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Abstract 
 

DIFFERENTIAL EQUATION MODELS OF FOREIGN  

BODY FIBROTIC REACTIONS FOR ASSESSING 

 ROLES OF MACROPHAGE PHENOTYPES  

AND MESENCHYMAL STEM CELLS 

 

Larrissa Owens, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Jianzhong Su  

Implant failure due to fibrotic encapsulation is an ongoing challenge in the bio-medical 

field.  We develop two mathematical models based on partial differential equations in two spatial 

dimensions, and use them to gain quantitative insights regarding the dynamics of immune cells 

and proteins following the insertion of a foreign body.  We focus heavily on incorporating a 

distinction between varied phenotypes of macrophage cells and analyzing their effects on healing 

processes. We extend our research to a new model that incorporates mesenchymal stem cells that 

influence the chemical reactions of immune regulators. Stability analysis is conducted on a family 

of equilibria that correspond to “healed states.” Additionally, isolated analysis of key components 

is presented to allow a more comprehensive understanding of the roles that stem cell presence 

plays on macrophage population trends. For the purposes of temporal dynamic testing, as well as 

investigations into the model for which mathematical analysis was cumbersome, computational 

tools such as MatLab and Comsol were implemented.  Model simulations are compared against 

experimental data as validation to each mathematical model's efficacy.  
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Chapter 1  

Introduction 

The primary objective of this research is to develop and test mathematical models that 

will enable us to glean a greater degree of understanding into the inner working of fibrotic 

response to foreign bodies. Studying cellular dynamics at an implant site post-surgery is of great 

interest because biomedical implants have become an integral part of corrective surgeries.  One 

example, arterial stents, is pictured in Figure 1-1. 

 

Figure 1-1 Arterial Stent 
 

The human body has a natural immune system that defends the integrity of the body. 

Commonly, these implants can be prone to persistent inflammation and fibrotic encapsulation 

leading ultimately to implant failure as a result of the so-called foreign body reactions.  Through 

mathematical modeling we gain greater insight into cellular interactions and their effects on 

healing processes, and acquire quantitative assessment of the outcomes of foreign body reactions.  

As predictive models continue to advance, treatment plans can be devised in hopes of lessening 

the severity of these reactions and decreasing the frequency of implant failure.  
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1.1   Advantage of Mathematical Modeling 

As more and more medical implants are introduced to treat a growing number of patients 

with varied ailments, the reactions these devices cause have become a common concern for the 

medical community.  While a large amount of experimental data has been accumulated, and great 

progress made in device improvement and patient care, there is still no comprehensive 

understanding of the foreign body reaction process. Mathematical modeling can help as the 

medical community seeks to improve the clinical management of implant fibrotic response by 

identifying which elements should be manipulated to assist the healing process. Mathematical 

models provide these theoretical predictions without the need for real-time experiments and help 

to alleviate the challenges of experimental cost as well as the technical difficulty involved in 

distinguishing between cell types present in a tissue sample. 

 

1.1.1  The Structure of This Dissertation is as Follows 

Chapter 1, we set the stage by providing the biological setting as well as prior 

mathematical modeling that provide frameworks for our modeling. We provide a preliminary 

glimpse into foreign body fibrotic reaction modeling and highlight the crucial role that 

Macrophage populations play in modeling sub-dermal healing processes. 

Chapter 2, we introduce our mathematical model that is based on biochemical 

mechanisms.  We test the model against experimental data and record its potential for providing 

new quantitative insights about foreign body reactions. We conduct a stability analysis of the 

model to determine quantitative insights about the healing process, with specific attention given to 

the effect of macrophage phenotypes. 

Chapter 3, we add the influence of Stem Cells to our modeling to observe how the 

presence of Adult bone marrow derived stem cells affect the healing process. We look at the 

stability of the healed equilibrium state as well as their transient behavior of key inflammatory 
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mediators to gain insights into the complex cellular reactions involved in implant healing. In 

Appendix A, an additional model, which includes fibrocyte cell as an additional variable, is also 

presented and the temporal dynamics are simulated at varied levels of stem cell presence. 

Chapter 4 summarizes the results presented in these preluding chapters and provides 

directions for improving our modeling techniques. 

 
1.2    Biological Background 

The process of fibrotic reactions to implants involves several cells and proteins and 

reacting in a cascade of sequential, parallel and overlapping chemical processes [1].   

 

1.2.1  Foreign Body Reactions at a Glance 

Foreign body reactions are often started with the accumulation of coagulation products 

and the release of various inflammatory products around the biomaterial [1],[2],[3]. The gradient 

of inflammatory signals leads to the recruitment of macrophages, a type of white blood cell, 

followed by fibroblasts, a prominent cell type in connective tissue, to surround medical implants 

[4],[5],[6]. One of the most potent pro-fibrotic products is transforming growth factor-β [7] that 

can be secreted by activated macrophages [8] or released from damaged or squished cells during 

the implant insertion [9].  In addition to these initiators, in more recent studies the stimulation of 

inflammatory mediators is often accredited to activated, resident Mast Cells at the implant site 

[10].   

Once recruited to the implant site by, fibroblasts undergo proliferation and then produce 

procollagen. Precollege can be converted into collagens by enzymes. Collagen comprises a large 

percentage of the elements in the extracellular matrix (ECM) that provides scaffolding for new 

blood vessel stemming (angiogenesis), and in ideal settings fills in around the implant without 

excessive scar tissue (fibrosis) or inflammation.  
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The engineering of the surface material and texture of implants has proven to affect the 

healing process. Furthermore, the coating of an implant with varied chemical, cellular and polymer 

mixtures has also been a key topic for investigation. The use of certain classes of stem cells and 

stem cell recruiters to coat implants has shown to promote beneficial macrophage activity and 

recruitment along with new vessel growth thereby increasing the overall influx of needed cell 

types [11][12]. 

 

1.2.2  Phenotypes of Macrophages 

It is well established that macrophages play a pivotal role in wound healing models.  

Macrophages (MФ) exhibit remarkable plasticity and can adopt different phenotypes in response 

to environmental cues [13],[14],[15].  

There are at least three known phenotypes of MФ. Classically activated MФ, designate as 

the effector MФ, are produced during cell-mediated immune response. Interferon-γ and tumor-

necrosis factor-α are two of the main signals that promote this phenotype of MФ.  Classical 

Macrophages have enhanced microbicidal or tumoricidal capacity and secrete high levels of pro-

inflammatory cytokines and mediators.  Assisted in part by the production of transforming growth 

factor type β (TGFβ), classical MФ can help inhibit inflammation through the clearance of 

apoptotic cells [16], [17].   

Wound-healing MФ (or Inflammatory MФ) can develop in response to signals through 

interleukin-4. Arginase activity is stimulated in this phenotype of MФ, allowing them to contribute 

to collagen precursors and thereby aid in the production of extracellular matrix [18].  

Regulatory MФ, the final classification of macrophage cells, often arise during the later 

stages of adaptive immune responses.  Their primary role is to dampen the immune response and 

limit inflammation through the production of interleukin-10 [19].  
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All three of these phenotypes have been observed experimentally within the dermal 

wound healing context, and the phagocytes biomaterial interactions are known to be similar here 

for foreign body reactions.  

 

Figure 1-2 Macrophage Phenotypes:  
Mosser and Edwards [13] reported on the ability of Macrophage cells to take on different 
profiles and fulfill varied roles in the wound healing process 

 

1.2.3  Immune Response Initiators 

There exist several avenues by which immune response is initiated. The introduction of 

bacteria and pathogens during surgical process can serve as an initiator for the immune response.  

Red blood cells or tissue cells that underwent damaged during the implantation also 

recruit/activate phagocytes (i.e. Macrophages) to the implant site [20]. 

1.2.3.1  Mast Cells  

Furthermore, the initial stage for recruitment of immune cells to the implant site is often 

attributed to the activation of resident mast cells [21]. Activated mast cells release both histamine 
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but also interleukin 1-beta (IL1-β) which fall under the category of inflammatory cytokines and 

signal the up-regulation of macrophage with an inflammatory profile [10]. 

Once initiation of the immune response has occurred chemoattractants serve to prompt 

the various cells involved in healing processes to migrate to, or proliferate, at the implant site.  

 
1.2.4  Chemoactractants 

Cytokines are crucial for signaling the recruitment of cells that are needed for removing 

damaged cells, for promoting angiogenic blood vessel stemming, and also for shutting down the 

immune system to avoid unhealthy inflammation.  Recruited cells such as macrophages and 

fibroblasts continue to release more chemotactic agents to reinforce the gradient fields and to 

attract more migrating cells. 

To help separate these cytokines we classify them into two groups, pro-inflammatory 

cytokines, and regulatory cytokines (sometimes merely referred to as anti-inflammatory) [1].  

These classifications not only help to specify their roles but also establish an association to the 

macrophage phenotypes that promote them.  

Pro-inflammatory cytokines, which includes histamine are released both by inflammatory 

macrophages as well as during degranulation of activated mast cells, but are inhibited by 

Regulatory MФ cells.  

Regulatory cytokines consist mainly of interleukin-4 and various growth factors, 

including Tissue Growth Factors type β  (TGFβ), which serve to drive cell proliferation, blood 

vessel growth and recruitment of macrophages of the regulatory phenotype.   These cytokines are 

released by regulatory MФ and inhibited by inflammatory macrophages. 

We refer to [1] for an extensive list of these two cytokine classifications. 
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1.2.5  Fibroblasts  

Implant-recruited fibroblasts, a cell type in connective tissue, synthesize chains of amino 

acids called procollagen, a process that is activated by growth factors, including in particular 

TGFβ to become collagen [22][7]. 

 
1.2.6  Extracellular Matrix (ECM) 

Enzymes convert procollagen into collagen, the dominant ingredient of the extracellular 

matrix (ECM) [23]. 

Similar to collagen formation in dermal wound healing, collagenase is synthesized and 

secreted by fibroblasts as a zymogen, which is then activated by enzymes to become collagenase.  

Damaged collagen can also be dissolved by collagenase [24] therefore, collagen degradation and 

collagen formation are occurring concurrently in a competitive manner. 

 
1.2.7  Angiogenesis  

The collagen cells provide a scaffold by which blood vessels can extend into the wound 

site.  This process of new blood vessel growth is called angiogenesis. Both blood and oxygen 

levels increased by angiogenesis have been known to affect the healing processes [25]. 

Macrophage cells and Mesenchymal Stem Cells are known to contribute to angiogenesis 

[26],[12]. 

Figure 1-3 provides a visual display of the cell populations as they fill in around the 

surface of a biomedical implant as well as the angiogenesis blood vessel growth as it buds from a 

nearby blood vessel. 
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Figure 1-3 Fibrotic Reaction Summary Graphic:  
Graphic showing wave fronts that are typically occurring in foreign body fibrotic responses. 
The debris begins a chemical recruitment of macrophage cells followed by fibroblasts, 
precursors of collagen cells, which comprise the ECM. These scaffolds provide an opportunity 
for blood vessels to bud into the newly formed tissue, a process referred to as angiogenesis. 
This Figure is adapted from a schematic diagram for wound healing [27]. 

 

The study of angiogenesis has become very prevalent in modeling tumor growth as new 

blood vessels provide a nutrition source which tumors count on to grow and spread.  

 
1.2.8  Stem Cells and Stem Cell Recruiters  

Changes to the surface texture, the hydrophilic properties, as well as coating the implant 

with various cells and proteins have shown to impact the anchoring capability of the implant as 
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well as the scaring and inflammation [28]. A growing interest in experimentation has been in 

increasing the availability of stem cells at the wound site [29]. 

Embryonic Stem Cells (ESC) have been of interest to the wound healing community due 

to their potential to differentiate into the many cells needed to mediate healing processes.  

However, the ability to control which cell types these ESC's differentiation into is still far from 

understood [11]. As a result many have turned their attention instead to Adult Stem Cells (ASC), 

these cells already favor a particular cell linage and are therefore easier to control toward a 

particular cell outcome.  

  
1.2.8.1  MSCs 

Among the ASC class and present in bone marrow, Mesenchymal Stem Cells (MSCs) 

have the ability to differentiate into cell lineages necessary for wound healing, for this reason we 

focus on MSCs in our modeling.  

 
1.2.8.2  SDF-1α 

Furthermore, to avoid potential rejection of foreign stem cells some studies have 

extracted MSCs from the bone marrow of the patient prior to surgery [30] and others recruit host 

stem cells to the wound site through the use of stem cell cytokines such as Stromal Derived 

Factor-1 alpha (SDF-1α) [28]. 

Stem cell presence at the implant site has recent been shown to promote the up-regulation 

of regulatory macrophages, meanwhile inhibiting inflammatory macrophage population growth 

[28],[31]. 

 
1.2.9  Bioengineering Experimental Data 

Collaboration with bioengineering labs supervised by Liping Tang provides experimental 

data concerning key interactions that govern foreign body fibrotic reactions [6][28][4][21]. Figure 
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1-4 pictures some of the biomedical implants they research. Catheters and stents are tested first 

within the sub-dermal setting on the back of mice.   

        

Figure 1-4 Samples of Biomedical Implants 
 

The interactions and cellular behaviors they observe help shape the framework of our 

mathematical models. Furthermore, the stained cell counts that are collected in the lab are then 

used to help us determine the parameters of our model and test the model’s accuracy.  For more 

details on the biological experiments refer to section 2.2.1    

 
1.3   Prior Mathematical Modeling  

While experiments are still the main stay in the studying of foreign body reaction related 

process, significant progress has also been made in detail predictive modeling based on 

biochemical and biophysics principles.  Mathematical modeling of biological process has been a 

long building exploration.  In fact, several of the modeling relationships we use in modeling 

cellular interactions can be traced back to the techniques of Malthus and Verhulst in the 18th and 

19th centuries, where differential equations were developed to model exponential growth and 

decay of populations as well as the logistic growth that accounted for populations impacted by 

saturation levels.  In the early 20th century a great contribution by Lotka and Volterra brought 

about a way to account for predator and prey relationships.  Using population dynamics at a 

cellular level has yielded great insights into the immune response.  These modeling tools allow us 
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to explore cellular interactions and healing processes of post-surgery implants.  Prior to our sub-

dermal applications, dermal wound healing served as a prominent application for wound healing 

modeling techniques.  

 
1.3.1  Wound Healing 

For dermal wound healing, basic reactions were first considered in studies by Dale et al 

1996 [32], 1997 [33]; Dallon et al 2001 [34] and many others. 

Figure 1-5 provides the schematic used by Dale [32] to outline the reactions between the 

cells and proteins involved in wound repair processes.  The Dale model [32] leads to system of 

sixteen, coupled ODEs that quantify the activations, conversions, secretions, proliferations, and 

apoptosis of 2 collagen cell types and their precursors. 

 
Figure 1-5 Dale Model Schematic:  

Dale et al [32] created a system of 16 coupled ODEs that accounted for the reactions outlined here. 
Not explicitly pictures are the 3 enzymes that are driving the activation.  Also since two collagen 
cell types are being studied, all cells and proteins in the schematic take on two separate variables 
(with fibroblasts being the one exception as both collagen populations stem from the same 
fibroblast cell type). 

 
The Dale model was successful is investigating the effects that two different types of 

TGFβ have on scar formation and found that the simulation results of their model compared 

favorably with experimental data.  In section 1.3.3  below we will return to the Dale et al model 
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and discuss the expansion they made to their model to include cell diffusion and wave-like 

migration [33]. 

In 2006 Waugh and Sherratt [35] developed a reaction-based model that they referred to 

as “deliberately simple.” It isolated macrophage dynamics at a wound site. With only three 

variables, their model consisted of two categories of macrophage cells, inflammatory and repair, 

as well as the concentration TGFβ.  The model brought insights of the impact that macrophage 

phenotypes have on the delayed healing that many diabetic patients have experienced. 

 
1.3.2  Fick’s Law 

Fick’s Law allows us to expand mathematical modeling beyond isolated reaction terms 

occurring between species/cells and allows us to account for cell movement and migration.  

Diffusion, which serves to imitate the random motion of particles, and Chemotaxis, which 

accounts for an attractant and models motion being directed up a concentration gradient, can both 

be describe using a flux [36]. 

Fick’s law defines a simple model of the flux, J , of a chemical species, u , by  

 J = −D∇u   

where D  is the diffusion coefficient, ∇  is the Laplacian, and ∇u  represents the gradient of the 

species population. This characteristic, where movement is driven opposite of the gradient, when 

applied to the conservation law for population affected by transport,  

du
dt

= −∇⋅ J + (local production of u)   

yields a reaction-diffusion equation for modeling cell movement. 

 

1.3.3  Reaction-Diffusion Models  

Reaction-Diffusion equations account for local source terms, f , caused by chemical 

reactions as well as this flux, J , and are of the form: 
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du
dt

= D∇2u + f   

The reaction terms, f , are often visualized in schematic form as was done in the Dale 

model (refer to section 1.3.1  above).  

In 1997 the Dale model was expanded to include chemical diffusion among the 

chemoattractant and fibroblast terms.   

