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ABSTRACT 

SELF-SIMILARITY AND MODELING OF LTE / LTE-A DATA TRAFFIC 

 

Roopesh Kumar Polaganga, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Qilian Liang 

The mobile wireless communication system has evolved into its 4th generation 

with ubiquitous availability assuring higher data rates and reliable communication. To 

achieve a robust and reliable network, it is necessary to understand the traffic 

characteristics of the network. In this work, network traffic characteristics like Self-

Similarity property and modeling of user arrivals are estimated for real-world LTE & 

LTE-Advanced (LTE-A) traffic. 

 Lot of work has been done on Self-Similarity of Ethernet and Ad-Hoc Network’s 

data traffic. But Self-Similarity in LTE and LTE-A data traffic has been left un-explored. 

Real world LTE and LTE-A data traffic collected from a live network has been studied 

and Self-Similarity property is also evaluated. This work emphasizes the existence of 

Self-Similarity in LTE and LTE-A data traffic which can facilitate the future research on 

forecasting data traffic. A degree of Self-Similarity is observed in live LTE and LTE-A 

networks and a comparison is made between LTE, LTE-A and previously researched 

Ethernet data traffics.  
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 Modeling and understanding the user traffic is of utmost importance to optimize 

the network. It is important to model and evaluate the incoming user traffic in our current 

generation of mobile communication systems which dominated data traffic more than the 

traditional voice traffic. This work will address the validity of considering Poisson 

Arrival for modeling user arrival traffic in live LTE network. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Wireless Communication has been one of the fast growing industries since mid-

1990s. It has evolved from a cutting edge technology owned by military, to an essential 

part of the cellular phone system used by billions of customers. Over the last few 

decades, due to the increasing demand for higher speed data and widespread network 

access in mobile communication, there has been a tremendous ongoing research in the 

field of cellular communication which has resulted in achieving significant 

developments.  

 Long Term Evolution-Advanced (LTE-A) and Long Term Evolution (LTE) are 

the current trending technologies aimed at providing substantial performance 

enhancements at reduced cost. The 3rd Generation Partnership Project’s (3GPP) Long 

Term Evolution (LTE) represents a major advancement in cellular technology and marks 

the evolutionary move from third generation of mobile communication (UMTS) to fourth 

generation mobile technology. LTE is the first cellular communication system supporting 

packet optimization radio access technology with high data rates and low latencies. Thus, 

data constitutes to be the pre-dominant traffic when compared to other traditional modes 

of traffic like the voice.  

  The statistical characteristics of network traffic have been of interest to 

researchers for many years, not least to obtain a better understanding of the factors that 

affects the performance and scalability of large systems such as the internet [5]. This 
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Tele-traffic knowledge of statistics including queuing theory, the nature of traffic, their 

practical models, their measurements and simulations to make predictions and to plan 

telecommunication networks helps in providing reliable services at lower cost. 

 Self-Similarity is an important concept that, in a way, it is surprising that only 

recently has it been applied to data communications traffic analysis. This concept helps in 

forecasting the data traffic which in turn helps in optimizing the network. Lot of work has 

been done on Self-Similarity of Ethernet and Ad-Hoc network’s data traffic. But no 

considerable work has been done on LTE and LTE-A data traffics as they are the latest 

evolution technologies in mobile communication system. This work mainly focuses on 

the Self-Similarity property of LTE and LTE-A network’s live data traffic. 

 Good network traffic modeling is necessary to better understand and utilize the 

network resources. In Tele-traffic theory, Often the arrival process of customers can be 

modeled by a Poisson Process [6]. In this present generation of telecommunication 

system with multiple types of traffic, it is necessary to evaluate the holding of this basic 

assumption for better understanding of the network. This work highlights the importance 

of user traffic evaluation in LTE network, which has high data traffic when compared to 

traditional voice traffics.  

 The most demanded feature of LTE-Advanced is Carrier Aggregation. This 

feature allows the aggregation of multiple carriers and increases the bandwidth which in 

turn increases the data rates. The users are served with extra resources as Secondary 

Cells. This feature is very popular in theoretical developments, but very novel in real 

world implementation. It is very important to analyze the real world performance metrics 
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of this new LTE-A feature which helps in knowing the feature’s implementation issues 

that need some more research to make it more effectual.  

1.2 Thesis Outline 

This thesis is organized into four chapters. Chapter 1 introduces the current state 

of wireless system with the importance of this piece of work. Chapter 2 explains the Self-

Similarity property observed in the data traffic and the evidence to show the existence of 

Self-Similarity in LTE data traffic. Chapter 3 talks about the modeling of LTE user traffic 

and its evaluation in live LTE network. It also introduces the concept of Poisson Arrival 

Process. Chapter 4 introduces the concept of Carrier Aggregation in LTE-Advanced and 

Self-Similarity is analyzed in LTE-Advanced data traffic. Trending of LTE-A Carrier 

Aggregation metrics are analyzed and degree of Self-Similarity is compared to that of 

LTE. Chapter 5, ‘Conclusion and Future Wok’ summarizes about the results achieved in 

the previous chapters and discuss about what possible work can be done to extend the 

work presented in this thesis.   
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Chapter 2 

SELF-SIMILARITY  

2.1 Introduction 

Understanding the nature of network traffic is important to properly design and 

implement communication networks and network services. Recent examinations of LAN 

traffic, Wide area network traffic and Ad-Hoc networks have challenged the commonly 

assumed models for network traffic, e.g., the Poisson process [21]. Where the traffic to 

follow a Poisson or Markovian Arrival process, it would have a characteristic burst length 

which would tend to be smoothed by averaging over a long enough time scale. Rather, 

measurements of real traffic indicate that significant traffic variance (burstiness) is 

present on a wide range of time scales.  

 Traffic that is bursty on many or all time scales can be described statistically 

using the notion of Self-Similarity. Self-Similarity is the property we associate with one 

type of fractal – an object whose appearance is unchanged regardless of the scale at 

which it is viewed. In that case of stochastic objects like time series, Self-Similarity is 

used in the distributional sense: when viewed at varying scales, the object’s correlational 

structure remains unchanged. As a result, such a time series exhibits bursts – extended 

periods above the mean- at a wide range of time scales.  

 Since a self-similar process has observable bursts at a wide range of timescales, it 

can exhibit long-range dependence; values at any instant are typically non-negligibly 

positively correlated with values at all future instants. Surprisingly (given the 

counterintuitive aspects of long-range dependence) the Self-Similarity of Ethernet traffic 
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has been established as per [11] and Ad-Hoc networks in [1]. The importance of long-

range dependence in network traffic is beginning to be observed, which show that packet 

loss and delay behavior is radically different when simulations use either real traffic data 

or synthetic data that incorporates long-range dependences.  

 LTE is the recent development in telecommunication systems whose traffic nature 

is of utmost interest to researches in this field of study. As LTE technology is quickly 

growing in terms of coverage and number of users, there is a need to study its network 

traffic. Since data traffic is predominant in LTE, this work concentrates on the evidence 

to show that LTE data traffic exhibits consistent Self-Similarity property. Intensity of this 

Self-Similarity property is evaluated in LTE networks based on the defined parameters.  

 A phenomenon that is self-similar looks the same or behaves the same when 

viewed at different degrees of ‘magnification’ or different scales on a dimension. The 

dimension can be space (length, width) or time. Self-Similarity is where a certain 

property of an object is preserved with respect to scaling in time and/or space.  “If an 

object is self-similar…, its parts, when magnified, resemble – in a suitable sense – the 

shape of the whole.”  The following diagram provides a pictorial view of this 

phenomenon.  
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Figure 2-1 Pictorial view of Self-Similarity 

 Will Leland and Daniel Wilson put together a comprehensive study of the self-

similar nature of Ethernet traffic. They were able to formulate their results via data 

collected from the network environment at the Bellcore Morris Research and Engineering 

Center.   

 A common continuous time definition of self-similar stochastic processes is based 

on a direct scaling of the continuous time variable, as follows. A stochastic process ( )X t  

is statistically self-similar with parameter H if for any real a>0, the process ( )Ha X at−  has 

the same statistical properties as ( )X t . This relation can be expresses by the following 

three conditions.  

1. Mean    
[ ( )]

[ ( )]
H

E X at
E X t

a
=          (2.1) 

2. Variance  
2

[ ( )]
[ ( )]

H

Var X at
Var X t

a
=         (2.2) 

3. Autocorrelation 
2

( , )
( , ) X

X H

R at as
R t s

a
=          (2.3) 
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2.2 Self-Similarity of LTE Network traffic 

Given a zero mean, stationary time series ( ; 1,2,3,...)tX X t= = , we define the m-

aggregated series ( ) ( )( ; 1, 2,3,..)m m

kX X k= =  by summing the original series X  over non-

overlapping blocks of size m. Then it’s said that X  is H-self-similar, if, for all positive 

m, ( )mX  has the same distribution as X  rescaled by Hm . That is  

                                        
( 1) 1

tm
H

t i

i t m

X m X m N−

= − +

∀ ∈∑�        (2.4) 

If X  is H-self-similar, it has the same autocorrelation function 

2( ) [( )( )] /t t kr k E X Xµ µ σ+= − −  as the series ( )mX  for all m. which means that the series 

is the same as that if the original.  

 Self-Similar processes can show long-range dependence. A process with long-

range dependence has an autocorrelation function ( )r k k β−
�  as k → ∞ , where 0< β <1. 

The degree of Self-Similarity can be expresses using Hurst parameter 1 / 2H β= − . For a 

self-similar series with long-range dependence, H value varies from 0.5 to 1 (1/2<H<1). 

As H →1, the degree of both Self-Similarity and long-range dependence increases.  

2.3 Existence Reason of Self-Similarity 

A plausible physical explanation for the occurrence of Self-Similarity in high 

speed network traffic is explained in [12] is based on convergence results for processes 

that exhibit high variability.  

