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Abstract 

Improving Hydrologic Prediction via Data Assimilation, Data Fusion and High-Resolution 

Modeling 

 

Arezoo Rafieei Nasab, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Dong-Jun Seo 

With population growth, urbanization and climate change, accurate and skillful 

monitoring and prediction of water resources and water-related hazards are becoming increasingly 

important to maintaining and improving the quality of life for human beings and well-being of the 

ecosystem in which people live. Because most hydrologic systems are driven by atmospheric 

processes that are chaotic, hydrologic processes operate at many different scales, and the above 

systems are almost always under-observed, there are numerous sources of error in hydrologic 

prediction. This study aims to advance the understanding of these uncertainty sources and reduce 

the uncertainties to the greatest possible extent. Toward that end, we comparatively evaluate two 

data assimilation (DA) techniques ensemble Kalman filter (EnKF) and maximum likelihood 

ensemble filter (MLEF) to reduce the uncertainty in initial conditions of soil moisture. Results 

show MLEF is a strongly favorable technique for assimilating streamflow data for updating soil 

moisture.  

In most places, precipitation is by far the most important forcing in hydrologic prediction. 

Because radars do not measure precipitation directly, radar QPEs are subject to various sources of 

error. In this study, the three Next Generation Radar (NEXRAD)-based QPE products, the Digital 

Hybrid Scan Reflectivity (DHR), Multisensor Precipitation Estimator (MPE) and Next Generation 

Multisensor QPE (Q2), and the radar QPE from the Collaborative Adaptive Sensing of the 

Atmosphere (CASA) radar are comparatively evaluated for high-resolution hydrologic modeling 
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in the Dallas-Fort Worth Metroplex (DFW) area. Also, since they generally carry complementary 

information, one may expect to improve accuracy by fusing multiple QPEs. This study develops 

and comparatively evaluates four different techniques for producing high-resolution QPE by 

fusing multiple radar-based QPEs. Two experiments were carried out for evaluation; in one, the 

MPE and Q2 products were fused and, in the other, the MPE and CASA products were fused. 

Result show that the Simple Estimation (SE) is an effective, robust and computationally 

inexpensive data fusion algorithm for QPE. 

The other main goal of this study is to provide accurate spatial information of streamflow 

and soil moisture via distributed hydrologic modeling. Toward that end, we evaluated the NWS’s 

Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) over the Trinity 

River Basin for several headwater basins. We also develop a prototype high resolution flash flood 

prediction system for Cities of Fort Worth, Arlington and Grand Prairie, a highly urbanized area. 

Ideally, the higher the resolution of distributed modeling and the precipitation input is, the more 

desirable the model output is as it provides better spatiotemporal specificity. There are, however, 

practical limits to the resolution of modeling. To test and ascertain the limits of high-resolution 

polarimetric QPE and distributed hydrologic modeling for advanced flash flood forecasting in 

large urban area, we performed sensitivity analysis to spatiotemporal resolution. The results 

indicate little consistent pattern in dependence on spatial resolution while there is a clear pattern 

for sensitivity to temporal resolution. More research is needed, however, to draw firmer 

conclusions and to assess dependence on catchment scale. 
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Chapter 1  

Introduction and overview 

 
The main sources of errors in hydrologic predictions may be categorized into three 

categories, the input uncertainty, the parametric uncertainty and the uncertainty in the initial 

conditions. One of the main goals of this dissertation is to enhance the understanding of these 

uncertainties and reduce them to the greatest possible extent. Data assimilation as an appealing 

technique for reducing uncertainty in initial conditions is discussed in Chapter 1. Precipitation is 

very often the most important forcing in hydrologic predictions. Improving its accuracy will 

improve the quality of hydrologic prediction by reducing uncertainties in the observed boundary 

conditions. Toward that end, we carried out in Chapter 2 comparative evaluation of different 

Quantitative Precipitation Estimates (QPEs). Utilizing the multiple sources of QPE available in 

DFW, we applied several fusion techniques to improve the quality and accuracy of the 

precipitation forcing in Chapter 3.  

The widespread availability of radar-based precipitation estimates at high spatial 

resolution led to transformation from lumped hydrologic modeling toward distributed hydrologic 

modeling. One of the main foci of this study is to provide accurate spatiotemporally-detailed 

information about important hydrologic variables such as streamflow and soil moisture. Toward 

that end, we evaluated the NWS’s Hydrology Laboratory Research Distributed Hydrologic Model 

(HL-RDHM) over the Trinity River Basin for several headwater basins in Chapter 4. One of the 

largest benefits from high-resolution distributed modeling may be realized in large urban areas. 

One of the main outcomes of this dissertation is the development of a prototype flash flood 

prediction system for the Cities of Fort Worth, Arlington and Grand Prairie as a highly urbanized 

area. Ideally, the higher the resolution of distributed modeling and the precipitation input is, the 

more desirable the model output is as it provides better spatiotemporal specificity. There are, 
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however, practical limits to the resolution of modeling. In this work, we test and ascertain the 

limits of high-resolution polarimetric QPE and distributed hydrologic modeling for advanced flash 

flood forecasting in large urban areas and identify the scale at which the relative error may be at 

minimum given the quality of radar QPE. A brief description of each chapter as well as the 

objectives and new contributions is given below: 

Uncertainties in the initial conditions (IC) of soil moisture and observed boundary 

conditions (BC) of precipitation and potential evaporation (PE) introduce considerable errors in 

hydrologic predictions. In recent years, data assimilation (DA) has been gaining great attention to 

reduce these uncertainties. Soil moisture is seldom observed at the catchment scale. To infer soil 

moisture states, one may instead assimilate streamflow observations. The relationship between 

streamflow and soil moisture, however, is highly nonlinear for which popular data assimilation 

(DA) techniques in oceanography and weather forecasting such as ensemble Kalman filter (EnKF) 

may not work well. Maximum likelihood ensemble filter (MLEF), a more recently developed 

technique, does not assume linear observation equation. In this dissertation, EnKF and MLEF are 

comparatively evaluated for updating the soil moisture states of the Sacramento soil moisture 

accounting model (SAC) by assimilating observations of streamflow, mean areal precipitation 

(MAP) and mean areal potential evapotranspiration (MAPE). The study is a first of its kind in the 

hydrologic literature and advances understanding of the strengths and limitations of the DA 

techniques for problems involving nonlinear processes and nonlinear observation equations. Based 

on this study, an algorithm has been developed and implemented for assimilation of water quality 

and streamflow observations in support of real-time water quality forecasting at the Water Quality 

Control Center of the National Institute of Environmental Research in the Republic of Korea. 

In most places, precipitation is by far the most important forcing in hydrologic prediction. 

Accurate quantitative precipitation estimation (QPE) can provide valuable lead time in hydrologic 

prediction owing to the time lag in streamflow response to precipitation input. Due to large 
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variability of precipitation in space and time, however, QPE remains a large challenge. Today, 

weather radars are routinely used for QPE. In some areas, there may be multiple sources of QPE 

including rain gauges, radars and satellites. Because radars do not measure precipitation directly, 

radar QPEs are subject to various sources of error. In this study, the three Next Generation Radar 

(NEXRAD)-based QPE products, the Digital Hybrid Scan Reflectivity (DHR), Multisensor 

Precipitation Estimator (MPE) and Next Generation Multisensor QPE (Q2), and the radar QPE 

from the Collaborative Adaptive Sensing of the Atmosphere (CASA) radar are comparatively 

evaluated for high-resolution hydrologic modeling in the Dallas-Fort Worth Metroplex (DFW) 

area. This study advances understanding of the error characteristics and properties of the above 

QPE products for their effective use in hydrologic applications. Based on this study, the CASA 

and MPE products are being used for the ongoing development and implementation of the 

prototype flash flood prediction system for areas of Fort Worth, Arlington and Grand Prairie in 

DFW, which is expected to save lives and properties via improved emergency management. 

In many areas, there exist multiple sources of radar-based QPE. In DFW, for example, 

the MPE, Q2 and CASA products are available. Because they generally carry complementary 

information, one may expect to improve accuracy by fusing multiple QPEs. While multisensor 

merging of satellite, radar and/or rain gauge data for improved QPE is widely investigated, fusion 

of multiple gridded QPEs of different spatiotemporal resolutions for high-resolution QPE is 

relatively new. This study develops and comparatively evaluates four different techniques for 

producing high-resolution QPE by fusing multiple radar-based QPEs. Two experiments were 

carried out for evaluation; in one, the MPE and Q2 products were fused and, in the other, the MPE 

and CASA products were fused. This study advances identification and understanding of the 

factors that are important in fusion of radar QPE products and development of effective, robust 

and computationally inexpensive data fusion algorithms for QPE. Such an algorithm, Simple 

Estimation (SE), has been developed from this study which may be expected to improve QPE very 
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inexpensively at all resolutions of the ingredient QPEs. This study advances understanding of 

precipitation fusion and the relationships among different fusion procedures, and evaluation of 

multiple radar QPEs in the DFW area. 

Availability of radar QPE has revolutionized hydrologic modeling in recent years from 

lumped approaches to distributed approaches. In the latter, the catchments are subdivided into 

subcatchments of the scale of the modeler’s choice to utilize not only high-resolution radar QPE 

but also a wide variety of physiographic information readily available via Geographic Information 

Systems (GIS). While distributed modeling does utilize a wealth of additional information, the 

highly nonlinear nature of the rainfall-runoff processes meant that the errors in the high-resolution 

observed and fixed boundary conditions, such as, e.g., precipitation and soil properties, 

respectively, can easily be amplified and propagated through the model(s), resulting in a 

deterioration, rather than an improvement, in the quality of model simulations compared to 

lumped models. The negative impact of such nonlinear error growth can be larger for high-

resolution hydrologic modeling. This study comparatively assesses streamflow simulation over the 

Trinity River Basin in TX between operational lumped and distributed models. The lumped 

models used are the SAC and unit hydrograph. The distributed models used are the gridded 

version of SAC and kinematic-wave routing as implemented in the NWS’s Hydrology Laboratory 

Research Distributed Hydrologic Model (HLRDHM). This study advances understanding of the 

capabilities and limitations of distributed hydrologic modeling over a large area, and identification 

and inference of sources of error in such modeling. The potential benefits from distributed 

modeling are very large; when successfully applied at high resolution, it enables monitoring and 

prediction of a large part of the terrestrial water cycle at any location in the model domain, 

including precipitation, evapotranspiration, soil moisture, infiltration, runoff and streamflow. 

One of the largest benefits from high-resolution distributed modeling may be realized in 

large urban areas where population density is high and increasing, urbanization changes 
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physiography and hence the hydrologic and hydraulic conditions, and the impact of climate 

change may be larger in that even a small storm can produce deadly flash flooding. With the 

ongoing deployment of the CASA weather radar systems, the DFW area offers a unique testbed 

for very high-resolution hydrologic modeling driven by very high-resolution QPE. This study 

builds on the advances in understanding and modeling and analysis capabilities from the studies 

above to develop a high-resolution flash flood prediction system for the Cities for Fort Worth, 

Arlington and Grand Prairie. Due to the nonlinear growth of error, however, there is a limit to the 

resolution of modeling given the accuracy and resolution of the QPE, the errors in the hydrologic 

model structures, parameters and states, and other unknown/unknowable anthropogenic and 

natural sources of error. This study advances understanding of the dependence of the quality of 

streamflow simulation on the resolution of QPE and modeling of soil moisture and routing, and 

tests the limits of advanced precipitation sensing and hydrologic modeling for flash flooding 

prediction in the real world. The result of this study is currently being implemented in the 

prototype flash flood prediction system for emergency managers in DFW in preparation for the 

spring storm season of 2015. 

Admittedly, the research carried out in this dissertation addresses only a few challenges 

in hydrologic prediction. Undoubtedly, much additional work is needed to fully address them. It is 

hoped that the additional knowledge gained and the tools developed will serve as building blocks 

and lead to an evolving system for monitoring and prediction of water resources and water-related 

hazards, particularly in large urban areas, that integrates advanced sensing, data fusion, data 

assimilation and high-resolution modeling to provide accurate, and time- and location-specific 

information that improves the quality of life and sustainability. 
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Chapter 2  

Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for 

real-time assimilation of streamflow data 

 

Various data assimilation (DA) methods have been used and are being explored for use in 

operational streamflow forecasting. For ensemble forecasting, ensemble Kalman filter (EnKF) is 

an appealing candidate for familiarity and relative simplicity. EnKF, however, is optimal in the 

second-order sense, only if the observation equation is linear. As such, without an iterative 

approach, EnKF may not be appropriate for assimilating streamflow data for updating soil 

moisture states due to the strong nonlinear relationships between the two. Maximum likelihood 

ensemble filter (MLEF), on the other hand, is not subject to the above limitation. Being an 

ensemble extension of variational assimilation (VAR), MLEF also offers a strong connection with 

the traditional single-valued forecast process through the control, or the maximum likelihood, 

solution. In this work, we apply MLEF and EnKF as a fixed lag smoother to the Sacramento 

(SAC) soil moisture accounting model and unit hydrograph (UH) for assimilation of streamflow, 

mean areal precipitation (MAP) and potential evaporation (MAPE) data for updating soil moisture 

states. For comparative evaluation, three experiments were carried out. Comparison between 

homoscedastic versus heteroscedastic modeling of selected statistical parameters for DA indicates 

that heteroscedastic modeling does not improve over homoscedastic modeling, and that 

homoscedastic error modeling with sensitivity analysis may suffice for application of MLEF for 

soil moisture updating using streamflow data. Comparative evaluation with respect to the model 

errors associated with soil moisture dynamics, the ensemble size and the number of streamflow 

observations assimilated per cycle showed that, in general, MLEF outperformed EnKF under 

varying conditions of observation and model errors, and ensemble size, and that MLEF performed 

well with an ensemble size as small as 5 while EnKF required a much larger ensemble size to 
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perform closely to MLEF. Also, MLEF was not very sensitive to the uncertainty parameters and 

performed reasonably well over relatively wide ranges of parameter settings, an attribute desirable 

for operational applications where accurate estimation of such parameters is often difficult. 

 

2.1. Introduction 

 

Uncertainties in the initial conditions (IC) of soil moisture and observed boundary 

conditions (BC) of precipitation and potential evaporation (PE) introduce considerable errors in 

hydrologic forecasts. In recent years, data assimilation (DA) has been gaining great attention to 

reduce these uncertainties (Brocca et al., 2010; Clark et al., 2008; De Lannoy et al., 2007; Liu et 

al., 2011; Liu and Gupta, 2007; Reichle et al., 2002; Seo et al., 2003). DA makes inference on the 

model states by bringing together all available observations from often disparate sources, 

quantifying the uncertainties in the model and observation errors, and updating the state variables 

by optimally combining model predictions with observations. In addition to DA in the single-

valued sense, ensemble DA is also necessary to allow state updating in operational ensemble 

forecasting systems (Seo et al. 2006; Demargne et al. 2014; Cloke and Pappenberger 2009; 

Schaake et al. 2007a, 2007b; Shellekens et al. 2011; Thielen et al. 2008; Werner et al. 2005, 2009).  

In hydrologic forecasting, one would ideally like to assimilate soil moisture observations 

to update the model ICs of soil moisture, in which case the observation equation would be linear. 

In reality, however, soil moisture states are seldom observed in-situ and, even if such 

measurements are available, they are generally not representative of the conditions at the scale 

where the hydrologic models operate. Streamflow observations, on the other hand, are much more 

widely available and reflect the catchment-wide conditions, albeit only in some spatiotemporally 

integrated sense. For the use of streamflow data for updating of soil moisture states, the 
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observation equation involved is generally highly nonlinear, which poses an additional challenge 

in DA. 

Various DA techniques such as Kalman filtering (Kalman 1960), variational assimilation 

(VAR, Jazwinski 1970, Li and Navon 2001, Seo et al. 2003, 2009), particle filtering (Weerts and 

Serafy, 2006), etc., have their own merits and demerits (Liu and Gupta, 2007; Liu et al. 2013). 

Extensions of Kalman filter have been developed to deal with nonlinear systems. Extended 

Kalman filter (EKF), e.g., involves linearizing the model dynamics using the first-order Taylor 

series approximation (Maybeck 1979). To overcome the limitations of EKF, a Monte Carlo-based 

Kalman filter, or EnKF, was proposed by Evensen (1994). The novelty of EnKF is in its ability to 

deal with nonlinear model dynamics naturally without linearizing model equations (Moradkhani et 

al. 2005). Unlike VAR, EnKF does not assume temporally constant model error covariance or 

requires a separate adjoint model. For the above reasons and algorithmic simplicity, EnKF has 

gained great popularity in various applications recently (Evensen 2003, Chen et al. 2011, Xie and 

Zheng 2010). 

Variations of EnKF and different types of ensemble filter have also been developed. 

Anderson (2001) proposed an ensemble-based filter called ensemble adjustment Kalman filter 

(EAKF) in which both the mean and covariance of updated ensembles are preserved. He 

concluded that EAKF is superior to EnKF especially for small ensemble sizes. Another variant of 

EnKF was introduced by Whitaker and Hamill (2002) called ensemble square root filter (ESRF) in 

which the perturbation of observation is avoided. Sakov and Oke (2008) presented a linear 

approximation of ESRF with comparable performance. Bocquet (2011) proposed a deterministic 

variant of EnKF named finite-size ensemble transform Kalman filter (ETKF-N) which is less 

sensitive to sampling errors. Van Leeuwen and Evensen (1996) introduced ensemble smoother 

(ES), and Evensen and van Leeuwen (2000) developed ensemble Kalman smoother (EnKS). Cohn 

et al. (1994) used a fixed-lag smoother to incorporate all available observation at current time as 
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well as a fixed amount of time past each analysis time. In this work, we use a fixed-lag smoother 

formulation of EnKF. 

Unlike VAR, however, EnKF and its variants assume linear observation equation. As 

such, if the observation equation is nonlinear as in assimilating streamflow data for updating soil 

moisture states, EnKF may not be expected to perform well. To address the above limitation in 

EnKF, Zupanski (2005) developed maximum likelihood ensemble filer (MLEF) which combines 

the strength of EnKF and VAR. MLEF may be considered as an ensemble extension of VAR in 

which, once the VAR solution-like maximum likelihood or control solution is obtained, ensemble 

members are generated by perturbing the control states and propagating them forward as in EnKF. 

The purpose of this work is to compare EnKF with MLEF for assimilation of streamflow data in 

soil moisture updating. 

In MLEF, the analysis solution is obtained as a model state that maximizes the posterior 

conditional probability distribution. The maximum likelihood solution, in the single-valued sense, 

is superior to ensemble mean if the normality assumption is not met. In operational forecasting, 

provision of such a “most likely” solution, in addition to the ensemble members, is very important 

to the human forecasters as the former provides a reference solution for the existing manual DA 

process, referred to as run-time modifications (MOD) in NWS (Seo et al. 2009). The maximum 

likelihood state is estimated via iterative minimization, thus making the MLEF approach closely 

related to iterated Kalman filter (Jazwinski 1970; Cohn 1997; Zupanski 2005). As with other 

ensemble data assimilation algorithms, MLEF produces an estimate of the uncertainty in the 

analysis solution (e.g., analysis error covariance). Unlike VAR, however, MLEF does not require 

an adjoint code and solves a reduced-rank problem in ensemble subspace with superior 

preconditioning (Zupanski 2005).  

MLEF has been used in various studies such as carbon transport (Lokupitiya et al. 2008; 

Zupanski et al. 2007b), aerosol retrieval (Carrio et al. 2008), wind power forecasting (Zupanski et 
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al. 2010) and targeting additional observations for forecasting of tropical cyclones (Kim et al. 

2010). To the best of the authors’ knowledge, however, MLEF has never been used in hydrologic 

applications or objectively compared with EnKF for streamflow assimilation until this paper. 

Additional significant new contributions of this paper include systematic sensitivity analysis of 

DA performance with respect to the ensemble size, the number of streamflow observations 

assimilated per cycle and the magnitude of model and observational errors, and comparative 

evaluation of performance of DA under homoscedastic and heteroscedastic modeling of 

observation errors.  

It is noted here that the evaluation carried out in this work is in the single-valued sense 

only. That is, we only consider the DA techniques as minimization tools for single-valued 

analysis. By “single-valued”, we mean analysis or prediction expressed by a single representative 

value, such as the maximum likelihood solution in MLEF or the ensemble mean in EnKF, rather 

than by multiple values such as an ensemble. The term single-valued forecast was introduced 

recently in the hydrologic literature (Schaake et al. 2007a, 2007b, Wu et al. 2011, Regonda et al. 

2013, Demargne et al. 2014) to distinguish from deterministic forecast. This chapter is organized 

as follow. Section 2.2 describes the formulation of the assimilation problem. Section 2.3 describes 

the EnKF and MLEF methodologies. Error modeling is described in Section 2.4. Section 2.5 

describes the study basins, data used and experiment design. We present the results in Section 2.6. 

Section 2.7 provides conclusion and future research recommendations. 

 

2.2. Formulation of the assimilation problem 

 

Assume a headwater basin with a stream gauge at the outlet with hourly observations of 

streamflow, mean areal precipitation (MAP) and mean areal potential evaporation (MAPE) 

available in real time. Assume also that lumped rainfall-runoff and routing models operate for 
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continuous simulation and prediction of streamflow at the catchment outlet. The rainfall-runoff 

and routing models used in this work are the Sacramento soil moisture accounting model (SAC) 

(Burnash et al. 1973) and unit hydrograph (UH) (Chow et al. 1988), respectively. The SAC model 

has six state variables which are updated by DA: the upper zone tension water content (UZTWC), 

the upper zone free water content (UZFWC), the lower zone tension water content (LZTWC), the 

lower zone supplemental free water content (LZFSC), the lower zone primary free water content 

(LZFPC) and tension water content in the additional impervious area (ADIMC) (Burnash et al. 

1973). 

Our problem is then to assimilate the observations of MAP, MAPE and streamflow for 

real-time updating of the soil moisture states of the rainfall-runoff model. To account for the time 

lag between the generation of runoff and its arrival at the catchment outlet, we formulate the DA 

problem as fixed-lag smoothing (Schweppe 1973, Li and Navon 2001) following Seo et al. (2003, 

2009) and Lee et al. (2011, 2012). The size of the fixed lag, or the assimilation window, should be 

comparable to the response time of the basin. The experience thus far indicates that the size of the 

window should be about the length of the unit hydrograph, or the basin response time of fast 

runoff (Seo et al. 2003, 2009; Lee et al. 2011). Figure 2-1 depicts the sequential assimilation 

process using the fixed-lag smoother. 

Estimates of MAP, in particular those based on radar estimates of precipitation (Seo et al. 

2010), and MAPE are subject to systematic biases. To correct them as part of the DA process, we 

introduce multiplicative adjustment factors for MAP and MAPE and adjust, or update, them over 

the assimilation window along with the initial model soil moisture states at the beginning of the 

assimilation window (Lee et al. 2011). Note that adjusting multiplicative biases for MAP and 

MAPE in this way amounts to adjusting the model soil moisture states within the assimilation 

window, which results in updating the soil moisture states at the end of the assimilation window, 

or at the prediction time. 
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Figure 2-1 Schematic of the DA cycles based on the fixed-lag smoother formulation. 

 

We also introduced the additive error in the total channel inflow (TCI), which combines 

the surface and groundwater runoffs from the SAC (Seo et al. 2009). The motivation for the 

additive error in model runoff is to account for possible model structural and/or parametric errors 

that may not be captured by the random errors assumed in the soil moisture dynamics.  The above 

problem may be cast as the following weakly-constrained nonlinear minimization: 

Minimize   JK =
1

2
[XB − XS,K−L]

T
Pf

−1[XB − XS,K−L] 

+
1

2
[ZQ − HQ(XS,K−L, XP, XE, XRs, 𝑊)]

T
RQ

−1[ZQ − HQ(XS,K−L, XP , XE, XRs, 𝑊)] 

+ 
1

2
[ZP − HPXP]TRP

−1[ZP − HPXP] 

+ 
1

2
[ZE − HEXE]TRE

−1[ZE − HEXE] 

+
1

2
XRs

T RRs
−1XRs +

1

2
𝑊𝑇QW

−1W 

(2-1) 
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Subject to          XS,k = M(XS,k−1, XP,k, XE,k) + 𝑊𝑘−1      k = K − L + 1, … , K, 

XS,j
min ≤ XS,j,k ≤ XS,j

max,     j = 1, … , N; k = K − L, … , K  

(2-2) 

In Eq. (2-1), JK denotes the objective function at the current hour K, L denotes the length 

of the assimilation window in hours, and k indexes the time step in hours, Z, X, H, R, Pf, W and 

Qw denote the observation vector consisting of all observations valid within the assimilation 

window, the control vector consisting of all control variables (i.e. the variables to be updated), the 

observation equation which relates the control variables with the observations, the observation 

error covariance matrix, the forecast error covariance matrix, the random error in the model 

dynamics within the assimilation window and the covariance matrix of the above random error, 

respectively; the subscripts Q, P, E, B and Rs signify streamflow, precipitation, potential 

evaporation (PE), the background (i.e., a priori or before-DA) model state, and model runoff, 

respectively, and the superscript T denotes the matrix transpose. The detailed explanation of the 

variables appearing in Eq.(2-1) is given in Table 2-1. In Eq.(2-2), M denotes the soil moisture 

accounting model, Wk-1 denotes the model error vector valid at time step k-1, XS,j
min and XS,j

max 

denote the lower and upper bounds of the j-th SAC state variable, XS,j, and N denotes the number 

of the SAC states. Other variables are explained in Table 2-1. To specify the a priori, or 

background, estimates for the control vector, we assume no biases for MAP (i.e. XP,k= 1) and 

MAPE (i.e. XE,k = 1), no model error in runoff (i.e. XRs,k = 0), and XB=XS,K-L. In the following 

section, we describe how EnKF and MLEF are applied to solve the above assimilation problem. 

 

2.3. Application of DA techniques 

 

Let Xk denote the vector of model states at time step k and assume that the model 

dynamics over a single time step is described by Eq ((2-3): 
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Table 2-1 Description of terms used in the equations (2-1) and (2-2). 

General Term General Description 
Specific 

Term 
Specific Description 

X The control vector 

XS,K-L 
The six SAC states valid at hour K-L 

XS=[XS,j,K-L, XS,j,K-L+1, …, XS,j,K]
T
 , j=1, …, 6 

XP 
Control vector of time-varying biases in the precipitation. 

XP=[XP,K-L, XP,K-L+1, …, XP,K]
T
 

XE 
Control vector of time-varying biases in potential evaporation. 

XE=[XE,K-L, XE,K-L+1, …, XE,K]
T
 

XRs 

The additive error in the total channel inflow (TCI), which combines the 

surface and groundwater runoffs from the SAC (Seo et al. 2009). 

XRs=[XRs,K-L, XRs,K-L+1, …, XRs,K]
T
 

XB 

Model-generated (i.e. without-DA) SAC states at the beginning of the 

assimilation window. 

XB= XS,K-L 

Z Observation vectors 

ZQ Hourly streamflow observations to be assimilated in the current cycle. 

ZP Hourly MAP observations within the assimilation window. 

ZE Hourly MAPE observations within the assimilation window. 

H 

Structure function that 

relates the control 

variables with the 

observed variables 

HQ( ) The SAC and UH routing models. 

HP Equal to ZP. 

HE Equal to ZE. 

R 
Observation error 

covariance matrix 

RQ Observation error covariance matrix of streamflow. 

RP Observation error covariance matrix of MAP. 

RE Observation error covariance matrix of MAPE. 