The migration cells, u , are often attracted by a chemoattractant field, c . This mediation 

by a gradient sensing mechanism can be captured by chemotactic flux terms, ∇uχ∇c , with the 

strength of the chemotaxis accounted for in the chemotaxis parameter, χ . Fibroblast and 

Macrophage migration are both modeled in this way.  

In 2008, Schugart et al. [25] published a reaction-diffusion model for wound healing 

which combined all the chemoattractants into one variable and modeled the interactions between 

collagen, fibroblasts, and macrophages.  In addition to these cell types, Schugart included 

angiogenesis equations to the healing process and examined the positive effects of increased 

oxygen level in accelerating the healing and closure of open wound, suggesting new insights for 

the healing.  

Through interactions between immune mediators, phagocytes in the blood and tissue, the 

acute inflammatory response was modeled and analyzed by reduced compartmental models in 

Reynolds et al 2006 [20] and Day et al 2006 [37]. Atherogenesis in blood vessels was modeled by 

continuum equations in Ibragimov et al [38].  

The initiator for immune response is often modeled using a debris term that prompts 

phagocytosis [20], [37], [38].  We make this assumption in our modeling as well, assuming that 

the digestion of dead cells (or tissues) initiates the entire healing process. 
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1.3.4  Modeling Sub-dermal Healing Processes 

The cells involved in healing processes following the surgical insertion of an implant 

follow closely with the pathways involved in dermal wound healing. These processes may differ, 

however, in specific activation and inhibition loops. We draw modeling techniques from work 

conducted for surface wounds and adapt the work to correlate with the altered environment of the 

sub-dermal setting.  

In particular, Macrophage (MФ) cells play a more prominent role in the activations and 

inflammations within the setting of post-implant healing. Also, since Foreign Body reactions are 

multiple time-scale processes, the initiation process happens in a much short period of time when 

compared with other processes.  This allows us to simplify modeling by assuming active/inactive 

protein, growth factors have already reached balance, and thus, we get a reduced system of fewer 

equations for our foreign body reaction model. 

We share a portion of our previously published results from [39] to provide a preliminary 

glimpse as to how incorporating the roles of macrophages can assist in adjusting wound healing 

models so that they can be applied to sub-dermal contexts. Figure 1-6 helps demonstrate this 

principle. The 1997 Dale model [33] simulates collagen population as having asymptotical 

behavior as going to infinity linearly. The unbounded results of the Dale model, while successful 

for modeling dermal wounds, are inconsistent with the sub-dermal healing context due to the finite 

space present between an implant and the surrounding healthy tissue. This inconsistency warrants 

a need for incorporating Macrophage cell populations into the foreign body reactions model. This 

incorporation is accomplished in a modified Dale Model and is presenting in full in our 2011 

work, [39]. 
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Figure 1-6 Modified Dale Model Accuracy:  

The comparison of collagen level in experimental data (the average value of samples 
during a 28-day period, unit: ug/cm2) with simulated data from both Dale models. The 
classical Dale model[33] with parameters fitting for Foreign Body Reactions (blue) 
simulates a collagen population that increase linearly as time increases, producing an 
asymptotically unbounded growth. Our improved foreign body reaction model 
[39]incorporates MФ cell and the modified model (red) is shown to have a realistic 
behavior of the collagen cell population.    

 

Specifically, the Modified Dale Model [39] differs from early collagen models primarily 

because it incorporates the following features: (a) Macrophage produce procollagens specific 

enzymes at a near-saturated level, (b) Macrophage regulate collagen growth through productions 

of zymogens, and (c) Macrophage phagocytic behavior in clearing of apoptotic cells, which can 

lead to an inhibition of inflammation.  In keeping with the 1997 publication of the Dale model 

[33], which extended to include chemical diffusion among the chemoattractant and fibroblast 

terms, we also account for diffusion of the macrophage population in the Modified Dale model.  

Figure 1-6 shows these new features with collagen cell concentrations at an implant simulated 

over a 40-day healing period.  
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1.3.5  Incorporating Stem Cells in Modeling 

In 2009 Lemon et al created an ODE to model the temporal dynamics of angiogenic 

processes at an implant site [29]. The model accounted for a stem cell coating on the implant 

scaffold. The rate of change of the stem cell count consisted of a proliferation term, affected by the 

amount of unoccupied space at the implant site as well as oxygen concentrations, and a decay term 

(also affected by oxygen concentrations). Stem cell count affected the chemoattractants involved 

in angiogenesis.  The chemoattractant uptake and decay was assumed to reach quasi-steady 

because its biochemical reaction is sufficiently fast in relation to the time scales of the other 

biochemical reactions considered in the modeling (i.e. macrophages, fibroblasts, capillaries, 

pericytes, and ECM). 

Jain et al [40] created a model consisting of coupled ODE and PDEs that also explored 

the impact of stem cell coatings on sub-dermal healing processes. Their simplified Stem Cell 

modeling consisted purely of an exponential decay term of stem cells.  Furthermore, stem cells 

were modeled to affect angiogenesis solely by up-regulating the proliferation of adipocytes. They 

separated the stem cell affects from other variables of the foreign body response.  Included in 

these other variables is an inflammatory cell population that grouped macrophage and fibroblast 

populations together in one term. This term then promoted a variable representing collagen and 

giant cell populations. The model [40] was broken into two sub-models, one focused on 

inflammatory cells affecting vascularization, and the other focusing on the stem cell impact. They 

used the model to investigate the ideal thickness of stem cell coating (so that stem cells would not 

die off before the wave of adipocytes reached the implant) but also recognized the need for their 

sub-models to be combined before an accurate representation could be reached.  Biologically it is 

understood that stem cell affects are not isolated from the inflammatory affects and while 

combining the Jain sub-models leads to a system of 7 differential equations, their paper concluded 

by stating this need as their continued work [40]. 
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Chapter 2  

Two-Dimensional Model 

In this chapter we begin by presenting a 2-Dimensional computational model to 

systematically study the complex dynamics of foreign body reaction processes.  The model is 

based on kinetics of foreign body reactions with both macrophages and fibroblasts playing major 

roles. We test this model numerically in the same physical setting as in an implantation 

experiment in mice. The computer-simulated results are compared with the experimental dataset. 

Both kinetics trends of cell population distributions in 2-D spaces and experiments/modeling 

discrepancies are obtained for this comparative study. The modeling results (portions of which are 

published in [1]) indicate the consistent trend of the cell populations as shown in experimental 

data and in modeling studies, affirming the value of mathematical modeling in serving as a 

predictive tool for developing plausible experimental hypotheses.  We draw further conclusions 

about how varying macrophage phenotype dominance can affect healing processes by 

investigating the stability of the equilibrium representative of the “inflamed state” (published in 

[42]).  

 
2.1   Chemical Kinetic Equations with Macrophage Phenotypes   

As mentioned in the introduction, macrophages have been categorized into populations 

based on three different homeostatic activities – host defense, wound healing and regulation, as 

have been observed experimentally. The varied responses from three kinds of macrophage cells – 

classical, inflammatory and regulatory macrophage cells – may affect not only the fibroblast 

proliferation but also the whole foreign body reaction procedure. We incorporated this important 

feature into our model which is partially from the mass-action kinetics framework developed by 

Schugart et al. [25] but used a simplified model in cell and collagen (or extracellular matrix, ECM) 

growth to avoid over-complication of our study.  
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We added new kinetics of macrophages reactions into the framework so that we can 

generally capture the kinetic characteristics of fibroblasts and macrophages and gain more insights 

on how different macrophage populations regulate the foreign body reaction processes. We aim to 

find the variations between tissue responses at different population mix of classical, inflammatory 

and regulatory macrophages during the foreign body fibrotic reaction process.  

                             

Figure 2-1 Reaction Schematic:  
This schematic summarizes the biological feedback loops between the cells and cytokines 
included in our modeling. 

 

Before we introduce the mathematical equations, we lay out basic hypotheses of the 

biological process in foreign body reactions: 

• A debris cell population, consisting of foreign body damaged cells, blood clots and 

other injury-released cells, triggers foreign body reactions. 

• A generic growth factor such as vascular endothelial growth factor (VEGF) regulates 

fibroblasts and macrophages through chemotaxis. The chemoattractant undergoes 
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random motion and its concentration is assumed to grow in proportion to secreting 

inflammatory macrophages but is suppressed by regulatory macrophages.       

• Fibroblast represents a main cell type in secreting collagen/ECM during healing. Its 

proliferation and collagen synthesis are up-regulated by the chemoattractant gradient 

field as well as being directly up-regulated by classical macrophages through TGFβ. 

• Macrophages act in different roles during foreign body reactions according to their 

phenotypes as classical macrophage, inflammatory macrophage or regulatory 

macrophage. The proliferation of macrophages is through diffusion and migration up-

regulated by the chemotactic gradient field, and cell apoptosis is also assumed.   

• Fibroblasts secrete procollagen which is then activated by TGFβ into collagen (or 

ECM).  ECM diffusion, fibroblast movement, chemotactic migration, and ECM 

saturation are factored into a mass-action law. 

 
We model the fibrotic reactions as follows:  

!"
!"
= 𝐷!∇!𝐷 − 𝑓!𝑀!𝐷 + 𝑓!𝑀!,     (4.1)  

!"
!"
= 𝐷!∇!𝐶 + 𝑓!𝑑 + 𝑓!𝑀! − 𝑓!𝑀!𝐶 − 𝑓!𝐶,    (4.2)  

!"
!"
= 𝐷!∇!𝐹 − ∇ 𝛼𝐹∇𝐶 + 𝑎!𝑀! + 𝑎!𝐹(1 − 𝐹 𝐹!) − 𝑎!𝐹,  (4.3)   

!!!
!"

= 𝐷!∇!𝑀! − ∇ 𝛼𝐻 𝑀! − 𝑀!
!!!
!!! 𝑀!∇𝐶 − 𝑎!𝑀! , 𝑖 = 1,2,3 , (4.4)  

!"
!"
= 𝐷!∇!𝐸 + ∇

!!!!!"
!!

∇𝐹 − !!!"#
!!

𝐻 𝐹! − 𝐹 ∇𝐶 + 𝑎!𝐹(1 −
!
!!
). (4.5)   

Here, the debris cell population 𝐷 = 𝐷(𝑥, 𝑦, 𝑡) represents dead tissue or excessive cells 

following an implantation. We assume debris cells are digested by 𝑀!-classical macrophages but 

the accumulation of 𝑀!-inflammatory macrophages contributes to the debris during the healing 

process. The chemoattractant 𝐶 = 𝐶(𝑥, 𝑦, 𝑡) consists mainly of various forms of TGFβ released 

during the healing. The chemoattractant field is enhanced by the presence of debris cells and 
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inflammatory macrophages, but is inhibited by regulatory macrophages. We assume that cell 

migration is through diffusion and chemotactic migration. Fibroblast proliferation and collagen 

synthesis are up-regulated by the chemoattractant gradient field. Thus fibroblast population, 

𝐹 = 𝐹(𝑥, 𝑦, 𝑡), can be approximated by a chemically enhanced logistic growth 𝐹(1 − 𝐹 𝐹!) with 

a carrying capacity 𝐹!, along with its diffusion in space modeled by 𝐷!∇!𝐹(𝑥, 𝑦, 𝑡), chemotactic 

migration by ∇ 𝛼𝐹∇𝐶  and its natural decay according to time. The macrophage density, 

𝑀(𝑥, 𝑦, 𝑡), is the summation of 𝑀! - classical macrophages, 𝑀! - regulatory macrophages, and 𝑀! 

- inflammatory macrophages. We assume that they each take on 𝜆!, 𝜆!, 𝜆! proportions of 

macrophages, respectively. Each macrophage phenotype may behave differently at different stages 

of foreign body fibrotic reactions. Our model simplifies the situation in that (a) the proportion of 

𝜆!, 𝜆!, 𝜆! for different phenotypes of macrophages is taken to be fixed; and (b) the three 

macrophage populations are set to share one common biochemical reaction as their basic 

biochemical properties are similar. The migration of macrophages at the field is through diffusion 

and convection along the chemotactic gradient field. The proliferation of macrophages is also up-

regulated by the chemoattractant, but their production does reach a limiting value once 

macrophage population reaches saturation. Macrophage cell apoptosis is also assumed. Finally, 

fibroblasts secrete procollagens and the product is activated by chemoattractant TGFβs into the 

collagens or ECM at the quantity 𝐸 = 𝐸(𝑥, 𝑦, 𝑡). We also incorporate the effects of ECM 

diffusion, fibroblast movement, chemotactic migration and ECM saturation in mass-action law. 

Here 𝐻 is the Heaviside function, and 𝑀! is macrophage saturation level. 

 
2.2   Testing Model Dynamics Against Experiment 

2.2.1  Experimental Data 

Experiments on wound healing were performed using a rat subcutaneous implantation 

model [43]. The animal experimental protocol was approved by the University of Texas at 



 

21 

Arlington Animal Care and Use Committee. Briefly, cylindrical polyethylene catheters (1.0 cm. in 

radius and 5 cm. in length) were sterilized with multiple washes of 70% ethanol. Then the tubes 

were implanted in the subcutaneous space on the back of Sprague Dawley rats (~200 grams body 

weight). The incision was then closed with stainless wound clips.  

 
Figure 2-2 Experimental Slices 

The  experimental  slices  with  fluorescent  dye.  Here  the  left  side  of  the  image  represents  a  
location  directly  adjacent  to  the  implant.  (a)  Left  column  shows  slices  obtained  from  5  mice  
have  been  implanted  disks  for  7  days.  (b)  Right  column  shows  slices  obtained  from  5  mice  
have  been  implanted  disks  for  28  days.      
  

After implantation at different periods of time (7 and 28 days), the animals were 

sacrificed. The implants and surrounding tissue were isolated for histological analyses [6],[44].  

For quantifying the numbers of fibroblasts and macrophages, tissue sections were stained with α-

smooth muscle action and MOMA-1, respectively. The experiment design sketch is presented in 



 

22 

Figure 2-3, the experimental tissue slices are pictured in Figure 2-2, and the cell counts from these 

expirements are recorded in Table 2-1.   

 

 
Figure 2-3 Data Collection Proximity to Implant 

 
 

Table 2-1 Experimental Data of Fibroblasts and Macrophages 
7 days 
Area	  

	  
mous
e	  

1	   	   2	   	   3	   	   4	   	   5	   	  
fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

#1	   50	   138	   39	   124	   29	   138	   17	   24	   0	   0	  
#2	   30	   129	   29	   100	   41	   51	   32	   53	   0	   0	  
#3	   39	   80	   46	   50	   29	   20	   0	   0	   0	   0	  
#4	   27	   80	   17	   59	   0	   0	   0	   0	   0	   0	  
#5	   25	   84	   18	   82	   38	   60	   39	   45	   0	   0	  
Ave.	   34.2	   102.2	   29.8	   83	   27.4	   53.8	   17.6	   24.4	   0	   0	  
28 days 
Area	  

	  
mous
e	  

1	   	   2	   	   3	   	   4	   	   5	   	  
fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

fibroblas
t	  

Macrophag
e	  	  

#1	   28	   78	   47	   38	   51	   30	   42	   21	   69	   18	  
#2	   44	   86	   65	   47	   57	   10	   59	   43	   54	   37	  
#3	   53	   80	   100	   40	   50	   34	   62	   18	   17	   12	  
#4	   32	   86	   80	   56	   73	   22	   49	   31	   66	   20	  
#5	   40	   54	   74	   43	   63	   30	   73	   44	   51	   30	  
Ave.	   39.4	   76.8	   73.2	   44.8	   58.8	   25.2	   57	   31.4	   51.4	   23.4	  
 
2.2.2  Boundary and Initial Conditions   

We simulated the kinetics based on the model under the assumptions that all the functions 

are defined in the reaction domain which is an annulus  𝐺 = 𝑟, 𝜃 , 𝐿!" ≤ 𝑟 ≤ 𝐿!"# , 0 ≤ 𝜃 <

2𝜋 , where the inside disk 𝑟, 𝜃 , 0 ≤ 𝑟 ≤ 𝐿!", 0 ≤ 𝜃 < 2𝜋  is the location of the implant, the 
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outside ring 𝑟, 𝜃 , 𝐿!"# ≤ 𝑟 < ∞, 0 ≤ 𝜃 < 2𝜋  is the normal surrounding tissue.The set of 

points {𝑟 = 𝐿!"} represents the inner edge of the wound i.e., the outer edge of the implant. 

{𝑟 = 𝐿!"#} represents the outer edge of the wound. Along the outer edge of the wound, it was 

assumed that the densities of fibroblasts and ECM remain constant at the level of the unwounded 

state. Along the inner edge of the wound, it was assumed that the density of debris remains in a 

wounded state caused by the implant. The densities of the macrophages were assumed to decrease 

at the boundary of the healthy tissue as the healing process progressed and the flux of the 

chemoattractant on this boundary was negligible.  