Early studies of Internet traffic proved particularly interesting as they exposed 

self-similar characteristics that were not previously commonplace. There are many papers 
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debating the reason for the apparent Self-Similarity in modern communication traffic. 

These range from ON/OFF models of heavily tailed distribution, file size distribution in 

file systems and web servers, user behavior, network protocols, back-off algorithms in 

the Ethernet, buffer in routers and the TCP congestion avoidance algorithms. 

Superposition of many ON/OFF sources (also known as packet trains) whose ON-

periods and OFF-periods exhibits the Noah Effect (i.e., have high variability or infinite 

variance) produces aggregate network traffic that features the Joseph Effect (i.e., is self-

similar or long-range dependent). There is moreover, a simple relation between the 

parameters describing the intensities of the Noah Effect (high variability) and the Joseph 

Effect (Self-Similarity). An extensive statistical analysis confirms that the data at the 

level of individual sources or source-destination pairs are consistent with the Noah 

Effect. The implication of this simple physical explanation for the presence of self-

similar traffic patterns in modern high-speed network traffic for (i) parsimonious traffic 

modeling, (ii) efficient synthetic generation of realistic traffic patterns, and (iii) relevant 

network performance and protocol analysis. 

2.4 The Effect of Self-Similarity 

The effect of Self-Similarity on networks boils down to packet loss.  When traffic 

increases to the point where neither the bandwidth nor the router buffer sizes are suffice 

to handle the burst, packets are lost.  This is where the financial loss comes into play.  

When packets are lost, in certain situations they must be resent.  Resending the packets 

wastes bandwidth and could further congest the network.  In situations where the packets 
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don’t have to be resent, the quality of service is degraded.  These two aspects can lead to 

millions of dollars of loss. 

Two possible solutions include the dynamic control of traffic flow and structural 

resource allocation.  Predictive feedback control is a method of dynamically controlling 

the traffic flow.  In this method, the on-set of concentrated periods of either high or low 

traffic activity are identified and the mode of congestion control is adjusted appropriately.  

Another method of dynamic control of traffic flow is adaptive forward error correction.  

This method deals with real-time constraints where retransmission of data is not viable 

like streaming audio or video.  When congestion is high, the level of redundancy is 

increased.  In other words, several copies of the same packet are sent in hopes of at least 

one of them reaching the destination.  Duplicate packets received at the destination are 

discarded.  When congestion is low, the level of redundancy is reduced.  This method can 

be dangerous in that increasing the redundancy too much can backfire and only serve to 

increase congestion. 

 The other solution used to curtail the effects of Self-Similarity is structural 

resource allocation.  Bandwidth and buffer size are the two structural resources that are of 

importance.  The bandwidth could be increased such that bursts of traffic could be 

“swallowed.”  This accounts for the resending of packets as well.  However, in times of 

low network use, the extra bandwidth would be wasted.   

 The second option in structural resource allocation is the buffer sizes in routers 

etc.  Increasing their capacity would decrease the likelihood of packets being dropped 
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because the queues are at maximum capacity.  The optimal solution to curtailing the 

effects of Self-Similarity is a mix between these solutions. 

2.5 Hurst Parameter 

The Hurst Parameter or the Self-Similarity parameter is used as a measure of 

long-term memory of time series. It relates to the autocorrelation of the time series, and 

the rate at which these decreases as the lag between pairs of values increases.  

It is a key measure of Self-Similarity. The Hurst parameter is referred to as the 

“index of dependence” or “index of long-range dependence”. It qualifies the relative 

tendency of a time series either to regress strongly to the mean or the cluster in a 

direction. A value H in the range of 0.5-1 indicates a time series with long-term positive 

autocorrelation, meaning both that a high value in the series will probably be followed by 

another high value and that the values a long time into the future will also tend to be high. 

A value in the range of 0 to 0.5 indicates a time series with long-term switching between 

high and low values in adjacent pairs, meaning that a single high value will probably be 

followed by a low value and that the value after that will tend to be high, with this 

tendency to switch between high and low values lasting a long time into the future. A 

value of H=0.5 can indicate a completely uncorrelated series, but in fact it is the value 

applicable to series for which the autocorrelation at small time lags can be positive or 

negative but where the absolute values of the autocorrelation decay exponentially quickly 

to zero. This is in contrast to the typically ‘power law’ decay for the 0.5<H<1 and 

0<H<0.5 cases.  
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More precisely, H is a measure of the persistence of a statistical process. Given a 

stationary Long range dependent sequence, the partial sum if viewed as a process indexed 

by the number of terms after a proper scaling, is a self-similar process with stationary 

increments asymptotically. In the converse, given a self-similar process with stationary 

increments with Hurst index H>0.5, its increments is a stationary long range dependent 

sequence. A value of H=0.5 indicates the absence of Self-Similarity. The closer H is 1, 

the grater the degree of persistence or long-range dependence. 

2.6 Modeling and Estimation of Self-Similar Data Traffic 

  A number of approaches have been taken to determine whether a given time 

series of actual data is self-similar and, if so, to estimate the Self-Similarity parameter H.  

Some approaches to determine Self-Similarity property are: 

1. Variance – Time Plot 

2. R/S Plot 

3. Whittle’s Estimator 

Variance-Time Plot: 

For the aggregated time series ( )mX  of a self-similar process, the variance obeys the 

following for large m: 

( ) ( )
( )m Var X

Var X
mβ≈         (2.5) 

And the Self-Similarity parameter is defined as, 1 / 2H β= − . This can be rewritten as 

( )log[Var( )] log[Var( )] - βlog( )m m≈X X
      (2.6) 
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Because log[Var( )]X  is a constant independent of m , if we plot 
( )Var( )m

X versus 

m  on a log-log graph, the result should be a straight line with a slope of -β . The plot is 

easily generated from the data series ( )tX  by generating the aggregate process at 

different levels of aggregation m and then computing the variance. A number of 

researches have been done and found that the experimental results do fall on a negatively 

sloping straight line. It is then a straightforward matter to estimate H. Slope values 

between -1 and 0 suggest Self-Similarity [8]. 

2.7 Contribution of this work 

Lot of work has been done for the Self-Similarity of Ethernet, World Wide Web 

traffic and Ad Hoc Wireless network traffic. No considerable work has been done on 

Self-Similarity in the fast growing LTE and LTE-Advanced technology. This piece of 

work observes the Self-Similarity of real world live network’s LTE traffic.  

1. Self-Similarity of LTE data traffic is demonstrated using the live network’s 

collected data traffic sets.  

2. Hurst parameter values are calculated for each data sets collected.  

3. Difference between the degrees of Self-Similarity is observed between different 

collected data sets.  

4. The variation of H-parameter with respect to the slope of Variance-Time Plot is 

observed. 
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5. Self-Similarity of LTE data traffic is compared to the Ethernet traffic based on H-

Parameters. 

Such self-similar time-series can be forecasted [1] and none of the commonly used traffic 

models is able to capture this fractal behavior, and that such behavior has serious 

implications for the design, control and analysis of high-speed, cell-based networks [9] 

and helps in further optimizing the fast growing LTE network.  

2.8 Importance of this work 

1. This study is very important as the LTE technology is quickly growing in terms of 

coverage and number of users. 

2. Knowledge on the traffic helps in optimizing the network with efficient utilization 

of resources. 

3. Design, Control and Analysis of high-speed, cell-based networks are made more 

efficient. 

4. Knowledge on the degree of Self-Similarity can help in effective forecasting of 

network traffic as the Self-Similar time-series are forecasted. 

5. Self-Similarity is very important as none of the commonly used traffic models are 

able to capture this fractal behavior, and that such behavior has serious 

implications for the design, control and analysis of high-speed, cell-based 

networks. 
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6.  Knowledge of traffic helps in saving the resources like the UE battery life by 

exploiting intelligent DRX cycles.  

2.9 Data Collection & Constraints 

Data sets used for this work are collected from a US based cellular operator’s live 

LTE network. The data is captured at eNodeB level which contributes to S1/X2 interfaces 

in LTE system architecture. There is no separation of data sets based on cell sectors. The 

eNodeBs from which the data sets are collected typically has 3 cell sectors which are of 

least relevance to this piece of work. All the data collection is done remotely using an IP 

traffic collection tool. The captured data include both the user and control traffic logs. In 

particular, data set’s capture include all the message header details, type of message, 

source and destination details of the message and a timestamp associated with the 

message. The granularity of the data sets is in the resolution of 10 milliseconds. Each 

traffic packet can be observed with its header details. Each packet has an average size of 

around 870 ~ 880 bytes.  Overall, the data consists of various data traffic log captures 

with minimum of 10 min duration till 30 minutes with 10 millisecond resolution and with 

a minimum of 60,000 entries for each data set. All the logs are collected on multiple 

eNodeBs at various instances of time with normal load traffic conditions on weekdays. 

Results of 3 data sets are presented in this work. The importance of these 3 data sets is 

that they are collected at different instances of a day for same eNodeB at 4AM, 11AM 

and 6PM where the traffic intensity is expected to vary based on the usual 24-hour traffic 

pattern.   
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Constraints: 

As with any measurement-based study, these datasets has certain limitations. 

1. Since all the data is collected remotely, only a limited duration of data is collected 

based on the traffic intensity and the buffer size of the traffic collection tool. 

2. No traffic data is collected from other technologies like UMTS and 2G for 

comparison purpose because of the lack of traffic collection tools to perform 

similar data collection with such granularity.  

3. There is no differentiation of Downlink and Uplink traffic in the collected data 

sets. But it is observed that Uplink constitutes only to a small fraction of total 

traffic when compared to Downlink. 

2.10 Simulation Results 

2.10.1 Traffic Representation 

A sample real world LTE data traffic is shown in different granularity indexes as 

below. This traffic is nothing but the data set-I that is collected from a live network. The 

data set shown has a maximum duration of 10 minutes and includes all the incoming and 

outgoing data traffic from an eNodeB. The traffic load of 1.23GB is captured in 10 

minutes duration with an average of 13.3Mbps data rates in the downlink with nearly 

2164 active incoming users. Each packet has an average size of about 800~850 Bytes. 

