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Abstract 

THE GENETIC ARCHITECTURE OF VARIATION IN HUMANS AND DOGS 

 

Eldon Goodwin Prince, Ph.D. 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: John W. Fondon III, Ph.D. 

Genetic architecture is broadly defined as the structure of how genes come 

together to produce phenotypes. Primary aspects of genetic architecture include how 

many and which genes contribute to phenotypic variation. The genetic architecture of 

human height has been studied for over a century; indeed it is the classic quantitative 

trait with hundreds of contributing variants. As genome-wide studies of genetic 

architecture are extended beyond just humans, the genetic basis of polygenic traits like 

height can be compared between species. Such interspecies comparisons reveal how 

many of the same loci contribute to variation within each species. The extent to which the 

same loci contribute to intraspecific variation depends on species relatedness and 

reflects underlying constraints on genetic variability and variation.  

In this study genome-wide associations are compared between humans and 

dogs to estimate how many of the same loci contribute to intraspecific height variation. 

Due to the highly polygenic nature of height variation, one might predict that relatively few 

loci will be shared between species as distantly related as the human and dog. Contrary 

to this prediction, I find that at least 25 orthologous regions contribute to intraspecific 

height variation in humans and dogs, indicating perhaps less obvious constraints on 

genetic variability and variation.  
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Height is decomposed in dogs using genome-wide associations to identify loci 

that are associated with limb, torso, and neck variation. To extend this approach, several 

height QTLs are correlated with bone measurements in an independent panel of mixed-

breed dogs. The prevailing interpretation that morphological traits are genetically simple 

in dogs relative to humans is then tested. Central to the interpretation of genetic simplicity 

in dogs is the story of IGF1, a gene thought to explain the majority of size variation. The 

QTL effect size of IGF1 is tested in the aforementioned panel of mixed-breed dogs and I 

find that it explains much less variation than previously reported. This experiment and 

others call into question the Mendelian effect size previously attributed to IGF1 and the 

associated interpretation of genetic simplicity for dog morphology.  

One of the evolutionary forces that can impact the genetic architecture of traits is 

meiotic recombination. Preceding the exchange of genetic material between homologous 

chromosome pairs, double-strand breaks occur via proteins like Spo11 in yeast. Since all 

crossovers are the result of double-strand breaks, and these breaks are non-randomly 

distributed throughout the genome, many researchers have sought to understand the 

process that regulates where double-strand breaks occur. In addition, although not all 

double-strand breaks result in genetic crossover, the DNA repair process to rejoin them 

can be both biased and mutagenic. The protein PRDM9 is associated with almost all 

meiotic double-strand breaks in mice and is thought to play a similarly central role in 

humans, although the protein is absent in canids. Curiously, the loss of PRDM9 in the 

canid lineage also coincides with a genome-wide destabilization of repetitive GC content. 

I conclude this work with a study of the consequences of losing the meiotic 

recombination-associated protein PRDM9 and the mutagenic role this loss has likely had 

in shaping the canid lineage. 
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Chapter 1  

The Extent of Height QTL Sharing in Humans and Dogs 

Introduction 

Genetic architecture is commonly defined as the structure of how genes come 

together to produce phenotypes. This metaphor can be instructive in some contexts, 

although in others it is admittedly inadequate and confounding. Thomas Hansen offers a 

somewhat more comprehensive definition: "Genetic architecture refers to the pattern of 

genetic effects that build and control a given phenotypic character and its variational 

properties" (Hansen, 2006). This definition can be broken into two parts: 1) the genes 

that build and control a phenotypic character and 2) the genetic effects that influence its 

variational properties. While it may be instructive and of interest to understand all of the 

genes that build and control phenotypes, geneticists are primarily concerned with genetic 

and phenotypic variation. For the scope and purpose of this dissertation, Hansen's 

definition of genetic architecture is modified and limited as follows: the pattern of genetic 

effects that influence the variational properties of a phenotype. 

Aspects of genetic architecture can be studied at multiple levels, including within 

and among species and populations. Comparisons of genetic architecture within species 

and among populations may uncover the recent action of evolutionary forces like natural 

selection (Pickrell et al., 2009), whereas comparisons of genetic architecture among 

more distant taxa generally focus on convergent or parallel evolutionary patterns that 

span tens of millions of years (Conte et al., 2012). 

Trudy Mackay provides the following checklist that must be completed in order to 

understand the genetic architecture of quantitative traits (Mackay, 2001): 

(a) the numbers and identities of all genes in the developmental, 
physiological and/or biochemical pathway leading to the trait phenotype 

(b) the mutation rates at these loci 
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(c) the numbers and identities of the subset of loci that are responsible 
for variation in the trait within populations, between populations, and 
between species 

(d) the homozygous and heterozygous effects of new mutations and 
segregating alleles on the trait;  

(e) all two-way and higher-order epistatic interaction effects 

( f ) the pleiotropic effects on other quantitative traits, most importantly 
reproductive fitness 

(g) the extent to which additive, dominance, epistatic, and pleiotropic 
effects vary between the sexes, and in a range of ecologically relevant 
environments 

(h) the molecular polymorphism(s) that functionally define QTL alleles 

(i) the molecular mechanism causing the differences in trait phenotype  

( j) QTL allele frequencies 

She then quickly adds that this daunting list has yet to be completed for any trait. 

Under the revised definition of genetic architecture I provided earlier, requirement (a) is 

unnecessary because only the loci with variation within and among populations and 

species are immediately relevant. An argument can also be made that (i) the molecular 

mechanism causing the differences in trait phenotype is not necessary to describe the 

genetic architecture of phenotypes. A couple of other aspects of genetic architecture that 

could be added to this list include the molecular structure of chromosomes and genetic 

elements, patterns of linkage and linkage disequilibrium, historical and current population 

size and structure, and environmental interactions. While genetic architecture includes 

many components, depending on one's background and resources, some are more 

interesting and tractable than others. In this dissertation aspects of genetic architecture 

are studied in humans and dogs that range from shared QTLs in Chapter 1 to QTL effect 

size distributions in Chapter 2, and finally mutation and recombination patterns in Chapter 

3. 
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Components of Genetic Architecture 

The Number of Loci That Contribute to Variation 

Phenotypic distributions broadly reflect the number of loci that underlie character 

variation. For example, Gregor Mendel could classify phenotypes in pea plants 

categorically because he was tracking a few large effect size loci (Mendel, 1865). Human 

height, a character with a normal distribution and infinite gradations, is at the other end of 

the spectrum of polygenicity. Based on these observations, if multiple species exhibit 

similar phenotypic variation for a given character, one might conclude that the number of 

underlying variants is reasonably conserved. This prediction of a similar number of 

influential variants implicitly assumes that other components of genetic architecture are 

also largely the same, an assumption that does not always hold. 

Repetitive DNA sequences represent one example of how different mutational 

spectra can alter the number of loci that influence a character shared among species. 

Repetitive DNA arranged in tandem is highly mutagenic and can confer incremental 

phenotypic variation if sequences are in either cis-regulatory or protein coding sequences 

(Gemayel et al., 2010). For example, the age of onset for Huntington's disease, a 

debilitating human neurodegenerative disorder, is correlated with the length of a 

trinucleotide repeat in the HTT gene (Andrew et al., 1993). Incremental mutations at a 

few tandem repeat loci can lead to incremental variation that mimics the continuous 

variation often assumed to be the consequence of many influential loci (Kashi et al., 

1997). Tandem repeats can cause differences in the number of influential loci for a 

shared character if there are differences among species in the genetic regulatory 

network, epistatic network, the collection of causative tandem repeats, or the mutation 

rate of repeats. 
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Divergent population histories among species can also cause differences in the 

number of variants that affect a given shared character. For example, evolutionary forces 

such as selection or genetic drift could fix alleles at multiple loci, thus changing the total 

number of variable loci within a given species. Large deviations in the number of variants 

for a given character will likely have a substantial impact on phenotypic variation, perhaps 

calling into question whether the character can even be classified as shared among 

species. Thus trait definition and decomposition are vital to comparisons of genetic 

architecture, particularly as taxonomic distances increase. While the number of loci that 

contribute to phenotypic variation can vary for the same character shared among 

species, large deviations are unlikely because the character would no longer be 

recognized as the same or shared. 

When the Same Loci Contribute to Variation 

Prior to discussing how often the same loci influence character variation within 

multiple species, it is helpful to more precisely define the variants that impact 

phenotypes. Quantitative traits and the loci that influence their variation can be defined as 

follows: 

A quantitative trait is one that has measurable phenotypic variation owing 
to genetic and/or environmental influences. This variation can consist of 
discrete values...or can be continuous, such as measurements of height, 
weight and blood pressure. A QTL [quantitative trait locus] is a genetic 
locus, the alleles of which affect this variation (Complex Trait 
Consortium, 2003). 

This highly inclusive definition is prone to debate as some might argue that 

discrete characters should not be classified as quantitative, and others may confine QTLs 

to loci derived from linkage studies. Despite these objections, the definition of quantitative 

traits and QTLs given by the Complex Trait Consortium will be used in this dissertation. If 

orthologous loci influence the variation of a commonly held character in multiple species, 

they are described as shared QTLs. Characters whose variation can be described by 
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only a few large effect loci are generally considered to have a simpler genetic 

architecture relative to characters influenced by hundreds of variants. These simple 

characters are often suitable for candidate gene studies where conserved genetic 

architecture and gene function are inherently assumed.  

A recent study provides a rough estimate of the expected rate of QTL sharing for 

simple characters by estimating the rate of QTL sharing from candidate gene studies of 

parallelism and convergence (Conte et al., 2012). The authors find that parallel or 

convergent phenotypes are influenced by the same QTLs 0.55 ± 0.08 s.e. of the time. As 

might be expected, as taxonomic distances increase, the rate of QTL sharing also 

decreases. The rate of QTL sharing is 0.8 for the closest taxa considered, and between 

0.1 and 0.4 for the most distantly related taxa in the study (Conte et al., 2012). 

 The renowned geneticist and mathematician R.A. Fisher demonstrated that 

continuously distributed characters could be produced by the combined actions of many 

Mendelian loci (Fisher, 1918). While 55% may serve as a rough estimate for the rate of 

QTL sharing for characters described by a small number of large effect size variants, it is 

unknown whether this estimate applies to characters influenced by hundreds of varying 

loci. Estimating the extent of QTL sharing between species for a highly polygenic 

character is the primary objective of Chapter 1.  

To make this estimate, the ideal character to compare would be continuously 

distributed and shared between distantly related species, thus making the character likely 

to be influenced by many QTLs that independently vary within each species. It is easy to 

identify distantly related species; the challenge is in identifying distantly related taxa that 

share a character with comparable phenotypic variation and readily available genetic 

data. Two species that fit this description are humans and dogs that are separated by 

roughly 95 million years of evolution (Rosindell and Harmon, 2012). The character height 
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varies extensively in both species and has conveniently been studied in fairly comparable 

genome-wide associations. 

Underlying Causative Mutations 

Before proceeding with the comparison of the genetic basis of human and dog 

height variation, it is useful to delineate the difference between QTLs and the causative 

mutations, or quantitative trait nucleotides (QTNs) that underlie trait variation. Linkage 

and association studies are well-suited for identifying regions of the genome that 

influence trait variation, but additional work is typically required to narrow down the 

precise molecular variant (Schumacher et al., 2005; Yamamoto et al., 1998). Shared 

QTLs describe regions of the genome that contribute to intraspecific variation among 

species; how often do identical or shared mutations underlie instances of QTL sharing?  

It is commonly held that mutations are random with respect to phenotypes, 

although mutation is not a random molecular process (Fitch, 1967; Li et al., 1984; 

Martincorena et al., 2012). While selection and drift operate on variation, mutational 

patterns, or variability, describes what varies in the first place (Wagner and Altenberg, 

1996). Evolutionary forces and network properties like selection, drift, mutation, 

recombination, epistasis, and pleiotropy can individually and in concert contribute to 

shared, yet independent causal mutations among individuals, populations, and species. 

Shared causative mutations are expected to be more common when evolutionary and 

network constraints are stronger. 

For example, in autosomal dominant achondroplasia, the most common form of 

short-limbed dwarfism in humans (Figure 1-1), the causative mutation (G380R) not only 

recurs at the same nucleotide position of FGFR3, but mutates from G-to-A in almost all 

individuals (Bellus et al., 1995). Constraint or purifying selection can explain why only this 
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particular nucleotide position is mutated, although mutational bias best explains why the 

transition from G-to-A is the most common. 

 

Figure 1-1 Human achondroplasia (Credit: Antoin Sevruguin) 

Interestingly, like some other congenital conditions, achondroplasia has a 

paternal age effect where older men are roughly 10 times more likely to have a child with 

the condition (Risch et al., 1987). A recent study suggests that this paternal age effect is 

due to selection where stem cells with the G380R mutation outcompete normal 

spermatogonial cells (Shinde et al., 2013). The interplay between mutation and selection 

is nuanced and will likely always merit further study. As is the case with G380R and 

achondroplasia, biased or constrained evolutionary forces can lead to shared causal 

mutations with independent origins. 

If selection or mutation only weakly influence the genetic basis of trait variation, 

shared QTNs are less likely, although shared QTLs may still exist. For example, non-

synonymous mutations of MC1R are associated with dark-colored pigment (melanism) 

within populations of many species, although the precise causal mutation often varies 
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(Guernsey, et al., 2013; Majerus and Mundy, 2003). In addition to protein coding 

mutations, cis-regulatory changes that modify how genes are expressed are thought to 

have major evolutionary relevance (Wray, 2007). Cis-regulatory mutations that underlie 

QTL sharing are less likely to be constrained than protein coding mutations because in 

theory many mutations can be cis-regulatory, and intergenic DNA sequence conservation 

is markedly lower than coding sequences (Kent et al., 2002). This means that although 

the same QTL may be responsible for trait variation, derived alleles from cis-regulatory 

changes could differ in both direction and magnitude.  

Comparisons of the QTNs that underlie QTLs shared among species would 

further clarify the extent of selective and mutational constraints on the genetic basis of 

traits, but genetic marker-based studies are limited to identifying regions of the genome 

associated with trait variation, not the causal mutations. Despite this limitation, QTL 

studies do allow the extent of QTL sharing between species to be estimated. 

 

Setting Up the Comparison Between Humans and Dogs 

Human Height Variation 

Francis Galton and Karl Pearson were the first to formally characterize human 

height variation. The casual observer of height can see that it roughly follows a normal 

distribution (Schilling et al., 2002), a pattern illustrated by a plot of Pearson's data on 

height (Figure 1-2). 
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Figure 1-2 Histogram of human height for 1078 males illustrates the normal distribution. 

Data from (Pearson and Lee, 1903). 

Galton, the mentor of Karl Pearson, noted that while height tends to regress 

towards mediocrity or the mean, it is highly predictive from one generation to the next 

(Figure 1-3) (Galton, 1886). 
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Figure 1-3 Predictability of human height and regression towards the mean. Height for 

930 individuals and their parents from Galton's published data (Galton, 1886). Dotted line 

represents predicted height of offspring based on mean parent height (female height is 

multiplied by 1.08). Solid line represents regression line for actual offspring height. 

Human height is normally distributed within populations and is a reliable predictor 

of future offspring height, but how much of its variation is due to genetic factors? Broad-

sense heritability (H
2
) is the proportion of phenotypic variance that can be explained by 

genetic factors. The most common estimate of heritability (h
2
) is the proportion of 

phenotypic variance explained by additive genetic variance, defined as the average effect 

of substituting one allele for another. By definition, narrow-sense heritability (h
2
) excludes 

the effects of dominance (allelic interactions at the same locus) and epistasis (allelic 

interactions at different loci) (Charlesworth and Charlesworth, 2010). The most current 

estimate of narrow-sense heritability for human height is around 80% (Macgregor et al., 

2006; Visscher, 2008). Heritability of 80% means that variation in genotypes among 

humans is primarily responsible for observed height differences (Visscher et al., 2008). 

How much height variation exists between human populations? While countries 

are not isolated populations, comparisons of average height between countries can still 
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be informative. A plot of such comparisons shows that average height is lowest in 

Southeast Asia and parts of Southern America and highest in Europe (Figure 1-4) 

(Appendix A) (Abdulrazzaq et al., 2008; Australian Bureau of Statistics, 1998; Bogin, 

1999a; Cavelaars et al., 2000; Chile, 2010; Connor Gorber et al., 2008; Corbett et al., 

2009; Dettwyler, 1992; Deurenberg et al., 2003; Dusko Bjelica, 2012; El-Zanaty and Way, 

2009; Food and Nutrition Research Institute, 2003; France, 2006; Frankenberg and 

Jones, 2003; Garcia and Quintana-Domeque, 2007; Haghdoost et al., 2008; 

Helsedirektoratet, 2009; Herpin, 2003; Van Hung and Sunyoung, 2008; Instituto 

Brasileiro de Geografi a e Estatística, 2010; Istat, 2011; Japan, 2011; Jordan et al., 2012; 

Jureša et al., 2012; Kamadjeu et al., 2006; Kułaga et al., 2011; Lim et al., 2000; Mamidi 

et al., 2011; Meisel and Vega, 2004; Mexican Business Web, 2012; Moosa, 2002; 

Msamati and Igbigbi, 2000; National Center for Health Statistics, 2008; National Statistics 

England, 2011; NSO Malta, 2003; Okosun et al., 1998; Ozer, 2008; Peltonen et al., 2008; 

del Pino et al., 2005; Ranasinghe et al., 2011; Schönbeck et al., 2013; Schultz, 2005; 

Shields et al., 2011; So et al., 2008; Starc and Strel, 2011; Statistics Netherlands et al., 

2012; Statistisches Bundesamt, 2009; Stevo Popovic, 2013; Subramanian et al., 2011; 

Tawfeek, 2002; Tutkuviene, 2005; Velarde, 2006; Venkaiah et al., 2002; Vignerová et al., 

2006; Welsh Assembly Government, 2010; WHO, 2007; Yang et al., 2005). Of the 

populations studied in the United States, height is lowest for Mexican Americans and 

highest for White Americans.  
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Figure 1-4 Adult male and female average height by country. Multiple data points for the 

same country represent different ethnic groups or age ranges. 
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Gustafsson and Lindenfors 2004 provide a more detailed characterization of 

human height variation by population and region (Figure 1-5) (Gustafsson and 

Lindenfors, 2004). They find that the tallest populations are the Netherlands and Fiji-

Melanesia while the shortest are the Mbuti and Ituri pygmies. Inspection of height by 

country and by population reveals that males tend to be taller than females and that the 

magnitude of the difference is fairly consistent across the range of height variation 

(Figure 1-4, Figure 1-5). These observations are not consistent with Rensch's rule that 

states when the male is the larger sex, size dimorphism increases with body size 

(Rensch, 1950). While Rensch's rule applies across species within the primate lineage 

(Fairbairn, 1997), it does not appear to apply across human countries or populations. 
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Figure 1-5 Adult male and female average height by population, colored by region. Figure 

based on data from Appendix I in (Gustafsson and Lindenfors, 2004). 
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Dog Height Variation 

One of the most common breed-defining traits in dogs is size. Dogs exhibit huge 

extremes in height variation from the tiny Chihuahua to the giant Great Dane. Since the 

heritability for the same trait tends to be fairly similar among populations and even 

between species, the heritability of dog height is likely similar to humans, around 80% 

(Visscher et al., 2008). Height variation between breeds is obvious to any observer, but 

breeders and researchers alike also recognize substantial variation within breeds. A plot 

of dog height by breed reveals how some breeds have an expansive range of height 

while others tend to be more tightly defined (Figure 1-6) (Alderton, 2008). The word 

defined is used here because breed standards define preferred levels of variation; they 

do not describe existing variation. Thus, ranges given in a plot such as Figure 1-6 are 

best interpreted as definitions, not descriptions of breed variation. The distribution of 

height variation within breeds is likely much broader than given by defined ranges. 

Another important observation from Figure 1-6 is that relative to ancestral gray wolves, 

the majority of dog breeds are shorter. 
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Figure 1-6 Dog height at the withers by breed. Dotted lines represent the likely height 

range of the ancestral gray wolf. Height range data published in (Alderton, 2008). 
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Height is measured to the top of the head in bipedal humans. In quadruped 

animals like the dog, height is traditionally measured to the top of the shoulder, or withers 

(Figure 1-7). Dog height does not include the spinal column or head; it is essentially a 

measure of limb length. While height at the withers in dogs is anatomically similar to 

human arm length, not leg length, it is the preferred measure because relative to hind 

limbs, height at the withers is less influenced by posture, a potentially confounding factor.  

 

Figure 1-7 Human and dog height measurements. 

Like humans, males tend to be larger than females in dogs, and the difference 

appears fairly consistent across the range of size. This suggests that Rensch's rule also 

does not apply between dog breeds (Sutter et al., 2008). 

History of Height in Humans 

As might be expected, height in humans is closely intertwined with the story of 

our evolution. When the ancestors of modern humans transitioned to a bipedal lifestyle, 
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body proportions also evolved (Ruff, 2002; Schmitt, 2003; Thorpe et al., 2007). Humans 

evolved shorter forelimbs (arms) and longer hindlimbs (legs) relative to ancient human 

fossils. By roughly 1.5 million years ago body proportions had evolved to within the range 

of modern humans (Ruff and Walker, 1993). 

Recent height increases in countries around the world have led to the popular 

idea that humans are taller than we used to be (Blue, 2008; Cohen, 2011). While this is 

likely true for many populations around the world relative to the past century or so, what 

about further back in time? Estimates of ancient human height provide a baseline and 

context for more recent changes in body size.  

Estimates of ancient human height from the fossil record must be viewed with 

caution for at least four reasons: 1) Incomplete skeletons require making assumptions 

about body proportions because height is extrapolated. For example, the height of 

individuals from East Africa are thought to have been initially overestimated because the 

extrapolation was based on European body proportions (Allbrook, 1961; Ruff, 2002). 2) 

Skeletal remains often only represent a single individual, making it impossible to know 

the population's height distribution. This means there is no way to tell if an individual was 

small, average, or tall relative to his peers. 3) Skeletal remains may not belong to the 

direct lineage that gave rise to modern humans. In other words, the height of a distant 

cousin may not be representative of our lineage. 4) Skeletal remains may not be of an 

adult, requiring adult height to be estimated from assumed growth trajectories that are 

inherently problematic (Bogin, 1999b). 

With these challenges in mind, the first human ancestor to consider is Homo 

erectus that lived between 1.89 million and 143,000 years ago (Antón, 2003; Dubois, 

1894; Smithsonian Institution, 2010a). The most well-known and complete Homo erectus 

fossil is Turkana Boy (KNM-WT 15000). There has been substantial discussion from 
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researchers about the predicted adult height of Turkana Boy, with the latest trend being 

somewhere around 5' 4", although previous estimates are as high as 6' 1" (Gibbons, 

2010; Hawks, 2010; Ohman et al., 2002). Some argue that Turkana Boy was 

extraordinarily tall relative to his peers, while others claim he would not have likely grown 

to be 6' 1" as an adult (Hawks, 2010). The Smithsonian takes a safe approach and 

publishes the whole range of reported heights for Homo erectus as 4' 9" to 6' 1" 

(Smithsonian Institution, 2010a). Perhaps surprisingly, the range of Homo erectus height 

is somewhat similar to extant human populations. Depending on which estimate one 

trusts, Homo erectus is either in the bottom quarter or top quarter of height based on 

current estimates of extant humans (Figure 1-8). 
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Figure 1-8 Ancient height (shaded blocks) relative to modern adult male and female 

average height. 
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Homo heidelbergensis lived roughly 700,000 to 200,000 years ago and is 

generally thought to be the predecessor of Neanderthals and modern humans (Mounier 

et al., 2009; Rightmire, 1998). Males had an average height of 5' 9" and females were 5' 

2" (Smithsonian Institution, 2010b). The sexual size dimorphism of 5' 9" compared to 5' 2" 

is about 2 inches more than what is generally observed in extant humans (Figure 1-8). 

While it is possible that sexual size dimorphism was greater in Homo heidelbergensis, 

uncertainty and error in height estimates are probably the cause of this inconsistency 

relative to ancient and modern humans. Depending on if the male or female estimate of 

height is trusted, Homo heidelbergensis is either near the median or lower half of height 

relative to extant humans, respectively (Figure 1-8). 

The last relevant human ancestor to consider is Homo neanderthalensis that 

lived between 200,000 and 28,000 years ago (Delson and Harvati, 2006; Smithsonian 

Institution, 2010c). Unlike the more slender Homo erectus that lived in a tropical climate, 

stocky Neanderthals lived in a colder European climate (Hawks, 2005; Katzmarzyk and 

Leonard, 1998; Ruff et al., 2005). While there has been an ongoing debate concerning 

how much, if any, admixture occurred between Neanderthals and a subset of the modern 

human lineage (Eriksson and Manica, 2012; Holliday, 1997; Wang et al., 2013), the most 

recent studies indicate that humans of European descent likely inherit ~1-3% of their 

genomes from Neanderthals (Callaway, 2014; Sankararaman et al., 2014; Vernot and 

Akey, 2014). Males averaged around 5' 5" and females around 5' 1", putting 

Neanderthals within the range of extant human variation, albeit in the bottom quarter 

(Figure 1-8) (Smithsonian Institution, 2010c). 

Despite an inherently sparse and frequently debated fossil record, relative to the 

countries of the world, ancient humans would likely fit somewhere in the bottom half of 
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height variation. This means that the generalization that humans are taller now than they 

used to be is not altogether true. Most extant populations are likely taller, but a 

substantial proportion of humans are about the same height, or shorter than ancient 

humans (Figure 1-8). Based on this observation it may be tempting to conclude that 

height hasn't evolved much in the last 1.5 million years, but a brief review of more recent 

human history reveals a complex story in which environmental and selective forces have 

likely altered height. 

This synopsis is admittedly generalized and European-centric, although it is 

illustrative of some of the recent evolution of human height. Human height decreased in 

the Neolithic era when humans transitioned from a hunter and gatherer lifestyle to an 

agriculturally based society about 12,000 years ago (Özer et al., 2011). Immediately 

preceding and during the Bronze and Iron ages, human height increased (3,500 - 2,500 

years ago), only to sharply decrease with the establishment of the Roman Empire 

(Jaeger et al., 1998; Ozer, 2008). The collapse of the Roman Empire and a warmer 

climate correlate with rising height until the early Middle Ages (1400 A.D.) (Ozer, 2008; 

Steckel, 2004). Height then decreased for a couple hundred years until sometime in the 

1700s when it started to increase again (Ozer, 2008; Steckel, 2004). Agricultural, 

economic, and environmental trends have influenced height in populations around the 

world. Selection may have also played a major role as has been suggested with African 

pygmy populations and in Northern and Southern Europeans (Shea and Bailey, 1996; 

Turchin et al., 2012).  

The idea that natural selection is still acting in human populations is at odds with 

the theory that with the rise of modern humans and the accompanying development of 

culture and technology, natural selection ceased to operate (Furness, 2013). While 

culture itself can certainly be under selection, it does not preclude biological adaptation 
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(Stock, 2008). In fact, a recent book The 10,000 Year Explosion argues that civilization 

actually served to accelerate evolution (Cochran and Harpending, 2009). Despite modern 

medicine and its ability to allow more people to live, humans are still evolving, and natural 

selection is still in operation. It is true that the relative intensities of selective forces have 

changed in many human populations, but as long as heritable variation is impacting 

reproduction or survival, natural selection will occur. This does not mean that humans will 

improve and become smarter or stronger over time; natural selection is under no 

obligation to improve the human race. 

In summary, human height has evolved and continues to evolve, although the 

extent of variation is not drastically beyond the range of ancient humans (Figure 1-8). 

While selective forces like sexual antagonism and climatic factors have impacted human 

height variation, human populations have rarely, if ever, experienced the intense 

directional selection for height that recently occurred in dogs (Connallon and Clark, 2014; 

Frey et al., 2010; Katzmarzyk and Leonard, 1998). 

History of Height in Dogs 

A history of height in dogs must begin with their wild ancestor: the gray wolf. 

When, where, and how many times domestication may have occurred is hotly debated, 

and is an area of intensive research. Archaeological evidence suggests that dogs may 

have been associated with humans as early as 30,000 years ago (Germonpré et al., 

2009). These ancient bones found in modern-day Belgium are assumed to be archaic 

dogs because they are different than gray wolves, but this does not exclude the 

possibility that they belong to a now-extinct species of wolf. It is however clear that dogs 

were domesticated by at least 12,000 years ago, concurrent with the human shift to an 

agrarian lifestyle (Morey, 1994). Whether it was 30,000 or 12,000 years ago, other than 

humans, dogs represent the first domesticated mammal. 
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With the rise of molecular biology, mitochondrial DNA sequences were leveraged 

to investigate the timing of domestication. The first mitochondrial-based study suggested 

that domestication could have occurred multiple times and as early as 135,000 years ago 

(Vilà et al., 1997). This position was later disputed, once again using mitochondrial DNA, 

when it was suggested that dogs originated only one time, and from East Asia either 

40,000 or 15,000 years ago (Savolainen et al., 2002). The discrepancy between 135,000, 

40,000, and 15,000 years underlines the challenge of using mitochondrial DNA to date 

evolutionary events. The completion of a high-quality draft dog genome sequence offered 

a nuclear DNA-based estimate of domestication around 18,000 to 27,000 years ago, 

more consistent with archaeological evidence (Lindblad-Toh et al., 2005). 

A microsatellite marker based approach published in 2004 concluded that most 

dogs had a European, not an East Asian origin (Parker et al., 2004). In 2010 a SNP 

marker based approach suggested that rather than an East Asian or European origin, 

most dog breeds came from the Middle East (Vonholdt et al., 2010). This study also 

reinforced the idea that there are several ancient breeds with different origins than dog 

breeds created in the 19th century. A few years later the same research group 

sequenced ancient mitochondrial DNA from Europe and switched to the opinion that most 

breeds have a European origin from around 18,000 to 32,000 years ago (Thalmann et al., 

2013). This study has been particularly controversial because the sampling biases, which 

plague all domestication origin studies, were particularly extreme (all of the ancient dogs 

sampled were from Europe). In addition, mitochondrial DNA is inherently problematic (for 

example, mtDNA provides no evidence of admixture between humans and Neanderthals; 

nuclear DNA indicates otherwise) (Green et al., 2010; Pennisi, 2013; Serre et al., 2004). 

Perhaps the most comprehensive and least biased study of dog origins was a 

2012 publication by Kerstin Lindblad-Toh and colleagues which incorporated genetics, 
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archeology, and biogeography (Larson et al., 2012). Citing uncertainty regarding the 

identity of ancient skeletal material, the authors conclude that domestication was in 

progress at least 15,000 years ago. They go on to argue that the genetic variation 

present in contemporary representatives of "ancient" breeds (e.g. Akita, Basenji, Saluki, 

Shar-Pei) merely reflect a paucity of recent admixture with other breeds. This claim is 

supported by the finding that none of the archeological evidence for dogs correlate with 

where ancient breeds supposedly originated (Larson et al., 2012). 

Despite the debate on when and where dog domestication occurred, there is little 

doubt that it preceded the shift to agriculture, meaning that dogs and humans were first 

companions, and possibly competitors, as hunters, gatherers, and/or scavengers. In 

addition, dogs were likely domesticated multiple times, suggesting that the gray wolf was 

for some reason prone to being domesticated. As a bit of an aside, it is generally 

assumed that humans domesticated dogs, but a recent perspective argues the opposite: 

dogs domesticated humans (Hare and Woods, 2013a, 2013b). Regardless of who 

domesticated whom, and where it occurred, humans and dogs have been associated for 

at least 15,000 years, sharing a similar environment and diet.  

Consistent with this idea, dogs evolved an increased ability to digest starch, an 

adaptation surely useful as humans shifted to agricultural societies (Axelsson et al., 

2013). This study is particularly relevant to comparisons of shared QTLs in humans and 

dogs because in both species, adaptation occurred through an increase in the number of 

copies of amylase genes (Axelsson et al., 2013; Perry et al., 2007). In fact, human 

populations and dog breeds that have historically had more starch in their diets also 

harbor more copies of amylase genes. This example illustrates how traits and their 

associated QTLs can evolve in parallel in distantly related taxa.  
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 Throughout much of their domesticated history, most dogs were probably not all 

that different in form from gray wolves. Much of the dog height variation observed among 

breeds has evolved within the last few hundred years as a result of selective breeding 

imposed by humans. Based on the phenotypic distribution of the gray wolf, it is clear that 

most of the size selection in dogs has been to reduce it (Figure 1-6). 

Genetic Architecture of Human Height 

While Galton and Pearson were the first to formally study the inheritance of 

human height variation in a quantitative framework, it was R.A. Fisher who described how 

a continuously distributed trait like height could fit into a Mendelian genetic framework. 

Fisher showed how, rather than being fundamentally distinct from Mendelian inheritance, 

quantitative traits were merely governed by the combined action of many contributing 

Mendelian loci (Fisher, 1918). Technological advances now allow for the identification of 

height variants at an unprecedented rate. 

In the most recent National Human Genome Research Institute (NHGRI) 

database of genome-wide associations, 421 genes are associated with differences in 

human height (Hindorff et al., 2014). Loci replicated in at least six studies include the 

reported genes ZBTB38, HMGA2, LCORL, HMGA1, ADAMTSL3, and EFEMP1. One of 

the challenges that researchers have faced in the study of human height is understanding 

why so little of the heritable portion of height variation can be explained by genetic 

variants. In other words, if height is roughly 80% heritable, why isn’t more of its variation 

explained from the several hundred loci identified in genome-wide studies? 