 
Figure 2-4 Boundary Conditions:  

At the outer edge 1, 2, 5, and 8, F = F!, M = M!e!!!!, E = E!, !!
!!
= 0, where γ! is the decay 

coefficient at the boundary for macrophages; at the inner edge 3, 4, 7, and 6, D = 𝐷!. The axes 
present dimensionless values 
 

As shown in Fig.1, at 𝑟 = 𝐿!"# the boundary conditions are as follows, 

𝐹 = 𝐹!, 𝑀 = 𝑀!𝑒!!!!, 𝐸 = 𝐸!, !"
!"
= 0. 

At 𝑟 = 𝐿!", the boundary condition includes 

𝐷 = 𝐷!. 

In all other cases, the following no-flux boundary conditions are used, 

!"
!"
= !"

!"
= !"

!"
= !"

!"
= !"

!"
= 0. 
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The initial values are set at 𝑡 = 𝑡!, and are taken to be a distribution. The formula is 

!
!!
= !!!!"

!!"#!!!"

!
𝑒
! !!"#!!

!(!!"#!!!")

!

, 

where 𝑋 = 𝐶,𝐹,𝑀, 𝑜𝑟  𝐸, and 𝜀 is selected such that all the densities are initially near zero away 

from the wound outer edge. For debris, the initial distribution follows the formula 

!
!!
= !!"#!!

!!"#!!!"

!
𝑒
!

!!!!"
!(!!"#!!!")

!

. 

 
2.2.3  Simulations and Dynamics of the Model  

In our simulation study, we placed a circular-shaped implant at the center of a reaction 

domain. Healthy tissue was positioned immediately adjacent to the reaction domain where these 

normal cell/protein/enzyme values were imposed as boundary conditions. Then, we calculated the 

densities for macrophages and fibroblasts from area 1 to area 5 on day 7 and day 28, respectively. 

Because we counted the number of macrophages and fibroblasts from our experimental results, 

which were not the densities that we can only derive from our simulations, we scaled our 

simulation results by multiplying a factor to fix the simulation result at area 1 on day 7 same to 

experimental data. Then we multiplied the same scale ratio to the simulation results at other areas 

on day 7 or day 28. Based on this scale strategy we can observe and compare the trends between 

simulations and experimental data for the proliferation of macrophages and fibroblasts. 

 
2.2.4  Macrophages Dynamics Simulation vs. Experimental Data 

Here, we present the simulation results of macrophages on day 7 and day 28. The graph 

in  Figure 2-6 (A) shows the macrophages’ distribution for five mice while Figure 2-6 (B) shows 

the comparison between the simulation and the average of the experimental data on day 7. 

Similarly, Figure 2-7 shows the simulation and the average of the experimental results on day 28.  

The three dimensional pictures of the macrophages densities are presented in Figure 2-5.  
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Furthermore, because we set a time-varying Dirichlet boundary condition for the 

macrophages, the whole density level of macrophages decreased from day 7 to day 28. This is 

consistent with what we observed in our experimental data. The distributions of the macrophages 

in our simulation results are consistent with those derived from the experimental data. 

          
 

Figure 2-5 3D Simulation- Propagation of Macrophage Cells 
(A)  t=7,  (B)  t=28  

 

        
 

Figure 2-6 Simulated Data for Macrophages at Day 7 
(A)  7th  day  experimental  data  (all  five  mice)  plotted  together  with  the  average  curve;    
(B)  average  experimental  data  versus  the  simulated  result  on  day  7.  
  

A B 

B 

A B 
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Figure 2-7 Simulated Data for Macrophages at Day 28  
(A)  28th  day  experimental  data  (all  five  mice)  plotted  together  with  the  average  curve;    
(B)  average  experimental  data  versus  the  simulated  result  on  day  28.  
  

2.2.5  Fibroblast Proliferation Simulation vs. Experimental Data 

Next we present the simulated fibroblast growth near an implant. The statistical results 

comparing the model simulation and the experimental data for fibroblasts on day 7 and day 28 are 

shown in Figure 2-9 and Figure 2-10, respectively. From Figure 2-9(B) and  Figure 2-10(B) we 

can see that, although the simulation results for fibroblasts do not fully agree with the 

experimental results, the trends of the simulation curves are similar to those derived from the 

experimental data. We note that in Figure 2-10(B), the difference between two curves is relatively 

big. This may be caused by the boundary condition. As mentioned before, we set a constant value 

for the Dirichlet boundary for fibroblast based on our assumption that the density of fibroblast in 

healthy tissue is a constant value. This assumption is also applied in Schugart 2008 [25].  This 

may be the reason that we observe the simulation result at area 1 on day 7 to be very close to the 

experimental value at area 1 on day 28. But from our experimental data we noted the fibroblasts 

increased at area 1 from day 7 to day 28. This difference on boundary may cause the magnified 

discrepancies in other areas during the evolution. 

A 
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Figure 2-8 3D Simulation- Distribution of Fibroblast Cells 

(A) t=7,  (B)  t=28  

 

   
Figure 2-9 Simulated Data for Fibroblast at Day 7 

(A)  7th  day  experimental  data  (all  five  mice)  plotted  together  with  the  average  curve;  (B)  
average  experimental  data  versus  the  simulated  result  on  day  7.  
  

   
Figure 2-10 Simulated Data for Fibroblast at Day 28  

(A)  28th  day  experimental  data  (all  five  mice)  plotted  together  with  the  average  curve;    
(B)  average  experimental  data  versus  the  simulated  result  on  day  28.  

 

A B 

A B 

A B 
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We have observed that there is a discrepancy between the model and experimental data, 

and this is more significant for fibroblast population than macrophage. One plausible reason is the 

ideal boundary condition that we have imposed for the fibroblast. If you recall from Boundary and 

Initial Conditions, the fibroblast population adjacent to the healthy tissue is assumed to be a 

constant, whereas the experimental data shows an increased amount of fibroblast along the 

boundary, partially due to the extra supply from nearby blood vessels’ expansion. This 

discrepancy in boundary conditions explains why the model predicts a lower estimate of fibroblast 

populations. It is however difficult to account for this blood supply in the system as the 

mechanism of blood vessels is quite complex.  

 
2.3   Impact of Different Macrophage Phenotypes on Temporal Dynamics 

In this section we analyze impact of the different phenotypes of macrophages on the 

dynamics of the process and trends in proliferation of fibroblasts. Macrophages are capable of 

secreting growth factors that are important in regulating fibro-proliferation. Alternatively activated 

macrophages overexpress certain extracellular matrix proteins, such as fibronectin, and are 

believed to be involved in tissue remodeling during wound healing. Human macrophages activated 

by biomedical polymers in vitro have been shown to stimulate fibroblast activity. Therefore, 

biomaterial adherent macrophages can help modulate the formation of fibrous capsules, which 

develops around a material following implantation. 

An important feature we found through modeling study is that the compositions of 

macrophage phenotypes affect both the timing of fibrotic reactions as well as the macrophages 

presence.  

We tested temporal dynamics of Eq.(4.1)-(4.5) by assuming the chemoattractant is 

instantaneously available. In doing so, we choose parameters in a typical set of parameter as in 

[25], furthermore, we incorporate a proliferation term for macrophage and fibroblast populations 

under the influence of c. and neglected all spatial variations. By taking the initial values to be
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D(0) = 1, C(0) = F(0) = M (0) = E(0) = 0.01  a few interesting observations (shown in Figure 

2-11) were obtained through numerical simulations.  It can be seen that debris is cleared out much 

faster when the classical macrophage is taken to be the dominant phenotype in the reaction. Also 

we see that an inflammatory macrophage dominated reaction leads a much earlier proliferation of 

growth and fibrotic actions to occur. Furthermore, reactions in which the dominating phenotype 

was taken to be either classical macrophages or regulatory macrophages both resulted in similar 

actions, but inflammatory macrophage dominated reactions did display much higher 

inflammation.  In Figure 2-11 we observe big differences in chemoattractant when the 

compositions of macrophage phenotypes are switched, especially in inflammatory macrophage 

dominated case. 

            
 

Figure 2-11 Computational Results for Foreign Body Reaction Processes at Different 
Compositions of Macrophage Phenotypes 

λ!, λ!, and λ! are the proportions of macrophages for M!- classical macrophages, M!- regulatory 
macrophages, and M!- inflammatory macrophages, respectively.   λ!, λ!, λ! = (0.6, 0.2, 0.2) is 
captured in red, blue represents the ratio at (0.2, 0.6, 0.2), and magenta is at the ratio (0.2, 0.2, 0.6).  
The variables are (a) debris, (b) chemoattractant, (c) fibroblast, (d) macrophage, and (e) ECM.  

(a) (b) (c) 

(d) (e) 
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We now use the parameter set that is specifically chosen to match this experiment. We 

observe (in Figure 2-12) that with the exception of debris and chemoattractant, the three 

phenotypes did not cause much difference in reaction alone. In particular, the macrophage total 

amounts are shown as decreasing in all cases.  We predict therefore that the changes in 

macrophage in our experimental setting of implant inflammatory reactions are mainly due to 

diffusion and chemotaxis, rather than proliferation. This is a fact that can be further tested in 

experiments 

  
 

Figure 2-12 Computational Results at Different Compositions of Macrophage Phenotypes Under 
Parameter Table 

λ!,  λ!,  and  λ!  and  variables  are  defined  the  same  as  in  Figure  2-‐11. λ!, λ!, λ! = (0.6, 0.2, 0.2) 
is captured in red, blue represents the ratio at (0.2, 0.6, 0.2), and magenta is at the ratio 
(0.2, 0.2, 0.6).  The variables are (a) debris, (b) chemoattractant, (c) fibroblast, (d) macrophage, and 
(e) ECM.  
  

2.3.1  Parameter Values 

Table 2-2 lists the parameters in both dimensional and dimensionless form. Similar to the 

method introduced in [25], we converted the dimensional parameters to dimensionless units when 

conducting simulation studies. 

(a) (b) (c) 

(d) (e) 
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In our study, 𝐿!"# is 0.35 centimeters and 𝐿!" is 0.1 centimeters. For the parameters 𝐷!, 

𝑓!, 𝐷!, 𝛼, 𝐹!, 𝑎!, 𝛼′, 𝑎!, 𝐷!, 𝐷!, 𝛽, and 𝐸!, the estimated values were derived from literatures and 

were handled in the same way introduced in [25]. For the parameter 𝐷!, we assume the diffusion 

rate for debris is lower than the other diffusion rates. Although the precise value was not known, 

𝐷! was chosen to be 1.0E-5 as its dimensionless value.  

Table 2-2 Table of Parameters and Boundary Conditions 
Parameters	   Dimensional	  Value	   Source	  	  

(CS-‐Current	  Study)	  
Dimensionless	  

value	  	  
𝑳𝒐𝒖𝒕	  	   0.35	  cm	   CS	   1	  
𝑳𝒊𝒏	  	   0.10	  cm	   CS	   0.286	  
𝑫𝟎	   	   CS	   1E-‐5	  
𝒇𝟎	   	   CS	   1	  
𝒇𝟎	   	   CS	   1	  
𝑫𝟏	   6.9E-‐2	  cm2/day	   [1],[26]	  	   1	  
𝒇𝟏	   	   CS	   0.2	  
𝒇𝟒	   3.456/day	   [45],[46]	   2.43	  
𝒇𝟐	   	   [25]	   20	  
𝒇𝟑	   	   CS	   18	  
𝑫𝟑	   1.47E-‐5	  cm2/day	   [47]	   1.7E-‐4	  
𝜶	   8.64E+6	  cm5	  g-‐1/day	   [47]	   0.1	  
𝒂𝟏	   	   CS	   0.4	  
𝒂𝟐	   	   [25]	   0.3	  
𝑭𝟎	   1E-‐3	  g	  cm-‐3	   [47]	   1	  
𝒂𝟑	   1.99E-‐2	  /day	   [48]	  	   1.404E-‐2	  
𝑫𝟐	   	   [25]	   0.015	  
α ' 	  	   8.64E+6	  cm5	  g-‐1	  /day	   	  	  	  [25]	   	   0.1	  
𝒂𝟎	   0.1728	  /day	   [49]	   0.1215	  
𝑫𝟒	   	   [25]	   1E-‐5	  
𝑫𝟓	   1.47E-‐5	  cm2/day	   [47]	   1.7E-‐4	  
𝒂𝟒	   	   [25]	   1	  
𝜷	   8.64E+6	  cm5	  g-‐1	  /day	   [47]	   0.1	  
α 5 	  	   	   [25]	   0.675	  
𝑬𝟎	   1E-‐3	  g	  cm-‐3	   [50]	   1	  
 

For 𝑓! and 𝑓!, they were chosen so that the debris will be digested with proper rate 

according to our experimental results. 𝑓!, 𝑓! and 𝑓! were chosen so that (1) the healing process 
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should be consistent with the experiment; (2) their values would be comparable to which 

introduced in [25].   

We can use the diffusion and chemotactic coefficients from Schugart [25] directly. For 

the coefficients on the reaction terms, however, we multiply by  

 ((0.35 − 0.1) / 0.15)2 ≈ 2.7   

to account for the experimental design for our model that dictates an annulus wound 

region with outer radius of 0.35cm and the inner radius of 0.1cm as opposed to Schugart’s circular 

wound region with radius 0.15cm. 

  

2.4   Discussion 

To quantitatively study the processes governing foreign body reactions, we have 

constructed a mathematical model with the capacity to predict the trends of fibroblast and 

macrophage population distributions, collagen or ECM accumulations by systems of partial 

differential equations. Our model is built based principally on biochemical mechanisms (mass 

action laws) and calibrated with experimental data. 

Our model was modified from Schugart et al. [25] so that they share the common 

characteristic: both capturing the kinetics of inflammatory cells, fibroblasts, chemoattractant, and 

ECM, which are critical factors during the wound healing process. Unlike Schugart’s model, we 

use debris cells as our inflammatory response initiator because fibrin or damaged cells are 

considered to be likely triggers of sub-dermal foreign body reaction. In addition, we incorporated 

three different phenotypes of the macrophages in our model since our focus is on the interactions 

between fibrotic processes and macrophage activations. We also isolate our model from 

angiogenic related variables at this time. 

In our simulation study, we captured the need for differentiating between macrophage 

phenotypes because the dominance of certain phenotypes affected transient and long-term 
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outcomes of the healing process. When inflammatory macrophages dominated the response, the 

chemoattractants and other cell populations proliferated much earlier and at a higher level.  

Beyond its success at capturing the chemotactic and proliferation of inflammatory reaction of 

cells, the spatial distribution and permeability of the cells in the mathematical model simulations 

match well with experimental data. Therefore, the modeling study can overcome individual 

variances present between experimental subjects and instead present the trend of inflammatory 

responses.   

We note that instead of remaining as constants, the proportions of different macrophage 

populations, λ!, λ!, and λ!, are generally observed to change with time during the healing process. 

Macrophages are highly heterogeneous cells that can rapidly change their function in response to 

local environmental signals. As far as we know, there is no biomarker to identify a particular 

phenotype in experiments. In theory, if we have enough measurement data, we can estimate the 

time varying λ!, λ!, and λ!. But this will be left to our future work. 

At the current stage of our modeling study, the proposed model has its shortcomings. 

This is expected, as the complexity of the immune response system is not well understood, nor is 

our model sophisticated enough to include all pathways of the reactions. Nevertheless, the initial 

step of the modeling efforts did capture the essence of the cell and protein growth in the process, 

both in temporal dynamics and spatial distributions.  

 

 
2.5   Stability Analysis of Two-Dimensional Model 

The main mathematical contribution of this section is as follows.  The non-zero 

equilibrium of our model represents a chronically inflamed state.  If it is linearly stable in terms of 

the corresponding ODE system (the reactions network of the model), then it is also stable for the 

full system (which includes spatial diffusion and chemotaxis). In other words, spatial effects 

cannot de-stabilize the equilibrium if it is stable in its pure reactions.  However, even if the 
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equilibrium is unstable by its reaction system, the spatial diffusion and chemotactic effects can 

help to stabilize the equilibrium under several conditions. These conditions suggest the need for 

the model to be dominated by classical and regulatory macrophages over the inflammatory 

macrophages.  The mathematical proof and counter examples are given for these results. 

 
2.5.1  Model 

We conduct a stability analysis on the model presented in Chemical Kinetic Equations 

with Macrophage Phenotypes with the following changes made: slight changes to parameter 

names for clarity (i.e. !!D0→Dd ), MФ cell proliferation caused by the direct interaction with 

chemoattractants are now assumed: a11CMH (M 0 −M ),  and lastly new experimental data shows 

an autocrine up-regulation of fibroblast by TGFβ without chemotaxis [51], this effect is also 

included in the modeling as, a12CFH (F0 − F) . 