The Y-axis represents the traffic size in Bytes per time resolution. As the time resolution 

increases from minutes to seconds, the Y-axis (bytes/time resolution) decrease 

correspondingly making a constant count of data traffic collected in the data set.  
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Figure 2-2 Traffic of 10 min shown in minute level Index 
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Figure 2-3 Traffic of 10min (600sec) shown in 10sec Index 
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Figure 2-4 Traffic of 10min shown in seconds Index 
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Figure 2-5 Traffic of 10min shown in 100milliseconds Index 

 

The above 4 figures (Figure 2-2 to Figure 2-5) are just the sample of how the 

collected LTE data traffic looks like in different granularity indexes. It can be observed 
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that as the granularity of time series is increasing, burstiness of the traffic increases. If the 

traffic is observed in large indices of minutes, it is almost continuous. But if observed on 

high granularity of milliseconds, burstiness can be realized with number of Bytes for each 

millisecond index.  

If these traffic series are zoomed in by selecting only interested duration in every 

index representation, the burstiness can still be observed in detail. The below figures Fig., 

2.6 to Fig., 2.9 shows the zoom-in of traffic segment in different granularity indices. 

Figure 2.9 represents the lowest granularity of 10msec considered for this work. Thin 

black lines are used to represent the zoom-in portion of traffic in next figures. 10 minutes 

duration and 1 second granularity traffic is zoomed in till 10millisecinds granularity of 

2seconds duration traffic. 
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Figure 2-6 Total Data Set – I Traffic Representation  
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Figure 2-7 Zoom-in of Traffic on second Index 
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Figure 2-8 Zoom-in of Traffic on 100msec Index 
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Figure 2-9 Zoom-in of traffic on 10msec Index 
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2.10.2 Variance – Time Plots 

2.10.2.1 V-T Plot for Data Set-I 

For the above shown data set-I, V-T graph is plotted to evaluate Self-Similarity property. 
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Variance plot for LTE Data

 Line with Slope "-1"

 

Figure 2-10 V-T Plot for LTE traffic data set -I 

 

V-T Plot for data set -1 is collected at around 6PM on a normal weekday and 

observed to have a slope greater than -1. So this particular data traffic is concluded to 

exhibit Self-Similarity property. The Degree of Self-Similarity (H – Parameter) is 

obtained to be 0.9116. The goodness of fit for the slope of this V-T curve is observed to 

be -0.1954.  
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Goodness of Fit: 
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Log_N_Variance vs. Log_m

Y = mX+C Fit

 

  Figure 2-11 Goodness of fit for V-T curve with slope -0.1954 

Table 2-1 Goodness of fit for Data Set – I V-T curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.1954 (-0.1966, -0.1942) 

p2 = 8.523 (8.52, 8.526) 

 

SSE: 0.06147 

R-square: 0.9907 

Adjusted R-square: 0.9907 

RMSE: 0.007856 

 

 The plotted V-T curve is fitted with a Y=mX+C curve with best fit slope of -

0.1954 and y-intercept of 8.523.  

 The variation of H-parameter for values m-valued aggregation levels can be 

observed in the below figure. The variation in H-parameter varies constantly over all 

aggregation levels holding the fact that Self-Similarity is all about having the same 

characteristics at different aggregated levels.  
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Figure 2-12 Variation of H-Parameter for different m values 

 

2.10.2.2 V-T Plot for Data Set-II 

Data Set – II represents the LTE data traffic collected at around 11AM of a 

normal weekday. The traffic load follows the usual 24-hour pattern and has less load 

when compared to data set-I (6PM). A traffic load of size 1.02GB is captured for 

10minutes duration with average data rates of 12.3Mbps with about 3373 active incoming 

users. Each packet has an average size of about 800~850 Bytes. A sample traffic of about 

20s duration is shown in below figure with 20ms granularity. The actual data duration of 

data set used for this result is about 10minutes long. 
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Figure 2-13 Sample data set for 20sec duration at 20msec index 
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Variance plot for LTE Data

 Line with Slope "-1"

 

Figure 2-14 V-T Plot for data set-II 
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V-T Plot for data set -II is collected at around 6PM on a normal weekday and 

observed to have a slope greater than -1. So this particular data traffic is concluded to 

exhibit Self-Similarity property. The Degree of Self-Similarity (H – Parameter) is 

obtained to be 0.8873. The goodness of fit for the slope of this V-T curve is observed to 

be -0.3402.  

Goodness of Fit: 
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Figure 2-15 Goodness of Fit for V-T Curve with slope -0.3402 

Table 2-2 Goodness of fit for Data Set – II V-T curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.3402  (-0.3453, -0.3351) 

p2 = 8.639  (8.625, 8.652) 

 

SSE: 1.156 

R-square: 0.9449 

Adjusted R-square: 0.9448 

RMSE: 0.03407 

 

 The plotted V-T curve is fitted with a Y=mX+C curve with best fit slope of -

0.3402 and y-intercept of 8.639.  
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Figure 2-16 H-Parameter Variation for different aggregation levels 

 The variation of H-parameter for values m-valued aggregation levels can be 

observed in the above figure. The variation in H-parameter varies constantly over all 

aggregation levels holding the fact that Self-Similarity is all about having the same 

characteristics at different aggregated levels.  

2.10.2.3 V-T Plot for Data Set-III 

Data Set – III represents the LTE data traffic collected at around 4AM of a normal 

weekday. The traffic load follows the usual 24-hour pattern and has fewer loads when 

compared to data set-II (11AM). A traffic load of size 0.65MB is captured for 10minutes 

duration with average data rates of 8Kbps with about 35 active incoming users. Each 

packet has an average size of about 800~850 Bytes. A sample traffic of about 20s 

duration is shown in below figure with 20ms granularity. 
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Figure 2-17 Sample data set for 20sec duration at 20msec index 
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Variance plot for LTE Data

 Line with Slope "-1"

 

Figure 2-18 V-T Plot for data set-III 
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V-T Plot for data set -III is collected at around 4AM on a normal weekday and 

observed to have a slope greater than -1. So this particular data traffic is concluded to 

exhibit Self-Similarity property. The Degree of Self-Similarity (H – Parameter) is 

obtained to be 0.6609. The goodness of fit for the slope of this V-T curve is observed to 

be -0.5791.  

Goodness of Fit: 
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Figure 2-19 Curve fit for V-T plot with slope -0.5791 

Table 2-3 Goodness of fit for Data Set – III V-T curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.5791  (-0.5851, -0.573) 

p2 = 3.332  (3.316, 3.348) 

 

SSE: 1.615 

R-square: 0.9726 

Adjusted R-square: 0.9726 

RMSE: 0.04027 
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 The plotted V-T curve is fitted with a Y=mX+C curve with best fit slope of -

0.5791and y-intercept of 3.332.  
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Figure 2-20 H-Parameter Variation at different aggregation levels 

 The variation of H-parameter for values m-valued aggregation levels can be 

observed in the above figure. The variation in H-parameter varies constantly over all 

aggregation levels holding the fact that Self-Similarity is all about having the same 

characteristics at different aggregated levels.  

2.10.3 Comparison of Data Sets 

Comparison of all the 3 data sets can be done on the basis of the typical load 

corresponding to the time of the day at which data is collected. The below table 

summarizes the results of 3 data sets with the slope of V-T Curve and the degree of Self-
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Similarity (H-Parameter). It can be observed that as the time of the day increases, traffic 

load increases in terms of the data captured and so the H-parameter value. The slope of 

V-T plot also increased along with load and H-parameter value. 

Table 2-4 Comparison of H – Parameters for different LTE data sets 

 

Data Sets 

 

Time of the Day 

 

Traffic Load 

 

Slope 

 

H-Value 

 

I 

 

18.00 

 

1.23 GB 

 

-0.1954 

 

0.9116 

 

II 

 

11.00 

 

1.02GB 

 

-0.3402 

 

0.8873 

 

III 

 

04.00 

 

0.65MB 

 

-0.5791 

 

0.6609 

 

From [9]’s vast Ethernet data collection and observation of Self-Similarity for 

about 4 years of duration with over 100 million packets, the highest H-Parameter value 

observed is only 0.9 and average H-Parameter is only around 0.85. But with only limited 

duration data in LTE network, the average H-parameter is around 0.9. This suggests that 

LTE data traffic shows high degree of Self-Similarity when compared to that of Ethernet 

data traffic. 

H-Parameter variation for different m-level aggregations is also observed with the 

comparison of all the data sets. H-parameter variation of all the data sets falls only 
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between 0.5 and 1 as described. The variation trending of each individual data set is 

almost the same over various aggregation levels.  
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Figure 2-21 Comparison of H values for different Data Sets 

 

2.11 Conclusions 

1. Self-Similarity of real world LTE data traffic is demonstrated using the collected 

data set’s V-T plots.  

2. Hurst parameter values are calculated for each data sets collected.  

3. Variation of H-Parameter remains almost the same with different aggregation 

levels which depicts the meaning of Self-Similarity. 
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4. As the traffic load varies, H-Parameter and the slope of V-T plot vary. This 

suggests that high traffic has more degree of Self-Similarity. 

5. It is observed that H-Parameter is in direct relation to the slope of Variance-Time 

Plot. It increases as the V-T curve slope increases and vice versa. 

6. LTE data traffic shows higher degree of Self-Similarity when compared to the 

Ethernet traffic based on the previous work. 
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Chapter 3 

LTE USER TRAFFIC MODELING 

3.1 Introduction 

The growth of telecommunication system is more than ever stimulating the need 

for mathematical modeling and evaluation techniques to predict the performance of these 

systems. These techniques have become an indispensable tool for assessment of the 

performance of a system, evaluation of design alternatives, resource dimensioning and 

system configuration [13].  