This is a question that has garnered much discussion because the allure of 

genome-wide association studies was originally the promise of identifying variants behind 

common, yet complex human diseases (Hirschhorn and Daly, 2005; McCarthy et al., 

2008; Syvänen, 2001). After a few years of studying some of the most relevant diseases 
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and phenotypes with genome-wide associations, it started to become apparent that 

expectations were not being met (Donnelly, 2008; Maher, 2008). Variants underlying 

complex traits were being identified, but they had little predictive power in explaining trait 

variation. Despite the lack of predictive power as some might have hoped, genome-wide 

associations have been successful in identifying many QTLs that underlie complex traits 

like height, and more variants will likely be forthcoming as microarray platforms are 

replaced by high-throughput sequencing. 

Experiments in mice that knockout one gene at a time estimate that more than 

6,000 genes can impact body size in some way; this is roughly a quarter of the 

mammalian genome (Reed et al., 2008)! Interestingly, knockouts that confer smaller size 

are ten times as common as those that increase body size, thus biasing the phenotypic 

direction of size variants (Kemper et al., 2012; Reed et al., 2008). Based on extensive 

conservation of gene function between humans and mice, the estimate of >6,000 

possible height genes is likely comparable to humans. Although just because over 6,000 

genes can in theory impact body size, this does not mean that all of them are varying in 

human populations, and thus relevant to genetic architecture. 

Despite the highly polygenic nature and lack of explained heritability for 

characters like diabetes, the company 23andMe at one time offered health reports to 

customers from marker based genetic tests. In November 2013 the Food and Drug 

Administration sent a letter to 23andMe demanding that they cease selling their genetic 

test kits because there wasn't sufficient support for their health predictions. In regards to 

the FDA's response to 23andMe, Robert Klitzman of Columbia University wrote, "Over 

the past decade, we have heard about the 'fat gene,' the 'diabetes gene,' the 'alcoholism 

gene,' the 'intelligence gene,' even the 'God gene.' In the end, none of these so-called 

discoveries proved correct" (Klitzman, 2013). Indeed, complex traits live up to their name 
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and will require much subsequent study before genotypes can reliably predict health 

outcomes or phenotypes. 

Genetic Architecture of Dog Height 

Breed formation in the 19th century marked the beginning of intense directional 

selection for reduced body size in nearly all dogs (Figure 1-6). The history of dog 

breeding includes selection for large effect variants as well as selection for variants that 

offset negative pleiotropic consequences from large effect variants. This pattern of 

selection should result in a J-shaped or exponential QTL effect size distribution (Figure 

1-9) (Kemper et al., 2012; Robertson, 1967). 

 

Figure 1-9 Exponential distribution with large, medium, and small QTL effect sizes 

Consistent with this expectation, a recent genome-wide association for variation 

of height at the withers between dog breeds identifies ten significant autosomal loci 

(Boyko et al., 2010). Prior to this study, six autosomal loci had been associated with 

height differences between breeds (Jones et al., 2008; Parker et al., 2009). In the 

tradition of previous genome-wide association studies, the authors of the Boyko et al. 

2010 genome-wide association employ a Bonferroni correction, which is the most 

conservative correction for the problem of multiple testing (Johnson et al., 2010). By 
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excluding all but the strongest associations, the authors of the Boyko et al. 2010 study 

may have overlooked many relevant loci. This idea is supported by a genome-wide study 

of height variation in Northern and Southern Europeans that found meaningful 

associations well below the threshold of genome-wide significance (Turchin et al., 2012).  

The strongest association in the Boyko et al. 2010 study is on chromosome 15 

for IGF1, a large effect size variant previously found to influence overall size differences 

within and among dog breeds (Chase et al., 2002; Sutter et al., 2007). Another significant 

association is for a retrogene of FGF4, an expressed retrotransposition shown to be 

responsible for chondrodysplasia in breeds like the dachshund (Parker et al., 2009). For 

the most part, the other significant variants like SMAD2 have been either identified in 

previous dog association studies or are near genes that impact size in either humans or 

mice (Jones et al., 2008).  

In summary, the genetic architecture of dog height variation between breeds 

appears to reasonably follow the predicted exponential QTL effect size distribution. This 

means that there are likely many more meaningful associations beyond the ten significant 

loci originally reported by the study of Boyko et al. 2010. 

 

Comparison of the Genetic Basis of Human and Dog Height Variation 

Before proceeding with the comparison of the genetic basis of human and dog 

height variation, it is critical to consider how these characters are defined. The way 

human height is defined makes it a highly composite trait. Contrasted with dog height that 

includes fewer bones and body regions (Figure 1-7), based on trait composition alone, 

more loci are expected to contribute to human height variation than dog height variation. 

As traits are decomposed the number of loci that influence trait variation (polygenicity) 

decreases, but the extent of pleiotropy increases. This is one reason why dog height 
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measured at the withers should be less polygenic than human height: it is a more 

decomposed trait based on how it is measured. One advantage of decomposing traits is 

that the loci that impact specific aspects of character variation can be identified. For 

example, it is more useful to know that a particular variant specifically impacts torso 

length rather than just knowing it impacts height in general. 

Human Height QTLs 

The most convenient source for human height variants is the Catalog of 

Published Genome-Wide Association Studies curated by the National Human Genome 

Research Institute (NHGRI) (Hindorff et al., 2014). This catalog currently includes 421 

reported genes from 21 different studies. A manual clustering of genes based on 

genomic context results in ~263 regions of the human genome associated with height 

variation (see Appendix A for clustered genes). This collection of associations will be 

used to investigate height QTL sharing in humans and dogs. Additional analysis is 

required to obtain a comparable list of QTLs that influence height variation between dog 

breeds. 

Dog Height QTLs 

Conveniently, the genome-wide study of Boyko et al. 2010 that associates over 

60,000 SNPs with 57 breed measures from 80 domestic breeds includes measurements 

that can serve as a proxy for human height. Height at the withers, body length, and neck 

length anatomically capture the majority of what is measured as human height (Figure 

1-10). Height at the withers is preferred over height at the tail because it is less 

influenced by posture. In addition to making the comparison with human height more 

comparable anatomically, by including three measures of dog size, the number of 

variants underlying trait variation increases and becomes more similar to humans. 
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Figure 1-10 Comparable measures of height in humans and dogs 

To combine height at the withers, body length, and neck length, I record the most 

significant association at each autosomal non-zero SNP (43,209). Since none of the 

current human height associations are on the X chromosome, only autosomal SNPs are 

considered.  

The false discovery rate (FDR) provides a consistent approach for reconsidering 

statistical thresholds for studies like this that need to correct for multiple comparisons as 

well as combining traits (Storey and Tibshirani, 2003). For this reason false discovery 

rates are calculated after the three traits are combined, and then three different cutoffs 

are chosen: one at FDR < 0.04 (P < 0.00225), a more conservative cutoff at FDR < 0.02 

(P < 0.00029), and the Bonferroni cutoff chosen by the Boyko et al. 2010 study that is P < 

0.00005 (FDR < 0.0093) (Figure 1-11). 



 

32 

 

Figure 1-11 False discovery rate (q-value) cutoffs for genome-wide associations of dog 

height at the withers, body length, and neck length. 

These false discovery rate estimates (FDR < 0.0093, 0.02, and 0.04) are 

reasonable for studies concerned with questions regarding the genetic architecture of 

traits (Barsh et al., 2012). In addition, since each gene on the microarray has many SNPs 

that are non-independent, the rate of predicted false discoveries per SNP (FDR < 0.0093, 

0.02, or 0.04) is higher than the false discovery rate per gene. 

A combined Manhattan plot of the three traits with FDR cutoffs reveals that this 

composite measure of dog size, comparable to human height, has many significant 

associations across the genome (Figure 1-12). Inspection of this Manhattan plots shows 

that although new regions of the genome are associated with this composite measure of 

height at FDR < 0.02 and 0.04, many of the additional SNPs included at these cutoffs 

simply add support to existing associated regions. 
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Figure 1-12 Manhattan plot of combined associations for height at the withers, body length, and neck length. Horizontal lines 

represent FDR < 0.0093, 0.02, and 0.0
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Decomposition of Height 

For consistency, the Bonferroni threshold will now be referred to by its false 

discovery rate of FDR < 0.0093. A total of 31 SNPs are included at FDR < 0.0093 for the 

composite measure of dog height that includes height at the withers, body length, and 

neck length. 71 SNPs are significant at FDR < 0.02, and 289 at FDR < 0.04. While there 

is considerable overlap between height at the withers, body length, and neck length, a 

considerable portion of SNPs are specific to each trait (Figure 1-13). The Venn diagram 

in Figure 1-13 identifies trait specific SNPs as those that are only significant for a given 

trait or traits. While this is one way to identify genes that impact limb length, torso length, 

or neck length specifically, a more stringent approach is to classify SNPs unique to a 

given trait if they are at least an order of magnitude more significant than the next best 

SNP. 
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Figure 1-13 The origin of composite dog height SNPs by statistical threshold. Trait 

specific SNPs represent uniquely significant associations. 

For FDR < 0.0093 SNPs, this magnitude-based method identifies IGF1, FGF4 

retrogene, MED13L, IGF1R, and LCORL as trait specific. While body weight is not part of 

the composite measure of dog height used in this study, it is useful to consider when 

decomposing height because it provides a measure of overall body size (Table 1-1). 

Table 1-1 Decomposition of dog height 

Gene 
SNP 
(CanFam2) 

-log10 p-value 

Body 
weight 

Height 
withers 

Body 
length 

Neck 
length 

IGF1 chr15: 44226659 15.3 10.8 14.3 12.7 

FGF4 retrogene chr18: 23298242 4.4 6.1 2.9 2.8 

IGF1R chr3: 44099822 3.4 5.1 2.9 3.5 

MED13L chr26: 16269905 N/A 4.5 3.1 2.8 

LCORL chr3: 93851186 3.7 3.5 5.1 4.0 

 

IGF1 is more correlated with variation in body length and body weight than with 

height at the withers or neck length. This observation is consistent with the study in the 

Portuguese Water Dog that first identified a QTL near IGF1 that influences overall body 
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size (Chase et al., 2005). FGF4 retrogene is most strongly correlated with height at the 

withers. This is logical because the FGF4 retrotransposition is known to cause 

chondrodysplasia in breeds like the dachshund and basset hound (Parker et al., 2009). 

IGF1R is also most strongly correlated with variation in height at the withers. Since IGF1 

impacts overall body size, one might assume that IGF1R would also impact overall body 

size, not height at the withers specifically. Recently a non-synonymous mutation in 

IGF1R was associated with reduced body size in dogs (Hoopes et al., 2012). In this study 

size was treated as a binary trait, precluding any indication about which aspect of size 

IGF1R might be specifically influencing. Further study is required to understand precisely 

how the IGF1R variant contributes to a reduction in body size. The MED13L variant is 

most strongly associated with height at the withers and could merit fine-scale mapping 

and further study. Although relatively little is known about MED13L, MED13 is linked to 

obesity as well as other conditions like type II diabetes and heart failure. In addition, in 

the mouse, deletion of MED13 enhances obesity in response to a high-fat diet (Grueter et 

al., 2012). It is thus plausible that MED13L could play a meaningful role in influencing 

size in dogs. Lastly, LCORL is most strongly associated with body length, a particularly 

interesting finding since in humans LCORL is also most strongly associated with trunk 

length (Soranzo et al., 2009). LCORL is associated with height at the withers in horses 

(Metzger et al., 2013) and height at the hip in cattle (Pryce et al., 2011). It would be 

interesting to see if perhaps body length has an even stronger correlation in these 

domesticates. While the magnitude of p-value differences from genome-wide association 

studies may not always reliably decompose height, at least for IGF1, FGF4 retrogene, 

and LCORL, this decomposition is consistent with other studies of variation at these loci 

in humans and dogs. 
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Functional Analysis of Dog Height QTLs 

Before comparing dog size QTLs with human height variants, it is prudent to get 

an indication of the quality of the 31, 71, and 289 significant SNPs. One way to assess 

the variants that appear to influence size differences between dog breeds is to perform 

gene ontology analysis. While this type of analysis can be problematic, it does offer 

cursory evidence of enriched biological processes that can serve as a sort of litmus test 

to see if SNPs are tagging relevant variants. Since gene ontologies describe the 

functions and biological processes of genes, SNPs must first be assigned to nearby 

genes. 

SNPs within 200 kilobases (kb) of a gene are assigned to that gene. Where the 

same SNP can be assigned to multiple genes, all genes are included for analysis. This is 

done to prevent bias from choosing one particular gene over another. Gene functions are 

compared for all three levels of significance with the web-based tool DAVID (Huang et al., 

2009a, 2009b). Genes found in previous genome-wide association studies of human 

height are enriched at each level of significance, suggesting substantial overlap between 

human and dog height QTLs (Table 1-2).  

The biological process regulation of growth is also enriched at each level of 

significance. Some of the other enriched processes include: cell division, regulation of 

cell component size, gland development, fibroblast proliferation regulation, skeletal 

system development, and bone development. As might be expected if additional SNPs 

are meaningful, as more SNPs are considered significant, whole molecular pathways 

become enriched. Indeed, at FDR < 0.02 the KEGG pathway pathways in cancer 

becomes enriched with 7 contributing genes. At FDR < 0.04 the following KEGG 

pathways become enriched: TGF-beta signaling, MAPK signaling, and Insulin signaling. 

These three pathways are thoroughly studied and have known impacts on growth (Chen, 
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2012; Katz et al., 2007; Siddle, 2011). As a whole, gene ontology analysis supports the 

notion that a substantial number of SNPs at each level of significance considered are true 

associations (Table 1-2). A complete table of gene ontology results can be found in 

Appendix A. 

Table 1-2 Functional analysis of genes near SNPs associated with dog height variation 

Metric Description 
Gene number (N/A if not enriched) 

FDR<0.0093 
(n = 75) 

FDR<0.02 
(n = 151) 

FDR<0.04 
(n = 701) 

OMIM 

Genome-wide association analysis 
identifies 20 loci that influence adult 
height 

3 3 N/A 

Many sequence variants affecting 
diversity of adult human height 

N/A 8 13 

Gene 
ontology 
biological 
process 

Regulation of growth 6 9 23 
Cell division 5 6 N/A 
Regulation of cell component size 4 N/A 19 
Gland development N/A 6 13 
Fibroblast proliferation regulation N/A N/A 6 
Skeletal system development N/A 7 24 
Bone development N/A 4 10 

KEGG 

Cell cycle 3 N/A N/A 
Pathways in cancer N/A 7 19 
TGF-beta signaling pathway N/A N/A 8 
MAPK signaling pathway N/A N/A 16 
Insulin signaling pathway N/A N/A 11 

 

Selective Sweep Analysis of Dog Height QTLs 

Another approach for assessing these dog height SNPs is to leverage other 

studies that use independent samples of dogs to identify regions of the genome that 

exhibit signatures of selection. If false discovery rate SNPs are meaningful, a portion of 

them should also appear in selective sweeps from samples of other dogs. This 

expectation is reasonable because size has been a major focus of selection in dogs. Of 

course sampling and technical considerations play an important role in determining which 

loci appear under selective pressure and are identified as height QTLs; thus perfect 

concordance between false discovery rate SNPs and selective sweep mapping is not 
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expected. Despite this limitation, overlap does provide some indication that it is 

reasonable to include false discovery rate SNPs to investigate height QTL sharing. 

Two different recent studies identify regions of the dog genome that display 

signatures of selection. The first uses an FST based approach (di) and identifies 155 

SNPs that contribute to breed-defining variation (Akey et al., 2010). SNPs within 200 kb 

of Akey et al. 2010 SNPs are considered under selection. The second study employs a 

heterozygosity based approach (Si) in addition to the FST approach (di) (Vaysse et al., 

2011). An FDR < 0.1 was applied to the di, and FDR < 0.05 to the Si results of the 

Vaysse et al. 2011 study to allow for a reasonable number of regions under selection. Of 

the 31 SNPs included at FDR < 0.0093 for composite dog height, 7 (23%) and 12 (39%) 

have been identified as under selection by the Akey et al. 2010 and Vaysse et al. 2011 

studies, respectively (Figure 1-14). For FDR < 0.02 the percentage drops to 11% (8 of 

71) and 25% (18 of 71) for the two studies. At FDR < 0.04 the proportion of height SNPs 

associated with selective sweep studies drops to 6% (17 of 289) and 15% (42 of 289). Of 

the 155 regions under selection from the Akey et al. 2010 study, FDR < 0.0093, 0.02, and 

0.04 SNPs overlap with 2, 3, and 11 regions, respectively. The Vaysse et al. 2011 study 

includes 583 regions of which 13, 20, and 35 regions overlap with height SNPs at FDR < 

0.0093, 0.02, and 0.04 levels of significance, respectively. This pattern suggests, as one 

might expect, as more SNPs are included for analysis, the ratio of signal to noise 

decreases. 
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Figure 1-14 Proportion of selective sweep loci that are also composite dog height SNPs 

These selective sweep results, combined with the previous gene ontology 

functional analysis, suggest that the SNPs at FDR < 0.02 and 0.04 capture enough signal 

to justify the cost of added noise in order to more realistically estimate the loci that impact 

dog height variation. As such, all three levels of significance will be reported when 

describing the extent of height QTL sharing in humans and dogs. 

Identification of Shared Height QTLs 

There are two general approaches for identifying shared QTLs. In the SNP-

centric approach, associated SNPs from one species are mapped to orthologous loci in 

another species. For the gene-centric approach, reported genes from one species are 

mapped to orthologous genes in another species. If the causative mutations for height 

QTLs tend to be at orthologous DNA sequences, the SNP-centric approach will perform 

best. If the loci for causative mutations are not well conserved, but still tend to occur in or 

around the same genes, the gene-centric approach will perform best. Since most human 

height SNPs are at less conserved loci (32% intergenic and 58% intronic), the gene-

centric approach is reported here. 

To compare the genetic basis of human and dog height, dog genomic 

coordinates for human-dog orthologs with HGNC symbols are first retrieved from 



 

41 

Ensembl (version 74 Genes) via BioMart (Durinck et al., 2005, 2009; Kasprzyk, 2011; 

Vilella et al., 2009). Since dog height associations from Boyko et al. 2010 are given in the 

CanFam2 assembly, CanFam3 coordinates for orthologs are then mapped to CanFam2 

using the UCSC LiftOver tool (Lawrence et al., 2009). Human-dog orthologs from 

Ensembl are then supplemented with 27 manually annotated orthologs provided in 

Appendix A. Of the 421 reported human height genes, 378 have orthologs with dogs. 

Overlap between dog height SNPs and the 378 orthologous human height genes is then 

computed (Aboyoun et al.; Lawrence et al., 2013). For the Boyko et al. 2010 panel, 

interbreed linkage disequilibrium (LD) stretches to ~200 kb where mean R
2
 > 0.15 (Boyko 

et al., 2010). Based on this estimate of average interbreed LD, human height genes 

within 200 kb of dog height SNPs are counted as shared QTL. All shared height QTLs in 

humans and dogs are provided in Table 1-3. 
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Table 1-3 Human and dog shared height QTLs 

Shared QTL Significance
+
 

# Human 
studies 

Additional genes in shared QTL 

ACAN *** 5 POLG 
ANKFN1 * 1  

BMP3 *** 2 PRKG2, RASGEF1B 
BOD1 ** 1 STC2, FBXW11 

C14orf39 * 1  
CDH13 * 1  
DCLK1 * 1  

DTL * 1  
FGFR3 * 1 SLBP 
HMGA2 *** 10  

IGF1 *** 2 CCDC53, NUP37, C12orf48, PMCH, GNPTAB 
IGF1R * 1 ADAMTS17 

IGF2BP2 *** 1  
LCORL *** 10 NCAPG 

NOG * 3 DGKE, TRIM25, COIL, RISK 
NPPC ** 3 PDE6D, COPS7B, DIS3L2, ALPP, PTMA 
NPR3 ** 5 C5orf23 
PBX1 ** 1  
PPIF * 2  
SIX6 * 1  

SMOX * 1  
SOCS2 * 5 MRPL42, CRADD, UBE2N 
VGLL2 *** 1  

ZFAT * 1  
ZMIZ1 ** 1  

+
 Significance levels: *** for FDR < 0.0093, ** for FDR < 0.02, and * for FDR < 0.04 

 

The 31 FDR < 0.0093 composite dog height SNPs overlap with 81 human-dog 

orthologs, of which 12 genes from 7 regions are shared QTLs (Figure 1-15). The extent 

of QTL sharing increases at FDR < 0.02 with 20 genes from 11 regions shared. At the 

least conservative level of FDR < 0.04, 38 genes from 25 regions influence both human 

and dog height. This means that at least 10% (25 of 241) of all human height QTLs are 

shared in dogs. The proportion of shared dog QTLs decreases with additional loci, as 

does the power to detect true associations. For this reason the proportion of dog shared 

QTLs is calculated based on the most conservative false discovery rate threshold (FDR < 

0.0093). Based on this threshold, 44% (7 of ~16 regions) of dog height QTLs are shared; 
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this is a much higher proportion of sharing than observed in humans. This difference in 

the proportion of QTL sharing likely reflects the fact that human height QTLs have been 

much more thoroughly interrogated relative to dog height QTLs. As additional intrabreed 

and interbreed studies of dog height are completed, the proportion of shared human 

QTLs should increase from 10%, and the proportion of shared dog QTLs should 

decrease from 44%. Thus 10% and 44% likely bound the true extent of QTL sharing for 

height in humans and dogs. 

 

Figure 1-15 Extent of height QTL sharing in humans and dogs 

Assessment of the Extent of QTL Sharing 

To assess the likelihood of obtaining this extent of QTL sharing by chance, a 

randomization test is performed similar to a study of height QTL sharing in humans and 

cattle (Pryce et al., 2011). In the present study there are 378 orthologous human height 

genes from 241 regions. To assess the extent of QTL sharing, 100,000 random sets of 

378 genes are sampled from a collection of 18,853 human-dog orthologs. The number of 

dog height genes contained within each random set of orthologs is then counted. This 

forms a distribution that reflects QTL sharing when random orthologs are chosen rather 

than the reported human height genes. This distribution is compared to the number of 

regions identified as shared QTL at the various levels of dog height significance (FDR < 
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0.0093, 0.02, and 0.04). The number of shared QTLs at each false discovery rate level 

changes because what is considered a significant dog height gene changes. Since the 

241 regions are still not necessarily independent because they depend on manual 

delineations, the distribution of random ortholog sets (each containing 378 genes) is 

compared to shared QTL regions (n=241) rather than genes (n=378) to account for any 

dependence among the 241 regions and to ensure that the randomization test is 

conservative. 

The extent of QTL sharing at the FDR < 0.0093 level of dog height significance (7 

regions) is highly unlikely to occur by random chance alone (P < 0.0002). At FDR < 0.02 

only 9 random sets of genes out of 100,000 have more shared QTLs than the 11 

observed (P < 0.00009). The likelihood of 25 shared QTL at FDR < 0.04 is P < 0.0078. 

These results show that the extent of QTL sharing is more than expected by chance at 

every level of significance considered (Figure 1-16). 
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Figure 1-16 Likelihood of QTL sharing with 378 random draws per ortholog set. Vertical 

lines represent observed sharing with 241 draws. 

An argument can be made that since a quarter to a third of all genes is estimated 

to have a potential impact on size, the pool of random human-dog orthologs should only 

include these potential genes. To address this criticism, the number of random orthologs 

can be increased from 378 genes. A reasonable approach is to multiply the number of 

QTL regions (n=241) by three, thus giving each random ortholog set 723 genes. The 

logic is that since the 241 shared QTL are only derived from genes that can impact size, 

the randomization test must take into account the fact that up to two-thirds of random 

draws have no chance of impacting size. 

Such a test reveals that at FDR < 0.0093 and 0.02 the extent of sharing is still 

more than expected by chance (P < 0.01 and P < 0.02, respectively) (Figure 1-17). 

However, at FDR < 0.04 more shared height QTL are expected than observed (P < 0.79), 

indicating that true associations do taper off at this least conservative level of 

significance, as expected. 



 

46 

 

Figure 1-17 Liklihood of QTL sharing with 723 random draws per ortholog set. Vertical 

lines represent observed sharing with 241 draws. 

Notable QTLs 

From the NHGRI catalog, ten different studies report that HMGA2 and LCORL 

influence human height variation. Interestingly, both of these genes have also been 

shown to influence size variation in the cow and horse (Makvandi-Nejad et al., 2012; 

Metzger et al., 2013; Pryce et al., 2011; Signer-Hasler et al., 2012). HMGA2 is a known 

size QTL in dogs, but this is the first time LCORL has been discussed as an interbreed 

size variant in dogs. As previously mentioned, LCORL appears to impact body length in 

dogs as well as humans (Soranzo et al., 2009). This identification of LCORL as an 

interbreed variant that likely impacts variation in body length demonstrates the type of 

insights that can be gained from interspecies comparisons of intraspecific variation. 

Another interesting observation from these shared QTLs is that BMP3 impacts 

dog size. This gene has previously been associated with dog skull diversity 

(Schoenebeck et al., 2012). In this situation pleiotropy as well as allelic heterogeneity 

could explain this apparent double association. 
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Notable human height genes that don't appear to influence interbreed dog height 

variation include HMGA1 and ZBTB38, genes that associated with height in 11 different 

human studies. ZBTB38 is particularly interesting because it is associated with height 

variation within the Portuguese Water Dog breed (K. Chase and K.G. Lark). This finding 

underlines the reality that interbreed studies only provide a vignette of the genetic basis 

of dog size variation because substantial variation also exists within breeds. So while 

ZBTB38 is not an interbreed shared height QTL with humans, it is still a shared QTL 

because it influences size within a breed.  

FBN2 and IHH are other human height genes not identified as shared QTLs, 

although like ZBTB38, they influence height variation in the Portuguese Water Dog (K. 

Chase and K.G. Lark). Perhaps unsurprisingly, FBN2 and IHH narrowly miss the FDR < 

0.04 threshold of significance, demonstrating that meaningful SNPs exist even below the 

least conservative cutoff applied in this study. It is important to point out that the human 

height QTLs are more similar to those found in the Portuguese Water Dog because 

human studies have primarily focused on variation within populations. 

Some genes appear to impact intrabreed variation as well as interbreed variation. 

For example, the gene IGF1 appears as a shared QTL with the interbreed associations, 

and is also associated with height variation in the Portuguese Water Dog (Chase et al., 

2005; Sutter et al., 2007). Had associations near FBN2 and IHH been slightly more 

significant, they would have also fallen into this category of intrabreed and interbreed 

variants. 

Despite the considerable overlap of height QTLs, obviously not all QTLs are 

shared between humans and dogs. A major QTL influencing height in dogs but not 

humans is the FGF4 retrogene insertion on chromosome 18 that is responsible for 

chondrodysplasia in extremely short-limbed breeds like the dachshund and basset hound 
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(Parker et al., 2009). That this QTL is not shared in humans is unsurprising since the 

retrotransposition event recently occurred in dogs, and placed a mis-regulated, active 

copy of FGF4 into a novel genomic location. Interestingly, a similar condition in humans 

is caused by mutations in other components of the FGF signaling pathway as mentioned 

previously in this study in the context of achondroplasia and QTNs (Velinov et al., 1994). 

Why Some QTLs Are Missing 

Without redefining QTL sharing altogether (for example by including paralogs), it 

is valuable to consider factors that might lead to an underestimate of the extent of QTL 

sharing in humans and dogs. One possibility to consider is how limitations of the dog 

associations for height might lead to missing shared QTLs. The probability that QTLs 

unique to dogs are due to poor sampling or array coverage in humans is less likely 

because human height studies have been performed with multiple populations using high 

density microarrays. This is not the case for unique human QTLs that are missing in 

dogs.  

Closer examination of the distribution of dog SNPs can elucidate technical 

reasons for why some human QTLs might not appear to influence height in the dog. Of 

the 378 orthologous human height genes, 7 lack a non-zero SNP that is within the 

required 200 kb to act as genetic marker (CYP20A1, CS, LRRC37B, STAT2, PASK, 

GFPT2, SCMH1). This means that these genes may be dog height QTLs, but the 

microarray lacked the coverage to ascertain it. The average number of non-zero SNPs 

assigned per gene is 8.9, with 8 SNPs as the median. A total of 53 genes have three or 

fewer non-zero SNPs within 200 kb. These results indicate that the extent of QTL sharing 

reported in this study is likely underestimated due to limited informative SNP coverage on 

the dog microarray platform. 
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Conclusion 

At least 263 regions of the genome are associated with variation in human 

height. Of these regions, 241 have reliable orthologs with the dog. This study compares 

how many of the same loci contribute to height variation within human and dogs. To 

make the analysis comparable, height at the withers, body length, and neck length are 

combined in the dog so as to anatomically capture human height. This composite 

measure of height yields 289 significant dog SNPs that are validated through a series of 

gene ontology and selective sweep analyses that demonstrate a substantial portion of 

associations are meaningful.  

Although one might predict that relatively few loci will be shared between species 

as distantly related as the human and dog, this study finds at least 25 orthologous 

regions contribute to intraspecific height variation in humans and dogs. This represents 

over 10% of all human height QTLs (25 of 241) and 44% of dog height QTLs (7 of the top 

16 loci).  

Relative to the 55% estimate of QTL sharing for simple traits based on candidate 

gene studies of parallelism and convergence (Conte et al., 2012), the rate of QTL sharing 

for the highly polygenic trait height is lower (10 - 44%). Interestingly, for more distantly 

related taxa (like the human and dog), the rate of QTL sharing for candidate gene studies 

of parallelism and convergence is between 0.1 and 0.4 (Conte et al., 2012), almost 

exactly the range of QTL sharing observed in this study (0.1 to 0.44). As is the case for 

traits influenced by a few large effect size loci, highly polygenic traits reflect constraints 

on genetic variability and variation, likely leading to what we observe as extensive and 

comparable levels of QTL sharing. These similar rates of QTL sharing for simple and 

highly polygenic traits suggests that there is nothing fundamentally different between 
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what we call simple and complex traits, other than perhaps the resolution of our 

understanding. 

Despite this extent of QTL sharing, highly polygenic traits like height are still not 

ideal for candidate gene studies, except perhaps for a few loci that are beginning to 

emerge across mammalian species like HMGA2 and LCORL. With enough studies like 

this work, in time perhaps this will change. 

Another outcome of this study comes from the decomposition of dog height using 

genome-wide associations to identify loci that are associated with limb, torso, and neck 

variation. In addition to confirming the action of IGF1 and the FGF4 retrogene, LCORL 

has been associated with body length variation between dog breeds, a finding bolstered 

by a human study of LCORL variation (Soranzo et al., 2009). 
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Chapter 2  

Effect Size Distributions for Height in Humans and Dogs 

Introduction 

Chapter 1 examined the extent of height QTL sharing in humans and dogs. After 

identifying QTLs that influence how a phenotypic character varies, the next step is often 

to estimate the relative effect sizes of contributing QTLs. The effect sizes of QTLs 

determine how many loci are necessary to explain a meaningful proportion of trait 

variation. Effect sizes depend on the substitution effect of replacing one allele for another 

as well as allele and genotype frequencies. 

The range of effect sizes can span from Mendelian, where one or two loci explain 

the entirety of trait variation, to infinitesimal where an infinite number of loci contribute 

equally (Figure 2-1) (Fisher, 1918; Mather, 1943; Robertson, 1967). Despite the desire by 

some researchers for phenotypic characters to be influenced by a few large effect size 

loci, most traits are influenced by many loci that resemble the exponential distribution of 

effect sizes (Flint and Mackay, 2009; Plomin et al., 2009). 

 

Figure 2-1 Distributions of QTL effect sizes 

This exponential distribution of effect sizes was the prevailing assumption going 

into human genome-wide association studies. The thought was that some of the largest 

effect size QTLs could individually explain up to 10% of trait variation in humans (Flint 
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and Mackay, 2009). As mentioned in Chapter 1, results were not as expected: hundreds 

of loci are apparently necessary to explain 10% of trait variation. 

This observation has prompted widespread discussion about the missing 

heritability for complex traits in humans. In some cases this has led to the conclusion that 

rather than an exponential model, perhaps the effect size distribution of QTLs in humans 

more closely resembles the infinitesimal model (Makowsky et al., 2011). On the other 

extreme, reports in dogs and horses have suggested that quantitative traits have been 

simplified in these domesticates and only require a few QTL to explain the majority of trait 

variation (Boyko et al., 2010; Makvandi-Nejad et al., 2012). Chapter 2 discusses QTL 

effect sizes in humans and formally tests the idea of a simple genetic architecture in 

dogs. 

 

The Effect Size Distribution of Human Height 

The Problem of Missing Heritability 

As the genomics era began near the turn of the century 20
th
, Eric Lander 

suggested that common variants might explain a substantial portion of common diseases 

(Lander, 1996). What became known as the 'common disease, common variant' 

hypothesis contributed to the optimism going into human genome-wide association 

studies (Knight, 2009). When genome-wide studies started rolling out, many novel 

variants were identified, but a relatively small amount of the heritable portion of trait 

variation could be explained. This observation led many researchers to speculate where 

this missing heritability might be for complex traits like height, type 2 diabetes, and autism  

(Donnelly, 2008; Maher, 2008). 
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Ideas Concerning Missing Heritability 

Much literature has been published debating and speculating the topic of missing 

heritability; several of the major themes will be mentioned here. One explanation is that 

rare variants contribute substantially to the phenotypes of complex traits (Brachi et al., 

2011; Eichler et al., 2010; Manolio et al., 2009). This possibility can be explored with 

forthcoming affordable high-throughput sequencing technology that can capture many 

rare variants as well as classes of variants beyond SNPs (Luo et al., 2011). Another 

explanation for missing heritability is allelic heterogeneity where there are multiple 

functional alleles with different phenotypic consequences at the same locus (Bergelson 

and Roux, 2010; Wood et al., 2011; Zhang et al., 2012). Although, by definition, epistasis 

does not explain missing narrow-sense heritability, it has been suggested as a source of 

creating overestimates of heritability (Zuk et al., 2012). Yet another source of proposed 

missing heritability is transgenerational epigenetic variation (Johannes et al., 2009).  

