖2, the 2-norm of the error

ε(k) = xd(k)− xm(k). The data show that this error is lower in Set 1 for all subjects

where the RLS filter is enabled. This indicates that the outer-loop adaptation assists

the subject perform the point-to-point task by adapting the robot admittance model.

68



0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (s)

Y
 P

os
iti

on
 (

m
)

 

 

xr
xd
xm
x

(a) Outer-loop robot admittance model adaptation enabled.
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(b) Outer-loop robot admittance model adaptation dis-
abled.

Figure 4.9. Human experiment with actual robot motion vs fixed ARMA prescribed
robot admittance model output on PR2 for subject S3.

Here, the outer-loop Fig. 4.4 adapts the admittance model (4.33) of the inner-

loop Fig. 3.15. Fig. 4.9a shows that the robot and human combined motion x follow

the prescribed task reference model output xd. Here xr is the point-to-point reference

task goal, xd is the desired task reference trajectory, xm is the output of the desired
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robot admittance model, and x is the robot motion. Fig. 4.9b shows the performance

when RLS adaptation of the robot admittance model is disabled and fixed ARMA

parameters (4.36) are used. The performance is significantly degraded in comparison

to Fig. 4.9a

This experiment shows that the outer-loop and inner-loop controllers combined

can successfully make the combined human and robot system behave like a prescribed

task reference model adapted to the human user.

4.5 Adaptive Physical HRI Scheme with Intent Estimation

In this section the human intent aware adaptive admittance control method-

ology is presented. First, the inner-loop and outer-loop controller formulations are

summarized. Then the outer-loop adaptive admittance controller that includes hu-

man intent estimation and nominal task models is proposed. Finally, the inner-loop

neuroadaptive controller is described.
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-
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𝑇𝑠  𝑥𝑑(𝑡) 

Figure 4.10. Prescribed robot admittance model adaptation using adaptive inverse
filtering.
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The proposed controller structure consists of: (a) an inner-loop controller uti-

lizing online learning with neural networks to estimate and cancel the nonlinear robot

dynamics; (b) an adaptive admittance model that can be programmed to follow known

robot Cartesian trajectories xi or estimated trajectories x̂i resulting from a human

intent estimator.

The method proposed consists of an inner-loop dynamic compensation con-

troller with an outer-loop adaptive admittance controller. The inner-loop controller

is an adaptive controller that utilizes online learning neural networks to estimate and

cancel the nonlinear robot dynamics.

For the pHRI problem, the general dynamics equation in Cartesian space is

written as follows [131]

Λ(q)ẍ+ µ(q, q̇)ẋ+ J†TF (q̇) + gx(q) = fc + fh (4.40)

where q ∈ Rn are the joint positions, n is the DOF of the robot, x =
(pe
φe

)
∈ R6 is

the Cartesian space pose, where pe ∈ R3 is the task space position and φe ∈ R3 the

orientation. Λ(q) is the Cartesian space inertia matrix, µ(q, q̇) is the Cartesian space

Coriolis/centripetal vector, gx(q) is the Cartesian space gravity vector, and F (q̇) is the

joint space friction term. J is the Jacobian and J† = JT (JJT +k2I)−1 is the damped

least-squares pseudoinverse of the Jacobian with damping factor k. The force applied

by a human operator in Cartesian space is fh ∈ R6. The Cartesian space control force

fc ∈ R6 will be computed via a neuroadaptive scheme and can be used to compute

the joint control torque τ = JTfc.

Assume the following robot admittance model

Mmẍm +Dmẋm = fh (4.41)
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where xm is the admittance model output. The matrices Mm and Dm are the mass

and damping matrices respectively. In this section we assume zero stiffness Km = 0,

and no virtual trajectory. Therefore the admittance model is a simple mass-damper

system in Cartesian space.

In Section 4.5.1, an adaptive admittance controller with human intent is pro-

posed to generate desired trajectories for the robot to follow. This is shown in Fig.

4.11. If the ideal intent trajectory xi is known, as it is usually the case in rehabili-

tation exercises, then it is sent to the human subject as an audiovisual cue and to a

robot task model D(s) which generates xd. An adaptive filter with human force fh

as an input and output xm will then be employed to minimize the error between xm

and xd.

If the intent trajectory is not known, a human intent estimator can estimate it

from interaction forces and/or other sensor measurements. In Figure 4.11, the esti-

mated human intent trajectory is denoted by x̂i ≈ xi. The human model can generally

be defined as a transfer function H(s) assumed to be unknown, and representing the

dynamics of thinking and completing a trajectory tracking task by physically guiding

the robot.
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Figure 4.11. Human intent aware robot admittance model adaptation using adaptive
inverse filtering.

4.5.1 Outer-Loop: Adaptive Admittance with Human Intent

The outer-loop adaptive admittance controller is inspired by the adaptive in-

verse control approach pioneered by Widrow et al. [125]. The objective is to tune the

admittance model in (4.41), denoted here by the discrete transfer function M(z), such

that the overall human-robot transfer characteristics H(z)M(z) equals the task model

D(z). This outer-loop design uses sampled versions of fh and the desired model out-

put xd(t) with a sampling period of Ts, namely fh(k) = fh(kTs) and xd(k) = xd(kTs).

Let M(z) be given in ARMA form by

xm(k) = −a1xm(k − 1) ...− anθxm(k − nθ)

+ b0fh(k) + b1fh(k − 1) + ...+ bmθfh(k −mθ)

(4.42)

where nθ is the degree of the denominator of M(z) and mθ the degree of its numerator.

Then M(z) is implemented as

xm(k) ≡ hT (k)θ (4.43)
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where the measured regression vector is

hT (k) = [− xm(k − 1), ... ,−xm(k − nθ),

fh(k), fh(k − 1), ... , fh(k −mθ)]

(4.44)

and the ideal ARMA parameter vector is

θ = [a1, ... , anθ , b0, b1, ... , bmθ ] (4.45)

The estimated ARMA parameter vector θ̂(k) can be updated based on newly

observed data xm(k+1), fh(k+1) by using a Recursive Least Squares (RLS) algorithm.

This effectively converges to the Wiener solution by driving the error, ε(k) = xd(k)−

xm(k), to zero which makes the combined human and prescribed robot admittance

model behave like the task model by solving H(z)M(z) = D(z). The derivatives ẋm(t)

and ẍm(t) are obtained by applying zero-order hold (ZOH) and backward difference

to xm(k).

The above controller formulation assumes that the ideal human intent trajectory

xi(t) is known by the robot. In reality this signal is not available a priori. If the human

intent is not taken into account by the outer-loop controller, the goal position is fixed

and communicated to the human. This makes it impossible for the human subject to

change the motion of the robot at will, and applications are restricted to rehabilitation

exercises, or following known trajectories. In this case, if the user changes the goal in

his/her mind, the controller will have no information about the new intent x̂i(t) and

will fight against the user’s movements.

Therefore, in a second formulation, we add a human intent estimator to generate

approximations of xi. In this section, a simple model was tested which converts the

user applied force on the robot to a desired future position propagated by some time
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interval. The following admittance model output is propagated into the future and

it was assumed that this roughly approximates human intent xi(t)

Mi
¨̂xi = fh, x̂i(t) =

∫∫ t+∆t

t

¨̂xi(t)dt (4.46)

where Mi is a fixed mass matrix, and fh is the measured human force, and ∆t is the

propagation time. Thus, the human intent is obtained by double integration of the

estimated intent acceleration ¨̂xi(t). This simple model has been utilized for human

walking path predictions in social situations by Luber et al. [132]. In this work, the

future motion paths of humans were predicted using environmental constraint forces

and intent forces towards a known goal.