Poisson distribution is a good representative for most of the telecommunication 

events. The arrival process of calls to a call center is usually associated with a Poisson 

process. The Poisson Process provides simple solution to many different problems related 

to call center operations management. However, the latest telecommunication technology 

i.e., 4G framework is establishing new levels of user experience and multi-service 

capacity by integrating all the previous mobile communication technologies.  This 

multiple services accounts for the arrival of user requesting for specific service. In this 

scenario, a user arrival for service is not just equivalent to be for a traditional voice call 

but also can be for data browsing session or a video call etc. 

   In the present scenario of multiple services, it is necessary to model the arrival of 

users requesting for a service. This piece of work is focused on modeling the user arrival 

to an eNodeB requesting for any kind of data services. Since this work is based on the 

data collected on live eNodeBs in the network, most of the user arrival is expected to be 

requesting for a data session and also some voice sessions like the voice over LTE.  
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The main assumption of the Poisson arrival model are the number of incoming 

calls per interval follows the Poisson distribution, and that the numbers of arrivals in the 

disjoint intervals are independent. We are interested in studying the arrivals to the 

eNodeB requesting for any kind of service either directly or indirectly. This work is 

based on a real world live network similar to [19] which is based on real traffic.  

3.2 Arrival Process 

A Poisson process is a simple and widely used stochastic process for modeling the 

times at which arrivals enter a system. It is in many ways the continuous-time version of 

the Bernoulli process. Poisson process could also be characterized by a sequence of 

geometrically distributed inter-arrival times.  

For the Poisson process, arrivals may occur at arbitrary positive times, and the 

probability of an arrival at any particular instant is 0. This means that there is no very 

clean way of describing a Poisson process in terms of the probability of an arrival at any 

given instant. It is more convenient to define a Poisson process in terms of the sequence 

of inter-arrivals times, X1,X2,…., which are defined to be independent and identically 

distributed (IID).  

An arrival process is a sequence of increasing random variables 0 < S1 < S2 < …, 

where Si < Si+1 means that Si+1-Si is a positive random variable X such that FX(0) = 0. The 

random variables S1, S2, are called arrival epochs and represent the successive times at 

which some random repeating phenomenon occurs. Usually this process starts at time 0 

and that multiple arrivals can’t occur simultaneously (the phenomenon of bulk arrivals 
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can be handled by the simple extension of associating a positive integer random variable 

to each arrival) [14].  

 

Figure 3-1 Poisson Arrival representation 

Any arrival process can also be specified by either of two alternative stochastic processes. 

The first alternative is the sequence of inter arrival times { X1, X2,…}. The Second is to 

specify an arrival process in the counting process N (t). In inter arrival times, X1 = S1 and 

Xt = St – St-1 for i>1. Similarly, given the Xt, the arrival epochs St are specified as  

1

N

n t

t

S X
=

=∑          (3.1) 

For the second alternative of counting process N(t), where for each t>0, the random 

variable N(t) is the number of arrivals up to and including time t.  

 

 The counting process {N(t); t>0} represents an uncountable infinite family set of 

random variables where N(t), for each t>0, is the number of arrivals in the interval (0,t]. 

N(0) is always defined to be 0 with probability 1, which means, as before, that we 

considering only arrivals at strictly positive times.  
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The counting process {N(t),t ≥ 0} for any arrival process has the properties that 

( ) ( )N N tτ ≥  for all 0tτ ≥ >  (i.e., ( ) ( )N N tτ −  is a non-negative random variable. For 

any given integer 1n ≥  and time 0t ≥ , the arrival epoch, Sn, and the counting random 

variable, N(t), are related by  

{ } { ( ) }nS t N t n≤ = ≥         (3.2) 

{ }nS t≤  is the event that the nth arrival occurs by tie t. This event implies that N(t), the 

number of arrivals by the time t, must be at least n; i.e., it implies the event { ( ) }N t n≥ . 

Similarly { ( ) }N t n≥  implies{ }nS t≤ , yielding the equality in above equation.  

 So, an arrival process can be specified by the joint distribution of the arrival 

epochs, the inter-arrivals, or the counting random variables. In principle, specifying any 

one of these specifies the other also [14]. 

Arrival Rate: 

In modeling arrival process in terms of exponential inter-arrivals, Average Inter-arrival 

time is represented as  

1

N

t

t

X

T
N

==
∑

        (3.3) 

So, the expected arrival rate = 
1ˆ
T

λ =  

For a Poisson arrival process, if we plot (t, N(t)) it will follow y=m*x line with slope as 

λ . From page 167 of [14], for a Poisson process of rate λ  and for any t>0, the PMF for 

N(t) (i.e., the number of arrivals in (0,t] is given by the Poisson PMF 
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( )

( ) exp( )
( )

!

n

N t

t t
p n

n

λ λ−=         (3.4) 

Properties: 

To describe calls occurring in communication systems, the so-called Poisson stream is 

most frequently used, which has the following properties.  

1. N(0)=0; Initial event as time zero is always zero.  

2. Stationary – A stream is stationary if its intensity does not depend on 

time: ( )t constλ λ= = ; this means that the average number of arrival calls within a 

time interval remains unchanged.  

3. Memorylessness – A stream has a memoryless property if the number of calls 

within any chosen time interval t1 does not have any effect upon the number of 

calls within any other, randomly chosen, interval t2; this means that successively 

arriving calls are not mutually interdependent.  

4. Orderliness (singularity) – A stream that is singular if within an infinitely small 

time interval t∆ , one call at most can arrive; the probability of the arrival of more 

than one call is shown below.  

A Poisson call stream that is characterized by the above properties is often called the 

simple stream.  

3.3 Contribution of this Work 

Traffic modeling is very important to better understand and utilize network resources. 

In this present generation of telecommunication system with multiple types of traffic, it is 

necessary to model the traffic for better understanding of the network. This work 
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highlights the importance of evaluation in LTE network, which has high data traffic when 

compared to traditional traffics.  

A Poisson Process model provides simple solutions to many different problems 

related to call center operation management. But there is no considerable work done in 

LTE network based on real world data. This work adds quality in this angle. 

1. User arrival in LTE network requesting for a service is modeled to follow Poisson 

Process.  

2. User’s service request Inter-Arrivals is evaluated to follow exponential 

distribution 

3. Poisson arrival process is modeled for these inter-arrivals. 

4. Mean arrival rate parameters are measured for the collected real world data sets. 

5. Goodness of fit for all the results is observed with error deviation. 

3.4 Importance of this Study 

Knowledge on the traffic arrival helps in further optimizing the network with efficient 

utilization of resources. 

1. Design, Control and analysis of high-speed, cell-based netowrks are made further 

efficient.  

2. With the knowledge of arrival rate parametrs, traffic prediction algorithms at 

network level can be made more robust. 
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3. This work models the traffic in LTE network which is fast growing and expected 

to be ubiquitous.  

4. Since this work is based on live network’s data, it can serve as a base reference 

for future traffic analysis on LTE networks. 

3.5 Data Collection & Constraints 

Data sets used for this work are collected from a US based cellular operator’s live 

LTE network. The data is captured at eNodeB level which contributes to S1/X2 interfaces 

in LTE system architecture. There is no separation of data sets based on cell sectors. The 

eNodeBs from which the data sets are collected typically has 3 cell sectors which are of 

least relevance to this piece of work. All the data collection is done remotely using an IP 

traffic collection tool. The captured data include both the user and control traffic logs. In 

particular, data set’s capture include all the message header details, type of message, 

source and destination details of the message, user service request details and a 

timestamp associated with the message. The granularity of the data sets is in the 

resolution of 1 millisecond.  Overall, the data consists of various data traffic log captures 

with 30 minutes duration and 1millisecond granularity of analysis collected on multiple 

eNodeBs at various instances of time with normal load traffic conditions on weekdays.  

Constraints: 

As with any measurement-based study, these datasets has certain limitations. 
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1. Since all the data is collected remotely, only a limited duration (30 min) of data is 

collected based on the traffic intensity and the buffer size of the traffic collection 

tool.  

2. No traffic data is collected from other technologies like UMTS and 2G for 

comparison purpose because of the lack of robust tools to perform similar data 

collection with such granularity. 

3.6 User Service Request Consideration 

 As this work is on modelling the user arrival requesting for a service to network, 

it is important to clarify the ‘User Arrival’ consideration. A costumer/user requests for 

service in two ways as, Mobile Origination of service and Mobile termination of service.  

(i) Mobile origination refers to the service requests made by the user like, User trying to 

make a phone call, User starting a browsing session etc. (ii) Mobile termination refers to 

the service requests that should be provided to the user. Like, User getting an incoming 

call, paging request, scheduled downlink data etc. (iii) Apart from these two arrivals, one 

more scenario of X2 handover needs is to be considered as the new user coming to the 

target eNodeB all of a sudden with request for the support of an on-going service from 

the old eNodeB. These 3 cases should include all the normal service requests from the 

serving users. In collected data logs, we can seperate these three scenarios in ‘service 

request’ and ‘extended service request’ messages as mo-data, mt-access & path switch 

requests.  



 

40 

 

3.7 Simulation Results 

3.7.1 Data Set-I 

Data Set – I is a live network’s data traffic collected from one of the site in 

Kansas City. The data set is captured at around 1PM on a normal weekday with normal 

load following 24 hour usual trend. The duration of data set is around 30 minutes and 

includes all the header details of user plane and control plane messages with details of 

user arrival requests. The user plane traffic includes around 1.08GB data with an average 

data rate of 21.9Mbps for 30 minutes duration. About 3436 user requests are observed for 

this 30 minutes duration of log collection.  

3.7.1.1 Inter- Arrival Exponential Distribution 
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Figure 3-2 Inter Arrival Time PDF of User Arrivals 
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The data set provides the details of time difference between each user arrival 

which is nothing but the Inter Arrival Time. The probability distribution of Inter-Arrival 

times is plotted with Inter-Arrival time on X-axis and Probability function on Y-axis and 

observed to follow exponential distribution as shown.This exponential distribution is 

observed to have lambda = 0.33 as Arrival Rate. 