 

∂D
∂t

= Dd∇
2D − f0λ1MD + f0λ3M ,       (4.6) 

∂C
∂t

= Dc∇
2C + f1D + f2λ3M − f3λ2MC − f4C,     (4.7) 

∂F
∂t

= Df∇
2F − χ0∇⋅(F∇C)+ a1λ1M + a2F

a2 − a3
a2

− F
F0

⎛
⎝⎜

⎞
⎠⎟
+ a12CFH (F0 − F),  (4.8) 

∂M
∂t

= Dm∇
2M − χ1∇⋅(MH (M 0 −M )∇C)− a0M + a11CMH (M 0 −M ),   (4.9) 

∂E
∂t

= De∇
2E −∇⋅

BDf

F0
EF∇F +

Bχ j

F0
(EFH (F0 − F)∇C)

⎡

⎣
⎢

⎤

⎦
⎥ + a16F 1− E

E0

⎛
⎝⎜

⎞
⎠⎟
.  (4.10) 

where !∇
2 =∇⋅∇, and all coefficients are positive. The form of the logistic terms in 

equation (4.8) is for representing biological meanings of the coefficients.   
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We assume in our implant model that the computational domain is large enough and also 

the cell changes are slow enough (measured in days) that there is no significant boundary flux, 

allowing us to take homogeneous Neumann boundary conditions as a reasonable approximation. 

 
2.5.2  Spatially Uniform Equilibria  

Let us define inflammatory equilibrium as a strictly non-zero constant vector !Ue   in 5-

dimensional space Ue = (de, ce, fe, me, ee )  with de > 0, ce > 0, Fo ≥ fe > 0, Mo ≥ me > 0,  and 

ee = E0 > 0 , which is a zero for the right hand side of the system of equations (4.6)-(4.10). 

In the case of a no-flux boundary condition, the spatially uniform steady state is often 

used when modeling inflammatory response in tissue (see for example [38],[52]). A physically 

realistic, non-negative set of equilibriums can easily be obtained by letting the RHS of the original 

system (4.6)-(4.10) equal to zero. It is natural to define the trivial (zero) equilibrium as ground or 

healthy state and study its stability. Instability of the ground state is usually interpreted as 

unfavorable development of the disease. Here we take a different approach and are interested in 

analyzing the stability of the abnormal/inflammatory equilibrium which is non-zero for all five 

components of the unknown. This equilibrium can be stable or unstable depending on the 

parameters of the model. In this case instability of the equilibrium does not necessarily mean an 

unhealthy response of the immune system. An instability of a non-zero equilibrium can lead to a 

ground healthy state (best case scenario), to another steady state (uncertain developments), or to 

infinity (acute development). If in contrary, the perturbation of !Ue  is linearly stable, and vanishes 

at time infinity, then !Ue  can be interpreted as sustainable. All these make linear stability analysis 

very appealing from both a theoretical and applied point of view.  It is worth mentioning that from 

a biological point of view, a strictly positive steady state !Ue  can be transition from some other 

non-strictly positive state.   We believe that this type of interpretation of the inflammatory 
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equilibrium stability conditions is logical and presents an example of a sustainable wound which 

does not heal over the course of a long time period (see [20],[53],[54]). An indirect analogy of 

such an inflammatory(chronically) stable equilibrium has been introduced and applied for 

studying biological dynamic system in virology for some years (see [55]). At this stage of the 

research we are studying stability of the strictly positive state !Ue mostly as a model of the 

inflamed equilibrium, without analysis of its genesis. As commonly occurs in biomedical research, 

the mathematical model can often provide non-intuitive insights into dynamics of inflammatory 

responses in the wound healing processes and can suggest new avenues for experimentation. In the 

sections to follow we determine conditions on the parameters of the system that guarantee stability 

of the non-zero equilibrium. 

We now focus on equilibrium states that are uniform in space for this Neumann problem. 

By removing the spatial variations, Eqs.(4.6)-(4.10) reduce to the following ODE system: 

 

dD
dt

 = − f0λ1MD + f0λ3M ,   (4.11) 

dC
dt

= f1D + f2λ3M − f3λ2MC − f4C,   (4.12) 

dF
dt

= a1λ1M + a2F 1− F
F0

⎛
⎝⎜

⎞
⎠⎟
− a3F + a12CFH F0 − F( ),   (4.13) 

dM
dt

= −a0M + a11CMH M 0 −M( )   (4.14) 

dE
dt

 = a16F 1− E
E0

⎛
⎝⎜

⎞
⎠⎟

.    (4.15) 

In looking for the equilibrium of the simplified system, Eqs.(4.11)-(4.15), we assume that 

our values are taken to be below threshold and therefore we ignore the Heaviside functions.  There 

are several possible equilibrium states, but as it was pointed out earlier we focus on what one can 

call the interior equilibrium, one in which none of the components of the equilibrium are zero.  We 
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let the right hand side of Eqs.(4.11)-(4.15) be zero.  After some algebraic work one can obtain the 

following explicit formula for a unique, non-zero solution Ue = (de, ce, fe, me, ee ) : 

 

 

de =
f0λ3
f0λ1

,

ce =
a0
a11
,

ee = E0,

me =
f4 f0λ1a0 − a11 f1 f0λ3
f0λ1( f2λ3a11 − f3a0λ2 )

,

fe =
F0
2a2

L1 + L1
2 + 4 a2

F0
a1λ1me

⎛

⎝⎜
⎞

⎠⎟
.

  

where L1= a2 − a3 + a12
a0

a11

⎛
⎝⎜

⎞
⎠⎟

 

 
2.5.2.1  Positivity of Equilibrium 

In order for our equilibrium to be positive we find that our parameters and macrophage 

percentages must satisfy: 

 
 

f4 f0λ1a0 − a11 f1 f0λ3
( f2λ3a11 − f3a0λ2 )

> 0   (4.16) 

requiring either  f2λ3a11 > f3a0λ2 ,and f4 f0λ1a0 > a11 f1 f0λ3  or f2λ3a11 < f3a0λ2 ,and

 f4 f0λ1a0 < a11 f1
f0λ3.   

 
The condition on the parameters in inequality (4.16) says that inflammatory macrophages 

dominates over either regulatory or classical macrophages, and is guaranteeing existence of the 

inflamed steady state.  This point will be expounded on further in the analysis of the conditions for 

stability of the non-zero equilibrium state.  The illustration Figure 2-13 provides a visualization of 

the necessary macrophage phenotype parameter ranges. Hereafter we assume that the parameters 

of the original model satisfy the inequality (4.16). 
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Figure 2-13 Conditions for Positive Equilibrium State  
 

2.5.3  Linearized PDE System 

Let perturbation near this equilibrium be d = D − de , c = C − ce , f = F − fe , 

m = M −me,  and e = E − ee with the vector field of the perturbation denoted by 

v (x,t) = (d,c, f ,m,e)  . Then the linearized system for v (x,t)  will take the form 

 
∂d
∂t

 = Dd∇
2d − b11d − b14m   (4.17) 

 
∂c
∂t

 = Dc∇
2c − b21d − b22c − b24m,   (4.18) 

 
∂ f
∂t

 = Df∇
2 f − χ f∇

2c − b32c − b33 f − b34m,   (4.19) 

 
∂m
∂t

 = Dm∇
2m − χm∇

2c − b42c − b44m,   (4.20) 

 
∂e
∂t

 = De∇
2e− χe1∇

2 f − χe2∇
2c − b53 f − b55e.   (4.21) 

Where  χ f = feχ0, χm = χ1me, χe1 =
BDf e0
F0

, χe2 =
Bχ je0 fe
F0

,   

 b11 = f0λ1me, b14 = −( f0λ3 − f0λ1de ),  
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b21 = − f1, b22 = f3λ2me + f4 , b24 = −( f2λ3 − f3λ2ce ),

b32 = −a12 fe, b33 = − a2 (1− 2
fe
F0
)+ a12ce − a3

⎡

⎣
⎢

⎤

⎦
⎥, b34 = −a1λ1,

b42 = −a11me, b44 = a0 − a11ce,

b53 = −a16 (1−
ee
E0
), b55 = a16

f0
E0
.

 
 
2.5.4  ODE Stability 

We now focus on equilibrium states that are uniform in space for this Neumann problem.  

By removing the spatial variations, Eqs.(4.17)-(4.21) reduce to the following ODE system: 

dd
dt

 = −b11d − b14m,    (4.22) 

dc
dt

 = −b21d − b22c − b24m,    (4.23) 

df
dt

 = −b32c − b33 f − b34m,  (4.24) 

dm
dt

 = −b42c − b44m    (4.25) 

de
dt

 = −b53 f − b55e.    (4.26) 

2.5.4.1  Matrix Form 

The linearized system (4.22)-(4.26) in	  matrix form yields:	  

d
c
f
m
e

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

′

= −B

d
c
f
m
e

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, 	  where	  

!

B =  

b11 0 0 b14 0
b21 b22 0 b24 0
0 b32 b33 b34 0
0 b42 0 b44 0
0 0 b53 0 b55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 	  

For stability analysis we look at the eigenvalues of matrix !B .  For convenience we 

rearrange our equations in the following form 
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m
d
c
f
e

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

′

=

−b44 0 −b42 0 0
−b14 −b11 0 0 0
−b24 −b21 −b22 0 0
−b34 0 −b32 −b33 0
0 0 0 −b53 −b55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

m
d
c
f
e

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.   

We break !B into a 3 block and a 2 block : 

−B1 =
−b44 0 −b42
−b14 −b11 0
−b24 −b21 −b22

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and −B2 =
−b33 0
−b53 −b55

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.   

Since !!det%−B−σ I(  = !!det%−B1 −σ I)det%−B2 −σ I),  we find the eigenvalues by looking 

at the eigenvalues of the 3-block, !−B1 , and the two block,!!−B2 , separately. We also simplify by 

noting that with the equilibrium values found above, !!b44 ! =0  and !!b14 ! =0  such that  

 

det[−B1 −σ I] =
−σ 0 −b42
0 −b11 −σ 0

−b24 −b21 −b22 −σ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −σ (b11 +σ )(b22 +σ )+ b24 (b42 (b11 +σ ))

= −(b11 +σ )(σ
2 + b22σ − b24b42 ).

  

2.5.4.2  Eigenvalues 

Solving for the roots we get the following eigenvalues: 

 

!!

σ 1 = −b11 ,

σ 2 =
−b22 − &b22'2 +4b42b24

2 ,

σ 3 =
−b22 + &b22'2 +4b42b24

2 .

  

The lower triangular !!−B2  gives us our final two eigenvalues: 
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!!

σ 4 = −b33 ,
σ 5 = −b55.

  

ODE stability requires the real parts !σ 1 ,...,σ 5   to be negative. We proceed further to 

formulate the stability criteria in terms of the parameters of the model. 

Under the model assumptions we have !!"b11 <0,! "b22 <0,!!b42 <0  and !!−b55 <0 . 

Therefore !σ 1 <0, σ 2 <0, and σ 5 <0 .  Next, if  

 b33 = a2 1− 2
fe
F0

⎛
⎝⎜

⎞
⎠⎟
+ a12ce − a3 > 0,   (4.27) 

then !σ 4 <0.  Finally, because !!b42 <0 , the real part of !σ 3  is negative if and only if 

 b24 = − f2λ3 − f3λ2ce( ) > 0.   (4.28) 

2.5.4.3  Biological Interpretation of Stability Conditions 

Assumptions in (4.27) and (4.28) have clear biological interpretations. Condition !!b33 >0

requires 
!!
a2$1−2

f e
F0
*+a12c e <a3

⎡

⎣
⎢

⎤

⎦
⎥  suggesting the need for the logistic growth of fibroblasts 

combined with the direct proliferation resulting from the presence of chemoattractants to be 

overcome by the death rate of fibroblasts. Condition !!b24 >0  requires !!f 3λ2c e > f 2λ3 suggesting that 

stability is aided when the percentage of regulatory macrophages out-weighs the percentage of 

inflammatory macrophages.   

Note that from a mathematical point of view, conditions in the form of strict inequalities 

imply a stronger property of the solution, namely asymptotic stability of the equilibrium. 

Lyapunov stability follows from the less restrictive condition with non-strict inequalities. 

 



 

42 

2.5.5  ODE Stability Implies PDE Stability 

Since the interior equilibrium solution represents the inflamed state, one of the more 

biologically relevant questions is whether some modifications of conditions can cause the 

reactions to be away from the ill state, and return to healthy state. Typically the competition 

between diffusion and chemotaxis can aid the instability by creating spatial disturbance.  One of 

the surprising findings for this system however, is that if the equilibrium is stable by pure 

reactions then it is stable for the whole reaction-diffusion-chemotactic system. 

 
2.5.5.1  Investigating Diffusive Stability and Instability  

Similar to the method Murray used [56] for determining diffusive instability (or Turing 

instabilities), which can cause an equilibrium from the reaction terms to become unstable under 

diffusion, we investigate the impact that diffusion and chemotaxis play on the stability of our full 

system Eqs (3.17-3.21).  To start, we let  

v (x,t) = eσ tφµn
(x)(u1,...,u5 )     (4.29) 

be an unknown vector with five components,  with separable time exponential growth 

and time-independent solution !!φn#x %,  the nth-eigenfunction for the Laplace operator with respect 

to the Neumann boundary conditions; 

     

Δφn (x) = −µnφµn
(x) inside domain 

 
∂φµn

∂n
= 0 on the boundary of the domain

⎧

⎨
⎪

⎩
⎪

 

 Let us for simplicity assume the domain is convex such that !!µn ≥0  for any  !n∈   is an 

eigenvalue for the eigenvalue problem, and !φ µn is its corresponding eigenfunction. We will drop 

the subscripts n  in the text below. 
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Substituting the function v (x,t)  in Eq.(4.29) into the linearized system Eqs.(4.17)-‐(4.21)	  

yields:  

 

σu1 = −Ddµu1 − b11u1 − b14u4 ,

σu2 = −Dcµu2 − b21u1 − b22u2 − b24u4 ,

σu3 = −Dfµu3 + χ fµu2 − b32u2 − b33u3 − b34u4 ,

σu4 = −Dmµu4 + χmµu2 − b42u2 − b44u4 ,

σu5 = −Deµu5 + χe1µu3 + χe2µu2 − b53u3 − b55u5.

  

Or 

 

0 = σ + Ddµ + b11( )u1 + b14u4 ,
0 = b21u1 + σ + Dcµ + b22( )u2 + b24u4 ,

0 = σ + Dfµ + b33( )u3 − χ fµ − b32( )u2 + b34u4 ,
0 = − χmµ − b42( )u2 + σ + Dmµ + b44( )u4 ,
0 = −χe2µu2 − χe1µ − b53( )u3 + σ + Deµ + b55( )u5.

  

2.5.5.2  Matrix Form  

Then in matrix form it takes the form 

 A(σ )u = 0,   (4.30) 

with matrix A  defined as follows 

      

σ + Ddµ + b11( ) 0 0 b14 0

b21 σ + Dcµ + b22( ) 0 b24 0

0 − χ fµ − b32( ) σ + Dfµ + b33( ) b34 0

0 − χmµ − b42( ) 0 σ + Dmµ + b44( ) 0

0 −χe2µ − χe1µ − b53( ) 0 σ + Deµ + b55( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

Below we will show that if the real part of all the eigenvalues of matrix!B is negative 

(corresponding ODE system is stable) then non-trivial solutions of (4.30) with parameterσ having 

negative real part exists. 
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It is not difficult to see that the determinant of the matrix!A has form 

 P(σ ) = σ + Deµ + b55( ) σ + Dfµ + b33( )det(B1).   (4.31) 

Here!!B1 is a matrix associated to debris !!u1 , chemotaxis !!u2 , and macrophages !!u 4  

parameters only; 

 

σ + Ddµ + b11( ) 0 b14
b21 σ + Dcµ + b22( ) b24
0 − χmµ − b42( ) σ + Dmµ + b44( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

Under the assumptions that the ODE part without diffusion is asymptotically stable 

coefficients !!b55  and !!b33  should satisfy inequalities: !!b44 =b14 =0,  !!b55 >0  and!!b33 <0.   

We rearrange the matrix into a ( u4 ,u1,u2 )- order so that it is similar to the one addressed 

previously in the ODE stability analysis.  Now, the characteristic equation is 

 det[B1 +σ I] =
σ + Dmµ 0 b42 − χmµ

0 b11 + Ddµ +σ 0
b24 b21 b22 + Dcµ +σ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

 
= (σ + Dmµ)(b11 + Ddµ +σ )(b22 + Dcµ +σ )− b24 (b42 − χmµ)(b11 + Ddµ +σ )

= (b11 + Ddµ +σ )(σ 2 + (b22 + Dcµ + Dmµ)σ + Dmµ(b22 + Dcµ)− b24 (b42 − χmµ)).
  

By solving for the roots we get the following eigenvalues: 

 σ 1 = −b11 − Ddµ,   (4.32) 

 
 
σ 2 =

−(b22 + Dcµ + Dmµ)− (b22 + Dcµ + Dmµ)
2 + 4

2
,   (4.33) 

 
 
σ 3 =

−(b22 + Dcµ + Dmµ)+ (b22 + Dcµ + Dmµ)
2 + 4

2
,   (4.34) 

here   = (b42 − χmµ)b24 − Dmµ(b22 + Dcµ).   

The other two eigenvalues are: 
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 σ 4 = −b33 − µDf ,   (4.35) 

 σ 5 = −b55 − µDe.   (4.36) 

We now explore explicit representations for all possible σ 's  focusing on the direct 

comparison between conditions of the stability of the linearized PDE system, (4.17)-(4.21), and 

the linearized ODE system, (4.22)-(4.26). 

