
ANALYSIS AND MODELING TECHNIQUES FOR GEO-SPATIAL AND

SPATIO-TEMPORAL DATASETS

by

KULSAWASD JITKAJORNWANICH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2014

ii

Copyright © by Kulsawasd Jitkajornwanich 2014

All Rights Reserved

iii

To the memory of my grandmother, Hianghung Saetang, I miss you…

iv

Acknowledgements

First of all, I would like to express my sincerest thanks to my professor

Dr. Ramez Elmasri for his invaluable guidance that helps me get to this point. This day

will never come without him. I also would like to thank him for being there for me in

several unexpected dilemma situations I encountered during my PhD studies. These

good and bad experiences make me realize how such a great person he is. Not only is

he a knowledgeable/creative professor, but also warm-hearted Samaritan. It has been

such a great time working and learning from him. It is definitely one of the great

experiences in my life that I will never forget.

Next, I would like to thank all my committee members (Prof. Chengkai Li, Prof.

David Levine, and Prof. Leonidas Fegaras) for their priceless advice and feedback that

helped me perfect my research work. Also, I am grateful to Prof. John McEnery for his

support and guidance, and for allowing me to work on a real-world hydrology project, and

for educating me on hydrology concepts.

I also would like to thank all my friends from our lab (MAST), especially Upa

Gupta and Sakthi Kumaran Shanmuganathan for our effective discussions that make a

better work.

Finally, I would like to thank all my family members for their continuous support,

especially my grandmother, who passed away a semester prior in August 23, 2013. She

will always be in my heart.

April 17, 2014

v

Abstract

ANALYSIS AND MODELING TECHNIQUES FOR GEO-SPATIAL AND

SPATIO-TEMPORAL DATASETS

Kulsawasd Jitkajornwanich, PhD

The University of Texas at Arlington, 2014

Supervising Professor: Ramez Elmasri

In recent years, spatio-temporal data has received a lot of attention and

increasingly plays an important role in our everyday lives as we can witness from the

fast-growing mobile technologies and its location-based application development. By

spatio-temporal data, we mean data that is associated with specific spatial locations that

change over time. For example, a cellphone or car with GPS will generate the object

location at regular time intervals. Another example would be the track of a storm center

as it moves. Spatio-temporal data could be thought of as a huge data warehouse, which

contains hidden and meaningful information. However, to analyze the available spatio-

temporal data directly from its original formats and locations is not easy because the data

is often in a format that is difficult to analyze and is usually ‘big’. Our research goals focus

on spatio-temporal datasets and how to summarize, model, and conceptualize them for

analysis and mining. Five main parts of this dissertation include: 1) spatio-temporal

knowledge representation, 2) identifying meaningful concepts from raw data, 3)

converting raw data to conceptual data, 4) analysis and mining of conceptual data, and 5)

a general framework for big data analysis and mining.

In the first part of the dissertation, we look at the spatio-temporal datasets in

general by considering spatio-temporal data semantics using techniques similar to those

vi

utilized in the “Semantic Web”. We work towards creating a spatio-temporal ontology

framework, which can be used to represent and reason about spatio-temporal data. In

the next three parts, we focus on the spatio-temporal datasets in a specific domain, which

is rainfall precipitation data in the hydrology domain. However, the techniques and

methodology that we use can be adapted to different types of hydrological data such as

soil moisture, water level, etc., as well as other types of big spatio-temporal data.

Therefore, in the final part, we propose a generalized framework for analyzing and mining

big data in any given domain. The framework allows big data in a particular domain to be

conceptually analyzed and mined by using ontologies and EER.

vii

Table of Contents

Acknowledgements .. iv

Abstract ... v

List of Illustrations ... x

List of Tables ..xii

Chapter 1 Introduction... 1

Chapter 2 Spatio-Temporal Knowledge Representation .. 5

2.1 Spatial Ontology Formalization ... 5

2.1.1 Background and Motivation ... 6

2.1.2 Formalization of Spatial Object Definitions ... 8

2.1.3 Formalization of Spatial Operation Definitions .. 11

2.2 OWL/Protégé Realization ... 23

2.2.1 Protégé Background and Preparation ... 23

2.2.2 Adding Spatial Dimension to Ontology .. 24

2.2.3 Developing Spatial Built-ins in Protégé ... 26

2.2.4 Spatial Reasoning, Inference and Querying ... 28

2.3 OpenGIS
®
 SQL Completeness ... 31

2.3.1 Summary of OpenGIS SQL Spatial Relationships and Operations 32

2.3.2 Proof of Completeness .. 36

2.4 Related Work .. 36

2.4.1 Temporal Ontology Formalization ... 36

2.4.2 Temporal Information Representation and Querying in OWL 37

Chapter 3 Identifying Meaningful Concepts from Raw Data ... 38

3.1 Background and Motivation .. 38

3.2 Description of Raw Rainfall Data .. 40

viii

3.3 Rainstorm Formalization ... 42

3.3.1 Local Storm ... 43

3.3.2 Hourly Storm .. 44

3.3.3 Overall Storm ... 47

Chapter 4 Converting Raw Data to Conceptual Data ... 50

4.1 CUAHSI-based Approach ... 51

4.1.1 CUAHSI-related Background .. 51

4.1.2 Storm Identification Algorithms .. 53

4.1.3 Experimental Results .. 59

4.2 MapReduce-based Approach ... 61

4.2.1 Storm Identification Algorithms .. 62

4.2.2 Experimental Results .. 75

4.3 Custom Database Schema for Conceptual Storm Outputs 79

4.4 Storm Output Verification ... 85

4.4.1 Local Storm Verification .. 86

4.4.2 Hourly Storm Verification ... 88

4.4.3 Overall Storm Verification .. 90

4.5 Related Work .. 92

4.5.1 Storm Characteristics Analysis .. 92

4.5.2 MapReduce Framework for Spatial Data Computing 94

4.5.3 Iterative MapReduce ... 95

Chapter 5 Analysis and Mining of Conceptual Data ... 96

5.1 Traditional Hydrology Analysis ... 96

5.1.1 Storm Statistical Analysis .. 97

5.1.2 Correlation Analysis among Strom Characteristics ... 98

ix

5.1.3 Analysis of Extreme Rainfall Events.. 105

5.2 More General Storm Analysis and Mining .. 106

5.2.1 Storm Analysis ... 108

5.2.2 Storm Mining ... 111

Chapter 6 Framework for Conceptual Analysis and Mining of Big Data Using

Ontologies and EER .. 113

6.1 Background and Motivation .. 113

6.2 Framework Description ... 114

6.2.1 Developing and Formalizing Domain-Specific Concepts into an

Ontology with the Assistance of Domain Experts .. 115

6.2.2 Translating the Domain-Specific Ontology to EER and Mapping

the EER Concepts to Relational Tables ... 116

6.2.3 Designing and Implementing Mapping Algorithms to Convert the

Raw Data to the Conceptual Data .. 117

6.2.4 Performing Analysis and Mining on the Conceptual Relational

Data .. 118

Chapter 7 Conclusions and Future Work .. 119

Appendix A Proving Completeness of OpenGIS
®
 SQL Spatial Relationships

and Operations .. 122

References .. 132

Biographical Information ... 144

x

List of Illustrations

Figure 2-1 Overview of Our Spatio-Temporal Ontology Framework 5

Figure 2-2 Comparison between Meet Operation in 1-D and 2-D 8

Figure 2-3 Difference of Direction between Temporal Operation (1-D, left) and Spatial

Operation (2-D, right) .. 8

Figure 2-4 Geometry Class Hierarchy .. 9

Figure 2-5 Types of Geometry Object in 2-D Space ... 9

Figure 2-6 Types of Spatial Operations .. 19

Figure 2-7 Method to Add Spatial Dimension to Existing Ontology 25

Figure 2-8 Example of How Entities are Modeled in Spatial Dimension 25

Figure 2-9 Example of How Spatial Operations can be used in Reasoning 28

Figure 2-10 How to Define Rule in Protégé .. 30

Figure 2-11 Query Result Table in Protégé .. 30

Figure 2-12 Summary Decision Tree of First 7 OpenGIS SQL Spatial Relationships

(Equals - Overlaps) [23][81] .. 34

Figure 3-1 Overview of Our Methodology ... 39

Figure 3-2 Coverage of WGRFC Observations [42] ... 40

Figure 3-3 Relationships among Neighboring Sites ... 42

Figure 3-4 Examples of Local Storms at Site ID, 355879 ... 43

Figure 3-5 Comparison between Different Space-Tolerance Values 45

Figure 3-6 Example of Overall Storm and its Corresponding Hourly Storms 48

Figure 4-1 Star-Schema of 5 Main Tables of CUAHSI ODM .. 51

Figure 4-2 Data Flow Diagram of Storm Identification Modules 54

Figure 4-3 Texas Climatic Regions [39] .. 55

Figure 4-4 Neighboring Sites of Site Location 355879 ... 57

xi

Figure 4-5 Overview of MapReduce-based Storm Identification System 62

Figure 4-6 MapReduce-based Hourly Storm Identification ... 66

Figure 4-7 Hour IDs Grouping Conditions... 69

Figure 4-8 Global Pruning Concept .. 71

Figure 4-9 Example of How Lemma 2 can be Applied ... 73

Figure 4-10 EER Diagram for Storing Conceptual Storm Data .. 81

Figure 4-11 Relational Database Schema for Storing Conceptual Storm Outputs 82

Figure 4-12 SQL-Derived Storm Characteristics .. 85

Figure 5-1 Examples of Storm Statistical Properties Analysis [36] 97

Figure 5-2 Cumulative Depth Diagram of Local Storm at Site Location 288096 100

Figure 5-3 Hyetograph of Local Storm at Site Location 288096 101

Figure 5-4 Example of DDF Curves for Single Site [80] ... 104

Figure 5-5 Example of DAD Curves of Large Storm [80] .. 105

Figure 5-6 Some Examples of Mass-Curve Computations ... 107

Figure 5-7 Screenshot of Overall Storm ID 863 .. 110

Figure 5-8 Visualization of Overall Storm (ID: 863) by its Hourly Storms 112

Figure 6-1 Framework for Analyzing and Mining Big Data using Ontologies and EER .. 115

Figure A-1 List of Possible Spatial Relationships between 2-D Spatial Objects

(Point, Line, and Polygon) [33]……………………………………………………….……...125

xii

List of Tables

Table 2-1 33 Major Spatial Built-Ins .. 27

Table 2-2 6 Additional Spatial Utility Built-ins ... 27

Table 2-3 Number of Possible Cases between 2-D Spatial Objects 32

Table 2-4 Summary of Basic Methods of OpenGIS SQL ... 33

Table 2-5 Summary of 8 Main Spatial Relationships of OpenGIS SQL 33

Table 2-6 Summary of Methods that Support Spatial Analysis of OpenGIS SQL 34

Table 4-1 Sources Table in CUAHSI ODM Database .. 52

Table 4-2 Methods Table in CUAHSI ODM Database .. 52

Table 4-3 Selected Columns of Sites Table in CUAHSI ODM Database 52

Table 4-4 Selected Columns of Variables Table in CUAHSI ODM Database 53

Table 4-5 Examples of DataValues Table Entries with Selected Columns 53

Table 4-6 Experimental Results of CUAHSI-Based Approach ... 60

Table 4-7 Comparison of Processing Time between Two Approaches 78

Table 4-8 Number of Storm Records in Each Component for Each Year 80

Table 4-9 MR-OSI Execution Time in Each Iteration .. 80

1

Chapter 1

Introduction

In recent years, spatio-temporal data has received a lot of attention and

increasingly plays an important role in our everyday lives, as we can witness from the

fast-growing mobile technologies and their location-based application development.

Consequently, spatio-temporal data is widely available and used in an increasing number

of applications. By spatio-temporal data, we mean data that is associated with specific

spatial locations that change over time. For example, a cellphone or car with GPS will

generate the object location at regular time intervals. Another example would be the track

of a storm center as it moves. The enormous amount of spatio-temporal data that is

being generated every day could be thought of as a huge data warehouse, which

contains hidden and meaningful information. Our work is a contribution towards

extracting this hidden, meaningful information from large amount of spatio-temporal data.

To analyze the available spatio-temporal data directly from its original formats

and locations is not easy because the data is often in a format that is difficult to analyze

and is usually ‘big’. Our research goals focus on spatio-temporal datasets and how to

summarize, model, and format them for analysis and mining. There are five main parts of

this dissertation:

1. Spatio-temporal knowledge representation (see Chapter 2)

2. Identifying meaningful concepts from raw data (see Chapter 3)

3. Converting raw data to conceptual data (see Chapter 4)

4. Analysis and mining of conceptual data (see Chapter 5)

5. A general framework for big data analysis and mining (see Chapter 6)

In the first part of the dissertation, we look at spatio-temporal datasets in general

by considering spatio-temporal data semantics using techniques similar to those utilized

2

in the “Semantic Web” [7][13]. We work towards creating a spatio-temporal ontology

framework, which can be used to represent and reason about spatio-temporal data. We

first formalize a spatial ontology by specifying the concepts and operations relevant to

spatial data. We then apply a technique called “light-weight” [22][21] (which will be

discussed further in the dissertation), so that we can integrate our spatial ontology with a

well-known temporal ontology [2][3]. The resulting spatio-temporal ontologies are

eventually implemented in an ontology editor, which in our case, is Protégé OWL 3.4.4

[30]. The spatio-temporal aspects of the data can be reasoned, inferenced, and queried

using our framework. In the remaining parts of the dissertation, we focus on spatio-

temporal datasets in a specific domain, which is rainfall precipitation data in the hydrology

domain.

In the second part of the dissertation, we examine the structure and format of the

raw rainfall data and discuss the process to prepare it for analysis and mining. Because

no two different types of spatio-temporal data, even in the same domain, have the same

characteristics and concepts, the conceptual model that we are going to come up with

must make sense to the domain experts, have potential in effective implementation, and

be able to provide better and more robust analysis and mining beyond traditional

methods. Two main processes are conducted: investigating raw rainfall data description

and structure, and studying rainstorm concepts. Consequently, we model the meaningful

concepts of rainstorms using formalization. Three storm configurations are formalized:

local storm, hourly storm, and overall storm, which will be discussed further in the

dissertation.

In the third part, after the model is defined through formalization, we discuss the

algorithms designed to convert the raw rainfall data into the formalized rainfall concepts.

Two different approaches were developed: CUAHSI-based and MapReduce-based. Both

3

share the same goal, which is to identify meaningful storm concepts, but with different

focuses. The first approach focuses on converting raw rainfall data that follows the

CUAHSI standard, which is based on the standard database schema called “CUAHSI

ODM” to store hydrological data in a relational database. Both input and output are

processed and stored in a relational database. Although there are benefits from this

approach, including easy integration with CUAHSI APIs, user-friendly analysis/mining

through SQL, the main drawback is the slow performance. As a result, the second

approach is proposed with the focus on drastically improved performance for the data

conversion algorithms. In this approach, every component of the storm identification

algorithms are re-designed starting from the original structure of raw data to applying the

most recent distributing computing technology (namely MapReduce and Hadoop®) to

speed up the performance. The storm outputs are verified and the performance of each

approach is measured. The conceptual storm data are identified and stored in a relational

database. The size of conceptual storm data is significantly reduced when compared to

the size of the raw data, and can easily be analyzed and mined.

In the fourth part of the dissertation, we show how identified storm outputs can be

analyzed and mined. The analysis and mining tasks can be divided into two parts: 1)

traditional hydrology analysis and 2) more general storm analysis and mining, which are

more diverse and mostly have to do with our proposed concept of “overall” characteristics

of the storm, including speed, track, total rainfall, coverage, boundary, etc. In the

traditional hydrology analysis part, we examine characteristics of storms at a particular

location (location-based) by considering [36][50][39][80]: 1) storm statistical properties, 2)

relationships between/among characteristics of storms, and 3) focusing on extreme

precipitation values of storms. In the more general storm analysis and mining part, we

show some examples of how more robust/flexible storm analysis and mining can be done

4

on our storm data. This also includes a storm visualization tool to visualize how an overall

storm is formed and moves over time.

Although the techniques and methodology that we use are for big raw rainfall

data, it can be adapted to different types of hydrological data such as soil moisture, water

level, etc., as well as other types of big spatio-temporal data in other application domains.

Therefore, we propose a generalized framework for conceptual analysis and mining of

big data using ontologies and EER in the fifth part.

In the conclusion chapter, we summarize our contributions, and discuss future

work. Thus, the main contributions of our research are:

1. Developing a spatial ontology and integrating it with a temporal ontology.

2. Proposing formalized storm concepts that enable easier analysis and mining of

raw rainfall data.

3. Developing efficient algorithms to convert raw rainfall data into meaningful storm

concepts, using the map-reduce paradigm.

4. Applying analysis and mining techniques to conceptual storm data.

5. Developing a framework that can be applied to other types of big spatio-temporal

raw data to reduce the data and convert it into concepts for better analysis and

mining.

5

Chapter 2

Spatio-Temporal Knowledge Representation

The goal of this chapter is to allow spatio-temporal data semantics of a dataset

to be analyzed, modeled, and reasoned about by using ontology [10][20]. Ontology is an

excellent tool in knowledge modeling. With the reasoning, inference, and representation

mechanisms associated with an ontology, it becomes possible that systems with different

definitions of the same concepts can interoperate with each other. In addition, a nearly

complete description of concepts in a particular area of knowledge becomes readily

available for interested users. In this chapter, we develop a spatio-temporal ontology

framework, which can be used to represent and reason about spatio-temporal data.

Figure 2-1 shows an overview of our spatio-temporal ontology framework.

Formalization of

Spatial Ontology

Method to Add

Spatial Dimension

Development of

Spatial Built-ins

Ability to Do Spatio-

Temporal Reasoning,

Inference, and Querying

Protégé-OWL 3.4.4 Platform

Figure 2-1 Overview of Our Spatio-Temporal Ontology Framework

We first formalize a spatial ontology in Section 2.1. We then show how the

defined spatial ontology can be realized in Protégé in Section 2.2. Since the spatial

ontology is formalized based on OpenGIS
®
, we also show that OpenGIS

®
 can actually

capture spatial concepts in Section 2.3, by proving that OpenGIS
®

SQL operations are

complete with respect to the full spatial ontology operations. Finally, related work is

discussed in Section 2.4.

2.1 Spatial Ontology Formalization

In this section, we first discuss the motivation of spatial ontology formalization

and its comparison to temporal ontology as it is closely related and often analyzed along

6

with spatial ontology. In fact, spatial operations can be considered as temporal operations

with an additional dimension. Additionally, we will eventually embed temporal ontology

into our spatial ontology to create spatio-temporal ontology. We then give a formal

specification of spatial ontology covering spatial object definitions and spatial operation

definitions.

2.1.1 Background and Motivation

Representing spatial-related knowledge is a basic problem in many applications,

such as GIS and map applications. In the past years, work on spatial ontologies has

focused on two main areas: spatial database integration [8][9][12] and spatial ontology

creation [5][29][11][14]. In spatial database integration, a spatial ontology is used as a

tool to integrate different spatial databases. In spatial ontology creation, there are two

different major approaches. First, by analyzing a collection of existing spatial databases

and methodologies, a spatial ontology model is defined based on those databases [5].

However, this leads to the problem that the created spatial ontology will be limited to

those databases and consequently will not be sufficient to be a standard for representing

a complete formal spatial ontology. The second approach in spatial ontology creation is

to define a complete spatial ontology model. For example, in [29], they propose to create

a spatio-temporal ontology based on the MADS model, which allows a regular database

to model spatial and temporal characteristics [24][25]. However, this approach has not

been materialized in an implemented system, and there is no formal specification of

spatial ontology developed from this approach. In addition, it is limited to the polygon data

type only. Thus, the complete set of operations among point, line, and polygon is lacking.

Finally, in [11][14], they propose using the RCC8 calculus [26] for spatial reasoning on

regions, but they do not propose a complete spatial ontology.

7

Many researchers have worked in the area of temporal and spatial ontology

[19][29][8][5][9][18][22][13][6][12][1][4]. A specification of temporal ontology was

introduced in [13]. It clearly discussed temporal ontology formalization, and

comprehensively defines temporal concepts and operations. It is based on the temporal

logic developed by Allen [2][3]. The following is an example of the Meet operation

between two time intervals formalized by [13], assuming that T1, T2 are two time intervals

and t is a time instant.

Meet(T1,T2)  (t)[ends(t,T1) begins(t,T2)]

A complete formalization of ontology forms the basis and reference for ontology

implementation. In addition, since the temporal ontology specification in [13] was

intended to capture all temporal reasoning, it is gradually becoming the standard for

temporal ontology specification.

Although spatial concepts and operations have been specified in many works

[23][24][25][28][31][86], there are few attempts at specifying a complete formal ontology

for spatial concepts. Spatial operations are more complex than temporal operations, and

can be defined over multiple dimensions, especially two and three dimensions, whereas

temporal operations are only on one dimension. Figure 2-2 shows how the Meet

operation is different in one dimension and two dimensions. Additionally, temporal

operations have only two directions (before and after) whereas for two dimensional

spatial operations, there are continuous directions along 360º of a two dimensional

space. Figure 2-3 shows eight directions, at 45º intervals. (East is 0º, north is 90º, west is

180º, etc.)

8

Meet (same slope)

Meet (different slope)

a) Temporal operation (1-D) b) Spatial operation (2-D)

Figure 2-2 Comparison between Meet Operation in 1-D and 2-D

Before

After

(Latitude)

(Longitude)
45

o

N

E

S

W

NENW

SW SE

Figure 2-3 Difference of Direction between Temporal Operation (1-D, left) and Spatial

Operation (2-D, right)

2.1.2 Formalization of Spatial Object Definitions

We formalize spatial ontology based on OpenGIS
®
 [23] (as it is a well-known

standard for spatial-related concepts) with some modifications. Our proposed spatial

ontology consists of two parts [17]: spatial object definitions and spatial operation

definitions. In [23], a geometry class hierarchy is proposed for 2-D spatial objects. The

hierarchy shown in Figure 2-4 is based on the one in [23], with some minor modifications

to allow our formalization.

9

SGeometry

Point Curve Polygon Collection

SingleLine

Ring

ConnectedLine MulitPoint MulitCurve MulitPolygon

Non-Ring

Figure 2-4 Geometry Class Hierarchy

Considering the leaf nodes in the hierarchy of Figure 2-4, the geometry objects

can be categorized into 8 types as shown in Figure 2-5.

1. Point (p)

2. Single Line (sl)

3. Connected Line (cl): Non-Ring (nr)

4. Connected Line (cl): Ring (r)

5. Polygon (a)

6. MultiPoint (mp)

7. MultiCurve (mc)

8. MultiPolygon (ma)

1. Point (p)

5. Polygon (a)

2. Single Line (sl)

6. MultiPoint (mp)

3. Non-Ring
Connected Line (cl:nr)

7. MultiCurve (mc)

4. Ring
Connected Line (cl:r)

8. MultiPolygon (ma)

Figure 2-5 Types of Geometry Object in 2-D Space

In order to be used in the ontology, the spatial object definitions of all geometry

object types in two-dimensional space (see Figure 2-4 and 2-5) have to be defined. For

10

simplicity, we shall assume the 2-D coordinate system based on longitude and latitude,

although the formalization can be adapted to other 2-D coordinate systems.

2.1.2.1 Point (p)

Point can be defined by longitude (x) and latitude (y).

 () ()

2.1.2.2 Single Line (sl)

Single line can be defined by any two points.

 () ()

Single line also includes some unary operations, such as Slope(m,sl) and Distance(d,sl),

which are defined in Section 2.1.3

2.1.2.3 Connected Line (cl): Non-Ring (nr)

Non-ring connected line can be defined by a sequence of points (),

 , and which in turn defines a sequence of single lines

() and each (). In other words, the sequence must contain at

least two single lines and each pi is connected to pi+1 for i < N.

 ()

 (() ()

)

2.1.2.4 Connected Line (cl): Ring (r)

Ring connected line is defined as a sequence of points (), , and

 which in turn defines a sequence of single lines () where

each () for i = 1,2,…,N-1 and (). However, the area inside the ring

is not part of the connected line.

 ()

 (()

11

 () () ())

 ()

2.1.2.5 Polygon (a)

Polygon is defined as a sequence of points (), , and

 which in turn defines a sequence of single lines () where each

 () for i = 1,2,…,N-1 and (), and the area within is part of the

polygon.

 ()

 (()

 () () ()

 ()) ()

2.1.2.6 MultiPoint (mp)

MultiPoint can be defined as a set of two or more points.

 ()

2.1.2.7 MultiCurve (mc)

MultiCurve can be defined as a set of single line(s) or connected line(s).

 ()

2.1.2.8 MultiPolygon (ma)

MultiPolygon is defined as a set of two or more polygons.

 ()

2.1.3 Formalization of Spatial Operation Definitions

As mentioned earlier, spatial operations are much more complex than temporal

operations. Therefore, we will only focus on a subset of two-dimensional spatial

operations. Considering spatial relationships, there are six major types as follows: 1)

Point VS Point, 2) Point VS Line, 3) Point VS Polygon, 4) Line VS Line, 5) Line VS

12

Polygon, and 6) Polygon VS Polygon. Only spatial relationships between Point and Line

(i.e., 1), 2), and 4)) are covered. We can divide these operation definitions into six

different categories depending on the pair of spatial objects.

1. Point and Point

2. Point and Single Line

3. Point and Connected Line

4. Single Line and Single Line

5. Single Line and Connected Line

6. Connected Line and Connected Line

2.1.3.1 Point and Point

There are two relationships between point and point.

2.1.3.1.1 Equal. Two points are equal if and only if they have exactly the same

longitude and latitude respectively.

 ()

2.1.3.1.2 Disjoint. Two points are disjoint when they are not equal.

 () ()

2.1.3.2 Point and Single Line

Considering point and single line, there are three possible spatial operations:

Endpoint, Ontheline, and Disjoint.

2.1.3.2.1 Endpoint. Endpoint is a relationship between point and single line. In

the formalization, we sometimes need to distinguish unambiguously the two endpoints so

we define two operations on a line: EndpointNe and EndpointSw. North and south will

have precedence in distinguishing the endpoints and east and west will be used only if a

line is horizontal. That is, the endpoint of the line with higher latitude will be classified as

13

EndpointNe regardless of whether the longitude is either east or west. Figure 2-6(a)

shows some examples of how the endpoints are categorized.