Another perspective offered by Greg Gibson is that the debate over missing 

heritability is overblown (Eichler et al., 2010). He argues that hidden environmental 

structure is not being accounted for and is causing estimates of narrow-sense heritability 

to be inflated. He goes on to clarify his position as follows: 

More fundamentally then, there is a missing genetic variance problem, 
which really relates to misplaced preconceptions. It would have been 
nice if GWA studies typically uncovered a dozen associations each 
explaining 5–10% of the variance, but the fact that they do not suggests 
only that the allelic effects are smaller or the causal alleles are too rare. 

The reality is that for most complex traits, the missing heritability is probably in a 

lot of places, including the possibility that it has been overestimated to begin with. 

For human height, one of the most extensive genome-wide studies explains 

~10% of the phenotypic variation in height with 180 loci (Lango Allen et al., 2010). 

Another study takes the approach of considering almost 300,000 SNPs simultaneously 
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and explains 45% of variance in height (Yang et al., 2010). The authors argue that the 

heritability is not missing, but is in QTLs with effect sizes too small to pass current 

significance tests. They go on to point out that low allele frequencies and incomplete 

linkage disequilibrium between causal variants and SNPs are the reason why many QTLs 

have such low effect sizes. Clearly many loci contribute to human height variation, but 

there is no reason to assume that they have equal effect sizes, or are all small. 

Effect Size Distributions 

Perhaps the most useful construct to use when considering the loci that 

contribute to complex traits is the distribution of QTL effect sizes (Figure 2-1). Even if the 

largest loci that contribute to trait variation only explain 1% of variation, the distribution of 

QTL effects could still more closely resemble the exponential rather than the infinitesimal 

model (Flint and Mackay, 2009). From sample composition to technical considerations 

such as whether SNPs are effectively tagging causal variants, multiple factors likely 

contribute to small effect sizes coming out of genome-wide association studies. 

For example, human height associations within populations don't typically include 

individuals with extreme height differences like those affected by achondroplasia. As 

mentioned in Chapter 1, one form of short-limbed dwarfism is primarily the result of a 

single nucleotide polymorphism (G380R) in FGFR3 (Bellus et al., 1995). Even if a few 

individuals with achondroplasia were included in height genome-wide associations, the 

FGFR3 QTL would have a relatively small effect size because effect sizes also depend 

on allele and genotype frequencies. Thus in order for a variant to have a large effect size 

in a genome-wide association it must have a large substitution effect as well as be 

common. This excludes rare variants like G380R in FGFR3 that have very large effect 

sizes.  
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The take-home message here is that the absence of large effect size QTLs really 

reflects the frequency-distribution of substitution effect sizes. The effect size distribution 

of height in humans is exponentially distributed, although depending on the study 

population, this distribution will be shifted towards larger or smaller effect sizes. 

 

Effect Sizes in Model Organisms 

Jonathan Flint and Trudy Mackay provide an insightful and relevant perspective 

on the effect sizes of quantitative traits in humans as well as in flies and mice (Flint and 

Mackay, 2009). As argued in this dissertation, Flint and Mackay also assert that effect 

sizes in humans are most consistent with an exponential distribution.  

They describe how initial studies in mice and flies revealed QTLs with large 

effects that could account for large portions of phenotypic variation. These studies in 

mice and flies influenced expectations for human studies and likely contributed to the 

missing heritability conundrum. Interestingly, as the sample sizes of studies in flies and 

mice increased, the number of QTLs also increased, and effect sizes decreased, a 

pattern similar to human studies (Lai et al., 2007; Turri et al., 2001a, 2001b). Since allelic 

effect sizes depend on substitution effects as well as allele frequencies, it makes sense 

that effect sizes can be inflated from estimates based on relatively few samples.  

Flint and Mackay also point out that inbreeding can drastically alter perceptions 

of genetic architecture, making traits appear simplified in inbred populations. After 

considering studies from humans, mice, and flies, Flint and Mackay conclude that the 

genetic architecture of quantitative traits is fairly consistent across both traits and species 

and fits the exponential distribution of gene or QTL effects (Flint and Mackay, 2009). 
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The Effect Size Distribution of Dog Height 

A Simple Genetic Architecture? 

In contrast to studies of quantitative traits in humans, mice and flies, a fairly 

recent study in dogs argues that only a few QTLs are necessary to explain the majority of 

variation for morphological traits (Boyko et al., 2010). The authors conclude that 

domestication and breed formation have simplified the genetic architecture of 

morphological traits in dogs relative to humans (Boyko et al., 2010). This study consisted 

of genome-wide associations of over 60,000 SNPs with 57 breed measures for 915 dogs 

from 80 domestic breeds. Ironically, some of the data from this study was leveraged to 

identify at least 25 shared height QTLs in humans and dogs in Chapter 1 of this 

dissertation. 

The conclusion of a simple genetic architecture is based on the finding that for 

most traits, >70% of trait variation can be explained by the action of three or fewer loci. 

Consistent with this idea of a simple genetic architecture, variants of the IGF1 gene have 

been associated with dog size differences between many breeds, explaining an 

enormous 50% of phenotypic variation (Boyko et al., 2010; Chase et al., 2002; Sutter et 

al., 2007). Curiously, a notable exception that does not align with an IGF1 effect size of 

near Mendelian proportions is the large Rottweiler breed that has the small dog IGF1 

allele (Sutter et al., 2007). 

The data invoked by Boyko et al. 2010 to support the model of a simple genetic 

architecture in dogs is that estimated QTL effects explain a large proportion of variation. 

Since the whole hypothesis rests on estimated QTL effect sizes, accuracy of these 

estimates is essential. Instead of highlighting QTL effect sizes for height at the withers or 

body length, Boyko et al. 2010 focus on the more environmentally influenced metric of 

body weight. They find that IGF1 explains R
2
 = 50% of variance in purebred dogs and R

2
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= 17% in a sample of 50 outbred village dogs from Puerto Rico and Africa (Boyko et al., 

2009). While a QTL effect size of R
2
 = 17% is certainly larger than what has been 

observed for quantitative traits studied in humans, it is more consistent with an 

exponential QTL effect size distribution, not a simple genetic architecture as proposed by 

Boyko et al. 2010.  

Rather than letting the results of the village dogs temper the idea of a simple 

genetic architecture, the authors of Boyko et al. 2010 marginalize these data, citing 

reduced linkage disequilibrium and non-genetic factors in village dogs. The National 

Geographic popularized this idea in February of 2012 with the article titled Mix, Match, 

Morph: "Flip a few switches, and your dachshund becomes a Doberman.... Flip again, 

and your Doberman is a Dalmatian."  

In contrast to the conclusions of Boyko et al. 2010, the breeding history and 

resulting phenotypic distributions of dog height within and between breeds suggests the 

action of many variants rather than just a few of large effect (Figure 1-6). This 

observation and recognition of height as highly polygenic is supported by the practical 

experience of dog breeders (Greyhound, 2014). In addition, laboratory animals that have 

gone through somewhat similar breeding conditions as dogs still retain a complex genetic 

architecture for quantitative traits (Flint and Mackay, 2009). To clarify this issue I test the 

hypothesis of a simple genetic architecture in various ways by leveraging data from 

Boyko et al. 2010 as well as by studying an independent sample of mixed-breed dogs. 

Genome-wide Association Data 

The first conclusion from Boyko et al. 2010 to consider is the number of loci that 

contribute to morphological trait variation. How many associations are significant for each 

morphological trait considered? The Boyko et al. 2010 study employs two different levels 

of significance, one for absolute traits (P < 5.0e-5) and one for skeletal and proportional 
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traits (P < 1.0e-4). Based on these definitions of significance, the 57 traits have an 

average of 18 significant SNPs from an average of 7 different chromosomes (Figure 2-2). 

Since many traits are heavily influenced by body size, the authors also provide allometric 

associations that have been normalized by the logarithm of body weight. For the 

allometric associations, an average of 18 SNPs are significant from an average of 9 

different chromosomes. After accounting for the fact that multiple associations sometimes 

tag the same locus, I find that on average between 7 and 9 different loci contribute to trait 

variation. Since P < 5.0e-5 and P < 1.0e-4 are fairly conservative cutoffs, the number of 

loci contributing to interbreed trait variation could be much higher. 
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Figure 2-2 Number of different SNPs and chromosomes associated with morphological 

differences between dog breeds. 
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While it appears as though more than two or three loci contribute to each trait in 

the Boyko et al. 2010 data, the most relevant question in regards to teasing apart the 

genetic architecture of morphology is what are the effect sizes of these variants? If a few 

QTLs are indeed responsible for >70% of trait variation, there is an argument for a 

simplified genetic architecture. The next part of this analysis examines SNPs associated 

with height at the withers to explore QTL effect sizes. 

Rather than examine effect sizes with the composite measure of height used in 

Chapter 1, I will examine height at the withers individually here. Height at the withers has 

26 significant associations from 11 different chromosomes at the Bonferroni level of 

significance (Figure 2-2). The Boyko et al. 2010 study reports p-values for associated 

SNPs as well as allele frequencies by breed, but phenotypic breed information is 

unfortunately not provided. This is part of why height at the withers was chosen because 

between previous studies of height and reported breed standards, a fairly reliable dataset 

of breed heights can be assembled (Appendix B) (Alderton, 2008; Sutter et al., 2008). 

This is not an ideal approach, but it is at least reasonable because the Boyko et al. 2010 

study also used breed averages for phenotypes rather than individual dog measures. 

Without the raw data it is impossible to reconstruct the exact associations from the Boyko 

et al. 2010 study; nonetheless, calculated associations for height at the withers do mirror 

those from Boyko et al. 2010 fairly well and will be used as a proxy for the original p-

values (Figure 2-3). Reconstructed height at the withers associations are based on 70 

breeds that have at least 9 dogs per breed. Associations are calculated in R using the 

base linear model function (R Core Team, 2013). 
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Figure 2-3 Comparison of Boyko et al. 2010 p-values for height at the withers with 

reconstructed p-values from this study. Twelve loci chosen for additional analysis are 

highlighted in red. Dotted line represents Boyko et al. 2010 Bonferroni significance. 

Consistent with the report of Boyko et al. 2010, the SNP associated with IGF1 

explains 45% of height at the withers and the FGF4 retrogene also explains 45% of 

variation. Note that these associations are based on reconstructed p-values, and that the 

reconstructed p-value for FGF4 retrogene is substantially more significant than the Boyko 

et al. 2010 p-value, suggesting that FGF4 retrogene likely explains less than 45% (Figure 

2-3). Nonetheless, in concert these two loci explain 70% of variation in height at the 
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withers between breeds (adjusted R
2
), consistent with a simple genetic architecture. 

Since IGF1 and FGF4 retrogene do not collectively explain 90% (45+45) of interbreed 

variation, they must be explaining somewhat overlapping portions of height variation. 

Curiously, including the next most significant SNP near ZFP64 only increases the percent 

of variation explained from 70% to 71%. By including all 12 loci highlighted in red (Figure 

2-3), the percent of variation explained rises to 82%. Interestingly, if IGF1 is removed 

from this 12 locus model, the percent of variation explained only drops by 5 percent. 

From a statistical perspective, this suggests multicollinearity where multiple predictor 

variables are correlated with each other. 

Examining some of the other significant loci can provide further hints if 

multicollinearity is undermining the 12 locus model. Surprisingly, the SNPs near the next 

three most significant loci (IGF1R, GPC6, SUFU) explain a whopping 54% of variation. 

The next three most significant SNPs near SMAD2, BANP, and MED13L explain 47% of 

variation, and the last three loci highlighted in red (IGF2BP2, STC2, BMP3) explain 40% 

of variation. Clearly these 12 variants are explaining overlapping portions of interbreed 

height variation.  

When variants explain overlapping portions of phenotypic variation this makes 

the linear model unstable, complicating estimates of individual QTL effect sizes. Can the 

variants near IGF1 and FGF4 retrogene explain 70% of variation? Yes, this has just been 

observed. Do the variants near IGF1 and FGF4 retrogene cause 70% of interbreed 

height variation? If all of the other variants like SMAD2 don't have a meaningful 

contribution, then yes, that would suggest that they not only explain, but cause 70% of 

interbreed height variation. However, recent work has further validated some of these 

other height loci by identifying the causative mutations behind the SMAD2, STC2, and 

IGF1R associations, so clearly IGF1 and FGF4 retrogene do not cause 70% of interbreed 
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height variation (Hoopes et al., 2012; Rimbault et al., 2013). This presents a bit of a 

conundrum: how can variants like IGF1 and FGF4 retrogene explain variation that they 

do not exclusively cause? 

Assigning effect sizes according to variation explained from an interbreed study 

implicitly assumes that all other loci are random with respect to the locus of interest. If 

multiple alleles contribute to differences between breeds, inasmuch as the effects of 

those alleles are correlated, estimated individual effect sizes will represent the action of 

all correlated alleles, which can lead to vastly overestimated individual effect sizes. In this 

way correlated allelic effects can give the caricature of a simple genetic architecture as 

variants have high predictive power, but conceal the action of other meaningful loci. This 

scenario is most likely to occur for polygenic traits that undergo intense directional 

selection, like the selection dogs have experienced for reduced body size the last several 

hundred years. Thus, IGF1 and FGF4 retrogene can be highly predictive of interbreed 

height differences, but are not the whole reason or cause of those differences. Perhaps 

the best way to describe this phenomenon is that it is correlation with partial causation. 

To test this hypothesis that correlated allelic effects lead to an overly simplistic 

view of genetic architecture, allelic correlations, or linkage disequilibrium, can be 

examined between SNPs. Unfortunately standard measures of linkage disequilibrium 

(LD) cannot be calculated because individual genotypes are not given in the Boyko et al. 

2010 data. Instead, allele frequencies are given for each SNP according to breed. Thus 

for this analysis, allele frequencies from 70 breeds, each containing at least 9 dogs, are 

compared between loci using the Pearson product-moment correlation coefficient (R). 

Correlations are given relative to the IGF1 SNP because it is the most significant 

association and the reconstructed p-value is quite similar to the Boyko et al. 2010 p-

value. 
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After a Bonferroni correction for multiple testing, the allele frequencies for the 

IGF1 SNP are significantly correlated with the allele frequencies of 6 of the other top 11 

SNPs in Figure 2-3 (STC2, BANP, SMAD2, GPC6, ZFP64, IGF2BP2). This high degree 

of correlation between allele frequencies suggests that correlated allelic effects are 

inflating effect size estimates of some of the top loci like IGF1. 

To examine the extent of correlated allelic effects, 12 loci on chromosomes other 

than those that contain the top 12 loci are randomly chosen with -log10 p-values between 

2 and 2.5. Other chromosomes are chosen so that there is no linkage between these loci 

and the top 12 loci, thus avoiding signal due to the top loci. After a Bonferroni correction, 

the allele frequencies of 2 of these 12 mid-range loci are significantly correlated with the 

IGF1 SNP. These results suggest that correlated allelic effects well beyond the most 

significant loci contribute to an overly simplistic view of genetic architecture by inflating 

effect size estimates of top loci like IGF1. 

This analysis doesn't mean that IGF1 and FGF4 retrogene have small effect 

sizes, but it does suggest that they do not cause 70% of variation between breeds. Based 

on an intrabreed study of IGF1 in the Portuguese Water Dog, this variant is reported to 

explain ~15% of skeletal size variation (Chase et al., 2005; Sutter et al., 2007). Because 

this estimate is within a single breed it is more insulated from correlated allelic effects and 

thus represents a more accurate approximation of the substitution effect size of the IGF1 

variant. Relative to humans and other species, 15% is certainly a large effect, but it does 

not approach the 45% estimated earlier in this study. It is therefore reasonable to predict 

that IGF1 causes no more than ~15% of interbreed height variation, but can explain, 

through the action of correlated alleles, ~45% of variation. 
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An Independent Sample of Mixed-breed Dogs 

Another way to test the hypothesis that correlated allelic effects lead to an overly 

simplistic view of genetic architecture is to estimate individual effect sizes in a panel of 

mixed-breed dogs with a similar distribution of height variation as the purebreds used in 

Boyko et al. 2010 (Figure 2-4) (Appendix B). The admixture in mixed-breed dogs, like the 

village dogs studied in Boyko et al. 2010, can break up correlated alleles to some extent 

and allow for a more accurate estimate of individual QTL effect sizes. If the effect sizes of 

large effect loci are smaller in mixed-breeds than previously reported in purebreds, this 

would suggest an underlying genetic architecture more similar to the exponential QTL 

effect size distribution than the simple model (Figure 2-1).  

 

Figure 2-4 Comparison of (A) height at the withers by breed with (B) scapula + humerus 

+ radius length in a panel of mixed-breed dogs. 

The 121 mixed-breed dogs used in this study are former pets obtained 

postmortem through Skulls Unlimited International Inc. (Oklahoma City, OK, USA). 

Because these mixed-breed dogs are former pets, it can be assumed that the quality of 

care that might impact a trait like height is comparable to that received by purebred pets. 

In addition to the full skeleton for each mixed-breed dog, tissue samples were obtained 
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for molecular analysis. To control for age and sex, all dogs in the mixed-breed panel are 

adult males. 

The sum of the lengths of the scapula, humerus, and radius serves as a 

reasonably comparable measure for height at the withers in live dogs (Figure 2-5A). 

Maximum bone lengths were measured to the nearest 0.0001 inch with digital calipers for 

both the left and right (Figure 2-5B). Left and right measurements were then averaged to 

obtain a single value for each bone. To estimate measurement error, 11 random dogs 

were measured again and had an average correlation (R) of 0.9998 with previous 

measurements, indicating that these measurements reliably capture bone lengths. 
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Figure 2-5 (A) Scapula, humerus, and radius (red) as a proxy for height at the withers 

(black line) in live dogs. (B) Specific measurements for scapula, humerus, and radius. 

For each mixed-breed dog whole genomic DNA was extracted from 10 mg of 

tissue. Cells were lysed in 500 µL of PK buffer (0.025 µL 1M Tris (pH8), 0.001 µL 0.5M 

EDTA (pH8), 0.01 µL 5M NaCl, 0.025 µL 10% SDS, 0.439 µL H2O) with 10 µL proteinase 

K overnight at 55°C. Samples were transferred to Phase Lock Gel Heavy 2.0 mL tubes (5 

Prime) and 0.5 mL phenol:chloroform:isoamyl alcohol (PCI 25:24:1) was added and 

mixed by inversion. Following centrifugation for 30 minutes, 0.5 mL chloroform was 

added and mixed by inversion. After 15 minutes of centrifugation the aqueous phase was 

transferred to a new 1.5 mL tube and 1 mL cold 95% ethanol was added and mixed by 

inversion. Following 15 minutes of centrifugation alcohol was decanted and 1 mL of 70% 

ethanol was added and mixed by inversion. After 5 minutes of centrifugation ethanol was 
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decanted once more and samples were dried for at least 6 hours before being 

resuspended in 100 µL sterile H2O. A 1:50 dilution of extracted genomic DNA was used 

for PCR-based assays. 

The strength of using mixed-breed dogs or village dogs is that linkage 

disequilibrium between influential loci is reduced, allowing for a more accurate estimate 

of individual QTL effect sizes. The challenge with this type of panel is that linkage 

disequilibrium often breaks down between causative mutations and the genomic markers 

as well. This is one of the primary reasons why the Boyko et al. 2010 study trusted 

purebred effect sizes rather than the substantially smaller village dog estimates. This 

study circumvents the problem by primarily genotyping causative variants. Variants from 

five different genes will be examined here: IGF1, FGF4 retrogene, SMAD2, STC2, and 

BANP (Table 2-1). 

The IGF1 QTL on chromosome 15 contains three variants that could individually 

or in concert contribute to a reduction in size. There is a diagnostic SNP in the second 

intron that has an allele unique to dogs relative to the ancestral gray wolf (Gray et al., 

2010). In complete linkage disequilibrium with this SNP is a ~200 bp bimorphic short-

interspersed transposable element (SINE) also in the second intron of IGF1 (Gray et al., 

2010). In addition to these variants, a microsatellite in the promoter of IGF1 is also 

strongly associated with a reduction in size. The SINE is a strong candidate to be the 

causative mutation, and because all three variants are in strong linkage disequilibrium 

with each other, the SINE is genotyped in the mixed-breed dogs. 

Primers were designed (Untergasser et al., 2007) to amplify an ~850 bp product 

with the diagnostic short-interspersed element (SINE) and a 643 bp product without it 

(Table 2-1). Polymerase chain reactions (PCRs) were run as 10 µL reactions with 5 µL 

Epicentre PreMix D master mix, 0.3 µL forward primer, 0.3 µL reverse primer, 0.1 µL New 
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England Biolabs Taq DNA polymerase, 3.3 µL H2O, and 1 µL genomic DNA. The 

following PCR cycle conditions were run on the MJ Research PTC-200 DNA Engine: 

96°C for 3 minutes, 40 cycles of [96°C for 30 seconds, 65°C for 60 seconds, 72°C for 2 

minutes], 72°C for 10 minutes. PCRs were run on a 1% agarose/TBE gel with a 100 bp 

New England Biolabs DNA ladder (Figure 2-6A). 

Table 2-1 Primers and associated amplicon lengths for height variants 

Gene Forward Reverse 
Amplicon 

length (bp) 

IGF1 (PCR) GGGCCTGGTCTTCTGCACTG GGGACTGGCCAAGTCTCAGC ~850/643 

IGF1 (qPCR) GGGCCTGGTCTTCTGCACTGATATT TGCCCCCAGCTGCCCTAAGA ~623/416 

FGF4 retrogene (set 1) GTCCTGCTGGCGGTGCTG GGGGAGGAAGTGGGTGACCT ~1700/570 

FGF4 retrogene (set 2) TGTGACACACAGATGGACCATGA CTCTCCCCCTTTCCCTCTGG 164 

SMAD2 (set 1)* GGAAGCCTTAGGGGATTTTG CTCCACCACCCACAGAAACT 683 

SMAD2 (set 2)* GGCATGGGAGAGTGACCTAA GAGCAGCCTGTGAAGGAAAC 440 

STC2 CCGTTCCAGAGCCTCTACAC GAGCTCCCTATGGTTCCAGC 296 

BANP TTTCCTCAGCTGCCACCTTC GCTGCAGAAGCCTAGCTACA 254 

* Primers reported in Rimbault et al. 2013 
 

To verify traditional PCR results, the IGF1 PCR assay was redesigned for 

quantitative PCR (qPCR) melt-curve analysis (Table 2-1). qPCRs were run as 20 µL 

reactions with 10 µL Promega GoTaq qPCR master mix, 1 µL forward primer, 1 µL 

reverse primer, 0.2 µL ROX, 5.8 µL H2O, and 2 µL genomic DNA. The following qPCR 

cycle conditions were run on the Applied Biosystems 7300 Real-Time PCR System: 50°C 

for 2 minutes, 95°C for 10 minutes, 40 cycles of [95°C for 15 seconds, 60°C for 60 

seconds, 72°C for 2 minutes], dissociation step (95°C for 15 seconds, 60°C for 30 

seconds, 95°C for 15 seconds). Genotype calls are based on the combination of melt-

curve plots as well as the ratio of P2/P1 (Figure 2-6B). 

Multiple SNPs are significant near STC2 and BOD1 on chromosome 4 for the 

association with height at the withers in Boyko et al. 2010. This locus was also 

investigated in the more recent Rimbault et al. 2013 study. At this point no specific variant 
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has been identified as the most likely causative mutation, so primers were designed to 

amplify a 296 bp product that contains a SNP reported in Boyko et al. 2010 with a 

diagnostic restriction enzyme site (HpyCH4V) to form a restriction fragment length 

polymorphism (RFLP) (Table 2-1). PCRs were run as 10 µL reactions with 5 µL Epicentre 

PreMix G master mix, 0.5 µL forward primer, 0.5 µL reverse primer, 0.1 µL New England 

Biolabs Taq DNA polymerase, 2.9 µL H2O, and 1 µL genomic DNA. The following PCR 

cycle conditions were run on the Applied Biosystems Veriti Thermal Cycler: 95°C for 3 

minutes, 40 cycles of [95°C for 30 seconds, 63°C for 30 seconds, 72°C for 60 seconds], 

72°C for 5 minutes. Restriction digestions were run for 1.5 hours at 37°C with 10 µL PCR 

product, 0.5 µL HpyCH4V, and 1.0 µL NEB buffer 4 from New England Biolabs. RFLPs 

were run on a 2.5% agarose/TBE gel with a 100 bp New England Biolabs DNA ladder. 

The HpyCH4V enzyme also cuts another site within the PCR amplicon besides the 

diagnostic SNP such that the C allele results in two products: one that is 26 bp and 

another that is 270 bp. The T allele results in three products: one that is 26 bp, one that is 

96 bp, and one that is 174 bp. The 26 bp product is indistinguishable from excess 

primers, but the other RFLP producs allow genotypes to be determined (Figure 2-6C). 

The FGF4 retrotransposition on chromosome 18 is tagged by a SNP in the 

Boyko et al. 2010 association for height at the withers; in this study the retrotranspostion 

is directly tested in mixed-breed dogs. To capture all possible genotypes two sets of 

primers were designed (Table 2-1). Since the retrotransposition lacks introns, one set of 

primers (primer set 1) was designed within FGF4 that yields a 570 bp product for the 

retrotransposition allele and a ~1700 bp product for the endogenous FGF4. The ~1700 

bp product pushes the technical capacity for reliable PCR amplification and so another 

set of primers (primer set 2) was designed at the retrotransposition insertion site that 

yields a 164 bp product for alleles that do not have the retrotransposition. PCRs were run 
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as 10 µL reactions with 5 µL Epicentre PreMix G master mix (primer set 1) and PreMix D 

(primer set 2), 0.5 µL forward primer, 0.5 µL reverse primer, 0.1 µL New England Biolabs 

Taq DNA polymerase, 2.9 µL H2O, and 1 µL genomic DNA. The following PCR cycle 

conditions were run on the MJ Research PTC-200 DNA Engine: 96°C for 3 minutes, 40 

cycles of [96°C for 30 seconds, 67°C (primer set 1) and 66°C (primer set 2) for 30 

seconds, 72°C for 60 seconds], 72°C for 10 minutes. PCRs were run on a 2% 

agarose/TBE gel with a 100 bp New England Biolabs DNA ladder (Figure 2-6D). 

Like IGF1 and FGF4 retrogene, the Boyko et al. 2010 association for height at 

the withers identifies significant SNPs near SMAD2 on chromosome 7. A recent study 

proposes that a pair of deletions ~15 kb from SMAD2, and in complete linkage 

disequilibrium with each other, could be cis-regulatory causative mutations (Rimbault et 

al., 2013). The 9.9 kb deletion, the larger of the two, is genotyped by Rimbault et al. 2013 

with two sets of primers (Table 2-1). This study follows the same protocol as outlined in 

Rimbault et al. 2013 where the first primer set detects the allele without the deletion and 

the second primer set detects the 9.9 kb deletion allele (Figure 2-6E). 

On chromosome 5 a SNP near the gene BANP was identified in the Boyko et al. 

2010 study, although it was not specifically discussed. Primers were designed to amplify 

a 254 bp product containing a diagnostic restriction enzyme site (NlaIII) (Table 2-1). 

PCRs were run as 10 µL reactions with 5 µL Epicentre PreMix G master mix, 0.5 µL 

forward primer, 0.5 µL reverse primer, 0.1 µL New England Biolabs Taq DNA 

polymerase, 2.9 µL H2O, and 1 µL genomic DNA. The following PCR cycle conditions 

were run on the Applied Biosystems Veriti Thermal Cycler: 95°C for 3 minutes, 40 cycles 

of [95°C for 30 seconds, 63°C for 30 seconds, 72°C for 60 seconds], 72°C for 5 minutes. 

Restriction digestions were run for 3 hours at 37°C with 10 µL PCR product, 0.05 µL 

NlaIII, and 1.525 µL NEB buffer 4, and 0.425 µL (1:10 dilution of 100X) BSA from New 
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England Biolabs. RFLPs were run on a 2.5% agarose/TBE gel with a 100 bp New 

England Biolabs DNA ladder. Like with the STC2 RFLP, the BANP PCR product contains 

two restriction sites, one of which is for the diagnostic SNP. The T allele results in three 

products: one that is 52 bp, one that is 79 bp, and one that is 115 bp. The C allele results 

in two products: one that is 79 bp and one that is 171 bp (Figure 2-6F). 
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Figure 2-6 Representative genotyping results for mixed-breed dogs. (A) IGF1 short-

interspersed element (SINE). (B) Melt-curves for IGF1 SINE (inset comparison of PCR 

and qPCR results). (C) STC2 RFLP. (D) FGF4 retrogene insertion. (E) SMAD2 deletion. 

(F) BANP RFLP. 
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Inspection of the correlations between genotyped variants and the sum of 

scapula, humerus, and radius reveals that the variants for IGF1, FGF4 retrogene, and 

SMAD2 are significantly correlated with height; the correlations for STC2 and BANP are 

less clear (Figure 2-7). 
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Figure 2-7 Correlation of genetic variants and measure of height in mixed-breed dogs. 
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With mixed-breed dogs interrelatedness is expected to play a less important role 

than with the purebred panel in Boyko et al. 2010, but to capture broad trends of 

population structure and interelatedness within the panel, six microsatellites were 

analyzed with SPAGeDi to generate a kinship matrix (Figure 2-8) (Fondon and Garner, 

2004; Hardy and Vekemans, 2002). 
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Figure 2-8 Kinship matrix of mixed-breed dogs where red is more related and blue is less 

related. 

The software package Tassel was used to estimate the effect sizes of height 

variants, with (MLM) and without (GLM) applying the aforementioned kinship matrix 

(Bradbury et al., 2007). Results for both models are summarized in Table 2-2. Although 

the kinship matrix does impact effect size estimates, the effect is not severe enough to 
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preclude performing multi-locus analysis without correcting for relatedness similar to as 

was done earlier in this study. 

Table 2-2 Correlation between height variants and height in mixed-breed dogs 

 GLM MLM GLM MLM GLM MLM 

Gene F-value F-value p-value p-value R
2
 R

2
 

IGF1 11.6 11.3 2.5e-5 3.2e-5 0.165 0.161 
FGF4 retrogene 57.7 60.5 6.5e-18 1.7e-18 0.510 0.521 
SMAD2 27.9 28.0 1.2e-10 1.2e-10 0.323 0.323 
STC2 4.6 4.9 0.012 0.009 0.072 0.076 
BANP 0.7 0.6 0.475 0.557 0.013 0.010 

 

Consistent with Figure 2-7, IGF1, FGF4 retrogene, and SMAD2 are significantly 

associated with height variation in the mixed-breed dogs. At P < 0.05 STC2 is also 

significant; with a Bonferroni correction for multiple testing STC2 is only significant for the 

MLM that includes the kinship matrix (P < 0.01). The BANP SNP is not significant for 

either GLM or MLM models. It is likely that linkage disequilibrium has been broken up 

between the causal mutations and SNPs genotyped near STC2 and BANP, thus leading 

to weak to no signal in the mixed-breed dogs. In contrast, where likely causative 

mutations have been genotyped for IGF1, FGF4 retrogene, and SMAD2, correlations are 

much more significant. 

Due to missing genotypes for some of the dog samples, 112 dogs are used for 

the multi-locus model because they have complete genotype data. In the multi-locus 

model with IGF1, FGF4 retrogene, SMAD2, and STC2, 67% of variation in height is 

captured in the panel of mixed-breed dogs. Removing IGF1 from this model drops the 

percentage explained to 62% (5% drop). Dropping FGF4 retrogene from the full model 

lowers the percentage to 41% (26% drop). Removing SMAD2 results in a 3% drop and 

STC2 in a 1% decrease in the percentage explained.  



 

79 

The picture that emerges from this analysis is that FGF4 retrogene is very much 

a large effect size variant, drastically altering the height of dogs. IGF1 and SMAD2 on the 

other hand correlate with a reduction in height, but have more moderate effect sizes. 

Although this mixed-breed panel does break up correlated allelic effects to some extent, 

correlated allelic effects still likely overestimate the percent of variation (67%) actually 

caused by these four variants. While these four loci can explain 67% of variation, they 

likely cause about 35% of variation (FGF4 retrogene 26% + IGF1 5% + SMAD2 3% + 

STC2 1%). The effect size distribution that is most consistent with these large and 

moderate effect sizes is the exponential distribution (Figure 2-1), albeit likely shifted 

towards larger effect sizes relative to humans. 

 

Conclusion 

Chapter 1 examined how many of the same QTLs influence variation in height in 

humans and dogs. This work found that at least 25 height QTLs are shared between the 

species. Chapter 2 explored the distribution of effect sizes for variants that contribute to 

height differences in humans and dogs. Methodological considerations have led to 

interpretations of genetic architecture that are misleading and unproductive in both 

humans and dogs. 

