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Abstract 

ANALYSIS AND MODELING TECHNIQUES FOR GEO-SPATIAL AND 

SPATIO-TEMPORAL DATASETS 

 

Kulsawasd Jitkajornwanich, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Ramez Elmasri 

In recent years, spatio-temporal data has received a lot of attention and 

increasingly plays an important role in our everyday lives as we can witness from the 

fast-growing mobile technologies and its location-based application development. By 

spatio-temporal data, we mean data that is associated with specific spatial locations that 

change over time. For example, a cellphone or car with GPS will generate the object 

location at regular time intervals. Another example would be the track of a storm center 

as it moves. Spatio-temporal data could be thought of as a huge data warehouse, which 

contains hidden and meaningful information. However, to analyze the available spatio-

temporal data directly from its original formats and locations is not easy because the data 

is often in a format that is difficult to analyze and is usually ‘big’. Our research goals focus 

on spatio-temporal datasets and how to summarize, model, and conceptualize them for 

analysis and mining. Five main parts of this dissertation include: 1) spatio-temporal 

knowledge representation, 2) identifying meaningful concepts from raw data, 3) 

converting raw data to conceptual data, 4) analysis and mining of conceptual data, and 5) 

a general framework for big data analysis and mining. 

In the first part of the dissertation, we look at the spatio-temporal datasets in 

general by considering spatio-temporal data semantics using techniques similar to those 
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utilized in the “Semantic Web”. We work towards creating a spatio-temporal ontology 

framework, which can be used to represent and reason about spatio-temporal data. In 

the next three parts, we focus on the spatio-temporal datasets in a specific domain, which 

is rainfall precipitation data in the hydrology domain. However, the techniques and 

methodology that we use can be adapted to different types of hydrological data such as 

soil moisture, water level, etc., as well as other types of big spatio-temporal data. 

Therefore, in the final part, we propose a generalized framework for analyzing and mining 

big data in any given domain. The framework allows big data in a particular domain to be 

conceptually analyzed and mined by using ontologies and EER.  
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Chapter 1  

Introduction 

In recent years, spatio-temporal data has received a lot of attention and 

increasingly plays an important role in our everyday lives, as we can witness from the 

fast-growing mobile technologies and their location-based application development. 

Consequently, spatio-temporal data is widely available and used in an increasing number 

of applications. By spatio-temporal data, we mean data that is associated with specific 

spatial locations that change over time. For example, a cellphone or car with GPS will 

generate the object location at regular time intervals. Another example would be the track 

of a storm center as it moves. The enormous amount of spatio-temporal data that is 

being generated every day could be thought of as a huge data warehouse, which 

contains hidden and meaningful information. Our work is a contribution towards 

extracting this hidden, meaningful information from large amount of spatio-temporal data.  

To analyze the available spatio-temporal data directly from its original formats 

and locations is not easy because the data is often in a format that is difficult to analyze 

and is usually ‘big’. Our research goals focus on spatio-temporal datasets and how to 

summarize, model, and format them for analysis and mining. There are five main parts of 

this dissertation: 

1. Spatio-temporal knowledge representation (see Chapter 2) 

2. Identifying meaningful concepts from raw data (see Chapter 3) 

3. Converting raw data to conceptual data (see Chapter 4) 

4. Analysis and mining of conceptual data (see Chapter 5) 

5. A general framework for big data analysis and mining (see Chapter 6) 

In the first part of the dissertation, we look at spatio-temporal datasets in general 

by considering spatio-temporal data semantics using techniques similar to those utilized 
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in the “Semantic Web” [7][13]. We work towards creating a spatio-temporal ontology 

framework, which can be used to represent and reason about spatio-temporal data. We 

first formalize a spatial ontology by specifying the concepts and operations relevant to 

spatial data. We then apply a technique called “light-weight” [22][21] (which will be 

discussed further in the dissertation), so that we can integrate our spatial ontology with a 

well-known temporal ontology [2][3]. The resulting spatio-temporal ontologies are 

eventually implemented in an ontology editor, which in our case, is Protégé OWL 3.4.4 

[30]. The spatio-temporal aspects of the data can be reasoned, inferenced, and queried 

using our framework. In the remaining parts of the dissertation, we focus on spatio-

temporal datasets in a specific domain, which is rainfall precipitation data in the hydrology 

domain.  

In the second part of the dissertation, we examine the structure and format of the 

raw rainfall data and discuss the process to prepare it for analysis and mining. Because 

no two different types of spatio-temporal data, even in the same domain, have the same 

characteristics and concepts, the conceptual model that we are going to come up with 

must make sense to the domain experts, have potential in effective implementation, and 

be able to provide better and more robust analysis and mining beyond traditional 

methods. Two main processes are conducted: investigating raw rainfall data description 

and structure, and studying rainstorm concepts. Consequently, we model the meaningful 

concepts of rainstorms using formalization. Three storm configurations are formalized: 

local storm, hourly storm, and overall storm, which will be discussed further in the 

dissertation.  

In the third part, after the model is defined through formalization, we discuss the 

algorithms designed to convert the raw rainfall data into the formalized rainfall concepts. 

Two different approaches were developed: CUAHSI-based and MapReduce-based. Both 
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share the same goal, which is to identify meaningful storm concepts, but with different 

focuses. The first approach focuses on converting raw rainfall data that follows the 

CUAHSI standard, which is based on the standard database schema called “CUAHSI 

ODM” to store hydrological data in a relational database. Both input and output are 

processed and stored in a relational database. Although there are benefits from this 

approach, including easy integration with CUAHSI APIs, user-friendly analysis/mining 

through SQL, the main drawback is the slow performance. As a result, the second 

approach is proposed with the focus on drastically improved performance for the data 

conversion algorithms. In this approach, every component of the storm identification 

algorithms are re-designed starting from the original structure of raw data to applying the 

most recent distributing computing technology (namely MapReduce and Hadoop®) to 

speed up the performance. The storm outputs are verified and the performance of each 

approach is measured. The conceptual storm data are identified and stored in a relational 

database. The size of conceptual storm data is significantly reduced when compared to 

the size of the raw data, and can easily be analyzed and mined.  

In the fourth part of the dissertation, we show how identified storm outputs can be 

analyzed and mined. The analysis and mining tasks can be divided into two parts: 1) 

traditional hydrology analysis and 2) more general storm analysis and mining, which are 

more diverse and mostly have to do with our proposed concept of “overall” characteristics 

of the storm, including speed, track, total rainfall, coverage, boundary, etc. In the 

traditional hydrology analysis part, we examine characteristics of storms at a particular 

location (location-based) by considering [36][50][39][80]: 1) storm statistical properties, 2) 

relationships between/among characteristics of storms, and 3) focusing on extreme 

precipitation values of storms. In the more general storm analysis and mining part, we 

show some examples of how more robust/flexible storm analysis and mining can be done 
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on our storm data. This also includes a storm visualization tool to visualize how an overall 

storm is formed and moves over time.  

Although the techniques and methodology that we use are for big raw rainfall 

data, it can be adapted to different types of hydrological data such as soil moisture, water 

level, etc., as well as other types of big spatio-temporal data in other application domains. 

Therefore, we propose a generalized framework for conceptual analysis and mining of 

big data using ontologies and EER in the fifth part. 

In the conclusion chapter, we summarize our contributions, and discuss future 

work. Thus, the main contributions of our research are: 

1. Developing a spatial ontology and integrating it with a temporal ontology. 

2. Proposing formalized storm concepts that enable easier analysis and mining of 

raw rainfall data. 

3. Developing efficient algorithms to convert raw rainfall data into meaningful storm 

concepts, using the map-reduce paradigm. 

4. Applying analysis and mining techniques to conceptual storm data. 

5. Developing a framework that can be applied to other types of big spatio-temporal 

raw data to reduce the data and convert it into concepts for better analysis and 

mining. 
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Chapter 2  

Spatio-Temporal Knowledge Representation 

The goal of this chapter is to allow spatio-temporal data semantics of a dataset 

to be analyzed, modeled, and reasoned about by using ontology [10][20]. Ontology is an 

excellent tool in knowledge modeling. With the reasoning, inference, and representation 

mechanisms associated with an ontology, it becomes possible that systems with different 

definitions of the same concepts can interoperate with each other. In addition, a nearly 

complete description of concepts in a particular area of knowledge becomes readily 

available for interested users. In this chapter, we develop a spatio-temporal ontology 

framework, which can be used to represent and reason about spatio-temporal data. 

Figure 2-1 shows an overview of our spatio-temporal ontology framework.  

Formalization of 

Spatial Ontology

Method to Add 

Spatial Dimension

Development of 

Spatial Built-ins

Ability to Do Spatio-

Temporal Reasoning, 

Inference, and Querying

Protégé-OWL 3.4.4 Platform  

Figure 2-1 Overview of Our Spatio-Temporal Ontology Framework 

We first formalize a spatial ontology in Section 2.1. We then show how the 

defined spatial ontology can be realized in Protégé in Section 2.2. Since the spatial 

ontology is formalized based on OpenGIS
®
, we also show that OpenGIS

®
 can actually 

capture spatial concepts in Section 2.3, by proving that OpenGIS
® 

SQL operations are 

complete with respect to the full spatial ontology operations. Finally, related work is 

discussed in Section 2.4.   

2.1 Spatial Ontology Formalization 

In this section, we first discuss the motivation of spatial ontology formalization 

and its comparison to temporal ontology as it is closely related and often analyzed along 
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with spatial ontology. In fact, spatial operations can be considered as temporal operations 

with an additional dimension. Additionally, we will eventually embed temporal ontology 

into our spatial ontology to create spatio-temporal ontology. We then give a formal 

specification of spatial ontology covering spatial object definitions and spatial operation 

definitions.   

2.1.1 Background and Motivation 

Representing spatial-related knowledge is a basic problem in many applications, 

such as GIS and map applications. In the past years, work on spatial ontologies has 

focused on two main areas: spatial database integration [8][9][12] and spatial ontology 

creation [5][29][11][14]. In spatial database integration, a spatial ontology is used as a 

tool to integrate different spatial databases. In spatial ontology creation, there are two 

different major approaches. First, by analyzing a collection of existing spatial databases 

and methodologies, a spatial ontology model is defined based on those databases [5]. 

However, this leads to the problem that the created spatial ontology will be limited to 

those databases and consequently will not be sufficient to be a standard for representing 

a complete formal spatial ontology. The second approach in spatial ontology creation is 

to define a complete spatial ontology model. For example, in [29], they propose to create 

a spatio-temporal ontology based on the MADS model, which allows a regular database 

to model spatial and temporal characteristics [24][25]. However, this approach has not 

been materialized in an implemented system, and there is no formal specification of 

spatial ontology developed from this approach. In addition, it is limited to the polygon data 

type only. Thus, the complete set of operations among point, line, and polygon is lacking. 

Finally, in [11][14], they propose using the RCC8 calculus [26] for spatial reasoning on 

regions, but they do not propose a complete spatial ontology.  
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Many researchers have worked in the area of temporal and spatial ontology 

[19][29][8][5][9][18][22][13][6][12][1][4]. A specification of temporal ontology was 

introduced in [13]. It clearly discussed temporal ontology formalization, and 

comprehensively defines temporal concepts and operations. It is based on the temporal 

logic developed by Allen [2][3]. The following is an example of the Meet operation 

between two time intervals formalized by [13], assuming that T1, T2 are two time intervals 

and t is a time instant. 

Meet(T1,T2)  (t)[ends(t,T1) begins(t,T2)] 

A complete formalization of ontology forms the basis and reference for ontology 

implementation. In addition, since the temporal ontology specification in [13] was 

intended to capture all temporal reasoning, it is gradually becoming the standard for 

temporal ontology specification.  

Although spatial concepts and operations have been specified in many works 

[23][24][25][28][31][86], there are few attempts at specifying a complete formal ontology 

for spatial concepts. Spatial operations are more complex than temporal operations, and 

can be defined over multiple dimensions, especially two and three dimensions, whereas 

temporal operations are only on one dimension. Figure 2-2 shows how the Meet 

operation is different in one dimension and two dimensions. Additionally, temporal 

operations have only two directions (before and after) whereas for two dimensional 

spatial operations, there are continuous directions along 360º of a two dimensional 

space. Figure 2-3 shows eight directions, at 45º intervals. (East is 0º, north is 90º, west is 

180º, etc.) 
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Meet (same slope)

Meet (different slope)

 

a) Temporal operation (1-D)        b) Spatial operation (2-D) 

Figure 2-2 Comparison between Meet Operation in 1-D and 2-D 
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Figure 2-3 Difference of Direction between Temporal Operation (1-D, left) and Spatial 

Operation (2-D, right) 

2.1.2 Formalization of Spatial Object Definitions 

We formalize spatial ontology based on OpenGIS
®
 [23] (as it is a well-known 

standard for spatial-related concepts) with some modifications. Our proposed spatial 

ontology consists of two parts [17]: spatial object definitions and spatial operation 

definitions. In [23], a geometry class hierarchy is proposed for 2-D spatial objects. The 

hierarchy shown in Figure 2-4 is based on the one in [23], with some minor modifications 

to allow our formalization.  
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SGeometry

Point Curve Polygon Collection

SingleLine

Ring

ConnectedLine MulitPoint MulitCurve MulitPolygon

Non-Ring
 

Figure 2-4 Geometry Class Hierarchy 

Considering the leaf nodes in the hierarchy of Figure 2-4, the geometry objects 

can be categorized into 8 types as shown in Figure 2-5. 

1. Point (p) 

2. Single Line (sl) 

3. Connected Line (cl): Non-Ring (nr) 

4. Connected Line (cl): Ring (r) 

5. Polygon (a) 

6. MultiPoint (mp) 

7. MultiCurve (mc) 

8. MultiPolygon (ma) 

1. Point (p)

5. Polygon (a)

2. Single Line (sl)

6. MultiPoint (mp)

3. Non-Ring
Connected Line (cl:nr)

7. MultiCurve (mc)

4. Ring 
Connected Line (cl:r)

8. MultiPolygon (ma)

 

Figure 2-5 Types of Geometry Object in 2-D Space 

In order to be used in the ontology, the spatial object definitions of all geometry 

object types in two-dimensional space (see Figure 2-4 and 2-5) have to be defined. For 
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simplicity, we shall assume the 2-D coordinate system based on longitude and latitude, 

although the formalization can be adapted to other 2-D coordinate systems. 

2.1.2.1 Point (p) 

Point can be defined by longitude (x) and latitude (y).  

       ( )  (   )                                   

2.1.2.2 Single Line (sl) 

Single line can be defined by any two points. 

            (  )  (     )                                     

Single line also includes some unary operations, such as Slope(m,sl) and Distance(d,sl), 

which are defined in Section 2.1.3 

2.1.2.3 Connected Line (cl): Non-Ring (nr) 

Non-ring connected line can be defined by a sequence of points (          ), 

   , and                which in turn defines a sequence of single lines 

(               ) and each     (       ). In other words, the sequence must contain at 

least two single lines and each pi is connected to pi+1 for i < N. 

                      (    ) 

 (                               (       )     (         )        

               )  

2.1.2.4 Connected Line (cl): Ring (r) 

Ring connected line is defined as a sequence of points (          ),    , and 

               which in turn defines a sequence of single lines (             ) where 

each     (       ) for i = 1,2,…,N-1 and     (     ). However, the area inside the ring 

is not part of the connected line. 

                   (   ) 

 (                               (       )                      
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    (     )     (         )                           (       )      ) 

        (   )     

2.1.2.5 Polygon (a) 

Polygon is defined as a sequence of points (          ),    , and    

            which in turn defines a sequence of single lines (             ) where each 

    (       ) for i = 1,2,…,N-1 and     (     ), and the area within is part of the 

polygon.  

         ( ) 

 (                                (       )                      

    (     )     (         )                           (       )        

     (       )                             )         ( )      

2.1.2.6 MultiPoint (mp) 

MultiPoint can be defined as a set of two or more points.  

            (  )                 

2.1.2.7 MultiCurve (mc) 

MultiCurve can be defined as a set of single line(s) or connected line(s). 

            (  )                                       

2.1.2.8 MultiPolygon (ma) 

MultiPolygon is defined as a set of two or more polygons.  

              (  )                 

2.1.3 Formalization of Spatial Operation Definitions 

As mentioned earlier, spatial operations are much more complex than temporal 

operations. Therefore, we will only focus on a subset of two-dimensional spatial 

operations. Considering spatial relationships, there are six major types as follows: 1) 

Point VS Point, 2) Point VS Line, 3) Point VS Polygon, 4) Line VS Line, 5) Line VS 
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Polygon, and 6) Polygon VS Polygon. Only spatial relationships between Point and Line 

(i.e., 1), 2), and 4)) are covered. We can divide these operation definitions into six 

different categories depending on the pair of spatial objects. 

1. Point and Point 

2. Point and Single Line 

3. Point and Connected Line 

4. Single Line and Single Line 

5. Single Line and Connected Line 

6. Connected Line and Connected Line 

2.1.3.1 Point and Point 

There are two relationships between point and point. 

2.1.3.1.1 Equal. Two points are equal if and only if they have exactly the same 

longitude and latitude respectively. 

       (     )                      

2.1.3.1.2 Disjoint. Two points are disjoint when they are not equal. 

          (     )         (     ) 

2.1.3.2 Point and Single Line 

Considering point and single line, there are three possible spatial operations: 

Endpoint, Ontheline, and Disjoint.  

2.1.3.2.1 Endpoint. Endpoint is a relationship between point and single line. In 

the formalization, we sometimes need to distinguish unambiguously the two endpoints so 

we define two operations on a line: EndpointNe and EndpointSw. North and south will 

have precedence in distinguishing the endpoints and east and west will be used only if a 

line is horizontal. That is, the endpoint of the line with higher latitude will be classified as 
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EndpointNe regardless of whether the longitude is either east or west. Figure 2-6(a) 

shows some examples of how the endpoints are categorized. 

A point p will be an endpoint of single line sl if and only if p is equal to either one 

of the single line endpoints. 

          (    )                  

            (    )   

        (    )  (   )         (     )       ((              )  

(                             ))] 

            (    )   

        (    )  (   )         (     )        ((              )  

(                             ))] 

The relationship between EndpointNe and EndpointSw can be specified as 

follows: 

            (     )            (     )   

 (                 )  (                                   )  

We can now define two unary operations on single line, Slope and Distance, as 

follows (these are used in our specification of some of operations): 

       (    )   

(      )           (     )            (     )    [
         

         
]  

          (    )   

(      )           (     )            (     )   

             ((         )  (         ) )   

2.1.3.2.2 Ontheline. Ontheline (see Figure 2-6(d)) is a relationship between point 

and single line. If a point p is on the single line sl then the slope of the point p to one of 
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the endpoints of the single line must be equal to the slope of the single line. In addition, 

the point p has to fall on the single line. We also have a function to create a single line 

given two points: CreateSingleLine(sl,x,y) where sl is the created single line and x,y are 

the two endpoints. 

           (    )   

     (     )  (   )                 (           )       (      )   

      (                                           ) 

An endpoint is also considered to be on the line.  

          (    )           (    ) 

2.1.3.2.3 Disjoint. A point p and single line sl are disjoint when the point p is not 

on the single line sl. 

          (    )              (    ) 

2.1.3.3 Point and Connected Line 

In the following, we will discuss the formalization of spatial operations between 

point and connected line. Considering point and connected line, there are four possible 

spatial operations: Endpoint, InteriorEndpoint, Ontheline, and Disjoint.  

2.1.3.3.1 Endpoint. Endpoint (see Figure 2-6(j)) is one of the relationships 

between point and connected line. In the formalization, we also need to distinguish 

unambiguously the two endpoints (same as operations between point and single line) so 

we define two operations on a line: EndpointNe and EndpointSw. The directions will be 

considered in the same fashion.  

A point p will be an endpoint of connected line cl if and only if p is equal to p1 or 

pN of the connected line cl. 

          (    )                    
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            (    )    

        (    )  (   )         (     )        

((              )  (                             ))  

            (    )   

        (    )  (   )         (     )        

((              )  (                             ))] 

The relationship between EndpointNe and EndpointSw can be specified as 

follows: 

            (     )            (     )    

 (                 )  (
                 

                  
)   

2.1.3.3.2 InteriorEndpoint. InteriorEndpoint (see Figure 2-6(k)) is another 

relationship between point and connected line when a point falls in the joint between two 

single lines of connected line.  

                  (    )  (                 )        

2.1.3.3.3 Ontheline. A point p is on the connected line cl if and only if p is on one 

of the single lines sli of connected line cl (see Figure 2-6(l)). 

           (    )  (                (       ) )          (    )   

The relationship among these three operations is as follows: 

          (    )                  (    )           (    )  

2.1.3.3.4 Disjoint. A point p and a connected line cl are disjoint when the point p 

is not on the connected line cl. 

          (    )              (    ) 

2.1.3.4 Single Line and Single Line 

There are seven main relationships between single lines. 



 

16 

2.1.3.4.1 Equal. Two single lines are equal if and only if they have exactly the 

same points. 

       (       )   

(      )           (      )            (      )   

          (      )            (      )   

2.1.3.4.2 Meet. In our formalization, two single lines meet when they share one 

endpoint. We can further divide the operation into two more cases: MeetSameSlope and 

MeetDiffSlope as follows (see Figure 2-6(b,c)).  

      (       )   

(                                )          (     )          (     )  

               (       )   

    (       )       (      )       (      )         

               (       )   

    (       )       (      )       (      )         

 2.1.3.4.3 Cross. In our formalization, two single lines cross when their slopes are 

different and the intersecting point fall on both lines (see Figure 2-6(e)). To make 

formalization easier, we will first define Between and ProperBetween relations as follows. 

We also have an operation IntersectPoint(p,sl1,sl2) that returns the point of intersection p 

between two single lines sl1, sl2, if the two lines do not have the same slope.  

         (       )                   

               (       )                  

       (       )   

     (      )       (      )                      (         )   

       (                     )         (                     ) 
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             (       )   

     (      )       (      )                      (         )   

             (                     )               (                     )  

In this operation, we have one special case when the intersecting point is also 

one of the endpoints of the line. In other words, one of the endpoints of a line lies on the 

other line. We will call this case of operation TCross (see Figure 2-6(f)). 

        (       )   

     (       )  (  ) (        (     )           (     )           (     )) 

 (        (     )           (     )           (     ))   

 2.1.3.4.4 Overlap. In our formalization, two single lines overlap if and only if their 

slopes are equal and there is one endpoint of one line lying in another line but not at the 

endpoint (see Figure 2-6(g)).  

         (       )   

     (      )       (      )         

 (  ) (        (     )           (     )           (     ))   

 (        (     )           (     )           (     ))  

2.1.3.4.5 Within. For Within operation, we can divide it into two more types: 

CompleteWithin (can also be called ProperWithin) and SharedEndpointWithin (see Figure 

2-6(h,i)). 

        (       )  (  )         (     )           (     )  

                (       )    

      (       )  (  )  (        (     )          (     ))  

                      (       )   

      (       )  (  )         (     )          (     )  

                (       )                     (       )        (       ) 
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2.1.3.4.6 Contain. Contain operation is defined as a reverse Within operation as 

follows: 

         (       )        (       ) 

                 (       )                 (       ) 

                       (       )                      (       ) 

                 (       )                      (       )         (       ) 

2.1.3.4.7 Disjoint. Two single lines are disjoint when they meet one of the 

following conditions: 1) if both single lines have the same slope, then all endpoints of 

each line do not fall on another line, or 2) if both single lines have different slopes, their 

intersecting point are not on both lines. 