4.5.2 Experiments

Validation experiments were conducted on a PR2 robot which has an omnidi-

rectional mobile base, two 7 DOF gravity compensated arms with parallel grippers,

a pan tilt head, and several sensor modules. The controller was implemented using

the real-time controller manager framework of the PR2 available via the Robot Op-

erating System (ROS) [133]. The real-time loop on the PR2 runs at 1000 Hz and

is implemented using the linux-rt kernel. The communication with the sensors and

actuators is via an EtherCAT network. Interaction forces and torques are measured

using an ATI Mini40 Force/Torque (FT) sensor attached between the gripper and

forearm of the PR2.
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Figure 4.12. Experimental setup with the PR2 at the UTARI Living Lab.
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Figure 4.13. Error plot of Jα for controller Types 1 through 5.
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4.5.2.1 Experimental Setup

The experiments performed involved a point-to-point motion task. This task

corresponds to a step function input to the system and enables clear analysis of the

system performance. The PR2 robot was setup as shown in Fig. 4.12, where the

subjects were asked to sit in front of the robot and grasp the right gripper with

their dominant hand. The start of the experiment was automatically indicated by

the system via a text-to-speech program. The reference point-to-point motion was

indicated by a “RED” or “BLUE” audiovisual cue to indicate the next movement

point. Human factors studies [61] suggest that the human brain learns a closed-loop

controller that behaves like a first order model with high bandwidth in closed-loop.

Motivated by this a first-order transfer function is used as the task model

D(s) =
ad

s+ bd
(4.47)

where the model parameters depend on the specific task.

Experiments were conducted with the following five different types of con-

trollers:

Type 1 Adaptive admittance controller with human intent estimation: In this

experiment the admittance model in (4.43) is utilized. The admittance model in (4.46)

is used to generate a time propagated signal corresponding to the human intent x̂i(t),

where ∆t = 0.1s. The matrix Mi is the 6 × 6 identity matrix. The parameters of

D(s) in (4.47) are selected as ad = bd = 1.5.

Type 2 Adaptive admittance controller with fixed task reference trajectory : In

this experiment the admittance model in (4.43) is utilized with a fixed task reference

trajectory xi(t). The parameters of D(s) are the same as for Type 1.
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Type 3 Admittance controller with fixed ARMA parameters : In this experiment

the ARMA parameter weights (4.45) were automatically tuned to a human subject

and fixed as

θ = [ −1.8775 1.2729 − 0.0578 − 0.3269

0.0018 0.0001 − 0.0013 0.0002 ]
(4.48)

Type 4 Fixed mass-damper admittance controller : In this experiment the fixed

mass-damper admittance model in (4.41) is used with the parameters tuned for Sub-

ject 1 as Mm = 20I6, and Dm = 50I6, where I6 is the 6 × 6 identity matrix. This

model converts the user applied force fh to Cartesian positions xm(t) and velocities

ẋm(t).

Type 5 Direct task model controller : In this experiment the output of the task

reference model is sent directly to the inner-loop controller. The user applied force

fh is converted to Cartesian positions xd(t) via the intent estimator.

Three experimental trials were conducted for each type of controller with two

male human subjects of ages 26 and 27. For all experiments, the inner-loop rate

was 1000 Hz and the outer-loop rate was 20 Hz. The performance tuned inner-loop

neuroadaptive controller parameters were Γ = 20I6, Kv = 5I6, Kz = 0.001, ZB = 100,

F = 100I6, G = 200I6, and κ = 0.3, where I6 is the 6 × 6 identity matrix. A two-

layer NN with 44 inputs (including the bias input), 10 hidden layer neurons, and 6

outputs was implemented. The sigmoid function was used as the activation function

σ(ξ). The weights V̂ of the neural network were initialized to random values and the

weights Ŵ were initialized to zero.

4.5.2.2 Performance Measure

To compare the performance of the different controllers a performance measure

Jα is utilized. It is the dimensionless squared jerk of the gripper motion in Cartesian
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space
...
x (t). The work by Flash and Hogan [134] provides experimental evidence for

a human motion model involving the minimization of jerk. Among the different jerk

based performance measures proposed, the dimensionless squared jerk has been shown

to be the most effective [134]. It is defined as

Jα =

∫ t2

t1

...
x (t)2dt

(t2 − t1)5

A2
(4.49)

where A is the maximum amplitude of x(t). Smaller values of Jα indicate better

human-robot interaction performance.
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(a) Type 1: Adaptive admittance controller with human intent.
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(b) Type 2: Adaptive admittance controller with fixed task reference.
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(c) Type 3: Admittance controller with fixed ARMA parameters.
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(d) Type 4: Fixed mass-damper admittance controller.
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(e) Type 5: Direct task model controller.

Figure 4.14. Postion in y (m) versus time (s).
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(a) Type 1: Adaptive admittance controller with human intent.
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(b) Type 2: Adaptive admittance controller with fixed task reference.
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(c) Type 3: Admittance controller with fixed ARMA parameters.
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(d) Type 4: Fixed mass-damper admittance controller.
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(e) Type 5: Direct task model controller.

Figure 4.15. Force in y (N) versus time (s).
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4.5.2.3 Results

Table 4.3. Mean µ and standard deviation σ of Jα for controller types 1 through 5.
In units of 1021

Subject 1 Subject 2

Mean µ σ Mean µ σ

T1 3.5791 0.4388 3.7717 0.2948

T2 4.6010 0.1999 4.8935 0.3570

T3 4.5680 0.3962 4.3461 0.1187

T4 4.1249 0.2351 4.4638 0.1117

T5 3.3580 0.1593 4.0056 0.2973

The best performance in terms of trajectory smoothness is achieved by the

adaptive admittance controller with human intent estimation (Type 1) and the direct

task model controller (Type 5). This is shown by the dimensionless squared jerk

performance measure Jα in Fig. 4.13 and Table 4.3, and is consistent for both human

subjects. The outer-loop in the Type 1 controller successfully tunes the admittance

model based on the estimated human intent x̂i(t), resulting in admittance model

trajectories xm(t) that closely follow the task model trajectories xd(t). The inner-

loop controller enables accurate tracking of the admittance model trajectories. This

results in robot trajectories x(t) that closely follow the admittance model trajectories

xm(t) shown in Fig. 4.14a. The controller also exhibits minimal force jitter as seen

in Fig. 4.15a, resulting in a smooth force profile which indicates good interaction

performance. The direct task model controller (Type 5) controller does not include

an adaptive component, but due to the structure chosen for this system, results in

smooth trajectories.
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The controller of Type 2 with a fixed trajectory reference xi(t) does not perform

as well as the Type 1 and Type 5 controllers. This is indicated by higher values of Jα

for Type 2. The minimization of the error between the task model trajectory xi(t)

and the admittance model trajectory xm(t) tunes the outer-loop admittance model

M(z). This could result in a conflict between the robot trajectory and the human

intent since priority is given to task model following. Evidence of this conflict is seen

in the interaction force fh oscillations in Fig. 4.15b. Also, Fig. 4.14b shows poor

tracking performance of the task model xd(t), admittance model xm(t), and robot

trajectories x(t).