Despite reports of an infinitesimal model in humans and a simple model in dogs, 

this work suggests an exponential distribution of QTL effect sizes best describes the 

genetic architecture of height in both humans and dogs. Sample composition and the 

marker-based approach has likely biased the types of variants and perceived effect sizes 

in humans, leading to the ill-conceived notion to reject the exponential model when 

modest to large effect size variants absolutely exist. Correlated allelic effects contribute to 

inflating QTL effect size estimates in dogs and result in a simplified view of genetic 
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architecture that ignores the rich genetic complexity that exists below large and modest 

effect size variants. This does not mean that the exponential distributions for humans and 

dogs are identical, rather, depending on the population, humans are likely shifted towards 

smaller effect sizes. 

 In conclusion, it is probably more productive to view gene effect size 

distributions as a continuum, thus keeping the focus on understanding the genetic 

architecture of variation rather than seeking to categorize it.  
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Chapter 3  

The Influence of PRDM9 on Genetic Architecture 

Introduction 

Chapters 1 and 2 studied aspects of the genetic architecture of variation in 

humans and dogs after variants have already sufficiently increased in frequency to be 

detected by genome-wide scans. Chapter 3 takes a different angle on the genetic 

architecture of variation and explores the basis of mutation and recombination patterns 

that can influence the generation and fate of QTLs. 

During prophase I of meiosis, crossing over of homologous chromosomes leads 

to increased genetic diversity and is essential for chromosomal segregation during 

anaphase (Cohen and Pollard, 2001; Hartl and Clark, 1997). Before crossovers between 

homologous chromosomes can form, double-strand breaks are introduced to 

chromosomes by a homolog of the yeast protein Spo11 (Keeney, 2001; Keeney et al., 

1997; Szostak et al., 1983). Double-strand breaks are non-randomly distributed along 

chromosomes where some regions are considered hotspots for meiotic recombination 

(Gerton et al., 2000; Petes, 2001). While not every double-strand break results in a 

crossover, every double-strand break needs to be repaired (Haber, 2000; Szostak et al., 

1983). Since the repair of double-strand breaks is inherently biased, error-prone, and can 

lead to genomic instability, understanding the process that influences the localization of 

double-strand break hotspots is of broad interest (Ferguson and Alt, 2001; Khanna and 

Jackson, 2001; O’Driscoll and Jeggo, 2006).  

Work in humans and mice has identified PRDM9 as a protein central to directing 

the localization of double-strand breaks, and specifically directing them away from the 

promoter regions of genes (Baudat et al., 2010; Brick et al., 2012; Myers et al., 2010; 

Parvanov et al., 2010; Ségurel et al., 2011). Mechanistically, PRDM9 binds triplet DNA 
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targets with a zinc finger domain and directs the initiation of double-strand breaks by 

trimethylating histone H3 at lysine 4 (Buard et al., 2009; Smagulova et al., 2011). An 

important feature of PRDM9 is that the zinc finger binding site is rapidly evolving, thus 

double-strand break localization should vary across time and among different alleles 

(Groeneveld et al., 2012; Oliver et al., 2009; Ponting, 2011; Thomas et al., 2009). 

Interestingly, before PRDM9 was connected with meiotic recombination, it was labeled as 

a speciation gene for its role in causing infertility in mice with different alleles (Flachs et 

al., 2012; Mihola et al., 2009). The evolutionary impact of incompatible PRDM9 alleles 

will be discussed in more detail later. 

Recently, a functional copy of PRDM9 was shown to be missing in the canid 

lineage, a lineage that includes dogs, wolves, foxes, jackals, and coyotes. Relative to 

humans and mice, meiotic recombination hotspots in dogs are more stable and less 

pronounced (Axelsson et al., 2012). They are also often localized near repetitive GC-rich 

regions of the genome as well as the promoters of genes (Auton et al., 2013; Axelsson et 

al., 2012). Since the loss of PRDM9 occurred in the common ancestor of the canid 

lineage, it is challenging to know for certain if observed patterns of recombination in dogs 

are exclusively due to the loss of PRDM9, or are the consequence of subsequent 

evolutionary events. Teasing apart cause and consequence as it relates to the specific 

DNA motifs being targeted for double-strand breaks is particularly challenging because 

up to ~49 million of years have passed since PRDM9 was lost in the common ancestor of 

the canid lineage (Auton et al., 2013). 

Despite this limitation, it has been suggested that GC-biased gene conversion is 

a plausible mechanism to explain the enrichment of GC-rich sequences at recombination 

hotspots in dogs (Auton et al., 2013; Axelsson et al., 2012). GC-biased gene conversion 

is a phenomenon where G or C nucleotide bases are preferentially chosen as the 
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template for single base-pair mismatches of heteroduplex DNA (Duret and Galtier, 2009; 

Galtier et al., 2001). However, the role of GC-biased gene conversion in this context must 

be viewed as speculative until it can be clarified whether recombination at repetitive GC-

rich motifs is a consequence of GC-biased gene conversion at sites with recurrent 

recombination, or is directly due to where double-strand breaks tend to occur without 

PRDM9. Clarifying where double-strand breaks occurred when PRDM9 was lost in the 

common ancestor of the canids is also relevant because of how this story intersects with 

another seemingly unrelated observation: relative to other mammals, the canid lineage 

harbors an enrichment of tandem repeat mutations, particularly GC-rich repeats (Laidlaw 

et al., 2007).  

Tandem repeats mutate 10 to 100,000 times more than other parts of the 

genome and can have functional consequences, and in some cases lead to rapid 

morphological evolution (Fondon and Garner, 2004; Gemayel et al., 2010; Usdin, 2008; 

Verstrepen et al., 2005). Although tandem repeat mutations are typically thought of as the 

consequence of slippage during replication, the contribution of recombination to tandem 

repeat mutations could be substantial (Gemayel et al., 2010). Interestingly, the 

destabilization of tandem repeats occurred in the canid lineage about the same time 

functionality of the recombination-directing gene PRDM9 was lost (Axelsson et al., 2012). 

This coincidence prompts the question: could the loss of PRDM9 have caused the 

destabilization of tandem repeats in the canid lineage? In order to conclude that the 

death of PRDM9 gave rise to a repeat mutator in the canid lineage, two conditions must 

be met: 1) Meiotic double-strand breaks must lead to the destabilization of repetitive 

sequences and 2) Repetitive sequences must be a target for double-strand breaks in the 

absence of PRDM9. Data from a recent study in mice, where PRDM9 is knocked out and 

double-strand breaks are directly interrogated, allows for a direct test that clarifies where 
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double-strand breaks occur without PRDM9 and can reveal if the loss of PRDM9 gave 

rise to a repeat mutator (Brick et al., 2012). 

 

Establishing the Loss of PRDM9 as a DNA Repeat Mutator 

Recombination Destabilizes Tandem Repeats 

The first condition that must be met to establish the loss of PRDM9 as a repeat 

mutator is that meiotic double-strand breaks must lead to the destabilization of repetitive 

sequences. While it was established years ago that meiotic recombination can lead to 

expansions and contractions of tandem repeats of ~375 bp (Pâques et al., 1998), what 

about simple sequence repeats? 

It has been demonstrated that zinc-finger directed double-strand breaks 

destabilize triplet repeats in human cells (Mittelman et al., 2009). Mismatch repair of 

heteroduplex DNA, a consequence of meiotic double-strand breaks, can destabilize 

tandem repeats as well (Pearson et al., 2005). Based on these studies that identify 

double-strand breaks and mismatch repair as factors that destabilize tandem repeats, if 

repeats are targets of recurrent meiotic recombination they will become destabilized. 

A recent study found that where heteroduplex DNA mismatches are insertions or 

deletions (indels), there is a bias towards using the insertion allele as a template for the 

other strand (Leushkin and Bazykin, 2013). This insertion bias is strongest for shorter 

insertions and tails off as insertion length increases. Unlike GC-biased gene conversion 

which is relatively weak (50.62% bias), or in some cases non-existent (in the fly), the 

insertion bias is particularly strong with an up to 5 fold excess in regions of high 

recombination (Duret and Galtier, 2009; Leushkin and Bazykin, 2013; Mancera et al., 

2008; Robinson et al., 2013). This insertion-biased gene conversion could expand 

repeats that are destabilized through recurrent meiotic recombination. 
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A more stable recombination landscape in dogs means that the same genomic 

locations are subject to recurrent meiotic recombination (Axelsson et al., 2012), making 

the destabilization of tandem repeat DNA inevitable as long as tandem repeats have 

been a target for meiotic double-strand breaks since the common ancestor of the canid 

lineage lost PRDM9. 

Hypothesis-based Approach 

The first requirement to establish the loss of PRDM9 as a repeat mutator in the 

canid lineage is met: meiotic double-strand breaks lead to the destabilization of tandem 

repeats. Since up to ~49 million years of evolution has occurred since PRDM9 was lost in 

the common ancestor of the canid lineage, enriched motifs at meiotic recombination 

hotspots in dogs do not necessarily reflect motifs targeted when PRDM9 was first lost. 

However, if the most destabilized repeats in dogs are targets for double-strand breaks in 

the PRDM9 knockout mouse, this would suggest that the loss of PRDM9 led to the 

destabilization of repeats in the canid lineage. 

The study of Brick et al. 2012 uses chromatin immunoprecipitation to pull down 

DNA that is bound to DMC1 after having been cut by SPO11 during meiotic 

recombination. These DNA fragments represent the locations of double-strand breaks 

and were subsequently sequenced and mapped to the mouse genome. In this way the 

locations of double-strand breaks were directly interrogated for mice with different 

PRDM9 alleles and for a PRMD9 knockout as well. By examining where double-strand 

breaks occur in a PRDM9 knockout mouse, the millions of years of evolution in the canid 

lineage can be sidestepped and it becomes clear if the loss of PRDM9 led to the 

destabilization of tandem repeats in canids. 

One of the observations that came out of the analysis of Laidlaw et al. 2007 is 

that GC-rich tandem repeats are among the most destabilized repeats in the dog 



 

86 

genome. For example, the BMP6 gene contains a massive expansion of CGGn repeats in 

the canid lineage that is absent in other mammals (Laidlaw et al., 2007). Interestingly, the 

CGGn motif also comes through as one of the motifs that is most enriched at 

recombination hotspots in dogs, suggesting that in the absence of PRDM9, CGGn is a 

common target for meiotic double-strand breaks (Auton et al., 2013; Axelsson et al., 

2012). Based on the work of Laidlaw et al. 2007, four particularly destabilized DNA motifs 

in the dog genome are: CGGn, CGGGn, CGGGGn, and Cn. It can be concluded that the 

loss of PRDM9 caused a destabilization of tandem repeats in the canid lineage if these 

motifs match the genomic targets of double-strand breaks in the PRDM9 knockout 

mouse. 

One way to test these four GC-rich motifs is to examine the enrichment of word 

counts at double-strand break hotspots for different length k-mers in the PRDM9 

knockout mouse. Motifs are counted for the top quarter of mapped, non-overlapping, 

autosomal double-strand break hotspots as defined by Brick et al. 2012 using the 

EMBOSS wordcount tool (Rice et al., 2000). Null counts are the average of motif word 

counts from the same number of flanking base pairs as in the adjacent hotspot. This 

analysis reveals that the most destabilized repeats in the dog genome are 

overwhelmingly among the most enriched motifs targeted in the PRDM9 knockout mouse 

(Table 3-1). 
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Table 3-1 Enriched motifs in the dog genome are targeted in PRDM9 knockout mice 

K-mer Metric CGGn CGGGn CGGGGn Cn 

5 
(n = 1,024) 

Top rank 3 12 12 224 

Mean rank 9.8 19.5 42 226 

Percentile 99.0 98.1 95.9 78.0 

6 
(n = 4,096) 

Top rank 2 50 74 1,150 

Mean rank 16.8 67.1 84.5 1,153 

Percentile 99.6 98.4 97.9 71.9 

7 
(n = 16,384) 

Top rank 17 45 56 5,464 

Mean rank 21.5 207 306 5,485 

Percentile 99.9 98.7 98.1 66.5 

8 
(n = 65,536) 

Top rank 97 214 264 23,460 

Mean rank 138 556 1,315 23,614 

Percentile 99.8 99.2 98.0 64.0 

9 
(n = 262,144) 

Top rank 779 1,504 1,246 89,857 

Mean rank 1,117 2,033 4,166 90,667 

Percentile 99.6 99.2 98.4 65.4 

10 
(n = 1,048,576) 

Top rank 1,035 2,320 2,621 235,408 

Mean rank 1,873 2,937 4,191 237,273 

Percentile 99.8 99.7 99.6 77.4 

Average percentile 99.6 98.9 98.0 70.5 

 

 
Across 5-mers through 10-mers, the CGGn motif is on average more enriched 

than 99.6% of all other possible motifs. With the 6-mer, CGGn is the second most 

enriched motif out of 4,096 possible motifs. The top motif for 6-mers is GCCGCGn, 

another GC-rich motif quite similar to CGGn. The CGGGn and CGGGGn motifs are more 

enriched than 98.9% and 98% of all other motifs for 5-mers through 10-mers, 

respectively. The Cn motif is more modest in its enrichment at 70.5%. 

Another approach to examine fold enrichment of the CGGn, CGGGn, CGGGGn, 

and Cn motifs is with a 200 bp sliding window with 1 bp steps for hotspots in wild-type B6 

mice and PRDM9 knockout mice. To match motif length with k-mer lengths, the CGGn 

motif was assessed as a 9-mer, CGGGn as an 8-mer, CGGGGn as a 10-mer, and Cn as a 
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10-mer. DNA complements and all possible reading frames are included for each motif 

considered. Double-strand break hotspot regions are 5 kb and centered on 2 kb 

autosomal hotspots as reported from the study of Brick et al. 2012. Five kb of null 

sequence is derived from 2.5 kb flanking each 5 kb hotspot; hotspots with overlapping 

null flanks are excluded, leaving 20,360 PRDM9 knockout hotspots and 15,503 wild-type 

B6 hotspots. Enrichment is calculated as the mean of the motif frequency by position in 5 

kb hotspots relative to the mean motif frequency of 5 kb of flanking null sequence. Sliding 

window analysis was performed in R using the BSGenome, Biostrings, plyr, stringr, and 

ggplot2 packages (Pages; Pages et al.; R Core Team, 2013; Wickham, 2009, 2011, 

2012). 

Sliding window analysis supports the word count analysis where all four motifs 

enriched in the dog genome are also targets for double-strand breaks in the PRDM9 

knockout mouse (Figure 3-1). These results indicate that the loss of PRDM9 directly 

causes double-strand breaks to occur at repetitive GC-rich regions of the genome. Also 

consistent with the word count analysis, the CGGn motif has the highest degree of 

enrichment followed by CGGGn, CGGGGn, and Cn (Figure 3-1). 
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Figure 3-1 Fold enrichment at hotspots in wild-type (B6/B6) and PRDM9 knockout (Δ/Δ) 

mice for repetitive DNA motifs enriched in the dog genome. 

If repetitive GC content is a target for double-strand breaks in the absence of 

PRDM9, and there is bias for insertion alleles, this could certainly destabilize and in some 

cases expand existing repetitive GC content. Figure 3-1 only assesses perfect repeats; it 

does not capture repeats with mismatches or impurities. Are pure or impure GC-rich 

repeats better targets for double-strand breaks in the absence of PRDM9? To address 

this question, the perfect 9-mer CGGn motif is compared to 9-mer CGGn motifs with one 

mismatch in the 3 bp head or tail of the motif. Interestingly, the mismatch CGGn motifs 

are actually more enriched (~2 fold) than the perfect CGGn 9-mer motif (Figure 3-2). Note 

that in the wild-type B6 mouse there is a slight peak at the center of hotspots. Is it 
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possible that even with a functional copy of PRDM9, some CGGn motifs are targets of 

double-strand breaks? This idea will be revisited momentarily. 

 

Figure 3-2 Fold enrichment at hotspots in wild-type (B6/B6) and PRDM9 knockout (Δ/Δ) 

mice for perfect 9-mer CGGn motifs and those with one mismatch in the 3 bp head or tail. 

These results suggest that without PRDM9, regions of the genome that are only 

partially GC-rich and repetitive are also strong targets for double-strand breaks. Thus in 

the absence of PRDM9, existing GC-rich repeats will be destabilized, and new GC-rich 

repeats will be created. As hotspot strength increases, so does the proportion of hotspots 

that contain the CGGn motif (Table 3-2). While the CGGn motif is neither necessary nor 

sufficient for the formation of double-strand breaks in the absence of PRDM9, this motif is 

present in some of the hottest double-strand break hotspots, suggesting that the 

enrichment of this motif in dogs is not merely a consequence of recurrent double-strand 
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breaks and GC-biased gene conversion. These sequences have been targeted ever 

since PRDM9 was lost. 

Table 3-2 Percentage of hotspots with imperfect 9-mer CGGn motif 

Mapped autosomal 
hotspots 

PRDM9 knockout  
(n = 24,474) 

Wild-type (B6) 
(n = 17,159) 

All 43.5 5.1 

Top half 56.2 4.9 

Top quarter 66.3 4.7 

Top eighth 73.7 4.5 

Top 1000 77.4 5.1 

Top 100 83 8 

 

Collectively, these results indicate that the most destabilized repeat motifs in the 

dog genome are enriched targets for double-strand breaks in the PRDM9 knockout 

mouse. I conclude that the loss of PRDM9 is responsible for destabilizing tandem repeats 

in the common ancestor of the canid lineage. 

Hypothesis-free Approach 

With the hypothesis-based approach, the loss of PRDM9 was linked to some of 

the most destabilized tandem repeats in the dog genome. By taking a hypothesis-free 

approach, greater perspective can be gained on all of the targets of double-strand breaks 

when PRDM9 is lost. To do this, all 6-mer motifs are counted for the top 10,000 mapped, 

non-overlapping, autosomal double-strand break hotspots in wild-type B6 and PRDM9 

knockout mice using the EMBOSS wordcount tool (Rice et al., 2000). As before, null 

counts are the average of motif word counts from the same number of flanking base pairs 

as in the adjacent hotspot. This analysis reveals that high GC-content dominates 

enriched motifs at double-strand breaks in PRDM9 knockout mice (Figure 3-3). 



 

92 

 

Figure 3-3 Wordcounts (6-mer) for wild-type (B6) and PRDM9 knockout mice. GC-

content is correlated with motif enrichment in PRDM9 knockout mice (inset). 

Consistent with the hypothesis-based approach that noted a slight enrichment of 

Cn, the hypothesis-free approach finds that mononucleotides of C and G are somewhat 

enriched (Figure 3-3). The plume of highly enriched motifs near zero on the x-axis in 

Figure 3-3 consists of GC-rich motifs, where a cluster of CGGn motifs are the most 

enriched. Another observation from the comparison of wild-type and knockout PRDM9 

mice is that while many motifs are enriched in the knockout, only a few motifs show 

enrichment in the wild-type. This observation is consistent with a flatter distribution of 

hotspots in dogs where many sequences can be targets of double-strand breaks, but 

they do tend to be GC-rich (Auton et al., 2013; Axelsson et al., 2012). Reassuringly, 

some of the most enriched sequences in the B6 mouse match the predicted PRDM9 

binding site in the study of Brick et al. 2012. An examination of word counts for 7-mers 

through 10-mers reinforces the finding that repetitive GC-rich content is a common target 
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for double-strand breaks in the absence of PRDM9, although it is certainly not the only 

target (Table 3-3). In Table 3-3 enriched motifs, hot and coldspot counts, and fold 

enrichment are derived from the top quarter (n = 6065) of hotspots in the PRDM9 

knockout mouse. The percentage of hotspots with given motifs are calculated based on 

all reported hotspots in PRDM9 knockout and wild-type mice. Since DNA complements 

and reading frame permutations were similarly enriched, reported motifs are 

representative. 

Table 3-3 Top enriched hotspots for 7, 8, 9, and 10-mer motifs 

Motif 
length 

Motif Repeat 
Hotspot 
count 

Coldspot 
count 

Fold 
enrichment 

Knockout 
hotspots with 

motif (%) 

Wild-type 
hotspots with 

motif (%) 

7 gcggcgg CGG 5758 216.5 26.6 31.1 1.9 

7 gcggggc CGGGG 4095 258.5 15.8 34.4 3.2 

7 cccgccc - 5657 513.5 11.0 49.3 8.9 

8 gcggcggc CGG 3276 111 29.5 18.1 0.9 

8 ggcggggc CGGGG 2315 126.5 18.3 23.1 1.6 

8 gggcgggg - 2999 302 9.9 35.6 5.3 

9 cggcggcgg CGG 1820 59.5 30.6 12.7 0.5 

9 gggcggggc CGGGG 1481 79.5 18.6 16.0 1.0 

9 ggggcgggg - 1760 208.5 8.4 25.8 3.7 

10 cggcggcggc CGG 1302 40.5 32.1 8.0 0.3 

 

The results of the hypothesis-free test are highly similar to studies in the dog 

where GC-rich simple repeats are extremely common targets for meiotic recombination 

(Auton et al., 2013; Axelsson et al., 2012). Thus high levels of repetitive GC-content at 

sites of recombination in dogs is a reflection of where double-strand breaks tend to occur 

in the absence of PRDM9, not the consequence of extensive GC-biased gene 

conversion. While GC-biased gene conversion may have played some role in increasing 

the GC-content in the dog genome, it is not required to fully explain why GC-rich 

repetitive DNA is a common target of meiotic recombination. 
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The Generation and Fate of QTLs 

The loss of PRDM9 impacts the localization of meiotic double-strand breaks and 

has consequences for the generation and fate of QTLs. Studies in both mice and dogs 

find that in the absence of PRDM9, meiotic double-strand breaks are more prone to occur 

in the functional regions of genes (Auton et al., 2013; Brick et al., 2012). With 

recombination occurring more frequently in regions of the genome with a high gene 

density, the mutagenic aspect of recombination is predicted to have a larger role in 

generating QTLs in canids relative to other taxa with functional copies of PRDM9. In 

addition, those QTLs will have a greater likelihood of escaping their genetic contexts 

because they are in recombination hotspots. While the recombination landscape without 

PRDM9 tends to be flatter than with the protein, it is also more stable, leading to long-

lasting recombination hotspots. A more stable recombination landscape promotes 

tandem repeat destabilization as well as the generation of recurrent QTLs. 

Tandem repeats are highly mutagenic and could play a significant role in the 

seemingly never-ending supply of genetic variation in dogs, despite intense selective 

pressure and inbreeding. This is particularly relevant because of the role tandem repeats 

might be playing in rapid and continuous morphological evolution in dogs (Fondon and 

Garner, 2004). Perhaps these tandem repeats induced by the loss of PRDM9 are part of 

the explanation for why another member of the canid lineage, the silver fox, has been 

domesticated in only a few generations, with blue eyes, curly tails, and other dog-like 

attributes simultaneously appearing (Trut, 1999). The incredible evolvability and tendency 

to be domesticated in the canid lineage could be the consequence of how the loss of 

PRDM9 has altered the generation and fate of QTLs. 

Destabilizing the repetitive GC-content of the genome can have more serious 

consequences than curly tails and blue eyes – it can lead to genomic instability. A recent 
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review of repeat expansion diseases highlights the reality that GC-rich repeats are 

among the most common motifs that impact disorders associated with genomic instability 

like Fragile X disorders (Kumari et al., 2012). In addition, it has been proposed that the 

high GC-content at subtelomeres in the dog genome are the consequence of 

chromosomal fission at GC-rich regions of the genome (Webber and Ponting, 2005). A 

synteny map of humans and dogs reflects these extensive chromosomal fissions.  

 

Figure 3-4 Synteny map of dog (larger numbers) and human (smaller numbers) 

chromosomes. 

Is it possible that chromosomal fissions may be the eventual consequence of 

losing PRDM9 and the subsequent increase in GC-rich repeats? If the loss of PRDM9 

has in fact led to genome instability, it is remarkable that the loss of a single protein has 
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drastically altered genome architecture and the generation and fate of QTLs in the canid 

lineage. How could a protein as important as PRDM9 be lost in the first place? Shouldn't 

purifying selection keep PRDM9 around? 

 

Model for the Death of PRDM9 

It was previously mentioned how infertility can result from incompatibility of 

different PRDM9 alleles in mice, hence the origin of its title as a speciation gene (Mihola 

et al., 2009). Since PRDM9 knockout mice are infertile, how did the death of PRDM9 

evolve in the canid lineage, an event that is predicted to be under considerable purifying 

selection? 

Although mutators can offer a selective advantage in some contexts, because 

vital functions are unprotected from mutators, selection is predicted to act against them in 

the long run (Giraud et al., 2001). It has been proposed that mutators of simple sequence 

repeats can however be selectively advantageous because of their role as "tuning knobs" 

for genes and gene networks (Kashi and King, 2006a, 2006b; King, 2012). While this 

seems plausible, computer simulations suggest that repeat mutators can almost evolve 

neutrally, but are never advantageous (J.W. Fondon III). If different PRDM9 alleles are 

compatible with each other and do not confer infertility, the loss of PRDM9 is unlikely to 

evolve because of its role as mutator (Figure 3-5A). If on the other hand, as is observed 

in mice, different PRDM9 alleles are incompatible with each other and confer infertility, a 

heterozygous genotype with one null PRDM9 allele could be compatible with all other 

PRDM9 alleles, providing a selective advantage (Figure 3-5B). Once the null PRDM9 

allele increased sufficiently in frequency so that it started to occur in homozygosity, a 

compensating mutation would be necessary to sidestep the sterility that is observed in 

homozygous PRDM9 knockout mice (Figure 3-5C).  
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Figure 3-5 Model for how a null PRDM9 allele could be selectively advantageous in 

heterozygosity and homozygosity. 

 

Questioning the Human PRDM9 Binding Site 

One of the observations from the sliding window analysis was that even in the 

wild-type B6 mouse, there appeared to be a slight enrichment of the CGGn motif at the 

center of double-strand break hotspots (Figure 3-2). Why would the CGGn motif be a 

target for double-strand breaks even with a functional copy of PRDM9? 

A peculiar finding by the Brick et al. 2012 study is that in the pseudo-autosomal 

region of the X chromosome, PRDM9 does not direct where double-strand breaks occur. 

The pseudo-autosomal region of the X chromosome in humans and mice is characterized 

by extensive GC-content and is the only region of the genome where recombination 

always occurs, even with the Y chromosome, to guarantee proper segregation of sex 

chromosomes (Brick et al., 2012; Kent et al., 2002). Is it possible that if GC-content is 

enriched enough, the PRDM9-indepedent process, observed in the knockout mouse and 

in the canid lineage, supersedes PRDM9 to determine the location of double-strand 
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breaks? This could explain the slight enrichment of CGGn in the center of hotspots in 

mice with a functional copy of PRDM9: a subset of hotspots, like those in the pseudo-

autosomal region of the X chromosome, is directed by a PRDM9-independent process 

that primarily targets GC-rich repetitive DNA. 

If this hypothesis is true, perhaps the 13-mer predicted PRDM9 DNA binding site 

(CCNCCNTNNCCNC), derived from shared recombination hotspots in humans (Baudat 

et al., 2010), actually reflects the PRDM9-independent process. This is plausible since as 

was shown in mice, different PRDM9 alleles alter the localization of double-strand 

breaks. Assuming that the populations from which shared recombination hotspots are 

derived have different PRDM9 alleles, any shared hotspots would likely reflect the 

PRDM9-independent process. In addition, DNA binding site predictions based on 

bioinformatics, not biochemistry, should always be viewed with caution.  

Since the human and mouse PRDM9 alleles are different, there is no expectation 

that the human PRDM9 binding site should be a good predictor for the mouse PRDM9 

binding site. However, if the human consensus PRDM9 binding motif is enriched in the 

PRDM9 knockout mouse, this suggests that the human consensus binding site is actually 

tracking the PRDM9-independent process, not PRDM9. This is exactly what is observed 

where the human PRDM9 DNA binding site is predictive of hotspots in mice without a 

functional copy of PRDM9 (Figure 3-6). 
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Figure 3-6 The predicted human PRDM9 DNA binding site is a motif enriched in PRDM9 

knockout mice. 

It is interesting to speculate if perhaps humans, with our various alleles of 

PRDM9 (Berg et al., 2011), are vulnerable to the death of PRDM9 in our own lineage. As 

proposed earlier, if enough alleles of PRDM9 are incompatible, this could provide the 

ideal environment for a null PRDM9 allele to increase in frequency (Figure 3-5). With a 

compensating mutation to offset any negative consequences of a null PRDM9 allele in 

homozygosity, humans could join the evolutionary trajectory of canids that possess an 

incredible capacity for adaptation and diversification. 
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Conclusion 

This study finds that in the absence of PRDM9, double-strand break hotspots 

often localize to GC-rich repetitive regions of the genome. Recurrent double-strand break 

localization and mismatch repair has led to a massive destabilization of tandem repetitive 

DNA in the canid lineage, some of which has already been shown to have functional 

consequences. The death of PRDM9 not only changes the recombination landscape in 

canids, but affects genome stability and the generation and fate of QTLs. 

In addition, a model is proposed for how PRDM9 could have been lost in the 

canids lineage, where incompatible PRDM9 alleles make the a null mutation selectively 

favored, followed by a subsequent compensating mutation to prevent sterility in 

homozygosity. 