RRs Error covariance matrix of model runoff. 
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Xk = M(Xk−1) + Wk−1 (2-3) 

where M( ) denotes the dynamical model, Wk−1denotes the temporally-uncorrelated 

model error at time k − 1 with zero mean and covariance of Qw,k−1, and Xk−1 and Wk−1 are 

assumed to be independent. The observation equation is written in generality as: 

Zk = G(Xk) + Vk (2-4) 

where Zk denotes the vector of the observations at time step k, G( ) denotes the model-

simulated observation, Vk denotes the vector of temporally-uncorrelated observation errors with 

mean zero and covariance of Rk, and Xk and Vk are assumed to be independent. In G( ), the model-

simulated streamflow is from SAC-UH while the model-simulated MAP and MAPE are simply 

the observed MAP and estimated MAPE multiplied by their respective adjustment factors.  

 

2.3.1. Ensemble Kalman filter (EnKF) 

EnKF (Evensen 1994) is based on a Monte Carlo application of Kalman filter (Kalman 

1960). In our formulation, to arrive at a linear observation equation from nonlinear mapping of 

soil moisture to streamflow, we augment the state vector with the observation vector as follows 

(Lorentzen and Nævdal 2011): 

Yk = [
Xk

G(Xk)
] 

 (2-5) 

where Xk denotes the original state vector, Yk denotes the augmented state vector and 

G(Xk) comprise the model-simulated streamflow, MAP, and MAPE. Owing to the augmentation, 

the observation equation may be expressed as Zk = HYk where H denotes the linear observation 

operator in which the diagonal elements corresponding to the state variables and the observations 

are given by zero and unity, respectively, with all other elements being zeros. The ensemble of the 

augmented state vector is given by: 
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Yk = [
Xk

1

G(Xk
1)

Xk
2

G(Xk
2)

…
…

Xk
S

G(Xk
S)

] 
(2-6) 

where S denoted the ensemble size. The model dynamics equation for the jth ensemble 

member is given by: 

Xf,k
j

= M(Xa,k−1
j

) + Wk−1
j

 (2-7) 

where M( ) denotes the dynamical model, Wk−1
j

 denotes the random model error at time 

k − 1 corresponding to the j
th

 ensemble member, Xa,k−1
j

 denotes the updated state variable 

corresponding to the j
th

 ensemble member at time step k − 1and Xf,k
j

 denotes the forecasted state 

variable at time step k. In the analysis step, each ensemble member is updated via the Kalman gain 

equation: 

Ya,k
j

= Yf,k
j

+ Kk(Zo,k − HYf,k
j

) (2-8) 

where Yf,k
j

 denotes the augmented state vector at time step k, Ya,k
j

 denotes the updated 

augmented state vector, H denotes the linear observation operator, Kk denotes the Kalman gain 

matrix at time step k, and Zo,k denotes the vector of normally-distributed observations with mean 

equal to the actual observations and variance equal to the observation error covariance, i.e., 

Zo,k~ N(Zk, R), where R is a diagonal matrix. We note here that, after the realizations of Zo,k are 

drawn, they are shifted and scaled to preserve the prescribed mean and variance (Lorentzen and 

Nævdal 2011). The above operation reduces the sampling error. The Kalman gain is given by: 

Kk = Pf,kHT(HPf,kHT + Rk)
−1

 (2-9) 

The forecast error covariance is approximated by: 

Pf,k =  
1

S − 1
(Yf,k − Yf,k

̅̅ ̅̅ )(Yf,k − Yf,k
̅̅ ̅̅ )

T
 

(2-10) 

where S denotes the ensemble size and Yf,k
̅̅ ̅̅  denotes the mean of Yf,k. In the above, it is 

important to note that, even though the observation equation is made linear in appearance via state 
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augmentation, the analysis solution is in general still not optimal because it assumes that 

streamflow responds to soil moisture linearly near the solution. Accordingly, the analysis solution 

of Eq. (2-8), which is a linear projection, may not be close to the true optimal solution. To locate 

the optimal solution, iterations are generally necessary using, e.g., iterative Kalman filter 

(Lorentzen and Nævdal 2011). In this work, we assess the quality of the above solution against the 

MLEF solution. 

 

2.3.2. Maximum likelihood ensemble filter (MLEF) 

In this subsection, we describe the key elements of MLEF. For details, the reader is 

referred to Zupanski (2005). As in EnKF, the state variables evolve according to Eq. (3-1). The 

analysis step for MLEF, however, is quite different from that of EnKF as shown below. 

Evaluation of the forecast error covariance in MLEF may be more easily understood by 

introducing the second-order moment equation of Eq. (2-1) following the first-order Taylor series 

approximation as in EKF: 

Pf,k = M̃k−1,kPa,k−1M̃k−1,k
T + RW,k−1 (2-11) 

where Pf,k denotes the covariance matrix of the forecast model states at time step k, 

M̃k−1,k denotes the Jacobian of the model with respect to the state variables evolving from time 

step k-1 to time step k, Pa,k−1 denotes the analysis (i.e. updated) covariance matrix of the model 

states at time step k-1, and RW,k−1 denotes the model error covariance matrix at time step k-1. In 

the original formulation of MLEF (Zupanski 2005), model errors were ignored. In this work, we 

consider them as described in Section 2.4. For now, however, we assume no dynamical model 

errors for simplicity without loss of generality. The square root of the analysis error covariance 

matrix may be evaluated numerically as follows: 

Pa,k−1
1/2

= (p1p2 … pS)  (2-12) 

where 
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pi = (p1,ip2,i .  .  . pN,i)
T (2-13) 

In the above, S denotes the ensemble size and N denotes the dimensionality of the state 

vector. Denoting the square root matrix of the forecast error covariance as Pf
1/2

= (b1b2 … bS), 

we have the following finite difference approximation for bi: 

bi = M(Xk−1 + pi) − M(Xk−1) ~ M̃k−1,kpi (2-14) 

where Xk−1 denotes the control (i.e. maximum likelihood) analysis from the previous 

time step, M(Xk−1 + pi) denotes the nonlinear ensemble one-step prediction and M(Xk−1) denotes 

the nonlinear control one-step prediction representing the most likely dynamical state derived from 

the maximum likelihood approach. For efficient minimization of Eqs. (2-1) and (2-2) in ensemble 

subspace, Hessian preconditioning is performed via the following change of variable (Zupanski 

2005): 

X − Xb = Pf
1/2

(I + C)−T/2ζ (2-15) 

where ζ denotes the control vector in ensemble subspace. The i-th column of the square 

root matrix of the NxN symmetric matrix C, referred to as the information matrix, is approximated 

as follows (Zupanski 2005): 

(R−1/2G̃Pf
1/2

)i = R−1/2G̃bi ≈ R−1/2G(X + bi) − R−1/2G(X) (2-16) 

where G̃ denotes the Jacobian of the nonlinear observation equation, G( ). Following 

preconditioning using Eq.(2-15), the constrained nonlinear minimization problem of Eqs. (2-1) 

and (2-2) may be solved iteratively in the ensemble subspace via gradient-based minimization. An 

important aspect of MLEF is that the gradient (see Zupanski 2005 for the expression) is evaluated 

via the finite-difference approximation in Eq. (2-16). As such, unlike VAR, MLEF does not 

require adjoint code. Once the minimum is found, the analysis error covariance may be calculated 

as the inverse Hessian matrix at minimum, Xopt, which amounts to evaluating the information 

matrix C as follows using Xopt: 
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Pa
1/2

= Pf
1/2

[I + C(Xopt)]−T/2 (2-17) 

The columns of the matrix Pa
1/2

 are then used as the initial perturbations for the next 

assimilation cycle. 

 

2.3.3. Initialization  

In the very first step of MLEF and EnKF, it is necessary to perturb the control and state 

variables, respectively, to generate the ensemble ICs. In this work, we used a lognormal 

distribution with mean of zero and variance of a fraction of the soil water bucket size for the SAC 

soil moisture states. For the multiplicative biases for MAP and MAPE, a lognormal distribution 

with mean of zero and standard deviation of a 0.07 in the normal space is used, which correspond 

to mean of unity and standard deviation of 0.07 in the lognormal space. For the additive error to 

TCI, the ICs are perturbed based on a normal distribution with mean zero and standard deviation 

of 0.07 (mm/hr). The above standard deviations may be too small or too large depending on 

whether the initial assimilation window covers a storm or an inter-storm period. Given that each 

evaluation period is preceded by many assimilation cycles (see Section 2.5), thereby allowing the 

covariance of the model states to evolve dynamically, we did not attempt to refine the initialization 

strategy. Indeed, limited sensitivity analysis suggests that the choice of the starting values of the 

above parameters has rather modest impact on the overall performance of EnKF and MLEF. If the 

number of preceding assimilation cycles is small, however, it is possible that the impact may be 

larger. 

 

2.4. Error and uncertainty modeling 

 

The DA problem formulated above requires specification of a number of uncertainty 

parameters. In this section, we describe how they are modeled and specified. 
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2.4.1. Error in model dynamics 

In EnKF, to account for the uncertainty in the SAC soil moisture dynamics, we introduce 

a random error, Wk−1, in Eq. (2-1). It is assumed that the model errors among the six SAC states 

are independent of one another. The standard deviation of the model error for each state is 

assumed to be a fraction, ranging from 0 to 0.1, of the soil water depth corresponding to the 

particular SAC soil moisture state. The random realizations of the model errors are then added to 

the propagated state variables (Lorentzen and Nævdal 2011). In MLEF, the model errors are 

accounted for by inflating the square root matrix of the forecast error covariance, bi (see Eq. 

(2-14)). It is important to note that, in this approach, the effect of model errors in Eq. (2-14) 

should reflect only the increased uncertainty due to the residual model errors, i.e., the difference 

between the perturbed dynamics and the control dynamics due solely to the model errors. If, e.g., 

the direction and magnitude of the model error are identical between the perturbation run and the 

control run, the residual model error would be zero. As such, one may expect the residual model 

error to be added to bi in MLEF to be significantly smaller than the model error Wk−1
j

 in EnKF. 

Whereas in EnKF the standard deviation of the model error for each state variable is modeled as a 

fraction of the soil water content, that of the residual model error in MLEF is modeled as a 

fraction of the soil water bucket size as specified by the SAC parameters. The above modeling 

assumes that the residual model error in a perturbation run relative to the control run is 

proportional to the size of the soil water bucket whereas the model error itself is proportional to 

the amount of soil water in the bucket. Additional research is needed to ascertain the above 

postulation and to improve error modeling. The multiplicative biases in MAP, MAPE and the 

additive bias in TCI are modeled as time-invariant and hence no dynamical model errors are 

assumed (i.e. XP,k = XP,k−1). This does not mean, however, that the above biases do not change in 

time; they vary from assimilation cycle to another depending on the magnitude of the 

measurement error covariance relative to that of other terms (see Eq. (2-1)). 
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2.4.2. Observational errors 

Observational errors are generally heteroscedastic and correlated temporally (Lee et al. 

2011). Due to lack of truth, however, observation errors are difficult to model in practice. 

Heteroscedasticity, i.e., dependence of the variance of a random variable on the magnitude of its 

realization, is important in hydrologic DA because streamflow and precipitation generally exhibit 

strong heteroscedasticity. In this work, we assume that all observational errors are temporally 

uncorrelated and consider both homoscedastic and heteroscedastic models. For homoscedastic 

modeling, we used a range of values for each error variance and examine the performance of DA. 

Such an approach allows assessment of the sensitivity of DA to the error variance when its 

quantification is difficult due to the independence assumption.  

Heteroscedastic modeling was considered for streamflow, MAP and the error in runoff. 

For MAPE, we used homoscedastic modeling only, given its limited variability. The errors in 

streamflow observations originate from the errors in water level measurement and rating curves 

(Clark et al. 2008). Due to the concave relationship between streamflow and stage, the errors at 

high water levels translate into larger errors in discharge (Sorooshian and Dracup 1980). Also, 

there is larger uncertainty at high water levels, due to the larger uncertainty in the rating curves 

(Clark et al. 2008). 

For heteroscedastic formulation of observation error variances for streamflow and MAP, 

we used the following formulations (Sorooshian and Dracup 1980; Carpenter and Georgakakos 

2004; Weerts and Serafy 2006; Clark et al. 2008; Rakovec et al. 2012): 

σQ = CQ𝑍𝑄 + CQo (m3/sec) (2-18) 

σP = CPZ𝑃 + CPo (mm/hr) (2-19) 

Where ZQ and ZP denote the streamflow and MAP observations, respectively, σQ and σP 

denote the observation error standard deviations for streamflow and MAP, respectively, CQ and CP 

denote the multiplicative coefficients for the streamflow and MAP observation error standard 
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deviation, respectively, and CQo and CPo denote the additive coefficients for the streamflow and 

MAP observation error standard deviation, respectively. The additive coefficients are introduced 

to keep the variance positive when the observation is zero. The coefficients in Eqs.(2-18) and 

(2-19) should be carefully chosen. Inaccurate heteroscedastic modeling may deteriorate, rather 

than improve, the performance compared to homoscedastic modeling. Ideally, the parameters 

should be estimated based on statistical analysis using the truth. Due to lack of such data, 

however, the above coefficients are estimated from sensitivity analysis- (see Section 2.6) over the 

ranges reported in the literature (Carpenter and Georgakakos, 2004; Weerts and Serafy 2006; 

Clark et al. 2008; Rakovec et al. 2012). Based on the above analysis, we chose 0.15 and 0.25 for 

CP, and 0.03 and 0.3 for CQ.   

 

2.4.3. Error in model runoff 

The error assumed in the soil moisture dynamics of the model may not account for biases 

due to structural and/or parametric errors that may exist in other parts of the soil moisture 

accounting and routing models. To account for such errors, we employed an additive error to TCI, 

or XRs (see Eq.(2-1)), as a control variable. This error may be modeled as time-varying or uniform 

within the assimilation window and is assumed to have an a priori mean of zero. Because runoff is 

not directly observed, variance of XRs cannot be estimated empirically. In this work, it is inferred 

from the observed and simulated streamflow via the following steps. Assuming that UH is perfect, 

we introduce the random additive error to runoff in the UH operation as shown below: 

Z𝑄(t) = ∫ {I(τ) + w(τ)}
t

0

u(t − τ)dτ 
(2-20) 

where I( ) denotes the model-simulated runoff, TCI, Z𝑄( ) denotes the observed 

streamflow, w( ) denotes the model runoff error and u( ) denotes the UH. Assuming stationarity of 

w( ) within the UH duration, we have for error variance of simulated streamflow: 



 

23 

 

σeq
2 = σRs

2 ∫ ∫ u(t − τ)
t

0

u(t − s)dsdτ
t

0

 (2-21) 

where σeq
2  denotes the error variance of simulated streamflow and σRs

2  denotes the runoff 

error variance. In reality, UH is not perfect. As such, σRs
2  estimated in this way is likely to be an 

overestimate as phase or timing errors in UH would be incorrectly attributed to σRs
2 . Isolating 

timing errors (Liu et al. 2011), however, was beyond the scope of this work and we parameterize 

the error variance, σeq
2 , as a function of the observed streamflow to account for heteroscedasticity. 

The resulting σRs (mm/hr) for the study basin, MTPT2 (see below), is given by (see also Figure 

2-2): 

σRs = (
√𝑍𝑄 + 135.5 − 11.6

0.07
) /103.84  (mm/hr) (2-22) 

where ZQ denotes the observed flow in m
3
/s. 

 

Figure 2-2 Standard deviation of the error in streamflow simulation as a function of the observed 

streamflow. 
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2.5. Evaluation experiments 

 

A series of sensitivity analysis, referred to as Experiment 1, was first carried out to 

determine the optimal values for the observation error variance for streamflow and variance of the 

additive error to TCI. By sensitivity analysis, we mean analysis of how the performance of DA 

may be affected by the settings of the uncertainty parameters. The rationale for setting the 

uncertainty parameters in this way, rather than via explicit optimization, is that, for the DA 

procedure to be operationally viable, it has to perform reasonably well even with suboptimal 

parameter settings which may be easily estimated. For the above, we assumed variances for 

observation errors in MAP and MAPE to be 10 mm and 1 (mm/hr)
2
, respectively (Seo et al. 2003). 

We then compared heteroscedastic vs. homoscedastic models of observational errors for 

streamflow and MAP, and of dynamic model error while keeping all other conditions the same; 

this is referred to as Experiment 2. 

For comparative evaluation, we carried out twin sensitivity experiments for EnKF and 

MLEF under varying conditions of the dynamic model error, the ensemble size and the number of 

streamflow observations assimilated in each cycle while the other parameters are kept at the values 

obtained from the above sensitivity analyses; this is referred to as Experiment 3. Table 2-2 

summarizes the parameter settings used in these experiments. 
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Table 2-2 Summary of the parameter settings used in the three experiments 

Experiment 

Observational error variance Additive error 

to TCI 
(mm/hr)2 

Soil moisture 

dynamical 
model error 

Ensemble 

Size 

No. of 

Streamflow data 
used per cycle 

MAP 
(mm/hr)2 

MAPE 
(mm/hr)2 

Streamflow 
(m3/s)2 

1. ASa to streamflow error variance 

AS to additive error variance to TCI 

10 1 1, 10, 50, 100 1 0.03 30 1 

10 1 10 0.01, 0.1, 1, 10 0.03 30 1 

2. Homoscedastic vs. 

Heteroscedastic error modeling 

10 1 10 1 0.03 30 1 

CP=0.15, 0.25 1 CQ=0.03, 0.3 Function of ZQ 0.03 30 1 

3. AS to soil moisture dynamical model error 

AS to ensemble size 
AS to no. of streamflow data used per cycle 

10 1 10 1 
0, 0.025, 

0.075, 0.1 
30 1 

10 1 10 1 0.025 5, 9, 30, 50 1 

10 1 10 1 0.025 30 1, 2, 4, 8 
a AS: Analysis of sensitivity 
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All experiments were performed for MTPT2, a headwater basin located in the NWS West 

Gulf River Forecast Center’s (WGRFC) service area (see Figure 2-3). The basin drains into the 

Tres Palacios River near Midfield in southern Texas and has a catchment area of 435 km
2
 and a 

time-to-peak of 17 hours. It is one of the 22 basins in the WGRFC’s service area that have been 

used in various DA and other hydrologic modeling studies in recent years (Seo et al. 2009; Lee et 

al. 2013). This basin was chosen for this study because its streamflow simulation has relative 

small timing errors and hence allows relatively clean assessment of the performance of DA 

without being compromised by phase errors (Liu et al. 2011). To the best of the authors’ 

knowledge, no DA techniques currently exist for streamflow prediction that can handle timing 

errors explicitly. 

 

Figure 2-3 The study basin of MTPT2 in Texas in the service area of the West Gulf River Forecast 

Center (WGRFC). 

 
The streamflow data used are the hourly observations from the United States Geological 

Survey (USGS). The precipitation data used are the MAP estimates derived from the hourly 

Multisensor Precipitation Estimator (MPE, Seo et al. 2010) products operationally produced by 

WGRFC. The MAPE data used are the monthly climatological estimates based on pan evaporation 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CD8QFjAB&url=http%3A%2F%2Fwater.weather.gov%2Fahps2%2Fhydrograph.php%3Fwfo%3Dhgx%26gage%3Dmtpt2&ei=FB45UYr7NYPq2QXTvYHgDw&usg=AFQjCNGiyJ7DaBMO3fypG-wHLlTH9wuZUg&sig2=qEiSQ0G4gCOe13XCTF0aQA&bvm=bv.43287494,d.b2I
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data as adjusted through the manual calibration process, which is explained below. In application 

of the SAC-SMA model, it is common to multiply PE by a potential evaporation adjustment factor 

to account for seasonal variations in vegetation activity. Manual calibration refers to the iterative 

adjustment of the climatological MAPE by human forecasters based on evaluation of the long-

term streamflow simulation results. For further details, the reader is referred to Koren et al. (1998). 

The simulation period was 1996 to 2005. The assimilation cycle was an hour. The maximum lead 

time for prediction was 72 hours. For prediction, we used the observed, rather than predicted, 

MAP and MAPE. As such, the prediction results assume clairvoyant future MAP (FMAP) and 

MAPE (FMAPE). In the real-time forecasting mode, there will, in general, be large uncertainties 

in FMAP and FMAPE, or input certainty (Krzysztofowicz 1999, Seo et al. 2006). Using perfectly 

known FMAP and FMAPE allows evaluation of DA in reducing hydrologic uncertainty without 

being masked by input uncertainty. Recall that the DA techniques considered in this work 

addresses only the hydrologic IC uncertainty. As such, being able to assess its potency in reducing 

hydrologic uncertainty is of foremost interest in this work. 

For evaluation, we used the 20 largest events with peak streamflow greater than 100 m
3
/s 

and examined the root mean square error (RMSE) of the simulated (DA-less or DA-aided) flow in 

reference to the observed flow, mean error of the simulated flow, correlation coefficient between 

the simulated and observed flow, maximum errors of under- and over-prediction in simulated 

flow, mean square error skill score of the DA-aided simulated flow in reference to the DA-less 

simulated flow and Nash-Sutcliffe efficiency of the simulated flow. It was found that RMSE 

represents the overall performance very well (see also Seo et al. 2003, 2009). As such, we used 

RMSE as the primary performance measure. We note here that the lognormal initialization may 

compromise the quality of ensemble mean from EnKF whereas MLEF can cope of non-normal 

distributions (Fletcher and Zupanski 2007). To evaluate performance in the distributional sense, 

however, ensemble verification is necessary, a task left as a future endeavor. 
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2.6. Results 

 
In this section, we present the sensitivity analysis and comparative evaluation results. 

First we present the analysis of sensitivity of MLEF to variances of streamflow observation error 

and additive error to TCI (Experiment 1). We then present the comparative evaluation results of 

homoscedastic versus heteroscedastic modeling of observation errors for MLEF (Experiment 2). 

Finally, we compare MLEF and EnKF using the parameter settings obtained from the above 

experiments under varying conditions of the magnitude of variance of the dynamic model error, 

the ensemble size and the number of streamflow data assimilated per cycle (Experiment 3). The 

default parameter settings and the range of the parameter settings used are summarized in Table 

2-2. 

 

2.6.1. Sensitivity to error variances of streamflow and runoff observations 

One of the most important DA parameters is the observation error variance for 

streamflow (Seo et al. 2003). For its determination, sensitivity analysis was carried out for a wide 

range of values. Figure 2-4 shows the RMSE as a function of lead time for streamflow observation 

error variance of 1, 10, 50 and 100 (m
3
/s)

2
. Ideally, the error variance should be modeled 

heteroscedastically to account for its dependence on the magnitude of the flow. For such a 

heteroscedastic approach to be effective, however, all other uncertainty modeling must be 

sufficiently accurate, a tall order in reality. While simplistic, homoscedastic modeling generally 

provides good performance without elaborate uncertainty modeling, and hence is appealing in 

practice. Figure 2-4 indicates that, in general, the smaller the error variance is, the closer the fit 

through the observed streamflow is, which results in smaller RMSE at short lead times but at some 

expense of larger RMSE at large lead times. Based on Figure 2-4, we chose 10 (m
3
/s)

2
 for σQ

2
 for 

the rest of the sensitivity analysis. That the DA-aided simulation has slightly larger RMSE than 
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DA-less simulation at large lead times is an indication that the uncertainty modeling may need to 

be improved. 

 

Figure 2-4 Sensitivity of the performance of MLEF on the variance of the streamflow observation 

error as measured by RMSE of streamflow prediction. The black, red, and green lines represent 

the base model simulation, the control simulation by MLEF and the ensemble mean of perturbed 

simulations with MLEF, respectively. 

 
Another influential uncertainty parameter is the variance of the additive error to TCI. In 

reality, this error cannot be quantified as the true runoff is not observed. In this work, we assume 

that simulated runoff is unbiased and assign zeros as pseudo observations of this error. 

Conceptually, the above error is analogous to the model error for soil moisture dynamics and aims 

to account for the structural and/or parametric errors that may exist in hydrologic modeling outside 

of the soil moisture-dynamical model. Sensitivity to a range of values from 0.01 to 10 (mm/hr)
2 
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was examined for the variance of additive error to TCI. It was found that this sensitivity is similar 

to that to the streamflow observation error variance; increasing the additive error variance to TCI 

renders simulation to be less accurate at short lead times while improving performance at larger 

lead times. Based on the above results, we chose a value of 1 (mm/hr)
2
 for the additive error 

variance to TCI for use throughout the rest of this work. To check the realism of this choice, we 

also calculated the sample variance of the simulated runoff, which was found to be very close to 

the above value. 

 
2.6.2. Homoscedastic vs. heteroscedastic error modeling 

The results presented in the previous subsection assumed homoscedastic observation 

errors. Here we present comparative evaluation of MLEF under homoscedastic vs. heteroscedastic 

modeling of observation errors. Figure 2-5 shows the RMSE of streamflow prediction vs. lead 

time under varying combinations of the parameter settings in heteroscedastic formulation of the 

observation errors in streamflow and MAP. In this formulation, the runoff error variance is also 

modeled as heteroscedastic as described in Section 2.4 (see also Table 2-2). For comparison, the 

results from homoscedastic modeling are also shown. The figure indicates that heteroscedastic 

modeling of observation errors does not improve DA performance over homoscedastic modeling, 

and that the performance of MLEF is not very sensitive to modeling of observational error 

variances. The first observation confirms the experience that, in practice, heteroscedastic modeling 

of observation errors is very difficult as the quality of the modeling must be sufficiently high not 

only for the observational errors but also for the model errors. The second observation suggests 

that, even without very accurate uncertainty modeling, reasonably good performance may be 

obtained from MLEF for the assimilation problem dealt with in this work. 
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Figure 2-5 Effect of heteroscedastic modeling of observation errors in streamflow, MAP and 

runoff on RMSE of streamflow prediction with MLEF. The variables CP and CQ denote the 

multiplicative coefficients for MAP and streamflow observations (see Eqs. (2-18) and (2-19)). The  

abbreviations HETERO and HOMO denote heteroscedastic and homoscedastic modeling of 

observation errors, respectively. 

 

2.6.3. Comparative results of MLEF and EnKF 

In this subsection, we first evaluate sensitivity of MLEF and EnKF to uncertainty 

modeling of the model errors in the soil moisture dynamics. As explained in Section 2.4, in EnKF 

the variance of the model errors (i.e. the diagonal terms in Qk-1 in Eq.(2-15)) in the SAC soil 

moisture dynamics is prescribed as a fraction of the soil water content. In MLEF, the residual 

model error, i.e. the model error in an ensemble perturbation run subtracted by that in the control 
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run, is prescribed as a fraction of the soil water bucket size. We used values of 0, 0.025, 0.075 and 

0.1 for the fraction in this work. A zero model error means a perfect model for the soil moisture 

dynamics whereas a large fraction means that the model soil moisture dynamics has large 

uncertainties.  

Figure 2-6 shows that accounting for model errors in soil moisture dynamics improves 

the performance of DA significantly at short lead times but has slightly negative impact at larger 

lead times. It is seen that both MLEF and EnKF achieve their respective best with a fraction of 

0.025. The MLEF result is somewhat surprising in that we expected the optimal fraction for 

MLEF to be smaller than that for EnKF because the former represents only the residual error (see 

above). With a fraction of near 0.025 and somewhat larger, MLEF generally shows significantly 

smaller RMSE at shorter lead times and smaller sensitivity to magnitude of the dynamical model 

error than EnKF. The above observation is an important consideration in operational hydrology in 

that accurate modeling of model errors is very difficult in practice. To better understand how the 

magnitude and structure of model errors may impact the performance of the DA techniques and to 

explain the sensitivity of MLEF to the error fraction, additional research is needed.  