          (       )   

(     (      )     (      )       

(  ) [
        (     )            (     )  

        (     )            (     )
])  

(     (      )     (      )       

               (         )            (     )            (     ) ) 

The relationships among these seven operations are as follows. 

MeetDiffSlope and TCross operations are also considered as Cross operation. 

               (       )         (       )       (       )  

Equal, Meet, Cross, Overlap, Within, and Contain operations are also considered as 

Intersect. 

       (       )      (       )       (       )         (       )        (       )  

       (       )           (       )  

          (       )             (       )  

CompleteWithin and CompleteContain operations are also considered as Overlap. 
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                (       )                 (       )         (       )  

Equal, SharedEndpointWithin, SharedEndpointContain operations are also considered as 

Meet. 

      (       )                      (       )                       (       ) 

     (       ) 

Equal operation is also considered as SharedEndpointWithin and 

SharedEndpointContain operations. 

      (       )                      (       )                       (       ) 

 

Figure 2-6 Types of Spatial Operations 

2.1.3.5 Single Line and Connected Line 

 There are five main relationships between single line and connected line. 
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2.1.3.5.1 Meet. A single line sl meets a connected line cl when they share one of 

the endpoints (see Figure 2-6(m)). 

      (     )  (  )         (    )          (    )   

2.1.3.5.2 Cross. A single line sl and a connected line cl are crossed if and only if 

there is a single line sli of connected line cl crossing the single line sl (see Figure 2-6(o)).  

       (     )  (           )      (      )  

A special case of cross is when one of the endpoints of one line lies on another 

line but not at the endpoint (see Figure 2-6(p)). 

        (     )   

     (     )  (  ) (        (    )           (    )           (    ))   

(        (    )           (    )           (    ))   

2.1.3.5.3 Overlap. A single line sl and connected line cl are overlapped when 

single line sl is overlapped or equal to one of the single line sli of connected line cl (see 

Figure 2-6(n)). 

         (     )  (           )        (      )       (      )  

2.1.3.5.4 Within. A single line sl is completely within a connected line cl if and 

only if a single line sl is completely within or shared-endpoint within a single line  

of connected line cl but does not share any endpoint with the connected line cl (see 

Figure 2-6(q)).  

                (     )   

(           )               (      )                      (      )  

(  )  (        (    )          (    ))   

A single line sl is considered as shared-endpoint within connected line cl if and 

only if they share an endpoint and a single line sl is shared-endpoint within single line sl1 

or slN-1 of connected line (see Figure 2-6(r)). 
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                      (     )    

(                   )                     (      )   

(  )         (    )          (    )   

2.1.3.5.5 Disjoint. A single line sl and a connected line cl are disjoint when the 

single sl is disjoint from all single lines of the connected line cl.  

          (     )  (           )         (      )  

2.1.3.6 Connected Line and Connected Line 

 There are seven main relationships between connected lines. 

2.1.3.6.1 Equal. Two connected lines are equal if and only if they have exactly 

the same list of ordered points. 

       (       )   

(                    ) (            )   

(          (      )  (          (      )         )  

2.1.3.6.2 Meet. A connected line cl1 meets connected line cl2 when they share 

one of the endpoints (see Figure 2-6(s)). 

      (       )  (  )         (     )          (     )   

2.1.3.6.3 Cross. A connected line cl1 and connected line cl2 are crossed if and 

only if there is a single line sli of connected line from both connected lines crossing each 

other (see Figure 2-6(u)).  

       (       )  (                        )      (       )  

A special case of cross is when one of the endpoints of one line lies on another 

line but not at the endpoint (see Figure 2-6(v)). 
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        (       )    

     (       )  (  ) (        (     )  (            )          (     )  

         (     ))  (        (     )  (            )          (     )  

         (     ))   

2.1.3.6.4 Overlap. A connected line cl1 and connected line cl2 are overlapped 

when their single lines are overlapped or equal (see Figure 2-6(t)).  

         (       )  (                        )        (       )       (       )   

2.1.3.6.5 Within. A connected line cl1 is completely within a connected line cl2 if 

and only if each single line of connected line cl1 is shared-endpoint within one of the 

single lines of connected line cl2 but two connected lines do not share any endpoint (see 

Figure 2-6(w)).  

                (       )   

(                        )                     (       )   

(  )  (        (     )          (     ))  

A connected line cl1 is considered as shared-endpoint within connected line cl2 

when each single line of connected line cl1 is shared-endpoint within one of the single 

lines of connected line cl2 and both connected lines share at least one of the endpoints 

(see Figure 2-6(x)). 

                      (       )    

(                        )                     (       )    

(  )         (     )          (     )   

2.1.3.6.6 Contain. Similar to the Contain operation between single lines, Contain 

operation between connected lines can be defined as a reverse of Within operation as 

follows.  
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                 (       )                (       ) 

                        (       )                      (       )  

2.1.3.6.7 Disjoint. Two connected lines are disjoint when each single line of one 

connected line is disjoint from all single lines of another connected line.   

          (       )  (                        )         (       )  

2.2 OWL/Protégé Realization 

After formalizing the spatial ontology in the previous section, we now discuss a 

method to add spatial dimension to existing ontologies. Particularly, we use a technique 

similar to the “light-weight” temporal ontology introduced in [22] so that we can 

incorporate a spatial layer into existing ontologies without requiring significant changes to 

the original ontology. We also implement spatial built-ins in Protégé based on the object 

and operation definitions in the spatial ontology formalization to do spatial reasoning, 

inference and querying on ontology.  

2.2.1 Protégé Background and Preparation 

Protégé [30] is a well-known and widely-used open-source platform for ontology 

management including creation, visualization, and manipulation of ontology [15][84]. 

Moreover, Protégé is also user-friendly and domain-customizable because it allows user-

defined or imported plug-ins. Our work uses Protégé-OWL 3.4.4 which comes with SWRL 

Tab [16] supporting reasoning and query. We also use Java JDK version 1.5.0.11 and 

Jess® rule engine [27] to do the inferences. In Protégé-OWL 3.4.4, there are three types 

of properties: object property, datatype property, and annotation property. An object 

property is used to define a relationship between individuals. A datatype property is used 

to define relationship between individuals and data literals such as integer, string, etc. An 

annotation property is used to attach metadata to classes, individuals or properties [83].  
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Protégé also allows users to customize a property as functional, non-functional, 

symmetric, or transitive. The following examples are from [85]. If a property is functional, 

the cardinality between subject and object is N:1. For example, hasBirthday property is 

functional because one person can have only one birthday whereas the same birthday 

can belong to many people. In contrast, if a property is non-functional, the cardinality 

between subject and object is 1:N. For example, hasISBN property is non-functional 

because, a book can have multiple ISBNs whereas an ISBN can belong to only one 

book. If a property is symmetric, both following statements are true: subject-property-

object and object-property-subject; for example, isFriendOf property is symmetric 

because if John is a friend of David, then David is also a friend of John. If a property is 

transitive, the following statement: subject-property-object2 is true if subject-property-

object1 and object1-property-object2 are true; for example, subClassOf property is 

transitive because if class A is a subclass of class B and class B is a subclass of class C, 

then class A is also a subclass of class C. 

2.2.2 Adding Spatial Dimension to Ontology 

We use our formal specification of spatial ontology and adopt one of the 

approaches proposed in [22] for adding temporal dimension to existing ontologies. Figure 

2-7 gives an overview of our approach. 

In Figure 2-7, SProposition2D class has hasGeoShape relationship with 

SGeometry class, which contains geometry types: point, single line, non-ring connected 

line, and ring connected line. Point consists of two numbers: longitude and latitude. 

Single line consists of exactly two points. Connected line consists of three points or more. 

There are two types of connected lines: non-ring and ring. hasDistance is a relationship 

between SGeometry class and DistanceUnit class. DistanceUnit contains the units of 

distance measurements such as km., mile, yard, etc.  
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SGeometry DistanceUnitSProposition2D hasDistance

Point Curve

hasGeoShape
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Mile

Kilometer
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ConnectedLine
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                     - Instance 
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        - IS-A Subclass
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hasList

hasXFloat

Float hasY
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Figure 2-7 Method to Add Spatial Dimension to Existing Ontology 

The principle is that any class in need of spatial dimension will be added as a 

subclass of SProposition2D class. Consequently, the class will automatically have 

hasGeoShape property that enables a class entity to be modeled as one of the spatial 

data types. 

House (H1)
Local Road (R

1)

House (H2)

I-20 Highway (R
2)

School (S1)

Point (S1) 

representing school

Points (H1,H2) 

representing houses
ConnectedLines (R1,R2) 

representing local road 

and I-20 highway

 

Figure 2-8 Example of How Entities are Modeled in Spatial Dimension 

An example is shown in Figure 2-8 Suppose we have a yellow page ontology which 

contains contact information of individuals, businesses, parks, trains rails, roads and 

highways, etc. We would like to add a spatial dimension to it. As a result, we will add 

house, park, train rail, road and highway classes to be subclasses of SPropostion2D 
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class as shown in Figure 2-7 so that those classes will have spatial features of one of the 

spatial data types. In this example, houses and schools are modeled as points, roads and 

highways are modeled as connected lines, and parks are modeled as polygons. The 

choice of geometry type depends on the application scenarios. 

In Protégé, a point is defined by two functional datatype properties, hasX and 

hasY of type float. A point is used to model an entity which does not have area. A single 

line is defined by exactly two distinct points. hasP1 and hasP2 are functional object 

properties of a single line. A connected line is defined as a list of three or more ordered 

points. hasList is a functional datatype property of a connected line, of type string, which 

has a following string pattern: 

{n, p1, p2,..., pn} 

where n is number of points, n ≥ 3 and pi is point i. This string pattern will be eventually 

parsed by Protégé built-ins into number of point instances.  

2.2.3 Developing Spatial Built-ins in Protégé 

According to Figure 2-1, for spatio-temporal reasoning, inference, and querying 

in Protégé, we develop the spatial operations as Protégé built-ins based on our 

formalization of spatial operations. We implemented 33 major spatial operations along 

with additional 6 utility built-ins in Protégé as shown in Table 2-1 and 2-2. Spatial built-ins 

can be divided into six categories depending on the combinations of geometry data 

types: point versus point, point versus single line, point versus connected line, single line 

versus single line, single line versus connected line, and connected line versus 

connected line. 
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Table 2-1 33 Major Spatial Built-Ins 

Spatial Built-ins Point (1) Single Line (2) 
Connected Line (3) 

[Non-Ring & Ring] 

Point (1) 

Equal Endpoint 

EndpointNe 

EndpointSw 

Ontheline 

Endpoint* 

EndpointNe* 

EndpointSw* 

Ontheline 

InteriorPoint 

Single Line (2) 

 Equal 

Meet 

Cross 

Tcross 

Overlap 

Within: 

- Complete  

- SharedEndpoint 

Intersect 

Meet* 

Cross 

Tcross 

Overlap 

Within: 

- Complete  

- SharedEndpoint* 

Intersect 

Connected Line (3) 

[Non-Ring & Ring] 

  Equal 

Meet* 

Cross 

Tcross 

Overlap 

Within: 

- Complete  

- SharedEndpoint* 

Intersect 
 

*Operations apply only on non-ring connected lines. 

Table 2-2 6 Additional Spatial Utility Built-ins 

Additional Built-ins 
Slope, IntersectPoint, Between, 
ProperBetween, Distance, 
CreateSingleLine 

 

In our notation, 1 represents point, 2 represents single line, and 3 represents 

connected line (non-ring and ring), which are appended to the operation (built-in) name. 

When defining a spatial rule in Protégé, the built-ins have to be specified as the following 

pattern: 

spatial:<BuiltinName>XY(<GeoTypeX>,<GeoTypeY>) 
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where X and Y are ordered number corresponding to geometry data types. For example, 

to define an EndPoint built-in of point and single line, we specify: 

spatial:endpoint12(<point>,<single line>) 

This is because different combinations of geometry data types have different ways of 

implementing the same operation. As a result, we need to indicate the exact operation we 

are using.  

2.2.4 Spatial Reasoning, Inference and Querying 

Once we have a spatial dimension added to an ontology and have spatial built-

ins ready in Protégé, we can do spatial reasoning, inference and querying. 

 

House (H1)

Road (R
1)

House (H2)

I-20 Highway (R
2)

School (S1)

1 km.
2 km.

3 km.

Road 

 Intersection (P1)

 

Figure 2-9 Example of How Spatial Operations can be used in Reasoning 

We enable spatial reasoning by defining rules in SWRL Tab [16][30] and we use 

the Jess® [27] rule engine to perform inference on those rules. Spatial built-ins that we 

developed can be combined with other built-in libraries including SWRLB [16], 

TEMPORAL [22], SQWRL [21], etc. to create complicated rules. The following example 

shows how spatial built-ins can be used in reasoning and inference. Suppose we have 2 

houses, 1 school and 2 roads as illustrated in Figure 2-8. We would like to define a rule 
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regarding a school zone. Suppose, we define a location in a school zone as a point within 

3 kilometers radius centered at a school as shown in Figure 2-9. This definition can be 

implemented in Protégé by the following rule: 

 

     (  )    (      )    (      )      (  )           (      )    (       ) 

    (       )                (                  )              (    ) 

                 (  ) 

 

For the next example, we would like to define highway-connected local roads as local 

roads that intersect with any highway at some point. The corresponding rule is: 

 

     (  )           (       )       (        )        (  )           (       ) 

       (        )                   (       )                            (  ) 

 

When we use Jess®, the above rules will classify points ?p and roads ?r as 

SchoolZonePoints and HighwayConnectedLocalRoads respectively if they satisfy the 

rules above.   

To query, we use the select built-in from the SQWRL library [21]. The following 

example (see Figure 2-10) shows how spatial operations can be used in querying 

functionality. Suppose we have 3 roads in our ontology defined as r1={3,1,1,1,3,9,6}, 

r2={4,2,5,8,2,6,7,9,5} and r3={3,1,4,1,6,3,9} and we would like to list all road intersections 

(x,y). The query can be defined as: 
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Figure 2-10 How to Define Rule in Protégé 

 

When we processed the above query, the following table resulted from Protégé’s 

SQWRL Query Tab (Figure 2-11). 

 

 

 

 

 
 

 

 
 

Figure 2-11 Query Result Table in Protégé 

RoadIntersectionRule 

?x ?y 

6.739130434782608 5.1521739130434785 

8.040000000000001 5.640000000000001 

3.857142857142857 4.071428571428571 

 

       (   )           (         )       (          )     (   ) 

             (         )       (          )               (         ) 

                          (               )              (     ) 
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2.3 OpenGIS
®
 SQL Completeness 

 Our spatial ontology formalization is based on OpenGIS
®
 [23]. So, it is important 

to prove that OpenGIS can actually capture the complete set of operations that cover 

spatial concepts. OpenGIS SQL is a standard for incorporating GIS and spatial concepts 

into the SQL standard database language. The objective of this section is to prove the 

completeness of OpenGIS SQL spatial relationships and operations. There are three 

types of 2-D spatial objects: Point (P), LineString (or Curve) (L), and Polygon (or Region) 

(A). Egenhofer shows that the spatial relationships between points, lines and polygons 

described in [32][33][34] are complete; that is, all possible 2-D spatial relationships are 

given in that paper. [33] first considers all cases based on the nine-intersection matrix 

(9IM) model and then eliminates cases that cannot occur. The number of all possible 

relationships between points, lines, and polygons identified in [33] is shown in Table 2-3. 

Thus, the complete set of 2-D spatial relationships is comprised of 68 relationships.  

We show that OpenGIS SQL spatial relationships and operations are also 

complete by proving that all possible spatial 2-D relationships between points, lines, and 

polygon described in [33] can be expressed by OpenGIS SQL relationships and 

operations. Although OpenGIS SQL does provide a Relate operation, which is used to 

test exhaustively for intersections between the interior, boundary, and exterior of the two 

spatial 2-D objects given the dimensionally extended nine-intersection matrix (DE-9IM) 

[23], and hence can easily be used for the completeness proof, we found that the Relate 

operation is not needed since all the 68 possible spatial relationships between points, 

lines, and polygon can be described by using other OpenGIS SQL relationships and 

operations as you will see in our proof. In addition, the Relate operation may be 

considered as inefficient as it tests exhaustively for the intersections between the interior, 

boundary, and exterior of the given two spatial objects and also allows users to specify 
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the spatial relationships that are not possible in real life. Also, as the OpenGIS SQL 

document states [23, Page 2-15], relate “has the disadvantage that it is a lower level 

building block and does not have a corresponding natural language equivalent”, so it will 

be difficult for user to utilize the relate operation. Therefore, in our proof, we use a limited 

number of OpenGIS SQL spatial relationships and operations (excluding Relate 

operation) to describe all possible cases of the complete set of 68 spatial relationships 

identified in [33].  

Table 2-3 Number of Possible Cases between 2-D Spatial Objects 

Pairs P/P P/L P/A L/L L/A A/A 

# cases 2 3 3 33 19 8 

 

2.3.1 Summary of OpenGIS SQL Spatial Relationships and Operations 

There are four main groups of methods in OpenGIS SQL: 

- Basic methods on geometric objects 

- Methods for testing spatial relationships between geometric objects 

- Methods for supporting spatial analysis 

- Miscellaneous methods for each type of geometric objects 

We briefly discuss each of these groups next. For complete details about these 

methods, please refer to [23]. 

2.3.1.1 Basic methods for geometric objects  

These operations are used to determine the properties and representation 

method for the 2-D objects. Table 2-4 is the summary of these methods along with the 

compatible geometric objects: P, L, and A. 
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Table 2-4 Summary of Basic Methods of OpenGIS SQL 

Operations P L A 

Dimension( )    

GeometryType( )    

SRID( )    

Envelope( ) X   

AsText( )    

AsBinary( )    

IsEmpty( )    

IsSimple( ) X   

Is3D( )    

IsMeasured( )    

Boundary( ) X   

 

2.3.1.2 Methods for testing spatial relationships between geometric objects 

These are eight main binary boolean relationships that return TRUE if the 

particular topological relationship exists between the two given spatial objects. Table 2-5 

shows a summary of the methods along with the compatible pairs of geometric objects: 

P/P, L/L, A/A, P/L, P/A, and L/A.  

Table 2-5 Summary of 8 Main Spatial Relationships of OpenGIS SQL 

Relationships P/P L/L A/A P/L P/A L/A 

Equals( )    X X X 

Disjoint( )       

Touches( ) X      

Crosses( ) X  X    

Within( )       

Contains( )       

Overlaps( )    X X X 

Intersects( )       

 

Our proof uses these operations in Table 2-5, which cover all binary spatial 

relationships in OpenGIS SQL. The first 7 operations above (Equals – Overlaps) can be 

summarized in the following decision tree (Figure 2-12), which is useful for understanding 

the correct definition for each relationship [23]. In Figure 2-12, the root of the decision 

tree is the leftmost node. Interior nodes describe spatial conditions, and leaf nodes 
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represent OpenGIS SQL operations, where all the condition from root to leaf must be 

satisfied for the operation. 

(Interior(A) Interior(B)) ≠ Ø

(A B)≠ A

(A B)≠ Ø 

Dim(A) = Dim(B) = Dim(A  B) 

(A B)≠ B

Overlaps

Contains

(A B)≠ B

Crosses

Within

Equals

Touches

Disjoint  

Figure 2-12 Summary Decision Tree of First 7 OpenGIS SQL Spatial Relationships 

(Equals - Overlaps) [23][81] 

2.3.1.3 Methods that support spatial analysis  

These operations either return metric values, or create new objects out of 

existing ones. Table 2-6 shows a summary of the methods along with the compatible 

geometric objects, and their pairs: P, L, A, P/P, L/L, A/A, P/L, P/A, and L/A.  

Table 2-6 Summary of Methods that Support Spatial Analysis of OpenGIS SQL 

Operations P L A P/P L/L A/A P/L P/A L/A 

Distance( ) X X X       

Intersection( ) X X X       

Union( ) X X X       

Difference( ) X X X       

SymDifference( ) X X X       

Buffer( )    X X X X X X 

ConvexHull( )    X X X X X X 
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2.3.1.4 Miscellaneous methods for each type of geometric objects  

OpenGIS SQL also provides miscellaneous operations for each type of 

geometric object as summarized below.  

1) Operations for Point (P) 

- X(P) 

- Y(P) 

- Z(P) (for 3-D – we do not use Z) 

- M(P) (allows application to associate any measure when needed for its 

environment with the point values) 

2) Operations for Curve (or LineString: L) 

- Length(L) 

- StartPoint(L) 

- EndPoint(L) 

- IsClosed(L) 

- IsRing(L) 

- NumPoints(L) 

- PointN(L,i) (return i
th
 point) 

3) Operations for Polygon (A) 

- Area(A) 

- Centroid(A) 

- PointOnSurface(A) 

- ExteriorRing(A) 

- NumInteriorRing(A) 

- InteriorRingN(A,i) (return i
th
 interior ring) 
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In our proof, we will show how combinations of these OpenGIS SQL spatial 

relationships and operations can be used to describe all relationships in [33][32][34]. 

2.3.2 Proof of Completeness 

We prove the completeness of OpenGIS SQL spatial relationships and 

operations by using proof by cases [102][35]. To prove by cases, we list all possibilities of 

the statement to be proved into cases [102]. We then show that in all cases, the 

statement is true [102]. Our proof first displays the complete set of 68 relationships [33] 

(each of which is numbered) in a graphical form as shown in Figure A-1. We then show 

how each relationship can be specified in OpenGIS SQL. Since the proof takes 

substantial amount of space, we described the proof in the Appendix A. 

2.4 Related Work 

Related work can be divided into two subsections: temporal ontology 

formalization and temporal information representation and querying in OWL [22][87]. 

2.4.1 Temporal Ontology Formalization 

Hobbs [13] presented temporal ontology formalization which can be embedded 

to OWL [87] to capture temporal reasoning on the semantic web. There are four main 

concepts that are discussed on the paper: temporal relation reasoning, measuring 

duration, clock/calendar, and describing time and duration. 

Temporal relation concept defines the reasoning of time instant and time interval, 

where time instant stores a point in time and time interval stores starting and ending 

times. In addition, the temporal operation reasoning is also discussed, such as before, 

inside, timebetween, properbetween, equal, meet, overlap, etc. Measuring duration 

concept defines a model to measure the unit of time and converts one unit of time to 

another. Clock and calendar concepts are used to appropriately reason about time zone 

and handle months with different days such as 28 days in the month of February. 
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Describing time and duration concepts are used to capture time and duration with 

different kinds of formats such as timestamp.  