Finally, this study questions the predicted PRDM9 DNA binding site in humans 

and concludes that the existing consensus sequence likely predicts for a PRDM9-

independent process. This PRDM9-independent process directs the localization of 

double-strand breaks in a subset of chromosomal regions, including the pseudo-

autosomal region, and is the primary mechanism responsible for the localization of 

double-strand breaks in the canid lineage. 
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Appendix A 

Code and Associated Files for Chapter 1
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################################################################################ 

# R code to: 

# Create human height plots by country, population, and for individuals 

################################################################################ 

 

#Plot world height by population 

#File derived from supplementary table given in Appendix I  

#of (Gustafsson and Lindenfors, 2004) 

ht<-read.table("world_height_pops.txt",sep="\t", header=TRUE) 

#Columns are: Region Population Sex Height 

ht$Height <- as.numeric(ht$Height)*0.393701 

ht$Population<-with(ht,reorder(ht$Population,ht$Height)) 

library(ggplot2) 

palette1<- c("#980043","#253494") 

cbbPalette <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2",  

                "#D55E00", "#CC79A7") 

ggplot(ht, aes(Population,as.numeric(Height),colour=Region)) +  

  geom_point(size=2) + theme_bw() + ylab("Average height (inches)") +  

  coord_flip() + scale_color_manual(values=cbbPalette) +  

  theme(axis.text.y = element_blank(), axis.ticks.y = element_blank()) 

 

#Plot world height by country 

ht<-read.table("world_height.txt",sep="\t",header=TRUE) 

ht$Country<-with(ht,reorder(ht$Country,ht$Height)) 

ht$Height<-ht$Height*39.3701 

#library(ggplot2) 

palette1<- c("#980043","#253494") 

ggplot(ht, aes(Country,Height,colour=Sex)) + geom_point(size=3) + theme_bw() + 

  scale_color_manual(values=palette1) + 

  ylab("Average height (inches)") + coord_flip() 

 

#Plot individual height from Galton's data 

library(UsingR) 

data(galton) 

data(father.son) 

ggplot(father.son, aes(father.son$sheight)) + geom_bar() + theme_bw() +  

  xlab("Height (inches)") + ylab("Count") 
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world_height.txt file to plot height by country 

 

Country Height Sex Order 

Argentina 1.7348 Male 130 

Argentina 1.6076 Female 43 

Australia 1.784 Male 159 

Australia 1.748 Male 134 

Australia 1.645 Female 73 

Australia 1.634 Female 62 

Austria 1.792 Male 164 

Austria 1.676 Female 98 

Bahrain 1.651 Male 83 

Bahrain 1.542 Female 12 

Belgium 1.786 Male 161 

Belgium 1.681 Female 102 

Bolivia 1.6 Male 39 

Bolivia 1.422 Female 1 

Brazil 1.74 Male 133 

Brazil 1.731 Male 127 

Brazil 1.611 Female 45 

Brazil 1.601 Female 40 

Cameroon 1.706 Male 119 

Cameroon 1.613 Female 48 

Canada 1.76 Male 141 

Canada 1.751 Male 136 

Canada 1.633 Female 60 

Canada 1.623 Female 54 

Chile 1.712 Male 123 

Chile 1.71 Male 122 

Chile 1.696 Male 108 

Chile 1.591 Female 34 

Chile 1.572 Female 20 

Chile 1.561 Female 16 

China 1.702 Male 112 

China 1.663 Male 91 

China 1.586 Female 26 

China 1.57 Female 18 

Colombia 1.706 Male 118 

Colombia 1.587 Female 29 

Croatia 1.805 Male 167 

Croatia 1.663 Female 90 

Czech Republic 1.8031 Male 166 

Czech Republic 1.6722 Female 95 

Denmark 1.826 Male 173 

Denmark 1.687 Female 106 

Egypt 1.703 Male 115 

Egypt 1.589 Female 31 

El Salvador 1.656 Male 85 

El Salvador 1.603 Female 41 

England 1.771 Male 149 

England 1.768 Male 145 

England 1.766 Male 144 

England 1.639 Female 70 

England 1.637 Female 67 

England 1.632 Female 59 

Finland 1.79 Male 163 

Finland 1.77 Male 148 

Finland 1.65 Female 81 

Finland 1.63 Female 56 

France 1.77 Male 147 

France 1.756 Male 139 

France 1.646 Female 75 

France 1.625 Female 55 
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Germany 1.81 Male 168 

Germany 1.78 Male 156 

Germany 1.68 Female 101 

Germany 1.65 Female 80 

Ghana 1.695 Male 107 

Ghana 1.585 Female 25 

Greece 1.783 Male 158 

Greece 1.666 Female 92 

Hong Kong 1.717 Male 125 

Hong Kong 1.587 Female 28 

India 1.663 Male 89 

India 1.647 Male 77 

India 1.612 Male 46 

India 1.526 Female 10 

India 1.521 Female 8 

India 1.519 Female 7 

Indonesia 1.58 Male 24 

Indonesia 1.47 Female 2 

Iran 1.734 Male 129 

Iran 1.703 Male 114 

Iran 1.598 Female 35 

Iran 1.572 Female 19 

Iraq Baghdad 1.654 Male 84 

Iraq Baghdad 1.558 Female 15 

Ireland 1.775 Male 151 

Ireland 1.635 Female 64 

Italy 1.772 Male 150 

Italy 1.76 Male 140 

Italy 1.678 Female 99 

Italy 1.65 Female 79 

Ivory Coast 1.701 Male 111 

Ivory Coast 1.591 Female 33 

Jamaica 1.718 Male 126 

Jamaica 1.608 Female 44 

Japan 1.707 Male 121 

Japan 1.58 Female 23 

Lithuania 1.813 Male 169 

Lithuania 1.675 Female 97 

Malawi 1.66 Male 87 

Malawi 1.55 Female 13 

Malaysia 1.647 Male 76 

Malaysia 1.533 Female 11 

Mali 1.713 Male 124 

Mali 1.604 Female 42 

Malta 1.752 Male 137 

Malta 1.699 Male 110 

Malta 1.638 Female 69 

Malta 1.599 Female 36 

Mexico 1.67 Male 94 

Mexico 1.6 Female 38 

Mongolia 1.684 Male 105 

Mongolia 1.577 Female 21 

Montenegro 1.832 Male 175 

Montenegro 1.684 Female 104 

Netherlands 1.838 Male 176 

Netherlands 1.832 Male 174 

Netherlands 1.707 Female 120 

Netherlands 1.699 Female 109 

Nigeria 1.638 Male 68 

Nigeria 1.578 Female 22 

Norway 1.824 Male 172 

Norway 1.816 Male 170 

Norway 1.682 Female 103 
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Norway 1.68 Female 100 

Peru 1.64 Male 72 

Peru 1.51 Female 4 

Philippines 1.634 Male 61 

Philippines 1.619 Male 49 

Philippines 1.517 Female 6 

Philippines 1.502 Female 3 

Poland 1.785 Male 160 

Poland 1.651 Female 82 

Portugal 1.737 Male 131 

Portugal 1.637 Female 66 

Scotland 1.782 Male 157 

Scotland 1.75 Male 135 

Scotland 1.635 Female 63 

Scotland 1.613 Female 47 

Serbia 1.82 Male 171 

Serbia 1.668 Female 93 

Singapore 1.706 Male 117 

Singapore 1.6 Female 37 

Slovenia Ljubljana 1.803 Male 165 

Slovenia Ljubljana 1.674 Female 96 

Spain 1.78 Male 155 

Spain 1.662 Female 88 

Sri Lanka 1.636 Male 65 

Sri Lanka 1.514 Female 5 

Sweden 1.779 Male 153 

Sweden 1.646 Female 74 

Switzerland 1.754 Male 138 

Switzerland 1.64 Female 71 

Thailand 1.703 Male 113 

Thailand 1.59 Female 32 

Turkey Ankara 1.761 Male 142 

Turkey Ankara 1.74 Male 132 

Turkey Ankara 1.62 Female 51 

Turkey Ankara 1.589 Female 30 

United Arab Emirates 1.734 Male 128 

United Arab Emirates 1.564 Female 17 

United States 1.789 Male 162 

United States 1.78 Male 154 

United States 1.776 Male 152 

United States 1.763 Male 143 

United States 1.706 Male 116 

United States 1.648 Female 78 

United States 1.632 Female 58 

United States 1.632 Female 57 

United States 1.622 Female 53 

United States 1.587 Female 27 

Vietnam 1.657 Male 86 

Vietnam 1.621 Male 52 

Vietnam 1.552 Female 14 

Vietnam 1.522 Female 9 

Wales 1.77 Male 146 

Wales 1.62 Female 50  
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################################################################################ 

# R code to: 

# Plot dog height distribution. Data compiled from (Alderton, 2008) 

################################################################################ 

 

doght<-read.table("dog_height.txt",sep="\t",header=TRUE) 

doght$Breed<-reorder(doght$Breed, doght$Range, mean) 

ggplot(aes(Breed,Range),data=doght) + geom_violin(fill="black",colour="black") +  

  theme_bw() + coord_flip() + geom_hline(aes(yintercept=31.5),lty=2) +  

  geom_hline(aes(yintercept=33.5),lty=2) +  

  ylab("Height at the withers (inches)") + xlab("Breeds") + 

  theme(axis.text.y=element_blank()) + theme(axis.ticks=element_blank()) + 

  theme(panel.grid.major.y=element_blank(), 

        panel.grid.major.x=element_line(size=.1, color="grey")) + 

  scale_y_continuous(breaks=seq(5,35, by=5)) 
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################################################################################ 

# R code to: 

# Identify shared height QTLs in humans and dogs from genome-wide associations 

################################################################################ 

 

#Get dog GWAS data: 

#Read in CanMapAssociation from Boyko et al. 2010 (http://tinyurl.com/mn6kt22) 

cma <- read.table("CanMapAssociation",header=T) 

#Select only relevant rows and columns 

cma <- subset(cma,cma$HeightWithers>0 | cma$BodyLength>0 | cma$NeckLength>0) 

cma <- cma[,c(1:7,13,34,76)] 

cma <- subset(cma,!cma$chrom %in% "chrX") #exclude the X chromosome 

 

#Number of non-zero SNPs to be considered 

length(cma[,1]) 

 

#Get maximum p-value between HeightWithers, BodyLength, and NeckLength 

GetHeight <- function(x) { 

  bl <- as.numeric(x[8]) 

  hw <- as.numeric(x[9]) 

  nl <- as.numeric(x[10]) 

  vec <- c(bl,hw,nl) 

  ht.max <- max(vec) 

  ht.min <- min(vec) 

  ht.mid <- which(vec!=ht.max & vec!=ht.min) 

  ht.mid <- vec[ht.mid] 

  if(ht.max>ht.mid+1){ # ht.mid+1 is the default, remove for making Venns 

    id<-which(vec==ht.max) 

  } 

  else {id<-0} 

  return(c(ht.max,id)) 

} 

ht <- apply(cma,1,GetHeight) 

ht <- data.frame(t(ht)) 

names(ht) <- c("ht","id") 

summary(factor(ht$id)) 

cma.merge <- data.frame(cma,ht) 

 

#Calculate q-values 

library(qvalue) 

dht.qval <- qvalue(10^-ht$ht,robust=TRUE) 

 

#Plot q-values and p-values with q-value cutoffs 0.025, and 0.045 

library(ggplot2) 

qp.df <- data.frame(dht.qval$qvalues,dht.qval$pvalues) 

names(qp.df) <-c ("qvalue","pvalue") 

qp <- ggplot(qp.df, aes(qvalue, pvalue)) 

qp + geom_point() + xlim(0,.075) + ylim(0,.1) + theme_classic() + 

  geom_vline(xintercept=.025,lty=2) +  

  geom_vline(xintercept=.045,lty=2) + 

  xlab("q-value") + 

  ylab("p-value") 

 

#Summarizing impact of combining traits 

# 0.01=3.96 | 0.02=3.27 | 0.025=3.03 | 0.03=2.865 | 0.04=2.457 | 0.045=2.251 | 

# 0.05=1.955 | Bonferroni 5e-5=4.30103 

library(VennDiagram) 

SummarySNPs <- function(x, cutoff) {  

  bl <- subset(x, x$BodyLength > cutoff) 

  hw <- subset(x, x$HeightWithers > cutoff) 

  nl <- subset(x, x$NeckLength > cutoff) 

  bl <- paste0(bl$chrom, bl$chromEnd) 

  hw <- paste0(hw$chrom, hw$chromEnd) 
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  nl <- paste0(nl$chrom, nl$chromEnd) 

  blhw <- subset(bl, bl %in% hw) 

  blnl <- subset(bl, bl %in% nl) 

  hwnl <- subset(hw, hw %in% nl) 

  i.111 <- length(subset(blhw, blhw %in% blnl & blhw %in% hwnl)) 

  i.011 <- length(blhw) 

  i.110 <- length(blnl) 

  i.101 <- length(hwnl) 

  i.bl <- length(subset(bl, bl %in% blhw | bl %in% blnl)) 

  i.010 <- length(bl) 

  i.hw <- length(subset(hw, hw %in% blhw | hw %in% hwnl)) 

  i.001 <- length(hw) 

  i.nl <- length(subset(nl, nl %in% blnl | nl %in% hwnl)) 

  i.100 <- length(nl) 

  i.all <- c(i.001, i.010, i.011, i.100, i.101, i.110, i.111) 

  plot.new() 

  overrideTriple = 1 

  draw.triple.venn(i.001, i.010, i.100, i.011, i.110, i.101, i.111, 

                   c("Height withers", "Body length", "Neck length"),  

                   sep.dist = 0, fill = c("red", "blue", "green"),  

                   lty = "blank") 

} 

#All plots were exported as PDFs with dimensions 3X3 and edited in Illustrator 

SummarySNPs(cma.merge, 3.03) # 0.025 

SummarySNPs(cma.merge, 2.251) # 0.045 

SummarySNPs(cma.merge, 4.30103) # Bonferroni 

 

#Only needed for manhattan plotting purposes for chromosome ordering 

cma2 <- read.table("CanMapAssociation_chr_fixed",header=T) 

cma2 <- subset(cma2,cma2$HeightWithers>0 | cma2$BodyLength>0 | cma2$NeckLength>0) 

cma2 <- cma2[,c(1:7,13,34,76)] 

ht2 <- apply(cma2,1,GetHeight) 

ht2 <- data.frame(t(ht2)) 

names(ht2)<-c("ht","id") 

summary(factor(ht2$id)) 

cma.merge2 <- data.frame(cma2,ht2) 

library(gap) 

hwdata <- with(cma2,cbind(chrom,chromEnd,HeightWithers)) 

bldata <- with(cma2,cbind(chrom,chromEnd,BodyLength)) 

nldata <- with(cma2,cbind(chrom,chromEnd,NeckLength)) 

htdata <- with(cma.merge2,cbind(chrom,chromEnd,ht)) 

hwdata <- as.data.frame(cbind(hwdata,rep(NA,length(hwdata[,1])))) 

bldata <- as.data.frame(cbind(bldata,rep(NA,length(bldata[,1])))) 

nldata <- as.data.frame(cbind(nldata,rep(NA,length(nldata[,1])))) 

htdata <- as.data.frame(cbind(htdata,rep(NA,length(htdata[,1])))) 

colorscheme <- rep(c(rgb(0,0,0,.15),rgb(.1,.1,.1,.15)),38) 

ops <- mht.control(logscale=FALSE,colors=colorscheme,usepos=TRUE,srt=0,cex=2) 

mhtplot2(hwdata,ops,pch=20,xlab="",ylab="") 

mhtplot2(bldata,ops,pch=20,xlab="",ylab="") 

mhtplot2(nldata,ops,pch=20,xlab="",ylab="") 

mhtplot2(htdata,ops,pch=20,xlab="",ylab="") 

abline(h=3.03,lty=2) 

abline(h=2.251,lty=2) 

abline(h=4.30103,lty=2) 

 

#Read in NHGRI GWAS catalog for height (http://www.genome.gov/gwastudies/) 

library(gdata) 

hgwas <- read.xls("MyGWASSearch_1_22_14.xls") 

 

#Get column of reported genes and clean it up 

repG <- hgwas[,14] 

CleanGenes <- function(x) { 

  output <- character(0) 
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  for(i in 1:length(x)) { 

    line <- as.character(x[i]) 

    lines <- unlist(sapply(line,strsplit,",")) 

    lines <- unlist(sapply(lines,strsplit,"/")) 

    names(lines) <- c() 

    lines<-gsub("\n","",lines) 

    lines<-gsub(" ","",lines) 

    output <- c(output,lines) 

  } 

  return(unique(output)) 

  return(output) 

} 

humanHeightGenes <- as.factor(CleanGenes(repG)) 

allhumanheights <- as.factor(CleanGenes(repG)) #comment out unique line for this 

 

#Select SNPs according to defined cutoffs 

# 0.01=3.96 | 0.02=3.27 | 0.025=3.03 | 0.03=2.865 | 0.04=2.457 | 0.045=2.251 | 

# 0.05=1.955 

library(GenomicRanges) 

dht.bon <- subset(cma.merge,cma.merge$ht>4.30103) # Bonferroni 

dht.02 <- subset(cma.merge,cma.merge$ht>3.03) # 0.02 

dht.04 <- subset(cma.merge,cma.merge$ht>2.251) # 0.04 

dhtG.bon <- with(dht.bon, GRanges(chrom,  

                                IRanges(chromEnd-200000, chromEnd+199999), "+",  

                                id=paste0(chrom,":",chromEnd,"_",ht,"_",id))) 

dhtG.02 <- with(dht.02, GRanges(chrom,  

                                IRanges(chromEnd-200000, chromEnd+199999), "+",  

                                id=paste0(chrom,":",chromEnd,"_",ht,"_",id))) 

dhtG.04 <- with(dht.04, GRanges(chrom,  

                                IRanges(chromEnd-200000, chromEnd+199999), "+",  

                                id=paste0(chrom,":",chromEnd,"_",ht,"_",id))) 

 

#Get dog genes from Ensembl 

library(biomaRt) 

mart <- useMart("ensembl") 

datasets <- listDatasets(mart) 

Cmart <- useDataset("cfamiliaris_gene_ensembl",mart) 

dog.genes <- getBM(attributes=c("chromosome_name","start_position", 

                                "end_position","ensembl_gene_id","hgnc_symbol", 

                                "strand"), 

                   filters="with_hgnc", values=TRUE, mart=Cmart) 

 

#Liftover coordinates from canFam3 to canFam2 

library(rtracklayer) 

dog.genes.G3 <- with(dog.genes, GRanges(paste0("chr",chromosome_name),  

                                      IRanges(start_position, end_position),  

                                      strand, id=ensembl_gene_id)) 

chain <- import.chain("canFam3ToCanFam2.over.chain") 

dog.genes.G2.list <- liftOver(dog.genes.G3,chain) 

dog.genes.G2 <- unlist(dog.genes.G2.list) 

 

#Find SNP overlaps with dog genes 

dog.bon<-findOverlaps(dhtG.bon,dog.genes.G2) 

dog.02 <- findOverlaps(dhtG.02,dog.genes.G2) 

dog.04 <- findOverlaps(dhtG.04,dog.genes.G2) 

 

#Report genes with overlapping dog size SNPs 

ensembl.ids <- data.frame(as.factor(dog.genes.G2$values.gr..queryHits.ol....)) 

names(ensembl.ids) <- "ensembl_gene_id" 

ensembl.df <- merge(ensembl.ids, dog.genes, by="ensembl_gene_id", sort=FALSE) 

ensembl.df <- ensembl.df[,c(1,5)] 

 

ReportGeneHits <- function(x) { 
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  genes <- data.frame(ensembl.df, as.table(t(x))) 

  hit.genes <- subset(genes,genes[,3]>0) 

  hit.genes <- hit.genes[order(hit.genes[,1]),] 

  hit.genes <- hit.genes[,2] 

  hit.genes <- unique(hit.genes) 

  print(length(hit.genes)) 

  return(hit.genes) 

} 

hit.dog.bon <- ReportGeneHits(dog.bon) 

write.table(hit.dog.bon, "dog.bon.GO.txt", quote=FALSE, row.names=FALSE,  

            col.names=FALSE) 

hit.dog.02 <- ReportGeneHits(dog.02) 

write.table(hit.dog.02, "dog.02.GO.txt", quote=FALSE, row.names=FALSE,  

            col.names=FALSE) 

hit.dog.04 <- ReportGeneHits(dog.04) 

write.table(hit.dog.04, "dog.04.GO.txt", quote=FALSE, row.names=FALSE,  

            col.names=FALSE) 

 

#Do QTL sharing analysis 

Hmart <- useDataset("hsapiens_gene_ensembl",mart) 

humanDogOrtholog <- getLDS(attributes=c("chromosome_name","start_position", 

                                      "end_position","ensembl_gene_id", 

                                      "hgnc_symbol"), 

                         filters="with_homolog_cfam", values=TRUE,mart=Hmart, 

                         attributesL=c("chromosome_name","start_position", 

                                       "end_position"),martL=Cmart) 

names(humanDogOrtholog) <- c("chr","start","end","eID","HGNC","Dchr","Dstart", 

                           "Dend") 

humanDogOrtholog <- subset(humanDogOrtholog,humanDogOrtholog$HGNC!="") 

 

#Remove duplicate entries, retaining the top entry which is the best hit,  

#and thus likely ortholog 

hdH <- subset(humanDogOrtholog,!duplicated(humanDogOrtholog$HGNC)) 

 

#Liftover ortholog coordinates from canFam3 to canFam2 

library(rtracklayer) 

hdHG <- with(hdH,GRanges(paste0("chr",Dchr),IRanges(Dstart, Dend),"+", 

                       HGNC,id=eID)) 

chain <- import.chain("canFam3ToCanFam2.over.chain") 

hdHG2.list <- liftOver(hdHG,chain) 

hdHG2 <- unlist(hdHG2.list) 

 

#Read in manually annotated orthologs that are human height genes to supplement  

#ensembl. These coordinates are already in CanFam2 

man.hdH <- read.table("manual.orthologs.txt",header=TRUE,sep="\t", 

                    stringsAsFactors=FALSE) 

man.hdHG <- with(man.hdH,GRanges(paste0("chr",chr),IRanges(start, end),"+",HGNC, 

                               id=eID)) 

 

#Combine ensembl and manually annotated orthologs 

all.HG <- c(man.hdHG,hdHG2) 

all.HG <- subset(all.HG,!duplicated(all.HG$HGNC)) 

 

#Find overlaps of dog height SNPs and orthologous human genes 

hd.bon <- findOverlaps(dhtG.bon,all.HG) 

hd.02 <- findOverlaps(dhtG.02,all.HG) 

hd.04 <- findOverlaps(dhtG.04,all.HG) 

 

#Report trait decomposition 

hd.bon.ht <- findOverlaps(dhtG.bon,subset(all.HG,all.HG$HGNC %in% 

humanHeightGenes)) 

hd.02.ht <- findOverlaps(dhtG.02,subset(all.HG,all.HG$HGNC %in% humanHeightGenes)) 

hd.04.ht <- findOverlaps(dhtG.04,subset(all.HG,all.HG$HGNC %in% humanHeightGenes)) 
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report.bon <- data.frame(dht.bon,as.table(hd.bon.ht)) 

subset(report.bon,report.bon$as.table.hd.bon.ht.>0 & report.bon$id>0) 

report.02 <- data.frame(dht.02,as.table(hd.02.ht)) 

subset(report.02,report.02$as.table.hd.02.ht.>0 & report.02$id>0) 

report.04 <- data.frame(dht.04,as.table(hd.04.ht)) 

subset(report.04,report.04$as.table.hd.04.ht.>0 & report.04$id>0) 

 

#Report shared hits 

report.hits <- function(x) { 

  genes <- data.frame(all.HG$HGNC,as.table(t(x))) 

  hit.genes <- subset(genes,genes[,2]>0) 

  hit.genes <- hit.genes[order(hit.genes[,1]),] 

  hit.genes <- hit.genes[,1] 

  hit.genes <- unique(hit.genes) 

  ht.genes <- subset(hit.genes,hit.genes %in% humanHeightGenes) 

  print(length(hit.genes)) 

  print(length(ht.genes)) 

  print((length(ht.genes)/length(hit.genes))*100) 

  return(as.character(ht.genes)) 

} 

hit.bon <- report.hits(hd.bon) 

hit.02 <- report.hits(hd.02) 

hit.04 <- report.hits(hd.04) 

 

#Report regions 

read.regions <- read.table("regions.txt",stringsAsFactors=FALSE) 

regions <- apply(read.regions,1,strsplit,"_") 

get.regions <- function(x, regions) { 

  region <- character() 

  if(length(grep(paste0("\\<",x,"\\>"),regions))>0) {     

    for(i in 1:length(regions)) { 

      if(length(grep(paste0("\\<",x,"\\>"),regions[[i]]))>0){ 

        region<-regions[[i]][[1]][[1]] 

      } 

    } 

  } 

  else {region<-x} 

  return(region) 

} 

hit.hum <- toString(subset(humanHeightGenes, humanHeightGenes %in% all.HG$HGNC)) 

hit.hum <- strsplit(hit.hum,", ") 

hit.hum <- unlist(hit.hum) 

rhit.hum <- sapply(hit.hum,get.regions,regions) 

rhit.hum <- unlist(unique(rhit.hum)) 

hum.reg.num <- length(rhit.hum) 

 

#There are 241 orthologous regions 

rhit.bon <- sapply(hit.bon,get.regions,regions) 

rhit.bon <- unlist(unique(rhit.bon)) 

rhit.02 <- sapply(hit.02,get.regions,regions) 

rhit.02 <- unlist(unique(rhit.02)) 

rhit.04 <- sapply(hit.04,get.regions,regions) 

rhit.04 <- unlist(unique(rhit.04)) 

rhit.bon 

rhit.02 

rhit.04 

 

#Report all gene hits 

get.hits <- function(x) { 

  genes <- data.frame(all.HG$HGNC,as.table(t(x))) 

  hit.genes <- subset(genes,genes[,2]>0) 

  hit.genes <- hit.genes[order(hit.genes[,1]),] 

  hit.genes <- hit.genes[,1] 
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  hit.genes<-unique(hit.genes) 

  return(hit.genes) 

} 

ghit.bon <-get.hits(hd.bon) 

ghit.02 <-get.hits(hd.02) 

ghit.04 <-get.hits(hd.04) 

 

#All plots were exported as PDFs with dimensions 3X3 and edited in Illustrator 

library(VennDiagram) 

human <- length(subset(humanHeightGenes, humanHeightGenes %in% all.HG$HGNC)) 

dog.bon <- length(ghit.bon) 

dog.02 <- length(ghit.02) 

dog.04 <- length(ghit.04) 

hd.share.bon <- length(hit.bon) 

hd.share.02 <- length(hit.02) 

hd.share.04 <- length(hit.04) 

plot.new() 

draw.pairwise.venn(human, dog.bon, hd.share.bon, c("Human", "Dog"),  

                   fill = c("orange2", "maroon"), lty = "blank") 

plot.new() 

draw.pairwise.venn(human, dog.02, hd.share.02, c("Human", "Dog"),  

                   fill = c("orange2", "maroon"), lty = "blank") 

plot.new() 

draw.pairwise.venn(human, dog.04, hd.share.04, c("Human", "Dog"),  

                   fill = c("orange2", "maroon"), lty = "blank") 

 

perms <- 100000 

random.hits <- function(x) { 

  r.hits <- vector(mode="numeric",length=perms) 

  for(i in 1:perms) { 

    rG <- sample(1:length(all.HG[,1]), hum.reg.num, replace=FALSE) 

    rsub.G <- all.HG[rG,] 

    r.genes <- subset(x,x %in% rsub.G$HGNC) 

    r.hits[i] <- length(r.genes) 

  } 

  return(r.hits) 

} 

ran.hit.bon <- random.hits(ghit.bon) 

ran.bon.df <- as.data.frame(ran.hit.bon) 

plot.bon <- ggplot(data.frame(ran.bon.df), aes(ran.hit.bon))   

plot.bon + geom_histogram(binwidth=1,fill="grey",colour="grey30") +  

  theme_classic() + geom_vline(xintercept=length(rhit.bon),lwd=1) + 

  xlab("Number of shared QTL") + 

  ylab("Count") 

length(subset(ran.hit.bon,ran.hit.bon>length(rhit.bon))) 

 

ran.hit.02 <- random.hits(ghit.02) 

ran.02.df <- as.data.frame(ran.hit.02) 

plot.02 <- ggplot(data.frame(ran.02.df), aes(ran.hit.02))   

plot.02 + geom_histogram(binwidth=1,fill="grey",colour="grey30") +  

  theme_classic() + geom_vline(xintercept=length(rhit.02),lwd=1) + 

  xlab("Number of shared QTL") + 

  ylab("Count") 

length(subset(ran.hit.02,ran.hit.02>length(rhit.02))) 

 

ran.hit.04 <- random.hits(ghit.04) 

ran.04.df <- as.data.frame(ran.hit.04) 

plot.04 <- ggplot(data.frame(ran.04.df), aes(ran.hit.04))   

plot.04 + geom_histogram(binwidth=1,fill="grey",colour="grey30") +  

  theme_classic() + geom_vline(xintercept=length(rhit.04),lwd=1) + 

  xlab("Number of shared QTL") + 

  ylab("Count") 

length(subset(ran.hit.04,ran.hit.04>length(rhit.04))) 
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manual.orthologs.txt file with manually annotated human and dog orthologs  

(CanFam 2 coordinates) 

 

chromosome_name start_position end_position ensembl_gene_id

 hgnc_symbol strand 

17 22244523 22268843 AL137731 RBJ 1 

9 14688492 14719256 BC001264 WDR68 1 

15 44029102 44046127 BC098313 C12orf48 1 

29 27942792 27960274 NM_000318.2 PXMP3 1 

9 14811403 14819705 NM_001003788 LYK5 1 

1 68234777 68234906 NM_001012507.2 C6orf173 1 

25 46560794 46565632 NM_001252198.1 PTMA 1 

10 11335085 11480772 NM_003483.4 HMGA2 1 

12 3936729 3989633 NM_005514 HLA-B 1 

2 62483245 62483519 NM_005949.3 MT1F 1 

37 28798656 28800541 NM_006000 TUBA1 1 

1 100690099 100695836 NM_012119 CCRK 1 

20 36681254 36710360 NM_015224 C3orf63 1 

11 53876460 53907919 NM_015397 WDR40A 1 

37 28547486 28552016 NM_017521.2 FEV 1 

9 44141698 44166437 NM_018404 CENTA2 1 

12 4459857 4503164 NM_019105.6 HLAclassIII 1 

26 31858383 31869521 NM_020070.2 IGLL1 1 

7 20319481 20350372 NM_052965.2 C1orf19 1 

29 10668871 10679388 NM_138969 RDHE2 1 

12 6541267 6543870 NM_178508.3 C6orf1 1 

22 4006786 4126740 NM_198989.2 DLEU7 1 

30 29776230 29778899 NM_207322.2 C2CD4A 1 

18 20988215 20988901 NR_003680.1 RPL13AP17 1 

15 36713462 36746645 NR_038159.1 MRPL42 1 

15 36661327 36698391 NM_003348.3 UBE2N 1 

23 31241760 31246185 NM_001242375.1 ANAPC13 1 
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regions.txt file that defines human QTL regions 

 

IGF1R_ADAMTS17 

ACAN_POLG 

NUP37_PMCH_C12orf48 

ANAPC13_CEP63_PCCB 

LCORL_NCAPG 

BMP3_PRKG2_RASGEF1B 

BOD1_STC2_FBXW11 

IGF1_CCDC53_NUP37_C12orf48_PMCH_GNPTAB 

GH1_CSH1_WDR68_LYK5_MAP3K3_MT1F 

NPPC_PDE6D_COPS7B_DIS3L2_ALPP_PTMA 

NOG_DGKE_TRIM25_COIL_RISK 

TLE3_UACA_LARP6_LRRC49 

ADAMTS10_OR2Z1_MYO1F_PRAM1 

CS_STAT2 

TMEM100_PCTP 

PIGF_CRIPT_C2orf34_SOCS5 

ATAD5_RNF135 

FGFR4_NSD1 

PTPRJ_SLC39A13 

RUNX2_SUPT3H 

BRCA2_PDS5B 

FGFR3_SLBP 

KCNJ16_KCNJ2 

CTU2_GALNS 

PTCH1_FANCC 

ADAMTSL3_SH3GL3 

LHX3_QSOX2 

SIN3A_PTPN9 

MFAP2_ATP13A2_SDHB 

ATF7_ATP5G2 

GDF5_UQCC_CEP250_EIF6_MMP24 

PDXDC1_NTAN1 

ZBTB38_ACPL2 

HMGA1_C6orf1_NUDT3_C6orf106_LBH 

PPARD_FANCE_ANKS1A_TCP11_ZNF76_DEF6_SCUBE3 

KRT23_KRT20 

TBX4_TBX2_C17orf82_BCAS3_NACA2 

TNRC6B_ADSL 

NPR3_C5orf23 

TMEM126B_TMEM126A 

SGSM3_MKL1 

MTMR11_SV2A_SF3B4_Histoneclass2A 

GLT25D2_C1orf19 

EFEMP1_PNPT1_CCDC88A 

HIST1H1D_Histonecluster_Histoneclass1_Butyrophilingenes 

CDK6_PEX1_GATAD1_ERVWE1 

PLAG1_MOS_CHCHD7_RDHE2_RPS20_LYN_TGS1_PENK 

PXMP3_ZFHX4 

CRLF3_ATAD5_CENTA2_RNF135 

CABLES1_RBBP8_C18orf45 

ADCY3_RBJ_POMC_DNMT3A_DTNB_DNAJC27 

IHH_CRYBA2_FEV_SLC23A3_TUBA1_TNS1 

GOLIM4_SERPINI1 

PITX1_PCBD2_CATSPER3_TXNDC15_DDX46_CAMLG 

NUP153_CAP2_KIF13A 

LIN28B_HACE1_BVES_POPDC3 

PPIL6_CD164_SMPD2_MNICAL1_ZBTB24 

L3MBTL3_SAMD3 

SPIN1_CCRK 

PDE3A_SLCO1C1_SLCO1B3 

LYZ_YEATS4_FRS2_CPSF6_CCT2_LRRC10 
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SOCS2_MRPL42_CRADD_UBE2N 

ZDHHC7_CRISPLD2_USP10 

BCR_GNAZ_RTDR1_IGLL1 

TRIP11_FBLN5_ATXN3_CPSF2 

CHCHD7_RDHE2 

HTR1D_CLIC4_CATSPER4_LIN28 

PKN2_RPL5 

TGFB2_LYPLAL1 

ZNF678_JMJD4 

ANTXR1_ZNF638 

FASTKD2_CYP20A1 

DOCK3_RTF1 

MICA_OR2J3_OR2I1P_HLA-B_HLAclassIII_HLAlocus 

C6orf173_LOC387103  
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Complete results from gene ontology analysis of dog height associations: 

 

FDR < 0.0093 

   

Term Count P-Value 

Fold 

Enrichment 

Genome-wide association analysis identifies 20 

loci that influence adult height 3 0.005 26.2 

regulation of growth 6 0.012 4.3 

regulation of small GTPase mediated signal 

transduction 5 0.019 4.8 

cell division 5 0.032 4.1 

small GTPase mediated signal transduction 5 0.035 4.0 

phosphorylation 8 0.042 2.4 

regulation of cell growth 4 0.044 5.0 

protein amino acid phosphorylation 7 0.053 2.5 

regulation of Ras protein signal transduction 4 0.054 4.6 

Ras protein signal transduction 3 0.068 6.9 

lipid storage 2 0.071 26.8 

amine transport 3 0.083 6.1 

organic cation transport 2 0.090 21.0 

cell cycle 7 0.094 2.2 

regulation of cellular component size 4 0.098 3.6 

phosphorus metabolic process 8 0.098 2.0 

phosphate metabolic process 8 0.098 2.0 

hsa04110:Cell cycle 3 0.071 6.4 

 

 

FDR < 0.02 

   

Term Count P-Value 

Fold 

Enrichment 

Many sequence variants affecting diversity of 

adult human height 8 0.001 5.0 

Variants in TF and HFE explain approximately 40% 

of genetic variation in serum-transferrin levels 4 0.001 18.8 

Genome-wide association analysis identifies 20 

loci that influence adult height 3 0.021 12.8 

gland development 6 0.005 5.5 

regulation of growth 9 0.006 3.3 

spleen development 3 0.010 19.6 

mammary gland development 4 0.014 7.9 

transmembrane transport 11 0.015 2.4 

regulation of small GTPase mediated signal 

transduction 7 0.016 3.4 

sodium ion transport 5 0.020 4.8 

post-embryonic development 4 0.021 6.8 

regulation of Ras protein signal transduction 6 0.026 3.5 

fat-soluble vitamin metabolic process 3 0.028 11.3 

transmembrane receptor protein tyrosine kinase 

signaling pathway 6 0.034 3.3 

negative regulation of muscle cell apoptosis 2 0.039 49.6 

skeletal system development 7 0.043 2.7 

positive regulation of cellular biosynthetic 

process 11 0.047 2.0 

regulation of ARF protein signal transduction 3 0.048 8.5 

positive regulation of biosynthetic process 11 0.051 2.0 

circadian rhythm 3 0.052 8.1 

enzyme linked receptor protein signaling pathway 7 0.056 2.5 

regulation of cyclic nucleotide biosynthetic 

process 4 0.058 4.5 

regulation of nucleotide biosynthetic process 4 0.058 4.5 

regulation of cyclic nucleotide metabolic process 4 0.062 4.4 

regulation of muscle cell apoptosis 2 0.062 31.0 

regulation of transcription from RNA polymerase II 11 0.065 1.9 
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promoter 

regulation of nucleotide metabolic process 4 0.066 4.3 

insulin-like growth factor receptor signaling 

pathway 2 0.070 27.6 

intracellular signaling cascade 16 0.074 1.6 

cation transport 9 0.075 2.0 

bone development 4 0.075 4.0 

positive regulation of transcription from RNA 

polymerase II promoter 7 0.077 2.3 

proteolysis 14 0.077 1.6 

positive regulation of tyrosine phosphorylation of 

Stat5 protein 2 0.077 24.8 

positive regulation of macromolecule biosynthetic 

process 10 0.078 1.9 

regulation of multicellular organism growth 3 0.085 6.1 

phosphorus metabolic process 13 0.087 1.7 

phosphate metabolic process 13 0.087 1.7 

positive regulation of transcription, DNA-

dependent 8 0.087 2.1 

cell division 6 0.087 2.5 

modification-dependent macromolecule catabolic 

process 9 0.088 1.9 

modification-dependent protein catabolic process 9 0.088 1.9 

positive regulation of RNA metabolic process 8 0.090 2.1 

regulation of gene-specific transcription 4 0.092 3.7 

positive regulation of molecular function 9 0.096 1.9 

small GTPase mediated signal transduction 6 0.097 2.4 

regulation of cell proliferation 11 0.097 1.7 

regulation of tyrosine phosphorylation of Stat5 

protein 2 0.099 19.1 

tube development 5 0.099 2.8 

hsa05200:Pathways in cancer 7 0.046 2.6 

 