Similar to the criteria for ODE Stability, the stability for PDE requires that real parts of 

the all σ 's be negative.    

Under the natural constraints on the parameters of our original model, 

-b11 < 0,  -b22 < 0,   b42 < 0  and −b55 < 0 , we already have σ 1 < 0, σ 4 < 0 and σ 5 < 0.  Therefore 

our criteria for PDE stability reduces to conditions: 

 b22 + Dcµ + Dmµ > 0 and (b42 − χmµ)b24 − Dmµ(b22 + Dcµ) < 0   (4.37) 

When both of these inequalities hold we are guaranteed to have negative values for the 

finally two eigenvalues σ 2 and σ 3.  Since stability of the ODS system forces b24 > 0  and b42 < 0,  

these two inequalities will be met for any χm > 0, Dm > 0, Dc > 0, µ > 0.   

It follows from this argument that when the Linearized ODE system is stable then 

!!v #x ,t '  are converging to zero as the time goes to infinity for any eigenfunction !!φn .  Therefore, 

since !!φn#x %  is complete in !!L2  space, one can conclude that: 

 The stability of the linearized PDE system (4.17)-(4.21) in !!L2  space follows from the 

stability of the linearized ODE system, (4.22)-(4.26). We now investigate the converse statement. 

 
2.5.6  PDE Stability Does Not Guarantee ODE Stability 

As expected, the ODE stability and PDE stability are different, in this section we present 

one example where parameter values dictate a system which is unstable in its reaction terms ODE 

system, (4.22)-(4.26), but is conditionally stable in linearized PDE system (4.17)-(4.21).  
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Specifically we look at an example where high enough increases in macrophage chemotaxis and 

diffusion can overcome an instability that is rooted in its chemical reaction terms. 

 Let Dm = Dcχm = 0,  then the first 5 eigenvalues of the PDE and ODE have the same 

sign.  By definition of our original model σ 1,σ 2, andσ 5 are all negative.   Assume b33 > 0  (in 

some sense reactive terms has stabilizing effect, with respect to Ue ), then σ 4 < 0.   

 Now if one lets f2λ3 > f3λ2ce,  which means that inflammatory macrophages dominate 

the regulatory macrophages, then b24 < 0 causing σ 3 > 0 , and consequently the ODE system 

(4.22)-(4.26) is unstable.   For the same set of the coefficients b's  and  given µ > 0  it is not 

difficult  to find sufficient condition on Dm ,Dc , and χm  such thatσ 3 < 0,  which guarantee stability 

of the equilibrium state Ue . For example, any set with the same coefficients b's  with 

 DmDc >
(b42 − χmµ)b24

µ
  (4.38) 

will have a real part of the σ 3 < 0  and consequently the solution of the corresponding IBVP with 

initial function to be φµ (x)(u1,...,u5 )  will be vanishing at time infinity. 

Condition (4.38) contains the following biological interpretation. Assume that 

inflammatory macrophages dominate the regulatory macrophages and are characterized by the 

coefficient  

b24 = − f2λ3 − f3λ2ce( ) < 0.   

Then for any given value b24 if mobility of the macrophages and diffusion of the 

chemoattractant is high enough in comparison to the coefficient b24 then Ue is stable for the class 

of perturbation which corresponds to eigenfunction φµ .  This example shows that Region II in 

Figure 2-14 is non-empty. In less strict wording, the system can be washed out if the macrophages 

and chemoattractant are characterized by high mobility and diffusion. This indicates vital impact 
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of the key parameters Dm ,Dc , and χm  on 'inflammatory' behavior (both in space and in time) of 

the system perturbed from equilibrium.  

Obtained conclusion depend on µ  and can be applied only if initial data is proportional 

to φµ .  If in the Fourier extension of the initial data all coefficients are non-zero then the sufficient 

condition for stability are the same as for ODE system. 

We can visualize our cases for stability as follows: 

 

Figure 2-14 Visualization of Stability Regions for the Inflammatory Equilibrium 
While not drawn to scale, this diagram helps to organize the cases for stability as we investigate 
conditions that will cause the inflammatory equilibrium of our system to be characterized by 
(I.) Linear ODE and Linear PDE stability, (II.) Instability in the ODE system but stability in the 
linearized PDE system, and (III.) Instability in the linearized PDE system. 

 

In the next section we take an alternative approach to PDE Linear Analysis in order to 

determine a set of conditions that will produce stability of the linearized PDE system without 

requiring ODE Stability, yielding greater insights into Region II. of Figure 2-14.  

 
 

2.5.7  Sufficient Conditions for PDE Stability 

In this section we will analyze the conditional stability of the IBVP for Eq.(4.17)- (4.21) 

under assumption that v (x,t0 )  has zero average: v∫ (x,t0 )dx = 0.   
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We will derive conditions on the coefficient of the system (4.17)-(4.21) such that the L2  

norm of the solution is bounded by the L2 norm of the initial data, or it converges to zero at time 

infinity depending on the conditions on coefficients. Those conditions will depend only on 

coefficients of the model and Poincare constant (Cp ), , which in turn depends only on the geometry 

of the domain.  

We will also show that there exists a specific initial distribution such that the 

corresponding IBVP solution is vanishing at time infinity while the corresponding solution of the 

ODE might be unbounded at time infinity.  

To aid in later simplifications, let us multiply the second through the fifth equations of 

the system by the percentage of classical macrophages, λ1 , and rewrite the linearized system 

(4.17)-(4.21) as 

 
∂d
∂t

= Dd∇
2d − f0λ1med − b14m,   (4.39) 

 
λ1 ∂c
∂t

= λ1Dc∇
2c − b21λ1d − b22λ1c − b24λ1m,   (4.40) 

 
λ1 ∂ f
∂t

= Dfλ1∇
2 f − χ fλ1∇

2c − b32λ1c − b33λ1 f − b34λ1m,   (4.41) 

 
λ1 ∂m
∂t

= Dmλ1∇
2m − χmλ1∇

2c − b42λ1c − b44λ1m,   (4.42) 

 
λ1 ∂e
∂t

= Deλ1∇
2e− χe1λ1∇

2 f − χe2λ1∇
2c − b53λ1 f − b55λ1e.   (4.43) 

 
Next multiplying equations (4.39) by d , (4.40) by c,  (4.41) by f ,  (4.42) by m,  and 

(4.43) by e,  correspondingly and integrating by parts one can easily get 
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1
2
∂
∂t

d 2∫ = −Dd (∫ ∇d)2 − f0λ1 d 2∫ − b14 md∫
λ1
2

∂
∂t

c2∫ = −λ1Dc (∫ ∇c)2 − b21λ1 d∫ c − b22λ1 c2∫ − b24λ1 mc∫
λ1
2

∂
∂t

f 2∫ = −Dfλ1 (∫ ∇f )2 + χ fλ1 ∇c∇f∫ − b32λ1 cf∫ − b33λ1 f 2∫ − b34λ1 mf∫
λ1
2

∂
∂t

m2∫ = −Dmλ1 (∫ ∇m)2 + χmλ1 ∇c∇m∫ − b42λ1 cm∫ − b44λ1 m2∫
λ1
2

∂
∂t

e2∫ = −Deλ1 (∫ ∇e)2 + χe1λ1 ∇f∇e∫ + χe2λ1 ∇c∇e∫ − b53λ1 fe∫ − b55λ1 e2∫

 

By applying the Poincare inequality, 

Cp u2 dx ≤
Ω
∫ (∇u)2 dx + udx

Ω
∫

⎛

⎝⎜
⎞

⎠⎟Ω
∫

2

,  

to the terms (∇u)2∫ dx  such that Cp = Cp (Ω) > 0,  and adding the left and right hand sides of all 5 

equations above, we group the right hand side into 10 bilinear forms which we will analyze 

further. 

1
2

d 2∫ + λ1 c2 + f 2 +m2 + e2( )∫⎡
⎣

⎤
⎦t

≤ − B(d,m)+ B(c,d)+ B(c,m)+ B(c, f )+ B( f ,m)+ B( f ,e)[ ]∫
− B(∇c,∇m)+ B(∇c,∇f )+ B(∇e,∇c)+ B(∇e,∇f )[ ]∫

+C d∫( )2 + c∫( )2 + f∫( )2 + m∫( )2 + e∫( )2⎡
⎣⎢

⎤
⎦⎥
.  

Where the bilinear forms are: 

B(d,m) = 0,

B(c,d) = λ1
1
6
DcCp + b22

⎛
⎝⎜

⎞
⎠⎟ c

2 + b21dc + ( f0 + DdCp )d
2⎡

⎣⎢
⎤
⎦⎥
,

B(c,m) = λ1
1
6
DcCp + b22

⎛
⎝⎜

⎞
⎠⎟ c

2 + b2,4mc +
1
3
DmCp + b44

⎛
⎝⎜

⎞
⎠⎟ m

2⎡
⎣⎢

⎤
⎦⎥
,
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B( f ,m) = λ1
1
4
DfCp + b33

⎛
⎝⎜

⎞
⎠⎟ f

2 + b34cf +
1
3
DmCpm

2⎡
⎣⎢

⎤
⎦⎥
,

B(c, f ) = λ1
1
6
DcCpc

2 + b32cf +
1
4
DfCp f

2⎡
⎣⎢

⎤
⎦⎥
,

B( f ,e) = 0,

 

B(∇c,∇m) = λ1
1
6
Dc(∇c)

2 − χm∇c∇m + 1
3
Dm (∇m)

2⎡
⎣⎢

⎤
⎦⎥
,

B(∇c,∇f ) = λ1
1
6
Dc(∇c)

2 − χ f∇c∇f +
1
4
Df (∇f )

2⎡
⎣⎢

⎤
⎦⎥
,

 

B(∇f ,∇e) = λ1
1
4
Df (∇f )

2 − χe2∇f∇e+
1
2
De(∇e)

2⎡
⎣⎢

⎤
⎦⎥
,

B(∇c,∇e) = λ1
1
6
Dc(∇c)

2 − χe1∇c∇e+
1
2
De(∇e)

2⎡
⎣⎢

⎤
⎦⎥
.

  

 
We notice that this is stabilized when everything is dominated by the diffusion terms.  By 

imposing the conditions for each bilinear form to be positive definite and using the criteria: 

B(x, y) = ax2 + bxy + cy2  

is positive definite if and only if 

a ≥ 0, c ≥ 0, & ac ≥ 1
2
b  

We attain 8 of the 9 conditions that are needed for PDE stability. Below we formulate a 

sufficient condition for the solution to be stable in L2  space. The assumptions are presented in 

terms of the parameters of the original system where biological meanings are more evident. 

 
Condition 1. If 

 1
6
DcCp + f3λ2me + f4

⎛
⎝⎜

⎞
⎠⎟ ( f0 + DdCp )

⎡
⎣⎢

⎤
⎦⎥

1/2

≥ 1
2
f1   (4.44) 

then B(c,d) ≥ 0;   
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Condition 2. If 

 
1
4
DfCp − a2 (1− 2

fe
F0
)+ a12ce − a3

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
1
3
DmCp

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

≥ 1
2
a1λ1   (4.45) 

then B( f ,m) ≥ 0.   

Taking into account the actual values for equilibriums: ce,  and, fe  of the 

inflammatory equilibrium one can reduce (4.45) to an inequality that is easier to interpret 

biologically.  Namely, assume 

 
1
4
Df DmCp + ADm

⎡
⎣⎢

⎤
⎦⎥

1/2

≥ 1
2
a1λ1,   (4.46) 

then B( f ,m) ≥ 0.  Here 

  
A = a2 − a3 + a12

a0
a11

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

2

+ 4 a2
F0

⎛
⎝⎜

⎞
⎠⎟
a1λ1

f4 f0λ1a0 − a11 f1 f0λ3
f0λ1( f2λ3a11 − f3a0λ2 )

  

Due to the assumption (4.16), parameter A  is well defined for all values of the 

coefficients of the original model. Biological meaning of constraint (4.16) was explained 

in section Positivity of Equilibrium, and it is necessary for the existence of the inflamed 

equilibrium. What we want to point out here is that for any set of the parameters there 

exist large enough diffusion constants Dm ,  and Df  this inequality (4.46) holds, and 

consequently bilinear form B( f ,m) ≥ 0.   

 
Condition 3. If 

 

1
6
DcCp + ( f3λ2me + f4 )

⎛
⎝⎜

⎞
⎠⎟
1
3
DmCp + (a11me − a0 )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1/2

≥ 1
2
f2λ3 − f3λ2ce

  (4.47) 

then B(c,m) ≥ 0.  To insure the RHS in (4.47) is well-posed, assume that 
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1
3
DmCp + (a11me − a0 )

⎛
⎝⎜

⎞
⎠⎟

= 1
3
DmCp + a11

f4 f0λ1a0 − a11 f1 f0λ3
f0λ1( f2λ3a11 − f3a0λ2 )

− a0 ≥ 0.
  (4.48) 

We rewrite the above inequality in terms of the parameters of the original model to point 

out that for any given set of the parameters there exists big enough coefficient Dm ,  characterizing 

macrophages mobility, such that inequality (4.47) holds. 

 
Condition 4. If 

 
1
6
DcCp

1
4
DfCp

⎡
⎣⎢

⎤
⎦⎥

1/2

≥ 1
2
a12 fe,   (4.49) 

then B(c, f ) ≥ 0.   
 
 
Condition 5. If 

 
1
6
Dc
1
3
Dm

⎛
⎝⎜

⎞
⎠⎟
1/2

≥ 1
2
χm   (4.50) 

then B(∇c,∇m) ≥ 0.   
 
 
Condition 6. If 

 1
6
Dc
1
4
Df

⎛
⎝⎜

⎞
⎠⎟
1/2

≥ 1
2
χ f   (4.51) 

then B(∇c,∇f ) ≥ 0.   
 
 
Condition 7. If 

 
1
4
Df
1
2
De

⎛
⎝⎜

⎞
⎠⎟
1/2

≥ 1
2
χe2   (4.52) 

then B(∇f ,∇e) ≥ 0.   
 

 



 

53 

Condition 8. If 

 
1
6
Dc
1
2
De

⎛
⎝⎜

⎞
⎠⎟
1/2

≥ 1
2
χe1   (4.53) 

then B(∇c,∇e) ≥ 0.   
 
 
We now assume that spatial averages for all five components d(x,0), c(x,0), f (x,0),

m(x,0), and f (x,0)  are equal 0 (Initial data are orthogonal to 1). Then due to no-flux Neumann 

condition on the boundary, 

 d
Ω∫ = 0; c

Ω∫ = 0; f
Ω∫ = 0; m

Ω∫ = 0; e
Ω∫ = 0,   (4.54) 

 
Since we are studying linear stability these will stay zero for t > 0 .	  Under these 

Conditions (1-8), Lyapunov stability of the linearized system is guaranteed. Furthermore, if we 

add the assumption that the inequalities on (4.44)-(4.49) then the system will be asymptotically 

stable, and the L2  norm of the solution will exponentially converge to zero as time goes to 

infinity. 

 
2.5.7.1  Significance of Sufficient Conditions for PDE Stability  

In all above eight conditions inequalities hold for big enough values of diffusive 

coefficients. This highlights the importance of the spatial distribution of the perturbation for the 

equilibrium. The major meaning of these conditions is that for any set of the parameters if 

diffusivity coefficients are big enough then Ue  is stable. Another key parameter, which 

characterizes the behavior of the spatial distribution of the system is the chemotactic coefficient.  

We now set out to gain additional quantitative insight into the chemotactic coefficient for 

macrophage cells and investigate how its relation to these diffusion coefficients can affect on 

stability.  This is done by comparing two inequalities, one produced through eigenvalue analysis 
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for specific parameters, and the other taken directly from cond.(5) above.   We do not assume the 

ODE stability conditions of the equilibrium in this section. 

It will be easy to construct a spatially inhomogeneous solution of the Initial-Boundary 

Value Problem (IBVP) so that the solution of corresponding ODE for V = v∫ (x,t)dx  is identically 

zero, where the PDE solutions can be either stable or unstable by adjusting certain parameters. 

Indeed, let the domain be the segment [0,π ]  and as in Eq.(4.29) with φ = cosx.   Then in 

order for v(x,t)  to be a solution of corresponding IBVP it is necessary and sufficient that σ  be a 

root of the characteristic polynomial equation P(σ )  in Eq. (4.31). 

To establish that Cond.(1-8) are essential, we show an example of the system with: (1) 

Cond.(1-8) all met, and (2) P(σ )  has a positive root in Eq. (4.31).  For the selected domain we 

assume Poincare constantCp = 1.  We begin our construction by assuming coefficients satisfy the 

inequalities in  constraints Cond.(1-8) except for Cond.(3) and Cond.(5). 

 Let b22 ≥ 4 / 5Dc , a11me ≥ a0  and 0 > b24 ≥ −(DcDm / 20)1/2 . Obviously for these set of 

the parameter, Cond.(3) is satisfied. Then if DcDm / 60 ≥ χm  , Cond.(5) holds and consequently 

v(x,t)→ 0 as t→∞.   