The controllers of Types 3 and 4 with fixed ARMA weights and mass-damper

do not include a desired model trajectory xd(t) that could result in the controller

competing with the human as in Type 2. These controllers perform marginally better

than the Type 2 controller indicated by lower values of Jα. Although these controllers

achieve relatively smooth position tracking as seen in Figs. 4.14c and 4.14d, the force

profiles in Figs. 4.15c and 4.15d exhibit considerable jitter and oscillations.

The Type 3 controller utilizes the fixed ARMA model (4.48) that was auto-

matically tuned to the human subject. The a priori tuning of the Type 3 controller

ARMA weights is more efficient and precise than manually tuning a mass-damper sys-

tem based on subjective human preferences. The manually tuned Type 4 controller

still exhibits oscillations at steady state as shown in Fig. 4.14d.

Overall, the results provide evidence of the viability of the Type 1 adaptive

admittance controller with human intent estimation in pHRI applications. The direct

model reference controller which included no adaptation (Type 5) performed similar

to the adaptive admittance controller (Type 1). The results for subject 2 showed

better performance with the Type 1 controller while subject 1 favored the Type

5 controller. This requires further study by performing tests with different human
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subjects, intent estimators, and task reference models. However, the Type 1 controller

can adapt online in real-time to changes in human dynamics and intent. It can further

be used to learn the optimal admittance using more complex intent estimator models.

These complex models can then be replaced by the learnt admittance model further

reducing final system complexity. The Type 2 controller can be utilized for automated

rehabilitation systems where the human intent, i.e. the desired rehabilitation motion,

is known. Here, the admittance model can be automatically tuned to the strength

and ability of the patient. The Type 3 controller is a static tuned admittance model,

such a controller can be used for instances where a one time admittance optimization

is required, such as calibrating the system to different human operators.

4.5.3 Discussion

In this section a two-loop adaptive admittance controller framework is presented

that includes human intent estimation. An inner neuroadaptive loop feedback lin-

earizes the robot, and an outer model reference adaptive loop tunes the admittance

model based on the intent of the human. The inner-loop neuroadaptive controller

linearizes the robot dynamics and ensures consistent performance of the outer-loop

across the entire robot workspace.

Experiments were conducted with five different types of admittance controllers.

The results demonstrated the performance advantages of the adaptive admittance

controller with human intent estimation. The proposed method resulted in lower jerk

in the combined human-robot motion, does not need any offline tuning, is robust to

changes in human dynamics, and also compensates for changing robot dynamics.
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4.6 Tactile Robotic Skin Calibration

There has been considerable effort to calibrate tactile sensors to generate cor-

rect pressure of force values. This is necessary to perform useful applications with

the sensor data. Calibration procedures are usually time-consuming, needs accurate

instruments, and has to be repeated regularly due to sensor property changes. Thus

calibrating large arrays of sensors is not only difficult, but also unmaintainable.

In the previous sections we assumed the force is measured directly as fh(t),

however in the context of arrays of taxels as in robot skin such assumptions are

invalid. To reformulate the adaptive framework proposed let us define the force

detected per taxel as fhi(t) for i = 1, ...N , where N is the total number of taxels.

Now we can redefine the ARMA model per taxel as M(z)i for i = 1, ...N . This

allows us to generate a model that encodes not only the human preferences, it also

enables the encoding of the sensor calibration information.

4.6.1 Experiments

In this section, we describe the experiments conducted to assess the effectiveness

of the proposed method in overcoming sensor calibration issues.
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Figure 4.16. Tactile sensor experiment setup.

The experiment uses FlexiForce sensors mounted around 4 sides of a handle as

seen in Fig. 4.16. Different materials of various thickness are placed over the sensors

to simulate a situation involving robot skin.

The following are the thickness and type of the materials used:

1. Frubber 5 mm

2. Frubber 10 mm

3. Orthoflex 5 mm

4. Proflex 5 mm

A microcontroller reads the voltage drop across the FlexiForce sensor and con-

verts it to a value between 0 and 1024. This value is filtered using a lowpass But-

terworth filter with a 1000 Hz cutoff then divided by 100 to get the force data. This

results in inaccurate and uncalibrated readings. The data is collected at a rate of

1000 Hz.

As before, the 7 DOF arms of the PR2 is used. Both controllers were imple-

mented using the real-time control manager framework of the PR2. The real-time

86



loop on the PR2 runs at 1000 Hz and communicates with the sensors and actuators

on an EtherCAT network. ROS Groovy [133] was used for all the experiments.

Four different experiments were conducted with different controller configura-

tions, they were:

1. Adaptive Admittance Controller.

2. Admittance Controller with Learnt ARMA parameters.

3. Mass Damper Admittance Controller with M = 1 and D = 5.

4. Mass Damper Admittance Controller with M = 20 and D = 50

4.6.2 Results

The results show that the readings of the force readings from the FlexiForce

sensor are different from those from the calibrated Force/Torque sensor, see Figs.

4.18, 4.20, 4.22, and 4.24. The proposed adaptive admittance controller performs

well as compared to using a fixed mass damper as seen in Figs. 4.17, 4.19, 4.21, and

4.23.
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Figure 4.17. ARMA with adaptive weights.
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Figure 4.17 depicts the experimental results for the controller with the adaptive

ARMA filter. This figure clearly shows that the controller makes the model trajectory

xm follow the task reference model xd. Some oscillations are seen at the end points

of the trajectory, this is caused due to the model switching at those points. From

figures 4.17b and 4.18 the differences in the measured force from the FlexiForce sensors

under the two different materials is seen. Although the force measured by the sensor

is different the adaptive controller learns the different models per sensor.
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(b) Combined Flexiforce Output

Figure 4.18. Force output for ARMA with adaptive weights.

The ARMA weights obtained from the first experiment seen in figure 4.17 was

used as the fixed weights in the second experiment as seen in figure 4.19. They were

flex2 = [−0.6283− 0.37570.1192− 0.15120.0063− 0.0017− 0.00300.0026] (4.50)

flex4 = [−0.71850.1265− 0.1395− 0.2230− 0.00090.0003− 0.00010.0013] (4.51)
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Figure 4.19. ARMA with fixed weights.

Figure 4.19 depicts the experimental results for the controller with the fixed

ARMA filter weights 4.50 and 4.51. As in the previous experiment this figure clearly

shows that the controller makes the model trajectory xm follow the task reference

model xd. Since the model is already learnt and no further learning takes place the

model switching does not cause as much oscillations. As in the previous experiment

figures 4.19b and 4.20 clearly depict the vast differences in the measured force from

the sensors.
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(b) Combined Flexiforce Output

Figure 4.20. Force output for ARMA with fixed weights.
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(b) Flexiforce Output

Figure 4.21. Fixed Mass Damper with M = 1 and D = 5.
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(b) Combined Flexiforce Output

Figure 4.22. Force output for fixed Mass Damper with M = 1 and D = 5.

Figures 4.21 and 4.23 show the results of using the uncalibrated FlexiForce

sensors with two different admittance models. Unlike in the first two experiments

this results in significantly degraded performance as seen in figures 4.21, 4.22, 4.23,

and 4.24.
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(b) Flexiforce Output

Figure 4.23. Fixed Mass Damper with M = 20 and D = 50.
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(b) Combined Flexiforce Output

Figure 4.24. Force output for fixed Mass Damper with M = 20 and D = 50.