2.4.2 Temporal Information Representation and Querying in OWL 

O’Connor and Das [22] proposed a technique to represent time dimension in 

OWL and demonstrated how temporal reasoning and querying over those ontologies on 

Protégé can be done. They presented two approaches in modeling temporal dimension: 

via user-defined property and via super class relationship. With regard to the first 

approach, they directly specify spatial features of entity through user-defined property. In 

the second approach, to represent time in OWL on Protégé, they first create a 

Proposition class which has a relationship hasValidTime to ValidTime class. The 

ValidTime class contains two types of time concepts: time instant and time interval. When 

we want to add temporal features to any class, the class will be added as a subclass of 

the Proposition class and it will inherit the time characteristics. They also mentioned that 

the second approach is more powerful for two main reasons. The first reason is the ease 

in distinguishing the class with and without temporal features just by looking at which 

classes are subclasses of Proposition class. The second reason is the eligibility to have 

additional co-existing spatial representation in the future through multiple inheritance, by 

having more than one parent classes, without causing any effects and deleting the prior 

ones. They used the second approach for adding temporal components into an existing 

ontology. The technique they used is known as “light-weight”. That is, time dimension 

could be easily added to existing ontologies with minimal changes. The built-ins temporal 

operations were implemented based on [2][3]. 
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Chapter 3  

Identifying Meaningful Concepts from Raw Data 

Starting from this chapter, we now turn our focus to a specific type of spatio-

temporal data in a particular application domain. Identifying meaningful concepts for a 

particular application domain is a very important step because each spatio-temporal type 

of data has its own characteristics, which need to be specifically designed according to 

their domain concepts. In our work, the spatio-temporal data used is raw rainfall data in 

the hydrology domain. Our goal for this chapter and the next is to summarize the raw 

rainfall data into a model that facilitates storm analysis and mining. We identify 

meaningful storm concepts from the raw rainfall data in this chapter and discuss two 

different approaches to convert raw rainfall data into the meaningful storm concepts in 

the next chapter. The preliminary approach for storm analysis and mining is discussed in 

Chapter 5. This chapter is organized as follows. Section 3.1 discusses background and 

motivation of identifying meaningful storm concepts from raw rainfall data. The 

description of raw rainfall data is discussed in Section 3.2. Finally, storm formalization is 

defined in Section 3.3. (Related work of this chapter is discussed in Chapter 4, Section 

4.5.) 

3.1 Background and Motivation 

In hydrology, most storm analysis has mainly focused on location-specific 

analysis (either site-specific or region-specific) [36][37][38][39], meaning that each 

location is considered independently when analyzing a storm. An example would be 

determining how many storms occurred at site location 376501 in the year 2011. But in 

reality, a storm covers many locations over a period of time, so location-specific analysis 

is insufficient. Our goal is to analyze rainfall data in a storm-specific way by considering 

all the locations over time for each storm, so we can determine storm-specific 
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characteristics such as how big the storm is, how many sites are covered, the storm 

track, and what is its overall depth and duration. Analyzing the whole storm can give 

more insight and information since it reflects how a storm actually behaves in nature. In 

particular, a storm can start at one location and end at another, and the storm typically 

covers multiple locations at each time point. However, it is very difficult to analyze storms 

directly from the raw data for several reasons. First, the quantity of data is very large that 

it qualifies as big data [54][55]. Second, the data is stored in a manner that makes it 

difficult to identify the storms. The data has been gathered as frequently as every five 

minutes and covers a huge area of observation fields. Traditionally, the data is recorded 

and stored in either printed or file/folder format. As a result, attempting to do storm 

analysis with such a large amount of data and the traditional way of storing the data will 

require manually combining all data across an enormous number of folders and 

processing them together. This makes it nearly impossible to do storm analysis [40]. As a 

result, to enable storm-centric analysis, we first identify meaningful storm concepts by 

incorporating hydrology concepts (as we will discuss in Section 3.3). We then develop 

algorithms to identify the different types of storms as described in the formalization. 

Finally, we store the identified storms in a custom designed database schema. The big 

picture of our methodology is shown in Figure 3-1.  

Raw Data
Storm DataIdentification

Algorithms

Visualization

                   Users

< 1% of Raw Data

 

Figure 3-1 Overview of Our Methodology 
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This will allow domain experts to do more robust and flexible analysis and help them 

better understand their own data and potentially can lead to new discoveries.  

3.2 Description of Raw Rainfall Data 

 The raw rainfall data that we used comes from National Weather Service (NWS) 

– West Gulf River Forecast Center (WGRFC) [42] and is called Multi-sensor Precipitation 

Estimates or MPE [42][45][77][79] reflecting how it is calculated, which is estimated by 

using a combination of radars and physical rain gauges (multi-sensors). The raw data is 

provided as hourly text files containing four attributes: observation time, row number, site 

id, and precipitation value, covering three main states (Texas, New Mexico, and 

Oklahoma) and some surrounding areas including parts of Arizona, Utah, Colorado, 

Kansas, Missouri, Arkansas, Louisiana, and Mexico [42]. (Figure 3-2 shows the coverage 

of our MPE observations.) The observation time is indicated in the file name (e.g., 

2011041323_2011041400), whereas the remaining attributes are stored in the file. Each 

row of the file content consists of row number, site id, and precipitation value (inches), 

and reports one observation per one site. The total number of covered observed site 

locations are 165,750. Site points are four kilometers apart to the north, south, east, and 

west. The raw rainfall data is supplied as text files. Each hourly text file contains 

precipitation data for that particular hour for all sites. This means that the number of 

records inserted per hour, day, month, and year is 165,750, 3,978,000, 119,340,000, and 

1,432,080,000, respectively.  

 

Figure 3-2 Coverage of WGRFC Observations [42] 
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The raw rainfall data text file is based on the HRAP (Hydrologic Rainfall Analysis 

Project) standard grid coordinate system [49][58] and is ordered by site id in a row major 

order from west to east and south to north. Each row has 425 sites and each column has 

390 sites. Because of the systematic grid structure, given any site, we can determine the 

neighboring sites by using the relationships described in Figure 3-3. Moreover, given any 

site id, we can determine its HRAP local X and Y coordinates, using equations (1) and 

(2); where a is the minimum HRAP x coordinate and b is the minimum HRAP y 

coordinate, c is the first site id, and d is a value difference between site ids in adjacent 

rows in the same column. Additionally, given any (x, y) coordinate, we can calculate the 

corresponding site id using equation (3). Equation (3) is derived from (1) and (2), by 

considering (   ) and (   ) as outputs of the operations (mod and div) of the same 

operands ((        ) and d). In our case, a, b, c, and d are 290, 10, 15599, and 1701, 

respectively.  

    ((        )      )                                                     ( ) 

    ((        )      )                                                       ( ) 

        (   )  (   )                                                      ( ) 

Our raw data contains 16 years of historical MPE data from 1997 to 2012. The 

size of the raw data in textual format is approximately 480 GB, and when loaded to the 

CUAHSI ODM relational database [45][47][58][44], it is about 5.4 TB. Every year an 

additional 30 GB/348 GB is added to textual/CUAHSI data.  
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siteID
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siteID + 1701
(x, y+1)

(siteID + 1701) - 1
(x-1, y+1)
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15599

(290, 10)
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Figure 3-3 Relationships among Neighboring Sites 

3.3 Rainstorm Formalization 

The goal of our storm formalization is to analyze storms as a whole and at the 

same time, still allow traditional location-specific storm analysis. Since a storm can start 

at one place and stop at another, we slice the whole storm into several pieces by hour. 

We then assemble each slice back together into the original overall storm. Each slice of 

storm is, in fact, an hourly storm. We formalize storms into three different categories 

(local storms, hourly storms, and overall storms).  

Before defining our storm-related concepts, we specify some predicates 

(relationships) and terminology that will be used in the definitions. 

- neighbor(sa, sb, d): means that sites sa and sb are adjacent. Referring to Figure 4-

4, if sa is the central site, sb can be any of the other sites. d is the direction from 

sa to sb, and is one of (N, S, E, W, NE, NW, SE, and SW). 

- area(s): the area of site s.  

- storm area: the total areas of a storm. 

Next, we define the concepts of local storm, hourly storm, and overall storm. 
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3.3.1 Local Storm 

Generally speaking, local storm is a site-specific storm, which considers each 

site location independently when analyzing a storm, e.g., determining how many storms 

occurred at site location 355879 in 2011. An example of local storms is the sequence of 

storms that occurred at site location 355879 last month. Two distinct local storms are 

separated by at least h consecutive time points with zero precipitation, where h is called 

the inter-event time [36][37][52]. In our case, inter-event time (h) is set to 6 hours as 

suggested in [36][37][103]. There may be some consecutive time points with zero 

precipitation within a local storm, as long as it is less than h time points. For any local 

storm, there will not be a subsequence of h or more consecutive zeroes in the series. 

Local storm is one type of storm, which was researched by most hydrologists 

[36][37][38][39]. Figure 3-4 shows some examples of local storms at site id, 355879. The 

formal specification of local storm is described in Definition 1. 

Time

(hourly)

Precipitation (inches)

0

1   2   3   4   5   6   7   8  

0.05

0.10

0.15

0.20

..
.

...

inter-event

time > 6 hrs.

 

Figure 3-4 Examples of Local Storms at Site ID, 355879 

Definition1. If L is a local storm, then:  

- s(L) = site location id for local storm L  

- T(L) = (t1, t2,…, tn) is the sequence of consecutive time points for local storm L at 

site s(L), such that: 

- t1 = start time and tn = end time 

- p(ti) is the precipitation measured at site s(L) for time ti-1 to ti (inches)  
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- p(t1) > 0 and p(tn) > 0   

- ti – ti-1 = 1, i  1 (all time points in T(L) are consecutive.)   

- p(tk) = p(tk+1) = … = p(tk+(h-1)) = 0 is false, where k = 1, 2, ... , (n-h)+1 and  

h = inter-event time (maximum number of h-1 consecutive zero 

precipitation time points in a local storm) 

Let LL be a list of all local storms at a particular site (i.e., LL = (L1, L2,…, Lm)). LL 

must satisfy the following properties: 

- Li.start_time - Li-1.end_time > h, i  1 

- Li+1.start_time - Li.end_time > h, i  m 

(These formalize the concept that two different local storms at site s must be 

apart by at least inter-event time.)  

Storm characteristics for this storm type include: 

- duration: the duration of a local storm (n hours) [51] 

- total rainfall: the amount of precipitation occurring throughout the storm duration 

at a particular site (∑  (  )
 
          ) [51]. 

-  intensity: the total rainfall divided by duration (
              

        
          ) [51].  

3.3.2 Hourly Storm 

Informally, hourly storm is a time-specific storm, which is an orthogonal concept 

to local storm. It considers each hour independently when analyzing a storm. An example 

of hourly storms is a set of storms that occurred between 9:00 am and 10:00 am today 

across various site locations. Hourly storm considers a specific time point (an hour) 

instead of considering a particular site location. In other words, local storm fixes one site 

and covers its data over many time points, whereas hourly storm fixes a time point and 

covers its data over many adjacent sites. Two different hourly storms are separated by 

space-tolerance n [62]. Space tolerance specifies a maximum number of sites (n) with 
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zero precipitation allowed in between any two non-zero precipitation sites to be 

considered as part of the same hourly storm. The space tolerance concept allows non-

zero precipitation sites to still be categorized as part of an hourly storm even if they are 

not in adjacent neighboring sites but are indirect neighboring sites within a certain 

number of intermediate sites (see Definition 2). 

Definition 2. We say that site b is an i-indirect neighbor of site a if: 

        (    )         (     )            (    ) 

That is, when space-tolerance is set to n, the neighbors of site a will include 

direct neighbors, as well as all i-indirect neighbors of a for i = 1, 2, … , n. Figure 3-5 

compares space-tolerance of 0 and 1. With the same set of non-zero precipitation values, 

represented by dots at a particular hour, with space-tolerance n=0, 2 hourly storms are 

identified whereas space-tolerance n=1, only 1 hourly storm is identified. 

 

 

 

 

 

  a) Space-tolerance, n=0     b) Space-tolerance, n=1 

Figure 3-5 Comparison between Different Space-Tolerance Values 

In our work, space-tolerance is set to zero. That is, all non-zero precipitation sites of an 

hourly storm must be adjacent. With space-tolerance set to zero, an hourly storm can be 

formally defined by a set of adjacent sites with non-zero precipitation values at a 

particular hour as described in Definition 3.  
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Definition 3. If H is an hourly storm, then:  

- t(H) = time point (a particular hour) 

- S(H) = {s1, s2,…, sn} is a set of site location ids si such that:  

- given any si in the set, p(si) > 0, where p(s) is precipitation measured at 

time t(H) for site s. 

- if |S(H)| = 1, then it contains a single site with no neighbors. 

- otherwise, S(H) satisfies these properties: 

- Connectivity:      ( )     ( )          (     ) (every site 

in the set must have at least one neighbor that is also in the set) 

- Maximality [98]: 

                 (    ( )          (     ))      ( ) 

(for any two neighboring sites sa, sb with non-zero rainfall in the 

same hour, they belong to the same hourly storm) 

The last property can also be stated as follows. Let HH be a set of all hourly 

storms at a particular hour (i.e., HH = {H1, H2,…, Hm}). HH must satisfy the following 

property: 

-           (           )            (     ) (two different hourly storms 

at the same hour do not have overlapped site(s))   

The characteristics of hourly storm are listed below: 

- total rainfall: the total amount of precipitation occurring at a particular hour for the 

sites of an hourly storm ( ∑  (  )
 
           ). 

- coverage: number of sites covered by an hourly storm ( |S(H)| sites ). 

- average: the average precipitation for an hourly storm ( 
              

        
             ). 

- center: a storm center based on hydrology concept. It is defined as the site 

coordinate(               ) with the highest precipitation at a particular hour. If 
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there are more than one site with highest precipitation, the         and         will 

be averaged based on those sites coordinates. 

- centroid: a storm center based on geometry concept. It does not take into 

account the precipitation values when calculating the storm center. The center of 

the storm will be calculated solely based on the average of x and y coordinates of 

all the sites of an hourly storm.  

- boundary: a minimum bounding rectangle (MBR) covered by an hourly storm, 

defined by two HRAP sites coordinates: one with the lowest x and y (         ) 

and another one with the highest x and y (         ). 

3.3.3 Overall Storm 

Unlike local storm and hourly storm that consider either a site location or time (an 

hour) independently, overall storm considers both location and time together when 

analyzing a storm. So, the result is the capture of storm as a whole, called overall storm, 

which can capture storm movement and other “overall” storm characteristics that could 

not be found in most hydrology papers [36][37][38][39][53]. Overall storm is a 

combination of hourly storms that satisfy two requirements: grouping-window g and 

spatial-window s [62]. Grouping-window is the time interval within which storms will be 

considered to be part of the same storm. Spatial-window is the number of common site(s) 

shared between any two successive hourly storms. This definition of overall storm 

ensures that hourly storms that move to the same path will be considered as the same 

overall storm. According to hydrology concepts, it is very unlikely that two different paths 

of hourly storms with different origins and/or destinations could end up being part of the 

same overall storm. However, if that is the case, the final path of the overall storm will be 

averaged out based on those two paths. In this work, grouping-window and spatial-

window are set to 1 hour and 1 site, respectively. An example of overall storm and its 
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corresponding hourly storms is shown in Figure 3-6. The formal specification of overall 

storm is described in Definition 4. 

9:00

hs1

10:00

hs2

11:00

hs3

Grouping-window

Spatial-window

Storm 

center

Storm 

track

 

Figure 3-6 Example of Overall Storm and its Corresponding Hourly Storms 

Definition 4. If O is an overall storm, then:  

- O = (V1, V2, … , Vn) such that:  

- Vi  is an hourly storm set at hour i where i = 1, 2, …, n, V1 is a set of 

hourly storms in the first hour (i.e., {H1,1, H1,2,…}), and Vn is a set of 

hourly storms in the last hour (i.e., {Hn,1, Hn,2,…})  

- if |O| = 1, then the overall storm is equivalent to an hourly storm 

- otherwise, O satisfies these properties:  

-                ( )    ( )   , where k  n and g is 

grouping-window  

-                ( )   ( )   , where k  n and p is spatial-

window  

- Maximality [98]:                         (         

  (  )   (  )      (  )   (  )   )           

The maximality property of overall storms can also be stated as follows. Let OO 

be a set of all overall storms (i.e., OO = {O1, O2,…, Om}). OO must satisfy the following 

property: 
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-                  (         )   

  (   (  )    (  )      (  )   (  )   ) 

The following are overall storm characteristics: 

- total rainfall: the total amount of precipitation occurring throughout the storm 

duration across the hourly storms 

- duration: the duration of an overall storm (n hours) 

- intensity: the total rainfall divided by the duration ( 
              

        
 inches per hour). 

- coverage: the number of “distinct” sites covered an overall storm 

- num sites: the summation of each hourly storm coverage of an overall storm 

(Note that a site in num sites can be repeated whereas one in coverage cannot.)  

- average: the average precipitation (per site) for an overall storm 

( 
              

         
                 ). 

- intensity per site (or average per hour): the intensity divided by num sites (or the 

average divided by duration). This characteristic gives an idea of how intense a 

rainstorm is for any given site location covered by an overall storm.  

- total average: the summation of storm average for each hour of an overall storm 

- total average per hour: the total average divided by the storm duration 

- track: a sequence of storm centers or storm centroids of its hourly storms. (The 

storm track is important when doing trajectory-related analysis of the storm.)  

- speed: storm speed is defined as an average distance (km) that the storm moves 

per hour (kmph). It can be calculated by dividing the summation of distances 

between each pair of consecutive storm centers (or centroids) by storm duration. 

- boundary: an MBR covering the entire overall storm. 
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Chapter 4  

Converting Raw Data to Conceptual Data 

 In the previous chapter, we identified and formally defined meaningful rainstorm 

concepts. These were developed in consultation with hydrology experts from the Civil 

Engineering Department. In this chapter, we present a storm identification system to 

extract the three rainstorm information, as well as their characteristics and properties, 

from the raw data. Two approaches were developed: CUAHSI-based [62] and 

MapReduce-based [68][76]. Both share the same goal, which is to convert the raw data 

into meaningful storm conceptual data. The first approach focuses on converting raw 

rainfall data that follows the CUAHSI standard, which is based on the standard database 

schema called CUAHSI ODM [45][47][58] to store hydrological data in a relational 

database. Both input and output are processed and stored in a relational database. 

Although there are benefits from this approach, including easy integration with CUAHSI 

APIs [44] and user-friendly analysis/mining through SQL [56][57], the main disadvantage 

we found is the slow performance, because of the overhead associated with using a 

relational database for the input raw data. In addition, the algorithms developed were 

recursive depth-first search, which also contributed to the poor performance. As a result, 

the second approach was proposed with the focus on drastically improved performance 

for the data conversion algorithms by utilizing parallel processing on a cluster of nodes 

using the map-reduce framework. The CUAHSI-based approach is described in Section 

4.1 whereas the MapReduce-based approach is described in Section 4.2. We proposed a 

custom database schema for storing the conceptual storm output data in Section 4.3. The 

resulting storm data was verified in Section 4.4. Finally, related work is discussed in 

Section 4.5.  
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4.1 CUAHSI-based Approach 

The goals of this approach are to: 1) convert raw rainfall data into meaningful 

storm concepts (which can capture storm-centric characteristics) and 2) to follow the 

CUAHSI standard, which we will discuss in the next subsection.  

4.1.1 CUAHSI-related Background 

CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, 

Inc.) [47] is a well-known research organization conducting research in the water science-

related area since 2001, supported by National Science Foundation (NSF). Hydrologic 

observation data is gathered from various organizations and kept in various formats. To 

eliminate the ambiguities in sharing and interpreting hydrological information, CUAHSI 

ODM [45] was proposed in 2008 [58]. CUAHSI ODM provides a standard database 

schema to store hydrological data in a relational database. There are a total of 29 tables 

in the standard. Only five main tables will be briefly discussed (Sources, Sites, Methods, 

Variables and DataValues tables) as they were used in our analysis. Figure 4-1 shows 

the star-schema [41, Chapter 28] of the five main tables. For more details, please refer to 

[45][58].  

 

Figure 4-1 Star-Schema of 5 Main Tables of CUAHSI ODM 
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The Sources table stores information about where the observation data comes from. 

Table 4-1 shows our Sources table in the database.  

Table 4-1 Sources Table in CUAHSI ODM Database 

ID Organization SourceDescription SourceLink 

1 
NOAA’s National Weather 
Service West Gulf River 
Forecast Center 

Files containing MPE data 
from NWS-WGRFC 

http://www.srh.noaa.gov/wgrfc/ 

 

The Methods table (see Table 4-2) describes how the observation is collected. A brief 

explanation of the method along with its external link is also provided in this table.  

Table 4-2 Methods Table in CUAHSI ODM Database 

ID MethodDescription MethodLink 

1 
The precipitation data are multi-sensor 
(radar, satellite, and rain gauge). 

http://www.srh.noaa.gov/rfcshare/
precip_about_hourly.php 

 

The Sites table stores site information. The site information includes SiteID, Longitude, 

Latitude, LocalX, LocalY, LocalProjectionID (spatial reference system for LocalX and 

LocalY, such as HRAP [49], which we discussed in Chapter 3, Section 3.2), State, etc. 

Table 4-3 shows selected columns of our Sites table in the database.  

Table 4-3 Selected Columns of Sites Table in CUAHSI ODM Database 

ID Latitude Longitude LocalX LocalY LocalProjectionID State 

339072 31.0444 -97.9782 573 200 227 Texas 

339073 31.0402 -97.9379 574 200 227 Texas 

339074 31.0359 -97.8976 575 200 227 Texas 

 

The next table is the Variables table. The information about observations is stored in this 

table. Each variable description is stored in one row, and represents different observation 

types and properties. The property information includes how frequent the observation is 

recorded (instantaneous or consistent) and what unit is used for the observation values. 

That is, for example, hourly precipitation observation and 15-minute interval precipitation 

observation are considered different variables due to their properties even though they 
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both are the same precipitation observation types. We have one variable (one row) as 

demonstrated in Table 4-4 which describes hourly precipitation data.  

Table 4-4 Selected Columns of Variables Table in CUAHSI ODM Database 

ID Code Name UnitsID IsRegular TimeSupport TimeUnitsID 

1 MPE Precipitation 49 1 1 103 

 

The last table is the DataValues table, which stores the actual rainfall data. This table 

stores numerical observation values for each site and variable as well as the method 

used and the source where they are from. Table 4-5 shows some samples of what 

DataValues table entries look like. The first row of the table states that we have no rain 

(precipitation value = 0) at site location 88814 from 12pm to 1 pm on October 1, 2011. As 

we can see that regardless of whether or not we have rain, the precipitation value is 

inserted into the table. As a result, the database grows rapidly and is sparse. 

Table 4-5 Examples of DataValues Table Entries with Selected Columns 

ID DataValue DateTimeUTC SiteID VariableID MethodID SourceID 

1 0 2011-10-01 13:00 88814 1 1 1 

2 0 2011-10-01 13:00 88815 1 1 1 

3 0 2011-10-01 13:00 88816 1 1 1 

 

4.1.2 Storm Identification Algorithms 

In this approach, the storm identification system is divided into four main 

components: 1) local storm identification, 2) location proximity creator, 3) hourly storm 

identification, and 4) overall storm identification. Figure 4-2 shows the architecture of the 

CUAHSI-based storm identification system. 
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Figure 4-2 Data Flow Diagram of Storm Identification Modules 

4.1.2.1  Local Storm Identification  

This module separates rainfall events at any given site location (local storms) 

using h-hour inter-event time as storm separators. The input for this module is the 

relational rainfall data from the CUAHSI ODM DataValues table as well as inter-event 

time (h hours). In our experiment, only sites in Texas are considered. Since the area of 

Texas is very large, there is a significant climatic difference in its various regions. As a 

result, USGS (U.S. Geological Survey) divides Texas into 10 different regions based on 

their climatic and geographic characteristics and proposed a map, called Texas Climatic 

Regions [39], as shown in Figure 4-3. To be consistent with USGS, we analyzed each 

region separately. We also used threads [61] to improve algorithm performance. For each 

region, sites are equally partitioned into t different disjoint subsets. Each subset is then 

assigned to one thread. The threads run concurrently and then the results are merged to 

form LocalStormHours table. In our case, t is set to 4, assuming that each thread 

occupies each of 4 cores of our computer configuration.  
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Figure 4-3 Texas Climatic Regions [39] 

To separate rainfall events for a particular site, a parameter h, called inter-event-

count, is maintained to keep track of the number of consecutive zero precipitation 

(ordered by date and time). We use h=6 hours inter-event time, as suggested by Huff 

[36][37]. In some situations or applications, a different inter-event time is needed and this 

can be achieved by changing the parameter in our algorithm to other values. The 

identified local storms are then stored in the LocalStormHours table, which we will 

discuss in Section 4.3. Algorithm 1 highlights how the local storm identification works. 