A point p will be an endpoint of single line sl if and only if p is equal to either one

of the single line endpoints.

 ()

 ()

 () () () (()

())]

 ()

 () () () (()

())]

The relationship between EndpointNe and EndpointSw can be specified as

follows:

 () ()

 () ()

We can now define two unary operations on single line, Slope and Distance, as

follows (these are used in our specification of some of operations):

 ()

() () () [

]

 ()

() () ()

 (() ())

2.1.3.2.2 Ontheline. Ontheline (see Figure 2-6(d)) is a relationship between point

and single line. If a point p is on the single line sl then the slope of the point p to one of

14

the endpoints of the single line must be equal to the slope of the single line. In addition,

the point p has to fall on the single line. We also have a function to create a single line

given two points: CreateSingleLine(sl,x,y) where sl is the created single line and x,y are

the two endpoints.

 ()

 () () () ()

 ()

An endpoint is also considered to be on the line.

 () ()

2.1.3.2.3 Disjoint. A point p and single line sl are disjoint when the point p is not

on the single line sl.

 () ()

2.1.3.3 Point and Connected Line

In the following, we will discuss the formalization of spatial operations between

point and connected line. Considering point and connected line, there are four possible

spatial operations: Endpoint, InteriorEndpoint, Ontheline, and Disjoint.

2.1.3.3.1 Endpoint. Endpoint (see Figure 2-6(j)) is one of the relationships

between point and connected line. In the formalization, we also need to distinguish

unambiguously the two endpoints (same as operations between point and single line) so

we define two operations on a line: EndpointNe and EndpointSw. The directions will be

considered in the same fashion.

A point p will be an endpoint of connected line cl if and only if p is equal to p1 or

pN of the connected line cl.

 ()

15

 ()

 () () ()

(() ())

 ()

 () () ()

(() ())]

The relationship between EndpointNe and EndpointSw can be specified as

follows:

 () ()

 () (

)

2.1.3.3.2 InteriorEndpoint. InteriorEndpoint (see Figure 2-6(k)) is another

relationship between point and connected line when a point falls in the joint between two

single lines of connected line.

 () ()

2.1.3.3.3 Ontheline. A point p is on the connected line cl if and only if p is on one

of the single lines sli of connected line cl (see Figure 2-6(l)).

 () (()) ()

The relationship among these three operations is as follows:

 () () ()

2.1.3.3.4 Disjoint. A point p and a connected line cl are disjoint when the point p

is not on the connected line cl.

 () ()

2.1.3.4 Single Line and Single Line

There are seven main relationships between single lines.

16

2.1.3.4.1 Equal. Two single lines are equal if and only if they have exactly the

same points.

 ()

() () ()

 () ()

2.1.3.4.2 Meet. In our formalization, two single lines meet when they share one

endpoint. We can further divide the operation into two more cases: MeetSameSlope and

MeetDiffSlope as follows (see Figure 2-6(b,c)).

 ()

() () ()

 ()

 () () ()

 ()

 () () ()

 2.1.3.4.3 Cross. In our formalization, two single lines cross when their slopes are

different and the intersecting point fall on both lines (see Figure 2-6(e)). To make

formalization easier, we will first define Between and ProperBetween relations as follows.

We also have an operation IntersectPoint(p,sl1,sl2) that returns the point of intersection p

between two single lines sl1, sl2, if the two lines do not have the same slope.

 ()

 ()

 ()

 () () ()

 () ()

17

 ()

 () () ()

 () ()

In this operation, we have one special case when the intersecting point is also

one of the endpoints of the line. In other words, one of the endpoints of a line lies on the

other line. We will call this case of operation TCross (see Figure 2-6(f)).

 ()

 () () (() () ())

 (() () ())

 2.1.3.4.4 Overlap. In our formalization, two single lines overlap if and only if their

slopes are equal and there is one endpoint of one line lying in another line but not at the

endpoint (see Figure 2-6(g)).

 ()

 () ()

 () (() () ())

 (() () ())

2.1.3.4.5 Within. For Within operation, we can divide it into two more types:

CompleteWithin (can also be called ProperWithin) and SharedEndpointWithin (see Figure

2-6(h,i)).

 () () () ()

 ()

 () () (() ())

 ()

 () () () ()

 () () ()

18

2.1.3.4.6 Contain. Contain operation is defined as a reverse Within operation as

follows:

 () ()

 () ()

 () ()

 () () ()

2.1.3.4.7 Disjoint. Two single lines are disjoint when they meet one of the

following conditions: 1) if both single lines have the same slope, then all endpoints of

each line do not fall on another line, or 2) if both single lines have different slopes, their

intersecting point are not on both lines.

 ()

(() ()

() [
 () ()

 () ()
])

(() ()

 () () ())

The relationships among these seven operations are as follows.

MeetDiffSlope and TCross operations are also considered as Cross operation.

 () () ()

Equal, Meet, Cross, Overlap, Within, and Contain operations are also considered as

Intersect.

 () () () () ()

 () ()

 () ()

CompleteWithin and CompleteContain operations are also considered as Overlap.

19

 () () ()

Equal, SharedEndpointWithin, SharedEndpointContain operations are also considered as

Meet.

 () () ()

 ()

Equal operation is also considered as SharedEndpointWithin and

SharedEndpointContain operations.

 () () ()

Figure 2-6 Types of Spatial Operations

2.1.3.5 Single Line and Connected Line

 There are five main relationships between single line and connected line.

20

2.1.3.5.1 Meet. A single line sl meets a connected line cl when they share one of

the endpoints (see Figure 2-6(m)).

 () () () ()

2.1.3.5.2 Cross. A single line sl and a connected line cl are crossed if and only if

there is a single line sli of connected line cl crossing the single line sl (see Figure 2-6(o)).

 () () ()

A special case of cross is when one of the endpoints of one line lies on another

line but not at the endpoint (see Figure 2-6(p)).

 ()

 () () (() () ())

(() () ())

2.1.3.5.3 Overlap. A single line sl and connected line cl are overlapped when

single line sl is overlapped or equal to one of the single line sli of connected line cl (see

Figure 2-6(n)).

 () () () ()

2.1.3.5.4 Within. A single line sl is completely within a connected line cl if and

only if a single line sl is completely within or shared-endpoint within a single line

of connected line cl but does not share any endpoint with the connected line cl (see

Figure 2-6(q)).

 ()

() () ()

() (() ())

A single line sl is considered as shared-endpoint within connected line cl if and

only if they share an endpoint and a single line sl is shared-endpoint within single line sl1

or slN-1 of connected line (see Figure 2-6(r)).

21

 ()

() ()

() () ()

2.1.3.5.5 Disjoint. A single line sl and a connected line cl are disjoint when the

single sl is disjoint from all single lines of the connected line cl.

 () () ()

2.1.3.6 Connected Line and Connected Line

 There are seven main relationships between connected lines.

2.1.3.6.1 Equal. Two connected lines are equal if and only if they have exactly

the same list of ordered points.

 ()

() ()

(() (())

2.1.3.6.2 Meet. A connected line cl1 meets connected line cl2 when they share

one of the endpoints (see Figure 2-6(s)).

 () () () ()

2.1.3.6.3 Cross. A connected line cl1 and connected line cl2 are crossed if and

only if there is a single line sli of connected line from both connected lines crossing each

other (see Figure 2-6(u)).

 () () ()

A special case of cross is when one of the endpoints of one line lies on another

line but not at the endpoint (see Figure 2-6(v)).

22

 ()

 () () (() () ()

 ()) (() () ()

 ())

2.1.3.6.4 Overlap. A connected line cl1 and connected line cl2 are overlapped

when their single lines are overlapped or equal (see Figure 2-6(t)).

 () () () ()

2.1.3.6.5 Within. A connected line cl1 is completely within a connected line cl2 if

and only if each single line of connected line cl1 is shared-endpoint within one of the

single lines of connected line cl2 but two connected lines do not share any endpoint (see

Figure 2-6(w)).

 ()

() ()

() (() ())

A connected line cl1 is considered as shared-endpoint within connected line cl2

when each single line of connected line cl1 is shared-endpoint within one of the single

lines of connected line cl2 and both connected lines share at least one of the endpoints

(see Figure 2-6(x)).

 ()

() ()

() () ()

2.1.3.6.6 Contain. Similar to the Contain operation between single lines, Contain

operation between connected lines can be defined as a reverse of Within operation as

follows.

23

 () ()

 () ()

2.1.3.6.7 Disjoint. Two connected lines are disjoint when each single line of one

connected line is disjoint from all single lines of another connected line.

 () () ()

2.2 OWL/Protégé Realization

After formalizing the spatial ontology in the previous section, we now discuss a

method to add spatial dimension to existing ontologies. Particularly, we use a technique

similar to the “light-weight” temporal ontology introduced in [22] so that we can

incorporate a spatial layer into existing ontologies without requiring significant changes to

the original ontology. We also implement spatial built-ins in Protégé based on the object

and operation definitions in the spatial ontology formalization to do spatial reasoning,

inference and querying on ontology.

2.2.1 Protégé Background and Preparation

Protégé [30] is a well-known and widely-used open-source platform for ontology

management including creation, visualization, and manipulation of ontology [15][84].

Moreover, Protégé is also user-friendly and domain-customizable because it allows user-

defined or imported plug-ins. Our work uses Protégé-OWL 3.4.4 which comes with SWRL

Tab [16] supporting reasoning and query. We also use Java JDK version 1.5.0.11 and

Jess® rule engine [27] to do the inferences. In Protégé-OWL 3.4.4, there are three types

of properties: object property, datatype property, and annotation property. An object

property is used to define a relationship between individuals. A datatype property is used

to define relationship between individuals and data literals such as integer, string, etc. An

annotation property is used to attach metadata to classes, individuals or properties [83].

24

Protégé also allows users to customize a property as functional, non-functional,

symmetric, or transitive. The following examples are from [85]. If a property is functional,

the cardinality between subject and object is N:1. For example, hasBirthday property is

functional because one person can have only one birthday whereas the same birthday

can belong to many people. In contrast, if a property is non-functional, the cardinality

between subject and object is 1:N. For example, hasISBN property is non-functional

because, a book can have multiple ISBNs whereas an ISBN can belong to only one

book. If a property is symmetric, both following statements are true: subject-property-

object and object-property-subject; for example, isFriendOf property is symmetric

because if John is a friend of David, then David is also a friend of John. If a property is

transitive, the following statement: subject-property-object2 is true if subject-property-

object1 and object1-property-object2 are true; for example, subClassOf property is

transitive because if class A is a subclass of class B and class B is a subclass of class C,

then class A is also a subclass of class C.

2.2.2 Adding Spatial Dimension to Ontology

We use our formal specification of spatial ontology and adopt one of the

approaches proposed in [22] for adding temporal dimension to existing ontologies. Figure

2-7 gives an overview of our approach.

In Figure 2-7, SProposition2D class has hasGeoShape relationship with

SGeometry class, which contains geometry types: point, single line, non-ring connected

line, and ring connected line. Point consists of two numbers: longitude and latitude.

Single line consists of exactly two points. Connected line consists of three points or more.

There are two types of connected lines: non-ring and ring. hasDistance is a relationship

between SGeometry class and DistanceUnit class. DistanceUnit contains the units of

distance measurements such as km., mile, yard, etc.

25

SGeometry DistanceUnitSProposition2D hasDistance

Point Curve

hasGeoShape

Centimeter

Mile

Kilometer

Meter

Yard

Foot

Inch

Polygon Collection

SingleLine

Ring

ConnectedLine

 - Entity Class

 - Instance

 - Property

 - IS-A Subclass

MulitPoint

MulitCurve

MulitPolygon

Class(es) in

need of Spatial

Dimension

Non-Ring

hasP2hasP1

hasList

hasXFloat

Float hasY

Millimeter

Figure 2-7 Method to Add Spatial Dimension to Existing Ontology

The principle is that any class in need of spatial dimension will be added as a

subclass of SProposition2D class. Consequently, the class will automatically have

hasGeoShape property that enables a class entity to be modeled as one of the spatial

data types.

House (H1)
Local Road (R

1)

House (H2)

I-20 Highway (R
2)

School (S1)

Point (S1)

representing school

Points (H1,H2)

representing houses
ConnectedLines (R1,R2)

representing local road

and I-20 highway

Figure 2-8 Example of How Entities are Modeled in Spatial Dimension

An example is shown in Figure 2-8 Suppose we have a yellow page ontology which

contains contact information of individuals, businesses, parks, trains rails, roads and

highways, etc. We would like to add a spatial dimension to it. As a result, we will add

house, park, train rail, road and highway classes to be subclasses of SPropostion2D

26

class as shown in Figure 2-7 so that those classes will have spatial features of one of the

spatial data types. In this example, houses and schools are modeled as points, roads and

highways are modeled as connected lines, and parks are modeled as polygons. The

choice of geometry type depends on the application scenarios.

In Protégé, a point is defined by two functional datatype properties, hasX and

hasY of type float. A point is used to model an entity which does not have area. A single

line is defined by exactly two distinct points. hasP1 and hasP2 are functional object

properties of a single line. A connected line is defined as a list of three or more ordered

points. hasList is a functional datatype property of a connected line, of type string, which

has a following string pattern:

{n, p1, p2,..., pn}

where n is number of points, n ≥ 3 and pi is point i. This string pattern will be eventually

parsed by Protégé built-ins into number of point instances.

2.2.3 Developing Spatial Built-ins in Protégé

According to Figure 2-1, for spatio-temporal reasoning, inference, and querying

in Protégé, we develop the spatial operations as Protégé built-ins based on our

formalization of spatial operations. We implemented 33 major spatial operations along

with additional 6 utility built-ins in Protégé as shown in Table 2-1 and 2-2. Spatial built-ins

can be divided into six categories depending on the combinations of geometry data

types: point versus point, point versus single line, point versus connected line, single line

versus single line, single line versus connected line, and connected line versus

connected line.

27

Table 2-1 33 Major Spatial Built-Ins

Spatial Built-ins Point (1) Single Line (2)
Connected Line (3)

[Non-Ring & Ring]

Point (1)

Equal Endpoint

EndpointNe

EndpointSw

Ontheline

Endpoint*

EndpointNe*

EndpointSw*

Ontheline

InteriorPoint

Single Line (2)

 Equal

Meet

Cross

Tcross

Overlap

Within:

- Complete

- SharedEndpoint

Intersect

Meet*

Cross

Tcross

Overlap

Within:

- Complete

- SharedEndpoint*

Intersect

Connected Line (3)

[Non-Ring & Ring]

 Equal

Meet*

Cross

Tcross

Overlap

Within:

- Complete

- SharedEndpoint*

Intersect

*Operations apply only on non-ring connected lines.

Table 2-2 6 Additional Spatial Utility Built-ins

Additional Built-ins
Slope, IntersectPoint, Between,
ProperBetween, Distance,
CreateSingleLine

In our notation, 1 represents point, 2 represents single line, and 3 represents

connected line (non-ring and ring), which are appended to the operation (built-in) name.

When defining a spatial rule in Protégé, the built-ins have to be specified as the following

pattern:

spatial:<BuiltinName>XY(<GeoTypeX>,<GeoTypeY>)

28

where X and Y are ordered number corresponding to geometry data types. For example,

to define an EndPoint built-in of point and single line, we specify:

spatial:endpoint12(<point>,<single line>)

This is because different combinations of geometry data types have different ways of

implementing the same operation. As a result, we need to indicate the exact operation we

are using.

2.2.4 Spatial Reasoning, Inference and Querying

Once we have a spatial dimension added to an ontology and have spatial built-

ins ready in Protégé, we can do spatial reasoning, inference and querying.

House (H1)

Road (R
1)

House (H2)

I-20 Highway (R
2)

School (S1)

1 km.
2 km.

3 km.

Road

 Intersection (P1)

Figure 2-9 Example of How Spatial Operations can be used in Reasoning

We enable spatial reasoning by defining rules in SWRL Tab [16][30] and we use

the Jess® [27] rule engine to perform inference on those rules. Spatial built-ins that we

developed can be combined with other built-in libraries including SWRLB [16],

TEMPORAL [22], SQWRL [21], etc. to create complicated rules. The following example

shows how spatial built-ins can be used in reasoning and inference. Suppose we have 2

houses, 1 school and 2 roads as illustrated in Figure 2-8. We would like to define a rule

29

regarding a school zone. Suppose, we define a location in a school zone as a point within

3 kilometers radius centered at a school as shown in Figure 2-9. This definition can be

implemented in Protégé by the following rule:

 () () () () () ()

 () () ()

 ()

For the next example, we would like to define highway-connected local roads as local

roads that intersect with any highway at some point. The corresponding rule is:

 () () () () ()

 () () ()

When we use Jess®, the above rules will classify points ?p and roads ?r as

SchoolZonePoints and HighwayConnectedLocalRoads respectively if they satisfy the

rules above.

To query, we use the select built-in from the SQWRL library [21]. The following

example (see Figure 2-10) shows how spatial operations can be used in querying

functionality. Suppose we have 3 roads in our ontology defined as r1={3,1,1,1,3,9,6},

r2={4,2,5,8,2,6,7,9,5} and r3={3,1,4,1,6,3,9} and we would like to list all road intersections

(x,y). The query can be defined as:

30

Figure 2-10 How to Define Rule in Protégé

When we processed the above query, the following table resulted from Protégé’s

SQWRL Query Tab (Figure 2-11).

Figure 2-11 Query Result Table in Protégé

RoadIntersectionRule

?x ?y

6.739130434782608 5.1521739130434785

8.040000000000001 5.640000000000001

3.857142857142857 4.071428571428571

 () () () ()

 () () ()

 () ()

31

2.3 OpenGIS
®
 SQL Completeness

 Our spatial ontology formalization is based on OpenGIS
®
 [23]. So, it is important

to prove that OpenGIS can actually capture the complete set of operations that cover

spatial concepts. OpenGIS SQL is a standard for incorporating GIS and spatial concepts

into the SQL standard database language. The objective of this section is to prove the

completeness of OpenGIS SQL spatial relationships and operations. There are three

types of 2-D spatial objects: Point (P), LineString (or Curve) (L), and Polygon (or Region)

(A). Egenhofer shows that the spatial relationships between points, lines and polygons

described in [32][33][34] are complete; that is, all possible 2-D spatial relationships are

given in that paper. [33] first considers all cases based on the nine-intersection matrix

(9IM) model and then eliminates cases that cannot occur. The number of all possible

relationships between points, lines, and polygons identified in [33] is shown in Table 2-3.

Thus, the complete set of 2-D spatial relationships is comprised of 68 relationships.

We show that OpenGIS SQL spatial relationships and operations are also

complete by proving that all possible spatial 2-D relationships between points, lines, and

polygon described in [33] can be expressed by OpenGIS SQL relationships and

operations. Although OpenGIS SQL does provide a Relate operation, which is used to

test exhaustively for intersections between the interior, boundary, and exterior of the two

spatial 2-D objects given the dimensionally extended nine-intersection matrix (DE-9IM)

[23], and hence can easily be used for the completeness proof, we found that the Relate

operation is not needed since all the 68 possible spatial relationships between points,

lines, and polygon can be described by using other OpenGIS SQL relationships and

operations as you will see in our proof. In addition, the Relate operation may be

considered as inefficient as it tests exhaustively for the intersections between the interior,

boundary, and exterior of the given two spatial objects and also allows users to specify

32

the spatial relationships that are not possible in real life. Also, as the OpenGIS SQL

document states [23, Page 2-15], relate “has the disadvantage that it is a lower level

building block and does not have a corresponding natural language equivalent”, so it will

be difficult for user to utilize the relate operation. Therefore, in our proof, we use a limited

number of OpenGIS SQL spatial relationships and operations (excluding Relate

operation) to describe all possible cases of the complete set of 68 spatial relationships

identified in [33].

Table 2-3 Number of Possible Cases between 2-D Spatial Objects

Pairs P/P P/L P/A L/L L/A A/A

cases 2 3 3 33 19 8

2.3.1 Summary of OpenGIS SQL Spatial Relationships and Operations

There are four main groups of methods in OpenGIS SQL:

- Basic methods on geometric objects

- Methods for testing spatial relationships between geometric objects

- Methods for supporting spatial analysis

- Miscellaneous methods for each type of geometric objects

We briefly discuss each of these groups next. For complete details about these

methods, please refer to [23].

2.3.1.1 Basic methods for geometric objects

These operations are used to determine the properties and representation

method for the 2-D objects. Table 2-4 is the summary of these methods along with the

compatible geometric objects: P, L, and A.

33

Table 2-4 Summary of Basic Methods of OpenGIS SQL

Operations P L A

Dimension()   

GeometryType()   

SRID()   

Envelope() X  

AsText()   

AsBinary()   

IsEmpty()   

IsSimple() X  

Is3D()   

IsMeasured()   

Boundary() X  

2.3.1.2 Methods for testing spatial relationships between geometric objects

These are eight main binary boolean relationships that return TRUE if the

particular topological relationship exists between the two given spatial objects. Table 2-5

shows a summary of the methods along with the compatible pairs of geometric objects:

P/P, L/L, A/A, P/L, P/A, and L/A.

Table 2-5 Summary of 8 Main Spatial Relationships of OpenGIS SQL

Relationships P/P L/L A/A P/L P/A L/A

Equals()    X X X

Disjoint()      

Touches() X     

Crosses() X  X   

Within()      

Contains()      

Overlaps()    X X X

Intersects()      

Our proof uses these operations in Table 2-5, which cover all binary spatial

relationships in OpenGIS SQL. The first 7 operations above (Equals – Overlaps) can be

summarized in the following decision tree (Figure 2-12), which is useful for understanding

the correct definition for each relationship [23]. In Figure 2-12, the root of the decision

tree is the leftmost node. Interior nodes describe spatial conditions, and leaf nodes

34

represent OpenGIS SQL operations, where all the condition from root to leaf must be

satisfied for the operation.

(Interior(A) Interior(B)) ≠ Ø

(A B)≠ A

(A B)≠ Ø

Dim(A) = Dim(B) = Dim(A  B)

(A B)≠ B

Overlaps

Contains

(A B)≠ B

Crosses

Within

Equals

Touches

Disjoint

Figure 2-12 Summary Decision Tree of First 7 OpenGIS SQL Spatial Relationships

(Equals - Overlaps) [23][81]

2.3.1.3 Methods that support spatial analysis

These operations either return metric values, or create new objects out of

existing ones. Table 2-6 shows a summary of the methods along with the compatible

geometric objects, and their pairs: P, L, A, P/P, L/L, A/A, P/L, P/A, and L/A.

Table 2-6 Summary of Methods that Support Spatial Analysis of OpenGIS SQL

Operations P L A P/P L/L A/A P/L P/A L/A

Distance() X X X      

Intersection() X X X      

Union() X X X      

Difference() X X X      

SymDifference() X X X      

Buffer()    X X X X X X

ConvexHull()    X X X X X X

35

2.3.1.4 Miscellaneous methods for each type of geometric objects

OpenGIS SQL also provides miscellaneous operations for each type of

geometric object as summarized below.

1) Operations for Point (P)

- X(P)

- Y(P)

- Z(P) (for 3-D – we do not use Z)

- M(P) (allows application to associate any measure when needed for its

environment with the point values)

2) Operations for Curve (or LineString: L)

- Length(L)

- StartPoint(L)

- EndPoint(L)

- IsClosed(L)

- IsRing(L)

- NumPoints(L)

- PointN(L,i) (return i
th
 point)

3) Operations for Polygon (A)

- Area(A)

- Centroid(A)

- PointOnSurface(A)

- ExteriorRing(A)

- NumInteriorRing(A)

- InteriorRingN(A,i) (return i
th
 interior ring)

36

In our proof, we will show how combinations of these OpenGIS SQL spatial

relationships and operations can be used to describe all relationships in [33][32][34].

2.3.2 Proof of Completeness

We prove the completeness of OpenGIS SQL spatial relationships and

operations by using proof by cases [102][35]. To prove by cases, we list all possibilities of

the statement to be proved into cases [102]. We then show that in all cases, the

statement is true [102]. Our proof first displays the complete set of 68 relationships [33]

(each of which is numbered) in a graphical form as shown in Figure A-1. We then show

how each relationship can be specified in OpenGIS SQL. Since the proof takes

substantial amount of space, we described the proof in the Appendix A.

2.4 Related Work

Related work can be divided into two subsections: temporal ontology

formalization and temporal information representation and querying in OWL [22][87].

2.4.1 Temporal Ontology Formalization

Hobbs [13] presented temporal ontology formalization which can be embedded

to OWL [87] to capture temporal reasoning on the semantic web. There are four main

concepts that are discussed on the paper: temporal relation reasoning, measuring

duration, clock/calendar, and describing time and duration.

Temporal relation concept defines the reasoning of time instant and time interval,

where time instant stores a point in time and time interval stores starting and ending

times. In addition, the temporal operation reasoning is also discussed, such as before,

inside, timebetween, properbetween, equal, meet, overlap, etc. Measuring duration

concept defines a model to measure the unit of time and converts one unit of time to

another. Clock and calendar concepts are used to appropriately reason about time zone

and handle months with different days such as 28 days in the month of February.

37

Describing time and duration concepts are used to capture time and duration with

different kinds of formats such as timestamp.

2.4.2 Temporal Information Representation and Querying in OWL

O’Connor and Das [22] proposed a technique to represent time dimension in

OWL and demonstrated how temporal reasoning and querying over those ontologies on

Protégé can be done. They presented two approaches in modeling temporal dimension:

via user-defined property and via super class relationship. With regard to the first

approach, they directly specify spatial features of entity through user-defined property. In

the second approach, to represent time in OWL on Protégé, they first create a

Proposition class which has a relationship hasValidTime to ValidTime class. The

ValidTime class contains two types of time concepts: time instant and time interval. When

we want to add temporal features to any class, the class will be added as a subclass of

the Proposition class and it will inherit the time characteristics. They also mentioned that

the second approach is more powerful for two main reasons. The first reason is the ease

in distinguishing the class with and without temporal features just by looking at which

classes are subclasses of Proposition class. The second reason is the eligibility to have

additional co-existing spatial representation in the future through multiple inheritance, by

having more than one parent classes, without causing any effects and deleting the prior

ones. They used the second approach for adding temporal components into an existing

ontology. The technique they used is known as “light-weight”. That is, time dimension

could be easily added to existing ontologies with minimal changes. The built-ins temporal

operations were implemented based on [2][3].