4.6.3 Discussion

In this section the adaptive admittance controller formulated in the previous

sections was tested using a simple tactile sensor setup. A four sensor device was

used with different types of material covering the sensors. This setup generated

uncalibrated force data. The ability of the controller to effectively utilize uncalibrated

force sensors was demonstrated experimentally.
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4.7 Application: Robot Waiter

In this section, we study the interaction between a human and a robotic waiter

operating in a dynamic environment with low, variable lighting, in which reliability,

repeatability, and speed are crucial. Therefore, we rely on physical co-manipulation

to allow a human to guide the robot through the environment. In general, physi-

cal Human-Robot Interaction (pHRI) requires coordination and control of the forces

being applied by the human onto the robot.

The problem consists of two parts:

1. safe, stable contact with the human, and

2. identifying the human intent.

During the physical interaction, the robot should not exert any large forces on

the human and have relative low joint velocities. The robot’s limbs should move in

a smooth, predictable manner and no oscillations should occur. In this section, the

problem of safe and stable contact is addressed through compliance control [37,39].

In a task the robot was required to follow along with a cart. The task definition

allowed us to restrict the problem space such that the human pulling force applied

through the cart was the input and the output was position regulation of the robot

base with respect to the cart. Such a configuration enabled a natural cart-following

behavior by the robot, and allowed the human operator to lead the robot to desired

locations.
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Figure 4.25. Personal Robot 2 (PR2) manipulating a cart at the UTA Research
Institute (UTARI) Living Laboratory.
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Figure 4.26. PR2 grippers location, and frames of the cart in top view.

4.7.1 Co-manipulation System

In this section, we describe the system used to follow human commands using

a cart and the PR2 robot, consisting of a mobile base, two robotic arms, and a pan

and tilt head unit (Fig. 4.25). Each arm is gravity compensated and offers 7 degrees

of freedom (DOF). The arms extend up to 81 cm (32 inches) and the omnidirectional

base can reach velocities up to 1.0 m/s (3.3 ft/s).
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We first describe the controller used for compliant, stable interaction with the

cart. Then, we describe the velocity based position controller that moves the robot

to the home condition seen in Fig. 4.26, which leads to the cart-following behavior.

A human will push/pull the cart or the robot, and the robot will initiate base and

arm movements to follow guidance from the human.

4.7.1.1 Compliance Controller for the PR2 Arms

In classical explicit force control the objective is to maintain a desired inter-

action force fd, using schemes such as proportional-integral-derivative controllers for

regulation. This does not work in all interaction scenarios, especially not in cases

where chattering occurs. It is well known that PID explicit force controllers can

become unstable due to changes in contact environment [39,68,72,73].

Impedance control was proposed by Hogan to achieve stable environmental

contact [67]. It controls the dynamics of the physical interaction with the environment

instead of achieving an explicit force objective. We use compliance control as a

simplified version of this scheme [37,39].

The general robot dynamic equation with actuator dynamics and external in-

teraction with the environment is

M(q)q̈ + V (q, q̇)q̇ + F (q̇) +G(q) + τd = τ + τe (4.52)

where q ∈ Rn are the joint positions (n is the DOF), M(q) is the inertia matrix,

V (q, q̇) is the Coriolis/centripetal vector, G(q) is the gravity vector, and F (q̇) is the

friction term. We also add the disturbance torque τd ∈ Rn and the environmental

torque τe = JT (q)fe, where fe are interaction forces exerted on the robot in task

space, JT (q) is the Jacobian and τ ∈ Rn the control torque.
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Neglecting friction and disturbance torques, the task space pose x =

pe
φe

 ∈
R6, where pe ∈ R3 is the task space position and φe ∈ R3 is the orientation. The

dynamics in task space is

Mx(q)ẍ+ Vx(q, q̇)ẋ+Gx(q) = J−T (q)τ + fe (4.53)

where,

Mx(q) = J−T (q)M(q)J−1(q),

Vx(q, q̇) = J−T (q)V (q, q̇)J−1(q)−Mx(q)J̇(q)J−1(q),

Gx(q) = J−T (q)G(q).

The desired impedance model to balance the interaction force fe is chosen as

Mm(ẍ− ẍd) +Dm(ẋ− ẋd) +Km(x− xd) = fe (4.54)

where xd is the desired trajectory, Mm is the inertia, Dm is the damping, and Km is

the stiffness of the impedance model.

Rearranging we get

ẍ = ẍd +M−1
m (Dm(ẋd − ẋ) +Km(xd − x) + fe) (4.55)

Substituting (4.55) in (4.53) the control law is

τ =J−T (q)(Mx(q)ẍd + Vx(q, q̇)ẋ+Gx(q)

+Mx(q)M
−1
m (Dm(ẋd − ẋ) +Km(xd − x))

+Mx(q)M
−1
m fe − fe)

(4.56)
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For the PR2 robot, the mass matrix and the Coriolis term are not readily

available, while the gravity term can be neglected because of the robot’s gravity

compensated design. Therefore, replacing Mm = Mx(q) in (4.54) and substituting

into (4.53) the control torque leads to

τ =JT (q)(Mx(q)ẍd + Vx(q, q̇)ẋ+Gx(q)

+Dm(ẋd − ẋ) +Km(xd − x)).

(4.57)

Assuming ẋd = 0 and for low joint velocities q̇ ≈ 0 we obtain the compliance

controller

τ =JT (q)(Km(xd − x)−Dmẋ+Gx(q)). (4.58)

Since the PR2 arms are gravity compensated, the gravity compensation term

Gx(q) can be removed. Replacing ẋ with J(q)q̇, the final desired torque is:

τ = JT (q)(Km(xd − x)−DmJ(q)q̇). (4.59)

This does not require interaction force measurements and avoids the need for

an estimator to isolate the interaction forces from the PR2 gripper dynamics.

Because the controller in (4.59) only sets a desired gripper pose, a resorting

torque

τr = KP,rε+KD,r ε̇ (4.60)

was used to keep the arm joints close to their original home position qd. The joint

error ε is defined as the difference between the desired and current joint angles

ε = qd − q. (4.61)
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Figure 4.27. PR2 robot and cart transfer frames.

We consider the following reference frames as seen in Fig. 4.27: {w} attached

to the world, {b} attached to the robot base, {t} attached to the robot torso, {gr}

attached to the right gripper, {gl} attached to the left gripper, and {m} attached to

the cart being used. The right and left gripper pose in task space is xr ∈ R6 and

xl ∈ R6 in frame {t}. The pose of the robot base in frame {w} is xb ∈ R6. The

generalized forces at the grippers are fr ∈ R6 and fl ∈ R6 in frames {gr} and {gl}.

The cart, pulled by a human, will apply forces fr and fl on the grippers of

the PR2. These interaction forces will cause changes in the task space states of the

grippers xr = [rx, ry, rz, rφ, rθ, rψ], ẋr, ẍr, xl = [lx, ly, lz, lφ, lθ, lψ], ẋl and ẍl according

to the dynamics of the defined impedance model (4.54) . The desired task space

position of the compliance controller is set to some point in front of the PR2, whereas

the reference velocity and acceleration are set to zero. When the cart is grasped, the

grippers lose 3 DOF and the motion of the grippers will lie in the plane defined by the

constraints due to the cart. The remaining DOF are translation in x, y and rotation

about the z axis as seen in Fig. 4.26. The gains are set low in these directions for

smooth interaction.
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Let the robot Jacobian including the base motion (3DOF) be J(q). Now the

robot controller is

τ = JT (q)fc +
(
I − JT (q)J†T

)
τr (4.62)

where fc is

fc = Ŵ Tσ(V̂ Tϕ) +Kvr − v(t)− fh (4.63)

where fh is the output of the force-torque sensor of the PR2.