The time complexity for the algorithm is  (
  (       )

 
), where s is the number of sites in a 

subset, c is the number of cores, and n is the number of records per site, assuming 

      is the cost for sorting by using ORDER BY in database query.  

4.1.2.2 Location Proximity Creator  

This module creates the LocationProximity table containing neighboring sites 

information for each site. The neighboring sites information is required for hourly storm 

identification but does not exist in any table of the original ODM standard.  
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Algorithm1. CUAHSI-based Local Storm Identification 

Input:  
- Rainfall data of a region (D)  
- Inter-event time (h) 
- Number of threads (t=4) 

Output:  
- Local storms stored in LocalStormHours table 

1: partition sites of region (D) into t subsets (S) 

2: assign each subset to a thread  

3: concurrently,   

4:   threads process their own subsets of sites Si, i = 1, 2, … ,t 

5:   for each site x in Si do 

6:      r   extract records of site x and order by time 

7:     for each record rj in r do 

8:      if inter-event-count < h then 

9:       include rj.precipitation as part of local storm k 

10:      else 

11:       start new local storm k++ 

12:      end if 

13:     end for 

14:    end for 

15: merge results from each thread into LocalStormHours table 

The input of this module is site information from ODM Sites table [43][45][58]. The output 

is stored in the LocationProximity table. Figure 4-4 shows neighboring sites of site 

355879. The neighboring information was calculated for each site using the HRAP 

coordinate information [49] labeled as LocalX and LocalY in the ODM Sites table. A site 

s(x,y) will have eight neighboring sites: sN(x,y+1), sS(x,y-1), sE(x+1,y), sW(x-1,y), 

sNE(x+1,y+1), sNW(x-1,y+1), sSE(x+1,y-1), and sSW(x-1,y-1) where (x,y) is a HRAP 

coordinate of site s. The algorithm is relatively simple and so omitted here. The time 

complexity is O(n) where n is the number of sites. This table, however, is not needed in 

the map-reduce algorithm, because the neighboring sites information can actually be 

derived from site id presented in the raw data text files, as we describe in equations (1), 

(2), and (3) in Chapter 3, Section 3.2.  
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Figure 4-4 Neighboring Sites of Site Location 355879 

4.1.2.3 Hourly Storm Identification  

This module identifies hourly storms by finding neighboring sites that have 

precipitation during the same hour. Since all non-zero precipitation was already extracted 

and stored in LocalStormHours table, we then directly use LocalStormHours table instead 

of ODM DataValues table as an input to increase the performance of the module. 

Another input is LocationProximity table. The output is stored in the HourlyStormSites 

table. The algorithm (see Algorithm 2) is based on recursion and depth-first search. It 

checks for each hour to identify how many hourly storms there are, and the sites they 

cover. Similar to the local storm identification, each region is executed separately. 

However, we did not apply threading to this module since the amount of data to be 

processed is substantially less compared to the one of local storm identification module, 

because most of the zero-precipitation data has been removed. The time complexity for 

the worst case scenario is  (       ), where h is the number of hours in local storm 

data and s is the maximum number of non-zero precipitation sites in an hour.  
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 Algorithm2. CUAHSI-based Hourly Storm Identification 

Input:  
- Local storm data (L) 
- Location proximity data (P)  

Output:  
- Hourly storms stored in HourlyStormSites table 

1: for each hour h in L do 

2:    b   extract all records of hour h 

3:    for each site s in b do 

4:     if s.precipitation  0 then 

5:      identified as hourly storm i 

6:      depthFirstSearch(s, i, b) 

7:      start new hourly storm i++ 

8:     end if 

9:    end for 

10:  end for 

11:  depthFirstSearch(s, i, b) 

12:    candidates set c   expandNode(s, b, P) 

13:    for each candidate cj in c do 

14:     if cj.precipitation  0 then  

15:      identified as part of hourly storm i 

16:      depthFirstSearch(cj, i , b) 

17:     end if 

18:    end for 

 

4.1.2.4 Overall Storm Identification  

This module identifies all overall storms (which consist of hourly storms that are 

sharing some common site(s) (spatial-window s) within the specified grouping-window g 

hour(s)). The module takes hourly storm data from HourlyStormSites table as an input. 

An output is stored in the OverallStormHourlyStorms table, which indicates overall storms 

and their corresponding hourly storms. The algorithm (see Algorithm 3) uses recursion 

and depth-first search similar to the hourly storm identification algorithm. Instead of 

checking neighboring sites, it checks if successive hourly storms are sharing some 

common site(s) (spatial-window s) within the grouping-window g (in hours). In our 

analysis, grouping-window is 1 hour and spatial-window is 1 site. That is, if consecutive 

hourly storms are within 1 hour difference and sharing at least 1 common site, they will 

be considered as part of the same overall storm. Note that we did not apply threading to 

the algorithm as the process needs to be done sequentially and identify overall storms 
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one at a time. The time complexity for the worst case scenario is  (     ), where n is 

the number of hourly storms, m is the maximum number of qualified (both grouping- and 

spatial- windows) hourly storms for an hourly storm, and h is the maximum number of 

hours for an overall storm. 

Algorithm3. CUAHSI-based Overall Storm Identification 

Input:  
- Hourly storm data (R) 
- Grouping-window (g=1) 
- Spatial-window (s=1) 

Output:  
- Overall storms stored in OverallStormHourlyStorms table 

1: a   extract all hourly storm ids from R 

2: for each hourly storm id d in a do 

3:   identified as overall storm i 

4:   depthFirstSearch(d, i, a) 

5:   start new overall storm i++ 

6:  end for 

7: depthFirstSearch(d, i, a) 

8:    candidate set c   findCandidates(d, g, s) 

9:    for each candidate cj in c do 

10:     identified as part of overall storm i 

11:     depthFirstSearch(cj, i, a) 

12:    end for 

 

4.1.3 Experimental Results 

The data used for our preliminary experiment in this approach is 1.25 years 

(October, 2010 – December, 2011) of relational data from ODM DataValues table and 

covers only Texas. The data contains 394,505,690 records of historical hourly 

precipitation data covering 37,413 sites. The experiment was performed on a single 

server. The server runs on Microsoft
®
 Windows Server

®
 2008 Enterprise operating 

system with 2.83 GHz Intel
®
 Xeon

®
 quad-core processors, 20 GB of RAM, 500 GB of 

local disk, and 10 TB of external disk. The experimental results for each region are listed 

in Table 4-6. 

The experimental result (Table 4-6) shows the significant reduction in size of the 

storm data compared to the size of the raw data. The number of storm records is less 
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than 1% of the number of raw data records. The experimental result also indicates that 

East Texas has the most storm data whereas Trans-Pecos has the least storm data even 

though Trans-Pecos has more raw data compared to East Texas. This is consistent with 

the fact that Trans-Pecos is the driest region and East Texas is one of the wettest regions 

in Texas [59][60].  

Table 4-6 Experimental Results of CUAHSI-Based Approach 

 

In summary, in this approach, the raw rainfall data is first converted and inserted 

into CUAHSI ODM database. The programs were designed and developed mainly based 

on the fact that the raw data is stored in relational databases. The storm identification 

then processes the raw data from the relational database. The local storm identification 

uses selection and sorting features of SQL to complete the process. The hourly storm 

identification takes location proximity and local storms as inputs and identifies hourly 

storms at each hour. Finally, overall storm identification combines consecutive hourly 

storms that meet grouping- and spatial- windows requirements to create the overall 

storms and store them in a relational table. Both hourly and overall storm identification 

use the concept of graph search using depth-first search (DFS), to complete the process. 

Local 

Storms

Hourly 

Storms

Overall 

Storms

1. East Texas 48,953,130 325,504 21,983 4,632 352,119 0.72%

2. Edwards Plateau 73,415,532 257,859 20,136 4,191 282,186 0.38%

3. High Plains 31,711,927 97,327 8,334 2,165 107,826 0.34%

4. Low Rolling Plains 24,965,521 89,814 6,199 1,487 97,500 0.39%

5. North Central 59,082,957 299,082 17,303 3,463 319,848 0.54%

6. South Central 31,102,334 120,083 11,654 3,224 134,961 0.43%

7. South Texas 26,091,999 97,580 10,067 2,867 110,514 0.42%

8. Lower Valley 11,182,285 41,820 4,314 1,228 47,362 0.42%

9. Trans-Pecos 65,136,216 151,453 11,843 3,155 166,451 0.26%

10. Upper Coast 22,863,789 137,843 14,043 3,255 155,141 0.68%

TOTAL 394,505,690 1,618,365 125,876 29,667 1,773,908 0.45%

Number of Identified Storms
Number of 

Raw Data
Regions

Number of 

Storm Data

Reduction in 

Raw Data Size
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All the processing is done sequentially in a single machine. The advantages of this 

approach include: 1) it supports both location- and storm- specific analyses, 2) it is 

consistent with the CUAHSI ODM standard (additional relations storing the extracted 

output conceptual data can be viewed as an enhancement to the CUAHSI ODM), 3) the 

resulting storm data size is much smaller compared to the original size of the raw data, 

and 4) it fully supports SQL and other relational database functionalities so easy analysis 

and mining can be done. 

However, the major disadvantage of this approach is the slow performance due 

to several reasons. First, we used big raw rainfall data that are stored in a relational 

database as an input, which requires a very long time to retrieve the data to process. 

Second, the system is implemented based on graph search using DFS and recursion, 

which involve multiple scans of the same data. Third, the system is run on a single server 

without applying any distributed computing technology. Finally, we did not fully utilize the 

structure of the raw rainfall data format in the original text files. In the next approach 

(MapReduce-based) [68][76], we aim to improve the system performance.  

4.2 MapReduce-based Approach 

In this approach, every component of the storm identification algorithms are re-

designed and performance is significantly improved by utilizing the original structure and 

format of raw rainfall data and applying the efficient, well-known distributing computing 

technology (namely MapReduce [66] and Hadoop
®
 [67]) to speed up the performance. In 

this approach, instead of using data in the relational database as an input, we use the 

original raw rainfall data text files. We then applied distributed computing technology, 

map-reduce, to every component of the storm identification process in order to maximize 

the performance by parallelism. All components are re-designed to best suit map-reduce 

characteristics as well as the structure of the input data. MapReduce is a programming 
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paradigm developed by Google in 2004 [66] and now is becoming a new standard for 

distributed computing.  

As in the first approach, we load the identified storms (output data) into a 

relational database at the end so that analysis and mining can easily be done. The 

relational databases are used only for storing the final results of the identified storms; not 

during processing. The database schema is discussed in Section 4.3. 

4.2.1 Storm Identification Algorithms 

 In this approach, the storm identification system consists of three components 

instead of four as we take advantage of the known grid structure for neighboring 

information. The overview of this approach is illustrated in Figure 4-5.  

 

Figure 4-5 Overview of MapReduce-based Storm Identification System 

4.2.1.1 MapReduce for Local Storm Identification (MR-LSI) 

The previous implementation of local storm identification [62] required the 

selection of data from the relational database and then sorting them. The computation is 

done based on the selected sorted data and the result is inserted back to the database. 

The selection, sorting, and insertion required substantial execution time, making it 

impractical to analyze large datasets. 
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This new local storm identification algorithm [68] utilizes map-reduce, and uses 

the raw rainfall data text files as input. Each raw rainfall data text file contains the 

precipitation value of all the sites for a particular hour and hence, for the analysis of local 

storm, we need to group all the precipitation values by site and order them by time. Once 

all the values for a site are grouped together and ordered, then we can find all the local 

storms that occurred at that site. Thus, the local storm analysis contains two steps: 1) 

grouping precipitation values by site and ordering them by time and 2) finding the local 

storms and their characteristics for a site from the grouped values. In the map-reduce 

framework, there are three main phases: 1) map phase, 2) sorting and shuffling phase, 

and 3) reduce phase. The first two phases of map-reduce are used to perform the first 

step of our local storm identification and the reduce phase is used to find the local storms 

as well as their characteristics at the particular site.  

The pseudo code for the implementation for local storm analysis in the map-

reduce framework is shown in Algorithm 4. Each of the map tasks takes one raw rainfall 

file and processes it line by line emitting the site and time together as the key and time 

and precipitation value together as the value. We take advantage of the key-comparator 

class and grouping-comparator class of map-reduce to group the data on the basis of site 

id and then sort them by time. The reducer gets a site id as a key and list of precipitation 

values sorted by time. This list is processed sequentially to identify all the local storms 

and their characteristics at that particular site. We calculate the time complexity of the 

MR-LSI algorithm by determining the summation of maximum amounts of time spent by 

one map task, one sorting and shuffling task, and one reduce task. Thus, the time 

complexity is  ( )   (   )   ( )   (   ), where n is the number of sites 

presented in the file and m is the number of hours (records) per site.   
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Algorithm4. MapReduce-based Local Storm Identification 

Input:  

- Text file-format rainfall data  
- Inter-event time (h=6 hours) 

Output:  

- Local storms data in text file format 
1: class MAPPER 

2: function MAP(key object, value line) 

3:   key   (line.siteId, line.time) 

4:   value   (line.precipValue, line.time) 

5:   Emit(key, value)  

6: class REDUCER 

7: function REDUCE(key siteId, [val1, val2, …]) 

8:   timeList   null 

9:   //timeList.size = h + 2; timeList[0:1] represents start and end time, timeList[2:7] is used to keep track h 

10:   precipRec   null  

11:   interEventTime   0 

12:   lsId   1 

13:   timeList.Add(firstNonZeroPrecip.GetTime()) //for start time 

14:   timeList.Add(firstNonZeroPrecip.GetTime()) //for end time 

15:   precipRec.Add(firstNonZeroPrecip.GetPrecipValue()) 

16:   for all val  values [val1, val2, …] do 

17:    precipRec.Add(val.GetPrecipValue()) 

18:    if (val.GetPrecipValue() = 0) then 

19:     timeList.Add(val.GetTime()) 

20:     interEventTime++ 

21:    else  

22:     tempTime   timeList[0] //keep original start time 

23:     Clear(timeList)  

24:     reset interEventTime 

25:     timeList.Add(tempTime) 

26:     timeList.Add(val.GetTime()) //get the new end time 

27:    end if  

28:    if interEventTime ≥ h then 

29:     startTime   timeList[0] 

30:     endTime   timeList[1] 

31:     value.Set(startTime, endTime, precipRec, totalRainfall, duration, intensity) 

32:     Emit(siteId, lsId, value) 

33:     Clear(timeList) 

34:     Clear(precipRec)  

35:     lsId++ 

36:    end if 

37:   end for 

In our experiment, we analyze the raw rainfall data one year at a time. Storms 

that start in one year and end in the next may exist. Therefore, we perform post-

processing steps to combine these storms, and these local storms are assigned to the 

year where they started. These post-processing steps are done by using SQL. However, 
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they can also be done in other methods such as external scripts. Algorithm5 highlights 

how the post-processing steps work.   

Algorithm5. Local Storm Merging 

Input:  

- Relational tables: LocalStormHours and LocalStorms 
- Inter-event time: h (6 hours) 

Output:  

- Updates on tables: LocalStormHours and LocalStorms 
1: for each (current) year (except the last year: 2012) do 

2:   for each local storm cls in current year that ends between 18:00 (6pm) and 23:00 (11pm) do 

3:   //during the last 6 (h) hours of a year, the end time of cls is determined by the last non-zero precip. hour 

4:    s   cls.siteid 

5:    e   cls.endtime     

6:    if there exists a local storm nls at site s, which starts by e+h in the next year then 

7:     cls.Merge(nls) //updates LocalStormHours and LocalStorms tables accordingly 

8:    end if 

9:   end for 

10:  end for 

4.2.1.2 MapReduce for Hourly Storm Identification (MR-HSI) 

In the previous approach [62], we assume that any non-zero precipitation site 

can be part of the hourly storm, meaning it can start at one site and stop at a very farther 

site as long as there are some connections among them. As a result, we implemented 

DFS to keep track of every possible site and perform site node revisiting when needed. 

This, however, led to a high time complexity problem.  

In the new approach [68], the program is designed specifically to take full 

advantage of the original raw rainfall data text file structure. Since the grid (HRAP) is 

known and we know exactly which site is a neighbor of which (as described in equations 

(1), (2), and (3) in Chapter 3), only those candidate neighboring sites need to be 

checked. Unlike the previous approach which uses DFS to keep track of nodes, we use 

linked lists and append them together as we scan when necessary. Moreover, since the 

data in each text file is stored in row major order, we scan each grid row once. An 

overview of the hourly storm identification process is shown in Figure 4-6. 
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Figure 4-6 MapReduce-based Hourly Storm Identification 

The program starts from the very bottom grid row to the top by calling map 

function for each line in the text file. It begins to identify hourly storms as soon as it reads 

in the data in order to minimize the number of checks. The data are then kept in two 

arrays called previous and current arrays, which are two-dimensional arrays and contain 

site ids and hourly storm ids. The current array always does the identification based on 

the previous array. There are two main parts of the program. The first part (line: 7-17) is 

executed only once for the very bottom row in a grid whereas another part (line: 18-27) is 

executed for the rest. The first part identifies hourly storms within the same row whereas 

the other part identifies hourly storms within and across the rows simultaneously. At the 

end of each row scan, the hourly storms so far are identified and are kept in an array of 

linked lists called hourly storms list, in which index of array indicates hourly storm id and 

linked list contains a set of adjacent non-zero precipitation sites of the hourly storm. 

When the last row is reached, the final hourly storms are produced and already kept in 

the hourly storms list.  

Since the raw rainfall data files are independent from each other, and each file 

records hourly precipitation for an individual hour, map-reduce can easily be applied. 

Each hourly file is sent to a different mapper node for the identification of hourly storms.  
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Algorithm6. MapReduce-based Hourly Storm Identification 

Input:  

- Text file-format rainfall data 
Output:  

- Hourly storms data in text file format 
1: class MAPPER 

2: function SETUP() 

3:   prev.InitializeArray(), curr.InitializeArray() 

4:   hourlyStorms.InitializeArrayOfLinkedList() 

5:   id   0 

6: function MAP(key object, value r) 

7:   if r  first bottom grid sites then 

8:    if r.precip = 0 then 

9:     prev[r.site].hsId   0 //no hourly storm 

10:    else 

11:     if r.site = first site or r.leftNeighborPrecip = 0 then 

12:      prev[r.site].hsId   id++ 

13:      temp   CreateLinkedList(r.site) 

14:      hourlyStorms.AddLinkedList(temp) 

15:     else 

16:      prev[r.site].hsId   id 

17:      hourlyStorms.GetLinkList(id).Add(r.site) 

18:   else if r  next above grid sites then 

19:    if r.precip ≠ 0 then 

20:     if r.site = first site or r.leftNeighborPrecip = 0 then 

21:      CheckPrevious(r, id, prev, curr, 1) 

22:     else 

23:      CheckPrevious(r, id, prev, curr, 0) 

24:    else 

25:     curr[r.site].hsId   0 //no hourly storm 

26:   else 

27:    prev   curr  

28: function CLOSE() 

29:   Emit(hourlyStorms) 

30: function CHECKPREVIOUS(r, id, prev, curr, flag) 

31:   if flag = 1 then 

32:    if hsIds of all 3 neighbors of r in prev. array = 0 then 

33:     curr[r.site].hsId   id++ 

34:     temp   CreateLinkedList(r.site) 

35:     hourlyStorms.AddLinkedList(temp) 

36:    else  

37:     minId   MinHsId(r.all3Neighbors in prev. array) 

38:     curr[r.site].hsId   minId 

39:     hourlyStorms.GetLinkedList(minId).Add(r.site) 

40:     UpdateHsId(r.neighbors, minId) 

41:     minId   0 //reset minId  

42:   else 

43:    curr[r.site].hsId   id 

44:    hourlyStorms.GetLinkedList(id).Add(r.site) 

45:    if hsId of r’s southeast neighbor in prev ≠ id then 

46:     UpdateHsId(r.southeastNeighbor, id) 
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At the closing of mapper, all hourly storms identified within the hour will be written back to 

disk. Currently, no reducer is needed because there is no need to group the data or sort 

them in any order. The raw files, by themselves, are already grouped and sorted by site 

id in a row-major order as mentioned in Chapter 3, Section 3.2. The algorithm for hourly 

storm identification is shown in Algorithm 6. The algorithm has a linear time complexity 

( ( )), where n is the number of lines (which also equals to the number of sites) in the 

text file.  

4.2.1.3 MapReduce for Overall Storm Identification (MR-OSI) 

In the previous approach [62], we use graph traversal (DFS) to identify overall 

storms. It uses backtracking according to the DFS concept. The two major disadvantages 

of this approach are that: 1) the next identification process could not start until the current 

identification is finished (sequential processing), and 2) the program interacts with large 

amounts of data residing in a relational database causing large overhead even when 

retrieving hourly storm data.  

In the new approach [76], we no longer interact with the data stored in a 

relational database. Our input is from map-reduce-based hourly storm identification 

algorithm as hourly storm text files, which have the following format: 

(hsid, time, <list of hourly storm characteristics>,  

<list of pairs (site : precipitation value)>) 

The new algorithms are designed to work in parallel to utilize multiple machines by using 

map-reduce framework. Instead of the recursion used in DFS that identifies overall 

storms sequentially one by one, we develop an iterative MapReduce approach that 

divides the identification process into several iterations. In each iteration, partial overall 

storms are identified concurrently on multiple machines. The length of partial overall 

storm starts from 1 and keep increasing as the iteration level goes up. The flow of the 
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algorithms could be thought as bottom up that builds overall storms from the smallest unit 

(1-hour duration) and expands until it is pruned (written to the output files) or ended at the 

last iteration. There are three phases in our new algorithm: mapper, partitioner, and 

reducer. All phases are executed iteratively. The number of iterations depends on the 

size of input file, which is the total number of hours (m) in our case.  

In the mapper phase, each map task takes one hourly storm text file as an input, 

calculates original hour id (hidorig), and emits it along with all of its hourly storms as key-

value pairs. We process the data for one year at a time. The amount of data to process, 

however, can be changed to other sizes such as 2 or 5 years. The original hour id starts 

from 0, for the first hour of input files, until the last hour, which in our case, it is either 

8759, for non-leap year, or 8783, for leap year. After the first iteration, the original hour 

ids are converted to current hour ids (hidcurr) directing hourly storms to the designated 

reducer. The key is hour id and the value is content of an hourly storm.  

In the partitioner phase, each partition task ensures that a set of hour ids data go 

to the same reducer. The rules of hour ids grouping are that: 1) each group of hours must 

have p hour id members, where p is a range partition (p is set to 2 in our case), 2) hours 

in each group must be consecutive and the first group always starts from zero, and 3) 

hourly storms data with the same ⌊
   

 
⌋ will go to the same reducer. Figure 4-7 describes 

hour ids grouping conditions.  