38

Chapter 3

Identifying Meaningful Concepts from Raw Data

Starting from this chapter, we now turn our focus to a specific type of spatio-

temporal data in a particular application domain. Identifying meaningful concepts for a

particular application domain is a very important step because each spatio-temporal type

of data has its own characteristics, which need to be specifically designed according to

their domain concepts. In our work, the spatio-temporal data used is raw rainfall data in

the hydrology domain. Our goal for this chapter and the next is to summarize the raw

rainfall data into a model that facilitates storm analysis and mining. We identify

meaningful storm concepts from the raw rainfall data in this chapter and discuss two

different approaches to convert raw rainfall data into the meaningful storm concepts in

the next chapter. The preliminary approach for storm analysis and mining is discussed in

Chapter 5. This chapter is organized as follows. Section 3.1 discusses background and

motivation of identifying meaningful storm concepts from raw rainfall data. The

description of raw rainfall data is discussed in Section 3.2. Finally, storm formalization is

defined in Section 3.3. (Related work of this chapter is discussed in Chapter 4, Section

4.5.)

3.1 Background and Motivation

In hydrology, most storm analysis has mainly focused on location-specific

analysis (either site-specific or region-specific) [36][37][38][39], meaning that each

location is considered independently when analyzing a storm. An example would be

determining how many storms occurred at site location 376501 in the year 2011. But in

reality, a storm covers many locations over a period of time, so location-specific analysis

is insufficient. Our goal is to analyze rainfall data in a storm-specific way by considering

all the locations over time for each storm, so we can determine storm-specific

39

characteristics such as how big the storm is, how many sites are covered, the storm

track, and what is its overall depth and duration. Analyzing the whole storm can give

more insight and information since it reflects how a storm actually behaves in nature. In

particular, a storm can start at one location and end at another, and the storm typically

covers multiple locations at each time point. However, it is very difficult to analyze storms

directly from the raw data for several reasons. First, the quantity of data is very large that

it qualifies as big data [54][55]. Second, the data is stored in a manner that makes it

difficult to identify the storms. The data has been gathered as frequently as every five

minutes and covers a huge area of observation fields. Traditionally, the data is recorded

and stored in either printed or file/folder format. As a result, attempting to do storm

analysis with such a large amount of data and the traditional way of storing the data will

require manually combining all data across an enormous number of folders and

processing them together. This makes it nearly impossible to do storm analysis [40]. As a

result, to enable storm-centric analysis, we first identify meaningful storm concepts by

incorporating hydrology concepts (as we will discuss in Section 3.3). We then develop

algorithms to identify the different types of storms as described in the formalization.

Finally, we store the identified storms in a custom designed database schema. The big

picture of our methodology is shown in Figure 3-1.

Raw Data
Storm DataIdentification

Algorithms

Visualization

 Users

< 1% of Raw Data

Figure 3-1 Overview of Our Methodology

40

This will allow domain experts to do more robust and flexible analysis and help them

better understand their own data and potentially can lead to new discoveries.

3.2 Description of Raw Rainfall Data

 The raw rainfall data that we used comes from National Weather Service (NWS)

– West Gulf River Forecast Center (WGRFC) [42] and is called Multi-sensor Precipitation

Estimates or MPE [42][45][77][79] reflecting how it is calculated, which is estimated by

using a combination of radars and physical rain gauges (multi-sensors). The raw data is

provided as hourly text files containing four attributes: observation time, row number, site

id, and precipitation value, covering three main states (Texas, New Mexico, and

Oklahoma) and some surrounding areas including parts of Arizona, Utah, Colorado,

Kansas, Missouri, Arkansas, Louisiana, and Mexico [42]. (Figure 3-2 shows the coverage

of our MPE observations.) The observation time is indicated in the file name (e.g.,

2011041323_2011041400), whereas the remaining attributes are stored in the file. Each

row of the file content consists of row number, site id, and precipitation value (inches),

and reports one observation per one site. The total number of covered observed site

locations are 165,750. Site points are four kilometers apart to the north, south, east, and

west. The raw rainfall data is supplied as text files. Each hourly text file contains

precipitation data for that particular hour for all sites. This means that the number of

records inserted per hour, day, month, and year is 165,750, 3,978,000, 119,340,000, and

1,432,080,000, respectively.

Figure 3-2 Coverage of WGRFC Observations [42]

41

The raw rainfall data text file is based on the HRAP (Hydrologic Rainfall Analysis

Project) standard grid coordinate system [49][58] and is ordered by site id in a row major

order from west to east and south to north. Each row has 425 sites and each column has

390 sites. Because of the systematic grid structure, given any site, we can determine the

neighboring sites by using the relationships described in Figure 3-3. Moreover, given any

site id, we can determine its HRAP local X and Y coordinates, using equations (1) and

(2); where a is the minimum HRAP x coordinate and b is the minimum HRAP y

coordinate, c is the first site id, and d is a value difference between site ids in adjacent

rows in the same column. Additionally, given any (x, y) coordinate, we can calculate the

corresponding site id using equation (3). Equation (3) is derived from (1) and (2), by

considering () and () as outputs of the operations (mod and div) of the same

operands (() and d). In our case, a, b, c, and d are 290, 10, 15599, and 1701,

respectively.

 (()) ()

 (()) ()

 () () ()

Our raw data contains 16 years of historical MPE data from 1997 to 2012. The

size of the raw data in textual format is approximately 480 GB, and when loaded to the

CUAHSI ODM relational database [45][47][58][44], it is about 5.4 TB. Every year an

additional 30 GB/348 GB is added to textual/CUAHSI data.

42

siteID
(x, y)

siteID + 1701
(x, y+1)

(siteID + 1701) - 1
(x-1, y+1)

(siteID + 1701) + 1
(x+1, y+1)

1701 sites different

 425 sites

 3
9
0
 site

s

15599

(290, 10)

17300

(290, 11)

19001

(290, 12)

677288

(290, 399)

677712

(714, 399)

16023

(714, 10)

 3
9
0
 site

s

Figure 3-3 Relationships among Neighboring Sites

3.3 Rainstorm Formalization

The goal of our storm formalization is to analyze storms as a whole and at the

same time, still allow traditional location-specific storm analysis. Since a storm can start

at one place and stop at another, we slice the whole storm into several pieces by hour.

We then assemble each slice back together into the original overall storm. Each slice of

storm is, in fact, an hourly storm. We formalize storms into three different categories

(local storms, hourly storms, and overall storms).

Before defining our storm-related concepts, we specify some predicates

(relationships) and terminology that will be used in the definitions.

- neighbor(sa, sb, d): means that sites sa and sb are adjacent. Referring to Figure 4-

4, if sa is the central site, sb can be any of the other sites. d is the direction from

sa to sb, and is one of (N, S, E, W, NE, NW, SE, and SW).

- area(s): the area of site s.

- storm area: the total areas of a storm.

Next, we define the concepts of local storm, hourly storm, and overall storm.

43

3.3.1 Local Storm

Generally speaking, local storm is a site-specific storm, which considers each

site location independently when analyzing a storm, e.g., determining how many storms

occurred at site location 355879 in 2011. An example of local storms is the sequence of

storms that occurred at site location 355879 last month. Two distinct local storms are

separated by at least h consecutive time points with zero precipitation, where h is called

the inter-event time [36][37][52]. In our case, inter-event time (h) is set to 6 hours as

suggested in [36][37][103]. There may be some consecutive time points with zero

precipitation within a local storm, as long as it is less than h time points. For any local

storm, there will not be a subsequence of h or more consecutive zeroes in the series.

Local storm is one type of storm, which was researched by most hydrologists

[36][37][38][39]. Figure 3-4 shows some examples of local storms at site id, 355879. The

formal specification of local storm is described in Definition 1.

Time

(hourly)

Precipitation (inches)

0

1 2 3 4 5 6 7 8

0.05

0.10

0.15

0.20

..
.

...

inter-event

time > 6 hrs.

Figure 3-4 Examples of Local Storms at Site ID, 355879

Definition1. If L is a local storm, then:

- s(L) = site location id for local storm L

- T(L) = (t1, t2,…, tn) is the sequence of consecutive time points for local storm L at

site s(L), such that:

- t1 = start time and tn = end time

- p(ti) is the precipitation measured at site s(L) for time ti-1 to ti (inches)

44

- p(t1) > 0 and p(tn) > 0

- ti – ti-1 = 1, i  1 (all time points in T(L) are consecutive.)

- p(tk) = p(tk+1) = … = p(tk+(h-1)) = 0 is false, where k = 1, 2, ... , (n-h)+1 and

h = inter-event time (maximum number of h-1 consecutive zero

precipitation time points in a local storm)

Let LL be a list of all local storms at a particular site (i.e., LL = (L1, L2,…, Lm)). LL

must satisfy the following properties:

- Li.start_time - Li-1.end_time > h, i  1

- Li+1.start_time - Li.end_time > h, i  m

(These formalize the concept that two different local storms at site s must be

apart by at least inter-event time.)

Storm characteristics for this storm type include:

- duration: the duration of a local storm (n hours) [51]

- total rainfall: the amount of precipitation occurring throughout the storm duration

at a particular site (∑ ()

) [51].

- intensity: the total rainfall divided by duration (

) [51].

3.3.2 Hourly Storm

Informally, hourly storm is a time-specific storm, which is an orthogonal concept

to local storm. It considers each hour independently when analyzing a storm. An example

of hourly storms is a set of storms that occurred between 9:00 am and 10:00 am today

across various site locations. Hourly storm considers a specific time point (an hour)

instead of considering a particular site location. In other words, local storm fixes one site

and covers its data over many time points, whereas hourly storm fixes a time point and

covers its data over many adjacent sites. Two different hourly storms are separated by

space-tolerance n [62]. Space tolerance specifies a maximum number of sites (n) with

45

zero precipitation allowed in between any two non-zero precipitation sites to be

considered as part of the same hourly storm. The space tolerance concept allows non-

zero precipitation sites to still be categorized as part of an hourly storm even if they are

not in adjacent neighboring sites but are indirect neighboring sites within a certain

number of intermediate sites (see Definition 2).

Definition 2. We say that site b is an i-indirect neighbor of site a if:

 () () ()

That is, when space-tolerance is set to n, the neighbors of site a will include

direct neighbors, as well as all i-indirect neighbors of a for i = 1, 2, … , n. Figure 3-5

compares space-tolerance of 0 and 1. With the same set of non-zero precipitation values,

represented by dots at a particular hour, with space-tolerance n=0, 2 hourly storms are

identified whereas space-tolerance n=1, only 1 hourly storm is identified.

 a) Space-tolerance, n=0 b) Space-tolerance, n=1

Figure 3-5 Comparison between Different Space-Tolerance Values

In our work, space-tolerance is set to zero. That is, all non-zero precipitation sites of an

hourly storm must be adjacent. With space-tolerance set to zero, an hourly storm can be

formally defined by a set of adjacent sites with non-zero precipitation values at a

particular hour as described in Definition 3.

46

Definition 3. If H is an hourly storm, then:

- t(H) = time point (a particular hour)

- S(H) = {s1, s2,…, sn} is a set of site location ids si such that:

- given any si in the set, p(si) > 0, where p(s) is precipitation measured at

time t(H) for site s.

- if |S(H)| = 1, then it contains a single site with no neighbors.

- otherwise, S(H) satisfies these properties:

- Connectivity: () () () (every site

in the set must have at least one neighbor that is also in the set)

- Maximality [98]:

 (() ()) ()

(for any two neighboring sites sa, sb with non-zero rainfall in the

same hour, they belong to the same hourly storm)

The last property can also be stated as follows. Let HH be a set of all hourly

storms at a particular hour (i.e., HH = {H1, H2,…, Hm}). HH must satisfy the following

property:

- () () (two different hourly storms

at the same hour do not have overlapped site(s))

The characteristics of hourly storm are listed below:

- total rainfall: the total amount of precipitation occurring at a particular hour for the

sites of an hourly storm (∑ ()

).

- coverage: number of sites covered by an hourly storm (|S(H)| sites).

- average: the average precipitation for an hourly storm (

).

- center: a storm center based on hydrology concept. It is defined as the site

coordinate() with the highest precipitation at a particular hour. If

47

there are more than one site with highest precipitation, the and will

be averaged based on those sites coordinates.

- centroid: a storm center based on geometry concept. It does not take into

account the precipitation values when calculating the storm center. The center of

the storm will be calculated solely based on the average of x and y coordinates of

all the sites of an hourly storm.

- boundary: a minimum bounding rectangle (MBR) covered by an hourly storm,

defined by two HRAP sites coordinates: one with the lowest x and y ()

and another one with the highest x and y ().

3.3.3 Overall Storm

Unlike local storm and hourly storm that consider either a site location or time (an

hour) independently, overall storm considers both location and time together when

analyzing a storm. So, the result is the capture of storm as a whole, called overall storm,

which can capture storm movement and other “overall” storm characteristics that could

not be found in most hydrology papers [36][37][38][39][53]. Overall storm is a

combination of hourly storms that satisfy two requirements: grouping-window g and

spatial-window s [62]. Grouping-window is the time interval within which storms will be

considered to be part of the same storm. Spatial-window is the number of common site(s)

shared between any two successive hourly storms. This definition of overall storm

ensures that hourly storms that move to the same path will be considered as the same

overall storm. According to hydrology concepts, it is very unlikely that two different paths

of hourly storms with different origins and/or destinations could end up being part of the

same overall storm. However, if that is the case, the final path of the overall storm will be

averaged out based on those two paths. In this work, grouping-window and spatial-

window are set to 1 hour and 1 site, respectively. An example of overall storm and its

48

corresponding hourly storms is shown in Figure 3-6. The formal specification of overall

storm is described in Definition 4.

9:00

hs1

10:00

hs2

11:00

hs3

Grouping-window

Spatial-window

Storm

center

Storm

track

Figure 3-6 Example of Overall Storm and its Corresponding Hourly Storms

Definition 4. If O is an overall storm, then:

- O = (V1, V2, … , Vn) such that:

- Vi is an hourly storm set at hour i where i = 1, 2, …, n, V1 is a set of

hourly storms in the first hour (i.e., {H1,1, H1,2,…}), and Vn is a set of

hourly storms in the last hour (i.e., {Hn,1, Hn,2,…})

- if |O| = 1, then the overall storm is equivalent to an hourly storm

- otherwise, O satisfies these properties:

- () () , where k  n and g is

grouping-window

- () () , where k  n and p is spatial-

window

- Maximality [98]: (

 () () () ())

The maximality property of overall storms can also be stated as follows. Let OO

be a set of all overall storms (i.e., OO = {O1, O2,…, Om}). OO must satisfy the following

property:

49

- ()

 (() () () ())

The following are overall storm characteristics:

- total rainfall: the total amount of precipitation occurring throughout the storm

duration across the hourly storms

- duration: the duration of an overall storm (n hours)

- intensity: the total rainfall divided by the duration (

 inches per hour).

- coverage: the number of “distinct” sites covered an overall storm

- num sites: the summation of each hourly storm coverage of an overall storm

(Note that a site in num sites can be repeated whereas one in coverage cannot.)

- average: the average precipitation (per site) for an overall storm

(

).

- intensity per site (or average per hour): the intensity divided by num sites (or the

average divided by duration). This characteristic gives an idea of how intense a

rainstorm is for any given site location covered by an overall storm.

- total average: the summation of storm average for each hour of an overall storm

- total average per hour: the total average divided by the storm duration

- track: a sequence of storm centers or storm centroids of its hourly storms. (The

storm track is important when doing trajectory-related analysis of the storm.)

- speed: storm speed is defined as an average distance (km) that the storm moves

per hour (kmph). It can be calculated by dividing the summation of distances

between each pair of consecutive storm centers (or centroids) by storm duration.

- boundary: an MBR covering the entire overall storm.

50

Chapter 4

Converting Raw Data to Conceptual Data

 In the previous chapter, we identified and formally defined meaningful rainstorm

concepts. These were developed in consultation with hydrology experts from the Civil

Engineering Department. In this chapter, we present a storm identification system to

extract the three rainstorm information, as well as their characteristics and properties,

from the raw data. Two approaches were developed: CUAHSI-based [62] and

MapReduce-based [68][76]. Both share the same goal, which is to convert the raw data

into meaningful storm conceptual data. The first approach focuses on converting raw

rainfall data that follows the CUAHSI standard, which is based on the standard database

schema called CUAHSI ODM [45][47][58] to store hydrological data in a relational

database. Both input and output are processed and stored in a relational database.

Although there are benefits from this approach, including easy integration with CUAHSI

APIs [44] and user-friendly analysis/mining through SQL [56][57], the main disadvantage

we found is the slow performance, because of the overhead associated with using a

relational database for the input raw data. In addition, the algorithms developed were

recursive depth-first search, which also contributed to the poor performance. As a result,

the second approach was proposed with the focus on drastically improved performance

for the data conversion algorithms by utilizing parallel processing on a cluster of nodes

using the map-reduce framework. The CUAHSI-based approach is described in Section

4.1 whereas the MapReduce-based approach is described in Section 4.2. We proposed a

custom database schema for storing the conceptual storm output data in Section 4.3. The

resulting storm data was verified in Section 4.4. Finally, related work is discussed in

Section 4.5.

51

4.1 CUAHSI-based Approach

The goals of this approach are to: 1) convert raw rainfall data into meaningful

storm concepts (which can capture storm-centric characteristics) and 2) to follow the

CUAHSI standard, which we will discuss in the next subsection.

4.1.1 CUAHSI-related Background

CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science,

Inc.) [47] is a well-known research organization conducting research in the water science-

related area since 2001, supported by National Science Foundation (NSF). Hydrologic

observation data is gathered from various organizations and kept in various formats. To

eliminate the ambiguities in sharing and interpreting hydrological information, CUAHSI

ODM [45] was proposed in 2008 [58]. CUAHSI ODM provides a standard database

schema to store hydrological data in a relational database. There are a total of 29 tables

in the standard. Only five main tables will be briefly discussed (Sources, Sites, Methods,

Variables and DataValues tables) as they were used in our analysis. Figure 4-1 shows

the star-schema [41, Chapter 28] of the five main tables. For more details, please refer to

[45][58].

Figure 4-1 Star-Schema of 5 Main Tables of CUAHSI ODM

Sites

Latitude

Longitude

LocalX

LocalY

LocalProjectionID

State

DataValues

Variables

Sites

Sources

Methods

Precipitation_Data

Sources

Organization

SourceDescription

SourceLink

Variables

Code

Name

UnitsID

IsRegular

TimeSupport

TimeUnitsID

Fact Table

Dimension Table

Dimension Table

Dimension Table

Methods

MethodDescription

MethodLink

Dimension Table

52

The Sources table stores information about where the observation data comes from.

Table 4-1 shows our Sources table in the database.

Table 4-1 Sources Table in CUAHSI ODM Database

ID Organization SourceDescription SourceLink

1
NOAA’s National Weather
Service West Gulf River
Forecast Center

Files containing MPE data
from NWS-WGRFC

http://www.srh.noaa.gov/wgrfc/

The Methods table (see Table 4-2) describes how the observation is collected. A brief

explanation of the method along with its external link is also provided in this table.

Table 4-2 Methods Table in CUAHSI ODM Database

ID MethodDescription MethodLink

1
The precipitation data are multi-sensor
(radar, satellite, and rain gauge).

http://www.srh.noaa.gov/rfcshare/
precip_about_hourly.php

The Sites table stores site information. The site information includes SiteID, Longitude,

Latitude, LocalX, LocalY, LocalProjectionID (spatial reference system for LocalX and

LocalY, such as HRAP [49], which we discussed in Chapter 3, Section 3.2), State, etc.

Table 4-3 shows selected columns of our Sites table in the database.

Table 4-3 Selected Columns of Sites Table in CUAHSI ODM Database

ID Latitude Longitude LocalX LocalY LocalProjectionID State

339072 31.0444 -97.9782 573 200 227 Texas

339073 31.0402 -97.9379 574 200 227 Texas

339074 31.0359 -97.8976 575 200 227 Texas

The next table is the Variables table. The information about observations is stored in this

table. Each variable description is stored in one row, and represents different observation

types and properties. The property information includes how frequent the observation is

recorded (instantaneous or consistent) and what unit is used for the observation values.

That is, for example, hourly precipitation observation and 15-minute interval precipitation

observation are considered different variables due to their properties even though they

53

both are the same precipitation observation types. We have one variable (one row) as

demonstrated in Table 4-4 which describes hourly precipitation data.

Table 4-4 Selected Columns of Variables Table in CUAHSI ODM Database

ID Code Name UnitsID IsRegular TimeSupport TimeUnitsID

1 MPE Precipitation 49 1 1 103

The last table is the DataValues table, which stores the actual rainfall data. This table

stores numerical observation values for each site and variable as well as the method

used and the source where they are from. Table 4-5 shows some samples of what

DataValues table entries look like. The first row of the table states that we have no rain

(precipitation value = 0) at site location 88814 from 12pm to 1 pm on October 1, 2011. As

we can see that regardless of whether or not we have rain, the precipitation value is

inserted into the table. As a result, the database grows rapidly and is sparse.

Table 4-5 Examples of DataValues Table Entries with Selected Columns

ID DataValue DateTimeUTC SiteID VariableID MethodID SourceID

1 0 2011-10-01 13:00 88814 1 1 1

2 0 2011-10-01 13:00 88815 1 1 1

3 0 2011-10-01 13:00 88816 1 1 1

4.1.2 Storm Identification Algorithms

In this approach, the storm identification system is divided into four main

components: 1) local storm identification, 2) location proximity creator, 3) hourly storm

identification, and 4) overall storm identification. Figure 4-2 shows the architecture of the

CUAHSI-based storm identification system.

54

Local Storm

Identification

Hourly Storm

Identification

Overall Storm

Identification
Hourly Rainfall

Data (MPE)

Identified

Storms
Analyze and Mine

Relational Database

Relational Database

Users

Location

Proximity Creator

Storm Identification System

Figure 4-2 Data Flow Diagram of Storm Identification Modules

4.1.2.1 Local Storm Identification

This module separates rainfall events at any given site location (local storms)

using h-hour inter-event time as storm separators. The input for this module is the

relational rainfall data from the CUAHSI ODM DataValues table as well as inter-event

time (h hours). In our experiment, only sites in Texas are considered. Since the area of

Texas is very large, there is a significant climatic difference in its various regions. As a

result, USGS (U.S. Geological Survey) divides Texas into 10 different regions based on

their climatic and geographic characteristics and proposed a map, called Texas Climatic

Regions [39], as shown in Figure 4-3. To be consistent with USGS, we analyzed each

region separately. We also used threads [61] to improve algorithm performance. For each

region, sites are equally partitioned into t different disjoint subsets. Each subset is then

assigned to one thread. The threads run concurrently and then the results are merged to

form LocalStormHours table. In our case, t is set to 4, assuming that each thread

occupies each of 4 cores of our computer configuration.

55

Figure 4-3 Texas Climatic Regions [39]

To separate rainfall events for a particular site, a parameter h, called inter-event-

count, is maintained to keep track of the number of consecutive zero precipitation

(ordered by date and time). We use h=6 hours inter-event time, as suggested by Huff

[36][37]. In some situations or applications, a different inter-event time is needed and this

can be achieved by changing the parameter in our algorithm to other values. The

identified local storms are then stored in the LocalStormHours table, which we will

discuss in Section 4.3. Algorithm 1 highlights how the local storm identification works.

The time complexity for the algorithm is (
 ()

), where s is the number of sites in a

subset, c is the number of cores, and n is the number of records per site, assuming

 is the cost for sorting by using ORDER BY in database query.

4.1.2.2 Location Proximity Creator

This module creates the LocationProximity table containing neighboring sites

information for each site. The neighboring sites information is required for hourly storm

identification but does not exist in any table of the original ODM standard.

56

Algorithm1. CUAHSI-based Local Storm Identification

Input:
- Rainfall data of a region (D)
- Inter-event time (h)
- Number of threads (t=4)

Output:
- Local storms stored in LocalStormHours table

1: partition sites of region (D) into t subsets (S)

2: assign each subset to a thread

3: concurrently,

4: threads process their own subsets of sites Si, i = 1, 2, … ,t

5: for each site x in Si do

6: r extract records of site x and order by time

7: for each record rj in r do

8: if inter-event-count < h then

9: include rj.precipitation as part of local storm k

10: else

11: start new local storm k++

12: end if

13: end for

14: end for

15: merge results from each thread into LocalStormHours table

The input of this module is site information from ODM Sites table [43][45][58]. The output

is stored in the LocationProximity table. Figure 4-4 shows neighboring sites of site

355879. The neighboring information was calculated for each site using the HRAP

coordinate information [49] labeled as LocalX and LocalY in the ODM Sites table. A site

s(x,y) will have eight neighboring sites: sN(x,y+1), sS(x,y-1), sE(x+1,y), sW(x-1,y),

sNE(x+1,y+1), sNW(x-1,y+1), sSE(x+1,y-1), and sSW(x-1,y-1) where (x,y) is a HRAP

coordinate of site s. The algorithm is relatively simple and so omitted here. The time

complexity is O(n) where n is the number of sites. This table, however, is not needed in

the map-reduce algorithm, because the neighboring sites information can actually be

derived from site id presented in the raw data text files, as we describe in equations (1),

(2), and (3) in Chapter 3, Section 3.2.

57

Figure 4-4 Neighboring Sites of Site Location 355879

4.1.2.3 Hourly Storm Identification

This module identifies hourly storms by finding neighboring sites that have

precipitation during the same hour. Since all non-zero precipitation was already extracted

and stored in LocalStormHours table, we then directly use LocalStormHours table instead

of ODM DataValues table as an input to increase the performance of the module.

Another input is LocationProximity table. The output is stored in the HourlyStormSites

table. The algorithm (see Algorithm 2) is based on recursion and depth-first search. It

checks for each hour to identify how many hourly storms there are, and the sites they

cover. Similar to the local storm identification, each region is executed separately.

However, we did not apply threading to this module since the amount of data to be

processed is substantially less compared to the one of local storm identification module,

because most of the zero-precipitation data has been removed. The time complexity for

the worst case scenario is (), where h is the number of hours in local storm

data and s is the maximum number of non-zero precipitation sites in an hour.