Furthermore, it is not difficult to see that if b22 = 4 / 5Dc ,  and b24 = −(DcDm / 20)1/2  then 

σ 2  in Eq. (4.33) is positive provided: 

 (χm − b42 )
DcDm

20
⎡
⎣⎢

⎤
⎦⎥

1/2

− 9
5
DmDc > 0.   (4.55) 

This inequality holds if  

 χm > 102DcDm .   (4.56) 

Consequently, when Inequality (4.56) holds then || v(x,t) ||L2
→∞ as t→∞.    
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Comparing stability in (4.50) and instability when inequality (4.56) is satisfied, provides 

us with a way to highlight the impact of the diffusive constants and chemotactic coefficients on 

the stability of the inflamed equilibrium Ue.  From the example above one can see that if the 

chemotactic sensitivity coefficient χ is relatively bigger than the diffusivity characteristic of the 

process then Ue  is unstable.  At the same time if it is relatively smaller, as in inequalities (4.50)-

(4.53) then the inflamed equilibrium is stable.      

 
2.6   Discussion 

To further study the processes governing inflammatory and fibrotic reactions against 

foreign bodies, we have taken our mathematical model, expressed by a system of partial 

differential equations with no flux boundary conditions, and have considered a biologically 

meaningful  equilibrium state of the system and its stability conditions.  

We have provided a mathematical proof that when this equilibrium is stable in the 

corresponding ODEs, then it is also stable for the full system in L2 (Ω).  These conditions 

correspond with feasible biological conditions where the percentage of regulatory macrophages 

dominate that of the inflammatory macrophages. However a system with a parameter set can be 

conditionally stable in the PDE sense when its ODE system is not necessarily stable.  We provided 

some exclusive conditions for this to happen.  

We mention here that the system has infinitely many equilibria, all except for one contain 

at least one zero component. The one under discussion here is called the interior equilibrium as it 

has 5 non-zero components. This particular equilibrium corresponds to an inflamed state of the 

healing process, whose instability is an indicator of three possible dynamics: 1. Best case scenario- 

returning to the healthy state; 2. Uncertain development - transition to another 'abnormal' 

equilibrium; 3. Acute inflammatory response (worst case scenario) perturbations tend to infinity. 
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Our main mathematical results indicate that the inflamed state's stability mainly depends on the 

reaction dynamics. We found that even in the case where spatial diffusion is small and 

chemotactic affects are large we cannot achieve de-stabilize of an equilibrium that is stable in the 

reaction-only system.  On the other hand, if the equilibrium is unstable by its reaction-only 

system, then spatial diffusion over chemotactic effects can help to stabilize the equilibrium if the 

initial perturbation is subjected to specific constraints. 
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Chapter 3  

Stem Cell Influence on Model 

Fibrotic encapsulation is often attributed to the over-activity of certain immune cells.  

Many experiments have been dedicated to investigating this challenge and many innovative 

changes to implant surface properties have been proposed.  Changes to the surface texture, the 

hydrophilic properties, as well as coating the implant with various cells/proteins have shown to 

impact the anchoring capability of the implant as well as the scaring and inflammation [57].  A 

growing interest in experimentation has been in increasing the availability of stem cells at the 

wound site [29]. 

In this chapter we propose an expanded mathematical model (4.6)-(4.10), a set of 8 

partial differential equations, adapted from mass-action laws by the principles of wound healing 

and analyze it to gain insights regarding the dynamics of immune cells and proteins following the 

insertion of a foreign body.  Specifically we focus on the impact of mesenchymal stem cells on 

inflammation and fibrosis. 

Furthermore we test the model’s accuracy and investigate the roles stem cells play on the 

components of our system.  We focus our attention on the equilibrium family that represents a 

healed state, one in which the macrophage populations return to zero but varying amounts of mast 

cell activation remain. We determine the conditions that must be met by the stem cell population 

in order to affect the early population trend of regulatory macrophages (specifically to change the 

monotonicity from decreasing to increasing). This shows that through chemical reactions alone 

stem cell presence can help create a better environment for healing.  
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3.1   Modeling Based on Chemical Kinetics 

As we seek to analyze the effects that stem cell presence can play on fibrotic reactions we 

again take the lead from the modeling techniques for wound healing used by Schugart [25] as 

discussed in section 2.1   above but we make several new adjustments: 

• Mast Cells are assumed to be the initiators of the immune responses and prompt an up-

regulation of Pro-Inflammatory Cytokines through the release of histamine. 

• Cytokines are divided into two classifications, Regulatory and Pro-Inflammatory, these 

classifications not only help specify their roles but also establish an association to the 

macrophage phenotypes that promote them. 

• Classical macrophages can be grouped in with Inflammatory macrophages 

classification because they share in the same reactions to cytokines and stem cells. 

• A distinction between Regulatory and Inflammatory macrophages is important because 

they are recruited by different cytokines and are affected by the presence of 

mesenchymal stem cells in different ways (i.e. stem cells suppress inflammatory 

macrophages while promoting regulatory macrophages). 

• Mesenchymal Stem Cells (described in section 1.2.8   maintain stem cell qualities after 

proliferation, and are also influenced by a death rate.   

Figure 3-1 provides an overview of these biological considerations and the chemical interactions 

that are important when incorporating Mesenchymal Stem Cell influence into foreign body 

responses. 

Combining several modeling principles that have been applied to wound healing models, 

along with the several experimentally observed impacts of stem cells on key immune cells. We 

take a simplified approach to stem cell modeling by assuming an absence of differentiation stimuli 

(as done experimentally in [58]), and therefore isolate the ability of stem cell presence to promote 

the up-regulation of regulatory macrophages, meanwhile inhibiting inflammatory macrophage 
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population growth (as is consistent with the findings of [28]).  We also take a simplified death rate 

of stem cells (as modeled in [40]) but also account for the experimentally observed proliferation in 

which the divided cells continue to maintain stem cell qualities [30].  

 

 

Figure 3-1 Reaction Schematic with MSC:  
This schematic summarizes the biological reaction between the cells and cytokines included in 
modeling foreign body responses with mesenchymal stem cell influences.  

 

In addition to the reaction terms that account for the up-regulation and down-regulation 

of each component we also include cell migration and chemotaxis (consistent with Schugart [25]). 

In efforts to look closely at the effects of stem cell and macrophage variations on tissue recovery 

in a manageable mathematical setting we leave oxygen pressure and angiogenic details out at this 

moment. Our foreign body fibrotic reaction model is: 

 
∂D
∂t

= Dd∇
2D − f0M 2D,   (5.1) 
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∂C1
∂t

= Dc∇
2C1 + f1D + f2M1 − f3M 2C1 − f4C1,   (5.2) 

 
∂C2

∂t
= Dc∇

2C2 + f5M 2 − f6M1C2 − f4C2,   (5.3) 

 ∂F
∂t

= Df∇
2F − χ0∇⋅(F∇C2 )+ a2F

a2 − a3
a2

− F
F0

⎛
⎝⎜

⎞
⎠⎟
+ a12C2FH f ,   (5.4) 

 
∂M1

∂t
= Dm∇

2M1 − χ1∇⋅(M1Hm∇C1)− a0M1 + a11C2M1Hm − a18SM1,   (5.5) 

 
∂M 2

∂t
= Dm∇

2M 2 − χ1∇⋅(M 2Hm∇C2 )− a0M 2 + a11C2M 2Hm + a19SM 2,   (5.6) 

 
∂S
∂t

= Dm∇
2S − χ2∇⋅(S∇C2 )− a21S + a20SC2,   (5.7) 

 ∂E
∂t

= De∇
2E −∇⋅

BDf

F0
EF∇F +

Bχ j

F0
(EFH f∇C2 )

⎛
⎝⎜

⎞
⎠⎟
+ a16F 1− E

E0

⎛
⎝⎜

⎞
⎠⎟
.   (5.8) 

 
Where ∇2 = ∇⋅∇,  Hm = H (M 0 − (M1 +M 2 )),  and H f = H (F0 − F),  H is the Heaviside 

function, and all coefficients are positive.  

For the above system (5.1)-(5.8) the cell population D  represents activated mast cells. 

We assume that mast cell activation decreases in proportion to the amount of M 2 −  regulatory 

macrophages and mast cells present at the implant site.  Spatial diffusion of the mast cell 

population is also accounted for, Dd∇
2D . 

As mentioned previously in this section, we separate the chemical interactions that drive 

immune response into two separate components: pro-inflammatory cytokines, C1  and regulatory 

cytokines, C2 .  

Pro-inflammatory cytokines, C1 , which includes histamine are released both by 

inflammatory macrophages M1 as well as during degranulation of activated mast cells, but are 
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inhibited by M 2 - regulatory macrophage cells. The diffusion of these cytokines in space is 

accounted for through Dc∇
2C1 .   

Regulatory cytokines, C2  consist mainly of interleukin-4 and various growth factors, 

including Tissue Growth Factors type beta (TGFβ), which serve to drive cell proliferation, blood 

vessel growth and recruitment of macrophages of the regulatory phenotype.   These cytokines are 

released by regulatory macrophages and inhibited by inflammatory macrophages M1 .  The 

diffusion of these cytokines Dc∇
2C2  is assumed to share the same diffusion coefficient Dc  as the 

inflammatory cytokines. 

Fibroblast density, F , are up-regulated by the cytokines C2  which promote proliferation 

and collagen synthesis. Thus fibroblast population F  and the extracellular matrix E  can be 

modeled in the same manner as in our previous model (4.10).  

Macrophage population is divided up into two classes dependent on phenotype, M1 - 

inflammatory macrophages, and M 2 - regulatory macrophages.  Both populations share the same 

proliferation (caused by a direct interaction with C2 ) and decay rates, but they are recruited by 

different cytokines and are affected by the presence of mesenchymal stem cells in different ways.  

Stem cells suppress inflammatory macrophages while promoting regulatory macrophages.  M1

and M 2 density redistribution  through diffusion and chemotactic drift is up-regulated by the 

corresponding chemotactic gradient fields C1 and C2 , respectively.  Furthermore we account for 

the carrying capacity of the space so that productions reach a limiting value once the combined 

macrophage populations reach a saturation of M 0 . 

Similar to regulatory macrophages, mesenchymal stem cell density S  is also modeled to 

incorporate diffusion and chemotactic-drift up-regulated by the C2  chemotactic gradient field. 
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Additionally proliferation of the stem cells due to direct interaction with C2 and cell apoptosis is 

incorporated.  

We refer Table 3-1 to for a detailed list of the roles and values assigned to the reaction 

term coefficients of this model.  

Furthermore, for our model we assume that the computational implant domain is large 

enough and that changes in cell movement are slow enough (being measured in days) that flux 

along the boundary becomes insignificant, allowing homogeneous Neumann boundary conditions 

to be assumed. 

 
3.1.1  Spatially Uniform Equilibrium States  

We seek a family of equilibria that are uniform in space for this Neumann boundary 

problem.  Removing the spatial variation reduces our system to: 

 
dD
dt

= − f0M 2D,   (5.9) 

 
dC1
dt

= f1D + f2M1 − f3M 2C1 − f4C1,   (5.10) 

 
dC2

dt
= f5M 2 − f6M1C2 − f4C2,   (5.11) 

 dF
dt

= a2F
a2 − a3
a2

− F
F0

⎛
⎝⎜

⎞
⎠⎟
+ a12C2FH f ,   (5.12) 

 
dM1

dt
= −a0M1 + a11C2M1Hm − a18SM1,   (5.13) 

 
dM 2

dt
= −a0M 2 + a11C2M 2Hm + a19SM 2,   (5.14) 

 
dS
dt

= −a21S + a20SC2,   (5.15) 

 dE
dt

= a16F 1− E
E0

⎛
⎝⎜

⎞
⎠⎟
.    (5.16) 
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We assume that our values are taken to be below threshold and therefore take 

H f = Hm = 1  as we determine equilibria for the system above.  Many equilibrium states exist, we 

chose to analyze the family of equilibria in which the ECM has reached its threshold value and the 

concentrations of both phenotypes of macrophages, as well as stem cell concentrations return to 

zero.  We classify this family as "healed states" owning to the disappearance of these 

inflammatory cells after the wound is healed.  This class was observed as a limiting solution for a 

large class of initial conditions in ode simulations conducted on this system, and is able to capture 

expected biological behaviors and give us further insights about the roles of stem cell on our 

system.  

By taking the RHS of the system above to be equal zero one can obtain a system of 8 

nonlinear equations, which can be explicitly solved. After some algebraic work one can obtain the 

following formula for the family of positive equilibrium states Ue = (de,c1e,c2e, fe,m1e,m2e,se,ee )  

that represent a healed state: 

 de= free,   (5.17) 

 c1e =
f1
f4

⎛
⎝⎜

⎞
⎠⎟
de,   (5.18) 

 c2e= 0,   (5.19) 

 fe = (F0 / a2 ) a2 − a3 + a12
a21
a20

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥,   (5.20) 

 m1e= 0,   (5.21) 

 m2e= 0,   (5.22) 

 se= 0,   (5.23) 

 ee= E0,   (5.24) 
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Conditions for the existence of this family of equilibria of positive components are as 

follows: 

 
de ≥ 0,

a2 + a12
a21
a20

⎛
⎝⎜

⎞
⎠⎟
≥ a3.

  

These conditions are easily met as fibroblast growth, a2  is widely accepted to be greater 

than its death rate, a3  during healing processes [59].  

 
3.1.2  Linearized System 

Let the perturbation near this equilibrium be d = D − de, c1 = C1 − c1e, c2 = C2 − c2e,  

f = F − fe, m1 = M1 −m1e, m2 = M 2 −m2e, s = S − se, e = E − ee.  Denote vector field of the 

perturbation by v (x,t) = (d,c1,c2, f ,m1,m2,s,e),  then the linearized system for v (x,t)  is: 

 
∂d
∂t

= Dd∇
2d − b11d − b16m2,   (5.25) 

 
∂c1
∂t

= Dc∇
2c1 − b21d − b22c1 − b25m1 − b26m2,   (5.26) 

 
∂c2
∂t

= Dc∇
2c2 − b33c2 − b35m1 − b36m2,   (5.27) 

 
∂ f
∂t

= Df∇
2 f − χ f∇

2c2 − b43c2 − b44 f ,   (5.28) 

 
∂m1

∂t
= Dm∇

2m1 − χm1∇
2c1 − b53c2 − b55m1 − b57s,   (5.29) 

 
∂m2

∂t
= Dm∇

2m2 − χm2∇
2c2 − b63c2 − b66m2 − b67s,   (5.30) 

 
∂s
∂t

= Dm∇
2s − χ s∇

2c2 − b73c2 − b77s,   (5.31) 

 
∂e
∂t

= De∇
2e− χe1∇

2 f − χe2∇
2c2 − b84 f − b88e.   (5.32) 
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Here the parameters are 

 

χ f = feχ0, χm1 = χ1m1e, χm2 = χ1m2e,

χ s = χ2se, χe1 =
BDf e0 fe
F0

, χe2 =
Bχ je0 fe
F0

,

b11 = f0m2e, b16 = f0de,
b21 = − f1, b22 = f3m2e + f4 , b25 = − f2,b26 = f3c1e,
b33 = f6m1e + f4 , b35 = f6c2e, b36 = − f5,

b43 = −a12 fe, b44 = − a2 (1− 2
fe
F0
)+ a12c2e − a3

⎡

⎣
⎢

⎤

⎦
⎥,

b53 = −a11m1e, b55 = −a11c2e + a18se + a0,b57 = a18m1e,
b63 = −a11m2e, b66 = a0 − a11c2e − a19se, b67 = −a19m2e,
b73 = −a20se, b77 = −a20c2e + a21,

b84 = −a16 (1−
ee
E0
), b88 = a16

fe
E0
.

  

 
3.2   Stability Analysis of ODE System 

Turning now to take a look at the stability of the system we find the linearized system of 

our reaction terms to be: 

 
dd
dt

= −b11d − b16m2,   (5.33) 

 
dc1
dt

= −b21d − b22c1 − b25m1 − b26m2,   (5.34) 

 
dc2
dt

= −b33c2 − b35m1 − b36m2,   (5.35) 

 
df
dt

= −b43c2 − b44 f ,   (5.36) 

 
dm1

dt
= −b53c2 − b55m1 − b57s,   (5.37) 

 
dm2

dt
= −b63c2 − b66m2 − b67s,   (5.38) 

 
ds
dt

= −b73c2 − b77s,   (5.39) 

 
de
dt

= −b84 f − b88e.   (5.40) 
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In matrix form, (d,c1,c2, f ,m1,m2,s,e)
T⎡⎣ ⎤⎦
′ = −B⋅(d,c1,c2, f ,m1,m2,s,e)

T where B is:  

 B =

b11 0 0 0 0 b16 0 0
b21 b22 0 0 b25 b26 0 0
0 0 b33 0 b35 b36 0 0
0 0 b43 b44 0 0 0 0
0 0 b53 0 b55 0 b57 0
0 0 b63 0 0 b66 b67 0
0 0 b73 0 0 0 b77 0
0 0 0 b84 0 0 0 b88

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.   