Figure 2-7 shows the RMSE of streamflow prediction vs. lead time for different ensemble 

sizes. We used 5, 9, 30 and 50 ensemble members for both EnKF and MLEF while keeping all 

other settings the same (see Table 2-2). Note that MLEF is not very sensitive to ensemble size and 

the predictions are very good even with a small ensemble size. The EnKF solution generally 

improves with increasing ensemble size but does not come close to the MLEF solution even when 

the ensemble size is larger than 50 members. The above results for MLEF are not surprising in 

that in MLEF the ensemble members are generated around the control solution obtained via 

nonlinear constrained minimization similarly to VAR. As such, for MLEF, the sensitivity to 

ensemble size is largely a reflection of the sampling uncertainty associated with limited ensemble 

size. The EnKF results, on the other hand, reflect not only the sampling uncertainty but also the 
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diminished quality of the solution when the distributions involved are not symmetric, as well as 

the suboptimal nature of the solution when the observations are nonlinearly related to the model 

states. Note that, even with a large ensemble size of 50, the EnKF solution is still significantly 

inferior to the MLEF solution. We also compared the CPU time for different ensemble sizes for 

both EnKF and MLEF. It was found that, whereas the increase in CPU time is sharper for MLEF 

with increasing ensemble size, the total CPU time for MLEF is considerably smaller than that 

EnKF for all ensemble sizes considered in this work. 

 

Figure 2-6 Performance of streamflow prediction with MLEF and EnKF at varying levels of the 

error assumed for the model dynamics. 
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Figure 2-7 Sensitivity of DA performance on the ensemble size (S). 

 
Figure 2-8 shows the RMSE of streamflow prediction vs. lead time for a varying number 

of hourly streamflow observations assimilated per cycle. Recall in the Introduction Section that 

the DA problem dealt with in this work is formulated as a fixed lag smoother in which the lag 

corresponds to the size of the assimilation window. As such, it is possible to assimilate as many 

streamflow observations as there are valid within the assimilation window. In this experiment, we 

used 1, 2, 4 and 8 streamflow observations valid at or near the end of the assimilation window. Fig 

8 shows that the MLEF results deteriorate when a greater number of streamflow is assimilated. 

The performance of EnKF, on the other hand, improves up to 4 hourly streamflow observations 

assimilated per cycle and decreases when the number is increased further. The reason for the 

deterioration in MLEF, which was also observed with VAR (Seo et al. 2003), is that multiple 

observations of streamflow may translate via UH into a runoff time series that may not be 
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dynamically consistent. Note that, because UH is a convolution operation, assimilating a single 

observed flow already amounts to adjusting streamflow simulations at multiple time steps rather 

than only the synchronous simulated flow. In other words, UH does not offer enough degrees of 

freedom for assimilation of multiple streamflow observations unless they have very large 

observation errors. The improvement in EnKF up to 4 observations and a much slower rate of 

deterioration thereafter is due to the suboptimal nature of its solution which significantly reduces 

the sensitivity of its performance to the number of flow observations assimilated.  

 

Figure 2-8 Sensitivity of DA performance on the number of streamflow observations assimilated 

at a given assimilation cycle (Nf). 

 

In addition to the summary statistics presented above, we also visually examined a large 

number of DA-less and DA-aided predictions of individual events and the corresponding control 
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variables. Such an examination serves at least two very important purposes. The first is to identify 

the conditions under which EnKF and MLEF may perform significantly differently. The second is 

to assess operational viability of the techniques by critically examining different aspects of the 

performance of DA such as temporal consistency in DA-aided predictions for significant events. 

To get a better sense of the comparative performance between MLEF and EnKF, we plotted in Fig 

9 the time series for the last 10 significant events (out of the 20 events whose peak flow exceeds 

100 m
3
/s) of the MLEF- (control) and EnKF-aided (mean of 30 ensemble members) simulations as 

well as the base (i.e. DA-less) simulation. The parameter values used for Figure 2-9 are based on 

the homoscedastic setting given in Experiment 2 of Table 2-2. To highlight the differences 

between MLEF and EnKF simulations, we show one of the events in an inset in semi-log scale. 

Note that MLEF is able to catch up with the rising and falling limb better than EnKF.  Note also 

that for most of the cases MLEF performs better. Figure 2-10 and Figure 2-11 show selected 

examples of streamflow prediction with EnKF and MLEF. For the first two cases shown in Figure 

2-10, both EnKF and MLEF perform well in the single-valued sense. As noted in the Introduction 

Section, assessment of DA performance in the ensemble sense was beyond the scope of this work. 

We only note here that the ensembles from DA analysis tend to be under-spread, particularly for 

the falling limb as may be seen in the lower panel of Figure 2-10 (see below for explanation). 

Figure 2-11 illustrates the limitations of EnKF when the observation process is highly nonlinear. 

In this and similar cases, the EnKF solution is rather poor whereas MLEF is reasonably successful 

in catching up with the observed flow. Such a poor-quality solution is problematic in an 

operational setting and questions operational viability of EnKF for solving the assimilation 

problem posed in this work. Figure 2-10 also shows the ensemble members of the state variables 

corresponding to the streamflow ensembles. Note that there is a significantly larger spread in 

ensemble members of the state variables of EnKF compared to those of MLEF. Note also that, 

between EnKF and MLEF, the updated ensemble trajectories of the model states are quite 
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different for some states, but that the spread of streamflow ensembles is similar between the two 

DA techniques. The first observation is a reflection of the fact that the analysis error covariance 

from MLEF is much smaller than that from EnKF. The second observation is an indication that the 

inverse problem posed by the assimilation problem may be significantly underdetermined. 

Assessment of the quality of the soil moisture ensembles was beyond the scope of this work and is 

left as a future endeavor. It is worth noting in Figure 2-10 that the streamflow ensembles on the 

falling limb are severely under-spread. This is explained in part by the fact that some of the soil 

moisture states hit the upper bounds prescribed by the model parameters, which collectively 

reduces the ensemble spread in TCI. This points out that accounting for parametric uncertainty is 

necessary to produce realistic uncertainty spread using ensemble DA techniques, a topic left as a 

future endeavor. 
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Figure 2-9 (Top) Time series of the base (purple), MLEF control (green) and EnKF ensemble 

mean (red) simulations for the last ten of the 20 events whose peak flow exceeds 100 (m3/sec); 

one of the 10 events is also blown up at log scale; (Middle) Time series of the difference between 

the simulated and observed flow; (Bottom)  the periods of best performance among the MLEF 

(green), EnKF (red) and base (purple) model simulations in terms of the absolute error. 
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Figure 2-10 Example ensemble DA results for rising (upper panel) and falling limbs (lower panel). 

The left panel shows the observed and simulated hydrographs within the forecast time window of 

72 hours. The right panel shows the simulated soil moisture states, observed and DA-adjusted 

MAP and MAPE, and unadjusted and adjusted TCI over the assimilation window (to the left of the 

orange vertical line) and the prediction window (to the right of the orange line). The vertical 

orange line denotes the prediction time of May 13, 20Z, 2004 (upper panel) and May 14, 20Z, 

2004 (lower panel). 
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Figure 2-11 An example (prediction time Mar 18, 20Z, 1997) of significantly different 

performance between MLEF and EnKF. 

 
Finally, we note here that we also evaluated both MLEF and EnKF for a second basin, 

GBHT2, which drains into Green Bayou in Houston, TX. It is much smaller (137km
2
) and has a 

time-to-peak of only 6 hours. Qualitatively, the results are similar to those for MTPT2 and support 

the findings summarized above. While the use of only a very small number of basins for 

evaluation may seem insufficient, it is well known (Seo et al. 2003, 2009; Lee et al. 2012) that the 

performance of DA is consistently similar over different types of basins barring significant timing 

errors (Liu et al. 2011). 
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2.7. Conclusions  

 
Performance of the two data assimilation (DA) techniques, maximum likelihood 

ensemble filter (MLEF) and ensemble Kalman filter (EnKF), are comparatively evaluated for the 

MTPT2 basin which drains into the Tres Palacios River near Midfield in southern Texas. The DA 

problem considered is assimilating streamflow, mean areal precipitation (MAP) and mean areal 

potential evaporation (MAPE) data into the Sacramento soil moisture accounting model (SAC) 

and unit hydrograph (UH) to update the soil moisture states for improved prediction of streamflow 

at the basin outlet. The primary purpose of the comparative evaluation is to assess relative 

performance and operational viability of the two DA techniques when the observation equation is 

highly nonlinear. Note that EnKF assumes linear observation equations whereas MLEF does not. 

The DA problem is formulated as fixed-lag smoothing following Seo et al. (2003, 2009) and Lee 

et al. (2011, 2012).  

For comparative evaluation of MLEF and EnKF, three sets of experiments were carried 

out. First, sensitivity of MLEF to the variances of streamflow observation error and additive error 

to Total Channel Inflow (TCI) of SAC was examined. Second, using the results from the above 

experiment as reference, comparative evaluation of homoscedastic versus heteroscedastic 

modeling of observation errors was carried out for MLEF. Finally, we compared MLEF and EnKF 

using the parameters obtained from the above experiments under varying conditions of the 

magnitude of the dynamic model error, the number of ensemble members, and the number of 

streamflow data assimilated per cycle. 

The main findings are as follows. Heteroscedastic modeling of observation errors for 

MAP and streamflow does not improve over homoscedastic modeling for MLEF. The most 

probable reason for this is that the dynamical model errors are not modeled with the accuracy 

necessary to benefit from the heteroscedastic modeling of the observation errors. Because the 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CD8QFjAB&url=http%3A%2F%2Fwater.weather.gov%2Fahps2%2Fhydrograph.php%3Fwfo%3Dhgx%26gage%3Dmtpt2&ei=FB45UYr7NYPq2QXTvYHgDw&usg=AFQjCNGiyJ7DaBMO3fypG-wHLlTH9wuZUg&sig2=qEiSQ0G4gCOe13XCTF0aQA&bvm=bv.43287494,d.b2I
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accuracy of modeling the dynamical model errors depends on that of the model itself, however, 

there is a limit to improving the former. The above suggests that accurate heteroscedastic 

modeling of uncertainty parameters is very difficult and may not be very practical. MLEF is found 

to be not very sensitive to modeling of observational errors. It reflects the fact that iterative 

minimization in MLEF is able to converge to the solution even though the observation equation is 

nonlinear. The above suggests that a combination of homoscedastic modeling and sensitivity 

analysis may be sufficient to realize full benefits of MLEF for streamflow prediction at the outlet. 

Introducing model error in soil moisture dynamics (i.e. weak-constraint formulation) improves DA 

performance significantly at short lead times but has slightly negative impact at larger lead times. 

The latter observation is an indication that the dynamical model errors and their time evolution 

need to be modeled more accurately. The dynamical model error in EnKF is expressed as a 

fraction of the time-varying soil water content for all states whereas in MLEF the residual 

dynamical model error, defined as the difference between the model error in a perturbation run and 

that in the control run, is expressed as a fraction of the soil water bucket size for all states. Both 

MLEF and EnKF achieve best performance with a fraction of 0.025. With a fraction of near 0.025 

and somewhat larger, MLEF generally shows significantly smaller RMSE in streamflow 

prediction at short lead times and smaller sensitivity to magnitude of the dynamical model error 

than EnKF. The last observation is an important consideration in operational hydrology in that, in 

practice, accurate modeling of model errors is very difficult. To better understand how the 

magnitude and structure of model errors may impact the performance of the DA techniques, 

however, additional research is needed. Sensitivity to ensemble size indicates that MLEF is able to 

produce significantly more accurate outlet streamflow predictions using fewer ensemble members 

than EnKF, which requires a much larger ensemble size to approach a comparable level of 

performance. The above results reflect the fact that in MLEF the ensemble members represent 

perturbations around the maximum likelihood solution whereas in EnKF they represent a set of 
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equally-likely suboptimal solutions. To achieve similar performance, the total CPU time required 

for MLEF is significantly smaller than that for EnKF. Sensitivity to the number of streamflow 

observations assimilated indicates that, similarly to VAR, MLEF performs best with a single 

streamflow observation assimilated per cycle. The above result arises because unit hydrograph, the 

routing model used in this work, is a convolution operation and hence has a large information 

overlap in simulated streamflow over successive time steps when the time step is small. 

Performance of EnKF, on the other hand, improves as the number of streamflow observations is 

increased to 4 per cycle but decreases thereafter, which reflects the suboptimal nature of the EnKF 

solution. It was observed that, while the streamflow ensemble results often appear similar between 

MLEF and EnKF, the soil moisture ensemble results are quite different between the two. It 

suggests that EnKF and MLEF produce rather different solutions, an indication that the inverse 

problem may be significantly underdetermined. To assess the quality of DA-aided solutions for 

the model states, however, soil moisture observations are necessary, a task left as a future 

research. The results summarized above are generally similar for the second test basin, GBHT2, 

which drains into Green Bayou in Houston, TX. In general, MLEF improves over EnKF 

consistently over varying conditions of observational and model errors and ensemble size. It 

indicates that good performance may be expected from MLEF even if the uncertainty parameters 

may not be of high quality, a rather desirable attribute for operational applications. It is also shown 

that, in certain cases, the quality of the EnKF solution is unacceptably poor whereas that of the 

MLEF solution remains reasonably good. There are instances in MLEF, however, when the 

approximate gradient evaluation may not be of high quality, which may produce temporally less 

than consistent results. In this work, comparative evaluation was carried out only in the single-

valued sense. Additional research is necessary to produce reliable ensemble for analysis and 

prediction and to assess their quality via rigorous ensemble verification for both streamflow and 
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soil moisture. Finally, comparative evaluation of MLEF and iterative EnKF (Lorentzen and 

Nævdal 2011) is necessary to assess their effectiveness against computational cost. 

 



 

45 

Chapter 3  

Comparative evaluation of radar-based quantitative precipitation estimates (QPE) 

 

For effective use of radar-based QPE for high-resolution flash flood forecasting in large 

urban areas, it is necessary to understand and assess how the errors in radar-based QPE may differ 

over different spatiotemporal scales of aggregation and how they may manifest in hydrologic 

simulations. Toward that end, we carry out comparative evaluation of QPEs from the Multisensor 

Precipitation Estimator (MPE), NEXRAD Digital Hybrid Scan Reflectivity (DHR), Q2 and CASA 

(Collaborative Adaptive Sensing of the Atmosphere) for the Dallas-Fort Worth Metroplex (DFW). 

We perform scale-compatible intercomparison of the QPE products, compare them with rain 

gauge observations and assess the relative information content among the QPEs. Results indicate 

that DHR is the least skillful QPE as expected. Q2 is least biased in mean but it has the largest 

variability. MPE is the most skillful QPE for small amounts of precipitation while CASA is the 

most accurate estimation for large rainfall amount which is a desired attribute for flash flood 

forecasting purposes. 

 

3.1. Introduction to hydrologic application of weather radar  

 

More than three-quarters of the population of United States lives in urban areas that 

comprise only about 3% of the total land area. Given the high population density in urban areas, 

high-resolution observations and modeling capabilities are necessary for predicting flash floods in 

urban areas. Increasing occurrences of extreme precipitation expected from climate change has put 

such areas in an increasingly vulnerable position as even a small-scale but intense rainfall event 

can cause deadly flash floods and extensive damages. If there is an adequate warning and 

forecasting system for metropolitan cities, which occupy a small percentage of land in US, it could 
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potentially save a lot of lives and reduce the economic impact. The motivation of this study to 

develop a prototype high resolution flash flood warning system for Dallas-Fort Worth metroplex 

which is a large urban area.  

For high-resolution observation and modeling of large urban areas, the use of weather 

radar and distributed hydrologic modeling is a natural progression. The main forcing data for a 

distributed hydrologic model is precipitation data with high spatial and temporal variability. 

Therefore, performance of the hydrologic model heavily relies on the accuracy of the precipitation 

estimation.  

Traditionally, rain gauges were the main tool for direct measurement of rainfall rates and 

rainfall accumulation which generally provides good quality data for a small area because of small 

sampling volume. Rain gauges are subject to different sources of errors (Habib et al. 2010), but 

their main drawback is that they are point measurements and not capable of detecting and 

measuring rainfall at the desired resolution required by most advanced hydrological applications 

(Wang et al. 2008) which urge a need for another source for providing spatially distributed 

rainfall. It should be noted that despite the advances in remote sensing, rain gauges still provide a 

better estimation of what actually happened on the surface and is used as the main source of data 

for bias correction of rainfall maps produced from radar (Fulton et al. 1998, Seo et al. 1999, Zhang 

et al. 2011) and as the reference in comparison studies (Wang et al. 2008, Larson et al. 2008 to 

name a few).  

Radar-based rainfall is a promising substitute for gauge-based rainfall because of their 

high temporal and spatial resolution and variability throughout US. Quantitative precipitation 

estimates (QPE) from radars are, however, subject to various sources of error. High-resolution 

distributed modeling is subject to nonlinear growth of error due to errors in QPE and in model 

parameters and structures. Thus, it is necessary to understand and assess how the error properties 

in radar-based QPE may differ over different spatiotemporal scales of aggregation and how they 
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may manifest in hydrologic simulations which will be useful in improving the accuracy of radar-

based QPE by removing the biases or optimally combining different QPEs. Therefore, our main 

objective in this chapter is to comparatively evaluate QPEs from the Multisensor Precipitation 

Estimator (MPE), NEXRAD Digital Hybrid Scan Reflectivity (DHR), Q2 and CASA 

(Collaborative Adaptive Sensing of the Atmosphere). This objective will be achieved by 

comparing the concurrent and collocated radar and rain gauge observations retrieved from a dense 

rain gauge network. The topic of improving the accuracy of QPEs through optimally combining 

different products will be discussed in the next chapter. 

There have been many studies dedicated to evaluating different radar-based precipitation 

estimations in the last two decades some of which will be discussed in the Section 3.2; however, 

there are not many studies to address the comparative evaluation of different QPEs. This was the 

main motivation for the comparisons carried out in this chapter. 

The radar-based rainfall is an areal rainfall over the nominal resolution of QPE; in 

contrast, raingauge rainfall is a point measurement. Therefore, the large radar-gauge discrepancies 

cannot be treated as radar-rain estimation error. Ideally, one should compare the radar rainfall with 

the true areal rainfall over the same spatial domain of radar rainfall as rainfall is a highly 

intermittent phenomenon and is extremely variable in space and time (Moreau et al. 2009). 

However, there are not many point measurements available to derive the true areal rainfall which 

makes the comparison problematic. Ciach and Krajewski 1999 proposed the error variance 

separation (EVS) method to partition the error variance into the error of the radar averaged rainfall 

estimate and the error originating from the resolution difference. This method was applied in 

different studies thereafter (Anagnostou et al., 1999; Chumchean et al., 2003; Habib and 

Krajewski 2002; Young et al., 2000). However, they assumed that the covariance of radar and rain 

gauge rainfall errors are negligible. Ciach et al. 2003 showed that this assumption is not fulfilled.  
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Habib et al. 2004 proposed a conditional distribution transformation (CDT) method. They 

used the raingauge rainfall distributions conditioned on the radar estimates as well as additional 

information on spatial variability of rainfall to retrieve the conditional distribution of the 

corresponding true rainfall. However, the selected domains are considerably bigger than the radar 

resolutions which magnify the single-radar gauge representativeness errors. Zhang et al. 2007 

introduced an extended error variance separation method (EEVS) which combines a kriging 

scheme for estimating areal rainfall from gauges with a sampling method for determining the 

correlation between the gauge and radar related errors. Moreau et al. 2009 also proposed a new 

method to derive the instrumental and the representativeness error.  

All the aforementioned methods rely on the geostatistical framework which may 

underestimate the rainfall in the case of extreme events. To overcome this problem Gires et al. 

2014 proposed a novel method to account for representativeness error by downscaling the radar 

rainfall using Universal Multifractals. As the main objective of this study is comparative 

evaluation of the QPEs and the representativeness error exists in all the products the 

representativeness error will not be accounted for here. Also available rain gauge network for this 

study is not dense enough to infer reliable conclusions about the representativeness error. The rest 

of the chapter is organized as follows. Description of each QPE and related studies are described 

in Section 3.2. Study area and data preparation are explained in Section 3.3. Section 3.4 describes 

the methodology used and results are presented in Section 3.5. Conclusion is given in Section 3.6. 

 
3.2. Quantitative precipitation estimation (QPE) 

 
Quantitative precipitation estimation is a method to estimate the amount of rainfall 

occurring over an area or region. This estimation can be done based on radar or satellite 

observations. There are many quantitative precipitation estimations available since there are 

different types of radar in operation and different agencies have their own product.  We have 
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chosen four of them for this intercomparison study which are of importance and introduced in the 

following subsections. 

 

3.2.1. NEXRAD Digital Hybrid Scan Reflectivity (DHR) 

Next Generation Weather Radar (NEXRAD) system across the United States is the main 

source of sensor data for severe weather warnings and forecasts of tornadoes and flash flooding 

from mid 1990s (Fulton, 2002) and many of the frequently used QPE products are based on these 

radars such as Multisesnor  Precipitation Estimator (MPE). NEXRAD currently comprises 159 

sites throughout United States and select overseas locations. NEXRAD radar rainfall products 

have four stages (I-IV) based on the amount of processing and quality control for different uses. 

Stage I is the hourly rainfall estimate using radar alone with the nominal spatial resolution of 4 km 

x 4 km (HRAP coordinate system, Reed and Maidment 1999). Stage II provides the combination 

of radar and hourly rain gauge observation using optimal estimation which has mean bias 

correction and local adjustment embedded. To enable modeling in watershed scale, stage III 

product mosaics multiple radar QPEs into one product at the River Forecast Center (RFC) scale 

which also has interactive quality control of both gauge and radar data (Briendenbach et al. 1998).  

Digital Hybrid Scan Reflectivity is one of the available products of level III products of 

NEXRAD radars. Once the precipitation detection function detects rainfall within the range of the 

radar, the preprocessing algorithm assembles reflectivity measurements from each volume scan 

into a fixed polar grid with resolution of 1º in azimuth by 1 km. As the name “hybrid scan” 

suggests, the reflectivity values of each bin are selected from the lowest four elevation angles, or 

tilts. The objective of introducing DHR was to use the reflectivity values as close to 1-km altitude 

as possible while minimizing the effect of ground clutter and terrain blockage (Fulton et al. 1998). 

Each WSR-88D site has a unique, hybrid scan look-up table in a polar grid at 1 km by one 

azimuthal degree indicating which one of the four lowest elevation angles to be used in producing 
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the DHR field. DHR is mainly used in flash flood forecasting application since time is of the 

essence. We have also used it here to assess the amount of improvement seen in different QPEs 

after the application of the specific processing techniques.  

 

3.2.2. Multisensor Precipitation Estimator (MPE) 

The Multisensor Precipitation Estimator (MPE, Seo et al. 2010, Kitzmiller et al. 2011) is 

an application for real-time multisensor precipitation estimation at 1-hr 4-km scale based on rain 

gauge observations, precipitation estimates from NEXRAD and, in some places, Geostationary 

Operational Environmental Satellite (GOES) QPE products. MPE replaced Stage III (Hudlow 

1988, Shedd and Fulton 1993) in early 2000s. The MPE products generated by the RFCs are 

mosaicked at the National Centers for Atmospheric Prediction (NCEP) to generate the Stage IV 

products (Seo et al. 2010, Lin and Mitchell 2005). The MPE product is one of the most popular 

NWS products (http://water.weather.gov/precip/) and is used for a wide range of applications. A 

number of studies have been carried out to evaluate the quality of the MPE and Stage IV products. 

Wang et al. (2008) compared the MPE products with Stage III using a high-density rain 

gauge network in the Upper Guadalupe River Basin of Texas. Uniform rainfall events were used 

to minimize the effects of point-to-area representativeness error. They concluded that MPE has a 

better agreement with the rain gauge data as reflected by higher correlation, higher probability of 

detection (POD) and smaller bias compared to Stage III. Wescott et al. (2008) evaluated MPE with 

quality controlled NWS cooperative gauges at daily and monthly scales, and at grid cell (i.e. 

HRAP) and county scales. They reported that MPE underestimated monthly precipitation, but that 

the degree of underestimation decreased over the study period of 41 months. The also reported 

underestimation of large precipitation amounts at daily scale.  

Habib et al. (2009) investigated the accuracy of MPE for a 3-year period of 2004 to 2006. 

They used a dense rain gauge network in the Isaac-Verot Watershed in Lafayette, LA, to reduce 
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representativeness errors. There were two HRAP boxes each with 4 rain gauges in the watershed. 

They observed overestimation of light precipitation and underestimation of heavy precipitation. 

They concluded that MPE performs best for medium to large precipitation amounts. On an annual 

basis, the overall bias in the MPE estimates was rather small. For event-based comparisons, 

however, biases reached 25% for a half of the events and exceeded 50% for 10% of the events 

considered. Depending on the choices for bias correction and radar-gauge merging, MPE produces 

as many as seven products (Seo et al. 2010). The RFC forecasters choose one of the products and 

modify as necessary in real time based on their experience and expertise. Habib et al. (2013) 

performed a comparative analysis of the seven MPE products for the Isaac-Verot Watershed. The 

results showed that mean-field bias adjustment to radar-only product provides the largest 

improvement. Radar-gauge merging, on the other hand, did not necessarily result in improved 

accuracy and, in some cases, deteriorated the estimates. 

 

3.2.3. Q2 QPE 

The National Mosaic and Multi-Sensor Quantitative Precipitation Estimation (QPE) 

(NMQ) system is a multi-radar multi-sensor (MRMS) precipitation estimation and short-range 

forecast system (Vasiloff et al. 2007). One of the objectives of NMQ is to assimilate data from 

different observing networks to create high-resolution national multisensor QPEs for flash flood 

and flood warnings and water resources management. The NMQ system has been in operation in 

real time since June 2006 (Zhang et al. 2011). The next-generation QPE, or Q2 (Vasiloff et al. 

2007), is a key component of the NMQ system. Q2 includes automated precipitation type 

classification and produces various products such as radar-only QPE, local bias-corrected radar 

QPE, gauge-only QPE, and QPE that combines gauge observations, orography and precipitation 

climatology (Zhang et al. 2011). In this work, we used the radar-only QPE product for which the 

primary source of radar data is NEXRAD. Wu et al. (2011) evaluated the NMQ products for the 
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twelve River Forecast Centers (RFC) service areas in the continental US using rain gauge 

observations from the Automated Surface Observing System (ASOS). They showed that the NMQ 

radar-only QPE has higher correlation and lower bias compared to the radar-only QPE from the 

WSR-88D Precipitation Processing System (PPS, Fulton et al. 1998). 

 

3.2.4. Collaborative Adaptive Sensing of Atmosphere (CASA) 

One of the limitations with NEXRAD is that they do not observe the lower atmosphere 

away from the radar location which causes degradation of spatial resolution at far ranges. Also, the 

temporal resolution is constrained by a fixed set of volume coverage patterns. This lack of 

resolution arises because the radar operation is independent of the weather conditions. To 

maximize its utility, the radar may adapt to the time-varying needs of the users (Junyent et al. 

2010). To address these gaps in the current weather observation system, the NSF Engineering 

Research Center (ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) developed 

a new weather warning systems based on dense networks of small radars (McLaughlin et al. 2005) 

with adaptive scanning strategy (Junyent et al. 2010).  

The CASA Integrated Project was the first test bed of a networked CASA radar system 

composed of four X-band radars in Oklahoma. Each radar node was approximately 30 km away 

from the next unit. The details of the radar network, hardware and software architectures are 

described in Junyent et al. (2010). Attenuation is a known issue for precipitation estimation using 

X-band radars (Seo et al. 2010, Berne and Krajewski 2013). The CASA system uses the network 

reflectivity retrieval technique (Chandrasekar and Lim 2008) and the network-based attenuation 

correction technique (Lim et al. 2011) to mitigate the effects of attenuation. Lim et al. (2011) 

showed that the technique works robustly in real time in retrieving attenuation-corrected 

reflectivity. CASA QPE is based on specific differential propagation phase which makes it 

immune to absolute calibration errors (Bringi and Chandrasekar 2001). The network was 
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evaluated using rain gauge observations for a five-year period which showed a good agreement 

between radar QPE and rain gauge observations with a standard deviation of 25% and a bias of 

3.7% (Chandrasekar et al. 2012). After the successful test bed demonstration of CASA in 

Oklahoma, the CASA system was moved to DFW in late 2012.The issues to be addressed include 

urban flooding, low-level wind sensing, weather forecasting, weather and water hazard decision 

making and network of networks demonstration. This partnership and the test bed are expected to 

be a prototype of a national-scale "network-of-networks" in which different users and data 

providers can exchange observational data across a common infrastructure. Figure 3-1 shows the 

layout of the first 8 radars in the network. 