 

Figure 4-7 Hour IDs Grouping Conditions 

  hidorig: 0    1    2    3    4    5    6    7  …  j     j+1    j+2    j+3  … m-1

...

...

...

p = 2

Level = 1

Level = 2...

Level = ceiling(logp m) = k

0            1            2             3                   j/2             (j+2)/2       (m-2)/p

0                           1                                 j/2i 
              …      

0

Level = i...



 

70 

In the last phase, each reduce task is the one who actually combines satisfying 

hourly storms from two hours into an overall storm. In each iteration, a set of hourly 

storms from two consecutive hours are grouped together and checked for overlapping in 

parallel. The results of each group (reducer) are “partial” overall storms (ps) for that 

particular iteration level. A partial overall storm can be considered as temporary overall 

storm, waiting to be finalized, for a sub period of the entire storm duration. 

As you can see in Figure 4-7, the merging process is not finished within the first 

iteration. Moreover, the next iteration of each group will not start until its relevant previous 

iterations are finished. This makes sure that computation of different iteration levels will 

not happen. An output from the previous reducer is an input to another reducer in the 

next iteration. In our case, p = 2, g = 1, s = 1. When moving to the next iteration, the 

number of groups is decreased in half (factor of p). The results of the previous iteration 

will be checked for overlapping with the relevant consecutive group. The computation is 

relatively complex depending on the number of current candidate members from both 

groups. As a result, we implement the following three strategies: global pruning, on-the-

fly comparison, and local pruning, based on the following lemmas. 

Lemma 1. (Global pruning) Given grouping-window of g and partition range of p, the 

pruning can be applied starting at the end of iteration level i, where         ,  

          and k is the last iteration, calculated by ⌈                    ( )⌉.   

The first prune step (global pruning) is based on Lemma 1. Figure 4-8 shows an 

example of how Lemma 1 can be applied. As you can see, at the end of iteration level i, 

where         , there will be partial overall storms starting as early as original hour id 

(    ) and ending by original hour id (    )       , where j is the current hour id and 

   is the number of participating hours. By partial overall storms, we mean intermediate 

overall storms that are still not finalized and need to check for overlapping with other 
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corresponding partial overall storms unless: 1) reaching the last iteration k or 2) 

candidate set is empty, whichever comes first. Any partial overall storm that starts and 

ends within the range [(    )    (    )         ] can be pruned and hence 

finalized as “final” overall storm since they will never get merged with any other partial 

overall storms. In our case,     and    . Thus, the prune step can be applied at the 

end of iteration level 2 (       ( )). At the end of iteration level 2, at the current hour id 

1, for example, any partial overall storm starting from original hour id 5 ( (  )   ) and 

ending by 6 (( (  )    )     ) will never get combined with the consecutive group of 

current hour id even though they may share s common sites in the same level because it 

exceeds grouping-window limit on both sides.  
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Figure 4-8 Global Pruning Concept 

Lemma 2. (On-the-fly comparison) If we: 1) compare (check for overlapping) a partial 

overall storm ps1 of one group hour id to every other group candidate (ps0) one at a time 
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in a given order, 2) replace the overlapped candidate ps0 with the merged candidate 

(            ), and 3) continue the checking process with ps1, and repeat 2) 

whenever new overlapping is found, then every pair of candidates will require overlap 

checking at most once. The number of comparisons will be  (   ), where n and m are 

the numbers of partial overall storms from the two groups.  

Lemma 2 ensures the minimum number of comparisons (eliminating 

excessive/redundant comparisons) by: 1) fixing the order of candidates while checking, 2) 

utilizing the fact that a newly merged candidate will never overlap with previously-

checked candidates otherwise they would have merged earlier (without considering 

overlapping within the same group because it is impossible), and 3) using merging to 

reduce the number of comparisons and at the same time to guarantee future overlapping 

discovery. To better understand this lemma, consider Figure 4-9. Suppose we have a set 

of partial overall storm candidates from two groups of hour ids as seen in Figure 4-9 a). 

As you can see, when you check B and Z the first time, they are not together. However, 

once B is checked with Y and C and combined, it is possible now that the new merged 

candidate (BYC) can overlap with Z. Therefore, the comparison process needs to start 

over from the beginning every time the new merged candidate is found, which is BYC in 

this example, to make sure all overall storms are correctly identified. This leads to a very 

high computation. The total number of comparisons is ∑ ( ( )
 

) 
   , where f(i) is the number 

of candidates at iteration level i and  ( )     , where n and m are the numbers of 

hourly storms of group j and j+1, respectively. 

On the other hand, if we apply lemma 2 as seen in Figure 4-9 b), the re-checking 

will no longer be required since we will not need to start over the checking process every 

time a new candidate is added.  
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ArrayList (storms of j)
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storms of j+1 

xY
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 j    j+1

 

                  a)                                   b) 

Figure 4-9 Example of How Lemma 2 can be Applied 

The overlapping discovery can be guaranteed because we store one group of storms in 

an array list and another group of storms are being compared to it one at a time on-the-fly 

and merged, if necessary. So, the comparison process is thorough and complete. This 

on-the-fly comparison helps reduce the number of comparisons by identifying overall 

storm as it reads in the partial overall storms concurrently. For example, in Figure 4-9 b), 

once overlapping between Y and B is found, B is replaced by the new merged candidate 

BY and we do not need to re-check BY with previously checked candidates (A) again but 

rather continue the checking process using Y to the rest of the candidates in order. The 

order of storms in the array list and merging process we used will eventually make sure 

the checking is complete. That is, CZ, previously merged candidate, will later be checked 

and merged with BY to CZBY as the same overall storm.  

Lemma 3. (Local pruning) Given a pair of partial overall storms, ps0 and ps1, of hour ids j 

and j+1, respectively, F1 and L1 are starting time and ending time of ps0 whereas F2 and 

L2 are starting time and ending time of ps1. Any pair of storms, with        , where g 

is a grouping-window, will never get merged and hence can be pruned to the next 

iteration.  

Lemma 3 is based on the fact that any consecutive partial overall storms with 

grouping-window greater than g will never be combined and hence do not need to be 

checked. This lemma is similar to the first lemma except that the first lemma prunes 
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partial overall storms to be finalized and hence no longer kept in the candidate set 

whereas this lemma prunes partial overall storms to the next step meaning it still can be 

merged with other storms at other iterations. 

As mentioned earlier, there are two stop conditions: 1) it reaches the last iteration 

k or 2) there is no member in the candidate set. In our case,   ⌈        ⌉    . At the 

last iteration level, if the candidate set is not empty, every partial overall storm will be 

grouped into one big group with current hour id 0 and finalized. In order to make our 

algorithm more precise and efficient, we defined an object class, called Ostorm, which 

represents a partial overall storm unless it is in the last iteration. In such case, the overall 

storms are final. We assume that every overall storm is partial unless they are in the last 

iteration. In each iteration, each partial overall storm is either: 1) combined with one or 

more partial overall storms into a bigger partial overall storm if overlapping exists, or 2) 

converted into another partial overall storm itself for the next iteration. The operations of 

Ostorm class are as follows: 

- IsOverlap: finds whether the current storm is overlapping with another storm. 

- IsComparable: checks whether the current storm is comparable with another 

storm. This is based on the concept in Lemma 3 (local pruning). 

- MergeStorm and CompareWithinOrder: merges and compares the given storm 

with other storms in the fashion as described in Lemma 2 (on-the-fly 

comparison).  

- IsFinal: checks whether an overall storm is final. A final overall storm is one that 

cannot grow further. This is implemented as part of the prune step mentioned in 

Lemma 1 (global pruning). 

The algorithm for overall storm identification in map-reduce (MR-OSI) is shown in 

Algorithm 7. The time complexity of MR-OSI algorithm for the worst case scenario is 
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 ( )(      )   ( )(           )   (      )(       )   (        ), 

where n, m are the maximum numbers of hourly storms in the first and second hours, 

respectively, and k is the maximum number between n and m.  

The post-processing steps are also required (as we run the raw data one year at 

a time) to combine an overall storm that starts in one year and ends in the next: 1) 

between current year and previous year and 2) between current year and following year. 

For 1), the range of original hour ids from previous year to current year to consider are 

                                                For 2), the range of original hour 

ids from current year to following year to consider are                      

                           If we start with the last (or first) year, we only have to 

compare the current year with the previous (or next) year. 

4.2.2 Experimental Results 

In the previous approach [62], the experiment was performed on the rainfall 

dataset, resided in a relational database, using a single server. The server runs on 

Microsoft
®
 Windows Server

®
 2008 Enterprise operating system with 2.83 GHz Intel

®
 

Xeon
®
 quad-core processors, 20 GB of RAM, 500 GB of local disk, and 10 TB of external 

disk. The raw data contains 15 months of data from October 2010 to December 2011 

covering 37,413 sites in Texas.  

In the map-reduce approach [68][76], we use the same dataset (from October 

2010 to December 2011) that is in the original text file format rather than relational 

format, which contains many more sites (165,750 sites) covering Texas and some 

surrounding areas. These results are used to compare the performance of map-reduce 

with the original recursive algorithm.  
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Algorithm7. MapReduce-based Overall Storm Identification 

Input:  

- Hourly storm data text files  
Output:  

- Overall storm data text file 
1: class MAPPER 

2: function MAP(key object, value line) 

3:   if iteration i = 1 then  

4:    //read in the hourly storm inputs record by record. 

5:    hidorig   line.CalHourId() //hour number id in a year, starting from 0 to the last hour of input files 

6:    key   hidorig 

7:    value   list of values of Ostorm attributes 

8:    Emit(key, value) 

9:   else 

10:     //read in previously-identified partial overall storms from iteration i-1. 

11:     key   first value in the record, hidcurr 

12:    value   the remaining values, Ostorm attributes 

13:    Emit(key, value)  

14: class PARTITIONER 

15: function PARTITION(key hid, value Ostorm) 

16:   for each record do //hourly or partial overall storm record  

17:    hid = floor(hid/2)  

18:    Emit(hid, Ostorm) 

19:   end for 

20: class REDUCER 

21: function REDUCE(key hid, [Ostorm1, Ostorm2, …] 

22:   //storms come in order based on their hids. 

23:   for each key do 

24:    for each os  [Ostorm1, Ostorm2, …] do 

25:     //assign each os to an array list, aList, in order (based on hid). 

26:     if key remains unchanged then 

27:       aList.add(os) 

28:     else  

29:      //all hourly or partial overall storms with lower hid are now stored in aList.  

30:      for each storm cos  aList do 

31:       if cos.IsComparable(os) and  

32:         cos.IsOverlap(os) then 

33:         mos   cos.MergeStorm(os)  

34:         aList.Add(mos, cos.pos) //replace current storm with the merged storm (mos) 

35:         CompareWithinOrder(cos.pos) 

36:        //compare cos with other storms present after its position in aList. 

37:       else 

38:         if IsFinal(os) then //Lemma 1 

39:         MarkAsFinal(os) 

40:      end for 

41:    end for 

42:   end for 

43:   for each storm cos  aList do 

44:     if IsFinal(cos) then //Lemma 1 (pruning at the end) 

45:     MarkAsFinal(cos)  

46:   end for   
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Each text file is for all sites during a single hour and is zipped into one gunzip file. The 

experiment was done by using a Hadoop
®
 cluster [67] of 1 frontend server and 18 worker 

nodes. Each worker node contains 3.2 GHz Intel
®
 Xeon

®
 quad-core processors, 4 GB of 

RAM and 1.5 TB of local disk allocated to HDFS. The server has the same specification 

but with 3 TB of local disk. The cluster is set up by using ROCKS Cluster 6.3 OS and 

then installing Hadoop
®
 1.0.3 on every node. 

The comparison between the time taken by the previous implementations and 

the new map-reduce implementations is shown in Table 4-7. Please also note that the 

processing time does not include the time taken to load the data into HDFS/SQL. The 

experiment of the new approach gives the same results for Texas region as the previous 

approach but is executed significantly faster. The new approach allows programs to be 

executed distributedly on multiple machines and hence the efficiency of the storm 

analysis is increased. For local storm (LS) identification, the time improved to 2.43 hours, 

compared to 53.44 hours in the previous approach. For hourly storms (HS), the map-

reduce took 0.93 hours, compared to 6.78 hours in the previous method (DFS). For 

overall storms (OS), the previous approach took 8.62 hours whereas the map-reduce 

approach took only 0.67 hours. These show that the new approach is more efficient since 

it took less time while processing a larger number of sites. Moreover, since we are using 

map-reduce, the performance can be improved further by increasing the number of 

nodes.   

Notice that in the map-reduce approach we no longer divide Texas into different 

regions to do analysis due to our focus of this approach, which is to improve the system 

performance. Therefore, we process the entire grid of raw data together without dividing 

it. However, we can always divide and analyze each region separately if we want to. 
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Table 4-7 Comparison of Processing Time between Two Approaches 

 

Next, we extend our experiment to the entire set of the raw rainfall data (1997-

2012). The experiment is performed on the raw data one year at a time. After processing 

each year, the post-processing steps are conducted on local storms and overall storms to 

combine storms that start in one year and end in the next. For hourly storms, the post-

processing steps are not required since each raw file is hourly independent and covers all 

the sites. At any given year, local storm and hourly storm identification processes can be 

executed concurrently whereas overall storm identification must be executed after the 

hourly storm identification process.  

The standard procedure for local and hourly storm identifications is as follows:     

- Un-tar the raw rainfall data, which took about 6 minutes. 

LS HS OS LS HS OS

1. East Texas 

(48,953,130)
4,643 8.67 1.44 1.24

2. Edwards Plateau 

(73,415,532)
6,962 8.72 1.23 2.25

3. High Plains 

(31,711,927)
3,008 4.5 0.32 0.57

4. Low Rolling Plains 

(24,965,521)
2,368 3.35 0.28 0.27

5. North Central 

(59,082,957)
5,604 8.66 1.17 1.64

6. South Central 

(31,102,334)
2,949 4.28 0.67 0.42

7. South Texas 

(31,949,386)
2,933 3.97 0.48 0.60

8. Lower Valley 

(5,324,898)
601 0.55 0.07 0.08

9. Trans-Pecos 

(65,136,216)
6,177 6.86 0.55 1.16

10. Upper Coast 

(22,863,789)
2,168 3.88 0.57 0.39

TOTAL 37,413 53.44 6.78 8.62
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- Upload the rainfall data to HDFS™ [67] (about 23 minutes). 

- Execute the Java code (MR-LSI/MR-HSI) for computing the local/hourly storms 

(approximately 1 hour and 50 minutes for MR-LSI and 38 minutes for MR-HSI). 

The overall storm identification algorithm used was iterative; hence the output of one 

iteration is the input for the next iteration. To find the overall storms from the hourly 

storms, the following standard procedure is performed: 

- Upload the hourly storm data to HDFS, which took about 25 minutes. 

- Execute the Java code (MR-OSI) for computing the overall storms (about 40 

minutes). 

The experimental statistics for the entire 16 years of raw rainfall data are listed in 

Table 4-8 and 4-9. Table 4-8 shows the number of identified storms (local storms, hourly 

storms, and overall storms) for each year. Table 4-9 shows the processing time in each 

iteration of MR-OSI program. As you can see, the processing time in each iteration 

decreases significantly. This is because of the implementations of Lemmas 1 and 3, 

which prune some storms from being processed and compared in the later iterations. In 

addition, after iteration 9, the time taken to process in the later iterations becomes almost 

constant. This is because after iteration 9, the number of partial overall storms that were 

merged to others becomes very minimal (less than 700 storms, on average). 

4.3 Custom Database Schema for Conceptual Storm Outputs 

We use a relational database to store the final storm outputs. The database must 

be designed in such a way that the expressivity and usability features of SQL can be fully 

utilized in the analysis tasks. SQL and relational databases are proven tools in 

performing analysis [56][57]. To develop an EER for the storm outputs, we take into 

account the formalizations of storm concepts as well as the characteristics of the raw 

rainfall data.  
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Table 4-8 Number of Storm Records in Each Component for Each Year 

 

 
Table 4-9 MR-OSI Execution Time in Each Iteration 

 

 

LS HS OS

Num Storms Num Storms Num Storms

1997 731,786,250 3,944,877 298,561 150,886 4,394,324 0.60

1998 1,451,804,250 6,372,104 455,575 235,409 7,063,088 0.49

1999 1,450,644,000 5,842,579 434,440 218,516 6,495,535 0.45

2000 1,453,627,500 6,138,978 439,557 225,029 6,803,564 0.47

2001 1,451,804,250 6,663,672 496,213 248,550 7,408,435 0.51

2002 1,451,804,250 6,827,462 448,670 196,531 7,472,663 0.51

2003 1,451,804,250 7,606,046 441,303 196,330 8,243,679 0.57

2004 1,455,782,250 12,526,769 545,125 237,457 13,309,351 0.91

2005 1,451,804,250 10,169,983 479,560 210,777 10,860,320 0.75

2006 1,450,478,250 10,354,175 519,978 227,517 11,101,670 0.77

2007 1,448,489,250 12,819,729 643,383 282,021 13,745,133 0.95

2008 1,455,782,250 10,371,608 544,036 248,001 11,163,645 0.77

2009 1,451,638,500 10,958,887 547,164 248,294 11,754,345 0.81

2010 1,451,141,250 10,108,909 546,926 247,449 10,903,284 0.75

2011 1,451,804,250 7,143,676 382,009 183,112 7,708,797 0.53

2012 1,455,782,250 9,024,720 481,920 225,075 9,731,715 0.67

TOTAL 22,515,977,250 136,874,174 7,704,420 3,580,954 148,159,548 0.66

AVERAGE 1,407,248,578 8,554,636 481,526 223,810 9,259,972 0.66

Num Raw MPE 

Records

Num Storm 

Records

Reduction in Raw 

Data Size (%)
Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1997 13.09 2.00 2.00 1.38 1.19 1.13 0.97 0.84 0.86 0.67 0.67 0.65 0.61 0.61 26.67

1998 24.15 2.49 1.78 1.44 1.23 1.14 1.04 0.93 0.74 0.68 0.69 0.73 0.64 0.68 38.36

1999 24.52 2.53 1.84 1.54 1.23 1.19 1.07 0.94 0.83 0.74 0.82 0.68 0.71 0.67 39.31

2000 24.32 2.23 1.65 1.38 1.25 1.08 0.99 0.83 0.73 0.64 0.68 0.69 0.68 0.70 37.85

2001 24.39 2.68 1.69 1.54 1.29 1.14 1.02 0.83 0.79 0.68 0.73 0.66 0.67 0.71 38.82

2002 25.75 2.68 1.68 1.44 1.23 1.15 0.98 0.89 0.78 0.69 0.73 0.69 0.66 0.66 40.01

2003 25.28 2.35 1.78 1.53 1.29 1.18 1.15 0.79 0.78 0.68 0.69 0.68 0.66 0.67 39.51

2004 30.01 2.73 2.01 1.50 1.27 1.13 1.03 0.90 0.78 0.69 0.68 0.67 0.66 0.66 44.72

2005 25.82 2.33 1.70 1.35 1.26 1.44 1.03 0.88 0.85 0.68 0.68 0.61 0.66 0.66 39.95

2006 27.23 3.06 1.93 1.59 1.33 1.35 1.07 0.87 0.80 0.67 0.73 0.68 0.66 0.66 42.63

2007 28.11 3.14 2.22 1.65 1.43 1.35 1.13 0.93 0.79 0.68 0.84 0.74 0.68 0.74 44.43

2008 27.46 2.88 2.09 1.63 1.39 1.33 1.13 0.94 0.79 0.68 0.73 0.70 0.67 0.68 43.10

2009 27.48 3.09 2.05 1.55 1.38 1.30 1.24 0.88 0.79 0.68 0.67 0.73 0.66 0.72 43.22

2010 29.73 3.18 1.81 1.50 1.26 1.25 1.08 0.94 0.81 0.68 0.67 0.67 0.67 0.67 44.92

2011 25.00 2.18 1.86 1.39 1.17 1.18 1.03 0.90 0.72 0.67 0.73 0.66 0.61 0.61 38.71

2012 25.82 2.64 1.91 1.42 1.33 1.20 1.28 0.91 0.73 0.68 0.69 0.73 0.65 0.66 40.65

TOTAL 408.16 42.19 30.00 23.83 20.53 19.54 17.24 14.20 12.57 10.89 11.43 10.97 10.55 10.76 642.86

AVERAGE 25.51 2.64 1.88 1.49 1.28 1.22 1.08 0.89 0.79 0.68 0.71 0.69 0.66 0.67 40.18

TOTALYear
Iteration Level (processing time in minutes)
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The developed EER is shown in Figure 4-10. Note that the set of hourly storms related to 

an overall storm are ordered by hour, because they form a sequence in the formalized 

ontology. We then map the EER in Figure 4-10 to the database schema using 

methodology/steps described in [41]. The database schema consists of 8 tables, as 

shown in Figure 4-11. Note that the table OverallStormTracks is derived from the 

relationships among the entity types Overall Storm, Hourly Storm, Centers, and Time 

Point in Figure 4-10. 
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Figure 4-10 EER Diagram for Storing Conceptual Storm Data 

LocalStormHours table stores local storms information for each hour of every 

site. The information includes local storm id, date/time, and precipitation depth (in inches) 

of the storm for a particular site.  
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Figure 4-11 Relational Database Schema for Storing Conceptual Storm Outputs 

Its characteristics are summarized into LocalStorms table. Each local storm is uniquely 

identified by (YearID, LSID) because local storms are identified each year at a time and 

so the same LSID can exist in different years. HourlyStormSites table stores precipitation 

value for each site of an hourly storm. The hourly storm characteristics are summarized 

into HourlyStorms table. Each hourly storm is uniquely identified by (DatetimeUTC, HSID) 

as hourly storms are identified using one hourly text file at a time so the same HSID can 

exist in different hourly text file. OverallStormHourlyStorms table stores information of all 

hourly storms combined into an overall storm. The primary key for this table is 

(DateTimeUTC, HSID) because an hourly storm can belong to only one overall storm. 

Technically, this table could be further mapped to HourlyStorms by having (YearID, 

OSID) as foreign key to OverallStorms. However, we mapped it into a separate table 

because the hourly storm statistics table (HourlyStorms) are calculated at the end. 

Having separated OverallStormHourlyStorms table, we do not need to wait until hourly 
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storm identification is concluded in order to identify overall storms. Hourly storm 

identification and overall storm identification can run concurrently. OverallStormTracks 

table contains track information of the overall storms for each hour. Storm track 

information consisting of hydrology-based storm tracks (point with maximum precipitation 

of a particular hourly storm) and geometry-based storm tracks (centroid of an hourly 

storm), are the only overall storm characteristic created in a separate table. The 

remaining characteristics such as speed and total rainfall, are summarized into 

OverallStorms table. All of the storm characteristics were calculated either during the 

identification process or post-processing steps by using SQL or additional scripts. 

Queries SQL1-5 describe how storm statistics are calculated using SQL in the post-

processing steps.  

SQL1. Calculate storm statistics for local storms 

1: SELECT  LSID,YearID,SiteID, 

2:    DATEADD(hh, -1, MIN(DateTimeUTC)) AS Start, 

3:    MAX(DateTimeUTC) AS Stop, 

4:    SUM(DataValue) AS TotalRainfall, 

5:    COUNT(*) AS Duration, 

6:    TotalRainfall/Duration AS Intensity 

7: INTO  LocalStorms table 

8: FROM  LocalStormHours table 

9: GROUP BY  YearID,LSID 

 

SQL2. Calculate partial storm statistics (exclude storm centers) for hourly storms 

1: SELECT  HSID,DateTimeUTC, 

2:   COUNT(*) AS Coverage, 

3:     SUM(DataValue) AS TotalRainfall, 

4:     TotalRainfall/Coverage AS Avg, 

5:     //HRAP(x,y) below are calculated based on equations described in Chapter 3, Section 3.2.  