Goodness of Fit: 

 The Inter-Arrival distribution is fitted with Exponential curve with an exponential 

power of 0.33. The deviation of difference between the predicted and observed values is 

measured by (i) Sum of Squares due to Errors (SSE), (ii) R-Square, (iii) Adjusted R-

Square (iv) Root Mean Square Error (RMSE). 
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Figure 3-3 Goodness of fit for Exponential Distribution 
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Table 3-1 Goodness of fit for Data Set – I Exponential curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = a*exp(b*x) a = 0.3345 (0.3095, 0.3595) 

b = -0.3307 (-0.3717, -0.2898) 

 

SSE: 0.003032 

R-square: 0.981 

Adjusted R-square: 0.9798 

RMSE: 0.01377 

 

Q-Q Plot: 

 Q-Q Plot can help in comparing the theoretical and practical distributions. The 

goodness of fit can be observed in graphical form from these plots. Q-Q Plot is 

implemented for the theoretical exponential and above plotted Inter-Arrival distribution 

and it is observed to have fair goodness of fit in concurrence with the numerical goodness 

of fit. Average Inter-Arrival (T) is observed to be 3.02 Sec/User.  
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Figure 3-4 QQ-Plot for Exponential distribution Fit 
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3.7.1.2 Poisson Arrival 

An arrival process can also be specified in counting process with the number of 

arrivals in the specified time duration. As the counting process can include infinite family 

set of random user arrivals, the count should always be an increasing function as the time 

progresses. For a Poisson Arrival process, if the arrivals are plotted against time, it will 

follow a straight line. The data set’s Poisson modeling is observed to follow the same as 

shown below. The user arrival counting process is modeled as poisson with arrival rate 

( λ ) of 0.3604. 
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Figure 3-5 Poisson Arrival of Users is plotted across time 

Goodness of Fit: 

 The plotted Poisson counting process is fitted to a Y=mX+C straight line with 

good slope fit of 0.3604 which is the Arrival Rate.  
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Figure 3-6 Goodness of Curve fit for Poisson Arrival Process 

Table 3-2 Goodness of fit for Data Set – I Poisson Arrival 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 =      0.3604 (0.3593, 0.3615) 

p2 =      -9.166 (-10.33, -8.005) 

 

SSE: 3.444e+04 

R-square: 0.9985 

Adjusted R-square: 0.9985 

RMSE: 7.319 

 

 The deviation of difference between the predicted and observed values is 

measured by (i) Sum of Squares due to Errors (SSE), (ii) R-Square, (iii) Adjusted R-

Square (iv) Root Mean Square Error (RMSE). 

QQ-Plot: 

 Q-Q Plot is implemented for the theoretical straight line and above plotted Inter-

Arrival distribution and it is observed to have fair goodness of fit in concurrence with the 

numerical goodness of fit. Average Inter-Arrival (T) is observed to be 3.02 Sec/User.  
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Figure 3-7 QQ Plot for Poisson Arrival Fit 

3.7.1.3 CDF of Instantaneous Active Incoming Users 
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Figure 3-8 CDF of instentanous Active Users 
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The CDF is discontinuous at the integers of X-axis and flat everywhere else 

because a variable that is Poisson distributed only takes on integer values. A Poisson 

CDF fit is also shown in the above CDF plot for comparison [20].  

3.7.1.4 Logarithm of Exponential Inter Arrival 

The Log plot of Exponential Inter-Arrival is expected to be a Straight Line. This 

servs as a verification of the exponential Inter-Arrival apart from the numerical goodness 

of fit and pictorial Q-Q Plot fit. This is observed to a close straight line but not a perfect 

one.  
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Figure 3-9 Log of Exponential Poisson Inter Arrival distribution 

Goodness of Fit: 

The Logarithm of Exponential Inter Arrival Curve is fitted with Y-mX+C straight line.  
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Figure 3-10 Curve Fitting for Log- Poisson Inter Arrival Distribution 

 

The plotted Logarithm of Exponential distribution curve is fitted with a Y=mX+C 

curve with best fit slope of -0.1258 and y-intercept of -0.7096.  

Table 3-3 Goodness of fit for Data Set – I Log of Exponential 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.1258 (-0.1551, -0.0965) 

p2 = -0.7096 (-1.009, -0.4097) 

 

 

  SSE: 1.542 

  R-square: 0.8481 

  Adjusted R-square: 0.838 

  RMSE: 0.3207 

 

Q-Q Plot: 

 Q-Q Plot is implemented for the theoretical straight line and plotted logarithm of 

Exponential Inter-Arrival distribution and it is observed to have fair goodness of fit in 

concurrence with the numerical goodness of fit.  
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Figure 3-11 QQ-Plot for Log of Poisson Inter Arrival Distribution 

3.7.2 Data set – II  

Data Set – II is a live network’s data traffic collected from one of the site in 

Kansas City. The data set is captured at around 4PM on a normal weekday with normal 

load following 24 hour usual trend. The duration of data set is around 30 minutes and 

includes all the header details of user plane and control plane messages with details of 

user arrival requests. The user plane traffic includes around 1GB data with an average 

data rate of 4Mbps for 30 minutes duration. About 1285 user requests are observed for 

this 30 minutes duration of log collection.  



 

49 

 

3.7.2.1 Inter- Arrival Exponential Distribution  
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Figure 3-12 Inter Arrival Time PDF of User Arrivals 

The data set provides the details of time difference between each user arrival 

which is nothing but the Inter Arrival Time. The probability distribution of Inter-Arrival 

times is plotted on Y-axis with Inter-Arrival time on X-axis, we observed it to follow 

exponential distribution as shown with lambda = 0.6389 as Arrival Rate  

 

Goodness of Fit: 

The Inter-Arrival distribution is fitted with Exponential curve with an exponential 

power of 0.6389. The deviation of difference between the predicted and observed values 

is measured by (i) Sum of Squares due to Errors (SSE), (ii) R-Square, (iii) Adjusted R-

Square (iv) Root Mean Square Error (RMSE). 
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Figure 3-13 Goodness of fit for Exponential Distribution 

Table 3-4 Goodness of fit for Data Set – II Exponential curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = a*exp(b*x) a =      0.4721 (0.4655, 0.4787) 

b =     -0.6389 (-0.6559, -0.6219) 

 

 

SSE: 8.384e-05 

R-square: 0.9996 

Adjusted R-square: 0.9996 

RMSE: 0.003052 

 

QQ-Plot: 

 Q-Q Plot can help in comparing the theoretical and practical distributions. The 

goodness of fit can be observed in graphical form from these plots. Q-Q Plot is 

implemented for the theoretical exponential and above plotted Inter-Arrival distribution 

and it is observed to have fair goodness of fit in concurrence with the numerical goodness 

of fit. Average Inter-Arrival (T) is observed to be 1.56 Sec/User.  
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Figure 3-14 QQ-Plot for Exponential distribution Fit 

3.7.2.2 Poisson Arrival 

An arrival process can also be specified in counting process with the number of 

arrivals in the specified time duration. As the counting process can include infinite family 

set of random user arrivals, the count should always be an increasing function as the time 

progresses. For a Poisson Arrival process, if the arrivals are plotted against time, it will 

follow a straight line. The data set’s Poisson modeling is observed to follow the same as 

shown below. The user arrival counting process is modeled as poisson with arrival rate 

( λ ) of 0.6389. 
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Figure 3-15 Poisson Arrival Process Modelling 

Goodness of Fit: 
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Figure 3-16 Goodness of curve fit for Poisson Arrivals 

 The plotted Poisson counting process is fitted to a Y=mX+C straight line with 

best fit slope of 0.6468 which is the Arrival Rate.  
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Table 3-5 Goodness of fit for Data Set – II Poisson Arrival 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = 0.6468 (0.6454, 0.6481) 

p2 = -22.68 (-24.09, -21.27) 

 

SSE: 1.611e+05 

R-square: 0.9987 

Adjusted R-square: 0.9987 

RMSE: 11.83 

 

 The deviation of difference between the predicted and observed values is 

measured by (i) Sum of Squares due to Errors (SSE), (ii) R-Square, (iii) Adjusted R-

Square (iv) Root Mean Square Error (RMSE). 

QQ-Plot: 
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Figure 3-17 QQ Plot for Poisson Arrival Fit 
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 Q-Q Plot is implemented for the theoretical straight line and above plotted Inter-

Arrival distribution and it is observed to have fair goodness of fit in concurrence with the 

numerical goodness of fit. Average Inter-Arrival (T) is observed to be 1.54 Sec/User.  

3.7.2.3 CDF of Instantaneous Active Incoming Users 

 The CDF is discontinuous at the integers of X-axis and flat everywhere else 

because a variable that is Poisson distributed only takes on integer values. A Poisson 

CDF fit is also shown in the above CDF plot for comparison [20]. The below figure is the 

empirical CDF of number of users arrived in per second. In the data sets, maximum 

number of incoming new users requesting for a service is observed to be 4 in 1 second 

time duration.  
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Figure 3-18 CDF of instentanous Active Users 
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3.7.2.4 Logarithm Plot for Exponential Inter Arrival 

The Log plot of Exponential Inter-Arrival is expected to be a Straight Line. This 

servs as a verification of the exponential Inter-Arrival apart from the numerical goodness 

of fit and pictorial Q-Q Plot fit. This is observed to a close straight line but not a perfect 

one. The deviation from the stright line after 8seconds on x-axis can be reasoned by the 

type of data plotted and also by the truncation error.  
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Figure 3-19 Plot of Logarithm of Exponential Inter Arrival 

Goodness of Fit: 

 The plotted Logarithm of Exponential distribution curve is fitted with a Y=mX+C 

curve with best fit slope of -0.2798 and y-intercept of -0.3394. The deviation of 

difference between the predicted and observed values is measured by (i) Sum of Squares 
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due to Errors (SSE), (ii) R-Square, (iii) Adjusted R-Square (iv) Root Mean Square Error 

(RMSE).  
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Figure 3-20 Goodness of Curve Fit for Log of Exponential Inter Arrival 

Table 3-6 Goodness of fit for Data Set – II Log of Exponential 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.2798 (-0.3272, -0.2324) 

p2 = -0.3394 (-0.6272, -0.0515) 

 

SSE: 0.4774 

R-square: 0.952 

Adjusted R-square: 0.9466 

RMSE: 0.2303 

 

 The plotted Logarithm of Exponential distribution curve is fitted with a Y=mX+C 

curve with best fit slope of -0.2798 and y-intercept of -0.3394. This fitness fit to 

Logarithm of Exponential curve to straight line concludes that the Inter-Arrival 

distribution of a Poisson Arrival to follow Exponential distribution which is expected for 

a Poisson Arrival Process. 
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QQ-Plot:  
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Figure 3-21 QQ-Plot for Log-Exponential Inter Arrivals 

3.8 Conclusion 

• User Arrival to an eNodeB requesting for a service is modeled to follow Poisson. 