 

 

Figure 3-1 location and coverage of 8-radar (CASA) in the DFW Urban Testbed 
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3.3. Study area, data acquisition and preparation 

 

The Dallas–Fort Worth metroplex in North Texas is, by population, the largest 

metropolitan area in Texas, the largest in the South, the fourth-largest in the United States, and the 

tenth-largest in the Americas. The study area is a rectangle enclosing cities of Fort Worth, 

Arlington and Grand Prairie (Figure 3-2). The QPEs used in this study are MPE, Q2, DHR and 

CASA QPE. The spatiotemporal resolution and period of record for each data set are summarized 

in Table 3-1. For comparative evaluation of QPEs, we use the rain gauge network deployed and 

operated by the City of Grand Prairie. Detailed information of all available observations are given 

in the following subsections. 

 

 
Figure 3-2 Study domain encompassing Cities of Fort Worth, Arlington and Grand Prairie and rain 

gauge locations  
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Table 3-1 Availability of radar-based QPEs and rain gauge data for the study and their 

spatiotemporal resolution. 

Rainfall product 
Temporal 

resolution 

Spatial 

resolution 

Start date of 

data availability 

End date of 

data availability 

MPE ~ 60 min ~ 4km × 4km 01/01/1996 31/06/2014 

DHR ~5 to 6 min ~ 1º  × 1 km 02/07/2008 11/05/2013 

Q2 ~5 min ~ 1km × 1 km 10/06/2011 07/31/2013 

CASA ~1 min 
~ 500 m × 

500m 
01/08/2013 31/06/2014 

Grand Prairie 

Gauges 
~15 min - 03/12/2009 31/06/2014 

 

3.3.1. Rain gauge observation 

There are about 19 gauges deployed and operated by the City of Fort Worth as well as 20 

gauges deployed by the City of Grand Prairie as a part of High Water Warning System (HWWS). 

These are Tipping-Bucket rain gauges with the resolution of 0.04 inch. Only rain gauges owned by 

the City of Grand Prairie are used in the comparative evaluation study since they were well 

maintained. Rain gauges were deployed at 2009 and were operational since then. Figure 3-2 

depicts the location of gauges within the City of Grand Prairie. As shown Grand Prairie network is 

fairly dense and there are incidences of multiple gauges in one HRAP pixel.  

 

3.3.2. DHR 

As explained before, DHR is one of the available products of the level III product of 

NEXRAD radars. National Climatic Data Center (NCDC) is responsible to archiving and 

distributing the level III products for all the 159 NEXRAD radar sites. All the study area (DFW) is 

covered by a single NEXRAD radar called KFWS radar, one sample of the reflectivity field is 

shown in Figure 3-3. Distance of the rain gauges form the KFWS ranges from 25 km to 40 km.  
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Figure 3-3 DHR reflectivity field of KFWS radar (Mar 10, 05:24Z, 2013) 

 

Mapping from polar coordinate system to Cartesian coordinate system is done through 

NOAA’s Weather and Climate Toolkit (WCT). A simple nearest-neighbor resampling technique is 

used to populate the output grid (NCDC). The Convective Z-R relationship (3-1) was applied to 

convert DHR reflectivity field to rainrate since convective system is the dominant rainfall system 

in the area and no tropical rainfall was reported in the data period.  

𝑍 = 300 𝑅1.4  (3-1) 

Where Z is reflectivity in mm
6
m

−3
 and R is rainrate in mm/hr. To match spatially with 

other QPE products, the rainfall field is mapped into 1/4
th

 HRAP pixels (~ 1 km). A simple and 

naive time interpolation is applied to fix the time interval to 5 minute to ease the comparison with 

other QPEs. A sample of processed DHR QPE over DFW domain is given in Figure 3-4. 
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Figure 3-4 Derived DHR QPE, mapped into HRAP coordinate system, aggregated into hourly 

rainfall (Mar 10, 05Z, 2013) 

 

3.3.3. MPE 

MPE is retrieved from West Gulf River Forecast Center (WGRFC). It is routinely used in 

operational hydrologic modeling and flood forecasting. The temporal resolution is one hour and 

spatial resolution is full HRAP (~ 4 km). There is no preprocessing required. An example of 

hourly MPE over WGRFC and DFW domain are given in Figure 3-5. 

 

Figure 3-5 Left: Hourly MPE over WGRFC domain, the rectangle whithin the texas boundary 

represents the study area, Right: Hourly MPE over DFW domain (Mar 10, 05Z, 2013) 
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3.3.4. Q2 QPE 

Q2 was retrieved from National Climate Data Center (NCDC) with geographic 

coordinate system (lat/lon). Therefore, an interpolation method was required to map the Q2 data to 

HRAP (and subHRAP) projection system. There are various interpolation methods which can be 

used for remapping, here the budget interpolation is used which maintains total precipitation to a 

desired degree of accuracy and is relative ease. This method has been used widely (Mesinger 

1990; Accadia et al. 2003 and Hou et al. 2012 to name a few). In budget interpolation, remapping 

is performed by subdividing each output (the one we want to remap to it) grid box into a chosen 

number of subboxes and assigning precipitation of each subbox to the input (the input file which is 

going to be remapped) box on which it is centered. Details of the algorithm can be found in 

Accadia et al. (2003). Figure 3-6 shows an example of the Q2 mapped into HRAP coordinate 

system and aggregated into hourly rainfall estimation over DFW domain. The Q2 data has been 

archived by NCDC after December 2011 in netcdf format and 5 minute time interval. After 

August 2013, they have updated/upgraded the Q2 product to called Q3 product. It is distributed in 

binary format with the time interval of 2 minute; however, the Q3 data was not available for this 

study. 

 

Figure 3-6 Mapped and aggregated 5 min Q2 into hourly Q2 QPE (Mar 10, 05Z, 2013) 
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3.3.5. CASA QPE 

Unlike the other QPE products discussed so far which are derived based on Z-R 

relationship, the radar QPE from the CASA network is KDP-based. Rainrate can be calculated as 

the following: 

R=18.15 KDP
0.791  

  (applicable for southern Oklahoma and North Texas) (3-2) 

where R and KDP denote the rainrate in mm/hr and specific differential phase in deg/km, 

respectively (Chandrasekar and Lim 2008). Currently, the spatiotemporal resolution of the CASA 

QPE is ~500 m and  ~1 min. The QPE products include instantaneous rainrate, hourly rainfall 

accumulation and evaluation scores (under development) of rainfall accumulations over various 

periods. An example of CASA QPE is shown in Figure 3-7. To have a fair comparison between all 

QPEs, we used the common period between all QPEs which is around 7 months. The small sample 

size is the main but inevitable constraint of this study. 

 

Figure 3-7 Aggregated 1 min CASA into hourly CASA QPE (Mar 10, 05Z, 2013) 
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3.4. Methodology 

 

We compare all the QPEs within their common time period from Jan 2013 through 

August 2013. First we compare all radar-based estimations at hourly temporal resolution and their 

native spatial resolution with hourly raingauge observations. Then, in order to have a fair 

comparison, we also matched the spatial resolutions between different QPEs, i.e. compare hourly 

MPE, Q2, DHR and CASA QPE at full HRAP spatial resolutions. Finally, we compare Q2, DHR 

and CASA QPE versus rain gauge at 15 minute temporal resolution since the rain gauge data are 

reported every 15 minutes.  

 
3.4.1. Error statistics 

To assess the quality of the QPEs, we used visual inspection of the time series and scatter 

plots and a set of performance measures, including multiplicative bias, root mean square error 

(RMSE), Pearson’s correlation coefficient (R), and mean square error (MSE) and its 

decomposition. The equations are given below: 

Multiplicative Bias =  
mQ

mG

 
(3-3) 

where m
Q
 and m

G
denote the mean of QPE and gauge rainfall, respectively. 

RMSE = √
∑ (Qi − Gi)

2n
i=1

n − 1
 

(3-4) 

Where, Q and G denote QPE and the corresponding gauge rainfall, n denotes the number 

of pairs of QPE and gauge rainfall. 

R =
Cov (Q ,  G)

σQσG

 
(3-5) 


Q
and 

G
 denote the standard deviation of QPE and gauge rainfall, respectively. MSE 

can also be divided into three terms (Murphy and Winkler 1987; Nelson et al. 2010): 
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MSE = (mQ − mG)
2

+ (σQ − σG)
2

+ 2σQσG(1 − ρ) (3-6) 

where  is correlation coefficient between QPE and gauge rainfall. In the right-hand side 

of Eq.(3-4), the first and second terms measure the bias in the mean and standard deviation, 

respectively, and the third term measures the strength of covariation (the smaller, the stronger) 

between the estimated rainfall (radar QPE) and verifying observation (gauge rainfall) (Nelson 

et.al. 2010). We calculate both unconditional and conditional statistics to assess how QPEs 

perform at the upper tail of rainfall distribution which is more important from flood forecasting 

viewpoint.  

 

3.4.2. QPE merging  

We also merge all the QPEs to get a better quality product. Based on the optimal 

estimation theory, the final product of optimal combining should have the highest information 

content compared to the individual products. The information content of each QPE can also be 

assessed through the weights given to them in the merging process. QPE with higher information 

content will obtain the highest weight. Merging can be performed by giving weights to individual 

QPEs through minimizing the unconditional error variance which will be unbiased in 

unconditional means. This will lead to overestimation of light rainfall and underestimation of 

heavy rainfall. However, estimating large precipitation amounts as accurately as possible is more 

important than light rainfall in flash flood warning application. Therefore, one needs to account for 

conditional biases. The merging method used here is based on the conditional bias-penalized 

(CBP) formulation (Seo 2013, Seo et al. 2014) of Fisher estimation (Schweppe 1973) which 

minimizes the unconditional error variance and type II conditional bias simultaneously. Type-II 

bias refers to where it rains heavily but the estimator does not show any rain. The objective 

function to be minimized would be as follow:  
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T

XXX

T

XX
XXEXXXEXEXXXXEJ ])|[])(|[[(]))([( ****

, ***   (3-7) 

where, X* is the estimated rainfall and X is the observed gauge rainfall. CBP-formulation 

reduces Type-II bias for improved estimation of large precipitation amounts, but at the expense of 

somewhat increased unconditional MSE. As mentioned the QPE with higher information content 

will get a higher weight. It should be noted here that weights by design must sum to one and 

negative weight is also possible showing a smaller amount of relative contribution.  

One can formulate the problem as the following Fisher optimal linear estimation 

(Schweppe 1973). 

Z = HX + V (3-8) 

where the observation and observation error vectors, Z and V, are given by 

T

DHRCASAQMPE zzzzZ ],,,[
2

  and T

DHRCASAQMPE vvvvV ],,,[
2

 , respectively, X is the unknown 

true precipitation and the structure matrix H is H = [1 1 1 1]𝑇.  By minimization the linearly 

weighted sum of error variance and Type-II conditional bias, Seo (2013) arrives at the following 

Fisher-like solution for conditional bias-penalized optimal linear estimation: 

11 ]ˆ[  HH T

CBP
 (3-9) 

ZHHHX TT

CBP

111* ˆ]ˆ[    (3-10) 

where, CBP denotes the estimation error covariance matrix and 
*

CBPX  denotes the 

vector of estimation. In the above, the variables, Ĥ ,   and B, are given by: 

XZXX

TT HH  1ˆ    (3-11) 

T

ZXXZXZXXZX HHR    1)1(  (3-12) 

IHHI T

XXAXX )1(ˆˆ 11     (3-13) 

In the above, α denotes the scalar weight given to the conditional bias penalty term of the 

objective function, ΨXX and ΨZX denote Cov[X,X
T
] and Cov[Z,X

T
], respectively, and R denotes 
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the (nxn) observation error covariance matrix. If α=0 (i.e. no penalty for conditional bias), the 

above reduces to the Fisher solution (Schweppe 1973). 

 

3.5. Results 

 

Comparisons are performed between the concurrent and collocated radar and rain gauge 

observations retrieved from the Grand Prairie rain gauge network. First we compared all the 

hourly QPEs at their native spatial resolution. Next we compared all the hourly QPEs at full 

HRAP resolution (~ 4 km) in order to have a fair compariosn. Finally, comparative evaluation was 

performed at the 15 minute temporal resolution. Sample results and discussion are given in the 

following subsections. 

 

3.5.1. Native spatial resolution and 1 hour temporal resolution 

First radar-based rainfall estimations are compared at their native resolution using the 

concurrent and collocated raingauges in the City of Grand Prairie. By native resolution we mean to 

use the MPE value from the Full HRAP bin, Q2 and DHR value from the 1/4 HRAP pixel and 

CASA from 1/8 HRAP pixel. Figure 3-8 shows the scatter plot of each QPE at their native 

resolution as well as the merged QPE versus raingauge observations for all the gauges in study 

area. As depicted, overall Q2 has the least bias overall followed by MPE. CASA is on the third 

rank and DHR has the largest bias among all the products. Q2 has the most wide spread scatter 

plot while CASA QPE is the tightest among all QPEs. The widespread variability of Q2 will result 

in higher RMSE values. 
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Figure 3-8 Scatter Plot of DHR, MPE, Q2 and CASA QPE versus gauge rainfall for all the rain 

gauges in the Grand Prairie at their native spatial resolution and 1 hour temporal resolution.  
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Weights given to each QPE product in the merging process for both unconditional and 

conditional merging is plotted in Figure 3-9. Unconditional merging means all the data points are 

used in the merging process. For conditional merging, only the data points with rainfall greater 

than a threshold value is used in the merging process and also calculation of the statistics. Using 

higher threshold is desired in extreme event forecasting when the end tail of the distribution is of 

importance. However, using higher threshold yields in smaller ample size which makes the 

statistics less reliable, particularly in this study which the common period between all QPEs is 

fairly short. Higher weight is an indication of more information content in the QPE relative to 

other QPEs. As depicted in Figure 3-9 MPE has the highest weight and consequently highest 

information content for lower rainfall amount which decreases by increasing the conditioning 

threshold. On the other hand, CASA has the second rank in low rainfall amounts and tend to 

increase as the threshold increases. This confirms that CASA is able to detect and estimate the 

upper tail of the rainfall distribution better than the other QPEs. However, it should be mentioned 

that these results are based on a fairly small amount of data and limited raingauge sites and also 

the rain gauge locations are fairly close to the radar location. More data points and a better 

scattered rain gauge network under the CASA radar umbrella is required to conclude that CASA 

estimate is actually better than MPE. Also notice that the DHR weights are negative. This happens 

since the summation of the weights should equal to one, which forces some of the weights to be 

negative. This indicates that DHR has less information content compared to other QPEs.  

Figure 3-10, Figure 3-11, and Figure 3-12 indicate the unconditional and conditional 

multiplicative bias, RMSE and correlation coefficient for all QPEs as well as the merged product. 

All the QPEs except from DHR have a multiplicative bias factor of less than for the unconditional 

mode and greater than one for conditional mode. In other words, all the QPEs overestimate the 

rainfall when we consider all the rainfall spectrum and underestimate when only high rainfall 

amounts are considered. Q2 has the least multiplicative bias compared to other products for all 
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conditioning thresholds. MPE has the lowest bias factor after Q2 for the low rainfall values; 

however, it increases as the conditioning threshold increases. CASA has a high bias factor at low 

rainfall amount and stays almost the same for all conditioning thresholds, in high rainfall amounts 

CASA has a lower bias compared to MPE which is a very important point to make.  

 

 
 

Figure 3-9 Weights assigned to CASA, Q2, DHR and MPE in the merging process. Threshold is 

the conditioning value. Sample size for each case is given in parenthesis.  

 

As indicated in Figure 3-11 RMSE increases by increase of the conditioning threshold. 

MPE has the lowest RMSE values for low and mid rainfall amounts and CASA has the lowest 

RMSE values for the end tail of the rainfall distribution. Q2 and DHR have higher RMSE values 

than MPE and CASA at all the threshold values. Correlation coefficient has a similar pattern to 

RMSE, MPE has the highest correlation coefficient at low and mid rainfall amount while CASA 

has higher correlation coefficient for large rainfall amounts. Also DHR and Q2 does not have a 

good correlation coefficient compared to MPE and CASA.  
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Figure 3-10 Multiplicative bias for CASA, Q2, DHR, MPE and the merged product at their native 

spatial resolution and hourly temporal resolution. Threshold is the conditioning value. Sample size 

for each case is given in parenthesis. 

 

 

Figure 3-11 RMSE values for CASA, Q2, DHR, MPE and the merged product at their native 

spatial resolution and hourly temporal resolution. Threshold is the conditioning value. Sample size 

for each case is given in parenthesis. 
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Figure 3-12 Correlation coefiicient for CASA, Q2, DHR, MPE and the merged product at their 

native spatial resolution and hourly temporal resolution. Threshold is the conditioning value. 

Sample size for each case is given in parenthesis. 
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Figure 3-13 MSE decomposition for CASA, Q2, DHR, MPE and the merged product at their 

native spatial resolution and hourly temporal resolution. The upper panel shows the bias in mean, 

the middle panel shows the bias in standard deviation and the bottom panel illustrates the strength 

of covariation. 
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representativeness error, we upscale Q2, DHR and CASA into full HRAP spatial resolution. 

Figure 3-14 shows the scatter plot of all QPEs and merged QPE at ~ 4 km and 1 hour. As 

demonstrated in the Figure 3-14 CASA accuracy deteriorates when it is upscaled to ~ 4 km which 

was expected, since averaging over a bigger area increases the representativeness error in the 

estimation. The scatter becomes wider even though it is not very significant and the bias increases. 

Q2 behavior is analogous to CASA, the spread of the data points increases in the scatter plot as 

well as the multiplicative bias amount. The deteriorated individual QPE has impacted the quality 

of the merged product as well. The merged product is poor compared to the case one (native 

spatial resolution). Therefore, coarser the resolution of the available QPE, lesser the accuracy of 

the rainfall estimation. Statistical indices were calculated for this case also which is not shown 

here. They also confirmed the conclusion derived above. Also it should be noted that the 

difference between two cases is not very significant and all the conclusions in Section 3.5.1 is true 

for this case as well. 
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Figure 3-14 Scatter plot of DHR, MPE, Q2 and CASA QPE versus gauge rainfall at ~4 km and 1 

hour.  
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3.5.3. Native spatial resolution and 15 minute temporal resolution 

We also compared CASA, Q2 and DHR at their native resolution and 15 minute temporal 

resolution. The reason for choosing 15 minute is that the rain gauge data is reported every 15 

minutes which limits the temporal resolution of our comparison. Scatter plots are shown in Figure 

3-15. 

 

Figure 3-15 Scatter plot of DHR, Q2 and CASA QPE versus gauge rainfall at their native spatial 

resolution and 15 minute temporal resolution.  
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The scatter is wider for 15 minutes temporal resolution for all the products. Q2 has the 

least bias in mean and widest spread, the same as hourly temporal resolution. Weights given to 

individual QPE is shown in Figure 3-16. In the merging process higher weights are assigned to 

CASA up to the threshold of 7 mm, an indication of higher information content compared to Q2 

and DHR. Above 7 mm, the sample size is too small and the statistics may not be reliable for 

deriving any conclusion. Multiplicative bias factor (Figure 3-17) is lowest for Q2 consistently over 

different thresholds. Bias for CASA increase sharply at the threshold of 1 mm which is a sever 

underestimation of rainfall greater than 1 mm. The underestimation problem alleviate by 

increasing the threshold up to 6 mm and then increases again. As discussed above the sample size 

for rainfall depth greater than 6 mm is small and no conclusion can be made based on the statistic 

measures. In terms of RMSE (Figure 3-18), CASA has the lowest values. CASA also has the 

highest correlation coefficient as depicted in Figure 3-19. 

 

 
Figure 3-16 Weights assigned to CASA, Q2, and DHR in the merging process. Threshold is the 

conditioning value. Sample size for each case is given in parenthesis. 
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Figure 3-17 Multiplicative bias for CASA, Q2, DHR, and the merged product at their native 

spatial resolution and 15 min temporal resolution. Threshold is the conditioning value. Sample 

size for each case is given in parenthesis. 

 

 
Figure 3-18 RMSE for CASA, Q2, DHR, and the merged product at their native spatial resolution 

and 15 min temporal resolution. Threshold is the conditioning value. Sample size for each case is 

given in parenthesis. 
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Figure 3-19 Correlation coefficient bias for CASA, Q2, DHR, and the merged product at their 

native spatial resolution and 15 min temporal resolution. Threshold is the conditioning value. 

Sample size for each case is given in parenthesis. 

 
3.6. Conclusion 
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NEXRAD Digital Hybrid Scan Reflectivity, Q2 and CASA. The rain gauge network deployed and 

operated by the City of Grand Prairie from the High Water Warning System is used as the true 

rainfall for the comparison study. 
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resolution and 1 hour temporal resolution. Results indicated that Q2 is the least bias in mean; 
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CASA gets the higher weights at higher rainfall thresholds. DHR has the least amount of 

information relative to other QPE products. 

 Q2 has the least multiplicative bias factor for all conditioning thresholds. The lowest bias 

factor after Q2 for the low and high rainfall amount belongs to MPE and CASA respectively. In 

general, RMSE increases with the conditioning threshold increase. MPE has the lowest RMSE 

values for low and mid rainfall amounts and CASA has the lowest RMSE values for the end tail of 

the rainfall distribution. The same results are observed for the correlation coefficient; MPE has the 

highest correlation coefficient at low and mid rainfall amount while CASA has higher correlation 

coefficient for large rainfall amounts. DHR and Q2 has larger RMSE values and lower correlation 

coefficients compared to MPE and CASA. Also, as expected the merged QPE has the best 

performance compared to the individual QPEs.  

Since the spatial resolution of CASA is the finest, the representativeness error is less 

pronounced in the finer resolution products such as CASA. To minimize the difference originated 

from representativeness error, we upscale Q2, DHR and CASA into full HRAP spatial resolution. 

As expected the performance of CASA and Q2 were deteriorate when upscale. They all have a 

wider spread in the scatter plots compared to their native resolutions. The deteriorated individual 

QPE has impacted the quality of the merged product as well. The merged product is poor 

compared to the native spatial resolution. However the trend of the statistical measures such as 

RMSE, multiplicative bias factor and correlation coefficient remains the same for all QPEs. 

We also compared CASA, Q2 and DHR at their native resolution and 15 minute temporal 

resolution. The scatter is wider for 15 minutes temporal resolution for all the products compare to 

hourly QPE. CASA has the highest amount of information relative to Q2 and DHR up to the 

conditioning threshold of 7 mm. Above 7 mm, sample size is too small and the statistics are not 

reliable for deriving any conclusion. Multiplicative bias factor is lowest for Q2 consistently over 

different thresholds. CASA has a sever underestimation for rainfall greater than 1 mm which 
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disappears by increasing the threshold up to 6 mm. CASA has the lowest RMSE values and 

highest correlation coefficient. 

Finally, we concluded that the quality of MPE, CASA and Q2 is good enough to be 

useful for flash flood forecasting purposes. DHR does not have a good performance, and using it 

is not recommended unless an extensive preprocessing routine has been performed. MPE is the 

most accurate product for low to mid rainfall depths and CASA outperform the MPE at high 

rainfall amounts. Combining these QPEs will provide a more accurate product; however, the 

amount of improvement should be evaluated.  
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Chapter 4  

Improving high-resolution precipitation analysis via fusion of multiple radar-based precipitation 

products 

 

For monitoring and prediction of water-related hazards such as flash flooding, high-

resolution hydrologic and hydraulic modeling is necessary. Due to large sensitivity to errors in 

quantitative precipitation estimates (QPE), it is very important in high-resolution hydrologic 

modeling that the accuracy of high-resolution QPE be improved to the greatest possible extent. 

With the availability of multiple radar-based precipitation products in many areas, one may now 

consider fusing multiple radar-based QPEs to produce more accurate high-resolution QPE for 

various applications. In this work, we comparatively evaluate four procedures for such fusion 

based on Fisher estimation and its conditional bias-penalized variant: Direction Estimation (DE), 

Bias Correction (BC), Reduced-Dimension Bias Correction (RBC) and Simple Estimation (SE). 

They are applied to fuse the MPE and radar-only Q2 products at the 15-min 1-km resolution 

(Experiment 1), and the MPE and CASA product at the 15-min 500-m resolution (Experiment 2). 

The resulting fused estimates are evaluated using the 15-min rain gauge observations in the City of 

Grand Prairie in the Dallas-Fort Worth Metroplex (DFW) area. The main evaluation criterion was 

that the fused QPE improves over the ingredient QPEs at their native spatial resolutions, and that, 

at the high resolution, the fused QPE improves not only the high-resolution ingredient QPE but 

also the high-resolution QPE obtained by trivially disaggregating the low-resolution QPE with the 

high-resolution QPE. All four procedures assumed that the ingredient QPEs are unbiased which, in 

reality, is not very likely even if real-time bias correction was already applied. To test robustness, 

the evaluation procedures were evaluated with and without post-hoc bias correction of the 

ingredient QPEs. 
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The results show that only SE passes the above evaluation criterion consistently. The 

performance of DE and BC are generally comparable. Between the two, while DE is more 

attractive for computational economy, BC is more attractive for guaranteed nonnegativity of the 

fused estimates. The performance of RBC is very poor as it does not account for the fact that 

biases in the QPE products depend on the magnitude of precipitation. SE assumes that the high-

resolution QPE product is skillful in capturing spatiotemporal variability of precipitation at its 

native scale, and that the low-resolution QPE product provides skill at its native resolution. While 

the above assumptions may not always be met, its simplicity and the robustness observed in this 

work make a strong case for operational implementation of SE as a post-processor to the QPE 

product generation process. Also, unless other procedures considered in this work, it is possible to 

update the statistical parameters necessary for SE on line similarly to the real-time bias correction 

currently used in MPE. 

 
4.1. Introduction 

 
In the U.S., more than three-quarters of the population live in urban areas which 

collectively comprise only about 3% of the land area. According to the U.S. Census Bureau, the 

urban population increased by 12.1% from 2000 to 2010 compared to the overall increase of 9.7% 

for the same period. For the 486 large urbanized areas, the rate was even higher at 14.3%. Given 

the high population density, high-resolution observing and modeling capabilities are necessary in 

urban areas for prediction of flash floods. Increasing occurrences of extreme precipitation 

expected from climate change put such areas in a particularly vulnerable position where even a 

small-scale but intense rainfall event can cause deadly flash floods and extensive damages. 

For high-resolution observing and modeling of large urban areas, the use of weather radar 

and distributed hydrologic modeling is a natural progression. Quantitative precipitation estimates 

(QPE) from radars, however, are subject to various sources of error (Seo et al. 2010). High-
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resolution distributed modeling is subject to nonlinear growth of error due to errors in QPE and in 

model parameters and structures (Smith et al. 2004b). For hydrologic, hydraulic and water quality 

modeling and prediction in urban areas, it is therefore highly desirable that the QPE is as accurate 

as possible at the highest resolution possible. The purpose of this work is to fuse multiple radar-

based precipitation products to produce a higher-quality QPE product that improves over the 

ingredient QPEs at their native resolutions. Necessarily, fusion can take place only after all 

ingredient QPE products are generated and made available. As such, an inherent limitation with 

fusion is that the fused QPE may not be available for certain applications for which timeliness is 

of the essence.  