6:     SUM(290+((SiteID-15599) MOD 1701))/Coverage AS CentroidX,  

7:     SUM(10+((SiteID-15599) DIV 1701))/Coverage AS CentroidY, 

8:     MAX(DataValue) AS CenterMaxMPE, 

9:     MIN(290+((SiteID-15599) MOD 1701)) AS MinX, 

10:     MIN(10+((SiteID-15599) DIV 1701)) AS MinY, 

11:     MAX(290+((SiteID-15599) MOD 1701)) AS MaxX, 

12:     MAX(10+((SiteID-15599) DIV 1701)) AS MaxY 

13: INTO  PartialHourlyStorms table 

14: FROM   HourlyStormSites table 

15: GROUP BY  DateTimeUTC,HSID 
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SQL3. Calculate storm centers for hourly storms (complete hourly storm statistics table) 

1: SELECT  P.HSID,P.DateTimeUTC,P.Coverage,P.TotalRainfall,P.Avg,P.CentroidX,P.CentroidY, 

2:     (SELECT SUM(290+((SiteID-15599) MOD 1701))/COUNT(*) 

3:     FROM HourlyStormSites table H 

4:     WHERE H.DateTimeUTC=P.DateTimeUTC AND H.HSID=P.HSID AND  

5:       H.DataValue=P.CenterMaxMPE) AS CenterX, 

6:     (SELECT SUM(10+((SiteID-15599) DIV 1701))/COUNT(*) 

7:     FROM HourlyStormSites table H 

8:     WHERE H.DateTimeUTC=P.DateTimeUTC AND H.HSID=P.HSID AND  

9:       H.DataValue=P.CenterMaxMPE) AS CenterY, 

10:     P.CenterMaxMPE,P.MinX,P.MinY,P.MaxX,P.MaxY 

11: INTO  HourlyStorms table 

12: FROM  PartialHourlyStorms table P 

 

SQL4. Calculate overall storms statistics except total average, total average per hour, storm speed, and 

storm track  

1: SELECT  M.OSID, 

2:     M.YearID, 

3:     DATEADD(hh, -1, MIN(T.DateTimeUTC)) AS Start, 

4:     MAX(T.DateTimeUTC) AS Stop, 

5:     DATEDIFF(hh, Start, Stop) AS Duration, 

6:     TotalRainfall/Duration AS Intensity, 

7:     COUNT(T.SiteID) AS NumSites, 

8:    TotalRainfall/NumSites AS Avg, 

9:     Intensity/NumSites AS IntensityPerSite, 

10:     SUM(T.DataValue) AS TotalRainfall, 

11:     COUNT(DISTINCT(T.SiteID)) AS Coverage, 

16:    MIN(290+((T.SiteID-15599) MOD 1701)) AS MinX, 

17:    MIN(10+((T.SiteID-15599) DIV 1701)) AS MinY, 

18:    MAX(290+((T.SiteID-15599) MOD 1701)) AS MaxX, 

19:    MAX(10+((T.SiteID-15599) DIV 1701)) AS MaxY 

12: INTO   PartialOverallStorms table 

13: FROM   OverallStormHourlyStorms table M JOIN HourlyStormSites table T  

14:     ON M.DateTimeUTC=T.DateTimeUTC AND M.HSID=T.HSID 

15: GROUP BY  M.YearID,M.OSID 

 

SQL5. Calculate storm statistics: total average and total average per hour, for overall storms  

1: SELECT  M.OSID,M.YearID,M.Start,M.Stop,M.Duration,M.Intensity,M.NumSites,M.Avg, 

2:    (SELECT SUM(H.Avg) 

3:    FROM HourlyStorms table H 

4:    WHERE H.DateTimeUTC=M.DateTimeUTC AND H.HSID=M.HSID) AS TotalAvg, 

5:    TotalAvg/M.Duration AS TotalAvgPerHr, 

6:    M.IntensityPerSite,M.TotalRainfall,M.Coverage,M.MinX,M.MinY,M.MaxX,M.MaxY 

7: INTO   OverallStorms table 

8: FROM   PartialOverallStorms table M  

In Figure 4-12, we repeat Figure 4-11 but highlight with shading the attributes 

that represent storm characteristics derived through the queries SQL1 through SQL5. 

Storm tracks and storm speeds are the only two characteristics that were calculated 
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separately by additional scripts. Note that new storm characteristics can also be added 

as new attributes to the table by using SQL without significant changes or re-running the 

identification programs.  

 

Figure 4-12 SQL-Derived Storm Characteristics 

4.4 Storm Output Verification 

In this section, we verify the relational storm outputs by performing a sequence of 

queries. This verification process complements the unit (module) testing by thoroughly 

checking the accuracy of each of the resulting storm records. (In fact, thanks to this 

verification step, we were able to solve a mysterious error (not found during the unit 

testing), which turns out to be about daylight saving-related functionality in the program.) 

We divide the verification process into three subsections, each of which targets a 

particular type of the storms. The verifying queries are designed such that if the storm 

outputs are correct, an empty set will be returned.  
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4.4.1 Local Storm Verification 

For local storm verification, we first verify that no local storm with 6 (h) or more 

consecutive zero precipitation exists in the LocalStormHours table. The corresponding 

SQL is shown in query SQL6. For each zero-precipitation record (Li-1) of a local storm, 

the immediate next hour record (Li) is checked if it is equal to zero. If it is and repeats for 

6 times (i.e., i = 2, 3,…, h) in a row, there are 6 consecutive zeroes in the 

LocalStormHours table, which means the local storms are incorrectly identified.  

SQL6. Checking if 6 (h) consecutive zero precipitation exists in the LocalStormHours table  

1: SELECT  * 

2: FROM  LocalStormHours L1 

3: WHERE L1.DataValue=0  

4:    (AND EXISTS (SELECT * 

5:      FROM  LocalStormHours Li 

6:      WHERE Li.DataValue=0 AND Li.Time-Li-1.Time=1 AND Li.Time>Li-1.Time AND 

7:        Li.YearID=Li-1.YearID AND Li.LSID=Li-1.LSID))*  

 

Next, we check if there exist overlapped or connected local storms. Overlapped 

local storms refer to two different local storms from the same site location sharing the 

same time. Connected local storms refer to two consecutive local storms from the same 

site location, which are within less than 6 hours period. We check for overlapped local 

storms by query SQL7 and for connected local storms by query SQL8.  

SQL7. Checking for overlapped local storms  

1: SELECT DateTimeUTC,SiteID,COUNT(*) 

2: FROM LocalStormHours  

3: GROUP BY  DateTimeUTC,SiteID 

4: HAVING COUNT(*)>1 

 

SQL8. Checking for connected local storms  

1: SELECT * 

2: FROM LocalStorms L1 

3: WHERE EXISTS (SELECT * 

4:    FROM LocalStorms L2 

5:    WHERE L2.Start > L1.Stop AND L2.Start-L1.Stop < 6 AND  

6:      L2.SiteID=L1.SiteID) 
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 Finally, we verify that records of each local storm (in LocalStormHours table) are 

consecutive. However, there is no direct function in SQL to check for consecutiveness of 

rows in the table. Our assumption is that if the number of hour rows of a local storm 

equals to    (     )     (     )    AND the number of distinct hours, we conclude 

that hour rows of the local storm (in the LocalStormHours table) are consecutive. Query 

SQL9 shows how consecutiveness of local storm records are verified. We also prove our 

assumption by contradiction as follows: 

Claim.       (     )       (              )     (     )     (     )    

           (                        )                  

Proof.  Suppose that the number of hour rows of a local storm equals to    (     )  

   (     )    AND the number of distinct hours, but the hour rows of the local storm in 

the LocalStormHours table are NOT consecutive.  

Let: COUNT(hours) = COUNT(DISTINCT hours)                                          (a)   

  COUNT(hours) =    (     )     (     )                                    (b) 

 COUNT(DISTINCT hours) =    (     )     (     )                   (c) 

  Hour rows of the local storm are NOT consecutive.                               (d) 

 From (d), there are three cases of rows not being consecutive: 1) duplicate hours 

only, 2) gap exists only, and 3) both duplicate hours and gap exists. In case 1), 

COUNT(hours) will always be greater than COUNT(DISTINCT hours), which contradicts 

(a). In addition, COUNT(hours) will always be greater than    (     )     (     )  

  (contradicts (b)). In case 2), COUNT(hours) will always equal to COUNT(DISTINCT 

hours) as no duplicate hour exists.    (     )     (     )    will always be greater 

than these two COUNTs, which contradicts (b) and (c). In the last case 3), since duplicate 

hour(s) exists, COUNT(hours) will always be greater than COUNT(DISTINCT hours), 
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which contradicts (a). In addition,    (     )     (     )    will always be greater 

than COUNT(DISTINCT hours) as gap exists, which contradicts (c). Q.E.D. 

SQL9. Checking for consecutiveness of local storm records 

1: SELECT * 

2: FROM (SELECT YearID,LSID,COUNT(DateTime) AS NumHrs  

3:   FROM LocalStormHours  

4:   GROUP BY  YearID,LSID) S 

5: WHERE S.NumHrs   (SELECT (MAX(L2.DateTime) - MIN(L2.DateTime))+1 

6:    FROM LocalstormHours L2 

7:    WHERE S.YearID=L2.YearID AND S.LSID=L2.LSID)    

8:   OR 

9:   S.NumHrs   (SELECT COUNT(DISTINCT L3.DateTime) 

10:     FROM LocalStormHours L3 

11:     WHERE S.YearID=L3.YearID AND S.LSID=L3.LSID) 

   
4.4.2 Hourly Storm Verification 

To verify hourly storm outputs, the following sequence of queries is performed. 

By definition, there is no zero precipitation in the hourly storm concept. So, query SQL10 

ensures that no zero precipitation exists in the HourlyStormSites table. Next, we verify 

that all sites of an hourly storm are connected (connectivity property). In other words, 

each site must have at least one neighboring site that is also in the set. We utilized the 

fact that HRAP coordinate can be derived from SiteID and can be used to identify 

neighboring relationship. Thus, we created a stored function called isConnected(site1, 

site2), which will return 1 (TRUE) if two sites are neighbors and 0 (FALSE) if not. Stored 

function isConnected is described in SQL11. Query SQL12 shows how neighboring 

relationship can be verified by SQL. If the result of SQL12 is empty, the verification is 

successful. 

Query SQL12, however, does not guarantee the following properties: 1) there are 

no two different hourly storms in the same hour sharing the same site(s), 2) there are no 

duplicate site(s) in the same hourly storms, and 3) no neighboring relationship exists 

between any pair of hourly storms during the same hour (maximality property), because 

by definition, there is no connected site between different hourly storms in the same hour; 
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otherwise, they would be combined together in the first place. (Note that the second 

property (checking for duplicate site in the same hourly storms) will always hold as it is 

enforced by the primary key constraint (DateTime,HSID,SiteID) on the HourlyStormSites 

table.) To check if the first property holds, query SQL13 is performed. Query SQL14 is 

used to check for the third property.  

SQL10. Checking if zero precipitation exists in the HourlyStormSites table 

1: SELECT * 

2: FROM HourlyStormSites 

3: WHERE DataValue=0 

 

SQL11. Stored Function “isConnected” 

1: CREATE FUNCTION isConnected(@S1,@S2) 

2: RETURN BIT AS 

3: BEGIN 

4:    SET @S1x = 290+((@S1-15599)%1701) 

5:    SET @S1y = floor(10+((@S1-15599)/1701)) 

6:    SET @S2x = 290+((@S2-15599)%1701) 

7:    SET @S2y = floor(10+((@S2-15599)/1701)) 

8:    IF ((@S2x=S1x-1) OR (@S2x=S1x) OR (@S2x=S1x+1)) AND 

9:       ((@S2y=S1y-1) OR (@S2y=S1y) OR (@S2y=S1y+1)) 

10:       SET @Ans=1 

11:    RETURN @Ans 

12: END    

 

SQL12. Checking if all sites of an hourly storm are connected 

1: SELECT * 
2: FROM  HourlyStorms hs1 
3: WHERE  NOT EXISTS (SELECT * 

4:      FROM HourlyStormSites hs2 

5:      WHERE hs1.DateTime=hs2.DateTime AND hs1.HSID=hs2.HSID AND 

6:       EXISTS (SELECT * 

7:       FROM HourlyStormSites hs3 

8:       WHERE hs2.DateTime=hs3.DateTime AND 

9:         hs2.HSID=hs3.HSID AND 

10:         hs2.SiteIDhs3.SiteID AND 

11:         isConnected(hs3.SiteID,hs2.SiteID)=1)) 

 

SQL13. Checking for duplicate site(s) between 2 different hourly storms in the same hour 

1: SELECT DateTime,SiteID,COUNT(*) 
2: FROM  HourlyStormSites  
3: GROUP BY DateTime,SiteID 
4: HAVING COUNT(*)>1 
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SQL14. Checking for connected site(s) between 2 different hourly storms in the same hour 

1: SELECT * 
2: FROM  HourlyStormSites hs1 
3: WHERE  EXISTS (SELECT * 
4:    FROM HourlyStormSites hs2 
5:    WHERE hs1.DateTime=hs2.DateTime AND hs1.HSID < hs2.HSID AND 

6:     isConnected(hs1.SiteID,hs2.SiteID)=1) 

 

Note that in query SQL14 hs1.HSID < hs2.HSID helps in reducing the number of 

checks as the same pair will not be compared twice. If the results of the above queries 

(SQL10, 12, 13, and 14) are all empty set, we can ensure that the hourly storm data are 

correctly identified. 

4.4.3 Overall Storm Verification 

In overall storm verification, we first make sure that all hourly storms are 

processed and each of them belongs to only one overall storm. These two steps can be 

checked by using queries SQL15 and SQL16, respectively. 

SQL15. Checking if all hourly storms were processed 

1: SELECT COUNT(DISTINCT DateTime,HSID) 
2: FROM HourlyStormSites 
3: = 
4: SELECT  COUNT(DISTINCT DateTime,HSID) 
5: FROM  OverallStormHourlyStorms  

 

SQL16. Checking if an hourly storm belongs to only one overall storm 

1: SELECT oshs.DateTime,oshs.HSID,COUNT(*) 
2: FROM OverallStormHourlyStorms oshs 
3: GROUP BY  oshs.DateTime,oshs.HSID 
4: HAVING  COUNT(*)>1  

 

Next, we verify the grouping-window (g) and spatial-window (s) requirements. In 

our case, g = 1 and s = 1. That is, for each hour of an overall storm, there must be at 

least one common site shared between two consecutive hourly storms. These two 

requirements can be verified by SQL as described in query SQL17 and SQL18. Query 

SQL17 lists all sites for each hour of each overall storm and filters out 1-hour overall 

storm from consideration. Query SQL18 uses the resulting table from query SQL17 to 
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check for both requirements. In query SQL18, an overall storm is considered valid only if 

each of its hours (except the last hour) has the next hour (g=1) with at least one site (s=1) 

in common. 

Finally, we verify the maximality property of overall storms. Any pair of 

consecutive hourly storms that has some site(s) in common should be combined to the 

same overall storm. Query SQL19 checks if there exist two consecutive hourly storms 

sharing at least one site but end up in different overall storms. 

Note that the storm statistics are not required in the verification process since 

they are derived from SQL as described in SQL1, 2, 3, 4, and 5. 

SQL17. List all sites for each hour of each overall storm and filter out 1-hour overall storms 

1: SELECT T1.YearID,T1.OSID,T1.DateTime,T1.SiteID 
2: FROM (SELECT   M1.YearID,M1.OSID,S1.DateTime,S1.SiteID 
3:   FROM   OverallStormHourlyStorms M1 JOIN HourlyStormSites S1 ON 
4:     M1.HSID=S1.HSID AND M1.DateTime=S1.DateTime) T1 
5:   JOIN  
6:   (SELECT   M2.YearID,M2.OSID 
7:   FROM   OverallStorms M2  
8:   WHERE  M2.Duration > 1) T2 
9:   //WHERE-clause specifies that only overall storms with 2 or more durations are considered. 
10:   ON T1.YearID=T2.YearID AND T1.OSID=T2.OSID 

 

SQL18. Verify if the spatial-window (s) and grouping-window (g) hold 

1: SELECT  T1.YearID,T1.OSID //Invalid overall storms are reported. 
2: FROM  (SELECT  DISTINCT YearID,OSID,DateTime  
3:    FROM   <SQL17 resulting table>) T1 
4: WHERE NOT EXISTS (SELECT  * 
5:     FROM  <SQL17 resulting table> T2  
6:     WHERE  T1.YearID=T2.YearID AND T1.OSID=T2.OSID AND  
7:        T1.DateTime=T2.DateTime AND  
8:       EXISTS (SELECT * 
9:         FROM <SQL17 resulting table> T3  
10:         WHERE T2.YearID=T3.YearID AND T2.OSID=T3.OSID AND 
11:          T3.DateTime-T2.DateTime=1 AND //Check for g 
12:            T2.SiteID=T3.SiteID AND //Check for s 
13:           T3.DateTime>T2.DateTime)) 
14: //For each correct overall storm, one row is reported for the last hour time.  
15: //Having this GROUP BY- and HAVING- clauses, an empty set is returned if all overall storms are correct.  
16: GROUP BY T1.YearID,T1.OSID 
17: HAVING COUNT(*)>1 
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SQL19. Verify maximality property of overall storms 

1: SELECT * 
2: FROM OverallStormHourlyStorms M1 JOIN HourlyStormSites S1 
3:   ON M1.HSID=S1.HSID AND M1.DateTime=S1.DateTime 
4: WHERE EXISTS (SELECT * 
5:    FROM  OverallStormHourlyStorms M2 JOIN HourlyStormSites S2  
6:      ON M2.HSID=S2.HSID AND M2.DateTime=S2.DateTime 
7:    WHERE (M1.HSIDM2.HSID OR M1.DateTimeM2.DateTime) AND //Diff. hourly storms 
8:      S2.DateTime-S1.DateTime=1 AND //Within 1 hour different 
9:       S1.SiteID=S2.SiteID AND //Share at least 1 site 
10:       (M1.YearIDM2.YearID OR M1.OSIDM2.OSID) AND //But end up in diff. os 
11:      S2.DateTime>S1.DateTime=1 //Eliminate redundant comparisons)  

 

4.5 Related Work 

There are three main parts of related work: 1) storm characteristics analysis, and 

2) map-reduce framework for spatial data computing, and 3) iterative map-reduce. 

4.5.1 Storm Characteristics Analysis 

Several studies suggest that storm characteristics analysis can be done in 

various ways, such as through its statistical properties, depth-duration frequency (DDF 

[50]), or focusing on its extreme precipitation values. Asquith [36] studies storm statistical 

characteristics including the mean (average) of storm inter-event time, storm depth, and 

storm duration by analyzing hourly precipitation data retrieved from National Weather 

Service (NWS) [42]. The data contains 155 million values covering 774 sites in Eastern 

New Mexico, Texas, and Oklahoma. The storm characteristics results are used to help in 

designing and creating a new runoff control structure. The outputs are in two formats: 

maps and tables. [36]’s raw data is stored in file and folder format which raises the 

difficulty in combining all data across an enormous number of folders and processing 

them together. Consequently, a huge manual effort is needed to do the analysis. In 

addition, its analysis has been location-specific (site-specific and regional-specific). So, 

the storm-specific information is lacking from the work.  

In [37][38], Asquith and Roussel study storm characteristics through its Depth-

Duration Frequency (DDF [50]) property. [37] presents a procedure to develop a DDF at 
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any location in Texas for the following 14 storm durations: 15, 30, and 60 minutes; 1, 2, 3, 

6, 12, and 24 hours; and 1, 2, 3, 5, and 7 days with recurrence intervals ranging from 2 to 

500 years. DDF is an estimated depth of the storm given its duration and frequency 

(recurrence time). It is very important when creating an efficient control structure such as 

storm drains or parking lots. It is also used to design efficient river flow and flood 

prediction models. As a result, it has to be very accurate. To calculate DDF for a storm 

duration and frequency at any location, we need three storm depths (in inches) retrieved 

from three maps (location, scale, and shape parameter maps) for that storm duration and 

a storm intensity (in inches per hour) retrieved from precipitation intensity-duration curve 

of that storm frequency. Then, plug all values into the equation given in the paper [37] 

and the result is an estimated storm depth for that particular storm.   

[38] is an extension of [37]. However, it does not require users to do the 

calculation themselves. It provides pre-computed DDF maps, which are ready to use. 

The set of storm durations and storm frequencies, however, are different from [37]. The 

storm durations only include 15, and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5, 

and 7 days and the storm frequencies only include 2, 5, 10, 25, 50, 100, 250, and 500 

years. One of the key tasks of [37][38] is to create location, scale, and shape parameter 

maps used in the approach. To create such maps, this work uses storm data from 

National Climatic Data Center (NCDC) [46]. However, only location-specific storm data 

(by county) is provided by NCDC. So, generating these required maps will be limited to 

location-specific storm data. In addition, even though NCDC stores storm data in a 

database, CUAHSI ODM was not mentioned as its database schema. As a result, 

incorporating our storm data (storm-specific) into these two works may enhance their 

analytic capabilities. 
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Lanning-Rush [39] studies storm characteristics by focusing on its extreme 

precipitation (EP) values. The extreme precipitation depth refers to one that exceeds 100-

year or greater storm depth. Unlike [36] that considers all storms, only extreme storms 

were taken into account in this work. Unlike [37][38] that the inputs are storm duration, 

frequency, and location, it only takes storm duration and area as inputs. The goal of this 

work is to create the extreme precipitation curve which can be used to estimate extreme 

precipitation depth for a particular storm duration and area. The EP curves are developed 

from 24 extreme storms out of 213 notable storms. They select storm durations to include 

1, 2, 3, 4, 5, and 6 days and the areas include High Plains, Low Rolling Plains, North 

Central, Edwards Plateau, South Central, South Texas, East Texas, Upper Coast, and 

Lower Valley in Texas. Trans-Pecos area, however, was excluded due to the lack of its 

storm data.  

4.5.2 MapReduce Framework for Spatial Data Computing 

Since map-reduce has become the de-facto framework for the data-intensive 

applications, it is now being used for big data related to geography, sciences, humanities, 

statistics, etc. There has been previous work for spatial data analysis in map-reduce. Lu 

[88] uses map-reduce framework for analyzing and visualizing big spatial-temporal data. 

Complex climate datasets are used in their case study. Cary [63] shows the construction 

of R-Tree index from spatial data in map-reduce. It uses the mappers to partition the data 

and then every partition is sent to a different reducer which in turn build the R-Tree index 

on the input. Google used the map-reduce framework to study road alignments by 

combining satellite and vector data [64]. The work focused more on the complexity of the 

problem than the implementation in map-reduce. Hadoop was also used to build octrees 

for later use in earthquake simulations at a large scale [65]. Octrees were built in the 

bottom up fashion in their approach. Mappers were used to first generate the leaf nodes 
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and then reductions were performed to merge two homogeneous leaf nodes into a sub 

tree. This was done in iterations to build the final sub tree.  