4.7.2 Discussion

This type of system without adaptation was demonstrated at a live event called

“Sky Ball XI”, which is an annual fundraising event for US military veterans [135].

Specifically, the PR2 was used to serve wine to VIP guests seated at different ta-

bles. A cart with wine glasses and bottles had to be moved from table to table in

a crowded, dynamic environment. The use of perception was limited due to uncon-

trolled lightning conditions that included many sources of potential interference with

the robot’s sensor. The proposed compliance and velocity controller performed well.

Together with a human waiter, the PR2 successfully navigated through the crowded

environment without any spills or other incidents.

4.8 Summary

In this chapter a new inner-loop/outer-loop controller is proposed to make pHRI

robust, simple to implement, and more intuitive for humans to use. An inner-loop

robot-specific controller was proposed which enables the user to interact with the

robotic system so that it behaves like a prescribed robot impedance model. This for-
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mulation allowed the nonlinear robot dynamics to behave like any prescribed admit-

tance model. This tunable controller enabled the design of an outer-loop task-specific

controller to take into account the human dynamics and adapt the prescribed robot

admittance model for different users. Simulation results with a simulated human

model and a robot model were presented to illustrate the robustness and stability

properties of the controller. Finally, experimental results of the inner-loop and outer-

loop controllers driving the interaction with the PR2 shows the feasibility of the

proposed scheme.

Future work will include experiments of the outer-loop adaptation with a more

diverse group of human subjects. The interaction forces will be measured using a full

body robotic skin that is being developed. The effect of adapting to human abilities

will be further expanded. The need for a reference signal to the task-specific model

will be eliminated by using reinforcement learning techniques.

Future work will include testing with more human subjects, integrating different

task models, testing new intent models, and performing more complex Cartesian

tasks. Another extension of this work is the use of multi-sensory data from whole

body robot skin for adaptive admittance control.
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CHAPTER 5

Study of Human Motion

The motivation for studying human motion was driven by the need to specify

xr(t) and human intent models that are representative to pHRI tasks. In addition,

motion studies are also motivated by other HRI applications such as robotic therapy

of Autism.

Autism is a neurological disorder that manifests as deficiencies in social, com-

munication and learning. Individuals with Autism have difficulty understanding hu-

man intent and other relevant social interaction components. Understanding human

motion can help design robots that can help in rehabilitation and human-robot in-

teraction.

This chapter is organized as follows: Section 5.1 describes work conducted that

uses Dynamic Time Warping (DTW) to compare motions and identify a motor marker

for Autism. Then Section 5.2 describes a new system that can learn and generalize

human motion using Dynamic Movement Primitives (DMPs). Finally, Section 5.3

provides a summary of the chapter.

5.1 Motion Analysis for Autism Diagnosis

Currently Autism diagnosis is mainly a subjective process with high irregularity

and inconsistency. This lack of standard objective tests for autism prevents the use

of consistent, continuous development tracking and therapy. Studies have shown

that children with Autism respond positively to robot companions. This motivated
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Figure 5.1. Zeno and Child during an Experiment - Photo credit: Fort Worth Star-
Telegram/Max Faulkner.

the development of a humanoid social robot called Zeno for early Autism diagnosis,

tracking and therapy [23].

According to Baer et al. [136] any behavior whose structure follows that of a

model functionally and is close to the model temporally can be considered imitation.

In this respect they are specific about what constitutes imitative behavior; the imi-

tator should be following cues from the model. From this definition it is clear that

imitation does not generate the exact behavior that is exhibited by a model. One of

the points being that the structure or topography of the action is given more impor-

tance than the temporal similarity of the behavior. This means that we can assess the

quality of imitation by ignoring some temporal differences in the observed behavior.

The contribution of this work, is the development of a robotic system which

uses Dynamic Time Warping (DTW) as a tool for the diagnosis and treatment of

Autism. DTW [110, 137] was used extensively in the speech processing community,
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Figure 5.2. System diagram.

and is a dynamic programming algorithm, which gives a distance measure that is

locally temporally invariant. It has also been used extensively by the data mining

community recently [111]. Here, we use DTW as a similarity measure for comparing

arm motions initiated by robot Zeno and imitated by children. Results show that the

DTW similarity measure can serve as both a meaningful and objective measure for

evaluating the HRI quality.

5.1.1 System Description

Project RoDiCA aims at developing a new motor cortex for the Zeno humanoid

robot, as well as data collection and processing components to enable the early de-

tection and treatment of ASD [23]. An overall system diagram of the HRI system

including Zeno, the therapist, child and the associated data collection environments

is shown in Fig. 5.2.

5.1.1.1 Humanoid robot

Zeno is a 2 foot tall articulated humanoid robot with an expressive human like

face shown in Fig. 5.1. It has 9 degrees of freedom (DOF) in the upper body and
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arms, an expressive face with 8 DOF, and a rigid lower body [23, 24]. The robot is

capable of moving the upper body using a waist joint, and four joints each on the

arms implemented using Dynamixel RX-28 servos. It has a 1.6 GHz Intel Atom Z530

processor onboard and is controlled by an external Dell XPS quad core laptop running

LabVIEW [23].

Two different modes of interaction are implemented on Zeno. The first is called

‘Dynamic Interaction,’ which uses a Kinect sensor and LabVIEW to allow full teleop-

eration control of the arms and waist DOFs. This allows a therapist to interact with

the child through the robot, or allows the child to control the robot directly. The

second mode called ‘Scripted Interaction,’ is based on the Zeno RoboKind software

which allows preprogrammed motions and conversations using text to speech soft-

ware. In this section we look at the data captured during both scripted and dynamic

interaction modes where the child imitates Zeno’s motion.

5.1.1.2 Data collection and testing of human subjects

The data collection is performed using a motion capture system from Motion

Analysis Corp, Santa Ana, CA, and CAREN, a virtual reality system from Motek

Medical BV described in detail in previous work [23]. This system consists of cameras

that capture motion at 120 Hz. In this work the human subject and the robot Zeno

are both instrumented using 40-50 reflective markers.

For the present pilot study interaction experiments were conducted with Zeno

facing the subject as seen in Fig. 5.1. A scripted routine of gestures was run on

Zeno, which the child was prompted to imitate using Zeno’s speech functionality.

The following 42 second scripted routine from [23] was run on Zeno:

1 Wave hello with right arm [8.3s to 15.8s]

2 “Tummy rub” with right arm [16.8s to 25.3s]
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3 Fist bump right with arm [25.7s to 30.3s]

4 Fist bump left with arm [31.0s to 34.5s]

5 Wave goodbye with left arm [34.5s to 42.0s]

For this phase of the analysis, we only used the time series of the joint angles

of Zeno’s and the subject’s motion during a right handed wave. Similarity in motion

between child and robot is measured using the joint angles, since Cartesian positions

are more difficult to compare due to dimensional and pose differences e.g. robot may

be much smaller than child, and rotated in space to face each other.