S

E

N

W

SiteID = 355879

 - HRAP: (370, 210)

 - Lat/Long: (31.7513, -106.2566)

369 370 371

209

210

211

58

 Algorithm2. CUAHSI-based Hourly Storm Identification

Input:
- Local storm data (L)
- Location proximity data (P)

Output:
- Hourly storms stored in HourlyStormSites table

1: for each hour h in L do

2: b extract all records of hour h

3: for each site s in b do

4: if s.precipitation  0 then

5: identified as hourly storm i

6: depthFirstSearch(s, i, b)

7: start new hourly storm i++

8: end if

9: end for

10: end for

11: depthFirstSearch(s, i, b)

12: candidates set c expandNode(s, b, P)

13: for each candidate cj in c do

14: if cj.precipitation  0 then

15: identified as part of hourly storm i

16: depthFirstSearch(cj, i , b)

17: end if

18: end for

4.1.2.4 Overall Storm Identification

This module identifies all overall storms (which consist of hourly storms that are

sharing some common site(s) (spatial-window s) within the specified grouping-window g

hour(s)). The module takes hourly storm data from HourlyStormSites table as an input.

An output is stored in the OverallStormHourlyStorms table, which indicates overall storms

and their corresponding hourly storms. The algorithm (see Algorithm 3) uses recursion

and depth-first search similar to the hourly storm identification algorithm. Instead of

checking neighboring sites, it checks if successive hourly storms are sharing some

common site(s) (spatial-window s) within the grouping-window g (in hours). In our

analysis, grouping-window is 1 hour and spatial-window is 1 site. That is, if consecutive

hourly storms are within 1 hour difference and sharing at least 1 common site, they will

be considered as part of the same overall storm. Note that we did not apply threading to

the algorithm as the process needs to be done sequentially and identify overall storms

59

one at a time. The time complexity for the worst case scenario is (), where n is

the number of hourly storms, m is the maximum number of qualified (both grouping- and

spatial- windows) hourly storms for an hourly storm, and h is the maximum number of

hours for an overall storm.

Algorithm3. CUAHSI-based Overall Storm Identification

Input:
- Hourly storm data (R)
- Grouping-window (g=1)
- Spatial-window (s=1)

Output:
- Overall storms stored in OverallStormHourlyStorms table

1: a extract all hourly storm ids from R

2: for each hourly storm id d in a do

3: identified as overall storm i

4: depthFirstSearch(d, i, a)

5: start new overall storm i++

6: end for

7: depthFirstSearch(d, i, a)

8: candidate set c findCandidates(d, g, s)

9: for each candidate cj in c do

10: identified as part of overall storm i

11: depthFirstSearch(cj, i, a)

12: end for

4.1.3 Experimental Results

The data used for our preliminary experiment in this approach is 1.25 years

(October, 2010 – December, 2011) of relational data from ODM DataValues table and

covers only Texas. The data contains 394,505,690 records of historical hourly

precipitation data covering 37,413 sites. The experiment was performed on a single

server. The server runs on Microsoft
®
 Windows Server

®
 2008 Enterprise operating

system with 2.83 GHz Intel
®
 Xeon

®
 quad-core processors, 20 GB of RAM, 500 GB of

local disk, and 10 TB of external disk. The experimental results for each region are listed

in Table 4-6.

The experimental result (Table 4-6) shows the significant reduction in size of the

storm data compared to the size of the raw data. The number of storm records is less

60

than 1% of the number of raw data records. The experimental result also indicates that

East Texas has the most storm data whereas Trans-Pecos has the least storm data even

though Trans-Pecos has more raw data compared to East Texas. This is consistent with

the fact that Trans-Pecos is the driest region and East Texas is one of the wettest regions

in Texas [59][60].

Table 4-6 Experimental Results of CUAHSI-Based Approach

In summary, in this approach, the raw rainfall data is first converted and inserted

into CUAHSI ODM database. The programs were designed and developed mainly based

on the fact that the raw data is stored in relational databases. The storm identification

then processes the raw data from the relational database. The local storm identification

uses selection and sorting features of SQL to complete the process. The hourly storm

identification takes location proximity and local storms as inputs and identifies hourly

storms at each hour. Finally, overall storm identification combines consecutive hourly

storms that meet grouping- and spatial- windows requirements to create the overall

storms and store them in a relational table. Both hourly and overall storm identification

use the concept of graph search using depth-first search (DFS), to complete the process.

Local

Storms

Hourly

Storms

Overall

Storms

1. East Texas 48,953,130 325,504 21,983 4,632 352,119 0.72%

2. Edwards Plateau 73,415,532 257,859 20,136 4,191 282,186 0.38%

3. High Plains 31,711,927 97,327 8,334 2,165 107,826 0.34%

4. Low Rolling Plains 24,965,521 89,814 6,199 1,487 97,500 0.39%

5. North Central 59,082,957 299,082 17,303 3,463 319,848 0.54%

6. South Central 31,102,334 120,083 11,654 3,224 134,961 0.43%

7. South Texas 26,091,999 97,580 10,067 2,867 110,514 0.42%

8. Lower Valley 11,182,285 41,820 4,314 1,228 47,362 0.42%

9. Trans-Pecos 65,136,216 151,453 11,843 3,155 166,451 0.26%

10. Upper Coast 22,863,789 137,843 14,043 3,255 155,141 0.68%

TOTAL 394,505,690 1,618,365 125,876 29,667 1,773,908 0.45%

Number of Identified Storms
Number of

Raw Data
Regions

Number of

Storm Data

Reduction in

Raw Data Size

61

All the processing is done sequentially in a single machine. The advantages of this

approach include: 1) it supports both location- and storm- specific analyses, 2) it is

consistent with the CUAHSI ODM standard (additional relations storing the extracted

output conceptual data can be viewed as an enhancement to the CUAHSI ODM), 3) the

resulting storm data size is much smaller compared to the original size of the raw data,

and 4) it fully supports SQL and other relational database functionalities so easy analysis

and mining can be done.

However, the major disadvantage of this approach is the slow performance due

to several reasons. First, we used big raw rainfall data that are stored in a relational

database as an input, which requires a very long time to retrieve the data to process.

Second, the system is implemented based on graph search using DFS and recursion,

which involve multiple scans of the same data. Third, the system is run on a single server

without applying any distributed computing technology. Finally, we did not fully utilize the

structure of the raw rainfall data format in the original text files. In the next approach

(MapReduce-based) [68][76], we aim to improve the system performance.

4.2 MapReduce-based Approach

In this approach, every component of the storm identification algorithms are re-

designed and performance is significantly improved by utilizing the original structure and

format of raw rainfall data and applying the efficient, well-known distributing computing

technology (namely MapReduce [66] and Hadoop
®
 [67]) to speed up the performance. In

this approach, instead of using data in the relational database as an input, we use the

original raw rainfall data text files. We then applied distributed computing technology,

map-reduce, to every component of the storm identification process in order to maximize

the performance by parallelism. All components are re-designed to best suit map-reduce

characteristics as well as the structure of the input data. MapReduce is a programming

62

paradigm developed by Google in 2004 [66] and now is becoming a new standard for

distributed computing.

As in the first approach, we load the identified storms (output data) into a

relational database at the end so that analysis and mining can easily be done. The

relational databases are used only for storing the final results of the identified storms; not

during processing. The database schema is discussed in Section 4.3.

4.2.1 Storm Identification Algorithms

 In this approach, the storm identification system consists of three components

instead of four as we take advantage of the known grid structure for neighboring

information. The overview of this approach is illustrated in Figure 4-5.

Figure 4-5 Overview of MapReduce-based Storm Identification System

4.2.1.1 MapReduce for Local Storm Identification (MR-LSI)

The previous implementation of local storm identification [62] required the

selection of data from the relational database and then sorting them. The computation is

done based on the selected sorted data and the result is inserted back to the database.

The selection, sorting, and insertion required substantial execution time, making it

impractical to analyze large datasets.

63

This new local storm identification algorithm [68] utilizes map-reduce, and uses

the raw rainfall data text files as input. Each raw rainfall data text file contains the

precipitation value of all the sites for a particular hour and hence, for the analysis of local

storm, we need to group all the precipitation values by site and order them by time. Once

all the values for a site are grouped together and ordered, then we can find all the local

storms that occurred at that site. Thus, the local storm analysis contains two steps: 1)

grouping precipitation values by site and ordering them by time and 2) finding the local

storms and their characteristics for a site from the grouped values. In the map-reduce

framework, there are three main phases: 1) map phase, 2) sorting and shuffling phase,

and 3) reduce phase. The first two phases of map-reduce are used to perform the first

step of our local storm identification and the reduce phase is used to find the local storms

as well as their characteristics at the particular site.

The pseudo code for the implementation for local storm analysis in the map-

reduce framework is shown in Algorithm 4. Each of the map tasks takes one raw rainfall

file and processes it line by line emitting the site and time together as the key and time

and precipitation value together as the value. We take advantage of the key-comparator

class and grouping-comparator class of map-reduce to group the data on the basis of site

id and then sort them by time. The reducer gets a site id as a key and list of precipitation

values sorted by time. This list is processed sequentially to identify all the local storms

and their characteristics at that particular site. We calculate the time complexity of the

MR-LSI algorithm by determining the summation of maximum amounts of time spent by

one map task, one sorting and shuffling task, and one reduce task. Thus, the time

complexity is () () () (), where n is the number of sites

presented in the file and m is the number of hours (records) per site.

64

Algorithm4. MapReduce-based Local Storm Identification

Input:

- Text file-format rainfall data
- Inter-event time (h=6 hours)

Output:

- Local storms data in text file format
1: class MAPPER

2: function MAP(key object, value line)

3: key (line.siteId, line.time)

4: value (line.precipValue, line.time)

5: Emit(key, value)

6: class REDUCER

7: function REDUCE(key siteId, [val1, val2, …])

8: timeList null

9: //timeList.size = h + 2; timeList[0:1] represents start and end time, timeList[2:7] is used to keep track h

10: precipRec null

11: interEventTime 0

12: lsId 1

13: timeList.Add(firstNonZeroPrecip.GetTime()) //for start time

14: timeList.Add(firstNonZeroPrecip.GetTime()) //for end time

15: precipRec.Add(firstNonZeroPrecip.GetPrecipValue())

16: for all val  values [val1, val2, …] do

17: precipRec.Add(val.GetPrecipValue())

18: if (val.GetPrecipValue() = 0) then

19: timeList.Add(val.GetTime())

20: interEventTime++

21: else

22: tempTime timeList[0] //keep original start time

23: Clear(timeList)

24: reset interEventTime

25: timeList.Add(tempTime)

26: timeList.Add(val.GetTime()) //get the new end time

27: end if

28: if interEventTime ≥ h then

29: startTime timeList[0]

30: endTime timeList[1]

31: value.Set(startTime, endTime, precipRec, totalRainfall, duration, intensity)

32: Emit(siteId, lsId, value)

33: Clear(timeList)

34: Clear(precipRec)

35: lsId++

36: end if

37: end for

In our experiment, we analyze the raw rainfall data one year at a time. Storms

that start in one year and end in the next may exist. Therefore, we perform post-

processing steps to combine these storms, and these local storms are assigned to the

year where they started. These post-processing steps are done by using SQL. However,

65

they can also be done in other methods such as external scripts. Algorithm5 highlights

how the post-processing steps work.

Algorithm5. Local Storm Merging

Input:

- Relational tables: LocalStormHours and LocalStorms
- Inter-event time: h (6 hours)

Output:

- Updates on tables: LocalStormHours and LocalStorms
1: for each (current) year (except the last year: 2012) do

2: for each local storm cls in current year that ends between 18:00 (6pm) and 23:00 (11pm) do

3: //during the last 6 (h) hours of a year, the end time of cls is determined by the last non-zero precip. hour

4: s cls.siteid

5: e cls.endtime

6: if there exists a local storm nls at site s, which starts by e+h in the next year then

7: cls.Merge(nls) //updates LocalStormHours and LocalStorms tables accordingly

8: end if

9: end for

10: end for

4.2.1.2 MapReduce for Hourly Storm Identification (MR-HSI)

In the previous approach [62], we assume that any non-zero precipitation site

can be part of the hourly storm, meaning it can start at one site and stop at a very farther

site as long as there are some connections among them. As a result, we implemented

DFS to keep track of every possible site and perform site node revisiting when needed.

This, however, led to a high time complexity problem.

In the new approach [68], the program is designed specifically to take full

advantage of the original raw rainfall data text file structure. Since the grid (HRAP) is

known and we know exactly which site is a neighbor of which (as described in equations

(1), (2), and (3) in Chapter 3), only those candidate neighboring sites need to be

checked. Unlike the previous approach which uses DFS to keep track of nodes, we use

linked lists and append them together as we scan when necessary. Moreover, since the

data in each text file is stored in row major order, we scan each grid row once. An

overview of the hourly storm identification process is shown in Figure 4-6.

66

Figure 4-6 MapReduce-based Hourly Storm Identification

The program starts from the very bottom grid row to the top by calling map

function for each line in the text file. It begins to identify hourly storms as soon as it reads

in the data in order to minimize the number of checks. The data are then kept in two

arrays called previous and current arrays, which are two-dimensional arrays and contain

site ids and hourly storm ids. The current array always does the identification based on

the previous array. There are two main parts of the program. The first part (line: 7-17) is

executed only once for the very bottom row in a grid whereas another part (line: 18-27) is

executed for the rest. The first part identifies hourly storms within the same row whereas

the other part identifies hourly storms within and across the rows simultaneously. At the

end of each row scan, the hourly storms so far are identified and are kept in an array of

linked lists called hourly storms list, in which index of array indicates hourly storm id and

linked list contains a set of adjacent non-zero precipitation sites of the hourly storm.

When the last row is reached, the final hourly storms are produced and already kept in

the hourly storms list.

Since the raw rainfall data files are independent from each other, and each file

records hourly precipitation for an individual hour, map-reduce can easily be applied.

Each hourly file is sent to a different mapper node for the identification of hourly storms.

Check within the row &

update prev. array

Check within and across

the row & update curr. array

1
s

t s
c
a
nF

ro
m

 2
n

d
s
c
a
n

 o
n

67

Algorithm6. MapReduce-based Hourly Storm Identification

Input:

- Text file-format rainfall data
Output:

- Hourly storms data in text file format
1: class MAPPER

2: function SETUP()

3: prev.InitializeArray(), curr.InitializeArray()

4: hourlyStorms.InitializeArrayOfLinkedList()

5: id 0

6: function MAP(key object, value r)

7: if r  first bottom grid sites then

8: if r.precip = 0 then

9: prev[r.site].hsId 0 //no hourly storm

10: else

11: if r.site = first site or r.leftNeighborPrecip = 0 then

12: prev[r.site].hsId id++

13: temp CreateLinkedList(r.site)

14: hourlyStorms.AddLinkedList(temp)

15: else

16: prev[r.site].hsId id

17: hourlyStorms.GetLinkList(id).Add(r.site)

18: else if r  next above grid sites then

19: if r.precip ≠ 0 then

20: if r.site = first site or r.leftNeighborPrecip = 0 then

21: CheckPrevious(r, id, prev, curr, 1)

22: else

23: CheckPrevious(r, id, prev, curr, 0)

24: else

25: curr[r.site].hsId 0 //no hourly storm

26: else

27: prev curr

28: function CLOSE()

29: Emit(hourlyStorms)

30: function CHECKPREVIOUS(r, id, prev, curr, flag)

31: if flag = 1 then

32: if hsIds of all 3 neighbors of r in prev. array = 0 then

33: curr[r.site].hsId id++

34: temp CreateLinkedList(r.site)

35: hourlyStorms.AddLinkedList(temp)

36: else

37: minId MinHsId(r.all3Neighbors in prev. array)

38: curr[r.site].hsId minId

39: hourlyStorms.GetLinkedList(minId).Add(r.site)

40: UpdateHsId(r.neighbors, minId)

41: minId 0 //reset minId

42: else

43: curr[r.site].hsId id

44: hourlyStorms.GetLinkedList(id).Add(r.site)

45: if hsId of r’s southeast neighbor in prev ≠ id then

46: UpdateHsId(r.southeastNeighbor, id)

68

At the closing of mapper, all hourly storms identified within the hour will be written back to

disk. Currently, no reducer is needed because there is no need to group the data or sort

them in any order. The raw files, by themselves, are already grouped and sorted by site

id in a row-major order as mentioned in Chapter 3, Section 3.2. The algorithm for hourly

storm identification is shown in Algorithm 6. The algorithm has a linear time complexity

(()), where n is the number of lines (which also equals to the number of sites) in the

text file.

4.2.1.3 MapReduce for Overall Storm Identification (MR-OSI)

In the previous approach [62], we use graph traversal (DFS) to identify overall

storms. It uses backtracking according to the DFS concept. The two major disadvantages

of this approach are that: 1) the next identification process could not start until the current

identification is finished (sequential processing), and 2) the program interacts with large

amounts of data residing in a relational database causing large overhead even when

retrieving hourly storm data.

In the new approach [76], we no longer interact with the data stored in a

relational database. Our input is from map-reduce-based hourly storm identification

algorithm as hourly storm text files, which have the following format:

(hsid, time, <list of hourly storm characteristics>,

<list of pairs (site : precipitation value)>)

The new algorithms are designed to work in parallel to utilize multiple machines by using

map-reduce framework. Instead of the recursion used in DFS that identifies overall

storms sequentially one by one, we develop an iterative MapReduce approach that

divides the identification process into several iterations. In each iteration, partial overall

storms are identified concurrently on multiple machines. The length of partial overall

storm starts from 1 and keep increasing as the iteration level goes up. The flow of the

69

algorithms could be thought as bottom up that builds overall storms from the smallest unit

(1-hour duration) and expands until it is pruned (written to the output files) or ended at the

last iteration. There are three phases in our new algorithm: mapper, partitioner, and

reducer. All phases are executed iteratively. The number of iterations depends on the

size of input file, which is the total number of hours (m) in our case.

In the mapper phase, each map task takes one hourly storm text file as an input,

calculates original hour id (hidorig), and emits it along with all of its hourly storms as key-

value pairs. We process the data for one year at a time. The amount of data to process,

however, can be changed to other sizes such as 2 or 5 years. The original hour id starts

from 0, for the first hour of input files, until the last hour, which in our case, it is either

8759, for non-leap year, or 8783, for leap year. After the first iteration, the original hour

ids are converted to current hour ids (hidcurr) directing hourly storms to the designated

reducer. The key is hour id and the value is content of an hourly storm.

In the partitioner phase, each partition task ensures that a set of hour ids data go

to the same reducer. The rules of hour ids grouping are that: 1) each group of hours must

have p hour id members, where p is a range partition (p is set to 2 in our case), 2) hours

in each group must be consecutive and the first group always starts from zero, and 3)

hourly storms data with the same ⌊

⌋ will go to the same reducer. Figure 4-7 describes

hour ids grouping conditions.

Figure 4-7 Hour IDs Grouping Conditions

 hidorig: 0 1 2 3 4 5 6 7 … j j+1 j+2 j+3 … m-1

...

...

...

p = 2

Level = 1

Level = 2...

Level = ceiling(logp m) = k

0 1 2 3 j/2 (j+2)/2 (m-2)/p

0 1 j/2i
 …

0

Level = i...

70

In the last phase, each reduce task is the one who actually combines satisfying

hourly storms from two hours into an overall storm. In each iteration, a set of hourly

storms from two consecutive hours are grouped together and checked for overlapping in

parallel. The results of each group (reducer) are “partial” overall storms (ps) for that

particular iteration level. A partial overall storm can be considered as temporary overall

storm, waiting to be finalized, for a sub period of the entire storm duration.

As you can see in Figure 4-7, the merging process is not finished within the first

iteration. Moreover, the next iteration of each group will not start until its relevant previous

iterations are finished. This makes sure that computation of different iteration levels will

not happen. An output from the previous reducer is an input to another reducer in the

next iteration. In our case, p = 2, g = 1, s = 1. When moving to the next iteration, the

number of groups is decreased in half (factor of p). The results of the previous iteration

will be checked for overlapping with the relevant consecutive group. The computation is

relatively complex depending on the number of current candidate members from both

groups. As a result, we implement the following three strategies: global pruning, on-the-

fly comparison, and local pruning, based on the following lemmas.

Lemma 1. (Global pruning) Given grouping-window of g and partition range of p, the

pruning can be applied starting at the end of iteration level i, where ,

 and k is the last iteration, calculated by ⌈ ()⌉.

The first prune step (global pruning) is based on Lemma 1. Figure 4-8 shows an

example of how Lemma 1 can be applied. As you can see, at the end of iteration level i,

where , there will be partial overall storms starting as early as original hour id

() and ending by original hour id () , where j is the current hour id and

 is the number of participating hours. By partial overall storms, we mean intermediate

overall storms that are still not finalized and need to check for overlapping with other

71

corresponding partial overall storms unless: 1) reaching the last iteration k or 2)

candidate set is empty, whichever comes first. Any partial overall storm that starts and

ends within the range [() ()] can be pruned and hence

finalized as “final” overall storm since they will never get merged with any other partial

overall storms. In our case, and . Thus, the prune step can be applied at the

end of iteration level 2 (()). At the end of iteration level 2, at the current hour id

1, for example, any partial overall storm starting from original hour id 5 (()) and

ending by 6 ((())) will never get combined with the consecutive group of

current hour id even though they may share s common sites in the same level because it

exceeds grouping-window limit on both sides.

 0 1 2 3 4 5 6 7

Level = 1

Level = 2

0 1 2 3

0 1

0

B

A

C

D E

F

G

H

K

J

L

M

N

O

P

I

ABC

J KLM

DE FGH

N

O

P

I

JKLM NOP

ABCDE FGHI

JKLM NOP

ABCDEFGHI

Level = 3 = k

P
ru

n
e

d
 to

 th
e
 la

s
t ite

ra
tio

n
 k

Figure 4-8 Global Pruning Concept

Lemma 2. (On-the-fly comparison) If we: 1) compare (check for overlapping) a partial

overall storm ps1 of one group hour id to every other group candidate (ps0) one at a time

72

in a given order, 2) replace the overlapped candidate ps0 with the merged candidate

(), and 3) continue the checking process with ps1, and repeat 2)

whenever new overlapping is found, then every pair of candidates will require overlap

checking at most once. The number of comparisons will be (), where n and m are

the numbers of partial overall storms from the two groups.

Lemma 2 ensures the minimum number of comparisons (eliminating

excessive/redundant comparisons) by: 1) fixing the order of candidates while checking, 2)

utilizing the fact that a newly merged candidate will never overlap with previously-

checked candidates otherwise they would have merged earlier (without considering

overlapping within the same group because it is impossible), and 3) using merging to

reduce the number of comparisons and at the same time to guarantee future overlapping

discovery. To better understand this lemma, consider Figure 4-9. Suppose we have a set

of partial overall storm candidates from two groups of hour ids as seen in Figure 4-9 a).

As you can see, when you check B and Z the first time, they are not together. However,

once B is checked with Y and C and combined, it is possible now that the new merged

candidate (BYC) can overlap with Z. Therefore, the comparison process needs to start

over from the beginning every time the new merged candidate is found, which is BYC in

this example, to make sure all overall storms are correctly identified. This leads to a very

high computation. The total number of comparisons is ∑ (()

)
 , where f(i) is the number

of candidates at iteration level i and () , where n and m are the numbers of

hourly storms of group j and j+1, respectively.

On the other hand, if we apply lemma 2 as seen in Figure 4-9 b), the re-checking

will no longer be required since we will not need to start over the checking process every

time a new candidate is added.

73

A

BY

CZBY

ArrayList (storms of j)

Z Y X

storms of j+1

xY

A

X

B

Z

Y

C

 j j+1

 a) b)

Figure 4-9 Example of How Lemma 2 can be Applied

The overlapping discovery can be guaranteed because we store one group of storms in

an array list and another group of storms are being compared to it one at a time on-the-fly

and merged, if necessary. So, the comparison process is thorough and complete. This

on-the-fly comparison helps reduce the number of comparisons by identifying overall

storm as it reads in the partial overall storms concurrently. For example, in Figure 4-9 b),

once overlapping between Y and B is found, B is replaced by the new merged candidate

BY and we do not need to re-check BY with previously checked candidates (A) again but

rather continue the checking process using Y to the rest of the candidates in order. The

order of storms in the array list and merging process we used will eventually make sure

the checking is complete. That is, CZ, previously merged candidate, will later be checked

and merged with BY to CZBY as the same overall storm.

Lemma 3. (Local pruning) Given a pair of partial overall storms, ps0 and ps1, of hour ids j

and j+1, respectively, F1 and L1 are starting time and ending time of ps0 whereas F2 and

L2 are starting time and ending time of ps1. Any pair of storms, with , where g

is a grouping-window, will never get merged and hence can be pruned to the next

iteration.

Lemma 3 is based on the fact that any consecutive partial overall storms with

grouping-window greater than g will never be combined and hence do not need to be

checked. This lemma is similar to the first lemma except that the first lemma prunes

74

partial overall storms to be finalized and hence no longer kept in the candidate set

whereas this lemma prunes partial overall storms to the next step meaning it still can be

merged with other storms at other iterations.

As mentioned earlier, there are two stop conditions: 1) it reaches the last iteration

k or 2) there is no member in the candidate set. In our case, ⌈ ⌉ . At the

last iteration level, if the candidate set is not empty, every partial overall storm will be

grouped into one big group with current hour id 0 and finalized. In order to make our

algorithm more precise and efficient, we defined an object class, called Ostorm, which

represents a partial overall storm unless it is in the last iteration. In such case, the overall

storms are final. We assume that every overall storm is partial unless they are in the last

iteration. In each iteration, each partial overall storm is either: 1) combined with one or

more partial overall storms into a bigger partial overall storm if overlapping exists, or 2)

converted into another partial overall storm itself for the next iteration. The operations of

Ostorm class are as follows:

- IsOverlap: finds whether the current storm is overlapping with another storm.

- IsComparable: checks whether the current storm is comparable with another

storm. This is based on the concept in Lemma 3 (local pruning).

- MergeStorm and CompareWithinOrder: merges and compares the given storm

with other storms in the fashion as described in Lemma 2 (on-the-fly

comparison).

- IsFinal: checks whether an overall storm is final. A final overall storm is one that

cannot grow further. This is implemented as part of the prune step mentioned in

Lemma 1 (global pruning).