In the Dallas-Fort Worth Metroplex (DFW), there are currently three sources of radar-

based QPE, the Multisensor Precipitation Estimator (MPE, Seo et al. 2010), Q2 (Next Generation 

QPE, Zhang et al. 2011) and CASA (Collaborative Adaptive Sensing of Atmosphere, 

Chandrasekar et al. 2012). Because the radar systems, the sources of additional information and/or 

processing algorithms are different, the above QPE products have different error characteristics 

and nominal spatiotemporal resolutions. While multisensor merging of satellite, radar and/or rain 

gauge data for improved QPE is widely investigated (Seo et al. 2010, Li and Shao, 2010, 

Woldemeskel et al. 2013, Berndt et al. 2014, Chang et al, 2014, Delrieu et al, 2014), fusion of 

multiple gridded QPEs of different spatiotemporal resolutions for high-resolution QPE is 

relatively new (Ebtehaj and Foufoula-Georgiou 2011, Chandrasekar and Cifelli 2012). High-

resolution QPE fusion is particularly challenging because of high dimensionality and likely under-

determinedness of the estimation problem. In this work, we formulate and comparatively evaluate 

four relatively simple procedures for improving the accuracy of high-resolution QPE by fusing it 

with a lower-resolution QPE. The general methodology used is Fisher estimation (Schweppe 

1973) and its conditional bias-penalized variant (Seo 2013, Seo et al. 2014). If the penalty for 

Type II conditional bias is not assessed, conditional bias-penalized estimation reduces to Fisher 
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estimation. For evaluation, we compared the fused precipitation estimates with rain gauge 

observations in the DFW area. 

The main contributions of this work are: development and comparative evaluation of 

different procedures for fusing multiple radar-based precipitation products for high-resolution 

QPE, advancing understanding of precipitation fusion and the relationships among different 

procedures, and evaluation of multiple radar QPEs in the DFW area. This manuscript is organized 

as follows. The rest of the chapter is organized as follow. Section 4.2 describes the approach. 

Methodology is described in Section 4.3. The study area and the data used are described in Section 

4.4. Section 4.5 describes how the statistical parameters are estimated. Section 4.6 describes the 

evaluation experiments. Section 4.7 presents the results. Finally, conclusion and future research 

recommendations are provided in Section 4.8. 

 

4.2. Approach 

 

Below, we describe the four different procedures used in this work in the context of 

fusing the MPE estimates, which have a nominal spatiotemporal resolution of 1 hr and 

approximately 4x4 km
2
, and the Q2 estimates, which have nominal resolution of 5 min and 1x1 

km
2
. The rain gauge data for parameter estimation and validation are available only at a 15-min 

resolution. As such, we chose the target resolution for fusion to be 15 min and 1x1 km
2
, rather 

than 5 min and 1x1 km
2
. Figure 4-1 illustrates the data flow for MPE, Q2, and fusion of the two 

QPEs. Once the techniques are comparatively evaluated, we apply the best performing procedure 

for fusion of the MPE and CASA QPE as well. The nominal resolution of the CASA QPE is 1 min 

and 500x500 m
2
. The target resolution for fusing the CASA and MPE products is 15-min and 

500x500 m
2
. Before we describe the procedures in the some detail, it is useful to explain first the 

rationale for their formulation. 
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In the first approach, the observation vector, Z, is made of a single MPE estimate at 1-hr 

4-km resolution and all 64 (=4
3
) Q2 estimates at 15-min 1-km resolution within the sampling 

volume of the MPE estimate. The state vector, X, denotes the true unknown precipitation at the 

15-min 1-km resolution, which is then solved via Fisher estimation (Schweppe 1973) under the 

linear observation equation, Z=HX+V, where H denotes the structure matrix and V denotes the 

observation error vector. This approach is referred to as Direct Estimation (DE). Because the 

Fisher solution does not impose any non-negativity constraints on the estimates, DE may produce 

negative estimates particularly over areas of light or no precipitation. We note here that it is 

possible to impose non-negativity constraints and solve constrained minimization via, e.g., the 

Lagrange method (Szidarovszky et al. 1987). Such an approach, however, is only suboptimal and 

may compromise the effectiveness of the procedure, particularly for large precipitation amounts, 

and hence is not considered in this work. Here, all negative DE estimates are set to zero. 

 

 

Figure 4-1 The data flow for MPE, Q2, and fusion of the two QPEs. 
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In the second approach, the observation vector remains the same, but the state vector is 

made of multiplicative adjustment factors for the Q2 estimates at 15-min 1-km resolution and the 

structure matrix is made of the Q2 estimates themselves. The main motivation for this formulation 

is to avoid producing negative estimates as DE does. This approach is referred to as Bias 

Correction (BC). Because the Q2 estimates form the structure matrix, H, the linear system for the 

optimal solution must be solved every time an MPE estimate and the corresponding Q2 estimates 

are fused. As such, the computational burden of applying BC over a large area can be significant. 

In the third approach, referred to as Reduced-Dimension Bias Correction (RBC), we reduce the 

dimensionality of the state vector to a minimum. In RBC, the observation equation remains the 

same, but a single spatiotemporally constant multiplicative adjustment factor is assumed for all 64 

Q2 estimates associated with the sampling volume of the MPE estimate. The above reduces the 

dimensionality of the state vector in RBC to unity. It is of course possible to reduce the 

dimensionality only to some intermediate level (see, e.g., Lee et al. 2012). In this work, however, 

we are primarily interested in assessing performance of the different fusion procedures under the 

limiting conditions, in terms of the dimensionality of the estimation problem and parsimony for 

parameter estimation. As such, we did not consider employing intermediate scales (i.e. between 1 

km and 15 min, and 4 km and 1 hour) of correction. While the dimensionality of the state vector is 

minimized, RBC still requires modeling the space-time covariance of observation errors as in DE 

or BC, which in practice is very difficult due to lack of ground truth. In the fourth approach, 

referred to as Simple Estimation (SE), the Q2 estimates are aggregated to 1-hr 4-km resolution 

which is merged with the MPE estimate. The merged estimate is then multiplicatively 

disaggregated under the assumption that the spatiotemporal pattern in the Q2 estimates is 

representative of the truth. In all approaches, we use the conditional bias-penalized formulation of 

Fisher estimation to improve estimation of heavy-to-extreme precipitation (Seo 2013, Seo et al. 

2014).  
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4.3. Methodology 

 
In this section, we describe Direct Estimation, Bias Correction, Simple Bias Correction 

and Simple Estimation; they are abbreviated herein as DE, BC, SBC and SE, respectively. The 

first three approaches are formulated as the following Fisher optimal linear estimation (Schweppe 

1973): 

VHXZ   (4-1) 

where the observation and observation error vectors, Z and V, are given by 

T

MQQQ zzzzZ ],,...,,[
4,4,42,1,11,1,1

  and T

MQQQ vvvvV ],,...,,[
4,4,42,1,11,1,1

 , respectively, and the 

structure matrix H and the state vector X vary according to the approach. In the above, 
kjiQz

,,
 

denote the Q2 estimate aggregated to 15-min accumulation at the ij-th 1x1 km
2
 pixel, i=1,2,3,4, 

j=1,2,3,4, k=1,2,3,4, zM denote the MPE estimate at the 1-hr 4x4 km
2
 sampling volume that 

encompasses the 64 Q2 estimates at 15-min 1x1 km
2
 scale, and 

kjiQv
,,

 and vM denote the 

observation errors associated with 
kjiQz

,,
 and zM, respectively. 

 

4.3.1. Direct Estimation (DE) 

The structure matrix, H, and the state vector, X, are given as follows:  
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TxxxX ]...,,[ 4,4,4,2,1,11,1,1  (4-3) 



 

85 

where xi,j,k in Eq. (4-3) denotes the unknown true precipitation at the ij-th 1x1 km
2
 Q2 

pixel for the k-th 15-min subinterval. From the above, the observation equations for the ijk-the Q2 

estimate and the MPE estimate are given by: 

kjikji QkjiQ vxz
,,,, ,,   i=1,2,3,4; j=1,2,3,4; k=1,2,3,4 (4-4) 


  


4

1

4

1

4

1

,,
16

1

i

M

j k

kjiM vxz  (4-5) 

The Fisher solution to the above estimation problem is given by (Schweppe 1973): 

11 ][  HRH T
 (4-6) 

ZRHHRHX TT 111* ][   (4-7) 

where R denotes the observation error covariance matrix, ∑ denotes the estimation error 

covariance matrix and X
*
 denotes the vector of the estimates, TxxxX ],...,,[ *

4,4,4

*

2,1,1

*

1,1,1

*  . The 

diagonal and off-diagonal entries of R are given by: 

])[(][ 2
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 (4-11) 

By minimization the linearly weighted sum of error variance and Type-II conditional bias 

(CB), T

XXX

T

XX
XXEXXXEXEXXXXEJ ])|[])(|[[(]))([( ****

, ***   where α denotes 

the weight given to the penalty for Type-II CB, Seo (2013) arrives at the following Fisher-like 

solution for conditional bias-penalized optimal linear estimation: 



 

86 

11 ]ˆ[  HH T

CBP  
(4-12) 

ZHHHX TT

CBP

111* ˆ]ˆ[    (4-13) 

where the modified structure matrix, Ĥ  , the modified observation error covariance 

matrix,   , and the scaling matrix, B, are given by: 

XZXX

TT HH  1ˆ   (4-14) 

T

ZXXZXZXXZX HHR    1)1(  (4-15) 

IHHI T

XXAXX )1(ˆˆ 11   
 (4-16) 

In the above, ΨXX and ΨZX denote Cov[X,X
T
] and Cov[Z,X

T
], respectively. Note that, if 

α=0 (i.e. no penalty for Type II conditional bias), Eqs.(4-12) and (4-13) reduce to the Fisher 

solution of Eqs.(4-1) and (4-2). Because Eqs.(4-14) through (4-16) require the a priori knowledge 

of ΨXX and ΨZX, Eqs.(4-12) and (4-13) do not solve a Fisher problem but a Bayesian problem. One 

may also consider the conditional bias-penalized formulation to be a form of regularization in 

which the a priori information of ΨXX and ΨZX is added the objective function. 

 
4.3.2. Bias Correction (BC) 

In this approach, the (nxm) structure matrix, H, and the (nx1) state vector, V, are given 

by: 
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T

QQQX ]...,,[
4,4,4,2,1,11,1,1

  (4-18) 

where 
1,1,1Q  denotes the (nx1) adjustment factor for 4,..,1,,,

,,
kjiz

kjiQ
. If some of 

the Q2 estimates are zeros, the corresponding rows in the linear system, Z=HX+V, are taken out to 

avoid singularity, which reduces the dimensionality of the problem. The above practice assumes 

that the Q2 estimates are near-perfect in delineating the precipitation area in that this particular 

fusion procedure cannot enlarge the precipitating area. The observation equations for the ijk-th Q2 

estimate and the MPE estimate are the same as Eqs.(4-4) and (4-5), respectively, except that kjix ,,  

therein is replaced by 
kjiQkjQiZ

,,,,  . Similarly, the diagonal and off-diagonal entries of R are the 

same as Eqs.(4-8) through (4-11) except that kjix ,,  is replaced by 
kjiQkjQiZ

,,,,  . In this 

procedure, the structure matrix, H, changes every time the Q2 estimates change. As such, BC is 

computationally far more expensive that DC. 

 
4.3.3. Reduced-Dimension Bias Correction (RBC) 

Whereas BC employs multiplicative adjustment factors that vary in space and time RBC 

assumes that they are uniform within the sampling volume of the MPE estimate. The above 

reduces H and X to: 
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QX   (4-20) 

Then, the Fisher solution for the uniform multiplicative adjustment factor, *

Q , is given 

by: 
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In the above, 
U

QZ  denotes the aggregated Q2 estimate to match the sampling volume of 

the MPE estimate. While the above simplification greatly reduces the dimensionality of the 

estimation problem, it is still necessary to model the observation error covariance matrix, R, and 

the cross covariance vector, ΨXZ, if the conditional bias-penalized solution is desired. Specifying R 

is a difficult task in practice as it requires statistical modeling of the space-time structure of 

observation errors. 

 
4.3.4. Simple Estimation (SE) 

In this approach, the 15-min 1-km Q2 estimates are aggregated to the spatiotemporal 

scale of the MPE estimates. The two estimates are then merged via Fisher estimation or the 

conditional bias-penalized variant described above: 

M

U

Q

U ZwZwX )1( 22

*   (4-22) 

In the above, 

U

QZ
 denotes the aggregated Q2 estimate, w2 denotes the optimal weight, and 

*UX  denotes the optimal multi-QPE estimate at the 1-hr 4-km scale. To obtain the fused estimate 

at the 15-min 1-km scale, 
U

QZ
 is bias-corrected under the assumption that the 15-min 1-km Q2 

estimates perfectly capture the spatiotemporal variability of precipitation with the sampling 

volume of the MPE estimate: 
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In the above, 
kjiQZ

,,
 and *

,, kjiX  denote the Q2 and fused estimates, respectively, at the ij-

th pixel and k-th 15 min subperiod. By replacing 
*UX  in Eq.(4-23) with 

M

U

Q

U ZwZwX )1( 22

*  in Eq.(4-22), we have: 
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(4-24) 

It is interesting to note that the above estimator is completely analogous to RBC, except 

that the weight is estimated differently. The main advantage of SE is that, unlike RBC, SE only 

requires modeling of the error covariance of the aggregated observations. As such, not only the 

space-time covariance modeling required for DE, BC and RBC is avoided, but also the estimates 

of the statistical parameters in the error covariance are likely to be more consistent due to the fact 

that the aggregated Q2 estimate and the MPE estimate share the same spatiotemporal scale of 

aggregation. 

 

4.4. Study area and data acquisition 

 

The study area is DFW in North Texas. Radar-based QPEs used in this study are the 

MPE, Q2 and CASA products. The spatiotemporal resolution and period of record for each data 

set are given in Table 3-1. The common period among all 3 QPEs is only about 7 month as the 

CASA radar was installed near the end of 2012. Q2 was upgraded to Q3 in Aug, 2013. The Q3 

data, however, are currently not available (Jian Zhang, personal communications). The MPE 

products were obtained from the West Gulf River Forecast Center (WGRFC). The MPE products 

are on the Hydrologic Rainfall Analysis Project (HRAP) grid (Greene and Hudlow 1982) which is 
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about 4 km at mid-latitudes. The 5-min radar-only Q2 products were obtained from the National 

Climate Data Center (NCDC) in a NetCDF format and were remapped onto the 1/4
th

 HRAP grid 

(i.e. ~1 km) using the budget interpolation procedure (Mesinger 1990, Accadia et al. 2003, Hou et 

al. 2012). The procedure performs remapping by subdividing a destination grid box into a user-

selected number of sub-boxes and assigning precipitation in the source grid box to the sub-boxes 

whose centroids fall within the source grid box. The procedure conserves total precipitation to the 

desired degree of accuracy and is easy to implement. For details, the reader is referred to Accadia 

et al. (2003). The 1-min CASA products were obtained from Colorado State University (V. 

Chandrasekar, personal communications) on a 1/8
th

 HRAP grid. 

The rain gauge data used in this work are the 15-min observations from the High Water 

Warning System (HWWS) network operated by the City of Grand Prairie since 2009 (see Figure 

4-2). As shown in the inset, in which the HRAP grid is overlaid, the rain gauge network is 

relatively dense and multiple HRAP bins contain multiple gauges. Similar systems are used by the 

adjacent cities such as Fort Worth and Arlington. The HWWS network uses tipping-bucket 

gauges. The data made available by the City are 15-min accumulations at 20 locations in a 1-mm 

resolution, which meant that the minimum detectable 15-min precipitation was 1 mm. To check 

the quality of the rain gauge data, we examined the scatter, quantile-quantile and double-mass 

plots of the rain gauge observations between each gauge and its closest neighbor. The results 

indicate that the rain gauge data from the City of Grand Prairie are of good quality and were 

accepted for use in this work. Figure 4-3 shows the departure of the 15-min precipitation at the 

five rain gauges of 6000, 6080, 6090, 6100 and 6306 from their spatial mean for the period of 

record. The minimum and maximum distances between any two gauges within the 5-gauge cluster 

are 1 and 5.3 km, respectively. Note that, even though the gauges are closely located to one 

another, there is significant variability in the observed 15-min precipitation. For example, the 

departure of 15-min gauge point precipitation from the spatial average of about 10 mm can be as 
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large as the spatial average itself and that for 18 inches is about a quarter of the spatial average. 

Given the large spatial variability, it is considered that the data set used in this work offers a good 

test for high-resolution fusion. 

 

Figure 4-2 High Water Warning System (HWWS) network operated by the City of Grand Prairie 

with the HRAP pixels overlaid. 

 
Figure 4-3 Relative departure of the 15-min precipitation at the five rain gauges of 6000, 6080, 

6090, 6100 and 6300 from their spatial mean for the period of record. 
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Due to the relatively short common period of record, it was not possible to perform 

fusion of all three radar-based QPEs using the four procedures described above. Instead, we 

carried out fusion of two pairs of QPEs as follows: 1) fuse MPE and Q2 using DE, BC, RBC and 

SE for comparatively evaluation of the four procedures (Experiment 1), and 2) fuse MPE and 

CASA using SE for additional evaluation of SE (Experiment 2). The common periods of record 

for Experiments 1 and 2 are 23 and 18 months, respectively. While this study is limited to fusing 

two QPEs only, the procedures can be extended to a larger number of QPEs without loss of 

generality. For SE, the extension is particularly simple as it requires statistical parameters only at 

the aggregate scale. Figure 4-1 illustrates the data flow and processing for Experiment 1. Note that 

the source of 1-hr 4-km radar QPE can be the NEXRAD Precipitation Processing Subsystem 

(PPS, Fulton et al.1998) or the NMQ/Q2. According to WGRFC (Greg Story, personnel 

communication), Q2 was used for 1-hr 4-km radar-only QPE in their application of MPE, rather 

than the Digital Precipitation Array (DPA, Klazura and Imy 1993) from PPS. It means that the 

radar-only QPE from Q2 is already very well represented in the MPE product; both PPS and Q2 

use the NEXRAD Level II data as the basis for their radar-only QPE algorithms to begin with. The 

impact of the duplicate use of the information in the radar-only QPE from Q2 in fusing the Q2 and 

MPE products as carried out in this work, however, is difficult to assess without the availability of 

the MPE products based on the PPS-generated radar-only QPE. 

 

4.5. Estimation of statistical parameters 

 

As shown above, DE, BC and RBC require the (nxn) observation error covariance matrix, 

Cov[V,V
T
], and, if the conditional bias-penalized formulation is used, the (mxm) covariance 

matrix of true precipitation at the target space-time scale, Cov[X,X
T
], and the cross-covariance 

matrix of true precipitation and the (mxn) observations, Cov[X,Z
T
]. For DE, we have n=65 and 
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m=64. For BC and RBC, m denotes the number of positive Q2 estimates in the sampling volume 

of the MPE estimate and n is given by m+1. For SE, the dimensionality of the above statistics is 

drastically reduced to n=2 and m=1. In addition, in SE, owing to the fact that the higher-resolution 

observations are aggregated to the lower resolution, estimation of Cov[V,V
T
] is not subject to 

scale-dependent biases due to possible representativeness errors. Note that, in practice, 

representativeness error is difficult to model without an extremely dense rain gauge network. In 

this section, we describe how the above statistics are estimated for DE in Experiment 1. 

Estimation of the statistics necessary for the other procedures and experiment is analogous and 

hence is not described. 

DE requires estimation of ][ MvVar , 4,..,1,,,,,],,[
,,,,

KJIkjivvCov
KJIkji QQ

, and 

4,..,1,,],,[
,,

kjivvCov MQ kji
 (see Eqs.(4-9) through (4-11)). To estimate the statistics, we 

assumed that hourly point precipitation is statistically representative of the mean areal 

precipitation over a 4x4 km
2
 area, and that 15-min point precipitation is representative of 15-min 

mean areal precipitation over a 1x1 km
2
 area. This approximation is likely to overestimate the 

observation error variances in Q2 and MPE estimates by not discounting the representativeness 

errors, and hence may bias the error covariance estimates somewhat (see Eqs.(4-6) and (4-12), and 

Appendix E of Seo and Breidenbach 2002). Its impact on fusion, however, is likely to be minimal 

because the error variance terms cancel out (see Eqs.(4-7) and (4-13)). 

To estimate the observation error covariance and to specify Cov[X,X
T
] and Cov[X,Z

T
], it 

is necessary to estimate the space-time covariance of 15-min precipitation. In this work, rather 

than modeling the space-time covariance explicitly (see, e.g., Cressie and Huang 1999, Gneiting 

2002), they are specified by estimating the spatial correlograms of 15-min rain gauge precipitation 

over the study area at time lags of 0, 15, 30 and 45 min. Once the lagged correlograms were 

estimated, they were fitted with the exponential, Gaussian, spherical and linear models (Journel 
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and Huijbregts 1978), from which the best-fitting model is selected for use. Figure 4-4a shows the 

lagged (0, 15, 30 and 45 min) spatial correlograms of the observation errors in Q2 QPE. Figure 

4-4b shows the lagged spatial correlograms of the gauge precipitation used for modeling 

Cov[X,X
T
]. Figure 4-4c shows the lagged cross correlograms between the gauge precipitation and 

the Q2 estimates used for modeling Cov[X,ZQ]. Also shown in the figures are the fitted correlation 

functions. Note that Figure 4-4b and Figure 4-4c are necessary only if the conditional bias-

penalized formulation is used. It is apparent that, due to the sparsity of the rain gauges, the 

correlation functions can only be modeled with significant uncertainty. Note in Figure 4-4a that 

the correlations at lags 1 through 4 are higher than that at lag 0 at separation distances exceeding 

about 2.3 km, which probably reflects the effect of advection in spatiotemporal correlation 

structure (Seo et al. 2000). In Figure 4-4b, the high lag-0 correlation at the origin and rather large 

nugget effects for lag-1 (i.e. 15 min) through -3 (i.e. 45 min) correlations suggest that, not 

surprisingly, the Q2 estimate at the support (i.e. the space-time scale of estimation) of the estimate 

will have a large influence on the estimate.  

Figure 4-5 shows the eigenvalue spectra (expressed as cumulative eigenvalues) of the 

inverse of the modified error covariance matrix, Λ
-1

, in DE for hypothetical choices of α=0, 1 and 

10. If α=0, Λ is reduced to the error covariance matrix, R (see Eq.(4-15)). Note in Eq.(4-13) that 

Λ
-1

 scales and rotates the observation vector, Z. The resulting matrix, Λ
-1

Z, is then scaled by the 

error covariance matrix via ZHHH TT 111 ˆ]ˆ[    to yield the estimates. Hence, the eigenvalue 

spectrum of Λ
-1

 may be seen as a measure of the degrees of freedom in the observation vector 

(Rodgers 2000, Zupanski et al. 2007a). If the cumulative spectrum rises slowly, it is an indication 

that each observation contributes significantly independent information. If the spectrum rises fast, 

it is an indication that many observations may be redundant, and that the only a small subset of the 

observations contributes to the information content of Z. Note in Figure 4-5 that, when α=0, most 

observations uniquely contribute information to the estimation process, but that, as α increases, an 
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increasingly smaller subset of the observations does. Figure 4-5 indicates that the conditional bias 

penalty term (i.e. when α > 0) has a similar effect as regularization (Tarantola 2005) in that it 

reduces the effective dimensionality of the estimation problem.  

 

Figure 4-4 a) Lagged (0, 15, 30 and 45 min) spatial correlograms of the observation errors in Q2 

QPE. B) Lagged spatial correlograms of the gauge precipitation. c) Lagged cross correlograms 

between the gauge precipitation and the Q2 estimates. 

 

a b 

c 
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Figure 4-5 the eigenvalue spectra (expressed as cumulative eigenvalues) of the inverse of the 

modified error covariance matrix, Λ
-1

, in DE for hypothetical choices of α=0, 1 and 10. 

 

Figure 4-6 shows the weights given to the 64 15-min 1-km Q2 estimates and the 1-hr 4-

km MPE estimate for estimation of the 32
nd

 of the 64 state variables as calculated by Eq.(4-13) in 

DE. Note that by far the largest weight is given to the Q2 estimate associated with the state 

variable at that 15-min 1-km sampling volume. The second largest weight is to the MPE estimate 

(i.e. the 65
th

 observation), which decreases somewhat for α > 0. For all other Q2 estimates at non-

collocating sample volumes, on the other hand, a slight negative and almost uniform weight is 

given. The above weight pattern applies to all other state variables at other 15-min 1-km sampling 

volumes and is not shown. To determine the weighting factor, α, in the conditional bias-penalized 

formulation of the procedures, we carried out a series of sensitivity analysis. It was seen that small 

values of α improves estimation of large precipitation amounts but only marginally. This is 

because the Q2 estimates are biased significantly high both unconditionally and conditionally over 

the study area. As such, we set α to zero for all results presented below. If the ingredient QPE is 
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conditionally biased low for large precipitation amounts, however, it will be necessary to choose a 

positive α that reduces CB without deteriorating performance for light to moderate precipitation 

excessively (Seo et al. 2014). 

 

Figure 4-6 Weights given to the 64 15-min 1-km Q2 estimates and the 1-hr 4-km MPE estimate 

for estimation of the 32
nd

 of the 64 state variables 

 

4.6. Evaluation 

 

To evaluate the fusion procedures, two experiments were carried out. In Experiment 1, 

we fused the 1-hr 4x4 km
2
 MPE and 15-min 1x1 km

2
 Q2 estimates at 15-min 1x1 km

2
 scale using 

the four procedures described above. In Experiment 2, we fused the 1-hr 4x4 km
2
 MPE and 15-

min 500x500 m
2
 CASA estimates at the 15-min 500x500 m

2
 scale using SE only. For both 

experiments, the results were verified using the 15-min rain gauge observations from the High 

Water Warning Systems in the City of Grand Prairie (see Figure 4-1). The choices for the pairwise 

fusion of QPE products were made based on the data availability; the period of record common to 

all three products is too short to evaluate three-way fusion. For evaluation of pairwise fusion, there 
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exist two basic criteria that the fused QPE must pass for the procedure to be considered viable. 

The first is that the fused QPE at 15-min 1-km scale must be more accurate than the better of the 

15-min 1-km Q2 estimates and the MPE estimates trivially downscaled based on the 

spatiotemporal distribution of Q2 QPE. The second is that the fused QPE at 1-hr 4-km scale must 

be more accurate than the MPE estimate at 1-hr 4-km scale or the Q2 estimates aggregated to 1-hr 

4-km scale. If the fused QPE meet both criteria, it may be considered an improved over the 

ingredient QPEs regardless of the spatiotemporal scale of aggregation. Initially, the evaluation was 

carried out via leave-one-day-out cross validation. Comparison with dependent validation showed, 

however, that there is little difference between the two and dependent validation was used in the 

evaluation described below. 

The four procedures considered in this work assume that the ingredient QPEs are bias-

free. In reality, however, such an assumption may not be met even for the MPE product, which 

undergoes rain gauge data-based bias correction (Seo et al. 1999, Seo and Breidenbach 2002), 

radar-gauge merging (Seo 1999) and quality control by human forecasters. To test robustness of 

the procedures under realistic conditions, we carried out evaluation using the ingredient QPE 

products without any correction and with post hoc bias correction by applying a single 

multiplicative adjustment factor to each QPE product that removes the mean bias. The adjustment 

factor was calculated as the ratio of the verifying total rain gauge precipitation to the total 

precipitation estimated by the QPE. For Experiment 1, the adjustment factors for Q2 and MPE 

products were 0.779 (i.e. 22.1% overestimation) and 0.977 (i.e. 0.3% overestimation), 

respectively. For Experiment 2, the adjustment factors were 1.063(i.e. 6% underestimation) and 

1.044 (4% underestimation) for the CASA and MPE products, respectively. Below, the fusion 

results with bias-corrected ingredient QPEs are referred to as the bias-corrected cases. 
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4.7. Results 

 

Figs 4-7a through 4-7d show the percent reduction in root mean square error (RMSE) in 

estimation of 15-min point precipitation by the four procedures, DE, BC, RBC and SE, over the 

Q2 estimates (in white) and over the MPE estimates disaggregated to the 15-min 1-km scale using 

the Q2 estimates (in gray). The disaggregation is based on the following trivial multiplicative 

correction to the MPE estimate: 

MPEU

Q

Q

MPE Z
Z

Z
Z

kji

kji

,,

,,

*  , 4,..,1,,,0  kjiZU

Q
 

(4-25) 

In the above, ZMPE denotes the 1-hr 4-km MPE estimate and 
*

,, kjiMPEZ  denotes the 

trivially disaggregated MPE estimate to 15-min 1-km scale at the ij-th pixel and k-th subperiod. 