5.1.2 Dynamic Time Warping (DTW) as a Motion Marker

In this section, we describe how the data is processed, describe the DTW algo-

rithm and propose the development of DTW as a tool to identify a motor marker for

ASD.

5.1.2.1 Data representation and Inverse Kinematics

In this section, we record the imitative behavior using the four joint angles of

the arm as depicted in Fig. 5.3. The angles are α and β in the shoulder joint and

γ and θ in the elbow joint of Zeno. The data from the motion capture system is

in the form of Cartesian joint positions of the shoulder Ps = (xs, ys, zs) , elbow Pe

= (xe, ye, ze) and the hand Ph = (xh, yh, zh) respectively. The joint angles are then

calculated from these positions using the trigonometric equations below.

We define nc the surface normal to the plane containing Ps, Pe and Ph, nc =

Vse×Veh, Vse is the vector from Ps to Pe, Veh the vector from Pe to Ph, Veh the vector

from Pe to Ph and Ves the vector from Pe to Ps.

The following equations are used to obtain the joint angles:
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Figure 5.3. Zeno’s Arm Angles.

α = tan−1

(
Vse(3)

Vse(2)

)
, (5.1)

β = cos−1

(
Vse(1)

|Vse|

)
, (5.2)

θ = cos−1

(
Veh · Ves
|Veh||Ves|

)
, (5.3)

Where Vse(1), Vse(2) and Vse(3) are the x, y and z components of Vse respec-

tively, and ni is defined as:

ni = Rαβ


0

0

1

 (5.4)

Rαβ =


cos(β) −sin(β) 0

cos(α)sin(β) cos(α)cos(β) −sin(α)

sin(α)sin(β) sin(α)cos(β) cos(α)

 (5.5)
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Since the imitation between Zeno and the human is mirrored, Zenos right arm

is compared to each subjects left arm angle trajectories. This data is then prepro-

cessed by z-normalization, suggested by various researchers as an important step to

be performed before running any tests [111]. The z-normalization removes offsets and

scaling issues in the data, see following equation:

~sz =
~s− µs
σs

(5.6)

where µs and σs are the mean and standard deviation of the signal ~s.

5.1.2.2 Motion Analysis using Dynamic Time Warping

There is a need in the Autism research community to obtain quantitative mea-

surements of imitation quality. We propose using the DTW algorithm to obtain a

similarity measure between time series joint angle signals. The strength of DTW is

in its ability to compare the similarity between signals by ignoring time-delays and

uneven time sampling. This situation is very relevant in the context of our problem,

since the motion of child and robot experiences both these effects.

Given two signals that are time dependent ~X = {x1, x2...xn} and ~Y = {y1, y2...yn}

where n ∈ N. DTW finds the optimal distance between these two signals using

a local distance measure d, we use the euclidean distance as the distance measure

d( ~X, ~Y ) =

√
n∑
i=1

(xi − yi)2.

The DTW cost D(n, n) can be calculated using the following recursion:

D(i, j) = d(si, rj) +min{D(i− 1, j − 1),

D(i− 1, j),

D(i, j − 1)}

(5.7)
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DTW is applied to each set of angle trajectories generating a DTW value for

each of the four angles. A range of motion is then obtained in order to weigh each

angle using equation 5.8, where ~X represents a column vector of unnormalized joint

angles:

W = max( ~X)−min( ~X). (5.8)

The combined DTW distance for all four angles is calculated by a weighted

average as shown in 5.9.

Aw =
WαDα +WβDβ +WγDγ +WθDθ

Wα +Wβ +Wγ +Wθ

, (5.9)

where,

W∗ - weight per joint

D∗ - calculated DTW distance for each joint

The pseudo-code used for implementing our version of DTW is shown in Algo-

rithm 1.
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Algorithm 1 DTW Cost

1: procedure dtwCost(S,R)

2: m←row(S)

3: n←row(R)

4: D ← zeros(n+ 1,m+ 1)

5: C ← 0

6: D(1,1) ← 0

7: for i← 2,m do

8: D(i,1) ← D(i-1,1) + d(S(i),R(1))

9: end for

10: for j ← 2, n do

11: D(1,j) ← D(1,j-1) + d(S(1),R(j))

12: end for

13: for i← 2, n do

14: for j ← 2, n do

15: C ← d(S(i),R(j))

16: δ ← min(D(i-1,j),D(i,j-1),D(i-1,j-1))

17: D(i,j) ← C + δ

18: end for

19: end for

20: return D(m,n)

21: end procedure
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5.1.3 Results

A set of clinical experiments with several children were performed to test the

robot, capture the motion, and to compare the motion data using DTW. During

experiments, children were directed by the robot to follow along performing several

hand gestures, such as wave with both hands, tummy rub, fist bump, etc. Each

motion was performed three times. The best one was picked for analysis.

Table 5.1. DTW distance per joint

Subject Age Gender Type α β γ θ β θ Combined

3 6 Male Control 0.4421 0.6730 0.2775 0.1145 0.3075

2 6 Male ASD 1.2128 1.2128 1.1359 0.7232 0.8913

12 9 Male Control 0.6436 0.0792 0.5253 0.3073 0.2247

4 9 Male ASD 0.3387 0.6738 0.6899 0.9251 0.7331

13 11 Male Control 0.6164 0.2267 0.6409 0.2854 0.2666

6 11 Male ASD 0.4473 0.1881 0.4319 0.3228 0.2757

11 12 Male Control 1.1141 0.2583 0.5157 0.1159 0.1636

7 12 Male ASD 0.2350 0.6023 0.4192 0.2091 0.4102

Wave gestures were compared for four different age groups (6, 9, 11, 12) as

seen in Table 5.1, they consist of pairs of control and ASD children recruted from the

Dallas Autism Treatment Center. Each age group consists of a control subject and an

ASD subject. Representative joint angle trajectories for each DOF are shown in Fig.

5.4. The angle trajectories of subject 12 gives insight into the significance of each

joint in performing each action. Here the elbow angle θ has the best match during

the imitation, this is because the elbow performs a periodic motion when executing

a wave, so it is easy to script and imitate. β which is the other main angle used in
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Figure 5.4. Normalized Joint Angles.

a hand wave is also fairly similar. The difference seen in Fig. 5.4 for the normalized

angles varies more in the human trajectory because it is difficult for humans to keep

their shoulder in the exact place over a period of time like the robot. The computation

of the DTW for the different subjects performing the wave motion is shown in Table

5.1 and summarized in Fig. 5.5. The weights for α and γ in Equation 5.9 are set

to zero to calculate a weighted average using only β and θ, this is because β and θ

angles are more representative for the motions performed in this study.

By looking at this data we can see that the combined average for the control

subjects are all lower than for the ASD subjects. This shows that DTW in combina-

tion with weighting based on range of motion for the most important angles, β and θ,

for a hand wave shows a promising method of comparing human to robot imitation.
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Figure 5.5. DTW values.

Also, notice by looking at Table 5.1 the DTW values for β and θ also are consistent

for each age group with the exception of β for the group of eleven year olds. This

discrepancy is simple due to a better imitation by the ASD subject for β, but as

mentioned before β will always have variation due to human nature. However, this

inconsistency helps show that the value of the overall performance is not affected by

one angle, but instead provides a consistent value based on both angles used. This

demonstrates that DTW is a good method to use in motion comparison analysis.