 

FDR < 0.04 

   

Term Count P-Value 

Fold 

Enrichment 

Many sequence variants affecting diversity of 

adult human height 13 0.010 2.3 

Genome-wide association yields new sequence 

variants at seven loci that associate with 

measures of obesity 4 0.032 5.5 

Variants in TF and HFE explain approximately 40% 

of genetic variation in serum-transferrin levels 4 0.037 5.3 

Severe combined immunodeficiency, B cell-negative 2 0.078 25.0 

Combined cellular and humoral immune defects with 

granulomas 2 0.078 25.0 

Association of systemic lupus erythematosus with 

C8orf13-BLK and ITGAM-ITGAX 3 0.080 6.2 

positive regulation of macromolecule biosynthetic 

process 41 0.001 1.7 

positive regulation of cellular biosynthetic 

process 42 0.002 1.7 

skeletal system development 24 0.002 2.0 

positive regulation of RNA metabolic process 32 0.002 1.8 

positive regulation of biosynthetic process 42 0.002 1.6 

skeletal system morphogenesis 12 0.003 2.9 

positive regulation of nitrogen compound metabolic 

process 39 0.003 1.6 

positive regulation of nucleobase, nucleoside, 

nucleotide and nucleic acid metabolic process 38 0.003 1.6 

positive regulation of transcription, DNA-

dependent 31 0.003 1.8 
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transmembrane receptor protein tyrosine kinase 

signaling pathway 18 0.004 2.2 

enzyme linked receptor protein signaling pathway 24 0.004 1.9 

positive regulation of macromolecule metabolic 

process 48 0.004 1.5 

gland development 13 0.004 2.6 

mRNA transport 10 0.005 3.1 

positive regulation of cell migration 10 0.005 3.0 

positive regulation of cell proliferation 27 0.006 1.8 

regulation of DNA replication 8 0.008 3.5 

induction of apoptosis 22 0.008 1.9 

regulation of growth 23 0.008 1.8 

induction of programmed cell death 22 0.008 1.9 

mammary gland development 8 0.008 3.4 

response to endogenous stimulus 26 0.008 1.7 

sodium ion transport 12 0.009 2.5 

regulation of fibroblast proliferation 6 0.009 4.6 

positive regulation of gene expression 34 0.009 1.6 

response to hormone stimulus 24 0.009 1.8 

nucleic acid transport 10 0.009 2.8 

RNA transport 10 0.009 2.8 

establishment of RNA localization 10 0.009 2.8 

regulation of cell migration 14 0.010 2.2 

regulation of cell proliferation 43 0.010 1.5 

positive regulation of cell motion 10 0.010 2.8 

positive regulation of locomotion 10 0.010 2.8 

cellular response to hormone stimulus 12 0.010 2.4 

intracellular signaling cascade 63 0.011 1.4 

positive regulation of transcription from RNA 

polymerase II promoter 24 0.011 1.8 

limb morphogenesis 10 0.011 2.7 

appendage morphogenesis 10 0.011 2.7 

RNA localization 10 0.011 2.7 

transmembrane transport 33 0.012 1.6 

regulation of cellular component size 19 0.012 1.9 

cellular response to insulin stimulus 8 0.012 3.2 

appendage development 10 0.014 2.6 

limb development 10 0.014 2.6 

cell fate commitment 12 0.014 2.3 

response to alkaloid 7 0.014 3.5 

positive regulation of fibroblast proliferation 5 0.014 5.2 

hemopoietic or lymphoid organ development 18 0.016 1.9 

positive regulation of apoptosis 26 0.017 1.6 

cell motion 28 0.017 1.6 

positive regulation of transcription 32 0.018 1.5 

growth 14 0.018 2.1 

small GTPase mediated signal transduction 20 0.018 1.8 

positive regulation of programmed cell death 26 0.019 1.6 

positive regulation of DNA replication 5 0.019 4.8 

positive regulation of cell death 26 0.019 1.6 

regulation of cell development 15 0.020 2.0 

regulation of cell size 15 0.021 2.0 

chordate embryonic development 21 0.021 1.7 

phosphate metabolic process 49 0.023 1.4 

phosphorus metabolic process 49 0.023 1.4 

response to nicotine 4 0.023 6.4 

embryonic development ending in birth or egg 

hatching 21 0.023 1.7 

nucleobase, nucleoside, nucleotide and nucleic 

acid transport 10 0.024 2.4 

regulation of locomotion 14 0.026 2.0 

response to organic substance 38 0.026 1.4 

regulation of cell motion 14 0.027 2.0 
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monovalent inorganic cation transport 20 0.027 1.7 

immune system development 18 0.027 1.8 

response to peptide hormone stimulus 12 0.027 2.1 

epithelial cell differentiation 11 0.030 2.2 

phosphorylation 41 0.031 1.4 

spleen development 4 0.031 5.7 

response to insulin stimulus 9 0.031 2.4 

regulation of apoptosis 41 0.033 1.4 

tube development 15 0.034 1.8 

response to vitamin 7 0.034 2.9 

embryonic morphogenesis 19 0.036 1.7 

regulation of neurotransmitter levels 7 0.037 2.8 

steroid metabolic process 14 0.037 1.9 

regulation of programmed cell death 41 0.037 1.4 

bone development 10 0.038 2.2 

cell fate specification 6 0.039 3.2 

regulation of cell death 41 0.039 1.4 

insulin-like growth factor receptor signaling 

pathway 3 0.041 9.0 

embryonic appendage morphogenesis 8 0.041 2.5 

embryonic limb morphogenesis 8 0.041 2.5 

epithelium development 15 0.042 1.8 

regulation of transcription from RNA polymerase II 

promoter 37 0.044 1.4 

axon guidance 9 0.044 2.3 

thymus development 4 0.046 4.9 

leukocyte chemotaxis 5 0.046 3.7 

Golgi transport vesicle coating 3 0.050 8.1 

COPI coating of Golgi vesicle 3 0.050 8.1 

Golgi vesicle budding 3 0.050 8.1 

regulation of epidermal growth factor receptor 

signaling pathway 4 0.051 4.7 

transcription from RNA polymerase II promoter 15 0.052 1.7 

regulation of nervous system development 13 0.052 1.8 

regulation of cell morphogenesis 10 0.053 2.1 

axonogenesis 13 0.054 1.8 

cell chemotaxis 5 0.054 3.5 

positive regulation of DNA metabolic process 6 0.055 2.9 

induction of apoptosis by extracellular signals 9 0.055 2.2 

neuron differentiation 24 0.057 1.5 

regulation of binding 11 0.057 1.9 

regulation of neuron differentiation 10 0.058 2.0 

energy coupled proton transport, down 

electrochemical gradient 5 0.059 3.4 

ATP synthesis coupled proton transport 5 0.059 3.4 

regulation of organelle organization 14 0.059 1.7 

regulation of transferase activity 21 0.060 1.5 

regulation of DNA metabolic process 9 0.060 2.1 

keratinocyte proliferation 3 0.060 7.4 

positive regulation of transferase activity 15 0.061 1.7 

response to nutrient levels 13 0.061 1.8 

embryonic digit morphogenesis 4 0.063 4.3 

regulation of ossification 7 0.068 2.4 

response to vitamin A 5 0.068 3.2 

cell morphogenesis involved in differentiation 15 0.068 1.7 

tissue morphogenesis 12 0.070 1.8 

dorsal/ventral pattern formation 6 0.070 2.7 

central nervous system projection neuron 

axonogenesis 3 0.070 6.8 

vesicle targeting, to, from or within Golgi 3 0.070 6.8 

negative regulation of molecular function 19 0.070 1.5 

myoblast migration 2 0.072 27.1 

response to low density lipoprotein stimulus 2 0.072 27.1 
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regulation of cellular catabolic process 6 0.074 2.7 

cell growth 6 0.074 2.7 

protein amino acid phosphorylation 33 0.075 1.3 

regulation of DNA binding 9 0.079 2.0 

negative regulation of organelle organization 7 0.082 2.3 

cation transport 28 0.083 1.4 

regulation of small GTPase mediated signal 

transduction 15 0.084 1.6 

cell morphogenesis involved in neuron 

differentiation 13 0.087 1.7 

positive regulation of kinase activity 14 0.087 1.6 

regulation of neurogenesis 11 0.087 1.8 

regulation of smooth muscle cell proliferation 5 0.089 2.9 

regulation of behavior 5 0.089 2.9 

skin development 4 0.090 3.7 

positive regulation of developmental process 16 0.091 1.6 

lipid biosynthetic process 18 0.091 1.5 

response to estrogen stimulus 8 0.093 2.1 

Ras protein signal transduction 8 0.093 2.1 

steroid biosynthetic process 7 0.094 2.2 

skeletal muscle organ development 6 0.096 2.5 

skeletal muscle tissue development 6 0.096 2.5 

neuron projection morphogenesis 13 0.096 1.7 

intracellular transport 32 0.096 1.3 

regulation of chromosome organization 4 0.097 3.6 

tube morphogenesis 9 0.098 1.9 

response to DNA damage stimulus 20 0.098 1.5 

hemopoiesis 14 0.098 1.6 

hsa05214:Glioma 10 0.001 4.2 

hsa04360:Axon guidance 13 0.003 2.7 

hsa05218:Melanoma 8 0.017 3.0 

hsa04960:Aldosterone-regulated sodium reabsorption 6 0.018 3.9 

hsa04144:Endocytosis 14 0.021 2.0 

hsa04910:Insulin signaling pathway 11 0.031 2.1 

hsa00564:Glycerophospholipid metabolism 7 0.042 2.7 

hsa04722:Neurotrophin signaling pathway 10 0.044 2.1 

hsa04730:Long-term depression 7 0.045 2.7 

hsa04350:TGF-beta signaling pathway 8 0.045 2.4 

hsa05200:Pathways in cancer 19 0.068 1.5 

hsa05219:Bladder cancer 5 0.072 3.1 

hsa00920:Sulfur metabolism 3 0.073 6.6 

hsa04010:MAPK signaling pathway 16 0.078 1.6 

hsa05216:Thyroid cancer 4 0.094 3.6 
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################################################################################ 

# R code to: 

# Calculate the proportion of selective sweep loci that are also composite dog  

# height SNPs. Data from (Akey et al., 2010; Vaysse et al., 2011) 

################################################################################ 

 

#Read in CanMapAssociation from Boyko et al. 2010 (http://tinyurl.com/mn6kt22) 

cma <- read.table("CanMapAssociation",header=T) 

#Select only relevant rows and columns 

cma <- subset(cma,cma$HeightWithers>0 | cma$BodyLength>0 | cma$NeckLength>0) 

cma <- cma[,c(1:7,13,34,76)] 

cma <- subset(cma, cma$chrom!="chrX") 

 

#Get maximum p-value between HeightWithers, BodyLength, and NeckLength 

GetHeight<-function(x) { 

  bl <- as.numeric(x[8]) 

  hw <- as.numeric(x[9]) 

  nl <- as.numeric(x[10]) 

  vec <- c(bl,hw,nl) 

  ht.max <- max(vec) 

  ht.min <- min(vec) 

  ht.mid <- which(vec!=ht.max & vec!=ht.min) 

  ht.mid <- vec[ht.mid] 

  if(ht.max>ht.mid){ # ht.mid+1 is the default 

    id <- which(vec==ht.max) 

  } 

  else {id <- 0} 

  return(c(ht.max,id)) 

} 

ht <- apply(cma,1,GetHeight) 

ht <- data.frame(t(ht)) 

names(ht) <- c("ht","id") 

summary(factor(ht$id)) 

cma.merge <- data.frame(cma,ht) 

 

# Without the X chromosome 

# 0.02=3.537602 | 0.04=2.647817 | Bonferroni 0.0093=4.30103 

dht.bon <- subset(cma.merge,cma.merge$ht>4.30103) # Bonferroni 

dht.02 <- subset(cma.merge,cma.merge$ht>3.537602) # 0.02 

dht.04 <- subset(cma.merge,cma.merge$ht>2.647817) # 0.04 

library(GenomicRanges) 

dhtG.bon <- with(dht.bon, GRanges(chrom,  

                                IRanges(chromEnd-1, chromEnd), "+",  

                                id=paste0(chrom,":",chromEnd,"_",ht,"_",id))) 

dhtG.02 <- with(dht.02, GRanges(chrom,  

                                IRanges(chromEnd-1, chromEnd), "+",  

                                id=paste0(chrom,":",chromEnd,"_",ht,"_",id))) 

dhtG.04 <- with(dht.04, GRanges(chrom,  

                                IRanges(chromEnd-1, chromEnd), "+",  

                                id=paste0(chrom,":",chromEnd,"_",ht,"_",id))) 

 

akey <- read.table("akey.data") 

names(akey) <- c("chrom","pos") 

akey$chrom <- paste0("chr", akey$chr) 

akey.G <- with(akey, GRanges(chrom,  

                                IRanges(pos-200000, pos+199999), "+",  

                                id=paste0(chrom,":",pos))) 

akey.bon.o <- findOverlaps(dhtG.bon,akey.G) 

table(as.table(t(akey.bon.o))) 

table(as.table(akey.bon.o)) 

akey.02.o <- findOverlaps(dhtG.02,akey.G) 

table(as.table(t(akey.02.o))) 

table(as.table(akey.02.o)) 
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akey.04.o <- findOverlaps(dhtG.04,akey.G) 

table(as.table(t(akey.04.o))) 

table(as.table(akey.04.o)) 

 

s4 <- read.table("S4.data", header=TRUE, sep='\t') 

s4.cut <- s4[,c(1:3)] 

s5.di <- read.table("S5.di.data", header=TRUE, sep='\t') 

s5.di.FDR <- subset(s5.di, s5.di$X5..FDR.p.value < 0.1) 

s5.di.cut <- s5.di.FDR[,c(3:5)] 

names(s5.di.cut) <- c("chrom", "start", "end") 

s5.si <- read.table("S5.si.data", header=TRUE, sep='\t') 

s5.si.FDR <- subset(s5.si, s5.si$X5..FDR.p.value < 0.05) 

s5.si.cut <- s5.si.FDR[,c(3:5)] 

names(s5.si.cut) <- c("chrom", "start", "end") 

vay <- rbind(s4.cut,s5.di.cut,s5.si.cut) 

vay.G <- with(vay, GRanges(paste0("chr",chrom),  

                           IRanges(start, end), "+",  

                           id=paste0(chrom,":",start))) 

vay.bon.o <- findOverlaps(dhtG.bon,vay.G) 

table(as.table(t(vay.bon.o))) 

table(as.table(vay.bon.o)) 

vay.02.o <- findOverlaps(dhtG.02,vay.G) 

table(as.table(t(vay.02.o))) 

table(as.table(vay.02.o)) 

vay.04.o <- findOverlaps(dhtG.04,vay.G) 

table(as.table(t(vay.04.o))) 

table(as.table(vay.04.o)) 
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################################################################################ 

# R code to: 

# Evaluate distribution of Boyko et al. 2010 SNPs used in QTL Sharing analysis 

################################################################################ 

 

cma <- read.table("CanMapAssociation",header=T) 

cma <- subset(cma, cma$HeightWithers>0 | cma$BodyLength>0 | cma$NeckLength>0) 

cma <- cma[,c(1:7,13,34,76)] 

cma <- subset(cma, cma$chrom!="chrX") 

 

library(GenomicRanges) 

library(biomaRt) 

mart <- useMart("ensembl") 

Cmart <- useDataset("cfamiliaris_gene_ensembl",mart) 

 

#Do QTL sharing analysis 

Hmart <- useDataset("hsapiens_gene_ensembl",mart) 

humanDogOrtholog <- getLDS(attributes=c("chromosome_name","start_position", 

                                      "end_position","ensembl_gene_id", 

                                      "hgnc_symbol"), 

                         filters="with_homolog_cfam", values=TRUE,mart=Hmart, 

                         attributesL=c("chromosome_name","start_position", 

                                       "end_position"),martL=Cmart) 

names(humanDogOrtholog) <-

c("chr","start","end","eID","HGNC","Dchr","Dstart","Dend") 

humanDogOrtholog <- subset(humanDogOrtholog, humanDogOrtholog$HGNC!="") 

humanDogOrtholog <- subset(humanDogOrtholog, humanDogOrtholog$chr!="X") 

humanDogOrtholog <- subset(humanDogOrtholog, humanDogOrtholog$Dchr!="X") 

humanDogOrtholog <- subset(humanDogOrtholog, humanDogOrtholog$chr!="Y") 

humanDogOrtholog <- subset(humanDogOrtholog, humanDogOrtholog$Dchr!="Y") 

 

#Remove duplicate entries, retaining the top entry which is the best hit, and thus 

likely ortholog 

hdH <- subset(humanDogOrtholog,!duplicated(humanDogOrtholog$HGNC)) 

 

#Liftover ortholog coordinates from canFam3 to canFam2 

library(rtracklayer) 

hdHG <- with(hdH,GRanges(paste0("chr",Dchr),IRanges(Dstart, 

Dend),"+",HGNC,id=eID)) 

chain <- import.chain("canFam3ToCanFam2.over.chain") 

hdHG2.list <- liftOver(hdHG,chain) 

hdHG2 <- unlist(hdHG2.list) 

 

#Read in manually annotated orthologs that are human height genes to supplement 

ensembl 

#These coordinates are already in CanFam2 

man.hdH <-

read.table("manual.orthologs.txt",header=TRUE,sep="\t",stringsAsFactors=FALSE) 

man.hdHG <- with(man.hdH,GRanges(paste0("chr",chr),IRanges(start, 

end),"+",HGNC,id=eID)) 

 

#Combine ensembl and manually annotated orthologs 

all.HG <- c(man.hdHG,hdHG2) 

all.HG <- subset(all.HG,!duplicated(all.HG$HGNC)) 

 

#Read in NHGRI GWAS catalog for height (http://www.genome.gov/gwastudies/) 

library(gdata) 

hgwas <- read.xls("MyGWASSearch_1_22_14.xls") 

 

#Get column of reported genes and clean it up 

repG<-hgwas[,14] 

CleanGenes<-function(x) { 

  output <- character(0) 
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  for(i in 1:length(x)) { 

    line <- as.character(x[i]) 

    lines <- unlist(sapply(line,strsplit,",")) 

    lines <- unlist(sapply(lines,strsplit,"/")) 

    names(lines)<-c() 

    lines <- gsub("\n","",lines) 

    lines <- gsub(" ","",lines) 

    output <- c(output,lines) 

  } 

  return(unique(output)) 

  return(output) 

} 

humanHeightGenes <- as.factor(CleanGenes(repG)) 

 

hit.hum <- toString(subset(humanHeightGenes, humanHeightGenes %in% all.HG$HGNC)) 

hit.hum <- strsplit(hit.hum,", ") 

hit.hum <- unlist(hit.hum) 

 

hum.ht.cf2 <- subset(all.HG, all.HG$HGNC %in% hit.hum) 

hum.ht.cf2.200K <- hum.ht.cf2 + 200000 

 

dog.G <- with(cma, GRanges(chrom,  

                                IRanges(chromEnd-1, chromEnd), "+",  

                                id=paste0(chrom,":",chromEnd))) 

 

dog.hum.ht <- findOverlaps(hum.ht.cf2.200K, dog.G) 

snps.all <- as.table(t(dog.hum.ht)) 

hum.report <- as.table(dog.hum.ht) 

hum.report <- data.frame(hum.ht.cf2$HGNC,hum.report) 

names(hum.report) <- c("Gene", "SNPs") 

summary(factor(hum.report$SNPs)) 

subset(hum.report, hum.report$SNPs == 0) 

snps.report <- data.frame(cma,snps.all)
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Appendix B 

Code and Associated Data for Chapter 2 
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################################################################################ 

# R code to: 

# Plot the number of significant SNPs and chromsomes for traits taken from 

# Boyko et al. 2010. 

################################################################################ 

 

cma <- read.table("CanMapAssociation_chr_fixed",header=T) 

id.traits <- cma[,1:6] 

reg.traits <- cma[,c(7,9,11,13,15,17,18,20,22,24,26,28,30,32,34,36,38,40,42,44, 

                     46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82, 

                     84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114, 

                     116,118)] 

reg.abs.traits <- reg.traits[,c(1:2,4:5,7:8,10:17,28:29,35:36,40,42:43)]  

reg.skl.traits <- reg.traits[,c(3,6,9,18:27,30:34,37:39,41,44:57)] 

 

allo.traits <- cma[,c(8,10,12,14,16,19,21,23,25,27,29,31,33,35,37,39,41, 

                             43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75, 

                             77,79,81,83,85,87,89,91,93,95,97,99,101,103,105, 

                             107,109,111,113,115,117)] 

allo.abs.traits <- allo.traits[,c(1,3:4,6,8:15,26:27,33:34,38,40:41)] 

allo.skl.traits <- allo.traits[,c(2,5,7,16:25,28:32,35:37,39,42:55)] 

 

SigSnps <- function(x, sig) { 

  df <- data.frame(id.traits,x) 

  df.sig <- subset(df, df$x > sig) 

  return(length(df.sig[,1])) 

} 

 

SigChrs <- function(x, sig) { 

  df <- data.frame(id.traits,x) 

  df.sig <- subset(df, df$x > sig) 

  return(length(summary(factor(df.sig$chrom)))) 

} 

summary(c(apply(reg.abs.traits,2,SigSnps,4.30103),apply(reg.skl.traits,2,SigSnps,4

.0))) 

summary(c(apply(reg.abs.traits,2,SigChrs,4.30103),apply(reg.skl.traits,2,SigChrs,4

.0))) 

summary(c(apply(allo.abs.traits,2,SigSnps,4.30103),apply(allo.skl.traits,2,SigSnps

,4.0))) 

summary(c(apply(allo.abs.traits,2,SigChrs,4.30103),apply(allo.skl.traits,2,SigChrs

,4.0))) 

 

plot(c(apply(reg.abs.traits,2,SigSnps,4.30103),apply(reg.skl.traits,2,SigSnps,4.0)

)) 

plot(c(apply(reg.abs.traits,2,SigChrs,4.30103),apply(reg.skl.traits,2,SigChrs,4.0)

)) 

 

#exported as 4X8 pdfs and modified in Illustrator 

barchart(c(apply(reg.abs.traits,2,SigSnps,4.30103),apply(reg.skl.traits,2,SigSnps,

4.0))) 

barchart(c(apply(reg.abs.traits,2,SigChrs,4.30103),apply(reg.skl.traits,2,SigChrs,

4.0))) 
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################################################################################ 

# R code to: 

# Reconstruct p-values for height at the withers, examine QTL effect sizes, and 

# create relevant plots 

################################################################################ 

 

dog <- read.table("CanMapAssociation_chr_fixed",header=T) 

dog <- subset(dog,!dog$chrom %in% "chrX") #exclude the X chromosome 

top12 <- 

dog[c(5861,8597,11711,15801,29736,34459,40858,44692,47154,49762,54230,56381),1:3] 

top12.names <- paste0(top12$chrom, top12$chromEnd) 

dog <- subset(dog, dog$HeightWithers>0) 

source("allele_freq.R") 

size <- read.table("breed_height.txt",header=T) 

size <- size[-c(3,20,34,40,50,51,54,58,77,79),] #At least 9 dogs in breed 

attach(size) 

 

ht1 <- data.frame(GreatDane1,IrishWolfhound1,Mastiff1,Greyhound1,SaintBernard1, 

                BullMastiff1,Newfoundland1,Borzoi1,Kuvasz1,Akita1, 

                DobermanPinscher1,AfghanHound1,Bloodhound1,BerneseMountainDog1, 

                GiantSchnauzer1,Rottweiler1,Briard1,GermanShepherdDog1,Saluki1, 

                IbizanHound1,AlaskanMalamute1,StandardPoodle1,GoldenRetriever1, 

                Boxer1,FlatCoatedRetriever1,Bulldog1,LabradorRetriever1, 

                IrishWaterSpaniel1,GermanShorthairedPointer1,BorderCollie1, 

                OldEnglishSheepdog1,SiberianHusky1,AustralianShepherd1, 

                PortugueseWaterDog1,ItalianGreyhound1,SpringerSpaniel1, 

                MiniatureBullTerrier1,ChineseSharPei1,StandardSchnauzer1, 

                Whippet1,ChowChow1,Brittany1,FrenchBulldog1, 

                StaffordshireBullTerrier1,Basenji1,CockerSpaniel1,BassetHound1, 

                GlenofImaalTerrier1,Beagle1,ShetlandSheepdog1,Pug1, 

                JackRussellTerrier1,CavalierKingCharlesSpaniel1, 

                PembrokeWelshCorgi1,CardiganWelshCorgi1, 

                WestHighlandWhiteTerrier1,MiniaturePinscher1,ScottishTerrier1, 

                CairnTerrier1,ShihTzu1,AustralianTerrier1,NorwichTerrier1, 

                ToyPoodle1,Havanese1,Papillon1,Pomeranian1, 

                PetitBassetGriffonVendeen1,Pekingese1,Dachshund1,Chihuahua1) 

lm.ht <- apply(ht1,1,function(x) summary(lm(Height~x))) 

lm.ht.out <- lapply(lm.ht,function(x) x$coefficients[8]) 

ht.pvals <- as.numeric(lm.ht.out) 

ht.lp <- -log10(ht.pvals) 

doggy.names <- dog[,1:3] 

dog.names <- paste0(doggy.names$chrom,doggy.names$chromEnd) 

d.tops <- which(dog.names %in% top12.names) 

ht.tops<-ht1[d.tops,] 

ht.tops[2,] <- 1-ht.tops[2,] 

ht.tops[8,] <- 1-ht.tops[8,] 

ht.tops[9,] <- 1-ht.tops[9,] 

ht.tops[11,] <- 1-ht.tops[11,] 

summary(lm(Height~as.numeric(ht.tops[5,]))) #IGF1 45% 

summary(lm(Height~as.numeric(ht.tops[6,]))) #FGF4 retrogene 44% 

summary(lm(Height~as.numeric(ht.tops[6,])+as.numeric(ht.tops[5,]))) #IGF1 and FGF4 

70% 

dht1 <- data.frame(dog,ht.lp) 

top.12 <- dht1[d.tops,c(34,289)] 

 

#82%, 77% without IGF1 

tops <- 

lm(Height~as.numeric(ht.tops[1,])+as.numeric(ht.tops[2,])+as.numeric(ht.tops[3,])+ 

          as.numeric(ht.tops[4,])+as.numeric(ht.tops[5,])+as.numeric(ht.tops[6,])+ 

          as.numeric(ht.tops[7,])+as.numeric(ht.tops[8,])+as.numeric(ht.tops[9,])+ 

       as.numeric(ht.tops[10,])+as.numeric(ht.tops[11,])+as.numeric(ht.tops[12,])) 

summary(tops) 
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tops1 <- 

lm(Height~as.numeric(ht.tops[5,])+as.numeric(ht.tops[6,])+as.numeric(ht.tops[8,])) 

#71% IGF1, FGF4 retrogene, ZFP64 

 

tops2 <- 

lm(Height~as.numeric(ht.tops[1,])+as.numeric(ht.tops[7,])+as.numeric(ht.tops[10,])

) #54% IGF1R, GPC6, SUFU 

 

tops3 <- 

lm(Height~as.numeric(ht.tops[4,])+as.numeric(ht.tops[3,])+as.numeric(ht.tops[9,])) 

#47% SMAD2, BANP, MED13L 

 

tops4 <- 

lm(Height~as.numeric(ht.tops[2,])+as.numeric(ht.tops[11,])+as.numeric(ht.tops[12,]

)) #40% IGF2BP2, STC2, BMP3  

 

#Correlates alleles with IGF1 

GetCors <- function(x) { 

  test <- cor.test(as.numeric(x),as.numeric(ht.tops[5,])) 

  return(c(test$p.value, test$estimate)) 

} 

apply(ht.tops, 1, GetCors) 

 

#Plot Boyko et al. 2010 p-values for height at the withers with reconstructed 

#p-values 

plot(dog$HeightWithers,ht.lp, ylab="Reconstructed (-log10 p-value)",  

     xlab="Boyko et al. 2010 (-log10 p-value)",  

     main="Height at the withers") 

abline(0,1,lwd=2) 

abline(v=4.3,lty=2) 

abline(h=4.3,lty=2) 

points(top.12$HeightWithers,top.12$ht.lp,col="red",pch=20) 

 

#Plot height distributions for purebred and mixed-breed dogs 

par(mfrow=c(1,2)) 

plot(size$Height,ylab="Height at the withers", xlab="Dog breeds") 

plot(sort(red.t$Height, decreasing=TRUE), ylab="Scapula + humerus + radius 

length", xlab="Mixed-breed dogs") 
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################################################################################ 

# R code to: 

# Calculate allele frequencies for each allele for every breed 

################################################################################ 

 

attach(dog) 

Jackal1<-JackalAllele1/(JackalAllele1+JackalAllele2) 

Jackal2<-JackalAllele2/(JackalAllele1+JackalAllele2) 

RedWolf1<-RedWolfAllele1/(RedWolfAllele1+RedWolfAllele2) 

RedWolf2<-RedWolfAllele2/(RedWolfAllele1+RedWolfAllele2) 

BostonTerrier1<-BostonTerrierAllele1/(BostonTerrierAllele1+BostonTerrierAllele2) 

BostonTerrier2<-BostonTerrierAllele2/(BostonTerrierAllele1+BostonTerrierAllele2) 

Coyote1<-CoyoteAllele1/(CoyoteAllele1+CoyoteAllele2) 

Coyote2<-CoyoteAllele2/(CoyoteAllele1+CoyoteAllele2) 

Wolf1<-WolfAllele1/(WolfAllele1+WolfAllele2) 

Wolf2<-WolfAllele2/(WolfAllele1+WolfAllele2) 

AfghanHound1<-AfghanHoundAllele1/(AfghanHoundAllele1+AfghanHoundAllele2) 

AfghanHound2<-AfghanHoundAllele2/(AfghanHoundAllele1+AfghanHoundAllele2) 

Akita1<-AkitaAllele1/(AkitaAllele1+AkitaAllele2) 

Akita2<-AkitaAllele2/(AkitaAllele1+AkitaAllele2) 

AlaskanMalamute1<-

AlaskanMalamuteAllele1/(AlaskanMalamuteAllele1+AlaskanMalamuteAllele2) 

AlaskanMalamute2<-

AlaskanMalamuteAllele2/(AlaskanMalamuteAllele1+AlaskanMalamuteAllele2) 

AmericanEskimoDog1<-

AmericanEskimoDogAllele1/(AmericanEskimoDogAllele1+AmericanEskimoDogAllele2) 

AmericanEskimoDog2<-

AmericanEskimoDogAllele2/(AmericanEskimoDogAllele1+AmericanEskimoDogAllele2) 

AustralianShepherd1<-

AustralianShepherdAllele1/(AustralianShepherdAllele1+AustralianShepherdAllele2) 

AustralianShepherd2<-

AustralianShepherdAllele2/(AustralianShepherdAllele1+AustralianShepherdAllele2) 

AustralianTerrier1<-

AustralianTerrierAllele1/(AustralianTerrierAllele1+AustralianTerrierAllele2) 

AustralianTerrier2<-

AustralianTerrierAllele2/(AustralianTerrierAllele1+AustralianTerrierAllele2) 

Basenji1<-BasenjiAllele1/(BasenjiAllele1+BasenjiAllele2) 

Basenji2<-BasenjiAllele2/(BasenjiAllele1+BasenjiAllele2) 

BassetHound1<-BassetHoundAllele1/(BassetHoundAllele1+BassetHoundAllele2) 

BassetHound2<-BassetHoundAllele2/(BassetHoundAllele1+BassetHoundAllele2) 

Beagle1<-BeagleAllele1/(BeagleAllele1+BeagleAllele2) 

Beagle2<-BeagleAllele2/(BeagleAllele1+BeagleAllele2) 

BerneseMountainDog1<-

BerneseMountainDogAllele1/(BerneseMountainDogAllele1+BerneseMountainDogAllele2) 

BerneseMountainDog2<-

BerneseMountainDogAllele2/(BerneseMountainDogAllele1+BerneseMountainDogAllele2) 

Bloodhound1<-BloodhoundAllele1/(BloodhoundAllele1+BloodhoundAllele2) 

Bloodhound2<-BloodhoundAllele2/(BloodhoundAllele1+BloodhoundAllele2) 

BorderCollie1<-BorderCollieAllele1/(BorderCollieAllele1+BorderCollieAllele2) 

BorderCollie2<-BorderCollieAllele2/(BorderCollieAllele1+BorderCollieAllele2) 

Borzoi1<-BorzoiAllele1/(BorzoiAllele1+BorzoiAllele2) 

Borzoi2<-BorzoiAllele2/(BorzoiAllele1+BorzoiAllele2) 

Boxer1<-BoxerAllele1/(BoxerAllele1+BoxerAllele2) 