The algorithm for overall storm identification in map-reduce (MR-OSI) is shown in

Algorithm 7. The time complexity of MR-OSI algorithm for the worst case scenario is

75

 ()() ()() ()() (),

where n, m are the maximum numbers of hourly storms in the first and second hours,

respectively, and k is the maximum number between n and m.

The post-processing steps are also required (as we run the raw data one year at

a time) to combine an overall storm that starts in one year and ends in the next: 1)

between current year and previous year and 2) between current year and following year.

For 1), the range of original hour ids from previous year to current year to consider are

 For 2), the range of original hour

ids from current year to following year to consider are

 If we start with the last (or first) year, we only have to

compare the current year with the previous (or next) year.

4.2.2 Experimental Results

In the previous approach [62], the experiment was performed on the rainfall

dataset, resided in a relational database, using a single server. The server runs on

Microsoft
®
 Windows Server

®
 2008 Enterprise operating system with 2.83 GHz Intel

®

Xeon
®
 quad-core processors, 20 GB of RAM, 500 GB of local disk, and 10 TB of external

disk. The raw data contains 15 months of data from October 2010 to December 2011

covering 37,413 sites in Texas.

In the map-reduce approach [68][76], we use the same dataset (from October

2010 to December 2011) that is in the original text file format rather than relational

format, which contains many more sites (165,750 sites) covering Texas and some

surrounding areas. These results are used to compare the performance of map-reduce

with the original recursive algorithm.

76

Algorithm7. MapReduce-based Overall Storm Identification

Input:

- Hourly storm data text files
Output:

- Overall storm data text file
1: class MAPPER

2: function MAP(key object, value line)

3: if iteration i = 1 then

4: //read in the hourly storm inputs record by record.

5: hidorig line.CalHourId() //hour number id in a year, starting from 0 to the last hour of input files

6: key hidorig

7: value list of values of Ostorm attributes

8: Emit(key, value)

9: else

10: //read in previously-identified partial overall storms from iteration i-1.

11: key first value in the record, hidcurr

12: value the remaining values, Ostorm attributes

13: Emit(key, value)

14: class PARTITIONER

15: function PARTITION(key hid, value Ostorm)

16: for each record do //hourly or partial overall storm record

17: hid = floor(hid/2)

18: Emit(hid, Ostorm)

19: end for

20: class REDUCER

21: function REDUCE(key hid, [Ostorm1, Ostorm2, …]

22: //storms come in order based on their hids.

23: for each key do

24: for each os  [Ostorm1, Ostorm2, …] do

25: //assign each os to an array list, aList, in order (based on hid).

26: if key remains unchanged then

27: aList.add(os)

28: else

29: //all hourly or partial overall storms with lower hid are now stored in aList.

30: for each storm cos  aList do

31: if cos.IsComparable(os) and

32: cos.IsOverlap(os) then

33: mos cos.MergeStorm(os)

34: aList.Add(mos, cos.pos) //replace current storm with the merged storm (mos)

35: CompareWithinOrder(cos.pos)

36: //compare cos with other storms present after its position in aList.

37: else

38: if IsFinal(os) then //Lemma 1

39: MarkAsFinal(os)

40: end for

41: end for

42: end for

43: for each storm cos  aList do

44: if IsFinal(cos) then //Lemma 1 (pruning at the end)

45: MarkAsFinal(cos)

46: end for

77

Each text file is for all sites during a single hour and is zipped into one gunzip file. The

experiment was done by using a Hadoop
®
 cluster [67] of 1 frontend server and 18 worker

nodes. Each worker node contains 3.2 GHz Intel
®
 Xeon

®
 quad-core processors, 4 GB of

RAM and 1.5 TB of local disk allocated to HDFS. The server has the same specification

but with 3 TB of local disk. The cluster is set up by using ROCKS Cluster 6.3 OS and

then installing Hadoop
®
 1.0.3 on every node.

The comparison between the time taken by the previous implementations and

the new map-reduce implementations is shown in Table 4-7. Please also note that the

processing time does not include the time taken to load the data into HDFS/SQL. The

experiment of the new approach gives the same results for Texas region as the previous

approach but is executed significantly faster. The new approach allows programs to be

executed distributedly on multiple machines and hence the efficiency of the storm

analysis is increased. For local storm (LS) identification, the time improved to 2.43 hours,

compared to 53.44 hours in the previous approach. For hourly storms (HS), the map-

reduce took 0.93 hours, compared to 6.78 hours in the previous method (DFS). For

overall storms (OS), the previous approach took 8.62 hours whereas the map-reduce

approach took only 0.67 hours. These show that the new approach is more efficient since

it took less time while processing a larger number of sites. Moreover, since we are using

map-reduce, the performance can be improved further by increasing the number of

nodes.

Notice that in the map-reduce approach we no longer divide Texas into different

regions to do analysis due to our focus of this approach, which is to improve the system

performance. Therefore, we process the entire grid of raw data together without dividing

it. However, we can always divide and analyze each region separately if we want to.

78

Table 4-7 Comparison of Processing Time between Two Approaches

Next, we extend our experiment to the entire set of the raw rainfall data (1997-

2012). The experiment is performed on the raw data one year at a time. After processing

each year, the post-processing steps are conducted on local storms and overall storms to

combine storms that start in one year and end in the next. For hourly storms, the post-

processing steps are not required since each raw file is hourly independent and covers all

the sites. At any given year, local storm and hourly storm identification processes can be

executed concurrently whereas overall storm identification must be executed after the

hourly storm identification process.

The standard procedure for local and hourly storm identifications is as follows:

- Un-tar the raw rainfall data, which took about 6 minutes.

LS HS OS LS HS OS

1. East Texas

(48,953,130)
4,643 8.67 1.44 1.24

2. Edwards Plateau

(73,415,532)
6,962 8.72 1.23 2.25

3. High Plains

(31,711,927)
3,008 4.5 0.32 0.57

4. Low Rolling Plains

(24,965,521)
2,368 3.35 0.28 0.27

5. North Central

(59,082,957)
5,604 8.66 1.17 1.64

6. South Central

(31,102,334)
2,949 4.28 0.67 0.42

7. South Texas

(31,949,386)
2,933 3.97 0.48 0.60

8. Lower Valley

(5,324,898)
601 0.55 0.07 0.08

9. Trans-Pecos

(65,136,216)
6,177 6.86 0.55 1.16

10. Upper Coast

(22,863,789)
2,168 3.88 0.57 0.39

TOTAL 37,413 53.44 6.78 8.62

Number

of Sites

Regions / Number of

Raw Data Records

Processing Time (in hours)

<
--

--
 2

.4
3

 h
o

u
rs

 f
o

r
al

l s
it

e
s

(i
n

cl
u

d
in

g
3

7
,4

1
3

 s
it

e
s

in
 T

e
xa

s)
 -

--
->

<
--

--
--

--
--

--
--

--
--

--
 0

.9
3

 h
o

u
r

fo
r

al
l s

it
e

s
 -

--
--

--
--

--
--

--
--

--
>

<
--

--
--

--
--

--
--

--
--

--
 0

.6
7

 h
o

u
r

fo
r

al
l s

it
e

s
 -

--
--

--
--

--
--

--
--

--
>

New Approach

MapReduce

Previous Apporach

CUAHSI

79

- Upload the rainfall data to HDFS™ [67] (about 23 minutes).

- Execute the Java code (MR-LSI/MR-HSI) for computing the local/hourly storms

(approximately 1 hour and 50 minutes for MR-LSI and 38 minutes for MR-HSI).

The overall storm identification algorithm used was iterative; hence the output of one

iteration is the input for the next iteration. To find the overall storms from the hourly

storms, the following standard procedure is performed:

- Upload the hourly storm data to HDFS, which took about 25 minutes.

- Execute the Java code (MR-OSI) for computing the overall storms (about 40

minutes).

The experimental statistics for the entire 16 years of raw rainfall data are listed in

Table 4-8 and 4-9. Table 4-8 shows the number of identified storms (local storms, hourly

storms, and overall storms) for each year. Table 4-9 shows the processing time in each

iteration of MR-OSI program. As you can see, the processing time in each iteration

decreases significantly. This is because of the implementations of Lemmas 1 and 3,

which prune some storms from being processed and compared in the later iterations. In

addition, after iteration 9, the time taken to process in the later iterations becomes almost

constant. This is because after iteration 9, the number of partial overall storms that were

merged to others becomes very minimal (less than 700 storms, on average).

4.3 Custom Database Schema for Conceptual Storm Outputs

We use a relational database to store the final storm outputs. The database must

be designed in such a way that the expressivity and usability features of SQL can be fully

utilized in the analysis tasks. SQL and relational databases are proven tools in

performing analysis [56][57]. To develop an EER for the storm outputs, we take into

account the formalizations of storm concepts as well as the characteristics of the raw

rainfall data.

80

Table 4-8 Number of Storm Records in Each Component for Each Year

Table 4-9 MR-OSI Execution Time in Each Iteration

LS HS OS

Num Storms Num Storms Num Storms

1997 731,786,250 3,944,877 298,561 150,886 4,394,324 0.60

1998 1,451,804,250 6,372,104 455,575 235,409 7,063,088 0.49

1999 1,450,644,000 5,842,579 434,440 218,516 6,495,535 0.45

2000 1,453,627,500 6,138,978 439,557 225,029 6,803,564 0.47

2001 1,451,804,250 6,663,672 496,213 248,550 7,408,435 0.51

2002 1,451,804,250 6,827,462 448,670 196,531 7,472,663 0.51

2003 1,451,804,250 7,606,046 441,303 196,330 8,243,679 0.57

2004 1,455,782,250 12,526,769 545,125 237,457 13,309,351 0.91

2005 1,451,804,250 10,169,983 479,560 210,777 10,860,320 0.75

2006 1,450,478,250 10,354,175 519,978 227,517 11,101,670 0.77

2007 1,448,489,250 12,819,729 643,383 282,021 13,745,133 0.95

2008 1,455,782,250 10,371,608 544,036 248,001 11,163,645 0.77

2009 1,451,638,500 10,958,887 547,164 248,294 11,754,345 0.81

2010 1,451,141,250 10,108,909 546,926 247,449 10,903,284 0.75

2011 1,451,804,250 7,143,676 382,009 183,112 7,708,797 0.53

2012 1,455,782,250 9,024,720 481,920 225,075 9,731,715 0.67

TOTAL 22,515,977,250 136,874,174 7,704,420 3,580,954 148,159,548 0.66

AVERAGE 1,407,248,578 8,554,636 481,526 223,810 9,259,972 0.66

Num Raw MPE

Records

Num Storm

Records

Reduction in Raw

Data Size (%)
Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1997 13.09 2.00 2.00 1.38 1.19 1.13 0.97 0.84 0.86 0.67 0.67 0.65 0.61 0.61 26.67

1998 24.15 2.49 1.78 1.44 1.23 1.14 1.04 0.93 0.74 0.68 0.69 0.73 0.64 0.68 38.36

1999 24.52 2.53 1.84 1.54 1.23 1.19 1.07 0.94 0.83 0.74 0.82 0.68 0.71 0.67 39.31

2000 24.32 2.23 1.65 1.38 1.25 1.08 0.99 0.83 0.73 0.64 0.68 0.69 0.68 0.70 37.85

2001 24.39 2.68 1.69 1.54 1.29 1.14 1.02 0.83 0.79 0.68 0.73 0.66 0.67 0.71 38.82

2002 25.75 2.68 1.68 1.44 1.23 1.15 0.98 0.89 0.78 0.69 0.73 0.69 0.66 0.66 40.01

2003 25.28 2.35 1.78 1.53 1.29 1.18 1.15 0.79 0.78 0.68 0.69 0.68 0.66 0.67 39.51

2004 30.01 2.73 2.01 1.50 1.27 1.13 1.03 0.90 0.78 0.69 0.68 0.67 0.66 0.66 44.72

2005 25.82 2.33 1.70 1.35 1.26 1.44 1.03 0.88 0.85 0.68 0.68 0.61 0.66 0.66 39.95

2006 27.23 3.06 1.93 1.59 1.33 1.35 1.07 0.87 0.80 0.67 0.73 0.68 0.66 0.66 42.63

2007 28.11 3.14 2.22 1.65 1.43 1.35 1.13 0.93 0.79 0.68 0.84 0.74 0.68 0.74 44.43

2008 27.46 2.88 2.09 1.63 1.39 1.33 1.13 0.94 0.79 0.68 0.73 0.70 0.67 0.68 43.10

2009 27.48 3.09 2.05 1.55 1.38 1.30 1.24 0.88 0.79 0.68 0.67 0.73 0.66 0.72 43.22

2010 29.73 3.18 1.81 1.50 1.26 1.25 1.08 0.94 0.81 0.68 0.67 0.67 0.67 0.67 44.92

2011 25.00 2.18 1.86 1.39 1.17 1.18 1.03 0.90 0.72 0.67 0.73 0.66 0.61 0.61 38.71

2012 25.82 2.64 1.91 1.42 1.33 1.20 1.28 0.91 0.73 0.68 0.69 0.73 0.65 0.66 40.65

TOTAL 408.16 42.19 30.00 23.83 20.53 19.54 17.24 14.20 12.57 10.89 11.43 10.97 10.55 10.76 642.86

AVERAGE 25.51 2.64 1.88 1.49 1.28 1.22 1.08 0.89 0.79 0.68 0.71 0.69 0.66 0.67 40.18

TOTALYear
Iteration Level (processing time in minutes)

81

The developed EER is shown in Figure 4-10. Note that the set of hourly storms related to

an overall storm are ordered by hour, because they form a sequence in the formalized

ontology. We then map the EER in Figure 4-10 to the database schema using

methodology/steps described in [41]. The database schema consists of 8 tables, as

shown in Figure 4-11. Note that the table OverallStormTracks is derived from the

relationships among the entity types Overall Storm, Hourly Storm, Centers, and Time

Point in Figure 4-10.

Hourly StormOverall StormLocal Storm

Storm

contains1 N

Time Point

(hour)

Site

Hourly Rainfall

Text File

Centers generates

1

N

records

1

1

reports

N

M

belongs to1

N

covers

N

M

consists

N

M

LSID

File Name

HourID

SiteID

CID

HX

HY

Max MPE

GX

GY

MPE

LX

LY

d

Total

Rainfall

Speed

Duration

Intensity Boundary

Avg

Coverage

Total Avg

per Hour

Total Avg

OSID

HSID


specific to
1

N

Intensity

Intensity

per Site

No of SitesBoundary

neighbors

M
N

Figure 4-10 EER Diagram for Storing Conceptual Storm Data

LocalStormHours table stores local storms information for each hour of every

site. The information includes local storm id, date/time, and precipitation depth (in inches)

of the storm for a particular site.

82

Figure 4-11 Relational Database Schema for Storing Conceptual Storm Outputs

Its characteristics are summarized into LocalStorms table. Each local storm is uniquely

identified by (YearID, LSID) because local storms are identified each year at a time and

so the same LSID can exist in different years. HourlyStormSites table stores precipitation

value for each site of an hourly storm. The hourly storm characteristics are summarized

into HourlyStorms table. Each hourly storm is uniquely identified by (DatetimeUTC, HSID)

as hourly storms are identified using one hourly text file at a time so the same HSID can

exist in different hourly text file. OverallStormHourlyStorms table stores information of all

hourly storms combined into an overall storm. The primary key for this table is

(DateTimeUTC, HSID) because an hourly storm can belong to only one overall storm.

Technically, this table could be further mapped to HourlyStorms by having (YearID,

OSID) as foreign key to OverallStorms. However, we mapped it into a separate table

because the hourly storm statistics table (HourlyStorms) are calculated at the end.

Having separated OverallStormHourlyStorms table, we do not need to wait until hourly

83

storm identification is concluded in order to identify overall storms. Hourly storm

identification and overall storm identification can run concurrently. OverallStormTracks

table contains track information of the overall storms for each hour. Storm track

information consisting of hydrology-based storm tracks (point with maximum precipitation

of a particular hourly storm) and geometry-based storm tracks (centroid of an hourly

storm), are the only overall storm characteristic created in a separate table. The

remaining characteristics such as speed and total rainfall, are summarized into

OverallStorms table. All of the storm characteristics were calculated either during the

identification process or post-processing steps by using SQL or additional scripts.

Queries SQL1-5 describe how storm statistics are calculated using SQL in the post-

processing steps.

SQL1. Calculate storm statistics for local storms

1: SELECT LSID,YearID,SiteID,

2: DATEADD(hh, -1, MIN(DateTimeUTC)) AS Start,

3: MAX(DateTimeUTC) AS Stop,

4: SUM(DataValue) AS TotalRainfall,

5: COUNT(*) AS Duration,

6: TotalRainfall/Duration AS Intensity

7: INTO LocalStorms table

8: FROM LocalStormHours table

9: GROUP BY YearID,LSID

SQL2. Calculate partial storm statistics (exclude storm centers) for hourly storms

1: SELECT HSID,DateTimeUTC,

2: COUNT(*) AS Coverage,

3: SUM(DataValue) AS TotalRainfall,

4: TotalRainfall/Coverage AS Avg,

5: //HRAP(x,y) below are calculated based on equations described in Chapter 3, Section 3.2.

6: SUM(290+((SiteID-15599) MOD 1701))/Coverage AS CentroidX,

7: SUM(10+((SiteID-15599) DIV 1701))/Coverage AS CentroidY,

8: MAX(DataValue) AS CenterMaxMPE,

9: MIN(290+((SiteID-15599) MOD 1701)) AS MinX,

10: MIN(10+((SiteID-15599) DIV 1701)) AS MinY,

11: MAX(290+((SiteID-15599) MOD 1701)) AS MaxX,

12: MAX(10+((SiteID-15599) DIV 1701)) AS MaxY

13: INTO PartialHourlyStorms table

14: FROM HourlyStormSites table

15: GROUP BY DateTimeUTC,HSID

84

SQL3. Calculate storm centers for hourly storms (complete hourly storm statistics table)

1: SELECT P.HSID,P.DateTimeUTC,P.Coverage,P.TotalRainfall,P.Avg,P.CentroidX,P.CentroidY,

2: (SELECT SUM(290+((SiteID-15599) MOD 1701))/COUNT(*)

3: FROM HourlyStormSites table H

4: WHERE H.DateTimeUTC=P.DateTimeUTC AND H.HSID=P.HSID AND

5: H.DataValue=P.CenterMaxMPE) AS CenterX,

6: (SELECT SUM(10+((SiteID-15599) DIV 1701))/COUNT(*)

7: FROM HourlyStormSites table H

8: WHERE H.DateTimeUTC=P.DateTimeUTC AND H.HSID=P.HSID AND

9: H.DataValue=P.CenterMaxMPE) AS CenterY,

10: P.CenterMaxMPE,P.MinX,P.MinY,P.MaxX,P.MaxY

11: INTO HourlyStorms table

12: FROM PartialHourlyStorms table P

SQL4. Calculate overall storms statistics except total average, total average per hour, storm speed, and

storm track

1: SELECT M.OSID,

2: M.YearID,

3: DATEADD(hh, -1, MIN(T.DateTimeUTC)) AS Start,

4: MAX(T.DateTimeUTC) AS Stop,

5: DATEDIFF(hh, Start, Stop) AS Duration,

6: TotalRainfall/Duration AS Intensity,

7: COUNT(T.SiteID) AS NumSites,

8: TotalRainfall/NumSites AS Avg,

9: Intensity/NumSites AS IntensityPerSite,

10: SUM(T.DataValue) AS TotalRainfall,

11: COUNT(DISTINCT(T.SiteID)) AS Coverage,

16: MIN(290+((T.SiteID-15599) MOD 1701)) AS MinX,

17: MIN(10+((T.SiteID-15599) DIV 1701)) AS MinY,

18: MAX(290+((T.SiteID-15599) MOD 1701)) AS MaxX,

19: MAX(10+((T.SiteID-15599) DIV 1701)) AS MaxY

12: INTO PartialOverallStorms table

13: FROM OverallStormHourlyStorms table M JOIN HourlyStormSites table T

14: ON M.DateTimeUTC=T.DateTimeUTC AND M.HSID=T.HSID

15: GROUP BY M.YearID,M.OSID

SQL5. Calculate storm statistics: total average and total average per hour, for overall storms

1: SELECT M.OSID,M.YearID,M.Start,M.Stop,M.Duration,M.Intensity,M.NumSites,M.Avg,

2: (SELECT SUM(H.Avg)

3: FROM HourlyStorms table H

4: WHERE H.DateTimeUTC=M.DateTimeUTC AND H.HSID=M.HSID) AS TotalAvg,

5: TotalAvg/M.Duration AS TotalAvgPerHr,

6: M.IntensityPerSite,M.TotalRainfall,M.Coverage,M.MinX,M.MinY,M.MaxX,M.MaxY

7: INTO OverallStorms table

8: FROM PartialOverallStorms table M

In Figure 4-12, we repeat Figure 4-11 but highlight with shading the attributes

that represent storm characteristics derived through the queries SQL1 through SQL5.

Storm tracks and storm speeds are the only two characteristics that were calculated

85

separately by additional scripts. Note that new storm characteristics can also be added

as new attributes to the table by using SQL without significant changes or re-running the

identification programs.

Figure 4-12 SQL-Derived Storm Characteristics

4.4 Storm Output Verification

In this section, we verify the relational storm outputs by performing a sequence of

queries. This verification process complements the unit (module) testing by thoroughly

checking the accuracy of each of the resulting storm records. (In fact, thanks to this

verification step, we were able to solve a mysterious error (not found during the unit

testing), which turns out to be about daylight saving-related functionality in the program.)

We divide the verification process into three subsections, each of which targets a

particular type of the storms. The verifying queries are designed such that if the storm

outputs are correct, an empty set will be returned.

86

4.4.1 Local Storm Verification

For local storm verification, we first verify that no local storm with 6 (h) or more

consecutive zero precipitation exists in the LocalStormHours table. The corresponding

SQL is shown in query SQL6. For each zero-precipitation record (Li-1) of a local storm,

the immediate next hour record (Li) is checked if it is equal to zero. If it is and repeats for

6 times (i.e., i = 2, 3,…, h) in a row, there are 6 consecutive zeroes in the

LocalStormHours table, which means the local storms are incorrectly identified.

SQL6. Checking if 6 (h) consecutive zero precipitation exists in the LocalStormHours table

1: SELECT *

2: FROM LocalStormHours L1

3: WHERE L1.DataValue=0

4: (AND EXISTS (SELECT *

5: FROM LocalStormHours Li

6: WHERE Li.DataValue=0 AND Li.Time-Li-1.Time=1 AND Li.Time>Li-1.Time AND

7: Li.YearID=Li-1.YearID AND Li.LSID=Li-1.LSID))*

Next, we check if there exist overlapped or connected local storms. Overlapped

local storms refer to two different local storms from the same site location sharing the

same time. Connected local storms refer to two consecutive local storms from the same

site location, which are within less than 6 hours period. We check for overlapped local

storms by query SQL7 and for connected local storms by query SQL8.

SQL7. Checking for overlapped local storms

1: SELECT DateTimeUTC,SiteID,COUNT(*)

2: FROM LocalStormHours

3: GROUP BY DateTimeUTC,SiteID

4: HAVING COUNT(*)>1

SQL8. Checking for connected local storms

1: SELECT *

2: FROM LocalStorms L1

3: WHERE EXISTS (SELECT *

4: FROM LocalStorms L2

5: WHERE L2.Start > L1.Stop AND L2.Start-L1.Stop < 6 AND

6: L2.SiteID=L1.SiteID)

87

 Finally, we verify that records of each local storm (in LocalStormHours table) are

consecutive. However, there is no direct function in SQL to check for consecutiveness of

rows in the table. Our assumption is that if the number of hour rows of a local storm

equals to () () AND the number of distinct hours, we conclude

that hour rows of the local storm (in the LocalStormHours table) are consecutive. Query

SQL9 shows how consecutiveness of local storm records are verified. We also prove our

assumption by contradiction as follows:

Claim. () () () ()

 ()

Proof. Suppose that the number of hour rows of a local storm equals to ()

 () AND the number of distinct hours, but the hour rows of the local storm in

the LocalStormHours table are NOT consecutive.

Let: COUNT(hours) = COUNT(DISTINCT hours) (a)

 COUNT(hours) = () () (b)

 COUNT(DISTINCT hours) = () () (c)

 Hour rows of the local storm are NOT consecutive. (d)

 From (d), there are three cases of rows not being consecutive: 1) duplicate hours

only, 2) gap exists only, and 3) both duplicate hours and gap exists. In case 1),

COUNT(hours) will always be greater than COUNT(DISTINCT hours), which contradicts

(a). In addition, COUNT(hours) will always be greater than () ()

 (contradicts (b)). In case 2), COUNT(hours) will always equal to COUNT(DISTINCT

hours) as no duplicate hour exists. () () will always be greater

than these two COUNTs, which contradicts (b) and (c). In the last case 3), since duplicate

hour(s) exists, COUNT(hours) will always be greater than COUNT(DISTINCT hours),

88

which contradicts (a). In addition, () () will always be greater

than COUNT(DISTINCT hours) as gap exists, which contradicts (c). Q.E.D.

SQL9. Checking for consecutiveness of local storm records

1: SELECT *

2: FROM (SELECT YearID,LSID,COUNT(DateTime) AS NumHrs

3: FROM LocalStormHours

4: GROUP BY YearID,LSID) S

5: WHERE S.NumHrs  (SELECT (MAX(L2.DateTime) - MIN(L2.DateTime))+1

6: FROM LocalstormHours L2

7: WHERE S.YearID=L2.YearID AND S.LSID=L2.LSID)

8: OR

9: S.NumHrs  (SELECT COUNT(DISTINCT L3.DateTime)

10: FROM LocalStormHours L3

11: WHERE S.YearID=L3.YearID AND S.LSID=L3.LSID)

4.4.2 Hourly Storm Verification

To verify hourly storm outputs, the following sequence of queries is performed.

By definition, there is no zero precipitation in the hourly storm concept. So, query SQL10

ensures that no zero precipitation exists in the HourlyStormSites table. Next, we verify

that all sites of an hourly storm are connected (connectivity property). In other words,

each site must have at least one neighboring site that is also in the set. We utilized the

fact that HRAP coordinate can be derived from SiteID and can be used to identify

neighboring relationship. Thus, we created a stored function called isConnected(site1,

site2), which will return 1 (TRUE) if two sites are neighbors and 0 (FALSE) if not. Stored

function isConnected is described in SQL11. Query SQL12 shows how neighboring

relationship can be verified by SQL. If the result of SQL12 is empty, the verification is

successful.