For stability analysis of the healed state equilibria we look at the eigenvalues of matrix 

−B .  For convenience we rearrange our equations in the following order (d,m2,s,c2,m1,c1, f ,e)
T  

and take advantage of Eq.(5.17)-(5.24), which give b11 = 0, b35, b53, b57, b63, b67, b73,  and b84 = 0 : 

 

0 b16 0 0 0 0 0 0
0 b66 0 0 0 0 0 0
0 0 b77 0 0 0 0 0
0 b36 0 b33 0 0 0 0
0 0 0 0 b55 0 0 0
b21 b26 0 0 b25 b22 0 0
0 0 0 b43 0 0 b44 0
0 0 0 0 0 0 0 b88

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
B1 0
0 B2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.   

Since det(−B−σ I) = det(−B1 −σ I)det(−B2 −σ I),  we find the eigenvalues by looking at 

the eigenvalues of the 2-block, −B1 , and the 6-block ,−B2 ,  separately.  

 
det[−B1 −σ I] =

−σ −b16
0 −b66 −σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −σ (−b66 −σ )

 

giving us the following eigenvalues: 

 
σ 1 = 0,
σ 2 = −b66.
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The lower triangular −B2  gives us our final six eigenvalues: 

 

σ 3 = −b77,
σ 4 = −b33,
σ 5 = −b55,
σ 6 = −b22,
σ 7 = −b44 ,
σ 8 = −b88.

  

ODE exponential stability requires the real parts of the σ 1,...,σ 8  to be negative. The 

constraints of our model (i.e. the assumption that parameter values are positive) give us: 

 
−b66 < 0, − b77 < 0, − b33 < 0, − b55 < 0,
− b22 < 0, − b44 < 0, and − b88 < 0.

  

Therefore, σ 2,...,σ 8  are always negative, so we have negative eigenvalues corresponding 

to all components except the free component of our equilibrium, σ 1  which is zero. Thus we need 

to further investigate the full nonlinear system. Our non-negative equilibrium comes from the mast 

cell term, D , in our matrix. 

This makes the mast cell, D , component our main focus as we further investigate the 

nonlinear stability of the system Eq.(5.33)-(5.40).   

 
3.2.1  Non-Linear Convergence of B1 Block 

Since the mast cell ( D ) is coupled only with M 2  in our model, we begin to analyze the 

stability of these two components:   

 

dD
dt

= − f0M 2D,

dM 2

dt
= −a0M 2 + a11C2M 2Hm + a19SM 2.

  

We extract the equilibrium, keep the non-linear terms, and account for simplification due 

to the zero equilibrium terms (specifically m2e, se  and c2e ) yielding the following ODEs: 
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′d = −b16m2 − f0m2d,
′m2 = −a0m2 + a11c2m2 + a19sm2.

  

Looking first at m2 , we can divide by m2  and solve: 

 m2 (t) = m2 (0)e
(a11c2+a19s−a0 )0

t

∫ ds
.   

Furthermore, since we observed that the eigenvalues in B2  are negative we know that s  

and c2  will remain within a small neighborhood about 0. By setting a11c2 ≤
1
4
a0 and  a19s ≤

1
4
a0 . 

We now have 

 m2 (t) ≤ m2 (0)e
−1
2
a0t .   (5.41) 

This bound for m2 gives us the exponential bound for this component.  We use this 

bound to help us as we investigate d.  We rewrite the d  component ODE in the following way: 

 d '+ f0m2d = −b16m2   

We solve by multiplying by the integral factor yielding: 

 

e
f0m2 (η )dη0

t

∫⎛
⎝⎜

⎞
⎠⎟
d '+ e

f0m2 (η )dη0

t

∫⎛
⎝⎜

⎞
⎠⎟
f0m2d( ) = e

f0m2 (η )dη0

t

∫⎛
⎝⎜

⎞
⎠⎟
−b16m2( ),

d
dt

e
f0m2 (η )dη0

t

∫⎛
⎝⎜

⎞
⎠⎟
d(t)

⎡

⎣
⎢

⎤

⎦
⎥ =

−b16
f0

⋅ d
dt

e
f0m2 (η )dη0

t

∫⎛
⎝⎜

⎞
⎠⎟
,

d(τ )e
f0m2 (η )dη0

τ

∫⎛
⎝⎜

⎞
⎠⎟0

t

∫
′
dτ = −b16

f0
⋅ e

f0m2 (η )dη0

τ

∫⎛
⎝⎜

⎞
⎠⎟0

t

∫
′
dτ ,

d(t)e
f0m2 (η )dη0

t

∫ − e0d(0) = −b16
f0

e
f0m2 (η )dη0

t

∫ − e0⎡

⎣
⎢

⎤

⎦
⎥,

d(t) = −b16
f0

+ d(0)+ b16
f0

⎛
⎝⎜

⎞
⎠⎟
e
− f0m2 (η )dη0

t

∫ .

  

Furthermore, by Eq. (5.41), 

 f0m2 (
0

t

∫ s)ds→ constant as t→∞ because   
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Cauchy Criterion holds, by letting M = ln K1


⎛
⎝⎜

⎞
⎠⎟  then for every   

 

 

 > 0 and t2 > t1 ≥ M  

we have m2 (s)ds
t1

t2

∫ ≤ m2 (0) e
−1

2
a0s

t1

t2

∫ ds ≤ K1 e
−1

2
a0t1 − e

−1
2
a0t2⎛

⎝⎜
⎞
⎠⎟
≤  

where K1 =
2m2 (0)
a0

  

We now have that d(t)  converges as t  approaches infinity and this convergence itself 

exhibits exponential decay.  So, while we have freedom to move between different equilibrium 

states within the family (not being forced to return to the same mast cell value) of equilibrium are 

stable as long as: 

 lim
t→∞
(a11C2 + a19S − a0 ) < 0.   

Therefore, this family of equilibria are shown to be stable. However, even though small 

perturbations still return to the family, as we observed they do not necessarily return to the same 

mast cell (D)  initial value.  We conduct further investigation to discover how the presence of 

stem cells affect both the asymptotic limit of mast cell (D) as well as the transient behavior of the 

system. 

 
3.3   Stability Analysis of Linearized PDE System 

To investigate whether stability in the system can persist under chemotaxis and diffusion, 

we investigate whether any Turing instability exists in Eq.(5.25)-(5.32) with respect to the 

Neumann boundary conditions.  Let v (x,t) = eσ tφn (x)(u1,...,u8 )  be a vector with eight unknown 

components:  

 
Δφn (x) = −µnφn (x) inside domain
∂φn
∂n

= 0 on the boundary of the domain

⎧
⎨
⎪

⎩⎪
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where φn (x),  a time-independent function, is an eigenfunction for Δ  corresponding to 

the eigenvalue µn > 0  (we assume a convex domain for simplicity). Substituting v (x,t)  into the 

linearized PDE system gives: 

 

σu1 = −Ddµnu1 − b11u1 − b16u6,

σu2 = −Dcµnu2 − b21u1 − b22u2 − b25u5 − b26u6,

σu3 = −Dcµnu3 − b33u3 − b35u5 − b36u6,

σu4 = −Dfµnu4 + χ fµnu3 − b43u3 − b44u4 ,

σu5 = −Dmµnu5 + χm1µnu2 − b53u3 − b55u5 − b57u7,

σu6 = −Dmµnu6 + χm2µnu3 − b63u3 − b66u6 − b67u7,

σu7 = −Dmµnu7 + χ sµnu3 − b73u3 − b77u7,

σu8 = −Deµnu8 + χe1µnu4 + χe2µnu3 − b84u4 − b88u8.

  

 
We add the right hand side over to the left and recall that at the equilibrium of interest, 

b11, b35, b53, b57, b63, b67, b73, b84 , χm1, χm2,  and χ s equal zero.  The following matrix form 

A(σ )u = 0  with u  is rearrange to u = (u1,u6,u7,u3,u5,u2,u4 ,u8 )
T results, 

 A =
A1 0
A3 A2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
.   

Where 

 A1 =
(σ + Ddµn ) b16

0 (σ + Dmµn + b66 )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
,   

 A2 =

ds,7 0 0 0 0 0
0 dc,3 0 0 0 0
0 0 dm,5 0 0 0
0 0 b25 dc,2 0 0
0 (−χ fµn + b43) 0 0 d f ,4 0

0 −χe2µn 0 0 −χe1µn de,8

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

,    
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and A3 =

0 0
0 b36
0 0
b21 b26
0 0
0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 where dx,α =σ + Dxµn + bαα .   

   

In the previous section we showed that the determinant of B2  had eigenvalues with 

negative real parts. We now investigate if these eigenvalues maintain a negative real part now that 

chemotactic and diffusion terms are taken into account. We again break down the determinant of 

A  by isolating the determinant of the 2-block, A1  and the 6-block,A2 .  The upper triangular 

property of A1  gives us that: 

 
σ 1 = −Ddµn ,

σ 2 = −b66 − Dmµn .
  

Furthermore, since A2  is lower triangular (just as B2  was in the ODE case) solving the 

determinant we find: 

 

σ 3 = −b77 − Dsµn ,

σ 4 = −b33 − Dcµn ,

σ 5 = −b55 − Dmµn ,

σ 6 = −b22 − Dcµn ,

σ 7 = −b44 − Dfµn ,

σ 8 = −b88 − Deµn

  

It is easily seen that, under the assumption that the eigenvalues of the ODE system have 

negative real part, diffusion terms help, rather than disrupt, the sustaining of negative σ  values in 

the linearized PDE system.   

We see that, for Neumann boundary conditions, no Turing instability exists and conclude 

that our equilibrium, which was found to be stable in the ODE system, will maintain its stability as 
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we extend the system to include the diffusion and chemotactic properties of the cell/protein 

populations in our model. 

 
3.4   Investigation of Free Component of Equilibrium 

With the freedom of our system to move between steady states that vary in the mast cell 

population level (and consequentlyC1 level) under small perturbations we now look closer at the 

reaction system to determine what terms affect the value for which D  converges to.   

Looking at the ODE reactions: 

 
dD
dt

= − f0M 2D,   

dividing by D , applying the chain rule to lnD  with respect to t allows us to substitute then 

integrate to attain the solution: 

 D(t) = D(0)e
−
0

t

∫ f0M2 (s )ds   

where D(0)  is the initial condition on D(t)  at time zero. Observing that D  depends on the 

integral behavior of M 2,  more specifically behaving as a decreasing function of M 2.  We see M 2,  

holds the key to increase or decrease activated mast cell ( D ) populations.  To determine what 

leads to higher M 2 we look now at Eq. (5.14) by a similar technique. 

 
dM 2

dt
= −a0M 2 + a11C2M 2 + a19SM 2,   

Again we can divide by and solve for M 2 (t) :   

 M 2 (t) = M 2 (0)e
(a11C2+a19S−a0 )0

t

∫ dt
  

where M 2 (0)  is the initial value of M 2 (t) at time zero. We let 

 lim
t→∞
(a11C2 + a19S − a0 ) ≤ 0   
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which will achieve the desired asymptotic behavior of M 2.   Additionally we see that increases in 

C2  and S  have the ability to increase M 2  which as noted above decreases D.   This implies that, 

while stem cell coating may not change the stability of the family of equilibrium, it can help drive 

the system to a lower mast cell ( D ) component at steady state which is representative of healing 

with less inflammation. 

 
3.5   Transient Behavior of ODE System 

Simulations of solutions to the ODE system at varied stem cell initial values led to an 

assertion that stem cell presence at the time of implantation can affect the monotonicity of some of 

the key cell populations in the system.  Since C2  and M 2  help to mediate healing and prevent 

uncontrolled inflammation it is important for overall healing that these terms increase in 

population during the beginning stages of healing processes.  We investigate the conditions under 

which these two components can be made to increase assuming the equilibrium state to be in the 

family detailed above. 

 
dM 2

dt
= −a0M 2 + a11C2M 2Hm + a19SM 2   

Assuming we are under the macrophage threshold, we take Hm  to be one.  In order for 

M 2 to be increasing we need 
dM 2

dt
> 0  which is achieved when: 

 
(a11C2 + a19S)M 2 > a0M 2,  i.e.

a11C2 + a19S > a0.
  

Here we see the direct impact of the stem call on the ability for M 2  to satisfy the 

condition for being an increasing function. 

 
dc2
dt

= f5m2 − ( f6m1e + f4 )c2 − f6c2em1,   



 

74 

When equilibrium values m1e = 0, m2e = 0, c2e = 0  are accounted for, our investigation 

into the C2 transient behavior yields: 

 
dC2

dt
= f5M 2 − f4C2.   

Now we see that C2  will be increasing when 
dC2

dt
> 0  which occurs when 

 M 2 >
f4C2

f5
.   

Greater values of M 2  make this inequality easier to attain which is consistent with the 

assertion that stem cell coating can help switch C2  to be increasing in nature at the beginning of 

the healing process as it increases the M 2  population. 

 

3.5.1.1  Simulation Confirms Initial Stem Cell Influences Monotonicity of Macrophage 

 

       

Figure 3-2 Initial Behavior of M 2  for Varied Initial MSC Amounts: 
bottom line (blue) denotes the system with no stem cell coating, the middle line (green) an 
initial coating of .5, and the top line (red) an initial coating of 1. Under our parameter set 
regulatory macrophages are increasing initially before decaying when the initial stem cell 
coating is high enough.   
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These finding are consistent with the transient behavior seen in the simulation of Eq. 

(5.9)-(5.16).  Simulations were conducted using Matlab ode15s under specified initial condition 

and the parameter values in Table 3-1.Simulation is provided in Figure 3-2.  Under our parameter 

set 
dM 2

dt
> 0  as long as S(0) > 0.42 . 

 
3.6   Model Simulation Compared with Experimental Data 

We further test the ability of the computational model to capture the outcomes consistent 

with different experimental settings. Rather than directly coating a biomedical devise with MSCs 

investigation is being conducted as to the costs and benefits of instead introducing a stem cell 

recruiter to the implant site.   

 
Figure 3-3 Temporal Dynamics Influenced by Stem Cell Recruitor Treatments 

Matlab simulation of reaction terms of model, Eqs.(5.9)-(5.16), where control is taken such that 
a natural influx of stem cell, “+r0”, is assumed and added to Eq.(5.15). SDF D0 is characterized 
by an additional recruitment term “+r1e^(-r2t)” in which r1= 1 and r2= 0.2. SDF D3 is 
characterized by a similar recruitment set to initiate at t=3 days, “+(r3e^(-r2(t-3))H(t-3)”  where 
r3= 0.5 and r2=0.2. 
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We adapt our model slightly to better emulate a stem cell recruiter and compare our 

results with the experimental findings of Thevenot et al. published 2010 [28]. The only change is 

that stem cell equation has a source term due to the recruiter. Temporal Dynamics of the effects of 

Stem Cell recruitor on the cell populations in our system are shown in Figure 3-3. 

We investigate two cases in which Stromal Derived Factor-1 alpha (SDF-1α) a 

chemokine documented to serve as a recruiter for stem cell migration is introduced into the 

implant domain. Under one treatment plan, SDF D0, the implant scaffold is pre-coated with a 

SDF-1α solution and in the second treatment plan, SDF D3, an injection of SDF-1α is delivered 

via injection directly to the implant site 3 days after surgery. Figure 3-4  documents the previously 

recorded experimental findings from [28] as well as the results for our model to compare the MSC 

cell density a week after surgery. Figure 3-5  compares the Macrophage cell density at this same 

time step. Our cell population values are computed from Eqs. (5.9)-(5.16), with additional source 

term, using Matlab and account only for the reaction terms of our model. 

 

Figure 3-4 Stem Cell Density Results 
Control represents the cell density after no treatment, SDF D0 represents pre-implantation 
scaffold coating of SDF-1α, and SDF D3 corresponds to a single injection of SDF-1α 3 days 
post surgery. (A) Experimental data for the MSC stem cell density come from the number of 
SSEA-4+CD45- cells per mm2 as recorded in [28] (B) Stem Cell Densities from Simulation 
presented in Figure 3-3 at t=7. 
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Figure 3-5 Macrophage Cell Density Results: 
with same experimental (A) and computational modeling (B) settings as in Figure 3-4 .  Here 
Macrophage densities from the model are taken to be the sum of the inflammatory M1 and 
regulatory M2 cell populations. 
 
Figure 3-4  and Figure 3-5  help confirm the applicability of our model.  The proportionate 

affects that treatments plans SDF D0 and SDF D3 had on the MSC population (Figure 3-4 ) are 

consistent with the predictions of our model.   Our model does show some discrepancy in the 

effects of these treatments on the Macrophage population (Figure 3-5 ). The overall behavior is 

captured, the largest macrophage population occurring in the control case, Second largest 

population occurring under the SDF D3 plan, and the smallest macrophage population being 

observed when the implant was pre-coated with stem cell recruiters (treatment SDF D0).  Our 

model, however, when considering the SDF D3 relative to the control case predicted a steeper 

decline in macrophage population then what was actually observed in the experimental data.  This 

is not surprising though and stem cells from our choice to account only for cellular reactions in our 

computer simulation. Cell migration and chemotaxis are not yet accounted for in our 

computational simulations and will likely help account for the under approximation of 

macrophage-cell densities seen for treatment plan SDF D3 in Figure 3-5 . 
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3.6.1  Parameter Values 

The majority of our mathematical analysis is done without specified parameters.  This 

allows for the flexibility to adapt the model for different implant types and different hosts and 

allows us to reach conclusions that can be more broadly applied.  