• Inter-Arrival time of Poisson Process is to follow Exponential distribution. 

• Curve fitting is performed and Poisson Arrival rate is measured for each data set.  

• Rate of arrival for Poisson process is verified with Exponential Inter-Arrivals. 

• QQ-plots for real world data and simulated data are plotted. 

• CDF of Instantaneous User Arrival is plotted and compared to that of theoretical 

values.   
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Chapter 4 

LTE-A SELF-SIMILARITY & TRAFFIC ANALYSIS 

4.1 Introduction 

In order to meet the demands of mobile communication services with increasing 

number of users, mobile communication has developed rapidly. The next generation 

mobile communication systems, entitled fourth-generation mobile communication 

systems are currently in use. It is observed that, by 2015 the later release of LTE which is 

termed as LTE-Advanced will be completely available to customers. Both LTE & LTE-

Advanced are of same technologies. In specific, LTE-Advanced primarily supports the 

LTE release 10 and ITU/IMT-Advanced. In 3GPP LTE-Advanced, there are promising 

technologies, like enhanced MIMO, CoMP, eICIC, CA that can provide a higher spectral 

efficiency and reliable transmission [16]. Carrier Aggregation (CA) has been considered 

to be the most important technology among other technologies, where more than one 

component carriers are aggregated to support a higher data rate. The CA technology 

increases the affinity of the operators since it is difficult to ensure a single continuous 

wide frequency band.  

4.2 Carrier Aggregation 

Carrier Aggregation is one of the key features for LTE-Advanced in Rel-10 for 

meeting the peak data rate requirement of IMS-Advanced, 1Gbps and 500Mbps for the 

downlink and uplink, respectively. It enables operators to create large ‘Virtual’ carrier 

bandwidths for LTE services by combining separate spectrum allocations. As of 
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December 2014, CA is the primary feature deployed by operators with commercial LTE-

Advanced services. The need for CA in LTE-Advanced arises from the requirement to 

support bandwidths larger than those currently supported in LTE (up to 20 MHz) while at 

the same time ensuring backward compatibility with LTE [18]. CA is supported in uplink 

& downlink in both Time-division-duplex (TDD) LTE and Frequency-division-duplex 

(FDD) LTE systems. This work is mainly focused on FDD LTE implementation of CA. 

In non-CA Scenario, A UE is served by an eNodeB with single Down-link Carrier 

and Single Uplink Carrier. It has one physical Cell Area. The down-link usually serves 

GBR and non-GBR data.  

 

Figure 4-1 General non-CA scenario 

In CA Scenario, the Down-link is supported by one more additional Down-link 

Carrier to send all the Non-GBR Data. The additional Downlink carrier is dynamic and 

can be activated/de-activated based on the requirement as represented below [22]. 
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Figure 4-2 Typical CA Scenario 

Each aggregated carrier is referred to as component carrier, CC. Each component 

carrier corresponds to a serving cell. The different serving cells may have different 

coverage. Primary Cell corresponds to Primary Component Carrier and Secondary Cell 

corresponds to Secondary Component Carrier.  

4.3 Carrier Aggregation Key Features 

• The component carrier can have a bandwidth that supports aggregation of 1.4, 3, 5, 

10, 15, 20 MHz and a maximum of five component carriers can be aggregated and 

hence the maximum aggregated bandwidth can be 100MHz.  

• The number of component carriers is always equal to or lower than the number of 

downlink component carriers. The individual component carriers can also be of 

different bandwidths.  

• Primary cell supports both Uplink and Downlink 
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• Secondary Cell always supports Downlink (while CA is activated) but may or may 

not supported in Uplink 

• Primary Cell is always activated whereas Secondary Cell can be activated and de-

activated based on the requirement.  

• In Primary Cell, control and shared physical channels (PUCCH and PUSCH) are 

available in both uplink and downlink 

• In Secondary Cell, Physical downlink control channel is optional in downlink and 

Physical shared channel is mandatory in both uplink and downlink [22].  

 

Figure 4-3 Physical channel allocations in Primary and Secondary Cells 

• UE doesn’t acquire any system information from secondary cell. Only non-GBR data 

is send/received using Secondary Component Carriers.  

• CA supports cross component carrier scheduling, where the control channel at one 

carrier can be used to allocate resources at another carrier for user data transmission. 
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• Carrier Aggregation can be implemented in both continuous and non-continuous 

bands based on the spectrum availability [22].  

o For Contiguous component carriers aggregation,  

Intra-Band Contiguous Type: The aggregated carriers are contiguous and within 

the same operating frequency bands.  

o For Non-Contiguous component carriers aggregation,  

Intra-band Non-Contiguous Type: The aggregation carriers are within the same 

operating frequency band but are non-contiguous. 

Inter-band Non-Contiguous Type: The aggregation carriers are in different 

operating frequency bands and are non-contiguous. 

 

Figure 4-4 Different CA configurations 

• CA is designed to be backward compatible, meaning that legacy Rel-8 and Rel-9 

users should still be able to coexist with LTE-Advanced on at least part of the total 

bandwidth. Thus, each individual spectrum chunk, denoted component carrier (CC), 

inherits the core physical layer design and numerology from LTE Rel-8. 
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• CA naming convention can be understood as shown below as per [22]. 

 

Figure 4-5 CA naming Convention 

4.4 3GPP Specifications for CA 

 

Figure 4-6 3GPP releases for CA 

3GPP Rel-10 is the first release to support CA. It defines a limited variety of CA 

configurations, including: contiguous intra-band CA for bands 1 (FDD) and band 40 
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(TDD) named CA_1C and CA_40C respectively and an inter-band CA between bands 1 

and 5, named CA_1A-5A.  

3GPP Rel-11 offers many more CA configurations, including non-contiguous 

intra-band CA and Band 29 for inter-band CA, which is also referred as supplemental 

DL. Band 29 is a special FDD band in Rel-11 that has only a DL component and no UL 

component. The intention is that this band is available for bandwidth expansion only and 

holds the functionality of DL Secondary cell (SCell). This serving cell is referred to as 

the primary cell (PCell). In the downlink, the carrier corresponding to the PCell is the 

Downlink Primary Component Carrier (DL-PCC), while in the uplink it is the Uplink 

Primary Component Carrier (UL-PCC). Other serving cells are referred to as secondary 

cells (SCells) and are used for bandwidth expansion for the particular UE. It is to be 

noted that there are additional differences in the functionality.  

Release 12 will include CA of FDD and TDD frequency bands, as well as support for 

aggregating two UL CCs and three DL CCs. Note that even though certain CA 

combinations are specified in later releases, these are release independent and can be 

supported from previous releases’ equipment due to backward-compatible signaling. 

3GPP Rel-12 offers aggregation of three DL CCs, support for CA configurations for UL 

inter-band and intra-band non-contiguous CA and band 32 support (1.5GHz L Band), 

which has a DL component only and further enhanced capabilities that are still under 

study.  
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Carrier Aggregation has much more to offer and it continues to be a significant area 

of work for 3GPP, equipment manufacturers and network operators. Over the coming 

years there will be a number of important developments, including: 

• Increasing the number of component carriers and the total bandwidth supported in 

both the downlink and the uplink. 

• Supporting a greater number of frequency bands and combinations of frequency 

bands. 

• Using Carrier Aggregation between cells to enhance the support of small cells and 

Heterogeneous Networks (HetNets). 

• Enabling flexible aggregation of FDD and TDD LTE carriers. 

• Supporting LTE Carrier Aggregation between licensed and unlicensed spectrum. 

4.5 Carrier Aggregation Performance & Benefits 

CA is an effective tool to combine together fragmented operator spectrum and deliver 

higher throughputs with a bigger spectrum pipe. However, CA has several additional 

benefits:  

• Higher speeds: Aggregation of carriers increases spectrum resources, which provides 

higher speeds across the cell coverage.  

• Capacity gain: Aggregating multiple carriers increases spectrum but also includes 

trunking gains from dynamically scheduling traffic across the entire spectrum. This in 

turn increases cell capacity and network efficiency and improves the experience for 
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all users. A user previously facing congestion on one carrier can be seamlessly 

scheduled on a carrier with more capacity and maintain a consistent experience.  

• Optimum utilization of an operator’s spectrum resources: The majority of operators 

have fragmented spectrum covering different bands and bandwidths, Carrier 

Aggregation helps combine these into more valuable spectrum resource.  

• Aggregation of spectrum resources in HetNet or LTE-Unlicensed scenarios generates 

new spectrum sources for operators: Licensed spectrum is in perpetually short 

supply, and even when it is available, it is sometimes an expensive investment. CA 

enables operators to maximize the return on those investments, as well as use 

unlicensed spectrum to supplement their portfolios.  