Query SQL12, however, does not guarantee the following properties: 1) there are

no two different hourly storms in the same hour sharing the same site(s), 2) there are no

duplicate site(s) in the same hourly storms, and 3) no neighboring relationship exists

between any pair of hourly storms during the same hour (maximality property), because

by definition, there is no connected site between different hourly storms in the same hour;

89

otherwise, they would be combined together in the first place. (Note that the second

property (checking for duplicate site in the same hourly storms) will always hold as it is

enforced by the primary key constraint (DateTime,HSID,SiteID) on the HourlyStormSites

table.) To check if the first property holds, query SQL13 is performed. Query SQL14 is

used to check for the third property.

SQL10. Checking if zero precipitation exists in the HourlyStormSites table

1: SELECT *

2: FROM HourlyStormSites

3: WHERE DataValue=0

SQL11. Stored Function “isConnected”

1: CREATE FUNCTION isConnected(@S1,@S2)

2: RETURN BIT AS

3: BEGIN

4: SET @S1x = 290+((@S1-15599)%1701)

5: SET @S1y = floor(10+((@S1-15599)/1701))

6: SET @S2x = 290+((@S2-15599)%1701)

7: SET @S2y = floor(10+((@S2-15599)/1701))

8: IF ((@S2x=S1x-1) OR (@S2x=S1x) OR (@S2x=S1x+1)) AND

9: ((@S2y=S1y-1) OR (@S2y=S1y) OR (@S2y=S1y+1))

10: SET @Ans=1

11: RETURN @Ans

12: END

SQL12. Checking if all sites of an hourly storm are connected

1: SELECT *
2: FROM HourlyStorms hs1
3: WHERE NOT EXISTS (SELECT *

4: FROM HourlyStormSites hs2

5: WHERE hs1.DateTime=hs2.DateTime AND hs1.HSID=hs2.HSID AND

6: EXISTS (SELECT *

7: FROM HourlyStormSites hs3

8: WHERE hs2.DateTime=hs3.DateTime AND

9: hs2.HSID=hs3.HSID AND

10: hs2.SiteIDhs3.SiteID AND

11: isConnected(hs3.SiteID,hs2.SiteID)=1))

SQL13. Checking for duplicate site(s) between 2 different hourly storms in the same hour

1: SELECT DateTime,SiteID,COUNT(*)
2: FROM HourlyStormSites
3: GROUP BY DateTime,SiteID
4: HAVING COUNT(*)>1

90

SQL14. Checking for connected site(s) between 2 different hourly storms in the same hour

1: SELECT *
2: FROM HourlyStormSites hs1
3: WHERE EXISTS (SELECT *
4: FROM HourlyStormSites hs2
5: WHERE hs1.DateTime=hs2.DateTime AND hs1.HSID < hs2.HSID AND

6: isConnected(hs1.SiteID,hs2.SiteID)=1)

Note that in query SQL14 hs1.HSID < hs2.HSID helps in reducing the number of

checks as the same pair will not be compared twice. If the results of the above queries

(SQL10, 12, 13, and 14) are all empty set, we can ensure that the hourly storm data are

correctly identified.

4.4.3 Overall Storm Verification

In overall storm verification, we first make sure that all hourly storms are

processed and each of them belongs to only one overall storm. These two steps can be

checked by using queries SQL15 and SQL16, respectively.

SQL15. Checking if all hourly storms were processed

1: SELECT COUNT(DISTINCT DateTime,HSID)
2: FROM HourlyStormSites
3: =
4: SELECT COUNT(DISTINCT DateTime,HSID)
5: FROM OverallStormHourlyStorms

SQL16. Checking if an hourly storm belongs to only one overall storm

1: SELECT oshs.DateTime,oshs.HSID,COUNT(*)
2: FROM OverallStormHourlyStorms oshs
3: GROUP BY oshs.DateTime,oshs.HSID
4: HAVING COUNT(*)>1

Next, we verify the grouping-window (g) and spatial-window (s) requirements. In

our case, g = 1 and s = 1. That is, for each hour of an overall storm, there must be at

least one common site shared between two consecutive hourly storms. These two

requirements can be verified by SQL as described in query SQL17 and SQL18. Query

SQL17 lists all sites for each hour of each overall storm and filters out 1-hour overall

storm from consideration. Query SQL18 uses the resulting table from query SQL17 to

91

check for both requirements. In query SQL18, an overall storm is considered valid only if

each of its hours (except the last hour) has the next hour (g=1) with at least one site (s=1)

in common.

Finally, we verify the maximality property of overall storms. Any pair of

consecutive hourly storms that has some site(s) in common should be combined to the

same overall storm. Query SQL19 checks if there exist two consecutive hourly storms

sharing at least one site but end up in different overall storms.

Note that the storm statistics are not required in the verification process since

they are derived from SQL as described in SQL1, 2, 3, 4, and 5.

SQL17. List all sites for each hour of each overall storm and filter out 1-hour overall storms

1: SELECT T1.YearID,T1.OSID,T1.DateTime,T1.SiteID
2: FROM (SELECT M1.YearID,M1.OSID,S1.DateTime,S1.SiteID
3: FROM OverallStormHourlyStorms M1 JOIN HourlyStormSites S1 ON
4: M1.HSID=S1.HSID AND M1.DateTime=S1.DateTime) T1
5: JOIN
6: (SELECT M2.YearID,M2.OSID
7: FROM OverallStorms M2
8: WHERE M2.Duration > 1) T2
9: //WHERE-clause specifies that only overall storms with 2 or more durations are considered.
10: ON T1.YearID=T2.YearID AND T1.OSID=T2.OSID

SQL18. Verify if the spatial-window (s) and grouping-window (g) hold

1: SELECT T1.YearID,T1.OSID //Invalid overall storms are reported.
2: FROM (SELECT DISTINCT YearID,OSID,DateTime
3: FROM <SQL17 resulting table>) T1
4: WHERE NOT EXISTS (SELECT *
5: FROM <SQL17 resulting table> T2
6: WHERE T1.YearID=T2.YearID AND T1.OSID=T2.OSID AND
7: T1.DateTime=T2.DateTime AND
8: EXISTS (SELECT *
9: FROM <SQL17 resulting table> T3
10: WHERE T2.YearID=T3.YearID AND T2.OSID=T3.OSID AND
11: T3.DateTime-T2.DateTime=1 AND //Check for g
12: T2.SiteID=T3.SiteID AND //Check for s
13: T3.DateTime>T2.DateTime))
14: //For each correct overall storm, one row is reported for the last hour time.
15: //Having this GROUP BY- and HAVING- clauses, an empty set is returned if all overall storms are correct.
16: GROUP BY T1.YearID,T1.OSID
17: HAVING COUNT(*)>1

92

SQL19. Verify maximality property of overall storms

1: SELECT *
2: FROM OverallStormHourlyStorms M1 JOIN HourlyStormSites S1
3: ON M1.HSID=S1.HSID AND M1.DateTime=S1.DateTime
4: WHERE EXISTS (SELECT *
5: FROM OverallStormHourlyStorms M2 JOIN HourlyStormSites S2
6: ON M2.HSID=S2.HSID AND M2.DateTime=S2.DateTime
7: WHERE (M1.HSIDM2.HSID OR M1.DateTimeM2.DateTime) AND //Diff. hourly storms
8: S2.DateTime-S1.DateTime=1 AND //Within 1 hour different
9: S1.SiteID=S2.SiteID AND //Share at least 1 site
10: (M1.YearIDM2.YearID OR M1.OSIDM2.OSID) AND //But end up in diff. os
11: S2.DateTime>S1.DateTime=1 //Eliminate redundant comparisons)

4.5 Related Work

There are three main parts of related work: 1) storm characteristics analysis, and

2) map-reduce framework for spatial data computing, and 3) iterative map-reduce.

4.5.1 Storm Characteristics Analysis

Several studies suggest that storm characteristics analysis can be done in

various ways, such as through its statistical properties, depth-duration frequency (DDF

[50]), or focusing on its extreme precipitation values. Asquith [36] studies storm statistical

characteristics including the mean (average) of storm inter-event time, storm depth, and

storm duration by analyzing hourly precipitation data retrieved from National Weather

Service (NWS) [42]. The data contains 155 million values covering 774 sites in Eastern

New Mexico, Texas, and Oklahoma. The storm characteristics results are used to help in

designing and creating a new runoff control structure. The outputs are in two formats:

maps and tables. [36]’s raw data is stored in file and folder format which raises the

difficulty in combining all data across an enormous number of folders and processing

them together. Consequently, a huge manual effort is needed to do the analysis. In

addition, its analysis has been location-specific (site-specific and regional-specific). So,

the storm-specific information is lacking from the work.

In [37][38], Asquith and Roussel study storm characteristics through its Depth-

Duration Frequency (DDF [50]) property. [37] presents a procedure to develop a DDF at

93

any location in Texas for the following 14 storm durations: 15, 30, and 60 minutes; 1, 2, 3,

6, 12, and 24 hours; and 1, 2, 3, 5, and 7 days with recurrence intervals ranging from 2 to

500 years. DDF is an estimated depth of the storm given its duration and frequency

(recurrence time). It is very important when creating an efficient control structure such as

storm drains or parking lots. It is also used to design efficient river flow and flood

prediction models. As a result, it has to be very accurate. To calculate DDF for a storm

duration and frequency at any location, we need three storm depths (in inches) retrieved

from three maps (location, scale, and shape parameter maps) for that storm duration and

a storm intensity (in inches per hour) retrieved from precipitation intensity-duration curve

of that storm frequency. Then, plug all values into the equation given in the paper [37]

and the result is an estimated storm depth for that particular storm.

[38] is an extension of [37]. However, it does not require users to do the

calculation themselves. It provides pre-computed DDF maps, which are ready to use.

The set of storm durations and storm frequencies, however, are different from [37]. The

storm durations only include 15, and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5,

and 7 days and the storm frequencies only include 2, 5, 10, 25, 50, 100, 250, and 500

years. One of the key tasks of [37][38] is to create location, scale, and shape parameter

maps used in the approach. To create such maps, this work uses storm data from

National Climatic Data Center (NCDC) [46]. However, only location-specific storm data

(by county) is provided by NCDC. So, generating these required maps will be limited to

location-specific storm data. In addition, even though NCDC stores storm data in a

database, CUAHSI ODM was not mentioned as its database schema. As a result,

incorporating our storm data (storm-specific) into these two works may enhance their

analytic capabilities.

94

Lanning-Rush [39] studies storm characteristics by focusing on its extreme

precipitation (EP) values. The extreme precipitation depth refers to one that exceeds 100-

year or greater storm depth. Unlike [36] that considers all storms, only extreme storms

were taken into account in this work. Unlike [37][38] that the inputs are storm duration,

frequency, and location, it only takes storm duration and area as inputs. The goal of this

work is to create the extreme precipitation curve which can be used to estimate extreme

precipitation depth for a particular storm duration and area. The EP curves are developed

from 24 extreme storms out of 213 notable storms. They select storm durations to include

1, 2, 3, 4, 5, and 6 days and the areas include High Plains, Low Rolling Plains, North

Central, Edwards Plateau, South Central, South Texas, East Texas, Upper Coast, and

Lower Valley in Texas. Trans-Pecos area, however, was excluded due to the lack of its

storm data.

4.5.2 MapReduce Framework for Spatial Data Computing

Since map-reduce has become the de-facto framework for the data-intensive

applications, it is now being used for big data related to geography, sciences, humanities,

statistics, etc. There has been previous work for spatial data analysis in map-reduce. Lu

[88] uses map-reduce framework for analyzing and visualizing big spatial-temporal data.

Complex climate datasets are used in their case study. Cary [63] shows the construction

of R-Tree index from spatial data in map-reduce. It uses the mappers to partition the data

and then every partition is sent to a different reducer which in turn build the R-Tree index

on the input. Google used the map-reduce framework to study road alignments by

combining satellite and vector data [64]. The work focused more on the complexity of the

problem than the implementation in map-reduce. Hadoop was also used to build octrees

for later use in earthquake simulations at a large scale [65]. Octrees were built in the

bottom up fashion in their approach. Mappers were used to first generate the leaf nodes

95

and then reductions were performed to merge two homogeneous leaf nodes into a sub

tree. This was done in iterations to build the final sub tree.

4.5.3 Iterative MapReduce

Most data analysis and mining algorithms are iterative in nature and

hence require repetitive map-reduce jobs. An example of iterative map-reduce

applications is breadth-first search (BFS) [90]. Kondekar [89] developed a parallel

breadth-first heuristic search (PBFHS) algorithm for solving N-Puzzle problem based on

iterative map-reduce. Lin [91] mentions that map-reduce framework can be used to

efficiently solve complex search problems (such as PageRank), which are iterative and

require high computational capabilites. An efficient implementation of iterative graph

search algorithms is developed on the map-reduce framework [91]. Twister [92] and

HaLoop [93] are developed on top of hadoop for supporting iterative computations in the

map-reduce framework. Twister provides long-running map and reduce tasks with a

cacheable distributed memory, which is used to prevent retrieving the same data multiple

times from the disks. HaLoop caches the loop-invariant data structures and hence the

loading and shuffling cost is reduced in the subsequent iterations. There has also been

recent work in the development of incremental processing systems such as Incoop [94]

and Google’s Percolator [95]. Incoop is a hadoop-based incremental processing system

whereas Google’s Percolator is an incremental processing system based on BigTable

[78].

96

Chapter 5

Analysis and Mining of Conceptual Data

After the conversion algorithms are executed on the raw rainfall data in the

previous chapter, we now have the conceptual storm data stored in a relational database.

The raw data contains 16 years of historical rainfall data from 1997 to 2012. The size of

the conceptual relational storm outputs are significantly reduced (< 1%) when compared

to the size of the raw rainfall data as the superfluous parts are removed and the raw

rainfall data is summarized/converted into meaningful rainstorm concepts. The analysis

and mining tasks can then be easily conducted on the conceptual storm data either

directly using SQL or by extracting the conceptual storm data from the relational

database. In this chapter, we show some examples of how analysis and mining tasks can

be performed on the conceptual storm data. We divide the analysis and mining tasks into

two groups: 1) traditional hydrology analysis and 2) more general storm analysis and

mining. Traditional hydrology analysis is discussed in Section 5.1. More flexible/robust

storm analysis and mining is discussed in Section 5.2.

5.1 Traditional Hydrology Analysis

Most traditional rainfall analysis is based on location, meaning each site or region

(set of sites) is considered separately when analyzing a storm. The goal is to investigate

characteristics of storms at a particular location. These analyzed characteristics will then

be used in creating an efficient/cost-effective hydraulic control structure (e.g., storm drain

(to route localized runoff) and parking lot design for effective draining), and designing

river flow or flooding prediction models [80]. The traditional rainfall analysis can be

divided into three categories [36][37][38][39][80][99]: 1) storm statistical properties, 2)

relationships between/among characteristics of storms, and 3) focusing on extreme

precipitation values of storms.

97

5.1.1 Storm Statistical Analysis

In storm statistical properties analysis, each characteristic of storms is analyzed

separately for its statistical properties. The storm characteristics include inter-event time,

total rainfall, and duration. There are six main statistics studied: mean (average) inter-

event time between storms, mean total rainfall at a particular location, number of storms

during the study period, total duration of all local storms, distribution of total rainfall values

over the various storms, and distribution of storm durations [36]. Each statistical property

is analyzed for a particular inter-event time. The considered set of inter-event times

consists of 6, 8, 12, 18, 24, 48, and 72 hours. Figure 5-1 shows some examples of storm

statistical properties analysis.

a) Selected Storm Characteristics for Single Site by Different Inter-Event Times

b) Selected Storm Characteristics Defined by 6-Hour Inter-Event Time

Figure 5-1 Examples of Storm Statistical Properties Analysis [36]

Since storm total rainfall and duration are pre-calculated and stored in the

statistics table (i.e., LocalStorms table), their statistical properties can easily be

calculated using SQL. The total number of storms can be calculated by counting number

98

of rows in the LocalStorms table as each row in the table represents one local storm.

Query SQL20 describes how averaged total rainfall, number of storms, and total duration

can be done. Query SQL21 shows how distribution of storm characteristic can be

determined. Inter-event time characteristic, however, was not pre-calculated but can

easily be calculated using SQL as shown in query SQL22. Because ids of local storms

are numbered sequentially (i.e., i, i+1, i+2, ..., where i is the first id of local storm at a

given site location), the inter-event time between two consecutive local storms can be

determined by L2.Start – L1.Stop, where L1 is the current local storm and L2 is the next

local storm at the same site.

SQL20. Determine mean total rainfall, number of storms, total duration

1: SELECT (AVG(TotalRainfall)|COUNT(*)|SUM(Duration))

2: FROM LocalStorms

3: [WHERE (SiteID = <site>|SiteID IN <region>)]

SQL21. Determine distribution of storm characteristic (e.g., total rainfall, duration)

1: SELECT (TotalRainfall|Duration), COUNT(*)

2: FROM LocalStorms

3: [WHERE (SiteID = <site>|SiteID IN <region>)]

4: GROUP BY (TotalRainfall|Duration)

5: ORDER BY (TotalRainfall|Duration) (ASC|DESC)

SQL22. Determine mean storm inter-event time

1: SELECT AVG(L2.Start–L1.Stop)

2: FROM LocalStorms L1 JOIN LocalStorms L2 ON L1.YearID = L2.YearID AND L1.LSID = L2.LSID-1

3: [WHERE (L1.SiteID = <site>|L1.SiteID IN <region>)]

In our analysis, we use h = 6 hours as the inter-event time. To determine the

statistical properties for other inter-event times (h = 8, 12, 16, …), we just need to change

the inter-event-count parameter in the local storm identification program and re-run it.

5.1.2 Correlation Analysis among Strom Characteristics

In this type of analysis, each pair or group of storm characteristics are analyzed

together. There are five categories [80][37][38][96]: depth-duration, intensity-duration,

depth-duration-frequency, intensity-duration-frequency, and depth-area-duration.

99

5.1.2.1 Depth-Duration

In depth-duration analysis, two storm characteristics are analyzed together:

cumulative depth and duration. Cumulative depth monotonically increases as duration

increases, because additional rainfall is added at each hour. The goal is to generate a

cumulative depth diagram (a graph plot between cumulative depths (Y) and its

associated time point in storm duration (X)) for each local storm for a given location. The

location here can be a single site or a region (set of sites). Figure 5-2 is an example of

cumulative depth diagram of a local storm at site id, 288096. Since cumulative depth is

not pre-calculated in the local storm statistics table, we use a nested query in the

SELECT-clause to calculate it. For a single site location, the cumulative depths can be

calculated by using the query SQL23. Then, to create a cumulative diagram for a local

storm, we just need to save the query SQL23 results in a separate table and query from it

by specifying the local storm id (YearID, LSID).

SQL23. Calculate cumulative depths of local storms for a single site

1: SELECT L1.YearID,L1.LSID,L1.Time,

2: (SELECT SUM(L2.DataValue)

3: FROM LocalStormHours L2

4: WHERE L2.YearID=L1.YearID AND L2.LSID=L1.LSID AND

5: L2.Time  L1.Time) AS CDepth //cumulative depth

6: FROM LocalStormHours L1

7: WHERE L1.SiteID = <site>

8: ORDER BY L1.YearID,L1.LSID,L1.Time ASC

To create a cumulative depth diagram for a region (e.g., Tarrant county, Texas),

two methods are used: arithmetic mean method and Thiessen polygons method [96]. In

our analysis, we use arithmetic mean method. Local storms occurring at the same time

(same start and end times) within a region are considered together when creating a

cumulative depth diagram. In the arithmetic mean method, a cumulative depth diagram is

created based on the averaged cumulative depths of the local storms.

100

Figure 5-2 Cumulative Depth Diagram of Local Storm at Site Location 288096

Queries SQL24, 25, and 26 describe how a cumulative depth diagram for a given region

can be calculated by using SQL. First, we extract a list of different time periods that local

storms (within the region) occur at the same time (see query SQL24). (We can also

specify duration condition (such as Duration = 10) as depth-duration analysis normally

considers each duration at a time.) Second, we compute all related cumulative depths for

every site in the region in query SQL25. Finally, we calculate a representative cumulative

depth diagram for the time period for the region in query SQL26.

SQL24. Extract all time periods of local storms for a region

1: SELECT DISTINCT Start,Stop

2: FROM LocalStorms

3: WHERE SiteID IN <region> [AND Duration = <d durations>]

SQL25. Compute all cumulative depths for all sites in the region

1: SELECT L1.YearID,L1.SiteID,L1.LSID,L1.Time,

2: (SELECT SUM(L2.DataValue) FROM LocalStormHours L2

3: WHERE L2.YearID=L1.YearID AND L2.LSID=L1.LSID AND L2.Time  L1.Time) AS CDepth

4: FROM LocalStormHours L1

5: WHERE L1.SiteID IN <region>

6: ORDER BY L1.YearID,L1.SiteID,L1.LSID,L1.Time ASC

SQL26. Calculate avg. cumulative depths for the specified time period from SQL24 using table from SQL25

1: SELECT A.Time,A.AVG(CDepth) AS ACDepth //averaged cumulative depth

2: FROM <resulting table from SQL25> A

3: WHERE EXISTS (SELECT * FROM LocalStorms L

4: WHERE A.YearID=L.YearID AND A.LSID=L.LSID AND

5: L.Start=<Start from SQL24> AND L.Stop=<Stop from SQL24>)

6: GROUP BY A.Time

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Cumulative Depths (inches)

Duration
(hours)

101

In hydrology, cumulative depth and duration can be approximated by:

 (4)

where P is precipitation (mm), t is duration, a is coefficient, and n is exponent where

0 < n < 1 [80]. This equation is limited to the location, where it is derived from. To

determine a and n, all cumulative depth diagrams for a given location (i.e., site or region)

are taken into account.

5.1.2.2 Intensity-Duration

In this analysis, storm intensity and duration are analyzed together. The storm

intensity can increase or decrease during the storm duration, usually decreases at the

end of the duration. To do analysis, a hyetograph is created for each local storm for a

given location [96]. Hyetograph is a graph plot between storm intensity (Y) and duration

(X) [96]. Figure 5-3 is an example of hyetograph of a local storm at site location 288096.

Since our raw data is reported hourly and independently (i.e., each storm intensity for an

hour is reported individually), storm intensity for each hour in storm duration can easily be

extracted. Query SQL27 shows how hyetograph can be created for a single site.

Figure 5-3 Hyetograph of Local Storm at Site Location 288096

0

0.05

0.1

0.15

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Intensity (inches/hour)

Duration
(hours)

102

SQL27. Extract all storm intensities of local storms for a single site

1: SELECT YearID,LSID,Time,DataValue

2: FROM LocalStormHours

3: WHERE SiteID = <site>

4: ORDER BY YearID,LSID,Time ASC

Similar to depth-duration analysis, to create a hyetograph for a region, local

storms occurring at the same time within the region are considered together. That is, a

hyetograph is created based on the averaged intensity of these local storms across the

sites. Queries SQL24 and 28 describe how intensities of local storms for a given region

can be calculated.

SQL28. Calculate averaged intensities for a region given the specified time period from SQL24

1: SELECT A.Time,A.AVG(DataValue) AS AIntensity //averaged intensity

2: FROM LocalStormHours A

3: WHERE A.SiteID IN <region> AND

4: EXISTS (SELECT *

5: FROM LocalStorms L

6: WHERE A.YearID=L.YearID AND A.LSID=L.LSID AND

7: L.Start = <Start from SQL24> AND L.Stop = <Stop from SQL24>)

8: GROUP BY A.Time

Since storm intensity and cumulative depth are related, the equation (4) can be

converted to relationship between storm intensity and duration by dividing both sides of

the equation by time t as follows [80]:

 (5)

where io is storm intensity. As a result, to determine a and n, we can either use

hyetographs or cumulative depth diagrams.

5.1.2.3 Depth-Duration-Frequency (DDF)

In this analysis, three storm characteristics are analyzed: cumulative depth,

duration, and frequency. As mentioned, storm duration are pre-calculated and stored in

the LocalStorms table. However, storm cumulative depth and frequency are not. Storm

103

cumulative depth can easily be calculated as described in query SQL23. Storm frequency

is a count of storms with the same total rainfall and duration for a given site. This

characteristic can also be calculated by using SQL as shown in query SQL29.

SQL29. Storm frequencies for a given site, ordered by duration and total rainfall

1: SELECT Duration,TotalRainfall,COUNT(*)

2: FROM LocalStorms

3: WHERE SiteID = <site>

4: GROUP BY Duration,TotalRainfall

5: ORDER BY Duration,TotalRainfall ASC

The goal of this analysis is to create DDF curves for a given location. Figure 5-4

shows an example of DDF curves for a single site. To create DDF curves for a site, one

of the main steps is to calculate annual maximum total rainfall for each year and storm

duration. For example, a set of selected storm durations = {2-, 4-, 8-, 12-, 24-, 36-, 72-

hour durations} and we have 16 years of storm data. So, we need to calculate 16 x 7 =

112 annual maximum total rainfall values. This calculation can easily be done by a single

query as described in query SQL30. Then, by using the results from both queries SQL29

and 30 and hydrology methods, a final set of DDF curves is determined and plotted

[80][96].

SQL30. Find annual maximum total rainfall values for a site

1: SELECT YearID,Duration,MAX(TotalRainfall)

2: FROM LocalStorms

3: WHERE SiteID = <site>

4: GROUP BY YearID,Duration

5: ORDER BY YearID,Duration ASC

To create DDF curves for a region, DDF curves for each site in the region are

created. Then, by applying hydrology analysis (e.g., frequency analysis, Weibull’s plotting

formula [80]), the final DDF curves for a region is identified.

104

Figure 5-4 Example of DDF Curves for Single Site [80]

5.1.2.4 Intensity-Duration-Frequency (IDF)

In this analysis, three characteristics of storms are analyzed: intensity, duration,

and frequency. DDF and IDF are related. To create an IDF curve, the steps are similar to

the ones of DDF except that annual maximum intensity (as opposed to annual maximum

total rainfall value) for each combination of a year and a storm duration is retrieved. The

corresponding SQL is shown in query SQL31.