In order to better visualize the ODE system we established a set of parameters for the 

system (See Table 3-1).  They are rooted in the parameters estimated by Schugart [25] but 

adjusted under criteria found in several other publications. 

Table 3-1  Parameters for Reaction Terms of Stem Cell Incorporated Model 
 here “CS” refers to parameter values unique to this Current Study 
   

Parameter	   Description	   Value	   Reference	  
	  

f0 	  	   Regulatory	  macrophage	  suppression	  of	  activated	  mast	  cells	   1	   [41]	  
f1 	  	   Mast	  cell	  secretion	  of	  cytokines	   0.2	   CS	  

f2 	  	  
Inflammatory	  macrophage	  up-‐regulation	  of	  inflammatory	  

cytokines	  
20	   [25]	  

f3 	  	  
Suppression	  of	  inflammatory	  cytokines	  by	  regulatory	  

macrophages	  
18	   [41]	  

f4 	   Decay	  of	  cytokines	   2.43	   [25]	  

f5 	  	  
Regulatory	  macrophage	  up-‐regulation	  of	  regulatory	  

cytokines	  
30	   [25]	  

f6 	  	  
Suppression	  of	  regulatory	  cytokines	  by	  inflammatory	  

macrophages	  
1	   CS	  

a2 	  	   Proliferation	  of	  fibroblast	   0.3	   [25]	  
a3 	  	   Death	  rate	  of	  fibroblast	   0.01404	   [25]	  
a0 	  	   Death	  rate	  of	  macrophages	   0.045	   [25]	  
a16 	  	   Growth	  of	  ECM	   0.675	   [25]	  
a18 	  	   Suppression	  of	  inflammatory	  macrophages	  by	  stem	  cells	   0.7	   CS	  
a19 	  	   Up-‐regulation	  of	  regulatory	  macrophages	  by	  stem	  cells	   0.1	   CS	  
a20 	  	   Proliferation	  of	  stem	  cells	  due	  to	  regulatory	  cytokines	   0.08	   [30]	  
a21 	  	   Decay	  of	  stem	  cell	  (due	  to	  apoptosis	  or	  differentiation)	   0.5	   [40]	  
a12 	  	   Direct	  proliferation	  of	  fibroblast	  due	  to	  cytokines	   0.001	   CS	  
a11 	  	   Direct	  proliferation	  of	  macrophage	  due	  to	  cytokines	   0.01	   [35]	  
F0 	  	   Fibroblast	  threshold	   1	   [25]	  
E0 	  	   ECM	  threshold	   1	   [25]	  
M 0 	  	   Macrophage	  threshold	   1	   [25]	  
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3.7   Discussion 

The effects of stem cells on wound healing processes has become of growing interest.  

Many have found evidence to support that stem cells help create a better atmosphere for recovery, 

but the avenues by which this influence occurs are widely theorized and debated.  Many believe 

stem cell influence to be carried out through a second monocyte-derived cell which has recently 

(1994) adopted the name Fibrocyte [60] and others focus on the stem cell ability to speed up 

angiogenesis [61] thereby filling in wound gaps and bringing greater avenues for white blood cells 

to migrate to the wound site.  In this chapter, with goals set specifically to glean more insight into 

stem cell influence on macrophage populations, we chose not to account for angiogenesis and 

instead isolated the pure interactions that stem cells play with other key immune regulators.  We 

propose an expanded model in Appendix A, a model that incorporates Fibrocytes as a variable in 

the PDE system, but we do not conduct analysis on this model at this time.  

We have concluded mathematically that the Stem Cell population can have a direct impact 

on both the early behavior of regulatory macrophages and the long term healing outcome. By 

choosing an approach where simulations are isolated to the reaction terms, our approach resembles 

an in-vitro experimental setting over in-vivo setting in the way that blood vessel growth is not 

accounted for. 

Specifically we determine the long term conditions that must be met by the stem cell 

population in order for the healthy state to remain stable, and also the early conditions on the stem 

cell population that are needed in order to positively affect the early population trend of regulatory 

macrophages, specifically to change the monotonicity from decreasing to increasing. This shows 

that through chemical reactions alone, stem cell presence can help create a better environment for 

healing.  We refer to [35] for an in-depth look at how an increased macrophage population of the 

regulatory profile early in the wound healing process can mean the difference between whether or 

not long term healing is achieved. 
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Chapter 4  

Conclusion  

In Chapter 1 the biological setting of sub-dermal cellular response to foreign bodies was 

presented.  We looked at mathematical techniques for modeling population dynamics and 

specifically investigated our Modified Dale model, which extends the wound healing, reaction-

diffusion model by Dale et al. [32]. This investigation highlighted the positive effects of 

incorporating Macrophage in wound healing models, specifically within the sub-dermal foreign 

body response context.  

In Chapter 2 we constructed a new model, a system of five PDEs, which modifies the 

wound-healing model by Schugart et al.[25].  The model is based principally on biochemical 

mechanisms (mass-action laws) and calibrated with experimental data to capture key components 

of wound healing: the kinetics of inflammatory cells, fibroblasts, chemoattractant, and ECM. 

Unlike Schugart’s model, we used debris cells as our inflammatory response initiator because 

fibrin or damaged cells are considered to be likely triggers of sub-dermal foreign body reaction. In 

addition, we incorporated three different phenotypes of the macrophages in our model.  This is 

done to focus is on the interactions between fibrotic processes and macrophage activations, a main 

goal in our research pursuits. Our modeling considerations also isolated the healing processes 

from angiogenic related variables.  Beyond its success at capturing the chemotactic and 

proliferation of inflammatory reaction of cells, the spatial distribution and permeability of the cells 

in the mathematical model simulations matched well with experimental data. Therefore, the 

modeling study can overcome individual variances present between experimental subjects and 

instead present the trend of inflammatory responses.   

We then investigated the stability of this system of partial differential equations assuming 

no-flux boundary conditions and find that the inflammatory state's stability mainly depends on the 

reaction dynamics. We provided a mathematical proof that when the inflammatory (interior) 
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equilibrium is stable in the corresponding ODEs, then it is also stable for the full PDE system in 

L2 (Ω).  We investigated the converse and found a counterexample showing that if the equilibrium 

is unstable by its reaction-only system, then spatial diffusion over chemotactic effects can stabilize 

the equilibrium if the initial perturbation is subjected to specific constraints.  

The need for distinction to be made between macrophage phenotypes when investigating 

fibrotic response is made evident by both our simulation study and our stability analysis because 

the dominance of certain phenotypes were shown to affect the transient and long-term outcomes of 

the healing process. In simulations, when inflammatory macrophages dominated the response, the 

chemoattractants and other cell populations proliferated much earlier and at a higher level.  In 

stability analysis we found that the biological conditions for the inflamed equilibrium to be 

characterized by stability required the percentage of regulatory macrophages dominate that of 

inflammatory macrophage.  

In Chapter 3 we extended our model to a system of 8 partial differential equations.  This 

model focused on the effects that stem cell presence has on healing processes.  Another key 

addition we made to the model is in separating the Chemoattractant term into two classifications, 

regulatory and pro-inflammatory. We also treated macrophage phenotypes as unique variables, 

they could no longer be assumed to share the same governing equation because stem cell presence 

has been show to affect the phenotypes in distinct ways. We tested the temporal dynamics of this 

model against the results found in our collaborating bioengineering lab, Thevenot et al [28].  

Experimentally, three different stem cell related treatment plans were tested and our simulation 

study was found to agree with the findings.  

Analytically we studied the stability of the healthy equilibria, which was identified as a 

family of equilibria where macrophage components return to zero.  We determined the long term 

conditions that must be met by the stem cell population in order for the healthy state to remain 

stable, and also the early conditions on the stem cell population that are needed in order to 
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positively affect the early population trend of regulatory macrophages, specifically to change the 

monotonicity from decreasing to increasing. This shows stem cell presence can help create a better 

environment for healing even when chemical reactions alone are accounted for. 

In the appendix we present an extended model from the one presented in Chapter 3 and 

include fibrocyte cell influence. Full analysis on this model has yet to be conducted. 

The use of mathematical models in bioengineering study has several advantages. First, 

our results support that this model can be used to investigate multiple variables and complex 

interactions in a systematic way, thereby supplementing experimental results.  Second, these 

models can be modified to simulate different types of inflammatory and fibrotic diseases; a study 

that would otherwise be very difficult to achieve through experiments methods.  Finally, by 

further developing mathematical models, we will, with greater confidence, be able to use them to 

identify the critical parameters and timing for the treatment/intervention needed in order to alter 

fibrotic tissue reactions toward favored outcomes.  

As experimental data and research of foreign body fibrotic reactions continue there are 

several areas were further investigation into the areas of this dissertation can be extended and 

improved. 

1. The impacts of stem cell involvement on post implant healing is quite vast, there are 

several consequences of stem cell presence that our model cannot yet capture. So far, we have 

only captured what the stem cells affect on inflammatory mediators. There is a need to further 

include the impact stem cells have on promoting angiogenesis, and on suppressing Fibrocytes 

[40], [61]. Continued experimental data from the bioengineering lab would help us further validate 

both parameter values and distinctions between macrophage phenotypes.  As it stands, Thevenot 

[28] investigated the effects of stem cell recruiters (introduced according to different treatment 

plan timings) on fibrotic response, but their macrophage cell counts were collected without 

distinction by phenotypes.  While we were still able to compare our model simulation accuracy by 
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combining our Macrophage phenotypes together, acquiring experimental data where macrophage 

cell counts were separated by phenotype would allow us to closer examine the accuracy of our 

model in capturing the correct separated macrophage densities. 

2. Restricting our stability analysis to the constraints of Neumann Boundary Conditions 

does not allow us to assess quantitative outcomes in the case when flux from blood vessels is 

accounted for.  We will enforce a mixed boundary condition to better capture the migratory 

processes of key cells and proteins from nearby blood vessels. We have begun work to include 

mixed boundary conditions on the model in Chapter 2.  The impact of the new boundary 

conditions has not been investigated in full, but in current stage it appears manageable in 

eigenvalue problem analysis.  We take the interior boundary,  to model the migration 

behavior from a nearby blood vessel.  We take the exterior boundary,  to model the migration 

from nearby tissue, refer to Figure 4-1. 

        

Figure 4-1 Implant in Relation to New Boundary Considerations 
New boundary conditions for the foreign body response model presented in chapter 2 can help 
us to identify the change in stability when flux of inflammatory regulators across the inner 
boundary are permitted. 

 

Γ in ,

Γex ,
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We let both interior and exterior boundary conditions for the debris term, , take 

Neumann boundary conditions under the assumption that this term originates purely from the 

implant process itself.  Migration of chemoattractants from the blood into the implant domain is 

taken to be promotional to the amount at which the Chemoattractant in the domain exceeds that of 

the normal concentration in the blood.  The interior boundary migration of the Macrophage 

population is taken to be proportional to the chemoattractant population and is set to shut off when 

either the macrophage threshold is reached or the chemoattractant concentration fails to be higher 

than the normal chemoattractant level in the blood.  Similarly we assume Fibroblast migration to 

have the same dependence as that of Macrophages; dependent on the chemoattractant level with 

programmed shut off at Fibroblast threshold.  We assume that ECM is produced purely by the 

cells at the implant site and therefore takes on Neumann boundary conditions on both boundaries. 

Additionally we take Neumann boundary conditions for all terms on the exterior boundary 

assuming the migration is originating purely from the site of the blood vessel on the inner 

boundary.   

Inner Boundary,  conditions: 

 

∇D ⋅n |Γin = 0
∇C ⋅n |Γin = −bc(C −Cav )

∇M ⋅n |Γin = bm (C −Cav )H (M 0 −M )

∇F ⋅n |Γin = bf (C −Cav )H (F0 − F)

∇E ⋅n |Γin = 0

    

 

where  is the normal vector and is the normal, maintained level of chemoattractant 

in the blood.  Exterior Boundary  is taken to have Neumann boundary conditions. 

D

Γ in ,

n Cav

Γex
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We analyze the Eigenvalue Problem with Mixed Boundary Conditions and investigate 

the degree to which stability conditions must be violated in order for instability to occur. Under a 

small adjustment to the chemotactic consideration for Macrophages, we have found it analytically 

possible to isolate conditions that can be used to produce an instability of the healed equilibrium 

state (as represented in the sign of the eigenvalue), and will continue our work expecting to find 

that flux terms can aid the stability of the healed equilibrium state.  

 

In summary, we have presented mathematical models in this dissertation and shown their 

valuable as theoretical tools for the simulating foreign body reaction processes.  With further 

refinement we aim to capture a more complete picture of stem cell influence and use the model to 

continue to gain insights into potential causes of fibrosis that lead to implant failure as well as to 

isolate key parameters and timing that can give direction to treatment plans to promote both short 

and long term implant success. 
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Appendix A 
 Fibrocyte Role in Foreign Body Response: An Additional Model 
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Fibrocyte cells and their roles in foreign body fibrotic reactions are still widely disputed. The 

recent focus on fibrosis has led to the discovery of the Fibrocyte.  A cell with bone marrow origin that is 

thought to be an intermediary cell that contributes to the Macrophage and Fibroblast concentrations. It is 

believed that interleukin influences Fibrocytes to differentiate into macrophages that fit a classical 

profile[60].  While TGFβ, on the other hand, causes fibrocytes differentiate into myofibroblasts in dermal 

wound healing experiments [62].  In the following system we propose a new model that includes this 

newly discovered Fibrocyte cell, F1 .  

 
∂D
∂t
= Dd∇

2D − f0M 2D,  (6.1) 

 
∂C1
∂t

= Dc∇
2C1 + f1D + f2M1 − f3M 2C1 − f4C1,   (6.2) 

 
∂C2

∂t
= Dc∇

2C2 + f5M 2 − f6M1C2 − f4C2,   (6.3) 

 
∂F1
∂t
= DF∇

2F1 −∇(χ0F1∇C2 )− a3F1 − f7C1F1 − f8C2F1 − a17SF1,   (6.4) 

 
∂F2
∂t
= Df∇

2F2 −∇(χ0F2∇C2 )+ a2F2 (1− F2 / F0 )− a3F2 + f9C2F1,   (6.5) 

 
∂M1

∂t
= Dm∇

2M1 −∇(χmHmM1∇C1)− a0M1 + a11C2M1Hm + f10C1F1 − a18SM1,   (6.6) 

 
∂M 2

∂t
= Dm∇

2M 2 −∇(χmHmM 2∇C2 )− a0M 2 + a11C2M 2Hm + a19SM 2,   (6.7) 

 
∂S
∂t
= Dm∇

2S −∇(χ sS∇C)+ a20C2S − a21S,   (6.8) 

 
∂E
∂t
=∇(DE∇E +

BDf E
F0

∇F2 −
Bχ f EF2
F0

H (F0 − F2 )∇C2 )+ a16F2 (1−
E
E0
).   (6.9) 

Where ∇2 = ∇⋅∇,  Hm = H (M 0 − (M1 +M 2 )),  and H is the Heaviside function, and all 

coefficients are positive. We incorporates those two experimentally observed features: the loss of 

Fibrocytes as they become fibroblasts, F2 , in proportion to TGFβ represented by C2 , and the loss of 

fibrocytes as they become Classical Macrophages, a subset of M1 , in proportion to interleukin, a Pro-
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Inflammatory Cytokine expressed asC1 . Furthermore stem cell presence, S , is suspected to suppress 

fibrocyte populations, so this too is included in the reaction terms of the modeling.  Since parameters and 

scaled effects of fibrocytes are still widely disputed it is difficult to know with certainty which parameters 

should be chosen when running numerical simulations. We do however provide a Matlab simulation, 

Figure 4-2, with preliminary results showing the temporal dynamics of Eqs.(6.1)-(6.9) for three specified 

initial stem cell concentrations.  The lack of a positive source term for the Fibrocyte population presents 

temporal dynamics of similar behavior to when Fibrocytes were excluded in Chapter 3 model.

 

Figure 4-2 Simulation of Fibrocyte Model Temporal Dynamics:  
(a) Mast cell, (b) Pro-Inflammatory Chemoattractants, (c) Regulatory Chemoattractants, (d) 
Fibrocyte, (e) Fibroblasts, (f) Inflammatory Macrophages, (g) Regulatory Macrophages (h) MSC (i) 
ECM population temporal dynamics with red representing the highest initial stem cell coating (5), 
green the second highest (.1) and blue no stem cell 
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As Fibrocyte cell populations continue to draw the attention of researchers in the fibrotic 

reaction field a greater understanding of parameter values and reactions can be incorporated.  Once this is 

achieved, modeling considerations will likely reveal a greater influence by fibrocytes on healing 

processes.   For now, the lack of impact on the temporal dynamics of our model justified our exclusion of 

the fibrocyte term at the current time, allowing us to focus in greater detail on the effects of Mesenchymal 

Stem cells on macrophage phenotype dynamics. 
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