4.5.3 Iterative MapReduce 

Most data analysis and mining algorithms are iterative in nature and 

hence require repetitive map-reduce jobs. An example of iterative map-reduce 

applications is breadth-first search (BFS) [90]. Kondekar [89] developed a parallel 

breadth-first heuristic search (PBFHS) algorithm for solving N-Puzzle problem based on 

iterative map-reduce. Lin [91] mentions that map-reduce framework can be used to 

efficiently solve complex search problems (such as PageRank), which are iterative and 

require high computational capabilites. An efficient implementation of iterative graph 

search algorithms is developed on the map-reduce framework [91]. Twister [92] and 

HaLoop [93] are developed on top of hadoop for supporting iterative computations in the 

map-reduce framework. Twister provides long-running map and reduce tasks with a 

cacheable distributed memory, which is used to prevent retrieving the same data multiple 

times from the disks. HaLoop caches the loop-invariant data structures and hence the 

loading and shuffling cost is reduced in the subsequent iterations. There has also been 

recent work in the development of incremental processing systems such as Incoop [94] 

and Google’s Percolator [95]. Incoop is a hadoop-based incremental processing system 

whereas Google’s Percolator is an incremental processing system based on BigTable 

[78].  
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Chapter 5  

Analysis and Mining of Conceptual Data 

After the conversion algorithms are executed on the raw rainfall data in the 

previous chapter, we now have the conceptual storm data stored in a relational database. 

The raw data contains 16 years of historical rainfall data from 1997 to 2012. The size of 

the conceptual relational storm outputs are significantly reduced (< 1%) when compared 

to the size of the raw rainfall data as the superfluous parts are removed and the raw 

rainfall data is summarized/converted into meaningful rainstorm concepts. The analysis 

and mining tasks can then be easily conducted on the conceptual storm data either 

directly using SQL or by extracting the conceptual storm data from the relational 

database. In this chapter, we show some examples of how analysis and mining tasks can 

be performed on the conceptual storm data. We divide the analysis and mining tasks into 

two groups: 1) traditional hydrology analysis and 2) more general storm analysis and 

mining. Traditional hydrology analysis is discussed in Section 5.1. More flexible/robust 

storm analysis and mining is discussed in Section 5.2.  

5.1 Traditional Hydrology Analysis 

Most traditional rainfall analysis is based on location, meaning each site or region 

(set of sites) is considered separately when analyzing a storm. The goal is to investigate 

characteristics of storms at a particular location. These analyzed characteristics will then 

be used in creating an efficient/cost-effective hydraulic control structure (e.g., storm drain 

(to route localized runoff) and parking lot design for effective draining), and designing 

river flow or flooding prediction models [80]. The traditional rainfall analysis can be 

divided into three categories [36][37][38][39][80][99]: 1) storm statistical properties, 2) 

relationships between/among characteristics of storms, and 3) focusing on extreme 

precipitation values of storms. 
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5.1.1 Storm Statistical Analysis  

In storm statistical properties analysis, each characteristic of storms is analyzed 

separately for its statistical properties. The storm characteristics include inter-event time, 

total rainfall, and duration. There are six main statistics studied: mean (average) inter-

event time between storms, mean total rainfall at a particular location, number of storms 

during the study period, total duration of all local storms, distribution of total rainfall values 

over the various storms, and distribution of storm durations [36]. Each statistical property 

is analyzed for a particular inter-event time. The considered set of inter-event times 

consists of 6, 8, 12, 18, 24, 48, and 72 hours. Figure 5-1 shows some examples of storm 

statistical properties analysis. 

 

a) Selected Storm Characteristics for Single Site by Different Inter-Event Times 

 

b) Selected Storm Characteristics Defined by 6-Hour Inter-Event Time 

Figure 5-1 Examples of Storm Statistical Properties Analysis [36] 

Since storm total rainfall and duration are pre-calculated and stored in the 

statistics table (i.e., LocalStorms table), their statistical properties can easily be 

calculated using SQL. The total number of storms can be calculated by counting number 
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of rows in the LocalStorms table as each row in the table represents one local storm. 

Query SQL20 describes how averaged total rainfall, number of storms, and total duration 

can be done. Query SQL21 shows how distribution of storm characteristic can be 

determined. Inter-event time characteristic, however, was not pre-calculated but can 

easily be calculated using SQL as shown in query SQL22. Because ids of local storms 

are numbered sequentially (i.e., i, i+1, i+2, ..., where i is the first id of local storm at a 

given site location), the inter-event time between two consecutive local storms can be 

determined by L2.Start – L1.Stop, where L1 is the current local storm and L2 is the next 

local storm at the same site.   

SQL20. Determine mean total rainfall, number of storms, total duration  

1:  SELECT  (AVG(TotalRainfall)|COUNT(*)|SUM(Duration)) 

2: FROM   LocalStorms 

3: [WHERE   (SiteID = <site>|SiteID IN <region>)] 

 

SQL21. Determine distribution of storm characteristic (e.g., total rainfall, duration)  

1: SELECT  (TotalRainfall|Duration), COUNT(*) 

2: FROM   LocalStorms 

3: [WHERE   (SiteID = <site>|SiteID IN <region>)] 

4: GROUP BY  (TotalRainfall|Duration) 

5: ORDER BY  (TotalRainfall|Duration) (ASC|DESC) 

 

SQL22. Determine mean storm inter-event time  

1: SELECT  AVG(L2.Start–L1.Stop) 

2: FROM   LocalStorms L1 JOIN LocalStorms L2 ON L1.YearID = L2.YearID AND L1.LSID = L2.LSID-1 

3: [WHERE   (L1.SiteID = <site>|L1.SiteID IN <region>)] 

 

In our analysis, we use h = 6 hours as the inter-event time. To determine the 

statistical properties for other inter-event times (h = 8, 12, 16, …), we just need to change 

the inter-event-count parameter in the local storm identification program and re-run it.  

5.1.2 Correlation Analysis among Strom Characteristics  

In this type of analysis, each pair or group of storm characteristics are analyzed 

together. There are five categories [80][37][38][96]: depth-duration, intensity-duration, 

depth-duration-frequency, intensity-duration-frequency, and depth-area-duration.  
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5.1.2.1 Depth-Duration 

In depth-duration analysis, two storm characteristics are analyzed together: 

cumulative depth and duration. Cumulative depth monotonically increases as duration 

increases, because additional rainfall is added at each hour. The goal is to generate a 

cumulative depth diagram (a graph plot between cumulative depths (Y) and its 

associated time point in storm duration (X)) for each local storm for a given location. The 

location here can be a single site or a region (set of sites). Figure 5-2 is an example of 

cumulative depth diagram of a local storm at site id, 288096. Since cumulative depth is 

not pre-calculated in the local storm statistics table, we use a nested query in the 

SELECT-clause to calculate it. For a single site location, the cumulative depths can be 

calculated by using the query SQL23. Then, to create a cumulative diagram for a local 

storm, we just need to save the query SQL23 results in a separate table and query from it 

by specifying the local storm id (YearID, LSID).   

SQL23. Calculate cumulative depths of local storms for a single site  

1: SELECT  L1.YearID,L1.LSID,L1.Time,  

2:   (SELECT SUM(L2.DataValue) 

3:   FROM LocalStormHours L2 

4:   WHERE L2.YearID=L1.YearID AND L2.LSID=L1.LSID AND  

5:     L2.Time  L1.Time) AS CDepth //cumulative depth  

6: FROM   LocalStormHours L1  

7: WHERE   L1.SiteID = <site> 

8: ORDER BY  L1.YearID,L1.LSID,L1.Time ASC 

 

To create a cumulative depth diagram for a region (e.g., Tarrant county, Texas), 

two methods are used: arithmetic mean method and Thiessen polygons method [96]. In 

our analysis, we use arithmetic mean method. Local storms occurring at the same time 

(same start and end times) within a region are considered together when creating a 

cumulative depth diagram. In the arithmetic mean method, a cumulative depth diagram is 

created based on the averaged cumulative depths of the local storms.  
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Figure 5-2 Cumulative Depth Diagram of Local Storm at Site Location 288096 

Queries SQL24, 25, and 26 describe how a cumulative depth diagram for a given region 

can be calculated by using SQL. First, we extract a list of different time periods that local 

storms (within the region) occur at the same time (see query SQL24). (We can also 

specify duration condition (such as Duration = 10) as depth-duration analysis normally 

considers each duration at a time.) Second, we compute all related cumulative depths for 

every site in the region in query SQL25. Finally, we calculate a representative cumulative 

depth diagram for the time period for the region in query SQL26.  

SQL24. Extract all time periods of local storms for a region 

1: SELECT  DISTINCT Start,Stop 

2: FROM  LocalStorms  

3: WHERE  SiteID IN <region> [AND Duration = <d durations>] 

 

SQL25. Compute all cumulative depths for all sites in the region 

1: SELECT  L1.YearID,L1.SiteID,L1.LSID,L1.Time,  

2:   (SELECT SUM(L2.DataValue)   FROM LocalStormHours L2 

3:   WHERE L2.YearID=L1.YearID AND L2.LSID=L1.LSID AND L2.Time  L1.Time) AS CDepth 

4: FROM  LocalStormHours L1  

5: WHERE  L1.SiteID IN <region> 

6: ORDER BY L1.YearID,L1.SiteID,L1.LSID,L1.Time ASC 

 

SQL26. Calculate avg. cumulative depths for the specified time period from SQL24 using table from SQL25 

1: SELECT A.Time,A.AVG(CDepth) AS ACDepth //averaged cumulative depth 

2:  FROM <resulting table from SQL25> A 

3:  WHERE EXISTS (SELECT *  FROM LocalStorms L 

4:     WHERE A.YearID=L.YearID AND A.LSID=L.LSID AND  

5:      L.Start=<Start from SQL24> AND L.Stop=<Stop from SQL24>) 

6:  GROUP BY A.Time  
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In hydrology, cumulative depth and duration can be approximated by: 

                                                                  (4) 

where P is precipitation (mm), t is duration, a is coefficient, and n is exponent where  

0 < n < 1 [80]. This equation is limited to the location, where it is derived from. To 

determine a and n, all cumulative depth diagrams for a given location (i.e., site or region) 

are taken into account.  

5.1.2.2 Intensity-Duration 

In this analysis, storm intensity and duration are analyzed together. The storm 

intensity can increase or decrease during the storm duration, usually decreases at the 

end of the duration. To do analysis, a hyetograph is created for each local storm for a 

given location [96]. Hyetograph is a graph plot between storm intensity (Y) and duration 

(X) [96]. Figure 5-3 is an example of hyetograph of a local storm at site location 288096. 

Since our raw data is reported hourly and independently (i.e., each storm intensity for an 

hour is reported individually), storm intensity for each hour in storm duration can easily be 

extracted. Query SQL27 shows how hyetograph can be created for a single site. 

 

Figure 5-3 Hyetograph of Local Storm at Site Location 288096 
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SQL27. Extract all storm intensities of local storms for a single site 

1: SELECT  YearID,LSID,Time,DataValue  

2: FROM  LocalStormHours  

3: WHERE  SiteID = <site> 

4: ORDER BY YearID,LSID,Time ASC 

 

Similar to depth-duration analysis, to create a hyetograph for a region, local 

storms occurring at the same time within the region are considered together. That is, a 

hyetograph is created based on the averaged intensity of these local storms across the 

sites. Queries SQL24 and 28 describe how intensities of local storms for a given region 

can be calculated. 

SQL28. Calculate averaged intensities for a region given the specified time period from SQL24 

1: SELECT A.Time,A.AVG(DataValue) AS AIntensity //averaged intensity 

2:  FROM LocalStormHours A 

3:  WHERE A.SiteID IN <region> AND 

4:   EXISTS (SELECT * 

5:     FROM LocalStorms L 

6:     WHERE A.YearID=L.YearID AND A.LSID=L.LSID AND  

7:      L.Start = <Start from SQL24> AND L.Stop = <Stop from SQL24>) 

8:  GROUP BY A.Time  

 

Since storm intensity and cumulative depth are related, the equation (4) can be 

converted to relationship between storm intensity and duration by dividing both sides of 

the equation by time t as follows [80]:  

 

 
 

   

 
 

 

                                                           (5) 

 
where io is storm intensity. As a result, to determine a and n, we can either use 

hyetographs or cumulative depth diagrams. 

5.1.2.3 Depth-Duration-Frequency (DDF) 

In this analysis, three storm characteristics are analyzed: cumulative depth, 

duration, and frequency. As mentioned, storm duration are pre-calculated and stored in 

the LocalStorms table. However, storm cumulative depth and frequency are not. Storm 
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cumulative depth can easily be calculated as described in query SQL23. Storm frequency 

is a count of storms with the same total rainfall and duration for a given site. This 

characteristic can also be calculated by using SQL as shown in query SQL29.  

SQL29. Storm frequencies for a given site, ordered by duration and total rainfall 

1: SELECT  Duration,TotalRainfall,COUNT(*)  

2: FROM  LocalStorms 

3: WHERE  SiteID = <site> 

4: GROUP BY Duration,TotalRainfall 

5: ORDER BY Duration,TotalRainfall ASC 

 

The goal of this analysis is to create DDF curves for a given location. Figure 5-4 

shows an example of DDF curves for a single site. To create DDF curves for a site, one 

of the main steps is to calculate annual maximum total rainfall for each year and storm 

duration. For example, a set of selected storm durations = {2-, 4-, 8-, 12-, 24-, 36-, 72-

hour durations} and we have 16 years of storm data. So, we need to calculate 16 x 7 = 

112 annual maximum total rainfall values. This calculation can easily be done by a single 

query as described in query SQL30. Then, by using the results from both queries SQL29 

and 30 and hydrology methods, a final set of DDF curves is determined and plotted 

[80][96].  

SQL30. Find annual maximum total rainfall values for a site 

1: SELECT  YearID,Duration,MAX(TotalRainfall)  

2: FROM  LocalStorms 

3: WHERE  SiteID = <site> 

4: GROUP BY YearID,Duration 

5: ORDER BY YearID,Duration ASC 

 

To create DDF curves for a region, DDF curves for each site in the region are 

created. Then, by applying hydrology analysis (e.g., frequency analysis, Weibull’s plotting 

formula [80]), the final DDF curves for a region is identified.  
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Figure 5-4 Example of DDF Curves for Single Site [80] 

5.1.2.4 Intensity-Duration-Frequency (IDF) 

In this analysis, three characteristics of storms are analyzed: intensity, duration, 

and frequency. DDF and IDF are related. To create an IDF curve, the steps are similar to 

the ones of DDF except that annual maximum intensity (as opposed to annual maximum 

total rainfall value) for each combination of a year and a storm duration is retrieved. The 

corresponding SQL is shown in query SQL31. 

SQL31. Find annual maximum intensities for a site 

1: SELECT  YearID,Duration,MAX(Intensity)  

2: FROM  LocalStorms 

3: WHERE  SiteID = <site> 

4: GROUP BY YearID,Duration 

5: ORDER BY YearID,Duration ASC 

 

5.1.2.5 Depth-Area-Duration (DAD) 

This analysis only applies to local storms that cover multiple sites (region). In 

particular, local storms that cover a large area are analyzed. The DAD analysis helps 

determine the distribution rate of the large storm. Three storm characteristics are 

analyzed: cumulative depth, area, and duration. An area of large local storm refers to a 

set of sites having non-zero precipitations in the same hours. The goal is to create DAD 
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curves for a large local storm. Figure 5-5 shows an example of DAD curves of a storm. 

There are two methods to create DAD curves: mass-curve and incremental isohyetal 

[80]. We chose mass-curve method to create DAD curves. Two of the main steps in 

creating DAD curves are to: 1) compute cumulative rainfall values (depths) for each site 

covered by a storm and 2) calculate summation and mean rainfall values for each time 

point across sites of the storm. Figure 5-6 shows some examples of the results from 

these steps. The remaining steps are to use hydrology methods to determine the final 

DAD curves [80]. The two main steps can be done by using queries SQL32 and 33, 

respectively. 

 

Figure 5-5 Example of DAD Curves of Large Storm [80] 

5.1.3 Analysis of Extreme Rainfall Events  

In this type of analysis, only extreme storms are considered [39]. An extreme 

storm refers to a large local storm (cover many sites) with intensity more than 150 mm/hr 

[80]. The enveloped curve for extreme storm can be mathematically described as shown 

in equation (6). 
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SQL32. Compute mass-curve table for a large n-hour local storm 

1: SELECT  L1.YearID,L1.LSID,L1.SiteID,L1.Time, 

2:   (SELECT SUM(L2.DataValue) 

3:   FROM LocalStormHours L2 

4:   WHERE L2.YearID=L1.YearID AND L2.SiteID=L1.SiteID AND L2.LSID=L1.LSID 

5:    AND L2.Time  L1.Time) AS CDepth 

6: FROM  LocalStormHours L1 

7: WHERE  EXISTS (SELECT * 

8:     FROM LocalStorms L3 

9:     WHERE L3.YearID=L1.YearID AND L3.SiteID=L1.SiteID AND L3.LSID=L1.LSID 

10:      AND L3.YearID=<year> AND L3.SiteID IN <region> AND L3.Duration=<n> 

11:      AND L3.Start=<time1> AND L3.Stop=<time2>) 

12: ORDER BY L1.YearID,L1.LSID,L1.SiteID,L1.Time ASC 

 

SQL33. Compute summation and mean rainfall values for each time point of the storm 

1: SELECT  L1.Time,SUM(L1.DataValue),AVG(L1.DataValue) 

2: FROM  LocalStormHours L1 

3: WHERE  EXISTS (SELECT * 

4:     FROM LocalStorms L2 

5:     WHERE L2.YearID=L1.YearID AND L2.SiteID=L1.SiteID AND L2.LSID=L1.LSID 

6:      AND L2.YearID=<year> AND L2.SiteID IN <region> AND L2.Duration=<n> 

7:      AND L2.Start=<time1> AND L2.Stop=<time2>) 

8: GROUP BY L1.Time ASC 

 

                                                                  (6) 

The equation is derived from the world’s greatest observed rainfall events [97]. All 

analysis mentioned previously can also be applied to extreme rainfall events. Query 

SQL34 show an example of how extreme rainfall events can be analyzed. 

SQL34. Counting the number of extreme rainfall events occurred at site id 355478 in the past 10 years 

1: SELECT  COUNT(*) 

2: FROM  LocalStorms 

3: WHERE  SiteID=355478 AND Start BETWEEN 2004 AND 2014 AND Intensity > 150 mm/hr  

 

5.2 More General Storm Analysis and Mining 

In this section, we show how more flexible and robust analysis and mining can be 

done on our storm data. We divide this section into two subsections: storm analysis and 

storm mining.  
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a) Mass Curve Computations of Large Storm in Western Ontario, Canada in 1964 [80]  

Observation 
time (hour 

ending) 

Cumulative depths (inches) for each site location (SiteID) 7-Sites MPE 

15879 17580 17581 17583 17584 19291 20993 Total Average 

6/29/11 17:00 0.01 0.01 0.06 0.02 0.01 0.01 0.01 0.13 0.02 

6/29/11 18:00 0.01 0.02 0.07 0.03 0.04 0.02 0.01 0.07 0.01 

6/29/11 19:00 0.01 0.02 0.07 0.03 0.04 0.06 0.02 0.05 0.01 

6/29/11 20:00 0.38 0.5 0.62 0.29 0.12 0.07 0.02 1.75 0.25 

6/29/11 21:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 1.25 0.18 

6/29/11 22:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 0.00 0.00 

6/29/11 23:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 0.00 0.00 

6/30/11 00:00 0.94 0.95 0.86 0.29 0.12 0.07 0.02 0.00 0.00 

6/30/11 01:00 0.94 0.95 0.86 0.29 0.12 0.17 0.14 0.22 0.03 

6/30/11 02:00 0.94 0.95 0.86 0.4 0.3 0.56 0.44 0.98 0.14 

6/30/11 03:00 0.99 0.96 0.9 0.46 0.35 0.56 0.44 0.21 0.03 

6/30/11 04:00 0.99 0.96 0.9 0.46 0.35 0.56 0.44 0.00 0.00 

 

b) Mass-Curve Computations of Local Large Storm from Our Storm Data 

Figure 5-6 Some Examples of Mass-Curve Computations 
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5.2.1 Storm Analysis  

More general storm analysis can be done in both location-specific (through 

LocalStorms and LocalStormHours tables) and storm-specific (i.e., the remaining tables). 

All types of storms (local, hourly, and overall storms) can be analyzed either directly by 

utilizing calculated storm characteristics and SQL features (e.g., built-in statistical 

functions, complex query, stored procedure, UDF, etc.) or indirectly by extracting the 

conceptual storm data from a relational database to be used by other methods.  

For simple analysis, a generic SQL pattern is shown in SQL35. Examples of 

analysis that use this SQL pattern include calculating maximum total rainfall for each 

storm duration for a particular site (location-based) (see query SQL36) and determining 

the distribution of storm durations for the entire 16 years of overall storm data (see query 

SQL37).  