Boxer2<-BoxerAllele2/(BoxerAllele1+BoxerAllele2) 

Briard1<-BriardAllele1/(BriardAllele1+BriardAllele2) 

Briard2<-BriardAllele2/(BriardAllele1+BriardAllele2) 

Brittany1<-BrittanyAllele1/(BrittanyAllele1+BrittanyAllele2) 

Brittany2<-BrittanyAllele2/(BrittanyAllele1+BrittanyAllele2) 

BrusselsGriffon1<-

BrusselsGriffonAllele1/(BrusselsGriffonAllele1+BrusselsGriffonAllele2) 

BrusselsGriffon2<-

BrusselsGriffonAllele2/(BrusselsGriffonAllele1+BrusselsGriffonAllele2) 

BullMastiff1<-BullMastiffAllele1/(BullMastiffAllele1+BullMastiffAllele2) 
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BullMastiff2<-BullMastiffAllele2/(BullMastiffAllele1+BullMastiffAllele2) 

BullTerrier1<-BullTerrierAllele1/(BullTerrierAllele1+BullTerrierAllele2) 

BullTerrier2<-BullTerrierAllele2/(BullTerrierAllele1+BullTerrierAllele2) 

Bulldog1<-BulldogAllele1/(BulldogAllele1+BulldogAllele2) 

Bulldog2<-BulldogAllele2/(BulldogAllele1+BulldogAllele2) 

CairnTerrier1<-CairnTerrierAllele1/(CairnTerrierAllele1+CairnTerrierAllele2) 

CairnTerrier2<-CairnTerrierAllele2/(CairnTerrierAllele1+CairnTerrierAllele2) 

CardiganWelshCorgi1<-

CardiganWelshCorgiAllele1/(CardiganWelshCorgiAllele1+CardiganWelshCorgiAllele2) 

CardiganWelshCorgi2<-

CardiganWelshCorgiAllele2/(CardiganWelshCorgiAllele1+CardiganWelshCorgiAllele2) 

CavalierKingCharlesSpaniel1<-

CavalierKingCharlesSpanielAllele1/(CavalierKingCharlesSpanielAllele1+CavalierKingC

harlesSpanielAllele2) 

CavalierKingCharlesSpaniel2<-

CavalierKingCharlesSpanielAllele2/(CavalierKingCharlesSpanielAllele1+CavalierKingC

harlesSpanielAllele2) 

Chihuahua1<-ChihuahuaAllele1/(ChihuahuaAllele1+ChihuahuaAllele2) 

Chihuahua2<-ChihuahuaAllele2/(ChihuahuaAllele1+ChihuahuaAllele2) 

ChineseSharPei1<-

ChineseSharPeiAllele1/(ChineseSharPeiAllele1+ChineseSharPeiAllele2) 

ChineseSharPei2<-

ChineseSharPeiAllele2/(ChineseSharPeiAllele1+ChineseSharPeiAllele2) 

ChowChow1<-ChowChowAllele1/(ChowChowAllele1+ChowChowAllele2) 

ChowChow2<-ChowChowAllele2/(ChowChowAllele1+ChowChowAllele2) 

CockerSpaniel1<-CockerSpanielAllele1/(CockerSpanielAllele1+CockerSpanielAllele2) 

CockerSpaniel2<-CockerSpanielAllele2/(CockerSpanielAllele1+CockerSpanielAllele2) 

Collie1<-CollieAllele1/(CollieAllele1+CollieAllele2) 

Collie2<-CollieAllele2/(CollieAllele1+CollieAllele2) 

Dachshund1<-DachshundAllele1/(DachshundAllele1+DachshundAllele2) 

Dachshund2<-DachshundAllele2/(DachshundAllele1+DachshundAllele2) 

DobermanPinscher1<-

DobermanPinscherAllele1/(DobermanPinscherAllele1+DobermanPinscherAllele2) 

DobermanPinscher2<-

DobermanPinscherAllele2/(DobermanPinscherAllele1+DobermanPinscherAllele2) 

EnglishCockerSpaniel1<-

EnglishCockerSpanielAllele1/(EnglishCockerSpanielAllele1+EnglishCockerSpanielAllel

e2) 

EnglishCockerSpaniel2<-

EnglishCockerSpanielAllele2/(EnglishCockerSpanielAllele1+EnglishCockerSpanielAllel

e2) 

FlatCoatedRetriever1<-

FlatCoatedRetrieverAllele1/(FlatCoatedRetrieverAllele1+FlatCoatedRetrieverAllele2) 

FlatCoatedRetriever2<-

FlatCoatedRetrieverAllele2/(FlatCoatedRetrieverAllele1+FlatCoatedRetrieverAllele2) 

FrenchBulldog1<-FrenchBulldogAllele1/(FrenchBulldogAllele1+FrenchBulldogAllele2) 

FrenchBulldog2<-FrenchBulldogAllele2/(FrenchBulldogAllele1+FrenchBulldogAllele2) 

GermanShepherdDog1<-

GermanShepherdDogAllele1/(GermanShepherdDogAllele1+GermanShepherdDogAllele2) 

GermanShepherdDog2<-

GermanShepherdDogAllele2/(GermanShepherdDogAllele1+GermanShepherdDogAllele2) 

GermanShorthairedPointer1<-

GermanShorthairedPointerAllele1/(GermanShorthairedPointerAllele1+GermanShorthaired

PointerAllele2) 

GermanShorthairedPointer2<-

GermanShorthairedPointerAllele2/(GermanShorthairedPointerAllele1+GermanShorthaired

PointerAllele2) 

GiantSchnauzer1<-

GiantSchnauzerAllele1/(GiantSchnauzerAllele1+GiantSchnauzerAllele2) 

GiantSchnauzer2<-

GiantSchnauzerAllele2/(GiantSchnauzerAllele1+GiantSchnauzerAllele2) 

GlenofImaalTerrier1<-

GlenofImaalTerrierAllele1/(GlenofImaalTerrierAllele1+GlenofImaalTerrierAllele2) 
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GlenofImaalTerrier2<-

GlenofImaalTerrierAllele2/(GlenofImaalTerrierAllele1+GlenofImaalTerrierAllele2) 

GoldenRetriever1<-

GoldenRetrieverAllele1/(GoldenRetrieverAllele1+GoldenRetrieverAllele2) 

GoldenRetriever2<-

GoldenRetrieverAllele2/(GoldenRetrieverAllele1+GoldenRetrieverAllele2) 

GreatDane1<-GreatDaneAllele1/(GreatDaneAllele1+GreatDaneAllele2) 

GreatDane2<-GreatDaneAllele2/(GreatDaneAllele1+GreatDaneAllele2) 

Greyhound1<-GreyhoundAllele1/(GreyhoundAllele1+GreyhoundAllele2) 

Greyhound2<-GreyhoundAllele2/(GreyhoundAllele1+GreyhoundAllele2) 

Havanese1<-HavaneseAllele1/(HavaneseAllele1+HavaneseAllele2) 

Havanese2<-HavaneseAllele2/(HavaneseAllele1+HavaneseAllele2) 

IbizanHound1<-IbizanHoundAllele1/(IbizanHoundAllele1+IbizanHoundAllele2) 

IbizanHound2<-IbizanHoundAllele2/(IbizanHoundAllele1+IbizanHoundAllele2) 

IrishWaterSpaniel1<-

IrishWaterSpanielAllele1/(IrishWaterSpanielAllele1+IrishWaterSpanielAllele2) 

IrishWaterSpaniel2<-

IrishWaterSpanielAllele2/(IrishWaterSpanielAllele1+IrishWaterSpanielAllele2) 

IrishWolfhound1<-

IrishWolfhoundAllele1/(IrishWolfhoundAllele1+IrishWolfhoundAllele2) 

IrishWolfhound2<-

IrishWolfhoundAllele2/(IrishWolfhoundAllele1+IrishWolfhoundAllele2) 

ItalianGreyhound1<-

ItalianGreyhoundAllele1/(ItalianGreyhoundAllele1+ItalianGreyhoundAllele2) 

ItalianGreyhound2<-

ItalianGreyhoundAllele2/(ItalianGreyhoundAllele1+ItalianGreyhoundAllele2) 

JackRussellTerrier1<-

JackRussellTerrierAllele1/(JackRussellTerrierAllele1+JackRussellTerrierAllele2) 

JackRussellTerrier2<-

JackRussellTerrierAllele2/(JackRussellTerrierAllele1+JackRussellTerrierAllele2) 

Kuvasz1<-KuvaszAllele1/(KuvaszAllele1+KuvaszAllele2) 

Kuvasz2<-KuvaszAllele2/(KuvaszAllele1+KuvaszAllele2) 

LabradorRetriever1<-

LabradorRetrieverAllele1/(LabradorRetrieverAllele1+LabradorRetrieverAllele2) 

LabradorRetriever2<-

LabradorRetrieverAllele2/(LabradorRetrieverAllele1+LabradorRetrieverAllele2) 

Mastiff1<-MastiffAllele1/(MastiffAllele1+MastiffAllele2) 

Mastiff2<-MastiffAllele2/(MastiffAllele1+MastiffAllele2) 

MiniatureBullTerrier1<-

MiniatureBullTerrierAllele1/(MiniatureBullTerrierAllele1+MiniatureBullTerrierAllel

e2) 

MiniatureBullTerrier2<-

MiniatureBullTerrierAllele2/(MiniatureBullTerrierAllele1+MiniatureBullTerrierAllel

e2) 

MiniaturePinscher1<-

MiniaturePinscherAllele1/(MiniaturePinscherAllele1+MiniaturePinscherAllele2) 

MiniaturePinscher2<-

MiniaturePinscherAllele2/(MiniaturePinscherAllele1+MiniaturePinscherAllele2) 

Newfoundland1<-NewfoundlandAllele1/(NewfoundlandAllele1+NewfoundlandAllele2) 

Newfoundland2<-NewfoundlandAllele2/(NewfoundlandAllele1+NewfoundlandAllele2) 

NorwichTerrier1<-

NorwichTerrierAllele1/(NorwichTerrierAllele1+NorwichTerrierAllele2) 

NorwichTerrier2<-

NorwichTerrierAllele2/(NorwichTerrierAllele1+NorwichTerrierAllele2) 

OldEnglishSheepdog1<-

OldEnglishSheepdogAllele1/(OldEnglishSheepdogAllele1+OldEnglishSheepdogAllele2) 

OldEnglishSheepdog2<-

OldEnglishSheepdogAllele2/(OldEnglishSheepdogAllele1+OldEnglishSheepdogAllele2) 

Papillon1<-PapillonAllele1/(PapillonAllele1+PapillonAllele2) 

Papillon2<-PapillonAllele2/(PapillonAllele1+PapillonAllele2) 

Pekingese1<-PekingeseAllele1/(PekingeseAllele1+PekingeseAllele2) 

Pekingese2<-PekingeseAllele2/(PekingeseAllele1+PekingeseAllele2) 
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PembrokeWelshCorgi1<-

PembrokeWelshCorgiAllele1/(PembrokeWelshCorgiAllele1+PembrokeWelshCorgiAllele2) 

PembrokeWelshCorgi2<-

PembrokeWelshCorgiAllele2/(PembrokeWelshCorgiAllele1+PembrokeWelshCorgiAllele2) 

PetitBassetGriffonVendeen1<-

PetitBassetGriffonVendeenAllele1/(PetitBassetGriffonVendeenAllele1+PetitBassetGrif

fonVendeenAllele2) 

PetitBassetGriffonVendeen2<-

PetitBassetGriffonVendeenAllele2/(PetitBassetGriffonVendeenAllele1+PetitBassetGrif

fonVendeenAllele2) 

Pomeranian1<-PomeranianAllele1/(PomeranianAllele1+PomeranianAllele2) 

Pomeranian2<-PomeranianAllele2/(PomeranianAllele1+PomeranianAllele2) 

PortugueseWaterDog1<-

PortugueseWaterDogAllele1/(PortugueseWaterDogAllele1+PortugueseWaterDogAllele2) 

PortugueseWaterDog2<-

PortugueseWaterDogAllele2/(PortugueseWaterDogAllele1+PortugueseWaterDogAllele2) 

Pug1<-PugAllele1/(PugAllele1+PugAllele2) 

Pug2<-PugAllele2/(PugAllele1+PugAllele2) 

Rottweiler1<-RottweilerAllele1/(RottweilerAllele1+RottweilerAllele2) 

Rottweiler2<-RottweilerAllele2/(RottweilerAllele1+RottweilerAllele2) 

SaintBernard1<-SaintBernardAllele1/(SaintBernardAllele1+SaintBernardAllele2) 

SaintBernard2<-SaintBernardAllele2/(SaintBernardAllele1+SaintBernardAllele2) 

Saluki1<-SalukiAllele1/(SalukiAllele1+SalukiAllele2) 

Saluki2<-SalukiAllele2/(SalukiAllele1+SalukiAllele2) 

Samoyed1<-SamoyedAllele1/(SamoyedAllele1+SamoyedAllele2) 

Samoyed2<-SamoyedAllele2/(SamoyedAllele1+SamoyedAllele2) 

ScottishDeerhound1<-

ScottishDeerhoundAllele1/(ScottishDeerhoundAllele1+ScottishDeerhoundAllele2) 

ScottishDeerhound2<-

ScottishDeerhoundAllele2/(ScottishDeerhoundAllele1+ScottishDeerhoundAllele2) 

ScottishTerrier1<-

ScottishTerrierAllele1/(ScottishTerrierAllele1+ScottishTerrierAllele2) 

ScottishTerrier2<-

ScottishTerrierAllele2/(ScottishTerrierAllele1+ScottishTerrierAllele2) 

ShetlandSheepdog1<-

ShetlandSheepdogAllele1/(ShetlandSheepdogAllele1+ShetlandSheepdogAllele2) 

ShetlandSheepdog2<-

ShetlandSheepdogAllele2/(ShetlandSheepdogAllele1+ShetlandSheepdogAllele2) 

ShihTzu1<-ShihTzuAllele1/(ShihTzuAllele1+ShihTzuAllele2) 

ShihTzu2<-ShihTzuAllele2/(ShihTzuAllele1+ShihTzuAllele2) 

SiberianHusky1<-SiberianHuskyAllele1/(SiberianHuskyAllele1+SiberianHuskyAllele2) 

SiberianHusky2<-SiberianHuskyAllele2/(SiberianHuskyAllele1+SiberianHuskyAllele2) 

SpringerSpaniel1<-

SpringerSpanielAllele1/(SpringerSpanielAllele1+SpringerSpanielAllele2) 

SpringerSpaniel2<-

SpringerSpanielAllele2/(SpringerSpanielAllele1+SpringerSpanielAllele2) 

StaffordshireBullTerrier1<-

StaffordshireBullTerrierAllele1/(StaffordshireBullTerrierAllele1+StaffordshireBull

TerrierAllele2) 

StaffordshireBullTerrier2<-

StaffordshireBullTerrierAllele2/(StaffordshireBullTerrierAllele1+StaffordshireBull

TerrierAllele2) 

StandardPoodle1<-

StandardPoodleAllele1/(StandardPoodleAllele1+StandardPoodleAllele2) 

StandardPoodle2<-

StandardPoodleAllele2/(StandardPoodleAllele1+StandardPoodleAllele2) 

StandardSchnauzer1<-

StandardSchnauzerAllele1/(StandardSchnauzerAllele1+StandardSchnauzerAllele2) 

StandardSchnauzer2<-

StandardSchnauzerAllele2/(StandardSchnauzerAllele1+StandardSchnauzerAllele2) 

SussexSpaniel1<-SussexSpanielAllele1/(SussexSpanielAllele1+SussexSpanielAllele2) 

SussexSpaniel2<-SussexSpanielAllele2/(SussexSpanielAllele1+SussexSpanielAllele2) 

ToyPoodle1<-ToyPoodleAllele1/(ToyPoodleAllele1+ToyPoodleAllele2) 
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ToyPoodle2<-ToyPoodleAllele2/(ToyPoodleAllele1+ToyPoodleAllele2) 

WestHighlandWhiteTerrier1<-

WestHighlandWhiteTerrierAllele1/(WestHighlandWhiteTerrierAllele1+WestHighlandWhite

TerrierAllele2) 

WestHighlandWhiteTerrier2<-

WestHighlandWhiteTerrierAllele2/(WestHighlandWhiteTerrierAllele1+WestHighlandWhite

TerrierAllele2) 

Whippet1<-WhippetAllele1/(WhippetAllele1+WhippetAllele2) 

Whippet2<-WhippetAllele2/(WhippetAllele1+WhippetAllele2) 

YorkshireTerrier1<-

YorkshireTerrierAllele1/(YorkshireTerrierAllele1+YorkshireTerrierAllele2) 

YorkshireTerrier2<-

YorkshireTerrierAllele2/(YorkshireTerrierAllele1+YorkshireTerrierAllele2) 

villagedog1<-villagedogAllele1/(villagedogAllele1+villagedogAllele2) 

villagedog2<-villagedogAllele2/(villagedogAllele1+villagedogAllele2) 
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breed_height.txt file that lists height by breed 

 

Breed Height 

GreatDane1 32 

IrishWolfhound1 32 

ScottishDeerhound1 31 

Mastiff1 30 

Greyhound1 29 

SaintBernard1 28 

BullMastiff1 28 

Newfoundland1 28 

Borzoi1 28 

Kuvasz1 28 

Akita1 27 

DobermanPinscher1 27 

AfghanHound1 27 

Bloodhound1 26 

BerneseMountainDog1 26 

GiantSchnauzer1 26 

Rottweiler1 25 

Briard1 25 

GermanShepherdDog1 25 

Collie1 25 

Saluki1 25 

IbizanHound1 25 

AlaskanMalamute1 24 

StandardPoodle1 24 

GoldenRetriever1 23.5 

Boxer1 23.5 

FlatCoatedRetriever1 23.5 

Bulldog1 23.5 

LabradorRetriever1 23 

IrishWaterSpaniel1 23 

GermanShorthairedPointer1 23 

BorderCollie1 22.8 

OldEnglishSheepdog1 22 

Samoyed1 22 

SiberianHusky1 22 

AustralianShepherd1 21.5 

PortugueseWaterDog1 21.5 

ItalianGreyhound1 21.5 

SpringerSpaniel1 20 

BullTerrier1 19.5 

MiniatureBullTerrier1 19.5 

ChineseSharPei1 19 

StandardSchnauzer1 19 

Whippet1 19 

ChowChow1 18.5 

Brittany1 18.5 

FrenchBulldog1 17.8 

StaffordshireBullTerrier1 17.3 

Basenji1 17 

EnglishCockerSpaniel1 16.5 

BostonTerrier1 16 

CockerSpaniel1 15 

BassetHound1 14 

SussexSpaniel1 14 

GlenofImaalTerrier1 14 

Beagle1 14 

ShetlandSheepdog1 14 

AmericanEskimoDog1 13.5 

Pug1 13 

JackRussellTerrier1 12.5 

CavalierKingCharlesSpaniel1 12.5 

PembrokeWelshCorgi1 11 

CardiganWelshCorgi1 11 

WestHighlandWhiteTerrier1 11 

MiniaturePinscher1 11 

ScottishTerrier1 10 

CairnTerrier1 10 

ShihTzu1 10 

AustralianTerrier1 10 

NorwichTerrier1 10 

ToyPoodle1 10 

Havanese1 9.5 

Papillon1 9.5 

Pomeranian1 8.5 

PetitBassetGriffonVendeen1 7.5 

Pekingese1 7.5 

BrusselsGriffon1 7.5 

Dachshund1 7 

YorkshireTerrier1 6 

Chihuahua1 6
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Genotype and Phenotype Data for Mixed-breed Dogs 

ID BANP STC2 SMAD2 FGF4 IGF1 
Scapula 

(L) 
Scapula 

(R) 
Humerus 

(L) 
Humerus 

(R) 
Radius 

(L) 
Radius 

(R) 

35125 2 0 0 0 2 6.6845 6.7235 7.564 7.6135 7.9005 7.9025 
35126 1 1 1 0 0 6.2955 6.3465 7.715 7.732 7.756 7.7055 
35138 2 2 0 0 0 6.0285 6.01 6.5025 6.5285 6.6965 6.666 
35154 NA 1 NA 1 0 6.5585 6.568 7.617 7.636 7.7985 7.774 
35155 1 1 0 0 0 5.9565 6.0055 6.8665 6.8895 6.899 6.9125 
35156 1 1 0 0 0 5.8195 5.768 6.437 6.4665 6.851 6.8695 
35157 2 1 1 0 1 4.88 4.9175 5.736 5.746 5.834 5.8365 
35172 1 1 0 1 2 5.337 5.347 5.182 5.1835 4.4035 4.348 
35176 2 0 0 0 1 6.9445 6.8815 7.747 7.72 7.69 7.778 
35177 1 1 0 0 1 6.328 6.3045 7.478 7.507 7.7395 7.782 
35179 0 1 1 0 2 3.8585 3.902 4.205 4.3015 4.1895 4.185 
36275 1 1 2 NA 2 5.8155 5.7935 6.877 6.855 6.626 6.5955 
36276 1 1 2 2 0 3.391 3.3455 2.936 2.96 2.4065 2.3575 
36277 2 1 1 1 2 4.5395 4.5955 4.035 4.059 3.663 3.698 
36278 1 1 1 2 2 2.5035 2.4965 2.7425 2.745 2.4845 2.4305 
36279 2 1 1 1 2 3.4285 3.4465 3.0495 3.0755 2.7435 2.7915 
36550 0 1 0 0 1 6.5005 6.4935 7.5035 7.46 7.5425 7.628 
36551 1 1 1 1 1 4.922 4.931 4.8815 4.9055 4.748 4.8255 
36710 2 1 0 0 2 5.2155 5.2415 6.3265 6.2865 6.4235 6.368 
36711 1 1 0 0 1 4.6495 4.671 5.329 5.352 5.3285 5.316 
36712 NA 1 2 0 2 3.503 3.5065 3.9335 3.948 3.909 3.924 
36761 2 2 1 0 0 6.6225 6.679 7.6425 7.6155 7.5975 7.635 
36762 0 1 2 2 2 2.831 2.823 2.8905 2.905 2.54 2.5535 
36763 0 1 2 2 2 3.589 3.6485 3.529 3.5615 3.137 3.0565 
36994 0 1 1 0 0 6.6945 6.745 7.6975 7.7 7.789 7.805 
36995 1 0 0 0 1 6.156 6.151 7.074 7.0515 7.202 7.1915 
36996 1 1 0 0 1 6.5605 6.5605 6.7605 6.83 6.885 6.905 
36997 1 0 1 1 1 5.4335 5.4445 6.229 6.259 5.987 6.0065 
36998 1 1 0 0 1 6.3885 6.4315 7.2155 7.1945 7.226 7.156 
37191 0 1 0 NA 0 4.2115 4.205 4.144 4.1355 3.9415 3.9635 
37212 0 1 0 0 0 5.9505 5.9485 6.9415 6.9575 6.678 6.667 
37213 0 1 0 NA 0 6.4805 6.6155 8.323 8.395 8.387 8.5165 
37215 2 1 0 0 2 6.651 6.66 7.836 7.843 7.823 7.7695 
37216 2 1 0 0 2 6.064 6.1335 6.691 6.6475 6.706 6.705 
37247 0 1 2 1 2 3.9955 3.9955 4.454 4.4825 4.4 4.4145 
37377 2 1 0 0 0 6.1395 6.134 7.1185 7.137 7.176 7.2055 
37378 2 1 0 0 1 5.8695 5.8475 6.3665 6.3545 6.736 6.702 
37379 2 0 0 0 0 6.1175 6.1155 7.096 7.0875 6.8455 6.887 
37399 1 2 0 0 0 5.7165 5.745 6.5845 6.622 6.76 6.7805 
37411 2 1 1 0 2 3.901 3.907 4.1185 4.1085 4.212 4.1925 
37487 1 1 0 0 0 6.0435 6.0495 7.072 7.0705 7.2075 7.1935 
37489 2 0 1 0 1 5.6265 5.666 6.3775 6.3465 6.389 6.38 
37605 2 1 0 NA 0 5.913 5.971 7.273 7.255 7.124 7.177 
37711 2 1 0 0 1 5.7415 5.77 6.436 6.3945 6.4265 6.461 
37716 1 1 1 1 2 6.0305 6.0305 6.739 6.6405 6.856 6.765 
37717 1 0 0 0 2 5.495 5.5055 6.4545 6.449 6.489 6.4625 
37718 1 1 1 0 1 4.732 4.6155 4.602 4.555 4.2435 4.162 
37815 1 2 0 0 0 6.964 6.91 8.1605 8.149 8.2945 8.3395 
37836 1 1 0 0 0 6.088 6.148 6.752 6.7805 6.8435 6.836 
37837 2 1 0 NA 0 6.153 6.111 7.0795 7.085 6.9315 6.94 
37838 1 2 0 0 0 5.423 5.4665 6.7035 6.6665 6.6635 6.6475 
37839 1 1 0 0 0 6.244 6.2305 6.998 6.985 7.162 7.064 
37927 0 1 0 0 1 6.15 6.187 6.743 6.7165 7.1885 7.2025 
37982 1 2 0 0 1 5.816 5.851 6.769 6.7685 6.7595 6.711 
38028 1 2 0 0 1 5.659 5.667 6.4755 6.4455 6.724 6.75 
38029 2 1 0 NA 2 6.252 6.287 6.7015 6.713 6.899 6.9175 
38112 2 1 0 0 2 6.116 6.1515 6.904 6.8945 6.8445 6.8985 
38113 2 0 0 0 0 6.8685 6.9055 7.89 7.8765 7.89 7.93 
38125 1 1 0 0 2 5.9675 5.9715 7.008 6.9705 7.111 7.05 
38200 2 1 0 0 1 6.6405 6.6365 8.2505 8.024 8.3165 8.2325 
38201 0 1 0 0 2 5.718 5.6695 6.482 6.5005 6.76 6.706 
38491 0 1 0 0 0 6.925 6.777 7.586 7.553 7.5315 7.47 
38492 1 1 0 0 1 6.108 6.1625 7.1865 7.169 7.168 7.1845 
38542 2 1 1 1 1 5.6095 5.6095 6.473 6.4455 6.569 6.6255 
38572 1 1 1 1 1 4.808 4.825 4.974 5.013 4.7485 4.711 
38574 1 1 2 0 1 6.2895 6.3035 7.2105 7.187 7.3585 7.4035 
38578 1 1 0 0 2 5.8095 5.8175 6.512 6.521 6.78 6.754 
38579 2 1 0 0 0 5.613 5.6145 6.3965 6.391 6.213 6.2195 
39722 1 1 0 0 1 5.271 5.345 5.7155 5.7485 5.976 5.9685 
39827 2 2 1 0 2 3.7545 3.7845 4.118 4.1405 4.2705 4.318 
39828 1 1 0 0 0 7.0585 7.0585 8.0555 8.111 7.9465 7.962 
39829 1 1 0 0 2 5.6155 5.667 6.59 6.546 6.5635 6.557 
40101 2 1 0 0 1 6.4425 6.401 7.5285 7.515 7.36 7.3655 
40262 0 1 0 0 0 6.351 6.3305 7.1595 7.0625 7.1235 7.0815 
40439 2 1 0 0 1 6.6895 6.6545 7.701 7.7395 7.628 7.63 
41059 2 1 0 0 0 6.6165 6.602 7.7715 7.7955 7.5165 7.499 
41130 2 1 1 1 0 5.282 5.259 6.0845 6.132 6.052 6.1385 
41604 2 1 0 0 0 5.9155 5.91 6.6785 6.66 6.741 6.768 
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41605 0 1 0 0 2 6.554 6.564 7.6415 7.626 7.8735 7.892 
41620 0 1 0 0 2 5.173 5.187 5.9525 5.979 6.25 6.28 
44404 2 2 2 2 2 3.311 3.3565 3.226 3.2625 2.8215 2.8165 
44406 0 1 0 0 2 5.864 5.912 6.4125 6.423 6.5925 6.656 
44407 1 1 0 0 2 5.9415 5.972 6.852 6.8225 6.812 6.7385 
44430 0 1 0 1 0 5.271 5.263 5.59 5.5935 5.4685 5.4795 
44590 1 1 0 0 1 5.848 5.9475 6.238 6.202 6.6105 6.661 
47530 2 1 0 0 1 6.2645 6.213 7.0465 6.952 7.349 7.3225 
47531 2 1 0 0 1 5.471 5.5285 6.5745 6.5545 6.34 6.364 
47532 2 1 0 0 0 5.716 5.765 6.7785 6.8175 6.573 6.601 
47533 1 1 0 0 0 6.845 6.84 7.8535 7.9075 7.939 7.985 
47534 1 2 1 1 2 3.623 3.663 3.4565 3.4385 3.1805 3.1585 
47535 1 2 1 1 2 3.199 3.195 3.4565 3.4705 3.3865 3.412 
47536 2 1 1 0 0 6.116 6.0785 6.8035 6.8245 7.0025 7.005 
47537 2 1 1 0 2 6.282 6.3195 7.1415 7.016 6.95 6.846 
47538 2 0 0 0 1 5.2 5.211 5.8905 5.8825 5.8165 5.847 
47580 1 1 1 0 0 5.372 5.413 6.176 6.135 6.4425 6.4605 
47581 2 2 0 1 2 5.187 5.1365 5.953 5.911 5.832 5.7885 
47582 1 2 1 1 2 3.745 3.799 3.8175 3.8365 3.6445 3.682 
47583 1 1 2 0 2 4.9275 4.945 5.2755 5.375 5.309 5.2975 
47584 NA 1 0 NA 2 5.8825 5.8865 6.771 6.774 6.976 6.913 
47586 2 2 1 1 2 3.171 3.1845 3.315 3.403 3.098 2.9875 
47587 2 1 0 0 0 6.5245 6.5455 7.4215 7.3435 7.558 7.5495 
48050 0 1 0 0 0 6.216 6.2015 7.0415 7.028 7.367 7.349 
48367 2 1 1 0 1 5.7375 5.7045 6.6015 6.5755 6.5575 6.498 
48368 2 1 1 0 1 5.1555 5.1815 5.8895 5.8845 5.71 5.757 
48548 0 0 0 0 2 5.6715 5.688 6.249 6.2815 6.363 6.3715 
48549 1 1 0 0 2 5.1215 5.1415 5.639 5.6575 5.6475 5.726 
48552 1 2 0 0 1 4.705 4.733 5.381 5.448 5.3165 5.346 
48580 1 1 1 1 1 3.584 3.5455 3.7905 3.7835 3.741 3.776 
49307 2 2 1 1 0 5.088 4.8535 5.0065 4.8205 4.504 4.4395 
49308 0 1 0 1 0 4.2335 4.264 3.822 3.926 3.1925 3.309 
49876 2 1 0 1 0 5.5805 5.593 5.651 5.6905 5.598 5.643 
49877 1 1 1 0 1 5.4385 5.4715 5.9065 5.91 6.077 6.1125 
50095 1 0 0 1 1 4.619 4.6095 4.468 4.4695 4.323 4.3455 
50109 2 1 1 1 1 4.597 4.4015 4.128 4.228 3.755 3.7445 
50115 1 1 0 0 1 5.2065 5.266 5.904 5.908 5.7445 5.7875 
50116 2 1 0 0 0 5.61 5.669 6.9435 6.93 6.7095 6.7295 
50167 1 1 0 0 1 4.836 4.83 5.261 5.276 5.387 5.4065 
50168 2 1 0 2 0 4.712 4.6125 3.982 3.9525 3.5945 3.6945 
50210 1 1 0 1 2 3.869 3.878 4.3345 4.3315 4.1825 4.1915 
50211 1 2 1 0 2 4.4165 4.4205 4.227 4.2385 4.4095 4.3795 
50222 1 2 1 1 2 3.472 3.468 3.8015 3.7975 3.812 3.8205 
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################################################################################ 

# R code to: 

# Analyze and plot mixed-breed dog data 

################################################################################ 

 

trait <- read.table("mixed.trait.txt", header=TRUE) 

names(trait) <- c("ID", "Height", "Juvenile", "Sex") 

gene <- read.table("mixed.geno.txt", header=TRUE) 

red.t <- subset(trait, trait$Juvenile==0 & trait$Sex==1 & trait$Height < 25) 

red.g <- subset(gene, gene$ID %in% red.t$ID) 

 

lm.sex <- lm(trait$Height~trait$Sex) 

lm.b.igf1 <- lm(red.t$Height ~ factor(red.t$Sex) + factor(red.g$igf1_sine)) 

summary(lm.b.igf1) 

lm.b.fgf4 <- lm(red.t$Height ~ factor(red.t$Sex) + factor(red.g$fgf4_retro)) 

summary(lm.b.fgf4) 

lm.b.smad2 <- lm(red.t$Height ~ factor(red.t$Sex) + factor(red.g$smad2_del)) 

summary(lm.b.smad2) 

lm.b.stc2 <- lm(red.t$Height ~ factor(red.t$Sex) + factor(red.g$stc2_snp)) 

summary(lm.b.stc2) 

lm.b.banp <- lm(red.t$Height ~ factor(red.t$Sex) + factor(red.g$banp_snp)) 

summary(lm.b.banp) 

 

red.g <- na.omit(red.g) 

red.t <- subset(red.t, red.t$ID %in% red.g$ID) 