SQL31. Find annual maximum intensities for a site

1: SELECT YearID,Duration,MAX(Intensity)

2: FROM LocalStorms

3: WHERE SiteID = <site>

4: GROUP BY YearID,Duration

5: ORDER BY YearID,Duration ASC

5.1.2.5 Depth-Area-Duration (DAD)

This analysis only applies to local storms that cover multiple sites (region). In

particular, local storms that cover a large area are analyzed. The DAD analysis helps

determine the distribution rate of the large storm. Three storm characteristics are

analyzed: cumulative depth, area, and duration. An area of large local storm refers to a

set of sites having non-zero precipitations in the same hours. The goal is to create DAD

105

curves for a large local storm. Figure 5-5 shows an example of DAD curves of a storm.

There are two methods to create DAD curves: mass-curve and incremental isohyetal

[80]. We chose mass-curve method to create DAD curves. Two of the main steps in

creating DAD curves are to: 1) compute cumulative rainfall values (depths) for each site

covered by a storm and 2) calculate summation and mean rainfall values for each time

point across sites of the storm. Figure 5-6 shows some examples of the results from

these steps. The remaining steps are to use hydrology methods to determine the final

DAD curves [80]. The two main steps can be done by using queries SQL32 and 33,

respectively.

Figure 5-5 Example of DAD Curves of Large Storm [80]

5.1.3 Analysis of Extreme Rainfall Events

In this type of analysis, only extreme storms are considered [39]. An extreme

storm refers to a large local storm (cover many sites) with intensity more than 150 mm/hr

[80]. The enveloped curve for extreme storm can be mathematically described as shown

in equation (6).

106

SQL32. Compute mass-curve table for a large n-hour local storm

1: SELECT L1.YearID,L1.LSID,L1.SiteID,L1.Time,

2: (SELECT SUM(L2.DataValue)

3: FROM LocalStormHours L2

4: WHERE L2.YearID=L1.YearID AND L2.SiteID=L1.SiteID AND L2.LSID=L1.LSID

5: AND L2.Time  L1.Time) AS CDepth

6: FROM LocalStormHours L1

7: WHERE EXISTS (SELECT *

8: FROM LocalStorms L3

9: WHERE L3.YearID=L1.YearID AND L3.SiteID=L1.SiteID AND L3.LSID=L1.LSID

10: AND L3.YearID=<year> AND L3.SiteID IN <region> AND L3.Duration=<n>

11: AND L3.Start=<time1> AND L3.Stop=<time2>)

12: ORDER BY L1.YearID,L1.LSID,L1.SiteID,L1.Time ASC

SQL33. Compute summation and mean rainfall values for each time point of the storm

1: SELECT L1.Time,SUM(L1.DataValue),AVG(L1.DataValue)

2: FROM LocalStormHours L1

3: WHERE EXISTS (SELECT *

4: FROM LocalStorms L2

5: WHERE L2.YearID=L1.YearID AND L2.SiteID=L1.SiteID AND L2.LSID=L1.LSID

6: AND L2.YearID=<year> AND L2.SiteID IN <region> AND L2.Duration=<n>

7: AND L2.Start=<time1> AND L2.Stop=<time2>)

8: GROUP BY L1.Time ASC

 (6)

The equation is derived from the world’s greatest observed rainfall events [97]. All

analysis mentioned previously can also be applied to extreme rainfall events. Query

SQL34 show an example of how extreme rainfall events can be analyzed.

SQL34. Counting the number of extreme rainfall events occurred at site id 355478 in the past 10 years

1: SELECT COUNT(*)

2: FROM LocalStorms

3: WHERE SiteID=355478 AND Start BETWEEN 2004 AND 2014 AND Intensity > 150 mm/hr

5.2 More General Storm Analysis and Mining

In this section, we show how more flexible and robust analysis and mining can be

done on our storm data. We divide this section into two subsections: storm analysis and

storm mining.

107

a) Mass Curve Computations of Large Storm in Western Ontario, Canada in 1964 [80]

Observation
time (hour

ending)

Cumulative depths (inches) for each site location (SiteID) 7-Sites MPE

15879 17580 17581 17583 17584 19291 20993 Total Average

6/29/11 17:00 0.01 0.01 0.06 0.02 0.01 0.01 0.01 0.13 0.02

6/29/11 18:00 0.01 0.02 0.07 0.03 0.04 0.02 0.01 0.07 0.01

6/29/11 19:00 0.01 0.02 0.07 0.03 0.04 0.06 0.02 0.05 0.01

6/29/11 20:00 0.38 0.5 0.62 0.29 0.12 0.07 0.02 1.75 0.25

6/29/11 21:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 1.25 0.18

6/29/11 22:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 0.00 0.00

6/29/11 23:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 0.00 0.00

6/30/11 00:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 0.00 0.00

6/30/11 01:00 0.94 0.95 0.86 0.29 0.12 0.17 0.14 0.22 0.03

6/30/11 02:00 0.94 0.95 0.86 0.4 0.3 0.56 0.44 0.98 0.14

6/30/11 03:00 0.99 0.96 0.9 0.46 0.35 0.56 0.44 0.21 0.03

6/30/11 04:00 0.99 0.96 0.9 0.46 0.35 0.56 0.44 0.00 0.00

b) Mass-Curve Computations of Local Large Storm from Our Storm Data

Figure 5-6 Some Examples of Mass-Curve Computations

108

5.2.1 Storm Analysis

More general storm analysis can be done in both location-specific (through

LocalStorms and LocalStormHours tables) and storm-specific (i.e., the remaining tables).

All types of storms (local, hourly, and overall storms) can be analyzed either directly by

utilizing calculated storm characteristics and SQL features (e.g., built-in statistical

functions, complex query, stored procedure, UDF, etc.) or indirectly by extracting the

conceptual storm data from a relational database to be used by other methods.

For simple analysis, a generic SQL pattern is shown in SQL35. Examples of

analysis that use this SQL pattern include calculating maximum total rainfall for each

storm duration for a particular site (location-based) (see query SQL36) and determining

the distribution of storm durations for the entire 16 years of overall storm data (see query

SQL37).

SQL35. Simple storm analysis pattern

1: SELECT (<grouping attribute>,)* (<statistical function>(<storm characteristic>))+

2: FROM (LocalStorms|HourlyStorms|OverallStorms)

3: [WHERE <filtering criteria>]

4: [GROUP BY <grouping criteria>]

SQL36. Calculating maximum total rainfall for each storm duration for a single site

1: SELECT Duration,MAX(TotalRainfall)

2: FROM LocalStorms

3: WHERE SiteID = <site>

4: GROUP BY Duration

SQL37. Calculate distribution of storm durations for the entire 16 years of overall storm data

1: SELECT Duration,COUNT(*)

2: FROM LocalStorms

3: GROUP BY Duration

More complex storm analysis can also be done such as calculating an averaged

intensity for each site covered by the longest heavy rainstorm [101] (location-specific)

and counting number of overall storms passing North Central region of Texas (storm-

specific). These two examples are described in queries SQL 38 and 39, respectively.

109

SQL38. Calculating an averaged intensity for each site covered by the longest heavy rainstorm

1: //Assuming that all sites covered by the rainstorm have the same start time and end time

2: SELECT L1.SiteID,AVG(L1.DataValue)

3: FROM LocalStormHours L1

4: WHERE EXISTS (SELECT *

5: FROM LocalStorms L2

6: WHERE L1.YearID=L2.YearID AND L1.LSID=L2.LSID AND L2.Intensity0.3 AND

7: L2.Duration = (SELECT MAX(Duration)

8: FROM LocalStorms))

9: GROUP BY L1.SiteID

SQL39. Counting number of overall storms passing North Central region of Texas last year

1: SELECT COUNT(DISTINCT O.OSID)

2: FROM OverallStormHourlyStorms O

3: WHERE O.YearID=2013 AND

4: EXISTS (SELECT *

5: FROM HourlyStormSites H

6: WHERE O.Time=H.Time AND O.HSID=H.HSID AND

7: H.SiteID IN <list of sites in North Central region>)

We can also extract the conceptual storm data from a relational database and

analyze it by using other methods. As an example, we extracted the relational storm data

and analyze it through visualization [62][100]. We developed a prototype for visualization,

called StormVisualization [62]. The StormVisualization tool is implemented in C#,

Javascript, HTML5, Google API [48] and ASP.NET. The tool illustrates how an overall

storm are formed and moved over time. Algorithm 8 highlights how storm visualization

works. Figure 5-7 shows the very first screenshot of the Storm Visualization, which

projects the overall storm (ID:863) in year 2011 onto the map. After triggering by a user,

the animation of overall storm (863) is shown in Figure 5-8. The projection of each hourly

storm of the overall storm (863) is shown hour by hour starting at 4/26/2011, 20:00

(Figure 5-8 (a)). The number in parentheses indicates the number of hourly storms

involved in that hour.

110

Algorithm8. StormVisualization

- Project an overall storm on the map

1: //Extract all lat/long coordinates of the specified overall storm from the relational storm data

2: y = SELECT (290+((SiteID-15599)MOD 1701)) AS HRAPX, (10+((SiteID-15599)DIV 1701)) AS HRAPY

3: FROM (SELECT DISTINCT(S.SiteID)

4: FROM HourlyStormSites S

5: WHERE EXISTS (SELECT *

6: FROM OverallStormHourlyStorms O

7: WHERE O.DateTimeUTC=S.DateTimeUTC AND O.HSID=S.HSID AND

8: O.YearID=<year> AND O.OSID = <osid>)

9: Project_on_the_map(ToLatLong(y))

10: //Project overall storm on the map by hour

11: d = SELECT O.Start, O.Stop

12: FROM OverallStorms O

13: WHERE O.YearID = <year> AND O.OSID = <osid>

14: for i = d.Start to d.Stop do

15: p = SELECT (290+((SiteID-15599)MOD 1701)) AS HRAPX, (10+((SiteID-15599)DIV 1701)) AS HRAPY

16: FROM //Extract all sites of an overall storm for a particular hour

17: (SELECT DISTINCT(S.SiteID)

18: FROM HourlyStormSites S

19: WHERE S.HSID IN

20: (SELECT DISTINCT(M.HSID)

21: FROM OverallStormHourlyStorms M

22: WHERE M.DateTimeUTC=S.DateTimeUTC AND M.HSID=S.HSID AND

23: M.YearID=<year> AND M.OSID = <osid>)

24: AND S.DateTimeUTC = i)

25: Project_on_the_map(ToLatLong(p))

26: end for

Figure 5-7 Screenshot of Overall Storm ID 863

111

5.2.2 Storm Mining

More efficient storm mining can also be done on our storm data in both location-

based and storm-based approaches. In the location-based approach, temporal data

mining techniques can be applied as local storm data can be considered as time series

data for a given location (single site or region). There are seven major data mining tasks

for temporal data [104]: 1) indexing, 2) clustering, 3) classification, 4) prediction, 5)

summarization, 6) anomaly detection, and 7) segmentation. On the other hand, for the

storm-specific approach, since our overall storm outputs are spatio-temporal data, we

can apply spatio-temporal data mining to it. Three main areas of spatio-temporal data

mining include [82]: 1) spatio-temporal forecasting and prediction, 2) spatio-temporal

clustering, and 3) spatio-temporal visualization. Similar to storm analysis, the storm

mining tasks can be done directly on the relational database by using database mining

techniques [72], or indirectly by extracting the overall storm data to be used by other

methods. We are currently working on some of these spatio-temporal data mining

approaches, but the results are part of our future work.

112

a) 4/26/2011, 20:00 (1)

 b) 4/26/2011, 22:00 (3) c) 4/26/2011, 23:00 (3) d) 4/27/2011, 01:00 (1)

e) 4/27/2011, 02:00 (1) f) 4/27/2011, 03:00 (1) g) 4/27/2011, 04:00 (1)

Figure 5-8 Visualization of Overall Storm (ID: 863) by its Hourly Storms

113

Chapter 6

Framework for Conceptual Analysis and Mining of Big Data

Using Ontologies and EER

In the previous chapters (Chapter 3, 4, and 5), the techniques and methodology

that we use are for big raw rainfall data. The goal is to allow big raw rainfall data to be

easily analyzed and mined through a relational database. These techniques and

methodology can also be adapted to different types of hydrological data such as soil

moisture, water level, etc., as well as other types of big data in other application domains.

Therefore, in this chapter, we propose a more generalized framework for analyzing and

mining big data in any given domain. The framework allows big data in a particular

domain to be conceptually analyzed and mined by using ontologies and EER. We

discuss the background and motivation in Section 6.1. The framework description is

discussed in Section 6.2

6.1 Background and Motivation

Enormous amounts of data are rapidly generated every day in almost every

application domain. In any given domain, big data contains potential hidden meaningful

concepts as well as superfluous data that are not of interest to the domain experts. As a

result, dealing with big data solely by applying a set of distributed computing technologies

such as MapReduce [66], BSP (Bulk Synchronous Parallel) [70], and Spark [71], and/or

distributed storage systems namely NoSQL databases [73] may not be an efficient way to

discover the knowledge hidden in the data. To enable analysis, the big data need to be

pre-processed so that the superfluous parts are removed (also known as a “cleaning” of

the raw data) and the meaningful domain-specific knowledge is extracted.

Ontology, a specification of conceptualization [105], has practically been used in

knowledge modeling as it allows domain-specific knowledge to be formalized and

114

reasoned about in a logical way. ER and EER models and diagrams are excellent tools to

communicate concepts, and can also be easily converted to relational tables. We use

ontologies and EER to represent the conceptual knowledge in the data. The formalized

concepts are developed based on consulting with domain experts in the area of

knowledge covered by the raw data

The advantages of our framework include the capture of domain-specific

conceptual knowledge (which is significantly smaller in size, compared to the raw data

but substantially more meaningful to the domain experts), better system performance by

applying distributed computing technologies to clean and convert the raw data, and more

robust and user-friendly analysis by storing the extracted conceptual knowledge in a

relational database.

6.2 Framework Description

An overview of our framework is illustrated in Figure 6-1. There are four main

processes:

1. developing and formalizing domain-specific concepts into an ontology with the

assistance of domain experts

2. translating the domain-specific ontology to EER and mapping the EER concepts

to relational tables

3. designing and implementing mapping algorithms in a distributed framework to

convert the big raw data to the conceptual data

4. performing analysis and mining on the conceptual relational data

We discuss each of these in the following subsections.

115

6.2.1 Developing and Formalizing Domain-Specific Concepts into an Ontology with the

Assistance of Domain Experts

The first step is to study a particular domain, where the big raw data comes from,

come up with the domain-specific concepts, and formalize them into domain-specific

ontology concepts. This step requires literature review in the application domain and

working with domain experts to determine the concepts that are important to them, and

how their research is currently conducted using traditional data processing

methods/technologies. The pros and cons of the methods/technologies they use are

determined, and potential improvements that utilize the available big data analysis tools

such as MapReduce [66] and Hadoop® [67], are identified.

Big Raw Data

Ontology

Concepts
EER

Conceptual Data
(3) Mapping Algorithms in

Distributed Computing and/or

Storage Frameworks

Relational

Tables

input

Users

(2) mapped to

used in

output

(4)

Domain

Experts

Figure 6-1 Framework for Analyzing and Mining Big Data using Ontologies and EER

The developed ontology must meet the domain experts’ requirements, and capture

essential concepts that they are looking for as well as other potential concepts, which

may not have been previously identified because of limitations of the traditional analysis

methods, but could be of benefit to them. These limitations may be due to structure of the

big raw data and the lack of knowledge of domain users in distributed technologies. The

developed ontology can also help domain users to understand their data better. The

hidden insight and conceptual relationships can lead them to the knowledge that was not

116

previously identified. Consequently, further complex analysis and mining can also be

done. In our rainfall analysis, this process is equivalent to Chapter 3, where we

formalized rainstorm concepts to capture “overall” characteristics of the storms.

6.2.2 Translating the Domain-Specific Ontology to EER and Mapping the EER Concepts

to Relational Tables

In the context of big data [69], relational database and RDBMS are usually not a

preferred option and are often labeled as incompatible with the needs of big data analysis

and mining. On the other hand, the concepts of NoSQL databases spread rapidly and

caught a lot of attention as tools for big data storage and analysis/mining in the past few

years. (As of now, it was estimated that there are at least 150 different NoSQL database

vendors [73].) The advantages of NoSQL databases include high availability, fast key-

value access, horizontal scalability, fault-tolerance, and dynamic/semi-structured data

type support. However, the disadvantages of NoSQL databases includes weak

consistency, not fully supporting relational features (e.g., join, group by, order by

operations) across partitions, denormalized data model, and lack of a powerful

declarative query language (i.e., SQL) [73][74][75][78] that can be used for data analysis.

Our framework loads the final conceptual output data into a relational database so that all

RDBMS benefits can be used. To store the final conceptual outputs in a relational

database, we translate the formalized domain concepts from the previous step to an EER

model, which will later be mapped to relational tables. The mapping process is done by

using the methodology/steps described in [41]. In the case of our rainfall data, this

process is equivalent to what we did in Chapter 4, Section 4.3, where we designed an

EER model based on the storm formalizations and characteristics of the raw rainfall data,

and mapped it to a relational database schema for storing the conceptual storm data.

117

6.2.3 Designing and Implementing Mapping Algorithms to Convert the Raw Data to the

Conceptual Data

To design mapping algorithms, four factors are taken into account: structure and

format of the big raw data, choices of distributed computing/storage framework, domain-

specific ontology, and EER model corresponding to the ontology. Understanding the

structure and format of the big raw data helps in optimizing the computation, I/O, and

buffer usage in the raw data-to-conceptual data mapping (or conversion) algorithms.

Three aspects of big raw data are considered: data representation/interpretation,

transmission of data, and data integrity. In data representation and interpretation, we

examine how the raw data is represented and interpreted, how many columns/attributes

there are in the raw files, what format they are based on, the particular order of the data

items, and if any prior knowledge is required to interpret them. In the data transmission,

we determine how data is transmitted and delivered to the storage system, how often

data is reported, and if there is any regular downtime period, where the data might not

arrive on time or get lost. In the integrity aspect, we check if the raw data can be updated

after delivery and if so, how it is done and the possible effects on the previous values. We

also determine when the data will be finalized after the initial observation time, and how

data integrity is maintained.

Next, we make the decision as to which distributed technology should be used.

The selected technology should take full advantage of the characteristics of the raw data

and other available resources (e.g., hardware). The ontology is used to ensure the

formalized domain concepts are correctly identified. Finally, the corresponding EER

model is used to convert the final conceptual outputs into relational database-compatible

format. Since the final conceptual data is now stored in a relational database, the

verification process can also be done through SQL.

118

 The developed mapping algorithms should be flexible enough in case minor

changes are made to the raw data formats and/or other requirements (e.g., changing of

data interval from hourly to 15-minute interval), so that significant changes to the

algorithms will not be required. (In practice, in such cases, typically, the source provider

will send a notification in advance and usually include converter tools. So, it is

recommended to subscribe to the source provider newsletters so that when that

happens, we will be notified.) However, if the changes are significant, which require

dramatic updates, we would have a tradeoff between: 1) re-design the programs based

on the new format and/or the data requirements, or 2) develop a converter tool of our

own to convert the new format to the old format so that we can continue using the

existing programs. In our rainfall analysis, this step is equivalent to what we described in

Chapter 4, Section 4.2, where we improved the system performance by applying

distributed computing technologies for converting the raw data to conceptual data.

6.2.4 Performing Analysis and Mining on the Conceptual Relational Data

After the algorithms are executed on the big raw data, we now have the

conceptual data that we are interested in stored in a relational database. The size of the

conceptual relational outputs are usually significantly reduced when compared to the size

of the big raw data as the superfluous parts are removed and the raw data is

summarized/converted into meaningful domain-specific concepts. The analysis and

mining tasks can then be easily conducted by domain users on the conceptual

knowledge base either directly using SQL or indirectly by extracting the conceptual data

from the relational database. In our rainfall analysis, this process is equivalent to Chapter

5, where we perform analysis and mining on the conceptual storm data through a

relational database.

119

Chapter 7

Conclusions and Future Work

In this dissertation, we work with geospatio-temporal datasets. First, we consider

spatio-temporal datasets in general. We focus on the semantics of spatio-temporal data

and define spatio-temporal formalization using a technique called “light-weight” for

integrating multiple ontologies in the Protégé (OWL) framework. We then implement the

defined spatio-temporal formalization to the actual system (e.g., Protégé) to create a

spatio-temporal ontology framework that allows spatio-temporal data to be analyzed,

reasoned, inferenced, and queried.

Next, we focus on a spatio-temporal dataset in a particular domain. In our case, it

is a rainfall precipitation data in the hydrology domain. We first examine the structure and

format of the raw rainfall data, study rainfall-related concepts, and consult with experts in

the domain. We then create a rainstorm ontology formalization consisting of local storm,

hourly storm, and overall storm. The formalized rainstorm concepts enable more efficient

analysis and mining on the rainfall data such that not only can traditional hydrology

analysis be done on the rainfall data, but storm-specific analysis that can capture

“overall” characteristics of storms can also be done.

To identify the formalized rainstorm concepts from the raw rainfall data, we

develop conversion/mapping algorithms called storm identification system based on two

approaches: CUAHSI-based approach and MapReduce-based approach. The CUAHSI-

based approach is based on CUAHSI standard, which stores and processes input and

output from a relational database based on CUAHSI ODM database schema, and uses

recursive depth-first search to identify storms. The MapReduce-based approach is an

improved version of the CUAHSI-based approach with higher performance. All

components in the storm identification systems are re-designed for full utilization of

120

resources. That is, we process the raw data directly from the original text file format

instead of relational data to eliminate the overhead problem related to relational

database. Additionally, we utilize our cluster of 19 machines by applying distributed

computing technology map-reduce to parallelize the storm identification process. The

final storm outputs are eventually loaded to a relational database for easy analysis and

mining. The verification process is also conducted on the relational storm output data

using SQL to ensure that the storm data are correctly identified.

Then, we show how conceptual storm data can be used in analysis and mining.

We first describe how traditional hydrology analysis (location-specific) can be done on the

rainstorm data. Three categories of rainfall-related analysis are discussed: storm

statistical properties, correlation among characteristics of storms, and analysis of extreme

rainfall events. We also discuss more general storm analysis and mining using the

conceptual storm data. The more general analysis/mining can be done in both location-

specific and storm-specific modes either directly from relational storm data or indirectly by

extracting the storm data from a relational database. We show some examples of these

analyses, which also include an implemented visualization tool called StormVisualization

to illustrate the formation and movement of a given overall storm.

Finally, we generalize our techniques and methodology used for the rainfall data

into a framework for analyzing and mining big data in any given domain. The framework

allows big data in a particular domain to be conceptually analyzed and mined by utilizing

ontologies and EER. The framework consists of four main processes: 1) developing and

formalizing domain-specific concepts into an ontology with the assistance of domain

experts, 2) translating the domain-specific ontology to EER and mapping the EER

concepts to relational tables, 3) designing and implementing mapping algorithms in a

121

distributed framework to convert the big raw data to the conceptual data, 4) performing

analysis and mining on the conceptual relational data.

The main contributions of our research are:

1. Developing a spatial ontology and integrating it with a temporal ontology.

2. Proposing formalized storm concepts that enable easier analysis and mining of

rainfall data.

3. Developing efficient algorithms to convert raw rainfall data into meaningful storm

concepts.

4. Applying analysis and mining techniques to conceptual storm data.

5. Developing a framework that can be applied to other types of big spatio-temporal

raw data to reduce the data and convert it into concepts for better analysis and

mining.

For future work, we can implement the storm identification system in different

distributed computing frameworks, such as Sparks and BSP, and compare the

performance among them. For better storm analysis and mining, we can process finer

rainfall data (such as 5-minute interval rainfall data) and longer history. We can also

develop other formalizations of other hydrological data related to rainfall such as wind

speed, soil moisture, and temperature and integrate them with the rainstorm ontology for

better storm prediction. Our partial rainstorm ontology can also be extended to complete

rainfall ontology for broader and complete rainfall analysis. Finally, we can develop a

methodology and tools to partially automate the domain consultation process so that

more domain-specific ontologies can be developed quickly.

122

Appendix A

Proving Completeness of OpenGIS
®
 SQL Spatial Relationships and Operations

123

In this appendix, we prove the completeness of OpenGIS SQL Spatial

Relationships and Operations. Our proof first displays the complete set of 68

relationships [33] (each of which is numbered) in a graphical form as shown in Figure A-

1. We then show how each relationship can be specified in OpenGIS SQL. For

convenience, we define some shorthand operations that are commonly used in

combinations of OpenGIS SQL. We use the shorthand operations to represent the

subsequent OpenGIS SQL operations. Our notation is as follows: P stands for a point, L

stands for a line, A stands for a polygon (area), and G stands for any geometry object (P,

L, or A).

A.1 Shorthand Notations

A.1.1 Shorthand Notations for Function Operations

A.1.1.1 ()

Interior(L:Line) function returns a line without its ending points.

 () ((()) ())

A.1.1.2 ()

Interior(A:Polygon) function returns a polygon without its exterior ring.

 () (())

A.1.2 Shorthand Notations for Boolean Operations

A.1.2.1 ()

IntersectsEitherEndPoint(L,G) operation returns TRUE if either endpoint of L

intersects with G.

 ()

 (()) (())

124

A.1.2.2 ()

IntersectsBothEndPoints(L,G) operation returns TRUE if both endpoints of L

intersect with G.

 ()

 (()) (())

A.1.2.3 ()

Intersects1EndPoints(L,G) operation returns TRUE if only one of the endpoints

of L intersects with G.

 ()

 (()) (())

 (()) (())

A.1.2.4 ()

DisjointBothEndPoints(L,G) operation returns TRUE if both endpoints of L are

disjoint with G.

 () (()) (())

A.1.2.5 ()

InsideMax(G1,G2) operation returns TRUE if G1 is inside G2 such that G1 does not

intersect the boundary of G2.

 () () (())

A.1.2.6 ()

ContainMax(G1,G2) operation return TRUE if G1 contains G2 such that G2 does

not intersect the boundary of G1.

 () () (())

125

Figure A-1 List of Possible Spatial Relationships between 2-D Spatial Objects

(Point, Line, and Polygon) [33]

126

A.1.2.7 ()

CoveredByMax(G1,G2) operation return TRUE if G1 is inside G2 such that G1

intersects the boundary of G2.