SQL35. Simple storm analysis pattern 

1: SELECT  (<grouping attribute>,)* (<statistical function>(<storm characteristic>))+ 

2: FROM  (LocalStorms|HourlyStorms|OverallStorms) 

3: [WHERE  <filtering criteria>] 

4: [GROUP BY <grouping criteria>] 

 

SQL36. Calculating maximum total rainfall for each storm duration for a single site 

1: SELECT  Duration,MAX(TotalRainfall) 

2: FROM  LocalStorms 

3: WHERE  SiteID = <site> 

4: GROUP BY Duration 

 

SQL37. Calculate distribution of storm durations for the entire 16 years of overall storm data 

1: SELECT  Duration,COUNT(*) 

2: FROM  LocalStorms 

3: GROUP BY Duration 

 
More complex storm analysis can also be done such as calculating an averaged 

intensity for each site covered by the longest heavy rainstorm [101] (location-specific) 

and counting number of overall storms passing North Central region of Texas (storm-

specific). These two examples are described in queries SQL 38 and 39, respectively. 
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SQL38. Calculating an averaged intensity for each site covered by the longest heavy rainstorm 

1: //Assuming that all sites covered by the rainstorm have the same start time and end time  

2: SELECT  L1.SiteID,AVG(L1.DataValue) 

3: FROM  LocalStormHours L1 

4: WHERE EXISTS (SELECT * 

5:     FROM LocalStorms L2 

6:     WHERE L1.YearID=L2.YearID AND L1.LSID=L2.LSID AND L2.Intensity0.3 AND 

7:      L2.Duration = (SELECT MAX(Duration) 

8:       FROM LocalStorms)) 

9: GROUP BY L1.SiteID 

 

SQL39. Counting number of overall storms passing North Central region of Texas last year 

1: SELECT  COUNT(DISTINCT O.OSID) 

2: FROM OverallStormHourlyStorms O 

3: WHERE O.YearID=2013 AND 

4:    EXISTS (SELECT * 

5:     FROM HourlyStormSites H 

6:     WHERE O.Time=H.Time AND O.HSID=H.HSID AND  

7:      H.SiteID IN <list of sites in North Central region>) 

 
We can also extract the conceptual storm data from a relational database and 

analyze it by using other methods. As an example, we extracted the relational storm data 

and analyze it through visualization [62][100]. We developed a prototype for visualization, 

called StormVisualization [62]. The StormVisualization tool is implemented in C#, 

Javascript, HTML5, Google API [48] and ASP.NET. The tool illustrates how an overall 

storm are formed and moved over time. Algorithm 8 highlights how storm visualization 

works. Figure 5-7 shows the very first screenshot of the Storm Visualization, which 

projects the overall storm (ID:863) in year 2011 onto the map. After triggering by a user, 

the animation of overall storm (863) is shown in Figure 5-8. The projection of each hourly 

storm of the overall storm (863) is shown hour by hour starting at 4/26/2011, 20:00 

(Figure 5-8 (a)). The number in parentheses indicates the number of hourly storms 

involved in that hour.  
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Algorithm8. StormVisualization 

- Project an overall storm on the map 

1: //Extract all lat/long coordinates of the specified overall storm from the relational storm data 

2: y = SELECT (290+((SiteID-15599)MOD 1701)) AS HRAPX, (10+((SiteID-15599)DIV 1701)) AS HRAPY 

3:   FROM ( SELECT DISTINCT(S.SiteID) 

4:       FROM HourlyStormSites S 

5:       WHERE EXISTS (SELECT * 

6:         FROM OverallStormHourlyStorms O 

7:         WHERE O.DateTimeUTC=S.DateTimeUTC AND O.HSID=S.HSID AND 

8:          O.YearID=<year> AND O.OSID = <osid>)  

9: Project_on_the_map(ToLatLong(y)) 

10: //Project overall storm on the map by hour 

11: d =  SELECT  O.Start, O.Stop  

12:   FROM   OverallStorms O 

13:   WHERE  O.YearID = <year> AND O.OSID = <osid> 

14: for i = d.Start to d.Stop do 

15:   p =  SELECT (290+((SiteID-15599)MOD 1701)) AS HRAPX, (10+((SiteID-15599)DIV 1701)) AS HRAPY 

16:    FROM  //Extract all sites of an overall storm for a particular hour  

17:      ( SELECT DISTINCT(S.SiteID) 

18:        FROM HourlyStormSites S 

19:        WHERE S.HSID IN  

20:       ( SELECT DISTINCT(M.HSID) 

21:         FROM OverallStormHourlyStorms M 

22:         WHERE M.DateTimeUTC=S.DateTimeUTC AND M.HSID=S.HSID AND 

23:        M.YearID=<year> AND M.OSID = <osid> ) 

24:       AND S.DateTimeUTC = i) 

25:   Project_on_the_map(ToLatLong(p)) 

26: end for 

 

 

Figure 5-7 Screenshot of Overall Storm ID 863 
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5.2.2 Storm Mining  

More efficient storm mining can also be done on our storm data in both location-

based and storm-based approaches. In the location-based approach, temporal data 

mining techniques can be applied as local storm data can be considered as time series 

data for a given location (single site or region). There are seven major data mining tasks 

for temporal data [104]: 1) indexing, 2) clustering, 3) classification, 4) prediction, 5) 

summarization, 6) anomaly detection, and 7) segmentation. On the other hand, for the 

storm-specific approach, since our overall storm outputs are spatio-temporal data, we 

can apply spatio-temporal data mining to it. Three main areas of spatio-temporal data 

mining include [82]: 1) spatio-temporal forecasting and prediction, 2) spatio-temporal 

clustering, and 3) spatio-temporal visualization. Similar to storm analysis, the storm 

mining tasks can be done directly on the relational database by using database mining 

techniques [72], or indirectly by extracting the overall storm data to be used by other 

methods. We are currently working on some of these spatio-temporal data mining 

approaches, but the results are part of our future work. 
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a) 4/26/2011, 20:00 (1) 

     
 

 b) 4/26/2011, 22:00 (3)    c) 4/26/2011, 23:00 (3)   d) 4/27/2011, 01:00 (1)   
 

     

 
e) 4/27/2011, 02:00 (1)    f) 4/27/2011, 03:00 (1)    g) 4/27/2011, 04:00 (1) 

Figure 5-8 Visualization of Overall Storm (ID: 863) by its Hourly Storms 
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Chapter 6  

Framework for Conceptual Analysis and Mining of Big Data 

Using Ontologies and EER 

In the previous chapters (Chapter 3, 4, and 5), the techniques and methodology 

that we use are for big raw rainfall data. The goal is to allow big raw rainfall data to be 

easily analyzed and mined through a relational database. These techniques and 

methodology can also be adapted to different types of hydrological data such as soil 

moisture, water level, etc., as well as other types of big data in other application domains. 

Therefore, in this chapter, we propose a more generalized framework for analyzing and 

mining big data in any given domain. The framework allows big data in a particular 

domain to be conceptually analyzed and mined by using ontologies and EER. We 

discuss the background and motivation in Section 6.1. The framework description is 

discussed in Section 6.2  

6.1 Background and Motivation 

Enormous amounts of data are rapidly generated every day in almost every 

application domain. In any given domain, big data contains potential hidden meaningful 

concepts as well as superfluous data that are not of interest to the domain experts. As a 

result, dealing with big data solely by applying a set of distributed computing technologies 

such as MapReduce [66], BSP (Bulk Synchronous Parallel) [70], and Spark [71], and/or 

distributed storage systems namely NoSQL databases [73] may not be an efficient way to 

discover the knowledge hidden in the data. To enable analysis, the big data need to be 

pre-processed so that the superfluous parts are removed (also known as a “cleaning” of 

the raw data) and the meaningful domain-specific knowledge is extracted. 

Ontology, a specification of conceptualization [105], has practically been used in 

knowledge modeling as it allows domain-specific knowledge to be formalized and 
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reasoned about in a logical way. ER and EER models and diagrams are excellent tools to 

communicate concepts, and can also be easily converted to relational tables. We use 

ontologies and EER to represent the conceptual knowledge in the data. The formalized 

concepts are developed based on consulting with domain experts in the area of 

knowledge covered by the raw data 

The advantages of our framework include the capture of domain-specific 

conceptual knowledge (which is significantly smaller in size, compared to the raw data 

but substantially more meaningful to the domain experts), better system performance by 

applying distributed computing technologies to clean and convert the raw data, and more 

robust and user-friendly analysis by storing the extracted conceptual knowledge in a 

relational database.  

6.2 Framework Description 

An overview of our framework is illustrated in Figure 6-1. There are four main 

processes: 

1. developing and formalizing domain-specific concepts into an ontology with the 

assistance of domain experts 

2. translating the domain-specific ontology to EER and mapping the EER concepts 

to relational tables 

3. designing and implementing mapping algorithms in a distributed framework to 

convert the big raw data to the conceptual data 

4. performing analysis and mining on the conceptual relational data 

We discuss each of these in the following subsections. 
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6.2.1 Developing and Formalizing Domain-Specific Concepts into an Ontology with the 

Assistance of Domain Experts 

The first step is to study a particular domain, where the big raw data comes from, 

come up with the domain-specific concepts, and formalize them into domain-specific 

ontology concepts. This step requires literature review in the application domain and 

working with domain experts to determine the concepts that are important to them, and 

how their research is currently conducted using traditional data processing 

methods/technologies. The pros and cons of the methods/technologies they use are 

determined, and potential improvements that utilize the available big data analysis tools 

such as MapReduce [66] and Hadoop® [67], are identified. 

 

Big Raw Data

Ontology 

Concepts
EER

Conceptual Data
(3) Mapping Algorithms in 

Distributed Computing and/or 

Storage Frameworks 

Relational 

Tables

input

Users

(2) mapped to

used in

output

(4)

Domain 

Experts

 

Figure 6-1 Framework for Analyzing and Mining Big Data using Ontologies and EER 

The developed ontology must meet the domain experts’ requirements, and capture 

essential concepts that they are looking for as well as other potential concepts, which 

may not have been previously identified because of limitations of the traditional analysis 

methods, but could be of benefit to them. These limitations may be due to structure of the 

big raw data and the lack of knowledge of domain users in distributed technologies. The 

developed ontology can also help domain users to understand their data better. The 

hidden insight and conceptual relationships can lead them to the knowledge that was not 
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previously identified. Consequently, further complex analysis and mining can also be 

done. In our rainfall analysis, this process is equivalent to Chapter 3, where we 

formalized rainstorm concepts to capture “overall” characteristics of the storms. 

6.2.2 Translating the Domain-Specific Ontology to EER and Mapping the EER Concepts 

to Relational Tables 

In the context of big data [69], relational database and RDBMS are usually not a 

preferred option and are often labeled as incompatible with the needs of big data analysis 

and mining. On the other hand, the concepts of NoSQL databases spread rapidly and 

caught a lot of attention as tools for big data storage and analysis/mining in the past few 

years. (As of now, it was estimated that there are at least 150 different NoSQL database 

vendors [73].) The advantages of NoSQL databases include high availability, fast key-

value access, horizontal scalability, fault-tolerance, and dynamic/semi-structured data 

type support. However, the disadvantages of NoSQL databases includes weak 

consistency, not fully supporting relational features (e.g., join, group by, order by 

operations) across partitions, denormalized data model, and lack of a powerful 

declarative query language (i.e., SQL) [73][74][75][78] that can be used for data analysis. 

Our framework loads the final conceptual output data into a relational database so that all 

RDBMS benefits can be used. To store the final conceptual outputs in a relational 

database, we translate the formalized domain concepts from the previous step to an EER 

model, which will later be mapped to relational tables. The mapping process is done by 

using the methodology/steps described in [41]. In the case of our rainfall data, this 

process is equivalent to what we did in Chapter 4, Section 4.3, where we designed an 

EER model based on the storm formalizations and characteristics of the raw rainfall data, 

and mapped it to a relational database schema for storing the conceptual storm data. 
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6.2.3 Designing and Implementing Mapping Algorithms to Convert the Raw Data to the 

Conceptual Data 

To design mapping algorithms, four factors are taken into account: structure and 

format of the big raw data, choices of distributed computing/storage framework, domain-

specific ontology, and EER model corresponding to the ontology. Understanding the 

structure and format of the big raw data helps in optimizing the computation, I/O, and 

buffer usage in the raw data-to-conceptual data mapping (or conversion) algorithms. 

Three aspects of big raw data are considered: data representation/interpretation, 

transmission of data, and data integrity. In data representation and interpretation, we 

examine how the raw data is represented and interpreted, how many columns/attributes 

there are in the raw files, what format they are based on, the particular order of the data 

items, and if any prior knowledge is required to interpret them. In the data transmission, 

we determine how data is transmitted and delivered to the storage system, how often 

data is reported, and if there is any regular downtime period, where the data might not 

arrive on time or get lost. In the integrity aspect, we check if the raw data can be updated 

after delivery and if so, how it is done and the possible effects on the previous values. We 

also determine when the data will be finalized after the initial observation time, and how 

data integrity is maintained.  

Next, we make the decision as to which distributed technology should be used. 

The selected technology should take full advantage of the characteristics of the raw data 

and other available resources (e.g., hardware). The ontology is used to ensure the 

formalized domain concepts are correctly identified. Finally, the corresponding EER 

model is used to convert the final conceptual outputs into relational database-compatible 

format. Since the final conceptual data is now stored in a relational database, the 

verification process can also be done through SQL.  
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 The developed mapping algorithms should be flexible enough in case minor 

changes are made to the raw data formats and/or other requirements (e.g., changing of 

data interval from hourly to 15-minute interval), so that significant changes to the 

algorithms will not be required. (In practice, in such cases, typically, the source provider 

will send a notification in advance and usually include converter tools. So, it is 

recommended to subscribe to the source provider newsletters so that when that 

happens, we will be notified.) However, if the changes are significant, which require 

dramatic updates, we would have a tradeoff between: 1) re-design the programs based 

on the new format and/or the data requirements, or 2) develop a converter tool of our 

own to convert the new format to the old format so that we can continue using the 

existing programs. In our rainfall analysis, this step is equivalent to what we described in 

Chapter 4, Section 4.2, where we improved the system performance by applying 

distributed computing technologies for converting the raw data to conceptual data. 

6.2.4 Performing Analysis and Mining on the Conceptual Relational Data  

After the algorithms are executed on the big raw data, we now have the 

conceptual data that we are interested in stored in a relational database. The size of the 

conceptual relational outputs are usually significantly reduced when compared to the size 

of the big raw data as the superfluous parts are removed and the raw data is 

summarized/converted into meaningful domain-specific concepts. The analysis and 

mining tasks can then be easily conducted by domain users on the conceptual 

knowledge base either directly using SQL or indirectly by extracting the conceptual data 

from the relational database. In our rainfall analysis, this process is equivalent to Chapter 

5, where we perform analysis and mining on the conceptual storm data through a 

relational database. 
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Chapter 7  

Conclusions and Future Work 

In this dissertation, we work with geospatio-temporal datasets. First, we consider 

spatio-temporal datasets in general. We focus on the semantics of spatio-temporal data 

and define spatio-temporal formalization using a technique called “light-weight” for 

integrating multiple ontologies in the Protégé (OWL) framework. We then implement the 

defined spatio-temporal formalization to the actual system (e.g., Protégé) to create a 

spatio-temporal ontology framework that allows spatio-temporal data to be analyzed, 

reasoned, inferenced, and queried.  

Next, we focus on a spatio-temporal dataset in a particular domain. In our case, it 

is a rainfall precipitation data in the hydrology domain. We first examine the structure and 

format of the raw rainfall data, study rainfall-related concepts, and consult with experts in 

the domain. We then create a rainstorm ontology formalization consisting of local storm, 

hourly storm, and overall storm. The formalized rainstorm concepts enable more efficient 

analysis and mining on the rainfall data such that not only can traditional hydrology 

analysis be done on the rainfall data, but storm-specific analysis that can capture 

“overall” characteristics of storms can also be done.    

To identify the formalized rainstorm concepts from the raw rainfall data, we 

develop conversion/mapping algorithms called storm identification system based on two 

approaches: CUAHSI-based approach and MapReduce-based approach. The CUAHSI-

based approach is based on CUAHSI standard, which stores and processes input and 

output from a relational database based on CUAHSI ODM database schema, and uses 

recursive depth-first search to identify storms. The MapReduce-based approach is an 

improved version of the CUAHSI-based approach with higher performance. All 

components in the storm identification systems are re-designed for full utilization of 
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resources. That is, we process the raw data directly from the original text file format 

instead of relational data to eliminate the overhead problem related to relational 

database. Additionally, we utilize our cluster of 19 machines by applying distributed 

computing technology map-reduce to parallelize the storm identification process. The 

final storm outputs are eventually loaded to a relational database for easy analysis and 

mining. The verification process is also conducted on the relational storm output data 

using SQL to ensure that the storm data are correctly identified. 

Then, we show how conceptual storm data can be used in analysis and mining. 

We first describe how traditional hydrology analysis (location-specific) can be done on the 

rainstorm data. Three categories of rainfall-related analysis are discussed: storm 

statistical properties, correlation among characteristics of storms, and analysis of extreme 

rainfall events. We also discuss more general storm analysis and mining using the 

conceptual storm data. The more general analysis/mining can be done in both location-

specific and storm-specific modes either directly from relational storm data or indirectly by 

extracting the storm data from a relational database. We show some examples of these 

analyses, which also include an implemented visualization tool called StormVisualization 

to illustrate the formation and movement of a given overall storm. 

Finally, we generalize our techniques and methodology used for the rainfall data 

into a framework for analyzing and mining big data in any given domain. The framework 

allows big data in a particular domain to be conceptually analyzed and mined by utilizing 

ontologies and EER. The framework consists of four main processes: 1) developing and 

formalizing domain-specific concepts into an ontology with the assistance of domain 

experts, 2) translating the domain-specific ontology to EER and mapping the EER 

concepts to relational tables, 3) designing and implementing mapping algorithms in a 
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distributed framework to convert the big raw data to the conceptual data, 4) performing 

analysis and mining on the conceptual relational data. 

The main contributions of our research are: 

1. Developing a spatial ontology and integrating it with a temporal ontology. 

2. Proposing formalized storm concepts that enable easier analysis and mining of 

rainfall data. 

3. Developing efficient algorithms to convert raw rainfall data into meaningful storm 

concepts. 

4. Applying analysis and mining techniques to conceptual storm data. 

5. Developing a framework that can be applied to other types of big spatio-temporal 

raw data to reduce the data and convert it into concepts for better analysis and 

mining. 

For future work, we can implement the storm identification system in different 

distributed computing frameworks, such as Sparks and BSP, and compare the 

performance among them. For better storm analysis and mining, we can process finer 

rainfall data (such as 5-minute interval rainfall data) and longer history. We can also 

develop other formalizations of other hydrological data related to rainfall such as wind 

speed, soil moisture, and temperature and integrate them with the rainstorm ontology for 

better storm prediction. Our partial rainstorm ontology can also be extended to complete 

rainfall ontology for broader and complete rainfall analysis. Finally, we can develop a 

methodology and tools to partially automate the domain consultation process so that 

more domain-specific ontologies can be developed quickly. 
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Appendix A 

Proving Completeness of OpenGIS
®
 SQL Spatial Relationships and Operations 
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In this appendix, we prove the completeness of OpenGIS SQL Spatial 

Relationships and Operations. Our proof first displays the complete set of 68 

relationships [33] (each of which is numbered) in a graphical form as shown in Figure A-

1. We then show how each relationship can be specified in OpenGIS SQL. For 

convenience, we define some shorthand operations that are commonly used in 

combinations of OpenGIS SQL. We use the shorthand operations to represent the 

subsequent OpenGIS SQL operations. Our notation is as follows: P stands for a point, L 

stands for a line, A stands for a polygon (area), and G stands for any geometry object (P, 

L, or A). 

A.1 Shorthand Notations 

A.1.1 Shorthand Notations for Function Operations 

A.1.1.1         ( ) 

Interior(L:Line) function returns a line without its ending points. 

         ( )             (          (            ( ))         ( )) 

A.1.1.2         ( ) 

Interior(A:Polygon) function returns a polygon without its exterior ring. 

         ( )            (              ( )) 

A.1.2 Shorthand Notations for Boolean Operations 

A.1.2.1                         (   ) 

IntersectsEitherEndPoint(L,G) operation returns TRUE if either endpoint of L 

intersects with G. 

                         (   )   

          (          ( )  )           (        ( )  )  
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A.1.2.2                        (   ) 

IntersectsBothEndPoints(L,G) operation returns TRUE if both endpoints of L 

intersect with G.  

                        (   )   

          (          ( )  )          (        ( )  )  

A.1.2.3                    (   )  

Intersects1EndPoints(L,G) operation returns TRUE if only one of the endpoints 

of L intersects with G. 

                     (   )   

           (          ( )  )        (        ( )  )   

           (        ( )  )        (          ( )  )  

A.1.2.4                      (   ) 

DisjointBothEndPoints(L,G) operation returns TRUE if both endpoints of L are 

disjoint with G.  

                      (   )          (          ( )  )        (        ( )  )  

A.1.2.5          (     ) 

InsideMax(G1,G2) operation returns TRUE if G1 is inside G2 such that G1 does not 

intersect the boundary of G2. 

          (     )         (     )        (           (  )) 

A.1.2.6           (     )  

ContainMax(G1,G2) operation return TRUE if G1 contains G2 such that G2 does 

not intersect the boundary of G1. 

           (     )          (     )        (           (  )) 
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Figure A-1 List of Possible Spatial Relationships between 2-D Spatial Objects  

(Point, Line, and Polygon) [33] 
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A.1.2.7             (     )  

CoveredByMax(G1,G2) operation return TRUE if G1 is inside G2 such that G1 

intersects the boundary of G2. 

             (     )        (     )          (           (  )) 

A.1.2.8         (     ) 

CoverMax(G1,G2) operation return TRUE if G1 contains G2 such that G2 intersects 

the boundary of G1. 

         (     )          (     )          (           (  )) 

A.2 Proof of Completeness 

We will use the defined shorthand notations in our proof. The proof of 

completeness can be divided into three subsections: 1) P/P, P/L, and P/A, 2) L/L and L/A, 

and 3) A/A.  

A.2.1 Proof of Completeness: P/P, P/L, and P/A  

A.2.1.1 P/P 

1)         (     )  

2)       (     )  

A.2.1.2 P/L 

3)         (   )  

4)       (   )  

5)        (   ) 

A.2.1.3 P/A 

6)         (   )  

7)        (   )  

8)          (   )  
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A.2.2 Proof of Completeness: L/L and L/A 

A.2.2.1 L/L 

9)         (     )   

10) (       (     )         (     ))                     (     ) 

                     (     )) 

11)                        (           (  ))          (           (  )) 

12)        (     )                     (     ) 

                     (           (  ))                   (           (  )) 

13)          (     ) 

14) (       (     )         (     ))                      (     )  

                       (           (  )) 

15) (       (     )         (     ))                      (     )  

                   (           (  )) 

16)                        (           (  ))         (           (  )) 

17)          (     ) 

18) (       (     )         (     ))                      (     )  

                       (           (  ))  

19)        (     )                       (           (  ))  

                       (           (  ))  

20)        (     )                      (           (  ))  

                       (           (  )) 

21) (       (     )         (     ))                       (           (  ))  

                       (           (  )) 
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22) (       (     )         (     ))                       (           (  ))  

                   (           (  )) 

23)        (     )                     (     ) 

                     (           (  ))                    (           (  )) 

24) (       (     )         (     ))                     (     ) 

                    (           (  )) 

25)        (     )                    (           (  ))  

                        (           (  )) 

26)        (     )                   (           (  )) 

                   (           (  ))                     (           (  )) 

27) (       (     )         (     ))                        (           (  ))  

                   (           (  ))  

28) (       (     )         (     ))                   (           (  ))  

                   (           (  ))                     (           (  )) 

29)        (     )                        (             (  )) 

                         (           (  ))  

30)       (     ) 

31) (       (     )         (     ))                        (             (  )) 

                        (           (  ))  

32)        (     )                     (           (  )) 

                     (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  )))) 
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33) (       (     )         (     ))                     (           (  )) 

                     (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  )))) 

34)        (     )                     (           (  )) 

                     (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  )))) 

35)         (     ) 

36) (       (     )         (     ))                   (           (  )) 

                     (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  )))) 

37)        (     )                     (           (  )) 

                    (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  )))) 

38)             (     ) 

39) (       (     )         (     ))                   (           (  )) 

                     (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  ))))  
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40)        (     )                   (           (  )) 

                   (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  ))))  

41) (       (     )         (     ))                   (           (  )) 

                   (           (  ))((                        (             (  )) 

                     (           (  ))) (                        (           (  ))  

                     (             (  )))) 

A.2.2.2 L/A 

42)         (   )   

43)        (   )       (              ( ))                       (              ( )) 

44)        (   )       (              ( ))                   (              ( )) 

45)          (              ( )) 

46)        (   )                     (   ) 

47)        (   )(       (              ( ))         (              ( ))) 

                       (              ( )) 

48)        (   )(       (              ( ))         (              ( ))) 

                    (              ( )) 

49)         (   )          (          ( ))                       (              ( )) 

50)           (   ) 

51)         (   )          (          ( ))                   (              ( )) 

52)         (   )(       (              ( ))         (              ( ))) 

                       (              ( )) 

53)         (   )                       (          ( )) 
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54)         (   )(       (              ( ))         (              ( ))) 

                   (              ( )) 

55)        (   )                     (   ) 

56)        (   )                       (              ( )) 

57)        (   )                    (              ( )) 

                     (          ( )) 

58)        (   )                       (          ( )) 

59)        (   )                    (          ( )) 

                     (              ( )) 

60)        (   )                   (              ( )) 

                   (          ( )) 

A.2.3 Proof of Completeness: A/A 

A.2.3.1 A/A 

61)         (     )  

62)          (     )  

63)           (     )  

64)       (     )  

65)        (     )  

66)         (     )  

67)             (     )  

68)         (     )  
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