• The CA feature increases the bandwidth for a CA-capable UE by aggregating several 

LTE carriers, thereby increasing the UE’s bit rate. Each of the aggregated carriers is 

referred to as a CC. In order to keep backward compatibility, the aggregation is based 

on Rel-8/Rel-9 carrier structure and so legacy UEs should still be able to coexist with 

LTE-Advanced on at least part of the total bandwidth. Therefore, the component 

carrier can have a bandwidth of 1.4, 3, 5, 10, 15 or 20 MHz  

• Even though LTE Rel-8 can support bandwidths up to 20 MHz, most American 

wireless operators do not have that much contiguous spectrum. In spectrum below 2 

GHz, most operators have 5-15 MHz of contiguous spectrum in a single frequency 

band. Also, many operators own the rights to use spectrum in many different bands. 

So from a practical perspective, CA offers operators a path to combine spectrum 
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assets within the bands they operate in and to combine assets across multiple 

frequency bands.  

4.6 Impact of CA on Protocol layer level  

Implementation of CA led to some changes for LTE Protocol Architecture at layer levels.  

 

Figure 4-7 LTE Architecture with changes due to CA 

 

• In Physical Layer, number of Transport Blocks is increased corresponding to the 

number of simultaneous Down-link Component Carriers. Separate ACK/NACK is 

implemented for each of those Transport Blocks. 
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• In Mac Layer, Scheduling of Multiple Component Carriers and Hybrid ARQ per 

Component Carriers are implemented. 

• There is no change in RLC and PDCP layers 

• At RRC Layer, Addition/Removal and Reconfiguration of Secondary Cells is 

taken care.  

4.7 Data Collection & Constraints 

 Data used for this piece of work is collected from a US based cellular operator’s 

live LTE-A network in Kansas City, Missouri. The data is captured at eNodeB level 

which contributes to S1/X2 interfaces in LTE system architecture. There is no separation 

of data sets based on cell sectors. The eNodeBs from which the data sets are collected 

typically has 3 cell sectors which are of least relevance to this piece of work. All the 

eNodeBs where data is collected are implemented with band 2 and 4 carrier aggregation 

with Band 2 (PCS – 1900MHz) serving as Primary Component Carrier and Band 4 (AWS 

– 2100MHz) serving as Secondary Component Carrier. Band 2 has 10MHz bandwidth 

and band 4 with 5MHz bandwidth.  

 Data Traffic logs collected for Self-Similarity analysis are similar to that of the 

data collection described in chapter-2 for LTE data traffic. User and Control plane Data 

traffic is collected from eNodeB level with LTE-Advanced Carrier Aggregation feature is 

turned ON with 2 band aggregation. All data collection is about 10 minute’s duration 

with minimum of 60000 entries in .pcap format. The 3 data sets are collected at 3 

different times of a day similar to that of LTE data collection for reference. 
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Data sets collected for the analysis of LTE-Advanced feature in live network are 

collected form 4 different eNodeB’s for a period of 1 week (5 weekdays) with hour 

granularity. Data pertaining to Primary and Secondary Cells can be distinguished from 

the data sets. Secondary Component Carrier is considered to carry only non-GBR data 

and Primary component carrier to carry both GBR and non-GBR data.  

Constraints: 

• With the limited implementation of carrier aggregation in the live network, Only 

4 enodeB data is considered. With the collected data sets, only hour granularity is 

observed.  

• Since the penetration and availability of CA is very limited, all the collected data 

represented less frequent numbers depicting the reality.  

4.8 Simulation Results 

4.8.1 LTE-Advanced Self-Similarity Results 

4.8.1.1 V-T Plot for Data Set - I 

This data set represents the LTE-Advanced data traffic collected at around 6PM 

of a normal weekday. A traffic load of size 1.32GB is captured for 10minutes duration 

with average data rates of 15Mbps with about 1987 active incoming users. Each packet 

has an average size of about 800~850 Bytes. A sample traffic of about 20s duration is 

shown in below figure with 20ms granularity. Collected data’s sample of 20 seconds is 

plotted below. The Y-axis represents the traffic size in Bytes per time resolution. 
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Figure 4-8 Sample data set – I plot for 20ms resolution 
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Variance plot for LTE-A Data

 Line with Slope "-1"

 

Figure 4-9 V-T Plot for data set -I 
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From the data set –I, V-T Plot is plotted to evaluate the Self-Similarity property. 

V-T Plot concludes that this particular data traffic exhibits Self-Similarity property as the 

slope of V-T plot is observed to be greater than -1. The Degree of Self-Similarity (H – 

Parameter) is obtained to be 0.9361. The goodness of fit for the slope of this V-T curve is 

observed to be -0.2114.  

Goodness of Fit: 

The plotted V-T curve is fitted with a Y=mX+C curve with best fit slope of -0.2114 and 

y-intercept of 2.445. The deviation of difference between the predicted and observed 

values is measured by (i) Sum of Squares due to Errors (SSE), (ii) R-Square, (iii) 

Adjusted R-Square (iv) Root Mean Square Error (RMSE). The above V-T plot is fitted 

with a straight line with slope -0.2114. 
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Figure 4-10 Curve Fitting for V-T Plot 
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Table 4-1 Goodness of fit for Data Set – I V-T curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.2114 (-0.2142, -0.2086) 

p2 = 2.445 (2.438, 2.453) 

 

SSE: 0.3408 

R-square: 0.9574 

Adjusted R-square: 0.9573 

RMSE: 0.0185 

 

 The variation of H-parameter for values m-valued aggregation levels can be 

observed in the above figure. The variation in H-parameter varies constantly over all 

aggregation levels holding the fact that Self-Similarity is all about having the same 

characteristics at different aggregated levels.  
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Figure 4-11 Variation of H-Parameter for different m values 
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4.8.1.2 V-T Plot for Data Set – II 

This data set represents the LTE-Advanced data traffic collected at around 11AM 

of a normal weekday. A traffic load of size 1.07GB is captured for 10minutes duration 

with average data rates of 13Mbps with about 1894 active incoming users. Each packet 

has an average size of about 800~850 Bytes. A sample traffic of about 20s duration is 

shown in below figure with 20ms granularity. Collected data’s sample of 20 seconds is 

plotted below. The Y-axis represents the traffic size in Bytes per time resolution. 

Collected data’s sample of 20 seconds is plotted as below. 
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Figure 4-12 Sample LTE-Advanced data traffic for data set – II 
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From the data set –I, V-T Plot is plotted as below to evaluate the Self-Similarity property. 
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Variance plot for LTE-A Data

 Line with Slope "-1"

 

Figure 4-13 V-T Plot for Data Set -II 

For the above shown data set-II, V-T graph is plotted to evaluate Self-Similarity 

property. V-T Plot is observed to have a slope greater than -1. So this particular data 

traffic is concluded to exhibit Self-Similarity property. The Degree of Self-Similarity (H 

– Parameter) is obtained to be 0.9095. The goodness of fit for the slope of this V-T curve 

is observed to be -0.2407.  

Goodness of Fit: 

The plotted V-T curve is fitted with a Y=mX+C curve with best fit slope of -

0.2407 and y-intercept of 2.762. The deviation of difference between the predicted and 

observed values is measured by (i) Sum of Squares due to Errors (SSE), (ii) R-Square, 
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(iii) Adjusted R-Square (iv) Root Mean Square Error (RMSE). The above V-T plot is 

fitted with a straight line with slope -0.2407. 
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Figure 4-14 Goodness of fit for V-T curve with slope -0.2407 

Table 4-2 Goodness of fit for Data Set – II V-T curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.2407 (-0.2441, -0.2373) 

p2 = 2.762 (2.753, 2.771) 

 

SSE: 0.5068 

R-square: 0.9514 

Adjusted R-square: 0.9514 

RMSE: 0.02256 

 

 The variation of H-parameter for values m-valued aggregation levels can be 

observed in the above figure. The variation in H-parameter varies constantly over all 

aggregation levels holding the fact that Self-Similarity is all about having the same 

characteristics at different aggregated levels.  
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Figure 4-15 Variation of H-Parameter for different m values 

4.8.1.3 V-T Plot for Data Set - III 

This data set represents the LTE-Advanced data traffic collected at around 4AM 

of a normal weekday. A traffic load of size 0.41GB is captured for 10minutes duration 

with average data rates of 15Kbps with about 30 active incoming users. Each packet has 

an average size of about 800~850 Bytes. A sample traffic of about 20s duration is shown 

in below figure with 20ms granularity. Collected data’s sample of 20 seconds is plotted 

below. Collected data’s sample of 20 seconds is plotted as below. 
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Figure 4-16 Sample data plot for Data Set – III for 20 seconds 
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Variance plot for LTE-A Data

 Line with Slope "-1"

  

Figure 4-17 V-T Plot for Data Set - III 
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For this shown data set, V-T graph is plotted to evaluate Self-Similarity property. 

V-T Plot for data set -1 is collected at around 6PM on a normal weekday and observed to 

have a slope greater than -1. So this particular data traffic is concluded to exhibit Self-

Similarity property. The Degree of Self-Similarity (H – Parameter) is obtained to be 

0.6761. The goodness of fit for the slope of this V-T curve is observed to be -0.7049. 

Goodness of Fit: 
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Figure 4-18 Goodness of fit for Data Set – III V-T Plot 

Table 4-3 Goodness of fit for Data Set – III V-T curve 

Equation Coefficients (with95% Fit) Goodness of Fit 

f(x) = p1*x + p2 p1 = -0.7049 (-0.7118, -0.6979) 

p2 = 6.513 (6.495, 6.531) 

 

SSE: 2.125 

R-square: 0.9756 

Adjusted R-square: 0.9756 

RMSE: 0.04619 
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 The plotted V-T curve is fitted with a Y=mX+C curve with best fit slope of -

0.7049 and y-intercept of 6.513.This goodness of fit also concludes that the V-T plot is a 

straight line with negative slope greater than -1. So this data can be said to exhibit Self-

Similarity. 
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Figure 4-19 Variation of H-Parameter with different aggregation levels 

The variation in H-parameter varies constantly over all aggregation levels holding 

the fact that Self-Similarity is all about having the same characteristics at different 

aggregated levels.  