These preliminary results show that the DTW similarity measure can serve

as both a meaningful and objective measure for evaluating the quality of imitation

behavior. With age all children improve their imitation behavior, but the children

with ASD consistently perform worse than their age-match controls. The combined
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weighted joint average for the wave motion has a higher value in all ASD children,

indicating that their imitation of Zenos waving motion is less accurate.

5.2 Human Motion Generalization using Dynamic Movement Primitives

In this work we are interested in changing fundamental properties of gestures

without changing their overall structure and meaning. To achieve this efficient encod-

ing of gestures is needed. Signals are traditionally defined by duration δ, amplitude α,

and frequency ν. This basic description of signals form the basic structure of motion

as well. To adapt motion the three components have to be tunable.

x

y

(a) A = 1.0, f=1 Hz

x

y

(b) A = 0.5, f=1 Hz

x

y

(c) f=1 Hz + 10 Hz

Figure 5.6. Change in amplitude and frequency.

5.2.1 Dynamic Movement Primitives (DMP)

Dynamic Movement Primitives (DMP) have emerged as a tool to encode robot

motions as dynamical systems. These systems are desirable due to the robustness

properties of nonlinear systems. DMPs have been used successfully for force depen-

dant tasks [138].

The DMP method was first introduced by Ijspeert et al. [117]. The DMP system

consists of three parts the canonical system, the modulation function, and a stable
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converging dynamic system. As described in [119], the modified version of the DMP

equations are used

τ ẍ(tf ) = K(x(tf )− x(t))−Dẋ+ (x(tf )− x(0))f(s) (5.10)

where ẍ(tf ), ẋ(tf ), and x(tf ) are the acceleration, velocity, and position respectively.

K is the spring constant, D is the damping coefficient, τ is a time scaling factor. f(s)

is a nonlinear function called the modulation function and is defined as

f(s) =

∑
i ψi(s)wi∑
i ψi(s)

s (5.11)

where ψi(s) are the bases functions of f(s). The canonical function which generates

the input s of (5.11) is

τ ṡ = −αs (5.12)

where α determines the structure of s, the input to the modulation function.

Since DMPs enable encoding nonlinear motion data, they can be used to predict

the motion of a human given a sufficiently large database of motion patterns. A local

distance measure such as DTW can be used to predict the motion pattern of the user.

The distance measure should be low in computation cost and online.

5.2.2 Trajectory Adaptation for Robot Differential Teaching

In this section the metrics used to compare the duration δ, amplitude α, and

frequency ν are defined. The design utilizes the properties of the DMP framework

to define scalable parameters for human motion. The following sections illustrate the

different properties exhibited by the system.

5.2.2.1 Duration adaptation

The duration of a gesture can be obtained easily by recording the start time ts

and finish time tf of the gesture. Then the duration is δ = tf − ts. This parameter
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can be compared with the duration of the reference gesture δr to obtain the duration

difference ∆δ = δ−δr. This is used in the adaptive mechanism to determine duration

of the DMP gesture.

τ = τ + ξδ∆δ (5.13)

where ξδ is a fraction of the difference between the ideal motion and the human

motion.

5.2.2.2 Amplitude adaptation

The amplitude of a gesture can be obtained by resampling the gestures and

calculating the 2-norm. Then the amplitude difference is α. This parameter can

be compared with the amplitude of the reference gesture αr to obtain the duration

difference ∆α = α−αr. This is used in the adaptive mechanism to determine duration

of the DMP gesture.

A = A+ ξα∆α (5.14)

where ξα is a fraction of the difference between the ideal motion and the human

motion.

5.2.2.3 Frequency adaptation

Given the frequency of a gesture ν. This parameter can be compared with the

frequency of the reference gesture νr to obtain the frequency difference ∆ν = ν − νr.

This is used in the adaptive mechanism to determine frequency of the DMP gesture.

f = f + ξν∆ν (5.15)

where ξν is a fraction of the difference between the ideal motion and the human

motion.
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Figure 5.7. DMP with 11 basis functions.
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Figure 5.8. DMP with 21 basis functions.
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Figure 5.9. DMP with 51 basis functions.
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5.3 Summary

The contribution of this chapter is the extension of the adaptive admittance

control methods proposed to utilize DMP to encode xr(t). Another contribution is the

development of a robotic system which uses Dynamic Time Warping (DTW) as a tool

for the diagnosis and treatment of Autism. This chapter describes the development

of a robotic system capable of measuring the quality of imitation interaction between

a humanoid robot and a human subject. A humanoid robot called Zeno, is used to

perform gestures which the human subject imitates. The similarity of the gestures

performed is measured using DTW, and used to objectively analyze the quality of the

imitation interaction between the human and the robot. The hope is that this type of

system will enable consistent objective measurement of the quality of imitation, and

can be used to obtain information about the condition and possible improvement of

children with ASD.

From the graphs of the wave motion it is clear that the robot motion should

be derived from nominal human motion trajectories. The initial data analysis shows

that DTW can be a good tool for comparing imitation interaction since it allows the

comparison of temporally inexact imitative motion. However, it is not clear what

robot motions to select, and what DOFs to compare using DTW in order to best

affect ASD treatment.
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CHAPTER 6

Software Developed

6.1 SkinSim

SkinSim is a multi-modal skin simulation for Gazebo.

Figure 6.1. SkinSim Logo.

As more and more robots inhabit our living space physical contact between

humans and robots become inevitable and even desirable, especially for cooperative

tasks. Assuring safe robot operation around humans has become a major area of

research in Physical Human-Robot Interaction (pHRI). The change from structured

industrial human living spaces with significant uncertainties, has made the develop-

ment of multimodal robotic skin a priority [5].

Since robot hardware is expensive and hard to maintain, realistic simulation

can become a major tool to support research and development of robotic systems.

This will add both flexibility and reproducibility to experiments. In recent years

various robotic simulators have been introduced including Microsoft Robotic Stu-

dio [139], Webots [140], MORSE [141], Stage [142], OpenHRP3 [143], V-REP [144],

OpenGRASP [145], and Gazebo [146]. Gazebo has achieved increased adoption by

the robotics community and was the government furnished simulator for DARPAs

Virtual Robotics Challenge (VRC) [147].
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Our simulation environment, SkinSim is a new and unique suite of software

that address challenges of design, integration and use of multi-modal robot skin

and garments as physical interfaces between robots and humans. Built on top of

ROS/Gazebo, SkinSim provides a simulation platform for designing robust and safe

robot behaviors based on sensor feedback. This can be used to test methods for op-

timal placement, data management and selection of sensors. In addition to pressure

sensors, SkinSim supports other types of distributed MEMS skin sensors including

thermal, accelerometer, and IR sensors.

6.1.1 System Design

Figure 6.2. Data flow diagram of SkinSim.