For 15-min precipitation exceeding 8.5 mm, all 4 procedures show positive reduction in RMSE 

over Q2 and trivially disaggregated MPE; the largest reduction is by SE at about 7% over both Q2 

and trivially disaggregated MPE without bias correction. For all amounts of precipitation, 

however, only SE reduces RMSE over trivially disaggregated MPE even though all four 

procedures improve over Q2 with or without bias correction of the Q2 and MPE products. Fig 4-

7e through 4-7h show the percent reduction in RMSE of hourly precipitation estimates by the four 

procedures over the Q2 estimates aggregated to 1-hr and 4-km scale (in white) and the MPE 

estimate (in gray). If fusion improves over Q2 and MPE at the 1-hr 4-km scale, we should see 

positive reduction in RMSE over both aggregated Q2 and MPE. The figures show that all 

procedures improve over aggregated Q2, but not over MPE. For hourly precipitation exceeding 

16.9 mm, all four procedures improve over both aggregated Q2 and MPE, except for RBC which 

does not improve over MPE. The largest improvement over MPE is by BC which reduced RMSE 

by over 12%. For all amounts of hourly precipitation, RBC does not improve over MPE whether 

bias correction is made to Q2 and MPE or not, and BC does not improve over MPE without bias 
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correction. Both DE and SE improve over aggregated Q2 and MPE for all cases considered. The 

margin of improvement is slightly larger for SE. The above results indicate that only SE improves 

over Q2, MPE, trivially disaggregated MPE and aggregated Q2. RBC is clearly the worst 

performing procedure among the four considered. The significantly better performance by BC 

over RBC is a reflection of the fact that biases in the Q2 estimates depend on the magnitude of 

precipitation (not shown). The performance of DE is generally comparable to that of BC. 

Computationally, however, DE is much more economical than BC as the former requires 

calculation of the weights only once whereas BC requires calculation of weights for every MPE 

estimate. On the other hand, DE can produce negative estimates over areas of light to moderate 

precipitation, which must be corrected with potentially little control over the unbiasedness of the 

resulting estimates (see Seo et al.2014 for strategy for unbiasedness).  

 

 

 

 

 

 

 

 

 

 



 

101 

 

..  

 

Figure 4-7 a) through d) show the percent reduction in root mean square error (RMSE) in 

estimation of 15-min point precipitation by the four procedures, DE, BC, RBC and SE, over the 

Q2 estimates (in white) and over the MPE estimates disaggregated to the 15-min 1-km scale using 

the Q2 estimates (in gray). E) through h) show the percent reduction in RMSE of hourly 

precipitation estimates by the four procedures over the Q2 estimates aggregated to 1-hr and 4-km 

scale (in white) and the MPE estimate (in gray). 

a b

 
 a 

c 
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Figure 4-8 shows example scatter and quantile-quantile plots of the SE-fused 15-min 1-

km precipitation vs. the verifying observation. For comparison, those of the 15-min 1-km Q2 

precipitation are also shown side by side. Figure 4-9 shows example scatter and quantile-quantile 

plots of 1-hr 4-km precipitation estimates by aggregated Q2 (top), MPE (middle) and fusion 

(bottom) vs. the verifying 1-hr point precipitation. Both the Q2 and MPE estimates used for Figure 

4-8 and Figure 4-9 are without the post hoc bias correction described above. The figures hence 

represent a tough test for the fusion procedure in that the assumption of no bias in the ingredient 

QPEs is already violated. The high bias in the Q2 estimates is readily apparent in both figures. The 

reduced bias and scatter in the fused estimates may also be seen readily. For hourly precipitation, 

the MPE estimates are already of high quality. One may nevertheless see a tightened scatter of the 

fused estimates vs. the verifying observations. Figs 4-10a through 4-10d show the precipitation 

accumulation maps by Q2, MPE, DE and SE, respectively, for a 8-hr event in May 08, 2014, over 

DFW. The map background in the figures shows, from left to right, the Cities of Fort Worth, 

Arlington, Grand Prairie and Dallas (partial). The overestimation by Q2 is readily seen in Figure 

4-10a. While the precipitation maps by DE and SE are generally similar, they do show certain 

contrasts; whereas SE shows more realistic structure around the large heavy precipitation core 

than DE, in the lower-left part of the domain, SE shows noisier precipitation patterns than DE. 
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Figure 4-8 Scatter and quantile-quantile plots of the SE-fused 15-min 1-km precipitation vs. the 

verifying observation. 
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Figure 4-9 Scatter and quantile-quantile plots of 1-hr 4-km precipitation estimates by aggregated 

Q2 (top), MPE (middle) and fusion (bottom) vs. the verifying 1-hr point precipitation. 
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Figure 4-10 The precipitation accumulation maps by Q2, MPE, DE and SE, respectively, for a 8-

hr event in May 08, 2014, over DFW. 

 
Lastly, Figure 4-11 shows the scatter and quantile-quantile plots of the 15-min CASA 

(left) and SE-fused (right) precipitation vs. the verifying 15-min point precipitation. SE was used 

to fuse the 15-min 500-m CASA QPE (temporally aggregated from 1-min QPE) and the 60-min 4-

km MPE estimates without bias correction. The trivially disaggregated result is very close to the 

SE result and hence is not shown. It may be observed that, while SE reduced conditional bias, it 

also increased the scatter somewhat for larger precipitation amounts. For Figure 4-11, SE reduced 

RMSE by about 9% over the CASA QPE for estimation of precipitation at 15-min 500-m scale. At 

the hourly scale, however, SE provided little reduction in RMSE over the MPE estimates. While it 

a 

d 

b 
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is difficult to draw firm conclusions from Experiment 2 due to relatively small sample size, the 

results from the two experiments indicate that SE improves QPE under varying conditions of 

biasedness in the ingredient QPEs, under varying ranges of precipitation amount being estimated, 

and under different combinations of ingredient QPEs. 

 

Figure 4-11 Scatter and quantile-quantile plots of the 15-min CASA (left) and SE-fused (right) 

precipitation vs. the verifying 15-min point precipitation. 
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4.8. Conclusion 

 
For monitoring and prediction of water-related hazards such as flash flooding, high-

resolution hydrologic and hydraulic modeling is necessary. Due to large sensitivity to errors in 

quantitative precipitation estimates (QPE), it is very important in high-resolution hydrologic 

modeling that the accuracy of high-resolution QPE be improved to the greatest possible extent. 

With the availability of multiple radar-based precipitation products in many areas, one may now 

consider fusing multiple radar-based QPEs to produce more accurate high-resolution QPE for 

various applications. In this work, we comparatively evaluate four procedures for such fusion 

based on Fisher estimation and its conditional bias-penalized variant: Direction Estimation (DE), 

Bias Correction (BC), Reduced-Dimension Bias Correction (RBC) and Simple Estimation (SE). 

They are applied to fuse the MPE and radar-only Q2 products at the 15-min 1-km resolution 

(Experiment 1), and the MPE and CASA product at the 15-min 500-m resolution (Experiment 2). 

The resulting fused estimates are evaluated using the 15-min rain gauge observations in the City of 

Grand Prairie in the Dallas-Fort Worth Metroplex (DFW) area. The main evaluation criterion was 

that the fused QPE improves over the ingredient QPEs at their native spatial resolutions, and that, 

at the high resolution, the fused QPE improves not only the high-resolution ingredient QPE but 

also the high-resolution QPE obtained by trivially disaggregating the low-resolution QPE with the 

high-resolution QPE. All four procedures assumed that the ingredient QPEs are unbiased which, in 

reality, is not very likely even if real-time bias correction was already applied. To test robustness, 

the evaluation procedures were evaluated with and without post-hoc bias correction of the 

ingredient QPEs. 

The results show that only SE passes the above evaluation criterion consistently. The 

performance of DE and BC are generally comparable. Between the two, while DE is more 

attractive for computational economy, BC is more attractive for guaranteed nonnegativity of the 
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fused estimates. The performance of RBC is very poor as it does not account for the fact that 

biases in the QPE products depend on the magnitude of precipitation. SE assumes that the high-

resolution QPE product is skillful in capturing spatiotemporal variability of precipitation at its 

native scale, and that the low-resolution QPE product provides skill at its native resolution. While 

the above assumptions may not always be met, its simplicity and the robustness observed in this 

work make a strong case for operational implementation of SE as a post-processor to the QPE 

product generation process. Also, unless other procedures considered in this work, it is possible to 

update the statistical parameters necessary for SE on line similarly to the real-time bias correction 

currently used in MPE. 

As demonstrated in this work, the potency of a fusion procedure depends on the 

spatiotemporal variability of precipitation and the scale-dependent skill of the ingredient QPEs in 

capturing it. As such, it is unlikely that a single procedure would work well both in terms of 

effectiveness and computational economy under a wide range of conditions. We welcome any 

suggestions the readers may have on an experiment in which other techniques may be objectively 

inter-compared to advance understanding as well as practical solutions. 
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Chapter 5  

Evaluation of the NWS distributed hydrologic model over the Trinity River Basin in Texas 

 

Distributed hydrologic models are a promising tool for producing streamflow and other 

hydrologic information at high spatial resolution. Research Distributed Hydrologic Model 

(RDHM) developed by the National Weather Service (NWS) Hydrology Laboratory (HL) is being 

used to model sub-basins within the Trinity River Basin that extends from North Texas to the 

upper Texas Gulf Coast for a 16 year period from 1996 to 2011.  The purpose is to evaluate 

simulation of streamflow at hourly time steps on a 4x4 km
2
 grid scale to explore possible 

hydrologic and water resources applications. HL-RDHM uses the heat transfer version of the 

Sacramento soil moisture accounting model (SAC-HT) to simulate rainfall-runoff and the 

kinematic-wave hillslope and channel routing models for routing streamflow. For this project, the 

SAC-HT model was forced using hourly Multi-sensor Precipitation Estimator (MPE) produced by 

the NWS West Gulf River Forecast Center (WGRFC). Modeling results were evaluated using 

observed hourly streamflow data from 10 unregulated locations within the basin. Here, we 

examine how uncalibrated operational distributed models may compare with finely-tuned lumped 

models. The results show that uncalibrated HL-RDHM produces reasonably skillful simulations of 

outlet flow for the majority of the 10 headwater basins. For a half of the basins, however, bias in 

HL-RDHM simulation exceeds 20 percent. The findings in this work point to limited calibration to 

reduce systematic biases in runoff and optimization of selective routing parameters to reduce 

timing errors.  
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5.1. Introduction 

 

Distributed hydrologic models have much to offer for producing high-resolution 

hydrologic information. Such information can be used for a spectrum of applications ranging from 

flash flood forecasting to water resources management. For that, it is necessary to take full 

advantage of high-resolution precipitation data. In the early 2000’s, the Distributed Model 

Intercomparison Project (DMIP) was initiated by the National Weather Service (NWS) to evaluate 

the capabilities of distributed hydrologic models. One of the main findings from DMIP1 was that 

calibrated distributed hydrologic models can simulate streamflow at the basin outlet as well as 

calibrated lumped models (Reed et al., 2004). The recently-completed DMIP2 concluded that 

distributed models calibrated using basin outlet hydrographs do a reasonable job at partitioning 

precipitation into runoff and infiltration (Smith et al., 2012). DMIP2 also indicated that the 

distributed models are able to produce good streamflow simulations at interior points and simulate 

soil moisture reasonably well (Smith et al., 2012). These findings reinforce the generally-accepted 

view that distributed models can account for the spatial variability of basin physiography and 

precipitation. For distributed modeling, the ability to produce reasonable simulations at interior 

points and to provide gridded maps, e.g., of soil moisture, rather than necessarily to outperform 

lumped models, is of primary interest. As such, Smith et al. (2012) suggest that, while 

transitioning to distributed models, operational agencies maintain their current lumped models to 

allows decision making based on both results.  

Since calibration of distributed models can be very labor-intensive and time consuming, 

we are interested in this work in assessing how uncalibrated operational distributed models may 

compare with finely-tuned operational lumped models for streamflow simulation. The distributed 

hydrologic model used in this work is the Hydrology Laboratory-Research Distributed Hydrologic 

Model (HL-RDHM) developed by the NWS Hydrology Laboratory (HL) which was first called 
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the Hydrology Laboratory-Research Modeling System (HL-RMS) (Koren et al., 2004). Koren et 

al. (2004) showed that HL-RDHM results are comparable to well-calibrated lumped model 

simulations in several headwater basins, and that they outperform lumped model simulations 

where spatial rainfall variability is significant.  

HL-RDHM has been used in a wide range of applications. Reed et al. (2007) applied the 

threshold frequency (TF) component of HL-RDHM for flash flood forecasting. Yilmaz et al. 

(2008) evaluated HL-RDHM using multiple hydrologically relevant ‘‘signature measures’’ to 

quantify the performance of the model at the watershed outlet. Mejia and Reed (2010) used HL-

RDHM to evaluate parameterization of channel cross sections. Lee et al. (2011) used data 

assimilation (DA) to improve the accuracy of streamflow prediction by assimilating in-situ soil 

moisture data into HL-RDHM. Fares et al. (2014) also applied HL-RDHM in a flashy tropical 

watershed in Hanalei Bay. The operational version of HL-RDHM, or the Distributed Hydrologic 

Model (DHM), is used at various River Forecast Centers (RFC) for flash flood and river flood 

forecasting. 

The objective of this work is to evaluate HL-RDHM simulation of streamflow and soil 

moisture toward producing accurate and dynamically consistent water and energy balance 

components in the hydrologic cycle on a fine grid. Specifically, we assess how uncalibrated HL-

RDHM may compare with the finely-tuned lumped models consisting of the Sacramento soil 

moisture accounting (SAC-SMA, Burnash et al., 1973) and unit hydrograph (Chow et al., 1988) 

models for the headwater basins of the Trinity River within the service area of the WGRFC. The 

chapter is organized as follows: Section 5.2 describes the models used. Section 5.3 describes the 

study basins, data used and design of experiments. We discuss the results in Section 5.4. Section 

5.5 provides conclusion and discussion. 
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5.2. Model description 

 

5.2.1. Distributed model 

The distributed model used is HL-RDHM. The rainfall runoff component used here is the 

Sacramento soil moisture accounting (SAC-SMA) with the heat transfer component (SAC-HT) 

and the routing technique is kinematic-wave routing. SAC-SMA was first introduced by Burnash 

et al. (1973) (see Figure 5-1) and is been used widely in hydrologic applications. 

SAC-SMA is a conceptual model of the land phase and hydrologic cycle. It accounts for 

percolation, soil moisture storage, drainage and evaporation processes in order to build a rational 

model. The model inputs are rainfall, evaporation and snow cover (optional) and the output is the 

inflow to channel system. Model assumes two conceptual soil layer called upper and lower zone. 

Upper zone has two kind of soil moisture storage, upper zone tension water which represents the 

amount of water stored in the soil which is closely bound to the soil particles and upper zone free 

water which can be percolate to the deeper layer or move laterally. Lower zone also has tension 

and free water content. The lower zone free water content is divided into supplemental and 

primary groundwater flows which control the fast and slow flows respectively. The relationship 

between these water contents and the surface/subsurface water is shown in Figure 5-1.  

Recently, the SAC-SMA was improved by incorporating a heat transfer component 

(SAC-HT). A physically-based algorithm has been added to model the impacts of frozen soil on 

the precipitation-runoff process. The heat transfer component allows translation of water depths in 

SAC-SMA conceptual storages to water content in physical soil layers which are important 

estimates in agriculture and water resources management (Koren et al., 2007).  
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Figure 5-1 Schematic of SAC-SMA model 

 

The basic SAC-SMA has 16 parameters which play an important role in modeling and 

the most important ones are given in Table 5-1. Having priori information about these parameters 

would improve the quality of the simulation and reduce the amount of required calibration 

particularly in distributed modeling which is very expensive. 

Koren et al. (2000, 2003) related the SAC-SMA parameters with the soil properties such 

as porosity, field capacity and wilting point and derived a priori for some of the SAC-SMA 

parameters. The State Soil Geographic Database (STATSGO) soil texture data in 11 soil layers 

was used for SAC-SMA parameter estimation. Anderson et al. (2006) and Zhang et al. (2006) 

improved the quality of the a priori parameters and substitute the STATSGO data with the finer-

scale database of soil data, the Soil Survey Geographic Database (SSURGO). A priori upper zone 
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tension water maximum storage (UZTWM), the upper zone free water maximum storage 

(UZFWM), the lower zone supplemental free water maximum storage (LZFSM), and the lower 

zone primary free water maximum storage (LZFPM) are illustrated in Figure 5-2 as a few samples. 

 

Table 5-1 SAC-SMA parameters, the units, description and the allowable range  

NO Parameters Units Description Allowable 

range  

A-priori 

Grid 

Provided 

1 UZTWM mm Upper Zone Tension Water 

Maximum storage 

25-125 Y 

2 UZFWM mm Upper Zone Free Water 

Maximum storage 

10-75 Y 

3 LZTWM mm Lower Zone Tension Water 

Maximum storage 

75-300 Y 

4 LZFSM mm Lower Zone Free water 

Supplementary Maximum storage 

15-300 Y 

5 LZFPM mm Lower Zone Free water Primary 

Maximum storage 

40-600 Y 

6 UZK day
-1

 Upper zone free water withdrawal 

rate  

 Y 

7 LZSK day
-1

 Lower Zone Supplementary 

withdrawal rate 

0.03-0.2 Y 

8 LZPK day
-1 

Lower Zone Primary withdrawal 

rate 

0.001-0.015 Y 

9 PCTIM %/10

0 

% permanent impervious area 0.0-0.05 Y 

10 ADIMP %/10

0 

% area contributing as impervious 

when saturated 

0.0-0.2 N 

11 RIVA %/10

0 

% area affected by riparian 

vegetarian, streams and lakes 

0.0-0.2 N 

12 ZPERC none Maximum percolation rate under 

dry condition 

20-300 Y 

13 REXP none Percolation equation exponent 1.4-3.5 Y 

14 PFREE %/10

0 

%of percent going directly to 

lower zone free water 

0-0.5 Y 

 

Hillslope and channel routing in HL-RDHM is performed using kinematic-wave routing. 

Within each cell, fast (surface) runoff is first routed over conceptual hillslope, and then the 

combination of channel inflow from hillslope routing, slow runoff (subsurface/ground) and inflow 

from upstream cells is routed via channel routing (Koren et al., 2004) for each pixel. The a priori 
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parameters for routing are derived from DEM, channel top width, channel cross section and flow 

data (Reed et al., 2002). The a priori specific discharge is shown in Figure 5-3. 

 

Figure 5-2 A priori parameter example obtained from NWS for a) UZTWM, b) UZFWM, c) 

LZFSM, and d) LZFPM. 

 

Figure 5-3 A priori specific discharge 

a b 

c d 
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5.2.2. Lumped model 

The lumped model used is SAC-UHG, consisting of SAC-SMA as its rainfall-runoff 

component and unit hydrograph for routing. Operational SAC-UHG parameters, which are valid 

for a 6-hr time step, are obtained from WGRFC. To obtain 1-hr parameters, we used AB_OPT 

(Seo et al., 2009) to 1) estimate the adjustment factors to precipitation and potential evaporation 

(PE), PXADJ and PEADJ, respectively, 2) derive 1-hr empirical UHG and 3) obtain 1-hr SAC 

parameters by adjusting the 6-hr SAC parameters. In the above, the first two steps are based on 

adjoint-based optimization whereas the third is based on stepwise line search (SLS, Kuzmin et al., 

2008). 

A very important difference between SAC-UHG and HL-RDHM simulations used in this 

work is that the former represents dependent validation as they result from calibration whereas the 

latter represents independent validation. As such, the SAC-UHG results set a very high bar for the 

HL-RDHM results. One may not expect HL-RDHM to outperform lumped SAC-UH model as it is 

finely tuned and calibrated.  

 

5.2.3. Model performance measures 

To assess the performance of the simulated streamflow, we used the four common 

statistical measures widely used in hydrologic applications, including multiplicative percent bias 

(% Bias), root mean square error (RMSE), Pearson’s correlation coefficient (R), and Nash-Sutcliff 

efficiency measure. Multiplicative percent bias measures the average tendency of the simulated 

streamflow to be larger or smaller than the observed streamflow. The optimal value of % Bias is 

1.0. Values greater than 1 indicates an overall oversimulation of streamflow and values less than 1 

indicates an overall undersimulation of streamflow. % Bias could be used to infer the mass 

balance problem for the simulation, i.e. for basins with high % Bias mostly mass balance does not 

hold.  
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% Bias =
∑ 𝑄𝑆𝑖𝑚,𝑖

𝑛
𝑖=1

∑ 𝑄𝑂𝑏𝑠,𝑖
𝑛
𝑖=1

 × 100 
(5-1) 

where QSim,i and QObs,i denote the hourly simulated and observed streamflow, 

respectively. n denotes the number of pairs of simulated and observed streamflow. Root mean 

square error represents the standard deviation of the model prediction error, on other words, the 

sample standard deviation of the differences between predicted and observed streamflow. A 

smaller RMSE values indicated a better model performance. 

RMSE = √
∑ (QSim,i − QObs,i)

2n
i=1

n − 1
 

 (5-2) 

Correlation coefficient is a measure of linear correlation (dependence) between two 

variables. Correlation coefficient values of close to one indicate a positive linear correlation 

between simulated and observed streamflow which is desired. 

R =
Cov (QSim, QObs)

σ𝑄𝑆𝑖𝑚
σ𝑄𝑂𝑏𝑠

 
(5-3) 

σ𝑄𝑆𝑖𝑚
and σ𝑄𝑂𝑏𝑠

 denote the standard deviation of simulated and observed streamflow, 

respectively. Nash-Sutcliffe model efficiency coefficient is one of most widely used measures in 

hydrology to assess the predictive skill of a hydrological model using the following equation. 

𝑁𝑆𝐸 = 1 − 
∑ (QSim,i − QObs,i)

2𝑛
𝑖=1

∑ (QObs,i − QObs,i
̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

 
(5-4) 

where QObs,i
̅̅ ̅̅ ̅̅ ̅ is the mean of the observed streamflow. Nash-Sutcliffe can range between 

negative infinity and 1. NSE equal to 1 represents a perfect simulation which requires a perfect 

hydrological model. NSE of zero indicates the simulated streamflow is as accurate as the mean of 

observed streamflow. Negative values indicate that the mean observed streamflow is better than 

model simulation, in other words, the residual variance is larger than the observed data variance. 

NSE values closer to 1 indicate a better model performance and are preferred. 
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5.3. Study area and data used 

 

United States has 13 river forecast center. West Gulf River Forecast Center (WGRFC) is 

the one which encompass most of Texas. WGRFC has several forecast groups as shown in Figure 

5-4. The Trinity River forecast group has an area of 40,380 km
2 

. Within the group, 10 headwater 

basins are selected based on the availability of streamflow data. Figure 5-4 shows the locations 

and names of the basins selected.  

The forcing data used are the operationally-produced multisensor precipitation estimates 

(MPE) from 1996 to 2011 and monthly climatology of potential evaporation (PE). In SAC-UHG, 

the simulation period varies from basin to basin and generally covers 1996 to 2012. The a priori 

parameters for SAC-SMA are available for 11 of the 16 parameters (Koren, 2003). The a priori 

parameters for routing, i.e., hillslope slope and specific discharge, are obtained following Reed et 

al. (2002). 

 

 
Figure 5-4 Left: WGRFC domain, Right: Trinity River Forecast Group 

 

JAKT2

BRPT2

MDST2

GLLT2

DCJT2

SGET2

MCKT2

DWCT2

LIVT2 

RYET2 
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5.4. Results 

 

As noted, HL-RDHM is uncalibrated while SAC-UHG is calibrated using the same 

streamflow data used in evaluation. As such, the SAC-UHG and HL-RDHM results represent 

dependent and independent validation, respectively. For comparison, the common periods between 

the SAC-UHG and HL-RDHM simulations are used. 

Table 5-2 shows the area, time to peak and adjustment factors for precipitation (PXADJ) 

and potential evaporation (PEADJ) as obtained from AB_OPT. Adjustment factors deviating from 

unity indicates lack of mass balance such that AB_OPT had to multiplicatively increase (>1) or 

decrease (<1) the forcing data. Hence, for those basins for which PXADJ and/or PEADJ deviates 

significantly from unity (e.g. BRPT2), one may not expect HL-RDHM to simulate streamflow as 

well as SAC-UHG. In other words, in the lumped model, the adjustment factors for precipitation 

and potential evaporation are taken into account to minimize the effect of the input uncertainty; 

however, such measures are not considered for HL-RDHM. 

 

Table 5-2 Area, time to peak, adjustment factors for precipitation and PE 

Basin Name Area (km
2
) Tp (hrs) PXADJ PEADJ 

JAKT2 1768 32 1.10 1.19 

BRPT2 862 19 0.69 1.14 

DCJT2 1036 17 0.82 1.07 

SGET2 764 7 0.63 1.16 

GLLT2 443 5 0.64 1.13 

DWCT2 316 4 1.07 0.95 

MCKT2 425 14 1.02 0.95 

MDST2 831 26 0.99 0.99 

LIVT2 365 8 1.01 1.10 

RYET2 381 48 1.05 1.13 

 

To summarize the evaluation results, we calculated percent bias, root mean square error, 

correlation coefficient and Nash-Sutcliffe efficiency (see Figure 5-5). Note that the HL-RDHM 
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simulations compare reasonably well with the SAC-UHG for the majority of the basins. However, 

in some of the basins such as BRPT2, JAKT2 and MDST2, very large errors are observed in the 

HL-RDHM simulations as elaborated below. These three basins have Nash-Sutcliffe value of less 

than zero meaning that the model simulation is less accurate than using the mean of observed data, 

in other word; the model performance is less informative than the climatological information. 

 

 

Figure 5-5 % Bias, RMSE, Correlation Coefficient and Nash-Sutcliffe efficiency indices of HL-

RDHM and SAC-UHG (AB_OPT) for 10 headwater basins in Trinity River basin 

 

BRPT2 has percent bias of greater than 100 with relatively low RMSE values. This basin 

suffers from extensive missing data, and hence the results may not be considered reliable due to 

small sample size. Also the bias adjustment factor obtained from calibration of the lumped model 

is 0.69 for precipitation, so there is an overestimation of a rainfall involved which was alleviated 
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through adjustment of precipitation in SAC-UHG. However, there is not such consideration takien 

into account with HL-RDHM in order to minimize the effect of input uncertainty and 

consequently the model suffers from mass balance problem. As shown in Figure 5-6 the unit 

hydrograph is pretty smooth for BRPT2 and there is not much of routing error like timing error 

involved which is the reason of having low RMSE values even with existence of very high % 

Bias. 

 

Figure 5-6 Left: BRPT2 unit hydrograph derived via AB_OPT, Right: Simulated streamflow from 

SAC-UHG versus observed streamflow 

 

Percent bias for JAKT also exceeds 100% (see Figure 5-8). This very high bias also is 

observed in operational streamflow forecasting (personal communication with WGRFC), the 

cause of which is not clear and warrants careful investigation. It also has high RMSE values and 

low correlation coefficient which can be attributed to both mass balance problem and the 

significant timing error (Figure 5-7). The time series of several significant events with their peak 

exceeding the 98 percentile is plotted in Figure 5-8. 