 

lm.all <- lm(red.t$Height ~ factor(red.g$igf1_sine) + factor(red.g$fgf4_retro) +  

               factor(red.g$smad2_del) + factor(red.g$stc2_snp)) 

summary(lm.all) 

lm.all <- lm(red.t$Height ~ factor(red.g$fgf4_retro) + factor(red.g$smad2_del) +  

               factor(red.g$stc2_snp)) 

summary(lm.all) 

lm.all <- lm(red.t$Height ~ factor(red.g$igf1_sine) + factor(red.g$smad2_del) +  

               factor(red.g$stc2_snp)) 

summary(lm.all) 

lm.all <- lm(red.t$Height ~ factor(red.g$igf1_sine) + factor(red.g$fgf4_retro) +  

               factor(red.g$stc2_snp)) 

summary(lm.all) 

lm.all <- lm(red.t$Height ~ factor(red.g$igf1_sine) + factor(red.g$fgf4_retro) +  

               factor(red.g$smad2_del)) 

summary(lm.all) 

 

igf1<-factor(red.g$igf1_sine) 

fgf4<-factor(red.g$fgf4_retro) 

smad2del<-factor(red.g$smad2_del) 

stc2<-factor(red.g$stc2_snp) 

banp<-factor(red.g$banp_snp) 

 

par(mfrow=c(3,2)) 

plot(red.t$Height~igf1) 

points(igf1,red.t$Height) 

plot(red.t$Height~fgf4) 

points(fgf4,red.t$Height) 

plot(red.t$Height~smad2del) 

points(smad2del,red.t$Height) 

plot(red.t$Height~stc2) 

points(stc2,red.t$Height) 

plot(red.t$Height~banp) 

points(banp,red.t$Height) 
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Appendix C 

Code for Chapter 3
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################################################################################ 

# R code to: 

# Test enrichment of CGG, CGGG, CGGGG, and Cn motifs in PRDM9 knockout mice 

# Data comes from Brick et al. 2012 and can be found at: 

# http://www.nature.com/nature/journal/v485/n7400/extref/nature11089-s2.zip 

################################################################################ 

 

#The command line EMBOSS tool is required to call the wordcount function 

#This script requires the BSgenome and stringr packages 

install.packages("stringr", dependencies = TRUE) 

source("http://bioconductor.org/biocLite.R") 

biocLite("BSgenome") 

library(BSgenome) 

biocLite("BSgenome.Mmusculus.UCSC.mm9") 

library(BSgenome.Mmusculus.UCSC.mm9) 

library(stringr) 

 

data <- read.table("2011-11-14340C-Supplementary_File_1.txt",header=T) 

chr.include <- 

c("chr1","chr2","chr3","chr4","chr5","chr6","chr7","chr8","chr9","chr10","chr11","

chr12","chr13","chr14","chr15","chr16","chr17","chr18","chr19") 

 

get.DNA <- function(data, chr.include, pick.strain, top.pct) { 

  output <- length(data[,1]) 

  print(paste(output,"rows in data file")) 

  d <- subset(data,data$strain==pick.strain) #filter by mouse strain 

  output <- length(d[,1]) 

  print(paste(output, pick.strain, "rows in data file")) 

  d.hot <- subset(d,d$type=="Hotspot") #filter by Hotspot 

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "hotspots in data file")) 

  d.hot <- subset(d.hot, d.hot$chromosome %in% chr.include) #filter by chromosome 

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "hotspots on mapped chromosomes in data file")) 

  d.hot <- d.hot[,-(5:7)] #remove uninformative columns 

  #split into lists of data.frames according to chromosome 

  d.hot <- split(d.hot,d.hot$chromosome)  

  #filter hotspots with overlapping ranges 

  fix.overlaps <- function (x) { 

    s <- x[,2] #starting positions 

    s <- c(s,10000000000) #add big number to end of list of starts 

    s <- s[-1] #remove first starting position 

    #data.frame where fifth column is starting position of next hotspot 

    df <- data.frame(x,s)  

    #select only hotspots where end position is less than next start 

    filter <- subset(df,df[,3]<df[,5]) 

    return(filter[,-5]) 

  } 

  d.hot <- lapply(d.hot,fix.overlaps) 

  library(plyr) 

  d.hot <- ldply(d.hot, data.frame) 

  d.hot <- d.hot[,-1] 

  d.hot <- d.hot[order(-d.hot[,4]),] 

  d.hot <- subset(d.hot,d.hot$start!=124074118) 

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "non-overlapping hotspots on mapped chromosomes 

in data file")) 

  top <- (length(d.hot[,1]))%/%(100/top.pct) 

  #top <- 10000 #Use for getting top 10,000 for 6-mers plot of PRDM9 and B6 

  t.hot <- d.hot[1:top,] 

  output <- length(t.hot[,1]) 

  print(paste(output, pick.strain, "in top", top.pct, "% of non-overlapping 

hotspots on mapped chromosomes in data file")) 
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  b.null <- d.hot #b for before 

  a.null <- d.hot #a for after 

  width <- (b.null$end-b.null$start)+1 

  b.null$start <- b.null$start-width 

  b.null$end <- b.null$end-width 

  a.null$start <- a.null$start+width 

  a.null$end <- a.null$end+width 

  t.b.null <- b.null[1:top,] 

  t.a.null <- a.null[1:top,] 

  seqs <- 

getSeq(Mmusculus,t.hot[['chromosome']],start=as.integer(t.hot[['start']]),end=(as.

integer(t.hot[['end']]))) 

  hot.file <- paste(pick.strain,".",top.pct,".hot",sep="") 

  writeXStringSet(seqs, file=hot.file, append=TRUE) 

  print(paste("output file is",hot.file)) 

  seqs <- 

getSeq(Mmusculus,t.b.null[['chromosome']],start=as.integer(t.b.null[['start']]),en

d=(as.integer(t.b.null[['end']]))) 

  null.b.file <- paste(pick.strain,".",top.pct,".b.null",sep="") 

  writeXStringSet(seqs, file=null.b.file, append=TRUE) 

  print(paste("output file is",null.b.file)) 

  seqs <- 

getSeq(Mmusculus,t.a.null[['chromosome']],start=as.integer(t.a.null[['start']]),en

d=(as.integer(t.a.null[['end']]))) 

  null.a.file <- paste(pick.strain,".",top.pct,".a.null",sep="") 

  writeXStringSet(seqs, file=null.a.file, append=TRUE) 

  print(paste("output file is",null.a.file)) 

  return(list(hot.file,null.b.file,null.a.file))  

} 

 

#Modify previous code to get 10,000, not top quarter 

PRDM9 <- get.DNA(data,chr.include,"PRDM9",1) 

B6 <- get.DNA(data,chr.include,"B6",1) 

 

#To get top quarter of hotspots in PRDM9 knockout and B6 mice 

PRDM9 <- get.DNA(data,chr.include,"PRDM9",25) 

B6 <- get.DNA(data,chr.include,"B6",25) 

 

get.wordcounts <- function(x,wordsize,size.name) { 

  #System commands using EMBOSS wordcount tool 

  system2("wordcount", 

paste(x[[1]],wordsize,paste(x[[1]],size.name,".wc",sep=""))) 

  system2("wordcount", 

paste(x[[2]],wordsize,paste(x[[2]],size.name,".wc",sep=""))) 

  system2("wordcount", 

paste(x[[3]],wordsize,paste(x[[3]],size.name,".wc",sep=""))) 

} 

 

#For plotting PRDM9 and B6 word counts, take top 10,000 in each 

get.wordcounts(PRDM9,"-wordsize 6 -outfile","6") 

get.wordcounts(B6,"-wordsize 6 -outfile","6") 

 

get.wordcounts(PRDM9,"-wordsize 5 -outfile","5") 

get.wordcounts(PRDM9,"-wordsize 6 -outfile","6") 

get.wordcounts(PRDM9,"-wordsize 7 -outfile","7") 

get.wordcounts(PRDM9,"-wordsize 8 -outfile","8") 

get.wordcounts(PRDM9,"-wordsize 9 -outfile","9") 

get.wordcounts(PRDM9,"-wordsize 10 -outfile","10") 

 

tabulate.wordcounts <- function(x,size.name) { 

  b.null <- read.table(paste(x[[2]],size.name,".wc",sep="")) 

  a.null <- read.table(paste(x[[3]],size.name,".wc",sep="")) 

  names(b.null) <- c("motif","count") 
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  names(a.null) <- c("motif","count") 

  null <- merge(b.null,a.null,by="motif") 

  rm(b.null,a.null) 

  null$count <- (null$count.x + null$count.y)/2 

  null <- null[,-(2:3)] 

  hot <- read.table(paste(x[[1]],size.name,".wc",sep="")) 

  names(hot) <- c("motif","count") 

  hotnull <- merge(hot,null,by="motif") 

  names(hotnull) <- c("motif","hot","null") 

  rm(hot) 

  hotnull$ratio <- hotnull$hot/hotnull$null 

  hotnull <- hotnull[order(-hotnull$ratio),] 

  return(hotnull) 

} 

 

#For top 10,000 plot 

PRDM9.out6 <- tabulate.wordcounts(PRDM9,"6") 

B6.out6 <- tabulate.wordcounts(B6,"6") 

 

#For top quarter analysis 

PRDM9.out5 <- tabulate.wordcounts(PRDM9,"5") 

PRDM9.out6 <- tabulate.wordcounts(PRDM9,"6") 

PRDM9.out7 <- tabulate.wordcounts(PRDM9,"7") 

PRDM9.out8 <- tabulate.wordcounts(PRDM9,"8") 

PRDM9.out9 <- tabulate.wordcounts(PRDM9,"9") 

PRDM9.out10 <- tabulate.wordcounts(PRDM9,"10") 

 

m.cgg.5 <- c("CCGCC", "GCCGC", "CGCCG", "GGCGG", "CGGCG", "GCGGC") 

m.cgg.6 <- c("CGGCGG", "GCGGCG", "GGCGGC", "GCCGCC", "CGCCGC", "CCGCCG") 

m.cgg.7 <- c("CGGCGGC", "GCGGCGG", "GGCGGCG", "GCCGCCG", "CGCCGCC", "CCGCCGC") 

m.cgg.8 <- c("CGGCGGCG", "GCGGCGGC", "GGCGGCGG", "GCCGCCGC", "CGCCGCCG", 

"CCGCCGCC") 

m.cgg.9 <- c("CGGCGGCGG", "GCGGCGGCG", "GGCGGCGGC", "GCCGCCGCC", "CGCCGCCGC", 

"CCGCCGCCG") 

m.cgg.10 <- c("CGGCGGCGGC", "GCGGCGGCGG", "GGCGGCGGCG", "GCCGCCGCCG", 

"CGCCGCCGCC", "CCGCCGCCGC") 

 

m.cggg.5 <- c("CGGGC", "GCGGG", "GGCGG", "GGGCG", "GCCCG", "CGCCC", "CCGCC", 

"CCCGC") 

m.cggg.6 <- c("CGGGCG", "GCGGGC", "GGCGGG", "GGGCGG", "GCCCGC", "CGCCCG", 

"CCGCCC", "CCCGCC") 

m.cggg.7 <- c("CGGGCGG", "GCGGGCG", "GGCGGGC", "GGGCGGG", "GCCCGCC", "CGCCCGC", 

"CCGCCCG", "CCCGCCC") 

m.cggg.8 <- c("CGGGCGGG", "GCGGGCGG", "GGCGGGCG", "GGGCGGGC", "GCCCGCCC", 

"CGCCCGCC", "CCGCCCGC", "CCCGCCCG") 

m.cggg.9 <- c("CGGGCGGGC", "GCGGGCGGG", "GGCGGGCGG", "GGGCGGGCG", "GCCCGCCCG", 

"CGCCCGCCC", "CCGCCCGCC", "CCCGCCCGC") 

m.cggg.10 <- c("CGGGCGGGCG", "GCGGGCGGGC", "GGCGGGCGGG", "GGGCGGGCGG", 

"GCCCGCCCGC", "CGCCCGCCCG", "CCGCCCGCCC", "CCCGCCCGCC") 

 

m.cgggg.5 <- c("CGGGG", "GCGGG", "GGCGG", "GGGCG", "GGGGC", "GCCCC", "CGCCC", 

"CCGCC", "CCCGC", "CCCCG") 

m.cgggg.6 <- c("CGGGGC", "GCGGGG", "GGCGGG", "GGGCGG", "GGGGCG", "GCCCCG", 

"CGCCCC", "CCGCCC", "CCCGCC", "CCCCGC") 

m.cgggg.7 <- c("CGGGGCG", "GCGGGGC", "GGCGGGG", "GGGCGGG", "GGGGCGG", "GCCCCGC", 

"CGCCCCG", "CCGCCCC", "CCCGCCC", "CCCCGCC") 

m.cgggg.8 <- c("CGGGGCGG", "GCGGGGCG", "GGCGGGGC", "GGGCGGGG", "GGGGCGGG", 

"GCCCCGCC", "CGCCCCGC", "CCGCCCCG", "CCCGCCCC", "CCCCGCCC") 

m.cgggg.9 <- c("CGGGGCGGG", "GCGGGGCGG", "GGCGGGGCG", "GGGCGGGGC", "GGGGCGGGG", 

"GCCCCGCCC", "CGCCCCGCC", "CCGCCCCGC", "CCCGCCCCG", "CCCCGCCCC") 

m.cgggg.10 <- c("CGGGGCGGGG", "GCGGGGCGGG", "GGCGGGGCGG", "GGGCGGGGCG", 

"GGGGCGGGGC", "GCCCCGCCCC", "CGCCCCGCCC", "CCGCCCCGCC", "CCCGCCCCGC", 

"CCCCGCCCCG") 
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m.c.5 <- c("CCCCC", "GGGGG") 

m.c.6 <- c("CCCCCC", "GGGGGG") 

m.c.7 <- c("CCCCCCC", "GGGGGGG") 

m.c.8 <- c("CCCCCCCC", "GGGGGGGG") 

m.c.9 <- c("CCCCCCCCC", "GGGGGGGGG") 

m.c.10 <- c("CCCCCCCCCC", "GGGGGGGGGG") 

 

summarize.motifs <- function(ranks, motifs) { 

  get.rank <- function(mot, ran) { 

    which(ran$mot==mot) 

  } 

  counts <- sapply(motifs, get.rank, ranks) 

  return(c(min(counts), mean(counts))) 

} 

s.cgg.5 <- summarize.motifs(PRDM9.out5, m.cgg.5) 

s.cgg.6 <- summarize.motifs(PRDM9.out6, m.cgg.6) 

s.cgg.7 <- summarize.motifs(PRDM9.out7, m.cgg.7) 

s.cgg.8 <- summarize.motifs(PRDM9.out8, m.cgg.8) 

s.cgg.9 <- summarize.motifs(PRDM9.out9, m.cgg.9) 

s.cgg.10 <- summarize.motifs(PRDM9.out10, m.cgg.10) 

 

s.cggg.5 <- summarize.motifs(PRDM9.out5, m.cggg.5) 

s.cggg.6 <- summarize.motifs(PRDM9.out6, m.cggg.6) 

s.cggg.7 <- summarize.motifs(PRDM9.out7, m.cggg.7) 

s.cggg.8 <- summarize.motifs(PRDM9.out8, m.cggg.8) 

s.cggg.9 <- summarize.motifs(PRDM9.out9, m.cggg.9) 

s.cggg.10 <- summarize.motifs(PRDM9.out10, m.cggg.10) 

 

s.cgggg.5 <- summarize.motifs(PRDM9.out5, m.cgggg.5) 

s.cgggg.6 <- summarize.motifs(PRDM9.out6, m.cgggg.6) 

s.cgggg.7 <- summarize.motifs(PRDM9.out7, m.cgggg.7) 

s.cgggg.8 <- summarize.motifs(PRDM9.out8, m.cgggg.8) 

s.cgggg.9 <- summarize.motifs(PRDM9.out9, m.cgggg.9) 

s.cgggg.10 <- summarize.motifs(PRDM9.out10, m.cgggg.10) 

 

s.c.5 <- summarize.motifs(PRDM9.out5, m.c.5) 

s.c.6 <- summarize.motifs(PRDM9.out6, m.c.6) 

s.c.7 <- summarize.motifs(PRDM9.out7, m.c.7) 

s.c.8 <- summarize.motifs(PRDM9.out8, m.c.8) 

s.c.9 <- summarize.motifs(PRDM9.out9, m.c.9) 

s.c.10 <- summarize.motifs(PRDM9.out10, m.c.10) 

 

s.cgg.5 

s.cgg.6 

s.cgg.7 

s.cgg.8 

s.cgg.9 

s.cgg.10 

 

s.cggg.5 

s.cggg.6 

s.cggg.7 

s.cggg.8 

s.cggg.9 

s.cggg.10 

 

s.cgggg.5 

s.cgggg.6 

s.cgggg.7 

s.cgggg.8 

s.cgggg.9 

s.cgggg.10 
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s.c.5 

s.c.6 

s.c.7 

s.c.8 

s.c.9 

s.c.10 

 

(1024-s.cgg.5[2])/1024 

(4096-s.cgg.6[2])/4096 

(16384-s.cgg.7[2])/16384 

(65536-s.cgg.8[2])/65536 

(262144-s.cgg.9[2])/262144 

(1048576-s.cgg.10[2])/1048576 

 

(1024-s.cggg.5[2])/1024 

(4096-s.cggg.6[2])/4096 

(16384-s.cggg.7[2])/16384 

(65536-s.cggg.8[2])/65536 

(262144-s.cggg.9[2])/262144 

(1048576-s.cggg.10[2])/1048576 

 

(1024-s.cgggg.5[2])/1024 

(4096-s.cgggg.6[2])/4096 

(16384-s.cgggg.7[2])/16384 

(65536-s.cgggg.8[2])/65536 

(262144-s.cgggg.9[2])/262144 

(1048576-s.cgggg.10[2])/1048576 

 

(1024-s.c.5[2])/1024 

(4096-s.c.6[2])/4096 

(16384-s.c.7[2])/16384 

(65536-s.c.8[2])/65536 

(262144-s.c.9[2])/262144 

(1048576-s.c.10[2])/1048576 

 

(0.9903971 + 0.9958903 + 0.9986877 + 0.9978994 + 0.995739 + 0.9982141) / 6 #CGG 

(0.980957 + 0.9836121 + 0.9873962 + 0.9915237 + 0.9922447 + 0.9971991) / 6 #CGGG 

(0.9589844 + 0.9793701 + 0.9813293 + 0.9799347 + 0.9841087 + 0.9960034) / 6 #CGGGG 

(0.7797852 + 0.7185059 + 0.6652527 + 0.6396866 + .6541328 + 0.7737193) / 6 #Cn 
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################################################################################ 

# execute.R 

# R code to: 

# Perform sliding window analysis for CGG, CGGG, CGGGG, Cn, and predicted human  

# PRDM9 motifs for PRDM9 knockout and B6 mice 

# Data comes from Brick et al. 2012 and can be found at: 

# http://www.nature.com/nature/journal/v485/n7400/extref/nature11089-s2.zip 

################################################################################ 

 

source("quartile.window.R") 

 

#Perfect CGG motif 

dict.cgg.p <- 

(c("CGGCGGCGG","GGCGGCGGC","GCGGCGGCG","GCCGCCGCC","CCGCCGCCG","CGCCGCCGC")) 

pdict.cgg.p<-PDict(dict.cgg.p) 

 

#Imperfect CGG motif with one mismatch 

dict.cgg.i<-

c("NGGCGGCGG","CNGCGGCGG","CGNCGGCGG","CGGCGGNGG","CGGCGGCNG","CGGCGGCGN",  

        "NGCGGCGGC","GNCGGCGGC","GGNGGCGGC","GGCGGCNGC","GGCGGCGNC","GGCGGCGGN", 

        "NCGGCGGCG","GNGGCGGCG","GCNGCGGCG","GCGGCGNCG","GCGGCGGNG","GCGGCGGCN", 

        "NCCGCCGCC","GNCGCCGCC","GCNGCCGCC","GCCGCCNCC","GCCGCCGNC","GCCGCCGCN", 

        "NCGCCGCCG","CNGCCGCCG","CCNCCGCCG","CCGCCGNCG","CCGCCGCNG","CCGCCGCCN", 

        "NGCCGCCGC","CNCCGCCGC","CGNCGCCGC","CGCCGCNGC","CGCCGCCNC","CGCCGCCGN") 

pdict.cgg.i<-PDict(dict.cgg.i,tb.start=4,tb.width=3) 

 

#Perfect CGGG motif 

dict.cggg.p<-

(c("CGGGCGGG","GCGGGCGG","GGCGGGCG","GGGCGGGC","GCCCGCCC","CGCCCGCC","CCGCCCGC","C

CCGCCCG")) 

pdict.cggg.p<-PDict(dict.cggg.p) 

 

#Perfect CGGGG motif 

dict.cgggg.p<-

(c("CGGGGCGGGG","GCGGGGCGGG","GGCGGGGCGG","GGGCGGGGCG","GGGGCGGGGC","GCCCCGCCCC","

CGCCCCGCCC","CCGCCCCGCC","CCCGCCCCGC","CCCCGCCCCG"))  

pdict.cgggg.p<-PDict(dict.cgggg.p) 

 

#Perfect C motif 

dict.c.p<-(c("CCCCCCCCCC","GGGGGGGGGG"))  

pdict.c.p<-PDict(dict.c.p) 

 

#Human PRDM9 motif 

dict.hum<-

c("ccnccatanccnc","ccnccattnccnc","ccnccatcnccnc","ccnccatgnccnc","ccnccttanccnc",

"ccncctttnccnc","ccnccttcnccnc","ccnccttgnccnc","ccnccctanccnc","ccncccttnccnc", 

"ccnccctcnccnc","ccnccctgnccnc","ccnccgtanccnc","ccnccgttnccnc","ccnccgtcnccnc", 

"ccnccgtgnccnc","ggnggtatnggng","ggnggtaanggng","ggnggtagnggng","ggnggtacnggng", 

"ggnggaatnggng","ggnggaaanggng","ggnggaagnggng","ggnggaacnggng","ggngggatnggng", 

"ggngggaanggng","ggngggagnggng","ggngggacnggng","ggnggcatnggng","ggnggcaanggng", 

"ggnggcagnggng","ggnggcacnggng") 

pdict.hum<-PDict(dict.hum,tb.start=6,tb.width=3) 

 

#Predicted human PRDM9 DNA binding motif 

PRDM9.hum <- quartile.window(data, "PRDM9", chr.include, pdict.hum) 

B6.hum <- quartile.window(data, "B6", chr.include, pdict.hum)  

 

prdm9Palette <- c("#253494", "#2C7FB8", "#41B6C4", "#A1DAB4") 

ggplot(PRDM9.hum[[2]], aes(position,enrichment,colour=Quartile)) + 

geom_line(lwd=2) + scale_color_manual(values=prdm9Palette) 

ggplot(B6.hum[[2]], aes(position,enrichment,colour=Quartile)) + geom_line(lwd=2) + 

  scale_color_manual(values=prdm9Palette) 



 

145 

ggplot(rbind(PRDM9.hum[[1]],R9.hum[[1]],R13.hum[[1]]), 

aes(position,enrichment,colour=Strain)) + geom_line(lwd=2) + 

  scale_color_manual(values=prdm9Palette) 

#Perfect CGG motif 

PRDM9.cgg.p <- quartile.window(data, "PRDM9", chr.include, pdict.cgg.p)  

B6.cgg.p <- quartile.window(data, "B6", chr.include, pdict.cgg.p) 

 

#Perfect CGGG motif 

PRDM9.cggg.p <- quartile.window(data, "PRDM9", chr.include, pdict.cggg.p)  

B6.cggg.p <- quartile.window(data, "B6", chr.include, pdict.cggg.p) 

 

PRDM9.cgggg.p <- quartile.window(data, "PRDM9", chr.include, pdict.cgggg.p) 

#perfect CGGGG 

B6.cgggg.p <- quartile.window(data, "B6", chr.include, pdict.cgggg.p) #perfect 

CGGGG 

R9.cgggg.p <- quartile.window(data, "9R", chr.include, pdict.cgggg.p) #perfect 

CGGGG 

R13.cgggg.p <- quartile.window(data, "13R", chr.include, pdict.cgggg.p) #perfect 

CGGGG 

 

#Perfect Cn motif 

PRDM9.c.p <- quartile.window(data, "PRDM9", chr.include, pdict.c.p)  

B6.c.p <- quartile.window(data, "B6", chr.include, pdict.c.p)  

 

#Imperfect CGG motif 

PRDM9.cgg.i <- quartile.window(data, "PRDM9", chr.include, pdict.cgg.i)  

B6.cgg.i <- quartile.window(data, "B6", chr.include, pdict.cgg.i)  

 

PRDM9.c <- PRDM9.c.p[[1]] 

PRDM9.c$Strain <- "C (knockout)" 

PRDM9.cgg <- PRDM9.cgg.p[[1]] 

PRDM9.cgg$Strain <- "CGG (knockout)" 

PRDM9.cggg <- PRDM9.cggg.p[[1]] 

PRDM9.cggg$Strain <- "CGGG (knockout)" 

PRDM9.cgggg <- PRDM9.cgggg.p[[1]] 

PRDM9.cgggg$Strain <- "CGGGG (knockout)" 

B6.c <- B6.c.p[[1]] 

B6.c$Strain <- "C (B6)" 

B6.cgg <- B6.cgg.p[[1]] 

B6.cgg$Strain <- "CGG (B6)" 

B6.cggg <- B6.cggg.p[[1]] 

B6.cggg$Strain <- "CGGG (B6)" 

B6.cgggg <- B6.cgggg.p[[1]] 

B6.cgggg$Strain <- "CGGGG (B6)" 

comp1 <- rbind(PRDM9.c, PRDM9.cgg, PRDM9.cggg, PRDM9.cgggg, B6.c, B6.cgg, B6.cggg, 

B6.cgggg) 

names(comp1) <- c("position", "enrichment", "Motif") 

 

prdm9Palette <- c("#D7B5D8", "#A1DAB4", "#DF65B0", "#41B6C4", "#DF65B0", 

"#2C7FB8", "#980043", "#253494") 

ggplot(comp1, aes(position, enrichment, colour= Motif)) + geom_line(lwd=2) +  

  scale_color_manual(values=prdm9Palette) + theme_classic() + 

  xlab("Distance to hotspot center (kb)") + 

  ylab("Fold enrichment") + 

  scale_x_continuous(breaks=c(-2000,-1000,0,1000,2000), labels=c(-2,-1,0,1,2)) + 

  theme(legend.position = c(0.8,0.8)) 

 

PRDM9.cggi <- PRDM9.cgg.i[[1]] 

PRDM9.cggi$Strain <- "CGG mismatch (knockout)" 

B6.cggi <- B6.cgg.i[[1]] 

B6.cggi$Strain <- "CGG mismatch (B6)" 

 

prdm9Palette <- c("#DF65B0", "#41B6C4", "#980043", "#253494") 
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ggplot(rbind(PRDM9.cgg, PRDM9.cggi, B6.cgg, B6.cggi), 

aes(position,enrichment,colour=Strain)) + geom_line(lwd=2) + 

  scale_color_manual(values=prdm9Palette) + theme_classic() + 

  xlab("Distance to hotspot center (kb)") + 

  ylab("Fold enrichment") + 

  scale_x_continuous(breaks=c(-2000,-1000,0,1000,2000), labels=c(-2,-1,0,1,2)) + 

  theme(legend.position = c(0.8,0.8))  
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################################################################################ 

# quartile.window.R  

# Generates sliding window figures of motifs specified in execute.R 

################################################################################ 

 

quartile.window<-function(data,pick.strain,chr.include,pdict) { 

  #This script requires the BSgenome and stringr packages 

  #install.packages("stringr", dependencies = TRUE) 

  #source("http://bioconductor.org/biocLite.R") 

  #biocLite("BSgenome") 

  library(BSgenome) 

  #biocLite("BSgenome.Mmusculus.UCSC.mm9") 

  library(BSgenome.Mmusculus.UCSC.mm9) 

  library(stringr) 

  source("get.DNA.R") 

  print("Getting DNA sequences from genomic coordinates...") 

  s.dna <- get.DNA(data,chr.include,pick.strain) 

  s.length <- length(s.dna) 

  quartile <- s.length%/%4 

  source("get.matches.R") 

  print("Matching pdict motifs to DNA sequences...") 

  a.matches <- get.matches(s.dna,pdict) 

  q1.matches <- get.matches(s.dna[1:quartile],pdict) 

  q2.matches <- get.matches(s.dna[(quartile+1):(quartile*2)],pdict) 

  q3.matches <- get.matches(s.dna[((quartile*2)+1):(quartile*3)],pdict) 

  q4.matches <- get.matches(s.dna[((quartile*3)+1):(quartile*4)],pdict) 

  source("get.coverage.R") 

  print("Tabulating matched motifs...") 

  a.cov <- get.coverage(a.matches) 

  q1.cov <- get.coverage(q1.matches) 

  q2.cov <- get.coverage(q2.matches) 

  q3.cov <- get.coverage(q3.matches) 

  q4.cov <- get.coverage(q4.matches) 

  source("get.windows.R") 

  print("Getting window counts...") 

  a.win <- get.windows(q1.cov,"Strain",pick.strain) 

  q1.win <- get.windows(q1.cov,"Quartile","1") 

  q2.win <- get.windows(q2.cov,"Quartile","2") 

  q3.win <- get.windows(q3.cov,"Quartile","3") 

  q4.win <- get.windows(q4.cov,"Quartile","4") 

  a.win$position <- a.win$position-2500 

  q.plot <- rbind(q1.win,q2.win,q3.win,q4.win) 

  q.plot$position <- q.plot$position-2500 

  return(list(a.win,q.plot)) 

} 
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################################################################################ 

# get.DNA.R  

# Captures DNA sequences associated with hotspots (MM9) 

################################################################################ 

 

get.DNA <- function(data, chr.include, pick.strain) { 

  output <- length(data[,1]) 

  print(paste(output,"rows in data file"))   

  d <- subset(data,data$strain==pick.strain) #filter by mouse strain 

  output <- length(d[,1]) 

  print(paste(output, pick.strain, "rows in data file")) 

  d.hot <- subset(d,d$type=="Hotspot") #filter by Hotspot 

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "hotspots in data file")) 

  d.hot <- subset(d.hot, d.hot$chromosome %in% chr.include) #filter by chromosome   

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "hotspots on chr.include chromosomes in data 

file")) 

  d.hot <- subset(d.hot,(d.hot$end-d.hot$start)==2000) #filter by hotspot size 

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "2000 bp hotspots on chr.include chromosomes in 

data file")) 

  #set beginning of range for sliding window analysis 

  d.hot$start <- d.hot$start-4100 

  d.hot$end <- d.hot$end+4099 #set end 

  d.hot <- d.hot[,-(5:7)] #remove uninformative columns 

  #split into lists of data.frames according to chromosome 

  d.hot <- split(d.hot,d.hot$chromosome)  

  #filter out hotspots with overlapping ranges that would interfere with estimates 

of hot and null 

  fix.overlaps <- function (x) { 

    s <- x[,2] #starting positions 

    s <- c(s,10000000000) #add big number to end of list of starts 

    s <- s[-1] #remove first starting position 

    df <- data.frame(x,s) #data.frame where fifth column is starting position of 

next hotspot 

    #select only hotspots where end position is less than next start 

    filter <- subset(df,df[,3]<df[,5])  

    return(filter[,-5]) 

  } 

  d.hot <- lapply(d.hot,fix.overlaps) 

  library(plyr) 

  d.hot <- ldply(d.hot, data.frame) 

  d.hot <- d.hot[,-1] 

  d.hot <- d.hot[order(-d.hot[,4]),] 

  d.hot <- subset(d.hot,d.hot$end!=124080217) 

  output <- length(d.hot[,1]) 

  print(paste(output, pick.strain, "non-overlapping hotspots on chr.include 

chromosomes in data file")) 

  d <- d.hot 

  library(BSgenome) 

  library(BSgenome.Mmusculus.UCSC.mm9) 

  library(stringr) 

  seqs <- 

getSeq(Mmusculus,d[['chromosome']],start=as.integer(d[['start']]),end=(as.integer(

d[['end']]))) 

  return(seqs) 

} 
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################################################################################ 

# get.matches.R  

# Matches motifs specified in execute.R with those contained in DNA extracted 

# with get.DNA.R 

################################################################################ 

 

get.matches <- function(dna,pdict) { 

  output <- vector(mode="list",length(dna)) 

  for(i in 1:(length(dna))) { 

    output[i] <- matchPDict(pdict,dna[[i]],fixed="subject") 

  }  

  return(output) 

} 
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################################################################################ 

# get.coverage.R  

# Computes coverage for matched motifs from get.matches.R 

################################################################################ 

 

get.coverage <- function(matches) { 

  spots <- length(matches) 

  cov.total <- seq(1:10200) 

  for(i in 1:spots) { 

    cov <- as.numeric(coverage(matches[[i]])) 

    cov <- which(cov>0) 

    cov.total <- c(cov.total,cov) 

  } 

  cov.y <- tabulate(cov.total) 

  cov.x <- seq(1:length(cov.y)) 

  cov.xy <- data.frame(cov.x,cov.y) 

  return(cov.xy) 

} 
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################################################################################ 

# get.windows.R  

# Performs sliding window analysis from coverage calculated in get.coverage.R 

################################################################################ 

 

get.windows <- function(cov,category.type,category) { 

  windows <- vector(mode="list",length=10000) 

  for(i in 1:10000) { 

    windows[[i]] <- sum(cov[i:(i+199),2]) 

  } 

  win.x <- seq(1:5000) 

  win.y <- ldply(windows) 

  hot <- win.y[2501:7500,] 

  null <- win.y[c(1:2500,7501:10000),] 

  null.num <- (sum(null))/5000 

  enrichment <- hot/null.num 

  output <- data.frame(win.x,enrichment,category) 

  names(output) <- c("position","enrichment",category.type) 

  return(output) 

}
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