SkinSim is based on the Gazebo robot simulation software. It uses the ODE

physics engine [120] for dynamic simulation and also includes contact detection to

determine interaction forces. It also has support for Bullet [121], Simbody [122],

118



and DART [123] physics which include soft body simulation capabilities. A block

diagram of SkinSim is shown in Fig. 6.2. It represents the steps involved from

identifying a robot to generating a fully sensorized simulation model with controller

plugins. SkinSim consists of three modules: mesh manipulation, model generation,

and user interface (UI). The mesh manipulation module extracts robot meshes and

identifies poses for sensor placement using the Point Cloud library (PCL). The skin

model generation module assembles skin sensor patches given skin density, patch size,

skin model structure, tactile model structure, and tactile data communication design

as inputs. The skin patches can be generated in two ways: as standalone Simulation

Description Format (SDF) files with embedded model and sensor plugins or as a

modification of an existing robot Unified Robot Description Format (URDF)/SDF

model using the mesh manipulation package. SkinSim modules are designed to run

independently of a user interface for batch execution and optimization of pHRI. A

helpful wizard called Robot Tailor serves as a front end UI for the mesh manipulation

and model generation modules (Fig. 6.3). The Robot Tailor is a UI for designing

smart multi-modal skin based garments or coverings for robots. This was motivated

by the planning configuration description wizard of MoveIt! [148].

Figure 6.3. SkinSim user interface and tactile sensor array.
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Fig. 6.3 shows the Robot Tailor UI and a typical robot skin patch generated by

it. Users can control the robot via model plugins and can initiate interactions with

it. During the interaction, data is collected from each sensor via a sensor plugin or

model plugin and made available to the user. The user is able to visualize the data

via the ROS Robot Visualizer (Rviz) [149].

6.1.2 Data Management and Visualization

(a) ROS topics handle sensor data fusion and data
management

(b) Tactile image of a robot hand

Figure 6.4. Data Management and Visualization.

Each tactile sensor provides contact information including the sensor ID, sim-

ulation time, and sensed force or any other output depending on the type of the

sensor. A node is assigned to each tactile array patch to collect this data, see Fig.

6.4a. Various data encoding and transmission methods can be implemented in this

node to reflect those employed in real sensors. For example, one scheme could publish

data a row at a time for a given tactile array as in [150]. Another could publish the

entire tactile data at a given rate as employed in Tekscan [151]. Users will be able to

regulate the rate at which data is published.

120



Each n by m tactile sensor patch encodes the force reading into an n by m 8

bit monochrome image. Each pixel of this image can have values ranging from 0 to

255 representing the normalized force sensed by individual sensors. RViz is used to

view the tactile image. Fig. 6.4b depicts a tactile image created by pushing a robot

hand against a sensorized robot skin in SkinSim.

SkinSim is still in the development stage. It is available at

www.bitbucket.org/nextgensystems/skinsim

and has received some interest from the robotics community.

Future simulator development plans will involve the design and integration of

new sensor models such as infrared sensors, thermal sensors, and accelerometers.

We believe that this multi-modal robot skin model with tactile sensing, infrared

sensing, temperature sensing and more generally complete simulation of human robot

interaction will be of great benefit to the robotics community. This system could be

used to perform regression testing to determine optimal sensor design and placement

criteria. Such a system will also be a useful tool for testing out new robotic algorithms

for pHRI.

6.2 SkinLearn

SkinLearn, is a multi-modal skin based Human-Robot Interaction learning, esti-

mation, and control system. The work in adaptive physical human-robot interaction,

intent estimation, and tactile awareness will be implemented as libraries in SkinLearn.
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Figure 6.5. SkinLearn Logo.

6.2.1 Intelligent Control and Estimation Library (ICE)

The Intelligent Control and Estimation Library (ICE) will form the basis of the

SkinLearn framework. It will be based on Dr. Lewis’s Optimal Estimation, Optimal

Control, Robot Manipulator Control, and Neural Network controller books.

It will contain: basic PID, adaptive, robust, LQR, LQG, Neural Network based,

and reinforcement learning based controllers. This will also include filtering algo-

rithms and will contain: low pass/high pass filters, alpha beta filters, Kalman filters,

Extended Kalman Filters, Unscented Kalman filters, Particle filters. This will provide

tested base functionality as C++ classes to be used by other applications as object

instances.

SkinLearn is still in the development stage. It will be available at

www.bitbucket.org/nextgensystems/skinlearn

in the near future.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

To enable close human-robot interaction and co-operation controllers motivated

by human factors studies and the human neurophysiological system are developed. A

two-loop control architecture which overcomes the challenges associated with tradi-

tional trajectory based controllers and allow the human to be included in the human-

robot team is proposed. First, an inner-loop is used to control the usually nonlinear

dynamics of a robot. This was based on neuroadaptive inverse dynamics based con-

trol. Then, an outer-loop is used to make the robot system combined with the human

operator behave like a prescribed task model. This structure decouples the design of

the controllers and removes the requirement for trajectory following.

7.1.1 Neuroadaptive Inverse Dynamic Controller

An inner-loop robot controller that causes a robot to behave like a prescribed

admittance model was developed. No task information is needed by this controller.

This is in contrast to most standard work in robot impedance and neural network con-

trol which is based on trajectory following [40,41,67]. Since neural network function

approximation techniques [40] are used, this is called model reference neuroadaptive

control.
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7.1.2 Adaptive Admittance Controller

An outer-loop task-specific controller was developed. This adapts the param-

eters of a prescribed robot admittance model so that the robot system assists the

human to achieve task-specific objectives. This separation of robot-specific design

and task-specific design follows human factors studies [60,61] and is facilitated by the

fact that the admittance model parameters appear nowhere in the control design of

the inner-loop neuroadaptive admittance controller.

7.1.3 Human Motion Study

Motivated by research in robot assisted Autism therapy. Methods were pro-

posed for measuring human motion similarity using Dynamic Time Warping (DTW)

and generalizing human motion was proposed based on Dynamic Movement Prim-

itives (DMP). These methods will enable robots to better understand the human

motion, intention, and react accordingly.

7.1.4 Software Developed

Tools to test PHRI control methods - SkinSim and SkinLearn were described.

SkinSim, a new simulator framework for multi-modal, multi-resolution robot skin,

aimed at solving complex design problems was proposed. SkinSim is implemented

using the ROS and Gazebo simulation infrastructures which are supported by the

Open Source Robotics Foundation, and therefore will be shared with the commu-

nity. SkinLearn, is a multi-modal skin based Human-Robot Interaction learning,

estimation, and control system. The work in adaptive physical human-robot inter-

action, intent estimation, and tactile awareness will be implemented as libraries in

SkinLearn.
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7.2 Future Work

7.2.1 Neuroadaptive Inverse Dynamic Controller

Future work will involve further testing the neuroadaptive controllers with dif-

ferent weight update laws, neural network size, and activation functions.

7.2.2 Adaptive Admittance Controller

Future work will include testing with more human subjects, integrating different

task models, testing new intent models, and performing more complex Cartesian

tasks. Another extension of this work is the use of multi-sensory data from whole body

robot skin for adaptive admittance control. The work on adaptive admittance will

be further expanded to include multi-contact scenarios, high density tactile elements.

This work will also be implemented and tested on custom designed tactile skin arrays.

7.2.3 Human Motion Study

In the future the DTW algorithm will be evaluated in a larger cross-longitudinal

study focussed on Autism diagnosis. The motions generated by the Zeno robot will

be made more natural and human like. Data collection, natural human motion gen-

eration, and analysis will be contained in the newly developed motor cortex of the

Zeno robot. The imitation script will be modified to increase its ability to engage the

children with autism. The analysis of imitation will be extended to facial gestures.

7.2.4 Software Developed

In the future the developed software will be further expanded and standard-

ized. This will enable better sharing of the algorithms and help make this research

reproducible.
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