 

122 

 

Figure 5-7 Left: JAKT2 unit hydrograph derived via AB_OPT, Right: Simulated streamflow from 

SAC-UHG versus observed streamflow 

 

Figure 5-8 Streamflow simulation from HL-RDHM and streamflow observation time series for 

some significant events (peak flow above 98 percentile) 
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MDST2 has low percent bias which is not surprising, since the PXADJ and PEADJ 

factors for MDST2 are close to 1 indicating that mass balance holds for this basin. However, 

MDST2 has high RMSE and low correlation coefficient. As shown in Figure 5-9, this basin has a 

rather complex unit hydrograph (left) and shows timing errors. The timing errors manifest as loops 

in the scatter plot of simulated vs. observed streamflow (right) and account for high RMSE and 

low correlation for this basin. The timing error can be alleviated through calibration of the routing 

parameter. 

For basins with large spatial variability in physiography and/or forcing data, we may 

expect distributed models to do better than lump models. RYET2 provides such an example, 

which is elongated in shape and slow responding with a very complex unit hydrograph (Figure 

5-11) with multiple peaks. Note in Figure 5-12 that HL-RDHM does a very good job for this basin 

and simulates some of the significant events better than SAC-UHG (upper panel in Figure 5-12). 

Finally, we emphasize that the SAC-UH was finely tuned and calibrated and the same set 

of data was used in both calibration and validation. Therefore, outperforming SAC-UHG was a 

high bar for HL-RDHM. Also, producing reasonable simulation in the form of gridded maps of 

streamflow, soil moisture and other hydrologic components (having reasonably accurate 

simulations for interior points) at the expense of somewhat increased RMSE of streamflow at the 

outlet locations is more important than outperforming the lumped models. 
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Figure 5-9 Left: MDST2 unit hydrograph derived via AB_OPT, Middle: Simulated streamflow 

from SAC-UHG versus observed streamflow, Right: Simulated streamflow from HL-RDHM 

versus observed flow. 

 

Figure 5-10 Time series of simulated streamflow (HL-RDHM) versus observed streamflow of 

some significant events (with peak flow above 99 percentile) 
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Figure 5-11 Left: RYET2 unit hydrograph derived from AB_OPT, Middle: Simulated flow 

resulted from SAC-UHG versus observed flow, Right: Simulated flow resulted from HL-RDHM 

versus observed flow 

 
Figure 5-12 Time series of simulated versus observed streamflow of some significant events (peak 

flow above 99 percentile) for SAC-UHG (upper panel) and HL-RDHM (lower panel). Arrow 

shows the one significant event simulation in both SAC-UHG and HL-RDHM 
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5.5. Conclusion  

 
Distributed models are a promising tool for producing high-resolution streamflow and 

soil moisture information. In this chapter, we examine how uncalibrated operational distributed 

models may compare with finely-tuned lumped models. This comparison poses an extremely 

stringent test for the distributed models in that the simulations from the calibrated lumped model 

represent dependent validation whereas those from the uncalibrated distributed models represent 

independent validation. The comparative simulation experiment is carried out for 10 headwater 

basins in the Trinity River Basin in TX covering periods of 1996 to 2012. The motivation for the 

above comparison stems from the fact that calibration of distributed models is generally very 

expensive and as such is to be minimized or avoided if possible. 

The results show that uncalibrated HL-RDHM produces reasonably skillful simulations 

of outlet flow for the majority of the 10 headwater basins. For a half of the basins, however, bias 

in HL-RDHM simulation exceeds 20 percent. Gross oversimulation by HL-RDHM is observed for 

JAKT2 and BRPT2 while HL-RDHM did very well for RYET2, a slowly responding basin with 

complex UHG. There are two issues required to be addressed the mass balance issues which can 

be addressed by introducing multiplicative adjustment factors or using higher quality input forcing 

to minimize the effect of input uncertainty on the modeling results. Routing problem, i.e. timing 

error, can be alleviated by improving the routing parameter. The findings in this work point to 

limited calibration to reduce systematic biases in runoff and optimization of selective routing 

parameters to reduce timing error.  

In general, this study showed capability of HL-RDHM at the scale which River Forecast 

Centers operate. Next chapter will discuss the HL-RDHM application in a very fine scale and 

urbanized area  

  



 

127 

Chapter 6  

High resolution distributed model and scale sensitivity 

 
Urban flash flooding is a serious problem in large, highly populated areas such as the 

Dallas-Fort Worth Metroplex (DFW). Being able to monitor and predict flash flooding at a high 

spatiotemporal resolution is important to mitigating its threat and to cost-effective emergency 

management. Under ideal conditions, the higher the resolution of the model and the precipitation 

input is, the better the spatiotemporal specificity of the model output will be. In reality, due to 

errors in the precipitation input, the model parameters and the model itself, there are practical 

limits to the model resolution. In this work, we assess the sensitivity of streamflow simulation to 

the spatiotemporal resolution of precipitation input and hydrologic modeling to identify the scale 

at which the relative error may be at minimum given the quality of the precipitation input and 

limitations of the model. The hydrologic model used in this work is the National Weather Service 

(NWS) Hydrology Laboratory’s Distributed Hydrologic Model (HL-RDHM) applied at different 

spatiotemporal resolutions ranging from 250 m to 4 km and from 1min to 1 hour for three urban 

catchments in the Dallas-Fort Worth Metroplex (DFW) area. The high-resolution precipitation 

input is from the DFW Demonstration Network of Collaborative Adaptive Sensing of the 

Atmosphere (CASA) radars. The model simulation results are evaluated using the water level data 

obtained from the City of Grand Prairie in DFW. 

 
6.1. Introduction 

 
To take full advantage of high-resolution quantitative precipitation information (QPI) 

from weather radars, it is necessary to operate hydrologic models at a scale comparable to the 

scale of that information. Under ideal conditions, the higher the resolution of distributed modeling 

and precipitation input is, the more desirable the model output will be as it provides better 
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spatiotemporal specificity. Due to the errors in precipitation input, model parameters and the 

model itself, however, there are practical limits to the resolution of modeling. To illustrate, Figure 

6-1 shows the relative error in runoff simulation as a function of the scale of sub-catchment 

delineation and the magnitude of error in precipitation input under the assumption of a perfect 

hydrologic model (Smith et al. 2004b). If the precipitation input is perfect, a finer-scale sub-

catchment delineation would yield more accurate simulation of areal runoff. If there are large 

errors in the precipitation input, however, the accuracy of areal runoff simulation deteriorates as 

the resolution of modeling increases. For skillful flash flood forecasting, it is hence important to 

identify the scale at which the relative error may be at minimum given the quality of radar QPE 

and the hydrologic model being used (Berne and Krajewski 2013). While not directly tested in this 

research, a relevant hypothesis is that, with improved accuracy, polarimetric QPE will allow 

higher-resolution modeling (see Figure 6-1). 

For urban flash flood forecasting, variability in runoff and streamflow can conceptually 

be captured by employing hydrologic and hydraulic models and precipitation input at a 

sufficiently high resolution. In reality, however, all models and precipitation input have errors of 

varying nature and magnitude. Because the errors are nonlinearly transformed by the models in a 

scale-dependent way, the accuracy of simulated runoff and flow are generally not proportional to 

the resolution of modeling (Smith et al. 2004b, Berne and Krajewski 2013). To infer this 

relationship, we test and ascertain the limits of the available QPEs and hydrologic modeling in the 

DFW area. Specifically, this research aims at identifying the optimal spatiotemporal scale for 

hydrologic modeling given the QPE available. Toward that end, we carry out scale sensitivity 

experiments in which higher-resolution precipitation and selected model parameters are upscaled 

to lower resolutions. The results characterize and quantify the marginal information content in 

higher-resolution precipitation input and hydrologic modeling. The rest of the chapter is as 

follows. Study area an data acquisition is described in Section 6.2. Section 6.3 briefly introduces 
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the hydrologic model and rating curve derivation is explained in Section 6.4. Calibration and 

initialization is given in Section 6.5. Results of sensitivity analysis to temporal and spatial scale of 

modeling are described in Section 6.6. Conclusion is given in Section 6.7.  

 

  

Figure 6-1 Relative error in streamflow simulation at the catchment outlet as a function of the 

scale of subbasin delineation and the magnitude of error in precipitation input (from Smith et al. 

2004b). 

 
6.2. Study area and data acquisition 

 
The modeling domain is a rectangular area that encompasses the Cities of Fort Worth, 

Arlington and Grand Prairie in the Dallas-Fort Worth Metroplex (DFW) area in Texas (Figure 

6-2). The rainfall data used is the Collaborative Adaptive Sensing of the Atmosphere (CASA) 

QPE. Currently, a network of CASA X-band radars, referred to as the DFW Demonstration 

Network, is being deployed in the area. One of the limitations with NEXRAD is that they do not 

observe the lower atmosphere away from the radar location, which causes degradation of spatial 

resolution at far ranges. Also, the temporal resolution is constrained by a fixed set of volume 
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coverage patterns (VCP). The lack of resolution arises because the radar operation is independent 

of the weather conditions. To maximize its utility, the radar may adapt to the time-varying needs 

of the users (Junyent et al. 2010). To address the above gaps in the current weather observation 

system, the NSF Engineering Research Center (ERC) for CASA developed a new weather 

warning systems based on dense networks of small radars (McLaughlin et al. 2005) with adaptive 

scanning strategy (Junyent et al. 2010). The CASA Integrated Project was the first test bed of a 

networked CASA radar system composed of four X-band radars in Oklahoma. Each radar node 

was approximately 30 km away from the next unit. The details of the radar network, hardware and 

software architectures are described in Junyent et al. (2010). CASA QPE is based on specific 

differential propagation phase which makes it immune to absolute calibration errors (Bringi and 

Chandrasekar 2001). Attenuation is a known issue for precipitation estimation using X-band 

radars (Seo et al. 2010, Berne and Krajewski 2013). The CASA system uses the network 

reflectivity retrieval technique (Chandrasekar and Lim 2008) and the network-based attenuation 

correction technique (Lim et al. 2011) to mitigate the effects of attenuation. Lim et al. (2011) 

showed that the technique works robustly in real time in retrieving attenuation-corrected 

reflectivity. The network was evaluated using rain gauge observations for a five-year period which 

showed a good agreement between radar QPE and rain gauge observations with a standard 

deviation of 25% and a bias of 3.7% (Chandrasekar et al. 2012). After the successful test bed 

demonstration of CASA in Oklahoma, the CASA system was moved to DFW in late 2012. In this 

work, the 1-min 500-m QPE product from the CASA radar installed at the University of Texas at 

Arlington, XUTA, was used along with the MPE products from the NWS West Gulf River 

Forecast Center (WGRFC). Figure 6-2a shows the coverage of XUTA with the city limits of Fort 

Worth, Arlington and Grand Prairie. The historical CASA QPE is available only for significant 

events as the radar has been operating only in times of precipitation. The period of record for the 

CASA QPE used in this work is from Jan 2013 to Dec 2013. 
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For hydrologic evaluation, we used water level observations as explained below. The 

Cities of Fort Worth, Arlington and Grand Prairie have been operating the so-called High Water 

Warning Systems (HWWS) at 23, 6 and 23 locations through their cities since 2007, 2013 and 

2009, respectively. The HWWS observes in real time precipitation, water level and, if equipped, 

meteorological variables. The rain gauge observations have been used to validate the radar-based 

QPEs as described in Chapter 2 and 3. Water level observations at most locations are based on 

pressure transducers location at the channel bottoms. Though the real-time observations from the 

HWWS are archived, the historical data have not been looked at until this study. To ensure that 

high-quality data are used, we visually examined the historical water level time series and selected 

three locations in the City of Grand Prairie (see Figure 6-2b). 

 

Figure 6-2 a) Radar umbrellas of XUTA b) Study domain and selected basins for the scale 

sensitivity (Area of each basin is given in the figure in bold (km
2
)) 
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Figure 6-3 shows the cross-correlation between 15-min precipitation and streamflow time 

series, indicating time-to-peaks of 1.75, 3.25 and 3.25 hours for Catchments 6033, 6013 and 6133; 

the catchment areas are 40, 32 and 54 km
2
, respectively. Figure 6-4 shows the PCTIM map (see 

Appendix A for details) over the three catchment areas. Note that Catchment 6033, which shows 

the smallest time-to-peak, has the largest impervious area. 

 

Figure 6-3 Cross-correlation between 15-min precipitation and streamflow time series indicating 

time-to-peaks of approximately 1.75, 3.25 and 3.25 hours for Catchments 6033, 6013 and 6133, 

respectively. 

 

Figure 6-4 PCTIM at 1/16 HRAP resolution over the three study catchments. 
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6.3. Hydrologic model  

 

For hydrologic modeling, the NWS Hydrology Laboratory’s Research Distributed 

Hydrologic Model (HL-RDHM) was used: specifically, the Sacramento soil moisture accounting 

model with heat transfer, or SACHT, for rainfall-runoff and the kinematic wave model for routing 

(Koren et al. 2004). HL-RDHM has been used operationally in NWS on a 4 km grid forced by 

hourly precipitation, but not at as fine a spatiotemporal resolution as 500 m and 1 min used in this 

work.  HL-RDHM is recognized as one of the best performing distributed models, as 

demonstrated in the Distributed Model Intercomparison Projects (Reed et al. 2004, Smith et al. 

2012). It is used operationally in NWS at the River Forecast Centers (RFC), Weather Forecast 

Offices (WFO) and National Centers for Environmental Prediction (NCEP). For rainfall-runoff 

modeling, HL-RDHM implements the gridded version of SAC (Burnash 1995). SAC is capable of 

simulating both saturation- and infiltration excess runoff. For the upper layer storages, saturation 

excess is assumed; no surface runoff occurs before the upper-zone tension and free water 

capacities are filled. Once the upper layers are filled, surface runoff occurs from infiltration excess 

as a function of percolation (Koren et al. 2004). The gridded a priori parameters for SAC and 

kinematic-wave routing are available from NWS for the continental US at a 4km x 4km resolution. 

Not all a priori parameters for SAC (Koren et al. 2000, Anderson et al. 2006, Zhang et al. 2012) 

may be considered realistic in the study area due to urbanization and coarse resolution. In this 

work, we used the a priori parameter settings for all parameters, except Permanent Impervious 

Area (PCTIM) and the two channel routing parameters, hillslopeslope and specific discharge, by 

uniformly disaggregating them onto finer grids. The urban environment differs most significantly 

from others in that it has large impervious areas, and that the drainage of storm water occurs not 

only through land surface but also through man-made storm drainage systems. Collectively, a 

large fraction of an urban area is impervious. Imperviousness, however, generally has very large 
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spatial variability in large urban areas. Appendices A and B describe how the high-resolution 

PCTIM and channel routing parameters were derived for this study, respectively. 

 

6.4. Derivation of rating curves 

 

To stablish a rating curve, concurrent observations of stage and streamflow are necessary 

that cover the expected range of stage at the specific river gauge (Herschy 1993). Unfortunately, 

streamflow observations are not available at any of the HWWS locations. In this work, we derived 

rating curves based on numerical modeling following Kean and Smith (2005, 2010). Appendix C 

describes the procedure used. Once the rating curves for different grain sizes (i.e. D84) were 

derived, we compared, as a reality check, with the rating curves derived based on HL-RDHM 

simulations as explained below. 

We simulated streamflow forced with MPE precipitation at 1/8-HRAP and 15-min 

spatiotemporal resolution in which the 1-HRAP 1-hr MPE estimates are uniformly disaggregated 

onto 1/8-HRAP subgrid and 15-min subintervals. The 15-min subinterval corresponds to the 

sampling interval of stage observations. The choice for the 1/8 HRAP subgrid is somewhat 

arbitrary and is made to avoid favoring high- or low-resolution simulations. We then converted the 

stage observations at the three HWWS locations to pseudo streamflow observations by fitting the 

following stage-discharge relationship (Herschy 1993) to match the simulated streamflow: 

𝑄 = 𝑐 (ℎ + 𝑎)𝑛 (6-1) 

where Q is the discharge, h denotes the stage data, c and n are constants and a is the stage 

at zero flow (datum correction). Usually, the stage-discharge relationship is established through 

plotting the discharge and stage data on logarithmic papers, since the logarithmic form of the 

rating curve can be developed into a straight line, or straight-line segments, by adding or 
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subtracting a constant value (a, datum correction) to the stage logarithmic scale. Possibility of 

extrapolation at either the top or bottom is another advantage of using logarithmic form.  

The datum correction is the stage value corresponding to zero discharge, the lowest point 

on the low-water control. In other words, it is the stage (gauge height) at which water ceases to 

flow over the control. The stage of zero is determined by adding or subtracting a constant until the 

log-log plots looks like a straight line. We have used multiple segments for each location to obtain 

the best possible fit (Herschy 1993). Figure 6-5 displays the shifted stage (stage + datum 

correction) versus simulated discharge value from HL-RDHM forced by MPE. Equations (6-2), 

(6-4) and (6-3) represent the derived rating curves (stage-discharge relationship) for gauges 6033, 

6103 and 6133, respectively. 

{

𝑄 = 0.8 ( ℎ − 486.17)2.3                               ℎ < 489.2 𝑓𝑡

𝑄 = 1.95 (ℎ − 486.17)1.5            489.2 <  ℎ < 498.2 𝑓𝑡

𝑄 = 0.00213 (ℎ − 486.17)4.15                    ℎ >  498.2 𝑓𝑡

 

 

(6-2) 

{
𝑄 = 0.4 ( ℎ − 456.4)2                                 ℎ < 462.9 𝑓𝑡

𝑄 = 0.00118 (ℎ − 456.4)4.15                     ℎ >  462.9 𝑓𝑡
 

 

(6-3) 

{
𝑄 = 1.75( ℎ − 460.7)1.14                               ℎ < 472.7 𝑓𝑡

𝑄 = 6 × 10−6 (ℎ − 460.7)6                           ℎ >  472.7 𝑓𝑡
 

 

(6-4) 

The fitted rating curves are shown in Figure 6-5. For each location, shown in black is the 

rating curve selected from multiple curves obtained via the Kean and Smith method for different 

values of the roughness height, z0 (mm) (see Appendix C). Note that the two rating curves match 

reasonably well. The results presented below are based on the empirical rating curves (in red) in 

Figure 6-5.  
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Figure 6-5 Left: Shifted observed stage versus simulated flow forced by MPE (1/8 HRAP & 15 

min) at log-log scale, The lower dashed green line is corresponding to the stage that there is a 

change in the cross section and the upper dash green line is the road height. Right: Shifted 

observed stage versus simulated flow forced by MPE (1/8 HRAP & 15 min). Red dots are the 

empirical fitted rating curve. Black line is rating curve derived from Kean and Smith method. 
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6.5. Calibration and initialization 

 
There are multiple sources of error in simulating streamflow. The precipitation data may 

have not only spatiotemporally-varying random errors but also systematic errors. The model initial 

conditions may be erroneous. The model parameters may be erroneous and/or lack spatial 

resolution. The models may have structural deficiencies due to lack of model physics, scale issues 

and/or errors in the physiographic data used. In addition, there may be human and/or natural 

control of the movement of water that is not modeled. Ideally, one may assess sensitivity to 

resolution of precipitation input and hydrologic modeling in an ensemble framework in which the 

uncertainties due to all significant errors are accounted for to the extent that the current 

understanding allows. Such an analysis, however, was beyond the scope of this work. Instead, we 

carried out conditional analysis in which the sensitivity of streamflow simulation at the catchment 

outlet is assessed to the resolution of the precipitation input, PCTIM and the channel routing 

parameters, given that all other initial, and observed and fixed boundary conditions are perfectly 

known. In reality, the conditioning variables are never perfectly known. The objective in this work 

was to exercise, in emulation of the real world, what one may consider to be a best practice in 

reducing errors in the conditioning variables. Toward that end, we carried out limited bias 

correction and calibration of the precipitation input and channel routing parameters, respectively, 

as described below. Note that calibration of distributed parameters is an emerging area of research 

(smith et al. 2013, Duan 2013; Gupta et al. 2013). In this work, the channel routing parameters 

were adjusted spatially uniformed following the NWS approach for calibrating HL-RDHM 

(Kuzmin et al. 2008, Smith et al. 2013). 

We applied a multiplicative adjustment factor to the precipitation input, P , to reduce 

volume errors in streamflow simulation, and, to reduce time errors, uniformly apply multiplicative 

adjustment factors, 
oQ  and 

MQ , to the channel routing parameters of specific discharge, Q0, 
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and the exponent, QM, respectively (see Appendix B). In this way, the errors in streamflow 

simulation are reflective as much as possible of the effects of varying resolution of precipitation 

and hydrologic modeling. The multiplicative bias in CASA QPE over the 2013-2014 period 

estimated as described above was 1.3 for Catchments 6033 and 6103, and 1.1 for Catchment 6133. 

Timing errors are often a large contributing factor to errors in streamflow simulation. 

They may originate from different sources: errors in capturing the spatiotemporal distribution of 

precipitation, errors in soil moisture accounting, and/or errors in routing. In this work, we carried 

out spatially uniform adjustment of the channel routing parameters only. To optimize the 

adjustment, we considered the root mean square error (RMSE) of simulated streamflow, mean 

(i.e., volume) error in simulated streamflow, correlation between simulated and observed flows, 

timing error in peak simulated flow as a function of the observed peak flow, probability of 

detection (POD) and false alarm rate (FAR). All statistics were calculated only for the significant 

events for which the CASA QPE was available. There were 16, 19 and 21significant events for the 

three locations of 6033, 6103 and 6133, respectively.  POD and FAR, which are widely used in 

forecast verification (Brown et al. 2010), are particularly important for flash flood forecasting in 

urban areas (Barnes et al. 2007, Fares et al. 2014). In calculating POD and FAR, we used the 99
th

, 

99.5
th

, 99.7
th

 and 99.9
th

 percentiles as the thresholds as estimated from the observed flow within 

the period of record. 

Figure 6-6 through Figure 6-7 show the RMSE and volume error for all combinations of 

the multiplicative adjustment factors to the specific discharge and the exponent. In the figures, 

simulated-vs.-observed peaks, timing errors, POD and FAR are displayed only for the best five 

combinations of the adjustment factors. The final adjustment factors selected for each basin are 

listed in Table 6-1. 
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Figure 6-6 a) RMSE value b) Difference between the simulated and observed volume c) Simulated 

peak flow versus observed peak flow for individual events d) Timing error as a function of 

observed peak flow, e) Probability of detection f) False alarm rate for the best five combination of 

multiplicative factor for Q0 (specific discharge) and QM (exponent) for 6033 (best case, Q0=1.1, 

QM=1.5) 
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Figure 6-7 a) RMSE value b) Difference between the simulated and observed volume c) Simulated 

peak flow versus observed peak flow for individual events d) Timing error as a function of 

observed peak flow, e) Probability of detection f) False alarm rate for the best five combination of 

multiplicative factor for Q0 (specific discharge) and QM (exponent) for 6103 (best case, Q0=1, 

QM=1.1) 
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Figure 6-8 a) RMSE value b) Difference between the simulated and observed volume c) Simulated 

peak flow versus observed peak flow for individual events d) Timing error as a function of 

observed peak flow, e) Probability of detection f) False alarm rate for the best five combination of 

multiplicative factor for Q0 (specific discharge) and QM (exponent) for 6133 (best case, Q0=1.1, 

QM=1.1) 
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Table 6-1 Selected multiplicative factors for precipitation, specific discharge and exponent. 

Basin PADJ  Q0 (specific discharge) QM (exponent) 

6033 1.3 1.1 1.5 

6103 1.3 1.0 1.1 

6133 1.1 1.1 1.1 

 

To warm up the model states, the SAC model was run from 1996 to 2013 using the 

historical Stage 3/MPE data. It is well known that the Stage 3 products have significant low biases 

(Seo et al. 1999, Seo and Breidenbach 2000, Seo et al. 2011). Given the long warmup period, 

however, one may expect the effects of the low bias to be lost for the simulations carried out in 

this work. In the warmup run, the SAC was run at a spatiotemporal resolution of 1/8
th

 HRAP and 

15 min, for which the MPE estimates were uniformed disaggregated from the native 1-HRAP and 

1-hour resolution. 

 

6.6. Scale sensitivity 

 

To assess the sensitivity of streamflow simulation to the resolution of precipitation input 

and hydrologic modeling given the a priori SAC parameters, initial SAC and kinematic wave 

routing states, we compared streamflow simulations from HL-RDHM over a range of 

spatiotemporal resolutions. The above represents analysis of sensitivity of streamflow simulation 

on the resolution of precipitation, PCTIM, Qo and QM conditional on all other input, parameters 

and states of the SAC and kinematic-wave routing models being perfectly prescribed. 
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6.5.1. Sensitivity analysis to spatial resolution  

Sensitivity analysis was performed at resolutions of 1/2 (2 km), 1/4 (1 km), 1/8 (500 m) 

and 1/16 (250 m) HRAP. The temporal resolution was fixed at 15 minutes. Table 6-2 shows the 

RMSE of streamflow simulation at different spatial resolutions. Figure 6-9 through Figure 6-11 

show (simulated peak flow – observed peak flow) as a function of the observed peak flow, 

(simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, and 

(simulated flow volume  – observed flow volume) as a function of the observed flow volume for 

significant events at different spatial resolutions for Catchments 6033, 6133 and 6033. The figures 

do not indicate any consistent patterns. Whereas the highest resolution simulation does indicate 

sharper rise in hydrographs for Catchments 6033 and 6133 resulting in earlier time-to-peak, this 

pattern does not hold for Catchment 6013. Also, while the simulated flow peaks higher and 

produces larger volume at higher resolutions for Catchment 6103, this pattern is reversed for 

Catchment 6133.  

 

Table 6-2 RMSE values for different spatial resolutions 

Spatial resolution 6033 6103 6133 

1/2 HRAP 17.3609 6.54 12.92 

1/4 HRAP 17.3906 6.24 12.18 

1/8 HRAP 17.4673 6.73 11.59 

1/16 HRAP 17.5892 6.59 11.15 
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Figure 6-9 a) (simulated peak flow – observed peak flow) as a function of the observed peak flow, 

b) (simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, and 

c) (simulated flow volume – observed flow volume) as a function of the observed flow volume for 

significant events at different spatial resolutions for Catchment 6033 
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Figure 6-10 a) (simulated peak flow – observed peak flow) as a function of the observed peak 

flow, b) (simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, 

and c) (simulated flow volume – observed flow volume) as a function of the observed flow 

volume for significant events at different spatial resolutions for Catchment 6103 
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Figure 6-11 a) (simulated peak flow – observed peak flow) as a function of the observed peak 

flow, b) (simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, 

and c) (simulated flow volume – observed flow volume) as a function of the observed flow 

volume for significant events at different spatial resolutions for Catchment 6133 

 

Figure 6-12 shows the cross correlation between the simulated and observed flows as a 

function of spatial resolution. While the differences are very small, it is seen that, the higher the 

resolution is, the higher the correlation is. While these differences are statistically not significant, 

they do indicate sensitivity to the resolution for the specific events considered in this work. Figure 

6-13 shows the cross correlation between the observed and simulated flows forced by CASA QPE 

(in red) and by MPE (in black) as a function of spatial resolution for all 3 catchments (left) and for 

Catchment 6033 only (right). Note that, while the differences are, again, very small, the 
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correlation of MPE-forced simulation, which is representative of all 3 catchments, is higher, but 

that, for Catchment 6033, the correlation of CASA QPE-forced simulation is higher. Note in 

Figure 6-13 that Catchment 6033 has the largest impervious areas and hence is likely to be more 

sensitive to spatiotemporal variability of precipitation, which the CASA QPE would capture better 

than MPE due to higher resolution. 