4.8.1.4 Comparison of H-Parameter Variations 

 H-Parameter of all the data sets are compared to each other over different 

aggregation levels as shown below. This shows that the variation of H-Parameter value is 

more or less constant over the entire aggregation levels following the Self-Similarity 
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definition. All the H-Parameter variations for 3 data sets vary constantly without any 

overlapping’s which clearly demonstrates the difference in the degree of Self-Similarity 

for all data sets.   
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Figure 4-20 Comparison of H values for different Data Sets 

Table 4-4 Comparison of H-Parameters for different LTE-A data sets 

 

Data Sets 

 

Time of the Day  

 

Traffic Load 

 

Slope 

 

H-Value 

I 18.00 1.32GB -0.2114 0.9361 

II 11.00 1.07GB -0.2407 0.9095 

III 04.00 0.41GB -0.7049 0.6761 
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Above table concludes that as the traffic load increases, H-Parameter also 

increases along with the slope of V-T curve. The degree of Self-Similarity is varies in 

accordance to the traffic load and the time of the day. Higher the traffic load, higher is the 

degree of Self-Similarity.  

4.8.2 Comparison of LTE and LTE-Advanced Self-Similarity 

From the Self-Similarity analysis of LTE and LTE-Advanced data traffic, a comparison 

between these two technologies can give us some more insight on this property. Since all 

the 3 data sets correspond to 3 data sets in other technologies, we can compare them 

accordingly under the assumption that sites with these technologies experiences same 

traffic load as per the usual 24-hour pattern.  

Table 4-5 Comparison of H-Parameters for LTE & LTE-A data sets 

Data Set Time of day  

 

LTE  H-Value 

(10MHz BW) 

LTE-A H-Value 

(10MHz+5MHz BW) 

1 18.00 0.9116 0.9361 

2 11.00 0.8873 0.9095 

3 04.00 0.6609 0.6761 

 

In concurrence to the comparison, the duration of each data is set is almost the 

same with varying traffic load and number of users. The main difference of bandwidth 

can be observed between two technologies as LTE has only 10MHz bandwidth and LTE-

Advanced Carrier Aggregation has aggregation of 10MHz and 5MHz making it 15MHz 
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as a whole. Table 4-2 concludes that under similar conditions and only with bandwidth 

increase, LTE-Advanced shows more degree of Self-Similarity when compared to that of 

LTE. From the previous comparison of Self-Similarity between LTE and Ethernet 

networks, it is evident that LTE-A exhibits highest degree of Self-Similarity when 

compared to that of LTE and Ethernet networks.  

4.8.3 LTE-A Carrier Aggregation Performance Analysis 

4.8.3.1 Trending of Users vs DL Throughput  
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Figure 4-21 Trending of Users on 24 hour Clock in LTE 

The trending of real world traffic is observed over 24 hour’s average. The above 

figure is based on one normal load eNodeB data which is an average of Users and DL 

throughput on hourly basis on all weekdays in October’14. This trend is similar to what 
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has been observed in UTRAN network in [7]. Trend observed in [2] and [3] are 

considered as base for this analysis. Comparing 3G data in [2] shows that the average 

throughput in LTE much higher when compared to other earlier technologies. 
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Figure 4-22 Trending of DL-Throughput over 24 Hour Clock in LTE 

 The above trending of LTE ‘users’ and ‘data usage’ on 24 hours clock is 

considered to be the base of LTE-A daily trending. The significance of this trending 

pattern is that, this is observed to be the same for all generations in mobile 

communication systems. The most inactive hour of a day is observed to be at 4AM with 

highest active number of users observed during evening times. The same pattern hold 

good for the Downlink data usage by the users. It can be expected that the LTE-A 

trending pattern should follow more or less the same. The below sections of LTE-A 

penetration analysis concludes in this regard.  
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4.8.3.2 Trend of DL throughput via SCell during CA 

 With the deployment of LTE-A feature - Carrier Aggregation in live network, 

Downlink Traffic trending on aggregated Secondary Cell is observed to evaluate the 

usage of CA feature in current scenario. Below shown trend of downlink traffic via SCell 

can help in getting an idea of how the Secondary Cell resources are exploited by the 

users.  
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Figure 4-23 Trend of DL Data via SCell in CA 

This SCell usage is expected to follow normal 24 hours trend of downlink 

throughput as shown in Figure 4-22. But this is not following the exact same trend. One 

reason to accommodate this is because of very less penetration of CA capable UEs in the 

network. There are only very few UEs (in single digit count) available for the users to 
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use. This initial real time analysis at the very starting of this new technology can help 

researchers to focus their work on interesting findings. 

It can be expected that, once after the acceptable count of UEs is reached, the 

Secondary Cell Downlink pattern is to follow the typical DL-Throughput trending of a 24 

hour clock. 
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Figure 4-24 Trend of CA capable UEs in the Downlink 

 Figure 4-24 plots the trending of Average Carrier Aggregation capable UEs in the 

downlink. A UE is CA capable or not is meant form the eNodeB point of view meaning 

that it is enough that UE capability Information message indicates at least one DL SCell 

is supported by UE along with the band combination supported by the eNodeB. It can be 

observed from the plot that, for any given hour of a day, highest CA capable UEs 
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availability in Downlink is only 550 which is very less when compared to that of normal 

LTE users which is about 2000. 

4.8.3.3 SCell Configured vs Activated UEs 

 In Carrier Aggregation, a SCell is first configured to the UE when eNodeB knows 

that it is CA capable. Once the UE knows the details about the secondary cell, if there is 

any non-GBR threshold met, SCell is activated to send the DL data via SCell.  
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Figure 4-25 Configured & Activated UEs in a SCell 

UEs with CA feature configured but without any active non-GBR Secondary link 

to UE is represented by ‘SCell Confgured UEs’ and all the UEs with Secondary Cell 

configured and also with an active non-GBR link to UE is considered as ‘SCell Active 

UEs’. This analysis shows the comparison of configured and activated SCells showing 
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that only a maximum of 8.95% of configured UEs are activated and served using SCell. 

This reviles that there is a need of efficient utilization of SCell resources. 

4.9 Conclusion 

• LTE-Advanced data traffic is observed to exhibit Self-Similarity property. 

• Degree of Self-Similarity increases with the increase in data traffic load.  

• Higher the traffic load on usual 24 hours traffic trend, higher is the H-parameter 

value. 

• With comparison of LTE and LTE-A Self-Similarity, LTE-A exhibits higher 

degree of Self-Similarity when compared to that of LTE data traffic. 

• LTE-A exhibits higher degree of Self-Similarity when compared to that of LTE 

and Ethernet networks.  

• Trending patterns for LTE-Advanced networks are observed based on the real 

world data.  

• 24 hours trending pattern for the usage of Secondary Cell in DL throughput is 

analyzed. 

• 24 hours trending pattern of Secondary Cell resource utilization is observed and 

need further modeling analysis to optimize the LTE-Advanced networks.  
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

This thesis work has contributed by evaluating the properties of data traffic in live 

LTE & LTE-A networks which are of utmost significance in further design 

considerations and deployments. Key analysis and observations are presented on live 

deployments of LTE-A which is shaping out for general availability in near future. 

 This work demonstrated the existence of Self-Similarity in real world LTE data 

traffic and the degree of Self-Similarity is calculated for various collected data sets. It is 

concluded from the results that higher the data traffic, higher is the degree of Self-

Similarity. Degree of Self-Similarity is observed to be more in LTE networks when 

compared to that of Ethernet networks. 

 User arrival pattern in live LTE networks is affirmed to follow Poisson process 

similar to that of legacy networks. Corresponding Inter- Arrival time is verified to follow 

Exponential distribution with curve fitting and QQ-plots.  

 In the best known knowledge, the analysis of LTE-Advanced done in this work 

can be claimed to be the only available real world analysis in LTE-Advanced networks so 

far in the scope of this work. Self-Similarity is observed in LTE-A networks and the 

comparison of degree of Self-Similarity with LTE data traffic concludes that LTE-A 

exhibits higher Self-Similarity to that of LTE and Ethernet networks. Analysis on the 

daily trending pattern for Secondary Cell resource utilization in CA implementation 

suggests that more robust scheduling techniques are needed in order to use the resources 
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efficiently. The current penetration trend of CA capable Release 10 UEs in the network is 

also observed to be low. 

5.2 Future Work 

• Enhanced traffic forecasting algorithms can be developed to better estimate the 

drastically growing data traffic in rapidly expanding LTE & LTE-A networks. 

• Poisson user arrival analysis can be used to develop robust tools to estimate the 

traffic patterns and proper utilization of network resources.  

• The end user resources like the battery power are enhanced with the knowledge of 

traffic patterns exploiting the DRX concept in LTE networks [10]. 

• Secondary Cell resource trending suggests that robust resource allocations 

algorithms are to be developed which can efficiently allocate the resources in 

forthcoming technologies like 5G, HetNets.  

• Trending of the penetration of CA capable UEs in the existing network is to be 

further analyzed for better network planning and deployments.  
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 APPENDIX A  

ACRONYMS 



 

91 

 

3GPP  Third Generation Partnership Project 

CA  Carrier Aggregation 

CDF  Cumulative Distributive Function 

DL  Downlink 

DL-PCC Downlink Primary Component Carrier 

DL-SCC Uplink Secondary Component Carrier 

FDD  Frequency Division Duplexing 

GBR  Guaranteed Bit Rate 

LTE  Long Term Evolution 

PCELL Primary Cell 

PDCCH Physical Downlink Shared Channel 

PDF  Probability Distribution Function 

PDSCH Physical Downlink Shared Channel 

PUCCH Physical Uplink Control Channel 

PUSCH Physical Uplink Shared Channel 

SCELL Secondary Cell 

SS  Self-Similarity 

TDD  Time Division Duplexing 

UE  User Equipment 

UL  Uplink 

UL-PCC Uplink Primary Component Carrier 

UL-SCC Uplink Secondary Component Carrier 
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