 () () (())

A.1.2.8 ()

CoverMax(G1,G2) operation return TRUE if G1 contains G2 such that G2 intersects

the boundary of G1.

 () () (())

A.2 Proof of Completeness

We will use the defined shorthand notations in our proof. The proof of

completeness can be divided into three subsections: 1) P/P, P/L, and P/A, 2) L/L and L/A,

and 3) A/A.

A.2.1 Proof of Completeness: P/P, P/L, and P/A

A.2.1.1 P/P

1) ()

2) ()

A.2.1.2 P/L

3) ()

4) ()

5) ()

A.2.1.3 P/A

6) ()

7) ()

8) ()

127

A.2.2 Proof of Completeness: L/L and L/A

A.2.2.1 L/L

9) ()

10) (() ()) ()

 ())

11) (())  (())

12) () ()

 (()) (())

13) ()

14) (() ()) () 

 (())

15) (() ()) () 

 (())

16) (()) (())

17) ()

18) (() ()) () 

 (())

19) () (())

 (())

20) () (())

 (())

21) (() ()) (())

 (())

128

22) (() ()) (())

 (())

23) () ()

 (()) (())

24) (() ()) ()

 (())

25) () (())

 (())

26) () (())

 (()) (())

27) (() ()) (())

 (())

28) (() ()) (())

 (()) (())

29) () (())

 (())

30) ()

31) (() ()) (())

 (())

32) () (())

 (())(((())

 (())) ((())

 (())))

129

33) (() ()) (())

 (())(((())

 (())) ((())

 (())))

34) () (())

 (())(((())

 (())) ((())

 (())))

35) ()

36) (() ()) (())

 (())(((())

 (())) ((())

 (())))

37) () (())

 (())(((())

 (())) ((())

 (())))

38) ()

39) (() ()) (())

 (())(((())

 (())) ((())

 (())))

130

40) () (())

 (())(((())

 (())) ((())

 (())))

41) (() ()) (())

 (())(((())

 (())) ((())

 (())))

A.2.2.2 L/A

42) ()

43) () (()) (())

44) () (()) (())

45) (())

46) () ()

47) ()((()) (()))

 (())

48) ()((()) (()))

 (())

49) () (()) (())

50) ()

51) () (()) (())

52) ()((()) (()))

 (())

53) () (())

131

54) ()((()) (()))

 (())

55) () ()

56) () (())

57) () (())

 (())

58) () (())

59) () (())

 (())

60) () (())

 (())

A.2.3 Proof of Completeness: A/A

A.2.3.1 A/A

61) ()

62) ()

63) ()

64) ()

65) ()

66) ()

67) ()

68) ()

132

References

[1] Abdelmoty, A.I., Smart P.D., El-Geresy, B.A. and Jones, C.B. 2009. Supporting

Frameworks for the Geospatial Semantic Web. In Proceedings of the 11
th

International Symposium on Advances in Spatial and Temporal Databases.

SSTD’09. LNCS 5644, Springer, 355-372.

[2] Allen, J.F. 1983. Maintaining Knowledge about Temporal Intervals. Communications

of the ACM 26, 11 , 832-843.

[3] Allen, J.F. and Kautz, H.A. 1985. A Model of Naïve Temporal Resoning. Formal

Theories of the Commonsense World. Ablex Pub, 251-268.

[4] Andronikos, T., Michalis, S. and Ioannis, P. 2009. Adding Temporal Dimension to

Ontologies via OWL Reification. In Proceedings of the 13
th
 Panhellenic Conference

on Informatics. PCI'09. IEEE Computer Society Wachington, DC, 19-22.

[5] Baglioni, M., Masserotti, M.V., Renso, C. and Spinsanti, L. 2007. Building Geospatial

Ontologies from Geographical Databases. In Proceedings of the 2
nd

 International

Conference on GeoSpatial Semantics. GeoS'07. LNCS 4853, Springer, 195-209.

[6] Baratis, E., Petrakis, E.G.M., Batsakis, S., Maris, N. and Papadakis, N. 2009. TOQL:

Temporal Ontology Querying Language. In Proceedings of the 11
th
 International

Symposium on Advances in Spatial and Temporal Databases. SSTD’09. LNCS

5644, Springer, 338-354.

[7] Bechhofer, S., Horrocks, I. and Patel-Schneider, P.F. 2003. Tutorial on OWL.

Retrieved March 25, 2011, from: http://www.cs.man.ac.uk/~horrocks/ISWC2003/-

Tutorial/.

[8] Bennacer, N., Aufaure, M., Cullot, N., Sotnykova, A. and Vangenot, C. 2004.

Representing and Reasoning for Spatiotemporal Ontology Integration. LNCS 3292.

Springer, 30-31.

133

[9] Bittner, T., Donnelly, M. and Smith, B. 2006. A Spatio-Temporal Ontology for

Geographic Information Integration. International Journal of Geographical

Information Science 0(0), 1-29.

[10] Gruber, T. 2008. Ontology. Encyclopedia of Database System, Liu, L. and M.T.

Özsu. Springer.

[11] Grutter, R. and Bauer-Messmer, B. 2007. Combining OWL with RCC for

spatioterminological reasoning on environmental data. In Proceedings of the 3
rd

International Workshop OWL: Experiences and Directions. OWLED'07. CEUR-

WS.org.

[12] Hess, G.N., Iochpe, C. and Castano, S. 2006. An Algorithm and Implementation for

GeoOntologies Integration. In Proceedings of the 8
th

Brazillian Symposium on

GeoInformatics. Advances in Geoinformatics, Springer, 129-140.

[13] Hobbs, J.R. and Pan, F. 2004. An Ontology of Time for the Semantic Web. ACM

Transactions on Asian Language Information Processing (TALIP) 3(1), 66-85.

[14] Hogenboom, F., Borgman, B., Frasincar, F. and Kaymak, U. 2010. Spatial

Knowledge Representation on the Semantic Web. In Proceedings of the 4
th
 IEEE

International Conference on Semantic Computing. ICSC’10, 252-259.

[15] Horridge, M., Knublauch, H., Rector, A., Stevens, R. and Wroe, C. 2004. A Practical

Guide to Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE

Tools Edition 1.0. University of Manchester.

[16] Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B. and Dean, M.

2004. SWRL: A Semantic Web Rule Language. Retrieved May 19, 2011, from World

Wide Web Consortium (W3C): http://www.w3.org/Submission/2004/SUBM-SWRL-

20040521/.

http://tomgruber.org/writing/ontology-in-encyclopedia.htm

134

[17] Jitkajornwanich, K., Elmasri, R., Li, C. and McEnery, J. 2011. Formalization of 2-D

Spatial Ontology and OWL/Protégé Realization. Technical Report. CSE-2011-6, The

University of Texas at Arlington.

[18] Mark, D., Egenhofer, M., Hirtle, S. and Smith, B. 2000. Ontological Foundations for

Geographic Information Science. University Consortium for Geographic Information

Science (UCGIS).

[19] Milea, V., Fransincar, F. and Kaymak, U. 2009. A Temporal Web Ontology

Language. Erasmus Research Institute of Management (ERIM).

[20] Noy, N.F. and McGuinness, D.L. 2001. Ontology Development 101: A Guide to

Creating Your First Ontology. Study Guide. Stanford University.

[21] O'Connor, M.J. and Das, A.K. 2009. SQWRL: A Query Language for OWL. In

Proceedings of OWL: Experiences and Directions. OWLED'09. CEUR Workshop

Proceedings 529.

[22] O'Connor, M.J. and Das, A.K. 2010. A Method for Representing and Querying

Temporal Information in OWL. Communications in Computer and Information

Science 127, 97-110.

[23] Open GIS Consortium. 1999. OpenGIS Simple Features Specification For SQL.

Open Geospatial Consortium, Inc.

[24] Parent, C., Spaccapietra, S. and Zimanyi, E. 1999. Spatio-Temporal Conceptual

Models: Data Structures + Space + Time. In Proceedings of the 7
th
 ACM

International Symposium on Advances in Geographic Information Systems. GIS'99,

26 - 33.

[25] Parent, C., Spaccapietra, S. and Zimanyi, E. 2006. Conceptual Modeling for

Traditional and Spatio-Temporal Applications: The MADS Approach. Springer.

135

[26] Randell, D.A., Cui, Z. and Cohn, A.G. 1992. A Spatial Logic Based on Regions and

Connection. In Proceedings of the 3
rd

 International Conference on Knowledge

Representation and Reasoning. KR’92. Morgan Kaufmann, 165-176.

[27] Sandia National Laboratories. Jess
®
: The Rule Engine for the Java

TM
 Platform.

Retrieved Jan 1, 2011, from: http://www.jessrules.com/jess/index.shtml.

[28] Shekhar, S. and Chawla, S. 2003. Spatial Databases: A Tour. Pearson Education,

New Jersey.

[29] Spaccapietra, S., Cullot, N., Parent, C. and Vangenot, C. 2004. On Spatial

Ontologies. Database Laboratory, Swiss Federal Institute of Technology, Lausanne,

Switzerland.

[30] Stanford Center for Biomedical Informatics Research. 2011. Protégé Project.

Retrieved May 20, 2011, from Protégé: http://protege.stanford.edu.

[31] Wang, X., Zhou, X. and Lu, S. 2000. Spatiotemporal Data Modeling and

Management: Survey. In Proceedings of the 36
th

 International Conference on

Technology of Object-Oriented Languages and Systems. IEEE Xplore, 202-211.

[32] Egenhofer, M.J. 1989. A Formal Definition of Binary Topological Relationships. In

Proceedings of the 3
rd

 International Conference on Foundations of Data

Organization and Algorithms. FODO’89, 457-472.

[33] Egenhofer, M.J. 1991. Categorizing Binary Topological Relations between Regions,

Lines, and Points in Geographic Databases. Technical Report. 90-12, Department

of Surveying Engineering, University of Maine, Orono, ME.

[34] Egenhofer, M.J. and Mark, D.M. 1995. Modeling Conceptual Neighborhoods of

Topological Line-Region Relations. International Journal of Georgaphical

Information Systems 9(5), 555–565.

http://dl.acm.org/citation.cfm?id=652218&CFID=53962980&CFTOKEN=68182604
http://dl.acm.org/citation.cfm?id=652218&CFID=53962980&CFTOKEN=68182604
http://dl.acm.org/citation.cfm?id=652218&CFID=53962980&CFTOKEN=68182604

136

[35] Reid, D.A. and Knipping, C. 2010. Proof in Mathematics Education: Research,

Learning and Teaching. Sense Publishers. Rotterdam, Netherlands.

[36] Asquith, W.H., Roussel, M.C., Cleveland, T.G., Fang X. and Thompson D.B. 2006.

Statistical Characteristics of Storm Interevent Time, Depth, and Duration for Eastern

New Mexico, Oklahoma, and Texas. Professional Paper 1725. U.S. Geological

Survey (USGS).

[37] Asquith, W.H. 1998. Depth-Duration Frequency of Precipitation for Texas. Water-

Resources Investigations Report 98-4044. U.S. Geological Survey (USGS).

[38] Asquith, W.H. and Roussel, M.C. 2004. Atlas of Depth-Duration Frequency of

Precipitation Annual Maxima for Texas. Scientific Investigations Report 2004-5041

(TxDOT Implementation Report 5-1301-01-1). U.S. Geological Survey (USGS).

[39] Lanning-Rush, J., Asquith, W.H. and Slade R.M. 1998. Extreme Precipitation Depth

for Texas, Excluding the Trans-Pecos Region. Water-Resources Investigations

Report 98-4099. U.S. Geological Survey (USGS).

[40] Asquith, W. H., Thompson, D.B., Cleveland, T.G. and Fang, X. 2004. Synthesis of

Rainfall and Runoff Data used for Texas Department of Transportation Research

Projects 0-4193 and 0-4194. Open-File Report 2004-1035. U.S. Geological Survey

(USGS).

[41] Elmasri, R. and Navathe, S. 2010. Fundamentals of Database Systems (6
th
 edition).

Pearson Education, Massachusetts.

[42] National Oceanic and Atmospheric Administration (NOAA). 2011. National Weather

Service River Forecast Center: West Gulf RFC (NWS-WGRFC). Retrieved

December 31, 2011, from: http://www.srh.noaa.gov/wgrfc/.

137

[43] McEnery, J. 2011. CUAHSI HIS: NWS-WGRFC Hourly Multi-sensor Precipitation

Estimates. Retrieved December 31, 2011, from: http://hiscentral.cuahsi.org/-

pub_network.-aspx?n=187.

[44] Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI). 2008. HydroDesktop. Retrieved October 26, 2011, from:

http://his.cuahsi.org-/hydrodesktop.html.

[45] Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI). 2008. ODM Databases. Retrieved October 26, 2011, from:

http://his.cuahsi.org-/odmdatabases.html.

[46] NOAA Satellite and Information Service. 2012. National Climatic Data Center

(NCDC). Retrieved March 15, 2012, from: http://www.ncdc.noaa.gov/oa/ncdc.html.

[47] Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI). 2008. Universities Allied for Water Research. Retrieved October 26,

2011, from: http://www.cuahsi.org/.

[48] Google. 2012. Google Developers: Google Maps API. Retrieved April 14, 2012,

from: https://developers.google.-com/maps/.

[49] NOAA’s National Weather Service. 2011. The XMRG File Format and Sample

Codes to Read XMRG Files. Retrieved December 31, 2011, from:

http://www.nws.noaa.gov/oh/hrl/-dmip/2/xmrgformat.html.

[50] Overeem, A., Buishand, A. and Hollemanet, I. 2008. Rainfall Depth-Duration-

Frequency Curves and Their Uncertainties. Journal of Hydrology 348 (1-2), 124-

134.

[51] Virginia Department of Conservation and Recreation. 2012. Stormwater

Management: Hydrologic Methods. Retrieved May 2, 2012, from:

http://dcr.cache.vi.virginia.gov/storm-water_management/documents/Chapter_4.pdf.

138

[52] Asquith, W.H. 2005. Summary of Dimensionless Texas Hyetographs and

Distribution of Storm Depth Developed for Texas Department of Transportation

Research Project 0-4194. Report 0-4194-4. U.S. Geological Survey (USGS).

[53] Suyanto, A., O'Connell, P.E. and Metcalfeet. A.V. 1995. The Influence of Storm

Characteristics and Catchment Conditions on Extreme Flood Response: A Case

Study Based on the Brue River Basin, U.K. Surveys in Geophysics 16(2), 201-225.

[54] Franks, B. 2012. Taming The Big Data Tidal Wave: Finding Opportunities in Huge

Data Streams with Advanced Analytics. John Wiley & Sons, Inc., Hoboken, New

Jersey.

[55] DevZone. 2011. Big Data Bibliography. O’Reilly Media.

[56] Linoff, G. 2007. Data Analysis Using SQL and Excel. Wiley Publishing, Inc.,

Indianapolis, Indiana.

[57] Cameron, S. 2009. Microsoft
®
 SQL Server

®
 2008 Analysis Services Step by Step.

Microsoft Press, Redmond, Washington.

[58] Horsburgh, J.S., Tarboton, D.G., Maidment, D.R. and Zaslavsky, I. 2008. A

Relational Model for Environmental and Water Resources Data, Water Resources

Research.

[59] George, W.B. 2012. WEATHER: The Handbook of Texas Online. Retrieved

September 5, 2012, from: http://www.tshaonline.org/handbook/online/articles/yzw01.

[60] Frontier Associates, LLC. 2008. Texas Renewable Energy Resource Assessment.

Texas State Energy Conservation Office.

[61] Freeman, A. 2010. Pro .NET 4 Parallel Programming in C#. Springer-Verlag, New

York.

[62] Jitkajornwanich, K., Elmasri, R., Li, C. and McEnery, J. 2012. Extracting Storm-

Centric Characteristics from Raw Rainfall Data for Storm Analysis and Mining. In

139

Proceedings of the 1
st
 ACM SIGSPATIAL International Workshop on Analytics for

Big Geospatial Data. ACM SIGSPATIAL BIGSPATIAL’12, 91-99.

[63] Cary, A., Sun, Z., Hristidis, V. and Rishe, N. 2009. Experiences on Processing

Spatial Data with MapReduce. In Proceedings of the 21
st
 International Conference

on Scientific and Statistical Database Management. SSDBM’09, 302-319.

[64] Wu, X., Carceroni, R., Fang, H., Zelinka, S. and Kirmse, A. 2007. Automatic

Alignment of Large-Scale Aerial Rasters to Road-maps, Geographic Information

Systems. In Proceedings of the 15
th

 ACM International Symposium on Advances in

Geographic Information Systems. ACM GIS’07.

[65] Schlosser, S.W., Ryan, M.P., Taborda, R., Lopez, J., O'Hallaron, D.R. and Bielak, J.

2008. Materialized Community Ground Models for Large-Scale Earthquake

Simulation. In Proceedings of the 2008 ACM/IEEE International Conference for High

Pergormance Computing, Networking, Storage and Analysis. SC’08.

[66] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified Data Processing on

Large Clusters. In Proceedings of the 6
th
 Symposium on Operating Systems Design

and Implementation. OSDI’04.

[67] Lam, C. 2011. Hadoop in Action. Dreamtech Press, New Delhi, 2011.

[68] Jitkajornwanich, K., Gupta, U., Elmasri, R., Fegaras, L. and McEnery, J. 2013. Using

MapReduce to Speed Up Storm Identification from Big Raw Rainfall Data. In

Proceedings of the 4
th
 International Conference on Cloud Computing, GRIDs, and

Virtualization. CLOUD COMPUTING’13, 49-55.

[69] Embley, D.W. and Liddle, S.W. 2013. Big Data—Conceptual Modeling to the

Rescue. In Proceedings of the 32
nd

 International Conference on Conceptual

Modeling. ER’13.

140

[70] Valiant, L.G. 2008. A Bridging Model for Multi-Core Computing. In Proceedings of

the 16
th
 Annual European Symposium. ESA’08.

[71] Apache. Apache Spark™. 2014. Retrieved March 26, 2014, from:

http://spark.apache.org.

[72] Zou, B., Ma, X., Kemme, B., Newton, G. and Precup, D. 2006. Data Mining Using

Relational Database Management Systems. In Proceedings of the 10
th
 Pacific-Asia

Conference. PAKDD’06.

[73] nosql-database.org. 2014. List of NOSQL Databases. Retrieved March 26, 2014,

from: http://nosql-database.org.

[74] Amazon. 2014. Amazon DynamoDB. Retrieved March 26, 2014, from:

http://aws.amazon.com/dynamodb.

[75] MongoDB. 2014. MongoDB. Retrieved March 26, 2014, from:

http://www.mongodb.org.

[76] Jitkajornwanich, K., Gupta, U., Shanmuganathan, S.K., Elmasri, R., Fegaras, L. and

McEnery, J. 2013. Complete Storm Identification Algorithms from Big Raw Rainfall

Data. In Proceedings of the 2013 IEEE International Workshop on Big Data and

Science: Infrastructure and Services.

[77] Unidata. 2014. What is the LDM? Retrieved March 26, 2014, from:

https://www.unidata.ucar.edu/software/ldm/ldm-6.6.5/tutorial/whatis.html.

[78] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A. and Gruber, R.E. 2006. Bigtable: A Distributed Storage

System for Structured Data. In Proceedings of the 7
th
 USENIX Symposium on

Operating Systems Design and Implementation. OSID’06.

[79] NOAA. 2014. MPE: Multisensor Precipitation Estimate. Retrieved March 26, 2014,

from: http://www.erh.noaa.gov/marfc/Maps/xmrg/index_java.html.

141

[80] Mishra, S.K. and Singh, V.P. 2003. Soil Conservation Service Curve Number (SCS-

CN) Methodology. Kluwer Academic Publishers, 2003.

[81] Dahan, H., Cohen S., Rokach, L. and Maimon, O. 2014. Proactive Data Mining with

Decision Trees. Springer.

[82] Cheng, T., Haworth, J., Anbaroglu, B., Tanaksaranond, G. and Wang J. 2013.

Spatio-Temporal Data Mining, Handbook of Regional Science, Springer-Verlag

Berline Heidelberg, 2013.

[83] Drummond, N. and Horridge, M. 2005. A Practical Introduction to Ontologies and

OWL. Retreived March 25, 2011, from The University of Manchester: http://www.co-

ode.org/resources/tutorials/intro/.

[84] Rubin, D.L., Noy, N.F. and Musen, M.A. 2007. Protégé: A Tool for Managing and

Using Terminology in Radiology Applications. Journal of Digital Imaging (0)0, 1-13.

[85] Tauberer, J. 2005. What is RDF and what is it good for?. Retrieved February 14,

2011, from rdf:about: http://www.rdfabout.com/intro/?section=7.

[86] Grenon, P. and Smith, B. 2004. SNAP and SPAN Towards Dynamic Spatial

Ontology. Spatial Cognition and Computation.

[87] McGuinness, D.L. and Harmelen, F. 2004. OWL Web Ontology Language

Overview. W3C Recommendation.

[88] Lu, S., Li, R.M., Tjhi, W.C., Lee, K.K., Wang, L., Li, X. and Ma, D., 2011. A

Framework for Cloud-Based Large-Scale Data Analytics and Visualization: Case

Study on Multiscale Climate Data, In Proceedings of the 3
rd

 IEEE International

Conference on Cloud Computing Technology and Science. CloudCom’11.

[89] Kondekar, R., Gupta, A., Saluja, G., Maru, R., Rokde, A. and Deshpande, P. 2012.

Iterative Mapreduce Based Heuristic Algorithm for Solving N Puzzle. In Proceedings

of the 2012 International Conference on Computer & Information Science. ICCIS’12.

142

[90] Tangient. 2014. Iterative MapReduce and Counters. Retrieved April 1, 2014, from:

http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters.

[91] Lin, J. and Schatz, M. 2010. Design Patterns for Efficient Graph Algorithms in

MapReduce. In Proceedings of the 8
th
 Workshop on Mining and Learning with

Graphs. MLG '10.

[92] Ekanayake, J. 2010. Twister: A Runtime for Iterative MapReduce. In Proceedings of

the 1st International Workshop on MapReduce and its Applications.

MAPREDUCE'10.

[93] Bu, Y., Howe, B., Balazinska, M. and Ernst, M.D. 2010. HaLoop: Efficient Iterative

Data Processing on Large Clusters. In Proceedings of the VLDB Endowment, Vol.

3, No. 1.

[94] Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A. and Pasquini, R. 2011. Incoop:

MapReduce for Incremental Computations. In Proceedings of the 2
nd

 ACM

Symposium on Cloud Computing. SOCC’11.

[95] Peng, D. and Dabek, F. 2010. Large-scale Incremental Processing Using

Distributed Transactions and Notifications. In Proceedings of the 9
th
 USENIX

Symposium on Operating Systems Design and Implementation. OSDI’11.

[96] Akintug, B. 2014. Precipitation. Retrieved April 1, 2014, from:

http://www.metu.edu.tr/~bertug/SEES503/SEES%20503%20-

%202%20Precipitation.pdf.

[97] Ponce, V.M. 1989. Engineering Hydrology: Principles and Practices. Prentice Hall,

Englewood Cliffs, New Jersey.

[98] Ester, M., Kriegel, H., Sander, J. and Xu, X. 1996. A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the

2
nd

 International Conference on Knowledge Discovery and Data Mining. KDD’96.

143

[99] McEnery, J. and Jitkajornwanich, K. 2012. Depth-Area-Duration Characteristics of

Storm Rainfall in Texas using Multi-Sensor Precipitation Estimates. 2012 American

Geophysical Union. AGU’12.

[100] McEnery, J., Shelton, G. and Jitkajornwanich, K. 2012. ArcGIS Online Map Feature

for NWS Precipitation Data in the Dallas/Fort Worth Metroplex. 2012 Texas GIS

Forum.

[101] American Meteorological Society. 2014. Glossary of Meteorology: Rain. Retrieved

April 1, 2014, from: http://glossary.ametsoc.org/wiki/Rain.

[102] Ikenaga, B. 2014. Proof by Cases. Retrieved May 5, 2014, from Millersville

University: http://www.millersville.edu/~bikenaga/math-proof/cases/cases.html.

[103] Driscoll, E.D., Palhegyi, G.E., Strecker E.W. and Shelley, P.E. 1989. Analysis of

Storm Event Characteristics for Selected Rainfall Gages throughout the United

States. U.S. Environmental Protection Agency.

[104] Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M. and Das, G.

2010. Mining Time Series Data. Data Mining and Knowledge Discovery Handbook.

Springer US.

[105] Gruber, T. 1995. Toward Principles for the Design of Ontologies Used for

Knowledge Sharing. International Journal of Human-Computer Studies, 43:5-6,

Nov./Dec. 1995, 907-928.

144

Biographical Information

Kulsawasd Jitkajornwanich received his bachelor’s degree with honors in

computer science from Chulalongkorn University, Bangkok, Thailand in 2004. After

graduation, he worked for two years for Bangkok Bank and Reuters (now Thomson

Reuters) before receiving a Royal Thai government scholarship to pursue his graduate

studies in 2006. He received his master’s degree in computer science from The

University of Texas at Arlington in 2009. In the same year, he started his PhD in

computer science at The University of Texas at Arlington. He received his doctoral

degree in computer science in 2014. His area of interest includes spatio-temporal

ontology, spatio-temporal databases, GIS, map-reduce, customized data analysis and

mining for rainfall precipitation data, and conceptual analysis and mining of big data. He

will be working with Geo-Informatics and Space Technology Development Agency

(GISTDA) in Bangkok, Thailand. GISTDA is a public organization providing services and

conducting researches/projects relevant to geo-information, which could be of benefit to

the public as well as is responsible for other space technologies (e.g., satellites) and geo-

informatics applications. During his PhD studies, he taught a database systems 1 course

(CSE 3330/5330: Database Systems and File Structures) and was a teaching assistant

for a database systems 2 course (CSE 4331/5331: DBMS Models and Implementation

Techniques). In addition, he worked with National Weather Service – West Gulf River

Forecast Center (NWS-WGRFC) and Tarrant Regional Water District (TRWD) in

preparing data for their water management decisions including flooding prediction. He

also published several research papers including ACM SWIM (part of ACM

SIGMOD/PODS), ACM BIGSPATIAL (part of ACM SIGSPATIAL GIS), CLOUD

COMPUTING, and IEEE BIG DATA.