Figure 6-14 (Left and Right) show the smoothed power spectra of observed (in black) and 

simulated (in color) streamflow at all spatial resolutions forced by the CASA QPE and the MPE, 

respectively. The temporal resolution used in these simulations is 15 min. In both figures, the 

simulations at 1 HRAP were not successful due to too coarse a resolution and may be ignored. The 

figures confirm the findings above that there is little sensitivity to spatial resolution in these 

simulations, that the MPE-forced simulations capture the lower-frequency variability (up to a 

wavelength of about 5 hours) better than the CASA QPE-forced, but that the CASA QPE-forced 

simulations are marginally better than the MPE-forced for capturing higher-frequency variability. 

Note, however, that, given the time-to-peak is on the order of a few hours for these catchments 

(see Figure 6-3), higher frequency variability contributes little to the overall quality of streamflow 

simulation. A number of different inferences are possible from the findings above. One may 

hypothesize that, given the relatively large size of these catchments, the spatiotemporal variability 

of precipitation may be filtered out through the hydrologic processes. Testing of this hypothesis is 

left as a future endeavor for which spectral analysis of precipitation input at different spatial 

resolutions may be carried out. Analysis of spatial statistical structure of 15-min point 

precipitation in the study area indicates that the spatial correlation scale is larger than the range of 

spatial resolutions considered in this work (Rafieeinsab et al. 2014), in which case the impact of 

higher-resolution QPE would not be felt in streamflow simulation. Additional research is 

necessary to test this hypothesis as well. 
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Figure 6-12 Cross correlation between simulated and observed flow as function of spatial 

resolutions. They are based on the combined time series of all three catchments. 

 

 
Figure 6-13 Cross correlation between observed and simulated flows forced by CASA QPE (in 

red) and by MPE precipitation (in black) as a function of spatial resolution for all 3 catchments 

(left) and for Catchment 6033 only (right). 
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Figure 6-14 Smoothed power spectra of observed (in black) and simulated (in color) streamflow at 

all spatial resolutions forced by the CASA QPE (Left) and the MPE (Right) 

 

6.5.2. Sensitivity to temporal resolution 

Sensitivity analysis was performed at temporal resolutions of 1, 5, 15, 30 and 60 minutes. 

To render the sample size the same for all simulations, only the streamflow results at the top of the 

hour were considered for all cases. The RMSE of simulated flow for different temporal resolutions 

is given in Table 6-3. Figure 6-15 shows the percent difference in RMSE relative to the smallest 

RMSE for each catchment. It is clearly seen that the errors are reduced at lower resolutions of 30 

to 60 min. Figure 6-16 through Figure 6-18 show (simulated peak flow – observed peak flow) as a 

function of the observed peak flow, (simulated time-to-peak – observed time-to-peak) as a 

function of the observed peak flow, and (simulated flow volume – observed flow volume) as a 

function of the observed flow volume for significant events at different temporal resolutions for 

Catchments 6033, 6103 and 6133. The figures indicate that, the higher the temporal resolution is, 

the larger the simulated peak flow is, but that there is little or no dependence of time-to-peak or 

flow volume on temporal resolution. 
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Table 6-3 RMSE values for different temporal resolutions 

Temporal resolution (min) 6033 6133 6103 

1 6.39 12.24 7.364 

4 6.24 12.07 7.1818 

15 6.05 11.52 6.766 

30 5.94 10.84 6.3904 

60 6.1 10.48 6.0258 

 

 

Figure 6-15 Percentage increase in RMSE at 1, 5, 15, 30 and 60 minute temporal resolutions. 
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Figure 6-16 a) (simulated peak flow – observed peak flow) as a function of the observed peak 

flow, b) (simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, 

and c) (simulated flow volume – observed flow volume) as a function of the observed flow 

volume for significant events at different temporal resolutions for Catchment 6033 
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Figure 6-17 a) (simulated peak flow – observed peak flow) as a function of the observed peak 

flow, b) (simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, 

and c) (simulated flow volume – observed flow volume) as a function of the observed flow 

volume for significant events at different temporal resolutions for Catchment 6103 
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Figure 6-18 a) (simulated peak flow – observed peak flow) as a function of the observed peak 

flow, b) (simulated time-to-peak – observed time-to-peak) as a function of the observed peak flow, 

and c) (simulated flow volume – observed flow volume) as a function of the observed flow 

volume for significant events at different temporal resolutions for Catchment 6133 

 
Figure 6-19  shows the auto-correlation function (ACF) of the observed (in black ) and 

simulated (in color) streamflow at different temporal resolutions. Note that the ACF of the 

simulated matches that of the observed most closely at a 30-min resolution. Figure 6-20 shows the 

smoothed power spectra of the observed (in black) and simulated (in color) streamflow at different 

temporal resolutions. Note that the spectrum of the simulated matches that of the observed most 

closely at 30 to 60-min resolutions. The observed spectrum indicates that most of the power is 

associated with wavelengths larger than a few hours (i.e., the time-to-peak scale for the study 
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catchments) and that, at higher frequency, the spectrum takes on a white-noise character. Most of 

the power, however, is associated with time scales at or larger than the time-to-peak; it suggests 

that, for the catchments studied in this work, streamflow simulation does not significantly benefit 

from higher temporal resolution. These results support the findings from Figure 6-16 through 

Figure 6-18 described above. The above picture, however, may change for smaller catchments, 

investigation of which is left as a future endeavor. 

 

Figure 6-19 Autocorrelations of observed (in black) and simulated (in color) streamflow at 

different temporal resolutions. 
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Figure 6-20 Smoothed power spectra of observed (in black) and simulated (in color) streamflow at 

all temporal resolutions (left) and at resolutions of 1-, 5- and 15-min only (right). 

 

6.7. Conclusion and future research recommendations 

 

To assess the sensitivity of streamflow simulation to the resolution of precipitation input 

and hydrologic modeling, conditional sensitivity analysis was carried out. Streamflow was 

simulated for three catchments in DFW using HL-RDHM with the resolution of precipitation 

varying from 1/16 to 1 HRAP and 1 to 60 min, and the spatial resolution of PCTIM and the two 

channel routing parameters varying form 1/16 to 1 HRAP while all other input and model 

parameters and states were assumed to be perfectly prescribed. The precipitation input used was 

the CASA QPE available at 500-m 1-min resolution. The size of the catchments ranged from 32 to 

54 km
2
. 

The results indicate little consistent pattern in dependence on spatial resolution. Whereas 

the highest resolution simulation does indicate sharper rise in hydrographs for Catchments 6033 

and 6133 resulting in earlier time-to-peak, this pattern does not hold for Catchment 6013. Also, 
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while the simulated flow peaks higher and produces larger volume at higher resolutions for 

Catchment 6103, this pattern is reversed for Catchment 6133. While the differences are very 

small, the cross correlation between the simulated and observed flows as a function of spatial 

resolution shows that, the higher the resolution is, the higher the correlation is. While the 

differences are very small, the correlation of the MPE-forced simulation representative of all 3 

catchments is higher than that of the CASA QPE-forced simulation. For Catchment 6033, which 

has the largest impervious area and hence is likely to be more sensitive to spatiotemporal 

variability of precipitation, the correlation of CASA QPE-forced simulation is higher. The 

smoothed power spectra of observed and simulated streamflow at all spatial resolutions forced by 

the CASA QPE and the MPE confirm the above findings. The spectra also show that the MPE-

forced simulations capture the lower-frequency variability (up to a wavelength of about 5 hours) 

better than the CASA QPE-forced, but that the CASA QPE-forced simulations are marginally 

better than the MPE-forced for capturing higher-frequency variability. Given that the time-to-peak 

is on the order of a few hours for these catchments, higher frequency variability contributes little 

to the overall quality of streamflow simulation. One may hypothesize that, given the relatively 

large size of the catchments, the spatiotemporal variability of precipitation may be filtered out 

through the hydrologic processes. Analysis of spatial statistical structure of 15-min point 

precipitation in the study area indicates that the spatial correlation scale is larger than the range of 

spatial resolutions considered in this work (Rafieeinsab et al. 2014). In such a case, the impact of 

higher-resolution QPE would not be felt in streamflow simulations. Additional research is 

necessary to test the above hypotheses. 

For sensitivity to temporal resolution, it is clearly seen that the errors are reduced at lower 

resolutions of 30 to 60 min. The sensitivity analysis results indicate that, the higher the temporal 

resolution is, the larger the simulated peak flow is, but that there is little or no dependence of time-

to-peak or flow volume on temporal resolution. While the differences are very small, the cross 
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correlation between the observed and simulated flows at all temporal resolutions supports the 

above finding. The autocorrelation function of the simulated streamflow matches that of the 

observed most closely at a 30-min resolution. Similarly, the spectrum of the simulated streamflow 

matches that of the observed most closely at 30 to 60-min resolutions. The observed spectrum 

indicates that most of the power is associated with wavelengths larger than a few hours (i.e., the 

time-to-peak scale for the study catchments) and that, at higher frequency, the spectrum takes on a 

white-noise character. Most of the power, however, is associated with time scales at or larger than 

the time-to-peak; it suggests that, for the catchments studied in this work, streamflow simulation 

does not significantly benefit from higher temporal resolution. The above picture, however, may 

change for smaller catchments, investigation of which is left as a future endeavor. 
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Chapter 7  

Conclusion and future research recommendations 

 

There exist different sources of error in hydrologic predictions which may be categorized 

into three main groups, input uncertainty, parametric and structural uncertainty, and uncertainty in 

initial conditions. The first of the two main objectives of this study is to advance the understanding 

of these uncertainties and reduce them to the greatest possible extent. In this study, uncertainty in 

initial conditions is reduced via two data assimilation techniques with the aim of improving 

streamflow predictions. The accuracy of high-resolution QPE is improved via fusion of different 

available radar-based QPEs which reduces the input uncertainty for more accurate hydrologic 

prediction. The second main objective of this study is test the practical limits of high resolution 

hydrologic modeling given the quality of the radar-based QPE to produce timely and accurate 

spatial streamflow information. Toward that end, we carried out scale sensitivity analysis using 

HL-RDHM over different spatiotemporal scales to identify the scale at which the relative error in 

simulated streamflow may be at minimum. The following summarize the main findings and future 

research recommendations. 

  

7.1. Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter 

 

Performance of the two data assimilation (DA) techniques, maximum likelihood 

ensemble filter (MLEF) and ensemble Kalman filter (EnKF), are comparatively evaluated. The 

primary purpose of the comparative evaluation is to assess relative performance and operational 

viability of the two DA techniques when the observation equation is highly nonlinear. Note that 

EnKF assumes linear observation equations whereas MLEF does not. We performed comparative 

evaluation of homoscedastic versus heteroscedastic modeling of observation errors for MLEF as 
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well as comparative evaluation of MLEF and EnKF under varying conditions of the magnitude of 

the dynamical model error, the number of ensemble members, and the number of streamflow data 

assimilated per cycle. The main findings and recommendation are as follows: 

 In general, MLEF improves over EnKF consistently over varying conditions of 

observational and model errors and ensemble size.  

 Heteroscedastic modeling of observation errors for MAP and streamflow does not 

improve over homoscedastic modeling for MLEF.  

 MLEF is found to be not very sensitive to modeling of observational errors.  

 Introducing model error in soil moisture dynamics improves DA performance 

significantly at short lead times. MLEF generally shows smaller sensitivity to the 

magnitude of the dynamical model error than EnKF.  

 Sensitivity to ensemble size indicates that MLEF is able to produce significantly more 

accurate streamflow predictions at the catchment outlet using fewer ensemble members 

than EnKF. To achieve similar performance, the total CPU time required for MLEF is 

significantly smaller than that for EnKF.  

 Additional research is necessary to produce reliable ensembles for analysis and prediction 

and to assess their quality via rigorous ensemble verification for both streamflow and soil 

moisture.  

 Additional research is also necessary to assess the quality of DA-aided solutions for the 

model states using soil moisture observations.  

 

7.2. Comparative evaluation of radar-based quantitative precipitation estimates (QPE) 

 

This dissertation also investigates how different radar-based QPEs available in the 

Dallas-Fort Worth Metropolex area may differ in accuracy over different spatiotemporal scales of 
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aggregations. To that end, comparative evaluation was carried out for the Multisensor 

Precipitation Estimator, NEXRAD Digital Hybrid Scan Reflectivity, Q2 and CASA. The main 

findings are as follows: 

 DHR has the least amount of information relative to other QPE products. 

 Q2 is found to be least biased in the mean, most biased in variability, and more skillful 

for larger amounts. 

 MPE has the highest information content relative to others and obtain the highest weights 

in the merging process at low rainfall depth while CASA has the higher weights at higher 

rainfall thresholds. 

 CASA is found to be the most skillful overall, particularly for larger amounts, add skill 

due to increased location specificity from higher resolution. 

 Parsimonious threshold-dependent multi-QPE merging may provide the most skillful 

estimate. 

 Additional research is necessary to consider time series representation of multiple QPE 

vs. the verifying observations to provide event-specific view of the quality of the QPEs. 

 Additional researched is needed to account for representativeness errors in rain gauge 

observations. 

 Hydrologic evaluation is necessary to assess the significance of the differences and 

improvemments in terms of runoff and flow. 

 

7.3. Improving high-resolution precipitation analysis via fusion of multiple radar-based 

precipitation products 

 
Due to large sensitivity of hydrologic modeling and prediction to errors in quantitative 

precipitation estimates (QPE), it is very important in high-resolution hydrologic modeling that the 
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accuracy of high-resolution QPE be improved to the greatest possible extent. In this work, we 

comparatively evaluate four procedures for such fusion: Direction Estimation (DE), Bias 

Correction (BC), Reduced-Dimension Bias Correction (RBC) and Simple Estimation (SE). They 

are applied to fuse the MPE and radar-only Q2 products at the 15-min 1-km resolution 

(Experiment 1), and the MPE and CASA product at the 15-min 500-m resolution (Experiment 2). 

Main finding are as follows: 

 The performance of DE and BC are generally comparable. Between the two, while DE is 

more attractive for computational economy, BC is more attractive for nonnegativity of 

the fused estimates.  

 The performance of RBC is very poor as it does not account for the fact that biases in the 

QPE products depend on the magnitude of precipitation.  

 Only SE passes the evaluation criterion consistently of being superior to the ingredient 

QPEs and trivially downscaled lower-resolution QPE.  

 The simplicity and robustness of SE observed in this work make a strong case for its 

operational implementation as a post-processor to the QPE product generation process. 

 

7.4. Evaluation of the NWS distributed hydrologic model over the Trinity River Basin in Texas 

 

Distributed models are a promising tool for producing high-resolution streamflow and 

soil moisture information. We examine how uncalibrated operational distributed models may 

compare with finely-tuned lumped models. The comparative simulation experiment is carried out 

for 10 headwater basins in the Trinity River Basin in TX. The motivation for the above 

comparison stems from the fact that calibration of distributed models is generally very expensive 

and as such is to be minimized or avoided if possible. The main findings follow below: 
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 Uncalibrated HL-RDHM produces reasonably skillful simulations of outlet flow for the 

majority of the 10 headwater basins.  

 For a half of the basins, however, bias in HL-RDHM simulation exceeds 20 percent. 

Gross oversimulation by HL-RDHM is observed for JAKT2 and BRPT2 while HL-

RDHM did very well for RYET2, a slowly responding basin with complex UHG.  

 The findings in this work point to limited calibration to reduce systematic biases in runoff 

and optimization of selective routing parameters to reduce timing error.  

 HL-RDHM is suitable for high resolution hydrologic modeling in the DFW area.  

 

7.5. High resolution distributed model and scale sensitivity 

 

To assess the sensitivity of streamflow simulation to the resolution of precipitation 

input and hydrologic modeling, conditional sensitivity analysis was carried out. Streamflow 

was simulated for three catchments in DFW ranging from 40 to 52 km
2
 using HLRDHM with 

the resolution of precipitation varying from 1/16 to 1 HRAP and 1 to 60 min, and the spatial 

resolution of PCTIM and the two channel routing parameters varying form 1/16 to 1 HRAP. 

The precipitation input used was the CASA QPE available at 500-m 1-min resolution. The 

main finding are as follows: 

 Little consistent pattern is observed in dependence of streamflow simulation on 

spatial resolution.  

 While the differences are very small, the cross correlation between the simulated and 

observed flows as a function of spatial resolution shows that, the higher the 

resolution is, the higher the correlation is.  

 The power spectra of simulated and observed streamflow show that the MPE-forced 

simulations capture the lower-frequency variability (up to a wavelength of about 5 
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hours) better than the CASA QPE-forced, but that the CASA QPE-forced 

simulations are marginally better than the MPE-forced for capturing higher-

frequency variability.  

 Given that the time-to-peak is on the order of a few hours for these catchments, 

higher frequency variability contributes little to the overall quality of streamflow 

simulation. One may hypothesize that, given the relatively large size of the 

catchments, the spatiotemporal variability of precipitation may be filtered out 

through the hydrologic processes. In such a case, the impact of higher-resolution 

QPE would not be felt in streamflow simulations. Additional research is necessary to 

test the above hypotheses. 

 For sensitivity to temporal resolution, it is seen that the errors are reduced at lower 

resolutions of 30 to 60 min for the urban catchments studied in this work.  

 The sensitivity analysis results indicate that, the higher the temporal resolution is, the 

larger the simulated peak flow is, but that there is little or no dependence of time-to-

peak or flow volume on temporal resolution.  

 The autocorrelation function of the simulated streamflow matches that of the 

observed most closely at a 30-min resolution. Similarly, the spectrum of the 

simulated streamflow matches that of the observed most closely at 30 to 60-min 

resolutions.  

 For the catchments studied in this work, streamflow simulation does not significantly 

benefit from higher temporal resolution. The above picture, however, may change 

for smaller catchments, investigation of which is left as a future endeavor. 

 Additional research is necessary to identify and attribute the sources of errors in 

streamflow simulation. 
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Admittedly, the research carried out in this dissertation addresses only a few challenges 

in hydrologic prediction. Undoubtedly, much additional work is needed to fully address them. It is 

hoped that the additional knowledge gained and the tools developed will serve as building blocks 

and lead to an evolving system for monitoring and prediction of water resources and water-related 

hazards, particularly in large urban areas, that integrates advanced sensing, data fusion, data 

assimilation and high-resolution modeling to provide accurate, and time- and location-specific 

information that improves the quality of life and sustainability. 
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Appendix A 

Derivation of high-resolution permanent impervious area (PCTIM) 
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Permanent impervious area is one of the SAC-SMA parameter which impacts directly on the 

production of direct runoff. Urbanization has increased the percentage of the impervious areas which 

result in less infiltration and higher runoff values. Therefore, urban areas are more prone to flooding, 

particularly flash flooding.  

Since impervious areas play an important role in rainfall-runoff processes in urban areas, 

fractional impervious area maps are produced based on the information obtained from the Cities of Fort 

Worth, Arlington and Grand Prairie at different spatial resolutions. Each city provided some partial 

information about the impervious areas within the cities as listed in Table A-1. All the impervious maps 

were merged together (Figure A-1) and the percentage of the imperviousness was calculated for each 

pixel (ranging from 250 m to 4 km). As depicted in Figure A-2 finer resolution has more specific 

information.  

 

Table A-1 Available GIS layers from cities of Fort Worth, Arlington, and Grand Prairie. 

Map Layer Fort Worth Arlington Grand Prairie 

Building footprint        

Impervious cover of 

commercial 

This has parking lots 

for commercial 

buildings 

- 

This has parking 

lots for commercial 

buildings 

Pavements It has only streets 
It has all streets and 

parking lots 
- 

Centerline of 

sidewalk 

Made a buffer (3.25 

ft) So each sidewalk 

is 6.5 ft wide. 

- - 

Centerline of streets - - 

Made a buffer 6 ft 

for each lane 

(Standard width for 

lane is 12 ft) 
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Figure A-1 Merged impervious covers obtained from the Cities of Fort Worth, Arlington and Grand 

Prairie 
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Figure A-2 Impervious fraction at different spatial resolutions within the Cities of Fort Worth, Arlington 

and Grand Prairie.  

Full HRAP 

~ 4 km 

1/2 HRAP 

~ 2 km 

1/4 HRAP 

~ 1 km 

1/8 HRAP 

~ 500 m 

1/16 HRAP 

~ 250 m 
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Appendix B 

Derivation of high-resolution kinematic-wave channel routing parameters 
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A distributed model requires cell-to-cell connectivity information to perform routing. This cell-to-cell 

connectivity can be derived based on the flow direction. DEM data are available at various fine 

resolutions such as ~10 m, however, the distributed hydrologic models like HL-RDHM operates at 

coarser resolutions (e.g., ~4 km). Hence, there is a need to derive the flow direction and consequently the 

cell-to-cell connectivity at the coarse resolution at which the model operates. Reed (2003) proposed a 

new algorithm, called cell outlet tracing with an area threshold (COTAT) to assign flow direction to any 

cell at the coarse resolution from the available information at higher resolutions. An area threshold is used 

to control the tendency toward diagonal flows in the output. The basic steps in COTAT algorithm is 

explained below and is described in detail in Reed 2003.  

1. Identify an outlet pixel in each coarse-resolution cell 

2. For each cell, trace downstream, from its outlet pixel, along the flow path defined by high-

resolution flow direction 

3. For each subsequent outlet pixel reached, determine its total drainage area and subtract the 

drainage area of the starting outlet pixel 

4. Assign the flow direction of the starting cell toward the neighboring cell with the farthest outlet 

along the trace 

The National Elevation Dataset (NED) with 30 meter resolution from NHDPlus Version 2 

dataset is used here. The derived flow directions at different resolutions are illustrated in Figure B-1. As 

depicted 4 km resolution is not capturing the river system very well, however, having higher resolutions 

such as 500 meter or 250 meter can represent the river system detail well.  

Hillslope and channel routing in HL-RDHM is performed using kinematic-wave routing. Within 

each cell, fast (surface) runoff is first routed over conceptual hillslope, and then the combination of 

channel inflow from hillslope routing, slow runoff (subsurface/ground) and inflow from upstream cells is 

routed via channel routing (Koren et al., 2004). A conceptual hillslope consists of a number of uniform 

hillslopes (the number of uniform hillslopes depends on the stream channel density specified for the cell 

and the cell area). The conceptual channel that passes water from cell-to-cell usually represents the 
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highest order stream in a selected cell. The cell-to-cell connectivity sequence which is used to transfer 

water from upstream to downstream cells and to the basin outlets. 

Koren et al. (2004) described the mathematical formulas for hillslope and channel routing and 

also the algorithms that can be used to derive the distributed hillslope and channel routing parameters. For 

the hillslope routing, the following equation is used to calculate the discharge per unit area of hillslope.  

3/52 h
n

S
Dkq

h

h

qh   
(B-1) 

where kq is a unit transformation coefficient, and D is stream channel density in km
-1

. Sh is 

hillslope slope, nh is hillslope roughness coefficient and h is the average hillslope water. Default and 

spatially constant values for drainage density (D) and the hillslope roughness (nh) is used for most of 

studies. We also use the default value here. The hillslope slope can be derived by simple averaging the 

slope calculated based on DEM data for 30m×30m pixels to get the coarse resolution slope with user-

defined resolutions (ranging from 250m to 4km). The derived hillslope slopes are plotted in Figure B-2. 

For the channel routing method, we have used the rating curve option (rutpix9) available in HL-

RDHM. The channel discharge for each cell is a power function of the cross sectional area (A) as follows: 

𝑄𝑐 = q0𝐴𝑞𝑚 (B-2) 

where q0 is the specific channel discharge per unit channel cross section area, and qm is the 

power value. To derive the q0, rearrange Eq. (B-2) as following: 

q0 =
𝑄𝑐

Aqm
 

(B-3) 

Therefore, specific discharge can be calculated if the A and Qc are known. Mean annual flow 

can be derived using the USGS CONUS-side dataset of mean average annual runoff (Figure B-3). A also 

can be derived from the following equation. 

𝐴 =
Q

𝑉
 

(B-4) 

where V is velocity and can be calculated using the empirical equation developed by Jobson 

(1996) which is simplified to the following equation: 
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𝑉 = 0.094 + 0.0143 (
𝐷𝑎

1.25√𝑔

𝑄
)

0.919

𝑆0.159
𝑄

𝐷𝑎

 

(B-5) 

where Da is the upstream drainage area and can be calculated using the flow direction and cell 

size grids, g is a known constant. With A and Q known, qm is the only unknown for q0 calculation. The 

exponent value is simply assigned 1.3. Figure B-4 shows the derived specific discharge over DFW 

domain.  
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Figure B-1 Derived flow line at different spatial resolutions within the Cities of Fort Worth, Arlington 

and Grand Prairie. Lower left plot is a close up from flowlines overlaid on FEMA water feature line for 

1/16 HRAP resolution (~ 250 meter). 
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Figure B-2 Derived hillslope slope at different resolutions within DFW domain 
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Figure B-3 Mean annual runoff for US (Gebert et al. 1987) 



 

176 

 

Figure B-4 Derived specific discharge at different resolutions within DFW domain.
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Appendix C 

Derivation of rating curves 
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Kean and Smith (2005, 2010) developed a fluid mechanically based method to generate stage-

discharge relation (rating curve) for geomorphically stable channels. The model consists of two 

categories: 1) a set of procedure for quantifying the various contributions to the total flow resistance in 

the channel and 2) a flow model into which the results of these procedures are embedded.  

The channel roughness is estimated from the field measurement of the following parameters: 1) 

channel geometry, 2) the physical roughness of the bed, banks, and floodplain, and 3) the vegetation 

density on the banks and floodplain. Kean and Smith method models streamflow in a channel reach by 

solving Saint-Venant equations for steady, non-uniform flow in one dimension. The equations conserve 

mass (∂Q/∂x=0) and momentum,  

1

2

𝜕(𝑢2)𝑎𝑣

𝜕𝑥
+ 𝑔

𝜕𝐸

𝜕𝑥
+

1

𝜌

(𝜏𝑏)𝑎𝑣

𝑅
= 0 

(C-1) 

in which (𝑢2)𝑎𝑣 is the square of the downstream velocity component averaged over the cross 

section, (𝜏𝑏)𝑎𝑣 is the perimeter-averaged shear stress, E is the elevation of the water surface, and R is 

the hydraulic radius.  

To apply the Kean and Smith model, we used LiDAR data to create the channel shape and derive 

the river cross sections. LiDAR is an optical remote-sensing technique that uses laser light to densely 

sample the surface of the earth, producing highly accurate x, y, z measurements. The derived river cross 

sections were then transferred to FastMECH software to build mesh. FaSTMECH (Flow and Sediment 

Transport with Morphological Evolution of Channels) is a river flow/riverbed variation analysis solver 

developed by Dr. Jonathan Nelson of the U.S. Geological Survey (USGS).  The created mesh will then be 

used in the model to calculate the bed slope, water slope, wetted area and perimeter at different stages.  

The physical roughness of the bed can be related to the particle size of the bed material by zo = 

0.1D84, where D84 is the diameter of sediment at the 84th percentile of the grain size distribution. To 

determine D84 value and then relative bed roughness (zo), we used the grain size distribution of the seven 

channels in Fort Worth (Table C-1). By using D84 of these seven channels in Fort Worth, an ensemble of 



 

179 

stage-discharge relations were calculated at the location of the water level sensors. It should be noted the 

effect of the vegetation density was disregarded to calculate the rating curve. 

 

Table C-1 D84 and corresponding relative bed roughness values of seven channels in Fort Worth 

Channel D84 (mm) z0 (mm) 

Misty Meadow 21.5 2.15 

SC-2 23.1 2.31 

Edgecliff Branch 37 3.7 

SC-1 42 4.2 

Royal Creek (2) 53 5.3 

Royal Creek (1) 60 6 

Marys Creek 114.4 11.44 
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